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Abstract

We consider a well defined joint detection and parameter estimation problem. By combining the

Baysian formulation of the estimation subproblem with suitable constraints on the detection subproblem

we develop optimum one- and two-step test for the joint detection/estimation case. The proposed com-

bined strategies have the very desirable characteristic to allow for the trade-off between detection power

and estimation efficiency. Our theoretical developments are then applied to the problems of retrospective

changepoint detection and MIMO radar. In the former case we are interested in detecting a change in

the statistics of a set of available data and provide an estimate for the time of change, while in the latter

in detecting a target and estimating its location. Intense simulations demonstrate that by using the jointly

optimum schemes, we can experience significant improvement in estimation quality with small sacrifice

in detection power.

Index Terms

Joint detection-estimation, Retrospective change detection, MIMO radar.

I. INTRODUCTION

There are important applications in practice where one is confronted with the problem of distinguishing

between different hypotheses and, depending on the decision, to proceed and estimate a set of relevant
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parameters. Characteristic examples are: Detection and estimation of objects from images [1]; Retro-

spective changepoint detection, where one desires to detect a change in statistics but also estimate the

time of the change [2], [3]; Defect detection from radiographies, where in addition to detecting presence

of defects one would also like to find their position and shape [4]; finally MIMO radar where we are

interested in detecting the presence of a target and also estimate several target characteristics as position,

speed, etc. All these applications clearly demand for detection and estimation strategies that address the

two subproblems in a jointly optimum manner.

In the literature, there are basically two (mainly ad-hoc) approaches that deal with combined problems.

The first consists in treating the two subproblems separately and applying in each case the corresponding

optimum technique. For instance one can use the Neyman-Pearson optimum test for detection and the

optimum Bayesian estimator for parameter estimation to solve the combined problem. As we will see

in our analysis, and it is usually the case in combined problems, treating each part separately with the

optimum scheme, does not necessarily result in optimum overall performance. The second methodology

consists in using the Generalized Likelihood Ratio Test (GLRT) which detects and estimates at the same

time with the parameter estimation part relying on the maximum likelihood estimator. Both approaches

lack versatility and are not capable of emphasizing each subproblem according to the needs of the

corresponding application.

Surprisingly, one can find very limited literature that deals with optimum solutions of the joint de-

tection and estimation problem. A purely Bayesian technique is reported in [5], whereas a combination

of Bayesian and Neyman-Pearson-like methodology is developed in [6]. Specifically in [6] the error

probabilities under the two hypotheses, used in the classical Neyman-Pearson approach, are replaced by

estimation costs. Mimicking the Neyman-Pearson formulation and constraining the estimation cost under

the nominal hypothesis while optimizing the corresponding cost under the alternative, gives rise to a

number of interesting combined tests that can be used in place of GLRT.

Here we will build upon the methodology of [6] but we are going to formulate the combined problem in

a more natural way. In particular we will define a performance measure for the estimation part which we

are going to optimize assuring, in parallel, the satisfactory performance of the detection part by imposing

suitable constraints on the decision error probabilities. This idea will lead to two novel combined tests

that have no equivalent in [5],[6].

We would like to point out that the theory in [5],[6] as well as the one we are going to develop in our

work, makes sense only when both subproblems constitute desired goals in our setup, that is, when we

are interested in detecting and estimating. These results cannot provide optimum schemes for the case
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where one is interested only in detection and is forced to use parameter estimation due to presence of

nuisance parameters.

Our article is organized as follows: in Section II we define the joint detection and estimation problem

and propose two different optimal solutions. As a quick example, our results are then applied to the

problem of retrospective change detection. In Section III we make a thorough presentation of the MIMO

radar problem under a joint detection and estimation formulation and use the results of the previous

section in order to solve this problem optimally. Specifically we develop closed form expressions for all

quantities that are needed to apply our theory and perform simulations to evaluate the performance of the

optimum schemes, addressing also computational issues. Finally, in Section IV we have our concluding

remarks.

II. OPTIMUM JOINT DETECTION AND PARAMETER ESTIMATION

Let us define the problem of interest. Motivated by most applications mentioned in the Introduction, we

limit ourselves to the binary hypothesis case with parameters present only under the alternative hypothesis.

Suppose we are given an observation signal X for which we have the following two hypotheses

H0 : X ∼ f0(X)

H1 : X ∼ f1(X|θ), θ ∼ π(θ),

where f0(X), f1(X|θ), π(θ) are known pdfs. Specifically, we assume that under H0 we know the pdf

of X completely, whereas under H1 the pdf of X contains a collection of random parameters θ for

which we have available some prior pdf π(θ). The goal is to develop a mechanism that distinguishes

between H0,H1 and, furthermore, every time it decides in favor of H1 it provides an estimate θ̂ for θ.

Our combined detection/estimation scheme is therefore comprised of a randomized test {δ0(X), δ1(X)}

with δi(X) denoting the randomization probability for deciding in favor of Hi; and a function θ̂(X) that

provides the necessary parameter estimates. Clearly δi(X) ≥ 0 and δ0(X) + δ1(X) = 1.

Let us recall, very briefly, the optimum detection and estimation theory when the two subproblems are

considered separately.

Neyman-Pearson hypothesis testing: Fix a level α ∈ (0, 1); if D denotes our decision then we are

interested in selecting a test (namely the randomization probabilities δi(X)) so that the detection proba-

bility P1(D = H1) is maximized subject to the false alarm constraint P0(D = H1) ≤ α. Equivalently, the

previous maximization can be replaced by the minimization of the probability of miss P1(D = H0). The

optimum detection scheme is the well celebrated likelihood ratio test, which takes the following form
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for our specific setup

L(X) =
f1(X)

f0(X)
=

∫
f1(X|θ)π(θ) dθ

f0(X)

H1

T
H0

γNP. (1)

In other words we decide H1 whenever the likelihood ratio L(X) exceeds the threshold γNP; H0 whenever

it falls below and randomize with a probability p when the likelihood ratio is equal to the threshold. The

threshold γNP and the probability p are selected to satisfy the false alarm constraint with equality. The

randomization probabilities δNP
0 (X), δNP

1 (X) corresponding to the Neyman-Pearson test are given by

δNP
0 (X) = 1{ f1(X)

f0(X)
<γNP} + (1− p)1{ f1(X)

f0(X)
=γNP}

δNP
1 (X) = 1{ f1(X)

f0(X)
>γNP} + p1{ f1(X)

f0(X)
=γNP},

(2)

where 1A denotes the index function of the set A.

Bayesian parameter estimation: Suppose that we know with certainty that the observations X come

from hypothesis H1, then we are interested in providing an estimate θ̂(X) for the parameters θ. We

measure the quality of our estimate with the help of a cost function C(θ̂, θ) ≥ 0. We would like to select

the optimum estimator in order to minimize the average cost E1[C(θ̂(X), θ)], where expectation is with

respect to X and θ.

