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Abstract—The maximal rate of a non-square complex orthog-
onal design for n transmit antennas is 1

2
+ 1

n
if n is even and

1
2
+ 1

n+1
if n is odd and the codes have been constructed for

all n by Liang (IEEE Trans. Inform. Theory, 2003) and Lu et
al. (IEEE Trans. Inform. Theory, 2005) to achieve this rate.A
lower bound on the decoding delay of maximal-rate complex
orthogonal designs has been obtained by Adams et al. (IEEE
Trans. Inform. Theory, 2007) and it is observed that Liang’s
construction achieves the bound on delay forn equal to 1 and 3
modulo 4 while Lu et al.’s construction achieves the bound for
n = 0, 1, 3 mod 4. For n = 2 mod 4, Adams et al. (IEEE Trans.
Inform. Theory, 2010) have shown that the minimal decoding
delay is twice the lower bound, in which case, both Liang’s and
Lu at al.’s construction achieve the minimum decoding delay. For
large value of n, it is observed that the rate is close to half and
the decoding delay is very large. A class of rate-1

2
codes with

low decoding delay for all n has been constructed by Tarokh et
al. (IEEE Trans. Inform. Theory, 1999). In this paper, another
class of rate-1

2
codes is constructed for alln in which case the

decoding delay is half the decoding delay of the rate-1
2

codes
given by Tarokh et al. This is achieved by giving first a general
construction of square real orthogonal designs which includes as
special cases the well-known constructions of Adams, Lax and
Phillips and the construction of Geramita and Pullman, and then
making use of it to obtain the desired rate-1

2
codes. For the case

of 9 transmit antennas, the proposed rate-1
2

code is shown to be
of minimal-delay. The proposed construction results in designs
with zero entries which may have high peak-to-average power
ratio and it is shown that by appropriate post-multiplicati on, a
design with no zero entry can be obtained with no change in the
code parameters.

Index Terms—Decoding delay, orthogonal designs, peak-to-
average power ratio, space-time codes.

I. I NTRODUCTION

Space-time block codes (STBCs) from complex orthogonal
designs (CODs) have been widely studied for square designs,
since they correspond to minimum-delay codes for co-located
multiple-antenna coherent communication systems. However,
non-square designs naturally appear in the following situa-
tions.
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1) In coherent co-located MIMO systems, for a specified
number of transmit antennas, non-square designs can
give much higher rate than the square designs [1].

2) In non-coherent MIMO systems with non-differential
detection, non-square designs withp = 2n lead to low
decoding complexity STBCs [2].

3) Space-time-frequency codes can be viewed as non-
square designs [3].

4) In distributed space-time coding for relay channels,
rectangular designs appear naturally [4].

Definition 1: A complex orthogonal design(COD) in com-
plex variablesx0, x1, · · · , xk−1 is a p × n matrix G with
entries 0,±x0,±x1, · · · ,±xk−1, their complex conjugates
±x∗0,±x∗1, · · · ,±x∗k−1 such thatGHG = (|x0|2+|x1|2+· · ·+
|xk−1|2)In, whereGH is the complex conjugate transpose
of G and In is the n × n identity matrix. The matrixG is
also said to be a[p, n, k] COD. Whenx0, · · · , xk−1 are real
variables, the corresponding design is called real orthogonal
design (ROD).

An orthogonal design (OD) will always mean both real or
complex orthogonal design. The rate of a[p, n, k] OD G
(defined as the number of complex symbols per channel use )
is k

p andp is called the decoding delay of the ODG.

The main problem in the construction of orthogonal designs
is to construct ap × n orthogonal design (for givenn) in k
variables which maximizes the ratekp and then to find ap×n
orthogonal design with maximal rate which minimizesp.

It has been noted that the rate of the square ODs is very low
for large number of antennas. Letn be a positive integer and
ρ be a function (known as Hurwitz-Radon function) given by
the following formula: writen = 2a(2b+1), a = 4c+d; a, b, c
andd are integers with0 ≤ d ≤ 3, then

ρ(n) = 8c+ 2d. (1)

It is known that [5], [6], [7] the maximal rate of a square ROD
for n transmit antennas isρ(n)n while that of a square COD
a+1
n .

As the square ODs are not bandwidth efficient, it is natural
to study non-square orthogonal designs expecting that there
may exist codes with high rate. It is known [6] that there
always exists a rate-1 ROD for any number of transmit
antennas. In fact, all rate-1 RODs can be obtained from square
RODs of appropriate size. The minimum decoding delay of a
rate-1 ROD forn transmit antennas [6] isν(n) which is given
by the following formula:
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ν(n) = 2δ(n) where

δ(n) =



















4s if n = 8s+ 1

4s+ 1 if n = 8s+ 2

4s+ 2 if n = 8s+ 3 or 8s+ 4

4s+ 3 if n = 8s+ 5, 8s+ 6, 8s+ 7 or 8s+ 8.

