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Abstract

In this note we investigate extremal singly-even self-dual codes with minimal
shadow. For particular parameters we prove non-existence of such codes. By a
result of Rains [11], the length of extremal singly-even self-dual codes is bounded.
We give explicit bounds in case the shadow is minimal.

Index Terms: self-dual codes, singly-even codes, minimal shadow, bounds

1 Introduction

Let C be a singly-even self-dual [n, n2 , d] code and let C0 be its doubly-even subcode.
There are three cosets C1, C2, C3 of C0 such that C⊥

0 = C0 ∪ C1 ∪ C2 ∪ C3, where
C = C0 ∪ C2. The set S = C1 ∪ C3 = C⊥

0 \ C is called the shadow of C. Shadows
for self-dual codes were introduced by Conway and Sloane [5] in order to derive new
upper bounds for the minimum weight of singly-even self-dual codes and to provide
restrictions on their weight enumerators.

According to [10] the minimum weight d of a self-dual code of length n is bounded
by 4[n/24] + 4 for n 6≡ 22 (mod 24) and by 4[n/24] + 6 if n ≡ 22 (mod 24). We call a
self-dual code meeting this bound extremal. Note that for some lengths, for instance
length 34, no extremal self-dual codes exist.

Some properties of the weight enumerator of S are given in the following theorem.

Theorem 1 [5] Let S(y) =
∑n

r=0Bry
r be the weight enumerator of S. Then

• Br = Bn−r for all r,

• Br = 0 unless r ≡ n/2 (mod 4),

• B0 = 0,
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• Br ≤ 1 for r < d/2,

• Bd/2 ≤ 2n/d,

• at most one Br is nonzero for r < (d+ 4)/2.

Elkies studied in [6] the minimum weight s (respectively the minimum norm) of the
shadow of self-dual codes (respectively of unimodular lattices), especially in the cases
where it attains a high value. Bachoc and Gaborit proposed to study the parameters d
and s simultaneously [1]. They proved that 2d+ s ≤ n

2 + 4, except in the case n ≡ 22
(mod 24) where 2d+ s ≤ n

2 +8. They called the codes attaining this bound s-extremal.
In this note we study singly-even self-dual codes for which the minimum weight of the
shadow has smallest possible value. possible.

Definition 1 We say that a self-dual code C of length 24m + 8l + 2r with r = 1, 2, 3
and l = 0, 1, 2 is a code with minimal shadow if wt(S) = r. For r = 0, C is called of
minimal shadow if wt(S) = 4.

Self-dual codes with minimal shadow are subject of two previous articles. The pa-
per [3] is devoted to connections between self-dual codes of length 24m + 8l + 2 with
wt(S) = 1, combinatorial designs and secret sharing schemes. The structure of these
codes are used to characterize access groups in a secret sharing scheme based on codes.
There are two types of schemes which are proposed - with one-part secret and with
two-part secret. Moreover, some of the considered codes support 1- and 2-designs. The
performance of the extremal self-dual codes of length 24m + 8l where l = 1, 2 have
been studied in [2]. In particular, different types of codes with the same parameters are
compared with regard to the decoding error probability. It turned out that for lengths
24m+8 singly-even codes with minimal shadow perform better than doubly-even codes.
Thus from the point of view of data correction one is interested in singly-even codes
with minimal shadow.

This article is organized as follows. In Section 2 we prove that extremal self-dual
codes with minimal shadow of length 24m + 2t for t = 1, 2, 3, 5, 11 do not exist.
Moreover, for t = 4, 6, 7 and 9, we obtain upper bounds for the length. We also prove
that if extremal doubly-even self-dual codes of length n = 24m+8 or 24m+16 do not
exist then extremal singly-even self-dual codes with minimal shadow do not exist for
the same length. The only case for which we do not have a bound for the length is
n = 24m+ 20.