From [7, Page 142] we have that the optimum Bayesian estimator is the following minimizer (provided

it exists)

θ̂o(X) = arg inf
U
C(U |X), (3)

where C(U |X) is the posterior cost function

C(U |X) = E1[C(U, θ)|X] =

∫
C(U, θ)f1(X|θ)π(θ) dθ∫

f1(X|θ)π(θ) dθ
=

∫
C(U, θ)f1(X|θ)π(θ) dθ

f1(X)
, (4)

and expectation, as we can see from the last equality, is with respect to θ for given X . Finally we denote

the optimum posterior cost as Co(X), that is,

Co(X) = inf
U
C(U |X) = C(θ̂o(X)|X). (5)

This quantity will play a very important role in the development of our theory as it constitutes a genuine

quality index for the estimate θ̂o(X).

Let us now consider the combined problem. We recall that the hypothesis testing part distinguishes

between H0 and H1. As we have seen, the Neyman-Pearson approach provides the best possible detection

structure for controlling and optimizing the corresponding decision error probabilities. However with a

decision mechanism that focuses on the decision errors, we cannot necessarily guarantee efficiency for
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the estimation part. Consequently, we understand, that the detection part cannot be treated independently

from the estimation part. Following this rationale, we propose two possible approaches involving single

and two-step schemes that differ in the number of decision mechanisms they incorporate and the way

they combine the notion of reliable estimate with the detection subproblem.

A. Single-Step Tests

Let us begin our analysis by introducing a proper performance measure for the estimation subproblem.

Following the Bayesian approach we assume the existence of the cost function C(θ̂, θ) ≥ 0. Computing

the average cost that will play the role of our performance measure, is not as straightforward as in the

pure estimation problem and requires some consideration. Note that an estimate θ̂(X) is provided only

when we decide in favor of H1. On the other hand averaging of C(θ̂, θ) makes sense only under the

alternative hypothesis H1 since under the nominal H0 there is no true parameter θ. Consequently we

propose the following performance criterion

J (δ0, δ1, θ̂) = E1[C(θ̂(X), θ)|D = H1] =
E1[C(θ̂(X), θ)1{D=H1}]

P1(D = H1)
, (6)

where expectation is with respect to X and θ. We realize that with our criterion, the estimation per-

formance depends not only on the estimator but also on the detection mechanism. As we can see, we

compute the average cost over the event {D = H1}, which is the only case an estimate is available.

One would immediately argue that the measure in (6) does not consider in any sense the decision errors,

that is, the quality of the detector. However, these errors can be efficiently controlled through suitable

constraints. Specifically we can impose the familiar false alarm constraint P0(D = H1) ≤ α but also a

constraint on the probability of miss P1(D = H0) ≤ β where α, β ∈ (0, 1). With these two constraints

we have complete control over the decision mechanism and therefore, now, it makes sense to attempt to

minimize the conditional average estimation cost J (δ0, δ1, θ̂) over the decision rule {δ0(X), δ1(X)} and

the estimator θ̂(X). Note that the two constraints guarantee satisfactory performance for the detection

part and, by minimizing the criterion, we can enjoy optimum performance in the estimation part.

Let us carry out the desired optimization gradually. We first fix the decision rule {δ0(X), δ1(X)} and

optimize J (δ0, δ1, θ̂) with respect to the estimator θ̂(X). We have the following lemma that provides the

solution to this problem.

Lemma 1: Let ϕ(X) ≥ 0 be a scalar function, then the following functional of θ̂(X)

D(θ̂) =

∫∫
ϕ(X)C(θ̂(X), θ)f1(X|θ)π(θ)dθdX∫∫

ϕ(X)f1(X|θ)π(θ)dθdX
(7)
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is minimized when θ̂(X) is the optimum Bayesian estimator θ̂o(X) defined in (3) and (4).

Proof: The proof is simple. We can write

D(θ̂) =

∫∫
ϕ(X)C(θ̂(X), θ)f1(X|θ)π(θ)dθdX∫∫

ϕ(X)f1(X|θ)π(θ)dθdX

=

∫
ϕ(X)

(∫
C(θ̂(X), θ)f1(X|θ)π(θ)dθ

)
dX∫

ϕ(X)
(∫
f1(X|θ)π(θ)dθ

)
dX

=

∫
ϕ(X)C(θ̂(X)|X)f1(X)dX∫

ϕ(X)f1(X)dX

≥
∫
ϕ(X) infU C(U |X)f1(X)dX∫

ϕ(X)f1(X)dX

=

∫
ϕ(X)C(θ̂o(X)|X)f1(X)dX∫

ϕ(X)f1(X)dX
=

∫
ϕ(X)Co(X)f1(X)dX∫

ϕ(X)f1(X)dX
, (8)

where for the last two equalities we used (5).

Lemma 1 is a very interesting result because it demonstrates an extended optimality property for the

classical Bayesian estimator. In particular by selecting ϕ(X) = δ1(X) we conclude that θ̂o(X) continues

to be optimum even if estimation is dictated by a decision mechanism and not performed over all data

X , as is the usual practice with Bayesian estimation. Consequently, we can now fix our estimator to the

Bayesian estimator θ̂o(X) with corresponding optimized performance measure equal to

J̄ (δ0, δ1) = J (δ0, δ1, θ̂o) =

∫
δ1(X)Co(X)f1(X)dX∫

δ1(X)f1(X)dX
. (9)

It is clear that our intention is to further minimize J̄ (δ0, δ1) over the class of detectors that satisfy the

two error constraints. Before addressing this problem however, we need to make some remarks.

Remark 1: One can argue that by constraining the false alarm probability to α and by using the

Neyman-Pearson optimum test for detection and then the Bayesian estimator for estimation (in other

words, treating the two subproblems separately) has definite optimality properties, since this combination

optimizes both the detection and the estimation part. This is indeed true, however with such a scheme the

main emphasis is on the detection part. For estimation, after optimizing the corresponding performance

(by using θ̂o(X)), we have no further control. In fact if the resulting estimation performance is not

satisfactory, there is no room for further improvement. This weakness is clearly circumvented by the

proposed formulation which offers, as we discuss next, the additional flexibility to trade detection power

for estimation efficiency, according to the needs of the designer.

Remark 2: We recall that in our setup we have the two constraints P0(D = H1) ≤ α and P1(D = H0) ≤

β. By fixing the false alarm probability to α, the probability of miss is minimized by the Neyman-Pearson
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test; call this minimum value β(α). Since no test, with false alarm probability not exceeding α, can have

a probability of miss that goes below β(α), this suggests that in our constraint on the probability of miss,

β must be selected to satisfy β ≥ β(α). We are thus reducing, in a controlled manner, the detection

power as compared to the Neyman-Pearson test (since we allow more misses) aiming in improving the

effectiveness of our estimation. We have the following theorem that provides the optimum scheme.