(2)

On the other hand, it is not known, in general, the maximal
rate of a complex orthogonal design which admits as entries
linear combination of several complex variables for arbitrary
number of antennas. However, it is shown by Liang [1] that the
maximal rate of a COD ist+1

2t whenever number of transmit
antennas is2t− 1 or 2t. Construction of maximal-rate CODs
given by Liang [1] is stated in the form of an algorithm while
Lu et al [8] have constructed these codes by concatenating sev-
eral matrices of smaller size. The following theorem describes
the minimum decoding delay of the maximal-rate non-square
CODs:

Theorem 1 ( [9], [10]): A tight lower bound on the decod-
ing delay of a maximum-rate COD forn antennas is

(

2m
m−1

)

for n = 2m − 1 or n = 2m. Moreover, ifn is congruent to
0, 1 or 3 modulo4, then this lower bound on decoding delay
is achievable. Ifn is congruent to2 modulo4, the minimum
decoding delay is twice the lower bound.

As the rate of the maximal-rate codes is close to1
2 for large

number of antennas and the decoding delay of these codes is
large, it is important to know whether there exists rate-1

2 codes
with low decoding delay. The importance of determining the
delay of rate-12 CODs has also been noted by Adams et al [9].

A construction of rate-12 codes for any number of antennas
is given by Tarokh et al. [6]. Their construction is simple:
start with a rate-1 RODO for n antennas inν(n) variables
x0, x2, · · · , xν(n)−1, and then form the following matrix

TJCn =
1√
2

[

O
O∗

]

(3)

whereO∗ is obtained fromO by replacing each variable with
its complex conjugate andν(n) is given by (2). Note that the
number of rows inTJCn is 2ν(n) and each variable appears
twice along each column of the matrix.

We define a λ-scaled complex orthogonal design, for
a positive integerλ, (λ-scaled-COD)G as a p × n or-
thogonal matrix with non-zero entries the indeterminates
±x0,±x1, · · · ,±xk−1, their conjugates or all the non-zero
entries in a subset of columns of the matrix are of the form
± 1√

λ
xi,± 1√

λ
x∗i , i = 0, 1, · · · , k − 1. Notice that aλ-scaled

COD corresponds to a COD ifλ = 1. In columns with scaling
by 1√

λ
, all the variables appear exactlyλ times. In other words,

lambda scaling (where Lambda (λ) is an integer greater than1)
of a complex orthogonal design allows all the non-zero entries
in a subset of columns of the matrix to take values from the
set {± 1√

λ
xi,± 1√

λ
x∗i , i = 0, 1, · · · , k − 1}. It must be noted

that scaling of a design is not something new as it has been
already used by Seberry et al. [16] to construct orthogonal
designs with fewer zeros. In this paper,λ is always2 and call
these codes simplyscaled-CODs.

In the most general case, alinear-processing complex or-
thogonal design(LPCOD) is ap× n orthogonal matrixG in

variablesx0, x1, · · · , xk−1 such that each non-zero entry of
the matrix is a complex linear combinations of the variables
x0, x1, · · · , xk−1 and their conjugates. Ifx0, x1, · · · , xk−1 are
real variables, then the corresponding design is calledlinear-
processing real orthogonal design(LPROD). Note that a
scaled-COD is an LPCOD, but not conversely. An example [6]
of an LPCOD which is not a scaled-COD is the following
code:












x0 x1
x2√
2

x2√
2

−x∗1 x∗0
x2√
2

−x2√
2

x∗
2√
2

x∗
2√
2

(−x0−x∗
0+x1−x∗

1)
2

(x0−x∗
0−x1−x∗

1)
2

x∗
2√
2

−x∗
2√
2

(x0−x∗
0+x1+x

∗
1)

2 − (x0+x
∗
0+x1−x∗

1)
2













.