All computations have been carried out with Maple.
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2 Extremal self-dual codes with minimal shadow

Let C be a singly-even self-dual code of length n = 24m+8l+2r where l = 0, 1, 2 and
r = 0, 1, 2, 3. The weight enumerator of C and its shadow are given by [5]:

W (y) =

12m+4l+r
∑

j=0

ajy
2j =

3m+l
∑

i=0

ci(1 + y2)12m+4l+r−4i(y2(1− y2)2)i

S(y) =

6m+2l
∑

j=0

bjy
4j+r =

3m+l
∑

i=0

(−1)ici2
12m+4l+r−6iy12m+4l+r−4i(1− y4)2i

Using these expressions we can write ci as a linear combination of the aj and as a
linear combination of the bj in the following way [10]:

ci =
i

∑

j=0

αijaj =
3m+l−i
∑

j=0

βijbj . (1)

Suppose C is an extremal singly-even self-dual code with minimal shadow, hence
d = 4m+ 4 and wt(S) = r if r = 1, 2, 3 and wt(S) = 4 if r = 0. Obviously in this case
a0 = 1, a1 = a2 = · · · = a2m+1 = 0. According to Theorem 1, we have b0 = 1 if r > 0
and m ≥ 1, and b0 = 0, b1 = 1 if r = 0 and m ≥ 2.

Moreover, if r > 0 and m ≥ 1 then b1 = b2 = · · · = bm−1 = 0. Otherwise S would
contain a vector v of weight less than or equal to 4m− 4 + r, and if u ∈ S is a vector
of weight r then u+ v ∈ C with wt(u+ v) ≤ 4m+ 2r− 4 ≤ 4m+2, a contradiction to
the minimum distance of C. Similarly, if r = 0 and m ≥ 2 then b2 = · · · = bm−1 = 0.

Remark 1 For extremal self-dual codes of length 24m + 8l + 2 we furthermore have
bm = 0. Otherwise S would contain a vector v of weight 4m + 1, and if u ∈ S is the
vector of weight 1 which exists since wt(S) = 1, then u+v ∈ C with wt(u+v) ≤ 4m+2
contradicting the minimum distance of C.

If m ≥ 2 we have by (1)

c2m+1 = α2m+1,0 = β2m+1,ǫ +

m+l−1
∑

j=m

β2m+1,jbj , (2)

where ǫ = 1 for r = 0 and ǫ = 0 otherwise, since 3m+l−2m−1 = m+l−1. To evaluate
this equation, which turns out to be crucial in the following, we need to consider the
coefficients αi0 in details. In order to do this we denote by αi(n) the coefficient αi0 if
n is the length of the code. According to [10] we have

αi(n) = αi0 = −
n

2i
[coeff. of yi−1 in (1 + y)−n/2−1+4i(1− y)−2i]. (3)
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Let t = 4l + r and n = 24m+ 8l + 2r = 24m+ 2t. Then

α2m+1(n) = −
12m+ t

2m+ 1
[coeff. of y2m in (1 + y)−12m−t−1+8m+4(1− y)−4m−2]

= −
12m+ t

2m+ 1
[coeff. of y2m in (1 + y)−4m−t+3(1− y)−4m−2]

For t > 5 we obtain

α2m+1(n) = −
12m+ t

2m+ 1
[coeff. of y2m in (1− y2)−4m−t+3(1− y)t−5],

and if t ≤ 5 then

α2m+1(n) = −
12m+ t

2m+ 1
[coeff. of y2m in (1− y2)−4m−2(1 + y)5−t].

Since

(1− y2)−a =
∑

0≤j

(

−a

j

)

(−1)jy2j =
∑

0≤j

(

a+ j − 1

j

)

y2j for a > 0,

it follows in case t ≤ 5 that

α2m+1(n) = −
12m+ t

2m+ 1
[coeff. of y2m in (1 + y)5−t

m
∑

j=0

(

4m+ j + 1

j

)

y2j ]

= −
12m+ t

2m+ 1

[ 5−t

2
]

∑

s=0

(

5− t

2s

)(

5m+ 1− s

m− s

)

,

and in case t > 5 that

α2m+1(n) = −
12m+ t

2m+ 1
[coeff. of y2m in (1− y)t−5

m
∑

j=0

(

4m+ t+ j − 4

j

)

y2j ]

= −
12m+ t

2m+ 1

[ t−5

2
]

∑

s=0

(

t− 5

2s

)(

5m+ t− 4− s

m− s

)

.

For the different lengths n the values of α2m+1(n) are listed in Table 1.