Theorem 1: Consider the two constraints P0(D = H1) ≤ α and P1(D = H0) ≤ β, where 0 < α < 1

and β(α) ≤ β < 1 with β(α) denoting the probability of miss of the Neyman-Pearson test. Let λo > 0

be the solution of the equation1

P1 (λo ≥ Co(X)) = 1− β, (10)

where Co(X) is defined in (5). Then the optimum combined scheme is comprised of the Bayesian

estimator θ̂o(X) defined in (3), (4), for the estimation part while the decision rule that optimizes the

average conditional cost J̄ (δ0, δ1) in (9) under the two error constraints is given by

Co(X)
H1

S
H0

λo, if α ≥ P0 (λo ≥ Co(X)) (11)

f1(X)

f0(X)
[λ− Co(X)]

H1

T
H0

γ, if α < P0 (λo ≥ Co(X)) , (12)

where in (12) λ, γ are selected so that the two error probability constraints are satisfied with equality.

Proof: The proof is presented in the Appendix.

From (11) and (12) we deduce that the optimum detector takes into account the estimation part through

Co(X) which constitutes a quality index for the estimate θ̂o(X). If this index is sufficiently large then,

in both cases, the test decides in favor of H0. In particular, in (12), this decision may occur even if the

classical likelihood ratio exceeds the threshold γNP, suggesting decision in favor of H1.

Sumarizing, our first optimum combined test consist in applying (11) or (12) to decide between the

two hypotheses and every time we make a decision in favor of H1 we use θ̂o(X) defined in (3) to provide

the optimum parameter estimate.

B. Two-Step Tests

In the previous setup our decision was between H0 and H1 and we were sacrificing detection power

to improve estimation. However, in most applications, giving up part of the detection capacity may be

1For simplicity we assume that Co(X) and f1(X)/f0(X), when considered as random variables, have no atoms under both

hypotheses (the corresponding pdfs have no delta functions). This avoids the need for randomization every time a test statistic

hits a threshold.
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regarded as undesirable. For example in MIMO radar it is still helpful to detect a target even if we cannot

reliably estimate its parameters.

It is possible to preserve the detection power and at the same time ameliorate the estimation per-

formance if we follow a slightly different approach that involves two-step mechanisms. Specifically we

propose the use of an initial detection strategy that distinguishes between H0 and H1; whenever we decide

in favor of H1 then, at a second step, we compute the estimate θ̂(X) and employ a second test that decides

whether the estimate is reliable or unreliable, denoted as H1r and H1u respectively. Consequently we

propose to make three different decisions H0,H1r and H1u with the union of the last two corresponding

to hypothesis H1. As we can see, we “trust” the estimate θ̂(X) only when we decide in favor of H1r,

but we have detection even if we discard the estimate as unreliable, that is, we decide H1u.

For the first test we use our familiar randomization probabilities {δ0(X), δ1(X)} while for the second

we employ a new pair {q1r(X), q1u(X)}. The latter functions are the randomization probabilities needed

to decide between reliable/unreliable estimation given that the first test decided in favor of H1. Therefore

we have q1r(X), q1u(X) ≥ 0 and q1r(X)+q1u(X) = 1. For every combination of the four randomization

probabilities we define, similarly to the previous subsection, the corresponding average conditional cost

for the estimator θ̂(X), namely

J (δ0, δ1, q1r, q1u, θ̂) = E1[C(θ̂(X), θ)|D = H1r] =

∫
δ1(X)q1r(X)C(θ̂(X)|X)f1(X)dX∫

δ1(X)q1r(X)f1(X)dX
. (13)

As we can see, we now condition on the event {D = H1r} since this is the only case when the estimate

θ̂(X) is accepted. We also note that, for given X , the probability to decide in favor of H1r is δ1(X)q1r(X)

because we must decide in favor of H1 in the first step (with probability δ1(X)) and for H1r in the second

(with probability q1r(X)).

In the first step we would like to adopt the best possible detector to select between H0 and H1.

We follow the classical Neyman-Pearson approach and impose the false alarm probability constraint

P0(D = H1) ≤ α while we minimize the probability of miss P1(D = H0). This leads to the Neyman-

Pearson test defined in (1) with corresponding randomization probabilities δNP
0 (X), δNP

1 (X) given in (2).

Having identified the first, let us proceed to the second step of our detection/estimation mechanism that

involves parameter estimation and a second test that labels the estimate as reliable/unreliable. Consider the

average conditional cost J (δNP
0 , δNP

1 , q1r, q1u, θ̂), assume q1r(X), q1u(X) fixed, then from Lemma 1 and

by selecting ϕ(X) = δNP
1 (X)q1r(X), we conclude that this criterion is minimized when θ̂(X) = θ̂o(X),
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that is, again with the optimum Bayes estimator defined in (3) and (4). Call

J̄ (q1r, q1u) = J (δNP
0 , δNP

1 , q1r, q1u, θ̂o) =

∫
δNP

1 (X)q1r(X)Co(X)f1(X)dX∫
δNP

1 (X)q1r(X)f1(X)dX
, (14)

the corresponding performance. It is then clear that we would like to minimize even further this criterion by

selecting properly our second decision mechanism which is expressed with the help of the randomization

probabilities {q1r(X), q1u(X)}. Note however that, in addition to this minimization, we are also interested

in generating as many “reliable estimates” as possible when applying the second test. These two goals

are clearly conflicting, therefore we adopt a Neyman-Pearson-like approach in order to come up with an

optimum scheme. In other words we constrain one quantity and optimize the other.

To find a suitable constraint, because q1r(X) ≤ 1, the probability P1(D = H1r) of deciding in favor

of H1r (reliable estimate) satisfies

P1(D = H1r) =

∫
δNP

1 (X)q1r(X)f1(X)dX ≤
∫
δNP

1 (X)f1(X)dX = P1(D = H1) = 1− β(α). (15)

In other words this probability is upper bounded by the detection probability 1− β(α) of the Neyman-

Pearson test where, we recall, β(α) denotes the corresponding probability of miss. This inequality reveals

the obvious fact that, only a portion of our initial decisions in favor of H1 provide reliable estimates in

the second step. Actually it is this part we intend to control by imposing the following inequality

1− β ≤ P1(D = H1r) =

∫
δNP

1 (X)q1r(X)f1(X)dX (16)

with 1 > β ≥ β(α). The constraint in (16) expresses our desire that at least a fraction of 1−β
1−β(α) ≤

P1(D=H1r)
P1(D=H1) ≤ 1 of the initial decisions in favor of H1 must provide reliable estimates. Subject to this

constraint the goal is to obtain the best possible estimation performance, that is, minimize the performance

measure J̄ (q1r, q1u). The solution to this optimization problem is given in the next lemma.

Lemma 2: Let 1 > β ≥ β(α), then the test that minimizes the average conditional cost J̄ (q1r, q1u)

defined in (14) subject to the constraint in (16), is given by

Co(X)
H1r

S
H1u

λ, (17)

where λ is selected to satisfy (16) with equality and Co(X) is defined in (5).

Proof: The proof follows a methodology which is very similar to the one used in the proof of

Theorem 1. Since it presents no particular difficulties, it is omitted.

As in the previous subsection, Co(X) constitutes a quality index for the estimate θ̂o(X). With Lemma 2

we end up with the very plausible decision rule of accepting θ̂o(X) as reliable whenever this index is
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below some threshold λ while the estimate is discarded as unreliable whenever the same quantity exceeds

the threshold.

Summarizing our second detection/estimation scheme: We first use the Neyman-Pearson test (1) to

decide between H0,H1. Whenever we decide in favor of H1 we compute the estimate θ̂o(X) from (3)

and its corresponding quality index Co(X) from (5); then we use the test in (17) to characterize the

estimate as reliable/unreliable.

C. MSE Cost and Uniform Prior

If we call L(X|θ) = f1(X|θ)
f0(X) the conditional likelihood ratio, then all quantities entering in the two tests

can be expressed with the help of L(X|θ) and the prior probability π(θ). We start with the likelihood

ratio which is part of both tests and observe that we can write it as

L(X) =
f1(X)

f0(X)
=

∫
L(X|θ)π(θ)dθ. (18)

From (4) we can see that the posterior cost C(U |X) can be computed as

C(U |X) =

∫
C(U, θ)L(X|θ)π(θ) dθ∫
L(X|θ)π(θ) dθ

(19)

suggesting that the Bayes estimator θ̂o(X) = arg infU C(U |X) and the corresponding optimum posterior

cost Co(X) = infU C(U |X) can be expressed with the help of the conditional likelihood ratio as well.

Let us now examine the special case where for the cost function we adopt the squared error C(U, θ) =

‖U − θ‖2 which leads to the MSE criterion. From [7, Page 143], we know that the optimum estimator

θ̂o(X) is the conditional mean E1[θ|X]. If we also assume the prior π(θ) to be uniform over some known

set Ω with finite Lebesgue measure µ(Ω) then

L(X) =
f1(X)

f0(X)
= µ−1(Ω)

∫
Ω
L(X|θ)dθ

θ̂o(X) =

∫
Ω θL(X|θ)dθ∫
Ω L(X|θ)dθ

Co(X) =

∫
Ω ‖θ̂o(X)− θ‖2L(X|θ)dθ∫

Ω L(X|θ)dθ

=

∫
Ω ‖θ‖

2L(X|θ)dθ∫
Ω L(X|θ)dθ

− ‖θ̂o(X)‖2.

(20)

We can see that µ(Ω) does not enter in the computation of the estimate θ̂o(X) and its quality index

Co(X). Although µ(Ω) does appear in the likelihood ratio L(X), it is easy to verify that, in both tests,

it can be transferred to the right hand side and absorbed by the corresponding threshold γ. We therefore

conclude that no explicit knowledge of this quantity is necessary. Finally, we note that in the MSE
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criterion, Co(X) is the conditional variance of θ̂o(X) which clearly constitutes a very reasonable quality

index for the corresponding estimate.

We have now completed the development of our theory that addresses the joint detection and estimation

problem. To demonstrate the power and originality of our analysis, first we apply our results to the example

of retrospective change detection and then in Section III, at a much greater extent, we use them to solve

the MIMO radar problem.

D. Example: Retrospective Change Detection

Retrospective change detection is the problem where within a given set of data X = [x1, . . . , xN ] there

is a possible time instant τ where the data switch statistics from some nominal pdf f(X) before τ to an

alternative pdf h(X) after τ . We consider τ as the last time instant under the nominal regime. Given X

we are interested in detecting the change but also estimating the time τ the change took place.

We should point out that retrospective change detection methodology is largely dominated by sequential

techniques [3]. However, this constitutes a serious misusage of these methods since, in the retrospective

formulation, the data are all available at once, whereas in the sequential setup the data become available

sequentially. This means that by adopting sequential tests for the solution of the retrospective problem

results in an inefficient utilization of the existing information.

Let us now apply our previous theory. Note that for 0 ≤ τ < N , the two pdfs can be decomposed as

f(X) = f(x1, . . . , xτ )× f(xτ+1, . . . , xN |x1, . . . , xτ )

h(X) = h(x1, . . . , xτ )× h(xτ+1, . . . , xN |x1, . . . , xτ ).

(21)

We first need to define the data pdf under the two hypotheses. Under H0 we are under the nominal

model therefore, clearly, f0(X) = f(X). Under H1 and with a change occurring at τ , we define the pdf

f1(X|τ) as follows

f1(X|τ) = f(x1, . . . , xτ )× h(xτ+1, . . . , xN |x1, . . . , xτ ). (22)

In other words, from the decompositions in (21), we combine the first part of the nominal pdf with the

second part of the alternative. With this changepoint model, the data before the change affect the data

after the change through the conditional pdf. This is the most common model used in change detection

theory [8]. Note that τ > N − 1 means that all the data are under the nominal regime (i.e. there is no

change) whereas τ = 0 that all the data are under the alternative regime. Therefore, under H1 we have

τ ∈ {0, . . . , N − 1} with some prior {π0, . . . , πN−1}.
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Let us compute the quantities that are necessary to apply our tests. Using (21) we can write for the

conditional likelihood ratio

L(X|τ) =
h(xτ+1, . . . , xN |x1, . . . , xτ )

f(xτ+1, . . . , xN |x1, . . . , xτ )
, (23)

suggesting that the likelihood ratio, from (18), takes the form L(X) =
∑N−1

τ=0 πτL(X|τ).

Consider now the estimation problem. We propose the following cost function C(U, τ) = 1{U 6=τ},

penalizing incorrect estimates by a unit cost. The average cost is clearly the probability to estimate

incorrectly. Observing that 1{U 6=τ} = 1− 1{U=τ}, from (19) we can write

C(U |X) = 1− L(X|U)πU∑N−1
τ=0 πτL(X|τ)

= 1− L(X|U)πU
L(X)

. (24)

Consequently the optimum estimator that minimizes C(U |X) over U ∈ {0, . . . , N − 1} is

τ̂o(X) = arg max
0≤U≤N−1

L(X|U)πU , (25)

which is the MAP estimator [7, Pages 145-150]; while the corresponding optimum posterior cost becomes

Co(X) = 1− max0≤U≤N−1 L(X|U)πU
L(X)

. (26)

The classical test that treats the two subproblems separately consists in comparing the likelihood ratio

L(X) to the threshold γNP in order to distinguish between the two hypotheses and use τ̂o(X) to estimate

the time of change. GLRT on the other hand compares max0≤U≤N−1 L(X|U) to a threshold with the

argument of this maximization providing the estimate for the time of change.