To evaluate equation (2) we also need βij which are known due to [10]. Here we
have

βij = (−1)i2−n/2+6i k − j

i

(

k + i− j − 1

k − i− j

)

, (4)
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Table 1: The values α2m+1(n) for extremal self-dual codes

n 24m+ 2 24m+ 10 24m+ 18

α2m+1 −

(12m+ 1)(56m+ 4)

(2m+ 1)(m− 1)

(

5m− 1

m− 2

)

−

12m+ 5

2m+ 1

(

5m+ 1

m

)

−

12(7m + 5)(4m + 3)

m(m− 1)

(

5m + 3

m− 2

)

n 24m+ 4 24m+ 12 24m+ 20

α2m+1 −

2(6m+ 1)(8m+ 1)

m(2m+ 1)

(

5m

m− 1

)

−6

(

5m+ 2

m

)

−

20(6m + 5)(4m + 3)

m(m− 1)

(

5m + 4

m− 2

)

n 24m+ 6 24m+ 14 24m+ 22

α2m+1 −

3(4m+ 1)(6m+ 1)

m(2m+ 1)

(

5m

m− 1

)

−

3(12m+ 7)

m

(

5m+ 2

m− 1

)

−

6(12m+ 11)(6m + 5)(8m+ 7)

m(m− 1)(m− 2)

(

5m+ 4

m− 3

)

n 24m+ 8 24m+ 16

α2m+1 −

4(3m+ 1)

2m+ 1

(

5m+ 1

m

)

−

16(3m+ 2)

m

(

5m+ 3

m− 1

)

where k = ⌊n/8⌋ = 3m+ l. In particular,

β2m+1,j = −26−t 3m+ l − j

2m+ 1

(

5m+ l − j

m+ l − 1− j

)

and β2m+1,m+l−1 = −26−t.

Now we are prepared to prove:

Theorem 2 Extremal self-dual codes of lengths n = 24m + 2, 24m + 4, 24m + 6,
24m+ 10 and 24m+ 22 with minimal shadow do not exist.

Proof. According to [10] any extremal self-dual code of length 24m+ 22 has minimum
distance 4m + 6 and the minimum weight of its shadow is 4m + 7. Thus the shadow
is not minimal since a minimal shadow must have minimum weight 3. (There is a
misprint in [10] where it is stated that the minimum weight of the shadow is 4m + 6.
But actually the weights in this shadow are of type 4j + 3).

In the other four cases we have

c2m+1 = α2m+1,0 = β2m+1,0 (5)

by (2). In case n = 24m+ 10 we use the fact that bm = 0, according to Remark 1.
Simplifying equation (5) according to Table 1 we obtain

48m2 + 26m+ 1 = 0, if n = 24m+ 2

24m2 + 14m+ 1 = 0, if n = 24m+ 4

48m2 + 30m+ 3 = 0, if n = 24m+ 6

6m+ 3 = 0, if n = 24m+ 10.
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Since all these equations have no solutions m ≥ 0 extremal self-dual codes with
minimal shadow do not exist for n ≡ 2, 4, 6, 10 mod 24. �

Remark 2 So far no extremal self-dual codes of length 24m + 2t are known for t =
1, 2, 3, 5. According to [8] extremal self-dual codes of length 24m + 2r do not exist for
r = 1, 2, 3 and m = 1, 2, . . . , 6, 8, . . . , 12, 16, . . . , 22. Thus if there is (for instance) a
self-dual [170, 85, 32] code it will not have minimal shadow, by Theorem 2.

The next result is a crucial observation in order to prove explicit bounds for the
existence of extremal singly-even self-dual codes.

Theorem 3 Extremal singly-even self-dual codes with minimal shadow of lengths n =
24m+8, 24m+12, 24m+14 and 24m+18 have uniquely determined weight enumerators.

Proof. For m = 0 and m = 1 see Remark 3 and the examples at the end of the paper.
Now let m ≥ 2.

In case n = 24m+ 12 or n = 24m+ 14 we have

ci = αi0 = βi0 +

3m+1−i
∑

j=m

βijbj for i ≤ 2m+ 1 and

ci = αi0 +
i

∑

j=2m+2

αijaj = βi0 for i > 2m+ 1.

Therefore ci = αi0 for i = 0, 1, . . . , 2m+ 1 and ci = βi0 for i = 2m+ 2, . . . , 3m+ 1.
In the case n = 24m + 8 we have b0 = 0, b1 = 1 and b2 = · · · = bm−1 = 0. Hence

ci = αi0 for i = 0, 1, . . . , 2m+ 1 and ci = βi1 for i = 2m+ 2, . . . , 3m+ 1.
Similarly, if n = 24m + 18 we obtain ci = αi0 for i = 0, 1, . . . , 2m + 1 and ci = βi0

for i = 2m+ 2, . . . , 3m + 2. In both cases the weight enumerator can be computed as
above.