Applying our theory to this problem, for the single-step test we use τ̂o(X) for the estimate of the

changetime and either
max0≤U≤N−1 L(X|U)πU

L(X)

H1

T
H0

(1− λo), (27)

or

(λ− 1)L(X) + max
0≤U≤N−1

L(X|U)πU

H1

T
H0

γ, (28)

for the decision. For the two-step scheme we compare the likelihood ratio L(X) to the threshold γNP to

decide between the two hypotheses; use τ̂o(X) for the changepoint estimate and finally apply

max0≤U≤N−1 L(X|U)πU
L(X)

H1r

T
H1u

(1− λ) (29)

to label the estimate as reliable/unreliable. Both combined schemes resulting from our theory, are com-

pletely original and make efficient use of all available information.
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III. APPLICATION TO MIMO RADAR

A context where performing joint detection and estimation is of particular interest is in radar systems.

Radars are often deployed not only to detect a target but also estimate unknown parameters associated with

the target, e.g., position and velocity. Recent developments in radar systems equip radars with multiple

transmit and receive arrays that considerably improve their detection power and estimation accuracy

compared with the conventional phased-array radars.

In this section we examine the merits of the tests developed in the previous section for enhancing

the detection and estimation quality by employing multiple-input multiple-output (MIMO) radar systems

with widely-separated antennas [9]. In particular we are interested in the detection of a target, and the

estimation of its location every time a target is ruled present. This is somewhat different from the more

conventional approaches in MIMO radar systems, e.g., [10] and references therein, where the probe

space is broken into small subspaces and the radar detects the presence of the target in each of the

subspaces separately. In this approach as the location to be probed is given, one is only testing whether

a target is present in a certain given subspace [10]. This necessitates implementing multiple detection

tests in parallel, one for each subspace. In this section, we develop detectors and estimators based on the

optimality theory discussed in the previous section which are used only once for the entire space.

A. System Description

We consider a MIMO radar system with M transmit and N receive antennas that are widely separated

(satisfy the conditions in [10, Sec. II.A]). Such spacing among the antennas ensures that the receivers

capture uncorrelated reflections from the target. Both transmit and receive antennas are located at positions

θtm ∈ R3, for m ∈ {1, . . . ,M}, and θrn ∈ R3, for n ∈ {1, . . . , N}, respectively, known at the receiver.

The mth transmit antenna emits the waveform with baseband equivalent model given by
√
Esm(t)

where E is the transmitted energy of a single transmit antenna (assuming to be the same for all

transmitters);
∫ Ts

0 |sm(t)|2dt = 1 and Ts denotes the common duration of all signals sm(t).

We aim to detect the presence of an extended target and when deemed to be present also estimate its

position. The extended target consists of multiple scatterers exhibiting random, independent and isotropic

scintillation, each modeled with a complex random variable of zero-mean and unknown distribution.

This corresponds to the classical Swerling case I model [11] extended for multiple-antenna systems [9],

[10]. The reflectivity factors are assumed to remain constant during a scan and are allowed to change

independently from one scan to another.
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We define θ as the location of the gravity center of the target and dmn(θ) as the aggregate distance

that a probing waveform sm(t) travels from the mth transmit antenna to the target and from the target

to the nth receive antenna, i.e.,

dmn(θ) =
√
‖θ − θtm‖22 + ‖θ − θrn‖22. (30)

The time delay the waveform sm(t) is experiencing by traveling this distance dmn(θ) is equal to

τmn(θ) =
dmn(θ)

c
, (31)

where c is the speed of light. When the target dimensions are considerably smaller than the distance of

the target from the transmit and receive antennas, the distance of the antennas to each scatterer of the

target can be well-approximated by their distances from the gravity center of the target. Therefore, the

received signal at the nth receive antenna is the superposition of all emitted waveforms and is given by

[12]

rn(t) =
√
E

M∑
m=1

d−ηmn(θ) gmn sm(t− τmn(θ)) + wn(t), (32)

where d−ηmn is the path-loss with η denoting the path-loss exponent; wn(t) the additive white Gaussian

complex valued noise distributed as2 NC(0, 1); and gmn accounts for the reflectivity effects of the

scatterers corresponding to the mth transmit and the nth receive antennas. It can be readily verified

that {gmn} are independent and identically distributed (i.i.d.) with distribution NC(0, 1) [10], [12]. We

note that we have assumed for the noises wn(t) and the coefficients gmn that they have variance equal

to 1. In fact if we use any other values e.g. σ2
w and σ2

g respectively then in the final test these quantities

are combined with the transmitted signal power E in the form of Eσ2
g/σ

2
w. Consequently, provided that

in the general case σ2
w and σ2

g are known then, without loss of generality, we may assume σ2
w = σ2

g = 1

and let E express the final combination.

For n ∈ {1, . . . , N} define

GHn = [g1n, . . . , gMn]

S′n(t, θ) =
√
E

[
s1(t− τ1n(θ))

dη1n(θ)
, . . . ,

sM (t− τMn(θ))

dηMn(θ)

]
,

(33)

2NC(µ, σ
2) denotes the distribution of a complex Gaussian random variable with mean µ = µr + jµi where the real and

imaginary parts are uncorrelated (and therefore independent) Gaussian random variables with mean µr, µi respectively and of

variance equal to σ2/2.
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where we recall that dmn(θ) and τmn(θ) are known functions of θ defined in (30), (31) and A′,AH

denote the transpose and Hermitian (transpose and complex conjugate) respectively of the matrix A.

Under these definitions we can write

rn(t) = GHn · Sn(t, θ) + wn(t). (34)

Let us now formulate the joint detection and estimation problem for the specific signal model we just

introduced.

B. Target Detection/Localization with MIMO Radar

For 0 ≤ t ≤ T , we distinguish the following two hypotheses satisfied by the received signals rn(t), n =

1, . . . , N ,

H0 : drn(t) = dwn(t)

H1 : drn(t) = GHn Sn(t, θ)dt+ dwn(t).

We have written the received signals in a stochastic differential equation form, since the {wn(t)} are

Wiener (white Gaussian noise) processes. As we can see, when there is no target present the measured

signals are pure Wiener processes, whereas with the appearance of a target we have the emergence of

the nonzero drifts GHn Sn(t, θ).

For simplicity, let us use r̄n to denote the signal acquired by the nth receive antenna during the time-

interval [0, T ], that is, r̄n = {rn(t), 0 ≤ t ≤ T}. The collection of these N signals constitutes the

complete set of observations, in other words, {r̄1, . . . , r̄N} plays the role of the observation signal X of

the previous section. Clearly, our goal is to use {r̄1, . . . , r̄N} in order to decide between the presence or

absence of a target and, every time a target is detected, to provide a reliable estimate of its position.

To apply the theory developed in the previous section, according to Section II-C, we need to find the

conditional likelihood ratio L(r̄1, . . . , r̄N |θ). The following theorem provides the required formula.

Theorem 2: The likelihood ratio L(r̄1, . . . , r̄N |θ) of the received signals is given by

L(r̄1, . . . , r̄N |θ) =

N∏
n=1

eR
H
n (θ)(Qn(θ)+IM )−1Rn(θ)

|Qn(θ) + IM |
, (35)

where

Qn(θ) =

∫ T

0
Sn(t, θ)SHn (t, θ)dt,

RHn (θ) =

∫ T

0
SHn (t, θ)drn(t),

(36)

IK denotes the identity matrix of size K and |A| the determinant of the matrix A.

January 27, 2011 DRAFT



IEEE TRANSACTIONS ON INFORMATION THEORY (SUBMITTED) 16

Proof: The proof is presented in the Appendix.

A final quantity that is of major interest for the next section is the appropriate definition of SNR. Note

that, depending on the position of the target, the received signals rn(t) exhibit different SNR levels. This

is due to the path-loss effect, which is particularly severe for distant targets. We therefore propose to

measure the SNR by aggregating the signal and noise energies at the receivers but also averaging these

quantities over all possible target positions θ ∈ Ω. Specifically, by adopting the uniform model for θ, we

define

SNR =

∫
Ω

(∑N
n=1

∫ T
0 E[|GHn Sn(t, θ)|2] dt

)
dθ∫

Ω

(∑N
n=1 E[|

∫ T
0 dwn(t)|2]

)
dθ

≈ E

NT

1

µ(Ω)

∫
Ω

(
N∑
n=1

M∑
m=1

1

d2η
mn(θ)

)
dθ, (37)

where from standard Itô Calculus the expectation in the denominator is equal to T . For the approximate

equality we overlooked the boundary effects in the numerator, that is, we assumed that
∫ T

0 |sn(t −

τmn(θ))|2dt = 1 for all τmn(θ) which, of course, is not true when θ is close to the boundary of Ω. If

there is no path-loss, that is η = 0, then the previous equation reduces to the simple formula SNR ≈ E×M
T .

The transmitted energy E will be tuned through these equations in order to deliver the appropriate SNR

level at the receivers.

We have now developed all necessary formulas that enable us to use the results of Section II in the

MIMO radar problem. In the next subsection we evaluate the joint detection/estimation scheme with

Monte-Carlo simulations that cover various combinations of SNR values and number of transmit/receive

antennas. We apply only the two-step test developed in Section II-B since, as we briefly argued earlier,

it is more well suited for the MIMO radar problem.

C. Simulations

We consider the two-dimensional analog of the MIMO radar problem with two configurations consisting

of M = N = 2 and M = N = 3 antennas, where the mth transmit and the nth receive antenna are

located at θtm = [m, 0]′ and θrn = [0, n]′ (expressed in Km), respectively.

The emitted waveforms are sm(t) = 1√
Ts
ej

2πm

Ts
t for t ∈ [0, Ts] where Ts = 10−4 sec is the signal

duration. Moreover, we select an integration time T = 5× Ts = 5× 10−4 sec. This integration limit can

accommodate delays τmn(θ) that do not exceed T (for larger delays we simply measure noise during the

interval [0, T ]). The maximal delay defines a region Ω in space where every point θ ∈ Ω has at least

one aggregate distance dmn(θ), defined in (30), from one transmit and one receive antenna that does not

exceed the value c× T ≈ 150 Km. Actually, the points in space that have an aggregate distance from a
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pair of transmit/receive antennas not exceeding 150 Km lie in the interior of a well defined ellipse. Since

we have M ×N pairs of transmit/receive antennas, we conclude that Ω is the union of an equal number

of such ellipses. By considering that all antennas are roughly positioned at the origin, all ellipses become

circles and Ω can be approximated by a disc of approximate radius of 75 Km.

As is the usual practice in MIMO radar literature, we assume η = 0, namely, no path-loss. This means

that we are going to tune our energy parameter E through the simplified equation SNR ≈ E×M
T . We

consider SNR values -20, -10, 0 and 10 dB.

Assuming that the target position θ is uniformly distributed within Ω and that for the cost function

we employ the MSE criterion, we can use the formulas in (20) for the joint detection/estimation scheme.

From (20) and (36) we observe the need for space and time integration. Both integrals will be evaluated

numerically. For time integration we use canonical sampling and consider Lt points {tk} within the

time-interval [0, T ]. For integration in space we form a canonical square grid of points for θ. Denote

with Ls the number of points {θl} that lie in the interior of the region Ω. The two integrals are then

approximated by sums. Specifically, the quantities in (36), for θ = θl, are approximated by

Qn(θl) ≈
T

Lt
×

Lt∑
k=1

Sn(tk, θl)S
H
n (tk, θl) (38)

and Rn(θl) under H0 (needed to compute the threshold γNP) takes the form

RHn (θl) ≈
Lt∑
k=1

SHn (tk, θl)∆wn(tk), (39)

while for the same quantity under H1 we can write

RHn (θl) ≈
Lt∑
k=1

SHn (tk, θl){GHn Sn(tk, θo)×
T

Lt
+∆wn(tk)}. (40)

Parameter θo denotes the “true” target position selected uniformly within Ω and θl is one of the Ls

grid-points in the interior of the same set. The coefficients Gn are selected randomly from a Gaussian

NC(0, IM ) while each ∆wn(t) is also Gaussian NC(0, TLt ). For each run, the quantities Gn, θo and

∆wn(tk) are the same for all θl. For our simulations we use Lt = 500 time samples {tk} and a grid

with cells 10 Km×10 Km that generates 179 points {θl} in the interior of Ω.

For the test of Section II-B, according to (20), the likelihood ratio test is implemented as∑
θl

N∏
n=1

eR
H
n (θl)(Qn(θl)+IM )−1Rn(θl)

|Qn(θl) + IM |

H1

T
H0

γ. (41)
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Every time a decision is made in favor of H1 we provide the following estimate of θo

θ̂o =

∑
θl

θl

N∏
n=1

eR
H
n (θl)(Qn(θl)+IM )−1Rn(θl)

|Qn(θl) + IM |∑
θl

N∏
n=1

eR
H
n (θl)(Qn(θl)+IM )−1Rn(θl)

|Qn(θl) + IM |

, (42)

with corresponding quality index

Co =

∑
θl

‖θl‖2
N∏
n=1

eR
H
n (θl)(Qn(θl)+IM )−1Rn(θl)

|Qn(θl) + IM |∑
θl

N∏
n=1

eR
H
n (θl)(Qn(θl)+IM )−1Rn(θl)

|Qn(θl) + IM |

− ‖θ̂o‖2. (43)

The estimate θ̂o is characterized as reliable/unreliable depending on whether Co is below/exceeds the

threshold λ.