By (3) and (4), the values of ci can be calculated and they depend only on the
length n. Thus the weight enumerators are unique in all cases. �

In [15], Zhang obtained upper bounds for the lengths of the extremal binary doubly-
even codes. He proved that extremal doubly-even codes of length n = 24m+8l do not
exist if m ≥ 154 (for l = 0), m ≥ 159 (for l = 1) and m ≥ 164 (for l = 2). For extremal
singly-even codes there is also a bound due to Rains [11]. Unfortunately, he only states
the existence of a bound. In the next corollary we give explicit bounds for extremal
singly-even self-dual codes with minimal shadow for lengths congruent 8, 12, 14 and 18
mod 24.
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In the proof we need the value of c2m = α2m,0. According to [10] we have

α2m(n) = −
24m+ 2t

4m
[coeff. of y2m−1 in (1 + y)−4m−t−1(1− y)−4m]

= −
12m+ t

2m
[coeff. of y2m−1 in (1− y)t+1(1− y2)−4m−t−1]

= −
12m+ t

2m
[coeff. of y2m−1 in (1− y)t+1

m
∑

j=0

(

4m+ t+ j

j

)

y2j ]

=
12m+ t

2m

[ t+2

2
]

∑

s=1

(

t+ 1

2s− 1

)(

5m+ t− s

m− s

)

where t = 4l + r and n = 24m+ 8l + 2r = 24m+ 2t. The values for α2m(n) are listed
in Table 2.

Table 2: The values α2m(n) for an extremal self-dual [n = 24m+ 2t, n2 , 4m+ 4] code

n α2m(n)

24m+ 8
8(4m+ 1)(11m + 3)(3m + 1)

m(m− 1)(m− 2)

(

5m+ 1

m− 3

)

24m + 12
24(116m2 + 79m+ 15)(1 + 2m)2

m(m− 1)(m− 2)(m− 3)

(

5m+ 2

m− 4

)

24m + 14
24(1 + 2m)(12m+ 7)(28m2 + 22m + 5)

m(m− 1)(m− 2)(m− 3)

(

5m + 3

m− 4

)

24m + 16
16(3m + 2)(2m+ 1)(1216m3 + 1956m2 + 1073m + 210)

m(m− 1)(m− 2)(m− 3)(m− 4)

(

5m+ 3

m− 5

)

24m + 18
120(2m + 1)(4m+ 3)(176m3 + 308m2 + 189m+ 42)

m(m− 1)(m− 2)(m− 3)(m− 4)

(

5m+ 4

m− 5

)

24m + 20
16(6m + 5)(2m+ 1)(4m+ 3)(1592m3 + 3280m2 + 2363m + 630)

m(m− 1)(m− 2)(m− 3)(m− 4)(m− 5)

(

5m+ 4

m− 6

)

Furthermore, β2m,j = 2−t 3m+ l − j

2m

(

5m+ l − 1− j

m+ l − j

)

. Hence β2m,m+l = 2−t and

β2m,m+l−1 = 21−t(2m+ 1).

Corollary 4 There are no extremal singly-even self-dual codes of length n with minimal
shadow if

(i) n = 24m+ 8 and m ≥ 53,

(ii) n = 24m+ 12 and m ≥ 142,
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(iii) n = 24m+ 14 and m ≥ 146,

(iv) n = 24m+ 18 and m ≥ 157.

Proof. Using the equation

ci = αi0 = βiǫ +

3m+l−i
∑

j=m

βijbj for i ≤ 2m+ 1,

where ǫ = 1 if n = 24m+ 8 and ǫ = 0 in the other cases, we see that

bm+l−1 = −2t−6(α2m+1,0 − β2m+1,ǫ).

The values of bm for n = 24m+ 8, 24m+ 12 and 24m+ 14 are given in Table 3.

Table 3: The parameter bm for extremal self-dual codes of length n

n 24m+ 8 24m + 12 24m+ 14

bm
6m+ 1

m

(

5m

m− 1

)

12m+ 5

2m+ 1

(

5m+ 1

m

)

168m2 + 164m + 39

(2m+ 1)(4m+ 3)

(

5m + 1

m

)

If n = 24m+ 18 we have

bm = 0 and bm+1 =
(24m+ 17)(17m + 10)

(2m+ 1)(4m + 5)

(

5m+ 2

m+ 1

)

.

In the first three cases we compute

bm+1 =
α2m,0 − β2m,ǫ − β2m,mbm

β2m,m+1
.