We also consider the GLRT where we maximize the likelihood ratio L(r̄1, . . . , r̄N |θ) in (35) over θ

and compare it to a threshold. The threshold is selected so that the corresponding false alarm probability

is equal to α. We recall that GLRT provides ML estimates for θ and, as we mentioned, cannot trade

detection power for estimation.

Monte Carlo simulations were carried out in order to study the performance of the different tests. For

each SNR value, 200,000 simulations were implemented to validate our theoretical developments. In our

simulations we fixed the false alarm probability to α = 10−3. The (conditional) MSE was computed as
1
K

∑
‖θ̂o − θo‖2 where K is the total number of cases where the combined test decided in favor of H1r

(that is, H1 in the first step and H1r in the second).

In Fig. 1 we depict the MSE normalized by the (approximate) radius of Ω squared (752) as a function

of the fraction of reliable estimates, i.e. P1(D=H1r)
P1(D=H1) . The fraction value is controlled through the threshold

λ. Fraction value equal to 1 in our test corresponds to the performance of the classical approach where

detection and estimation are treated separately. For the same value we also present the performance of

the GLRT. We observe that for SNR = −20 dB we need to sacrifice more than 50% of our detections

(more accurately in these cases we regard the estimates as unreliable) to reduce the MSE by a factor of

2. For larger SNR values we can have significant (even enormous) gains. For example for SNR = 0 dB

by sacrificing 50% of the detections, in the 2 × 2 case we gain an order of magnitude in estimation

performance while the same gain in the 3 × 3 configuration is achieved with only 25% reduction. We

conclude from our simulations that apart the very low SNR case of −20 dB, the 3×3 antenna configuration
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Fig. 1. Normalized MSE as a function of the fraction of reliable estimates for different values of SNR. Configuration M =

N = 2: optimum is solid and GLRT is •; configuration M = N = 3: optimum is dashed and GLRT is ◦.

is preferable to the 2×2 since it can return significant performance gains. Finally, we observe that GLRT

and the classical approach that treats the two subproblems separately have very comparable performance.

IV. CONCLUSION

We have presented two possible formulations of the joint detection and estimation problem and devel-

oped the corresponding optimum solutions. Our approach consists in properly combining the Bayesian

method for estimation with suitable constraints on the detection part. The resulting optimum schemes

allow for the trade-off between detection power and estimation efficiency, thus emphasizing each sub-

problem according to needs of the original application. Our theory was then applied to the problems

of retrospective change detection and MIMO radar. In particular in the second application, intense

simulations demonstrated the possibility to experience significant gains in estimation quality with small

sacrifices in detection power.
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V. APPENDIX

Proof of Theorem 1: We are interested in minimizing J̄ (δ0, δ1) defined in (9) subject to the two

constraints
∫
δ1(X)f0(X)dX ≤ α and

∫
δ0(X)f1(X)dX ≤ β. We first note that if we have a pair

{δ0(X), δ1(X)} for which the second inequality is strict, then we can find another pair {δ̄0(X), δ̄1(X)}

which satisfies the second constraint with equality and has exactly the same estimation performance.

Indeed if we select δ̄1(X) = 1−β∫
δ1(X)f1(X)dX

δ1(X), δ̄0(X) = 1 − δ̄1(X), then we observe that since

we assumed
∫
δ0(X)f1(X)dX < β we have

∫
δ1(X)f1(X)dX = 1 −

∫
δ0(X)f1(X)dX > 1 − β,

suggesting that δ̄1(X) is a legitimate probability (because δ1(X) is multiplied by a factor smaller than

1 to produce δ̄1(X)), consequently the complementary probability δ̄0(X) is legitimate as well. The fact

that the alternative pair has exactly the same estimation performance, namely J̄ (δ0, δ1) = J̄ (δ̄0, δ̄1), can

be verified by direct substitution.

With the previous observation we can limit our search for the optimum within the class of tests

that satisfy the constraint on the probability of miss with equality, that is,
∫
δ0(X)f1(X)dX = β.

Equivalently we consider only tests that satisfy the equality constraint
∫
δ1(X)f1(X)dX = 1−β on the

detection probability. Under this equality, minimizing J̄ (δ0, δ1) is equivalent to minimizing the numerator∫
δ1(X)Co(X)f1(X)dX in (9).

Due to the nonnegativity of Co(X) and our assumption that Co(X) does not contain any atoms we

have that (10) has a unique solution λo > 0. Suppose that we are in the case where α ≥ P0(Co(X) ≤ λo)

and consider a test {δ0(X), δ1(X)} that satisfies the equality
∫
δ1(X)f1(X)dX = 1 − β. We can then

write∫
δ1(X)Co(X)f1(X)dX − λo(1− β)

=

∫
δ1(X)Co(X)f1(X)dX − λo

∫
δ1(X)f1(X)dX

=

∫
δ1(X)[Co(X)− λo]f1(X)dX

≥
∫
1A [Co(X)− λo]f1(X)dX

=

∫
1A Co(X)f1(X)dX − λoP1(A)

=

∫
1A Co(X)f1(X)dX − λo(1− β), (44)

where A = {Co(X) ≤ λo}. Comparing the first and the last term yields
∫
δ1(X)Co(X)f1(X)dX ≥∫

1A Co(X)f1(X)dX , which proves that (11) is the optimum since it minimizes the estimation criterion
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and satisfies both constraints. We observe in this case that, for the optimum test, the false alarm constraint

can be strict.

Consider now the case α < P0(Co(X) ≤ λo) and let us show that there is a pair λ, γ for which the

test in (12) satisfies both constraints with equality. We are first going to prove that for any λ ≥ λo we

can find γ(λ) ≥ 0 to satisfy the equality constraint for the detection probability, namely

P1

(
f1(X)

f0(X)
[λ− Co(X)] ≥ γ(λ)

)
= 1− β. (45)

Call ψ(λ, γ) = P1([f1(X)/f0(X)][λ − Co(X)] ≥ γ) − (1 − β), fix λ > λo, then we observe that

ψ(λ, 0) > ψ(λo, 0) = 0. Furthermore limγ→∞ ψ(λ, γ) = −(1− β) < 0. Consequently there exists γ(λ)

such that (45) is true. There are two pairs λ, γ(λ) which we can describe explicitly. From the definition of

λo we know that when λ = λo we have γ(λo) = 0. Consider now λ→∞ and assume that γ(λ)/λ→ γ̄,

then γ̄ is the solution to the equation

P1

(
f1(X)

f0(X)
≥ γ̄

)
= 1− β. (46)

This is true because the test in (12), after dividing each side by λ and letting λ → ∞ reduces to

the likelihood ratio test with threshold γ̄. Since by assumption we have β > β(α) where β(α) is the

probability of miss of the Neyman-Pearson test, we conclude that γ̄ > γNP. This suggests that

P0

(
f1(X)

f0(X)
≥ γ̄

)
< P0

(
f1(X)

f0(X)
≥ γNP

)
= α (47)

Now we need to show that there exists a value for λ and the corresponding threshold γ(λ) that satisfy

the false alarm constraint with equality, namely

P0

(
f1(X)

f0(X)
[λ− Co(X)] ≥ γ(λ)

)
= α. (48)

Call φ(λ) = P0([f1(X)/f0(X)][λ − Co(X)] ≥ γ(λ)) − α. Then, because of our previous analysis, it is

easy to verify that φ(λ) has opposite signs for λ = λo and λ→∞, meaning that there exists a λ > λo

such that φ(λ) = 0, or that the false alarm constraint is satisfied with equality.

To show that the test in (12) is optimum, let λ, γ(λ) be the previous pair and consider any test

{δ0(X), δ1(X)} that satisfies the equality constraint for the detection probability and the inequality
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constraint for the false alarm. Then we can write∫
δ1(X)Co(X)f1(X)dX − λ(1− β) + γ(λ)α

≥
∫
δ1(X){[Co(X)− λ]f1(X) + γ(λ)f0(X)}dX

≥
∫
1A {[Co(X)− λ]f1(X) + γ(λ)f0(X)}dX

=

∫
1A Co(X)f1(X)dX − λ(1− β) + γ(λ)α, (49)

where A = {f1(X)
f0(X) [λ− Co(X)] ≥ γ(λ)}. Again comparing the first and the last term, proves optimality

of the test in (12) and therefore concludes the proof of Theorem 1.

Proof of Theorem 2: Due to independence across receivers for the noises {wn(t)} and the reflection

coefficients {gnm} we deduce

L(r̄1, . . . , r̄N |θ) =

N∏
n=1

L(r̄n|θ). (50)

It is thus sufficient to show that

L(r̄n|θ) =
eR

H
n (θ)(Qn(θ)+IM )−1Rn(θ)

|Qn(θ) + IM |
. (51)

Since Gn is random, we can first compute L(r̄n|Gn, θ) by conditioning on the coefficients Gn corre-

sponding to the nth receiver and then average out Gn. For given Gn the received signal rn(t) under the

two hypotheses differs only in the drift, consequently we can apply Girsanov’s theorem [13, Page 191] to

compute the corresponding likelihood ratio. We can treat the complex valued Wiener process {wn(t)} as

a two dimensional real valued Wiener process, with the real and imaginary part of the complex process

constituting the two independent components of the two dimensional process. Since the corresponding

variances, by assumption, are equal to 0.5, it is straightforward to show that

L(r̄n|Gn, θ) = e−
∫ T
0
|GHn Sn(t,θ)|2dt+2Re(

∫ T
0

[SHn (t,θ)Gn]drn(t)) = e−G
H
nQn(θ)Gn+2Re(RHn (θ)Gn), (52)

where Qn(θ), Rn(θ) are defined in (36)

In order to compute L(r̄n|θ) from L(r̄n|Gn, θ) we need to average out Gn. We recall that the real and

imaginary parts of Gn are Gaussian uncorrelated (and thus independent) vectors, each with mean 0 and

covariance matrix equal to 0.5IM . For notational simplicity we drop in all quantities their dependence on

n and θ. Let us also define the following decompositions into real and imaginary parts G = Gr + jGi,

R = Rr+jRi, Q = Qr+jQi and, finally, denote G = [G′r, G
′
i]
′, R = [R′r, R

′
i]
′, Q̄ = [Qr,−Qi;Qi,Qr];
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then we can write the previous likelihood ratio as follows

L(r̄|G, θ) = e−G
′Q̄G+2R′G , (53)

where we used the fact that Q, by being Hermitian, satisfies Q′r = Qr and Q′i = −Qi. We can now

average out G by recalling that G ∼ N (0, 0.5I2M ). By “completing the square” we have

L(r̄|θ) =

∫
e−G

′Q̄G+2R′G 1

πM
e−G

′GdG

=
eR
′(Q̄+I2M )−1R√
|Q̄ + I2M |

×
∫
e−(G−(Q̄+I2M )−1R)′(Q̄+I2M )(G−(Q̄+I2M )−1R)√

(2π)2M

|2(Q̄+I2M )|

dG

=
eR
′(Q̄+I2M )−1R√
|Q̄ + I2M |

, (54)

where the last integral is equal to 1 since it is the integral of a Gaussian pdf with mean (Q̄ + I2M )−1R

and covariance matrix 0.5(Q̄ + I2M )−1.

From the nonegative definiteness of Q we have Y HQY ≥ 0 for any complex vector Y . Using the

observation that for any real vector Z, it is true that Z ′QiZ = 0, as a result of Q′i = −Qi, we can show

that [Y ′r , Y
′
i ]Q̄[Y ′r , Y

′
i ]′ = Y HQY ≥ 0 where Y = Yr + jYi. Hence Q̄ is nonegative definite as well,

implying that Q̄ + I2M is positive definite.

Define two square matrices A,B of size M × M as the solution to the following two equations:

(Qr+IM )A−QiB = IM and (Qr+IM )B+QiA = 0M (there always exists a solution due to the positive

definiteness of Q̄+ I2M ), then by direct computation we can verify that (Q̄+ I2M )−1 = [A,−B;B,A]

and (Q + IM )−1 = (Qr + IM + jQi)
−1 = A + jB. With the help of the previous equalities we have

R′(Q̄ + I2M )−1R = RH(Q + IM )−1R. This proves the correctness of the exponential term in (51).

What is left to show is that
√
|Q̄ + I2M | = |Q+IM |. Since Q̄+I2M = [Qr+IM ,−Qi;Qi,Qr+IM ],

if ρ is an eigenvalue of this matrix with corresponding eigenvector [Y ′r , Y
′
i ]′ then ρ is a double eigenvalue

because by direct computation we can verify that [−Y ′i , Y ′r ]′ is a second eigenvector (orthogonal to the

first and thus different) for the same eigenvalue ρ. Consequently the 2M eigenvalues of Q̄+ I2M are of

the form ρ1, ρ1, . . . , ρM , ρM with ρn > 0 (because of the positive definiteness of Q̄ + I2M ), implying√
|Q̄ + I2M | =

∏M
n=1 ρn.

We can now verify that if ρ, [Y ′r , Y
′
i ]′ is an eigenvalue-eigenvector pair of Q̄+I2M then ρ, (Yr+jYi) is

an eigenvalue-eigenvector pair of Q+ IM . This suggests that ρ, (−Yi+ jYr) must also be an eigenvalue-

eigenvector pair for the same matrix. However, we observe that (−Yi + jYr) = j(Yr + jYi), which

means that the two eigenvectors are co-linear and therefore coincide. Consequently for the complex
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matrix Q+ IM the eigenvalues are the ρ1, . . . , ρM , meaning that the corresponding determinant satisfies

|Q+IM | =
∏M
n=1 ρn. This proves the desired equality for the two determinants, demonstrates the validity

of (51) and concludes the proof of Theorem 2.
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