If n = 24m+ 8 we obtain

bm+1 =
16(6m+ 1)(−4m3 + 209m2 + 141m+ 24)

5m(m+ 1)(4m + 3)

(

5m+ 1

m− 1

)

In case m ≥ 53 the polynomial −4m3+209m2+141m+24 takes negative values, hence
bm+1 < 0, a contradiction.

For 24m+ 12 we have

bm+1 =
2(12m+ 5)(−32m4 + 4496m3 + 4242m2 + 1257m + 117)

(5m+ 1)(4m + 3)(4m+ 5)(2m + 3)

(

5m+ 2

m+ 1

)

If m ≥ 142 the polynomial −32m4 + 4496m3 + 4242m2 + 1257m + 117 takes negative
values, hence bm+1 < 0, a contradiction.
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For 24m+ 14 the calculations lead to

bm+1 =
2(−5376m6 + 772352m5 + 1663728m4 + 1386448m3 + 557970m2 + 107643m + 7875)

(4m+ 3)(4m + 5)(2m + 3)(4m + 7)(5m + 1)

(

5m+ 2

m+ 1

)

which is negative if m ≥ 146.
In the last case we have to compute

bm+2 =
α2m,0 − β2m,0 − β2m,m+1bm+1

β2m,m+2
.

The computations yield

bm+2 =
2(24m + 17)(−544m5 + 83696m4 + 184210m3 + 149089m2 + 52809m + 6930)

(4m+ 5)(2m + 3)(4m + 7)(4m + 9)(5m+ 2)

(

5m+ 3

m+ 2

)

which is negative for m ≥ 157. �

Proposition 5 If there are no extremal doubly-even self-dual codes of length n = 24m+
8 or 24m + 16 then there are no extremal singly-even self-dual codes of length n with
minimal shadow.

Proof. We shall prove the contraposition. Let C be a singly-even self-dual [n = 24m+
8l, 12m+4l, 4m+4] code and suppose that the coset C1 contains the vector u of weight
4. If v ∈ C3 then u+ v ∈ C2 and hence wt(u+ v) ≥ 4m+ 6. It follows that

wt(v) ≥ 4m+ 6− 4 + 2wt(u ∗ v) ≥ 4m+ 4,

since C1 is not orthogonal to C3, which means that u∗v ≡ 1 (mod 2) for u ∈ C1, v ∈ C3

(see [4]). Thus wt(C3) ≥ 4m+ 4. Therefore C0 ∪ C3 is an extremal doubly-even code
with parameters [24m+ 8l, 12m + 4l, 4m+ 4]. �

Corollary 6 There are no extremal singly-even self-dual codes with minimal shadow
of length n = 24m+ 16 for m ≥ 164.

Proof. This follows immediately from the Zhang bound [15] for doubly-even codes in
connection with Proposition 5. �

Summarizing the results in Theorem 2, Corollary 4 and Corollary 6 we have proved
either the non-existence or an explicit bound for the length n of an extremal singly-even
self-dual code unless n ≡ 20 (mod 24). To find an explicit bound for n = 24m + 20
seems to be difficult since the weight enumerator is not unique in this case.
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Remark 3 Extremal singly-even self-dual codes of length 24m + 8 are constructed
only for m = 1, i.e. n = 32. There are exactly three inequivalent singly-even self-dual
[32, 16, 8] codes. Yorgov proved that there are no extremal singly-even self-dual codes
with minimal shadow of length 24m+ 8 in the case m is even and

(5m
m

)

is odd [14].

Examples. Extremal singly-even self-dual codes of lengths 24m + 12, 24m + 14 and
24m+ 18:

m = 0: There are unique extremal singly-even codes of lengths 12, 14 and 16, and
they have minimal shadows. There are two inequivalent self-dual [18, 9, 4] codes, but
only one of them is a code with minimal shadow (see [5]).
m = 1: Extremal self-dual codes of lengths 36, 38 and 42 with minimal shadow are
constructed. Only for the length 36 there is a complete classification [9]. There are 16
inequivalent self-dual [36, 18, 8] codes with minimal shadow and their weight enumerator
is W = 1 + 225y8 + 2016y10 + 9555y12 + · · · (see [7]).
m = 2: There exists a doubly circulant code with parameters [60, 30, 12] and shadow
of minimum weight 2, denoted by D13 in [5]. The first examples for extremal self-
dual codes with minimal shadow of lengths 62 and 66 are constructed in [12] and [13],
respectively.

Finally, we would like to mention that similar to the case of extremal doubly-even
self-dual codes there is a large gap between the bounds for extremal singly-even self-dual
codes and what we really can construct.
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