It has been observed that the decoding delay of the rate-1
2

codes obtained by the construction (3) is not the best possible:
for example, the following code for8 antennas

























x0−x∗1−x∗2 0−x∗3 0 0 0
x1 x∗0 0−x∗2 0−x∗3 0 0
x2 0 x∗0 x∗1 0 0−x∗3 0
0 x2−x1 x0 0 0 0−x∗3
x3 0 0 0 x∗0 x∗1 x∗2 0
0 x3 0 0−x1 x0 0 x∗2
0 0 x3 0−x2 0 x0−x∗1
0 0 0 x3 0−x2 x1 x∗0

























is a rate-12 COD with decoding delay8, whereas the cor-
responding rate-12 code given by the construction (3) has
decoding delay16. This indicates that there may exist rate-
1
2 scaled-COD for any number of antennas with half the
decoding delay of the rate-1

2 code given by (3).
In this paper, we provide an explicit construction of rate-

1
2 scaled-COD for any number of transmit antennas, sayn,
with decoding delayν(n). Table I gives a comparison of the
three classes of codes, namely, maximal rate CODs (denoted
by Ln), rate-12 scaled-CODs (TJCn) and the rate-12 codes of
this paper (denoted byRHn). It shows that for large values
of n, but for a marginal decrease in the rate with respect to
Ln, the codes of this paper are the best codes known to date
with respect to decoding delay.

As a byproduct of the above mentioned construction, a
general construction of square RODs is presented which
includes as special cases the well-known constructions of
Adams, Lax and Phillips [7] and the construction of Geramita
and Pullman [11].

Though the minimum value of the decoding delay of the
maximal-rate CODs is well-known [9], nothing is known about
the minimal-delay of the rate-12 scaled-CODs. However, we
have only been able to show that the decoding delay of the
proposed rate-12 code for9 transmit antennas is minimum.

Zero entries in a design increase the peak-to-average power
ratio (PAPR) in the transmitted signal and it is preferred not
to have any zero entry in the design. This problem has been
addressed for square and non-square orthogonal designs [12],
[15], [16]. Our initial construction of rate-12 scaled-CODs
contain zero entries in the design matrix which will lead to
higher PAPR in contrast to the designsTJCn given by (3).
However, we show that by post-multiplication of appropriate
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TABLE I
THE COMPARISON OF MAXIMUM RATE ACHIEVING CODES AND RATE1/2 CODES

n 5 6 7 8 9 10 11 12 13 14 15 16

Decoding delay ofRHn 8 8 8 8 16 32 64 64 128 128 128 128
Decoding delay ofTJCn 16 16 16 16 32 64 128 128 256 256 256 256

Decoding delay ofLn 15 30 56 56 210 420 792 792 3003 6006 11440 11440

Rate ofRHn 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2
Rate ofTJCn 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2

Rate ofLn 2/3 2/3 5/8 5/8 3/5 3/5 7/12 7/12 4/7 4/7 9/16 9/16

matrices, our construction leads to designs with no zero entry
without any change in the parameters of the designs.

The remaining part of the paper is organized as follows:
In Section II, we present the main result of the paper given
by Theorem 4. For the special case of 9 transmit antennas,
in Section III, it is shown that our construction is of minimal
delay. In Section IV, we show that the codes discussed so
far can be made to have no zero entry in it by appropriate
preprocessing without affecting the parameters of the design.
Concluding remarks constitute Section V.

II. A C ONSTRUCTION OF RATE- 12 SCALED COMPLEX

ORTHOGONAL DESIGNS

Construction of the rate-12 codes is obtained in the following
three steps:
STEP 1: Construction of a new set of square RODs (Subsec-
tion II-B).
STEP 2: Construction of two new sets of rate-1 RODs from
the square RODs of STEP 1 (Subsection II-C).
STEP 3: Construction of low-delay rate-1

2 scaled-CODs using
rate-1 RODs (Subsection II-D).

Before explaining these steps, we first build up some
preliminary results needed to describe these steps.

A. Mathematical Preliminaries

F2 denotes the finite field consisting of two elements with
two binary operations addition and multiplication denotedby
b1 ⊕ b2 andb1b2 respectively,b1, b2 ∈ F2. Let b1 + b2 and b̄1
represent respectively the logical disjunction (OR) ofb1 and
b2 and complement or negation ofb1.
Let l be a non-zero positive integer andZl = {0, 1, · · · , l−1}.
We identify Z2a with the setFa2 of a-tuple binary vectors
in the standard way, i.e., any element ofZ2a is identified
with its radix-2 representation vectors (of lengtha) via the
correspondence:x ∈ Z2a ↔ (xa−1, · · · , x0) ∈ F

a
2 such that

x =
∑a−1

j=0 xj2
j , xj ∈ F2. For convenience, depending on the

context, the setZ2a is used as the set of positive integers and
sometimes as the set of binary vectors.
For x = (xa−1, · · · , x0), y = (ya−1, · · · , y0), xi, yi ∈ F2, i =
0, 1, · · · , a−1, the component-wise modulo-2 addition and the
component-wise multiplication ofx andy are denoted byx⊕y
andx·y respectively. We havex⊕y = (xa−1⊕ya−1, · · · , x0⊕
y0), x · y = (xa−1ya−1, · · · , x0y0). The two’s complement of
a numberx ∈ Z2a , denoted byx is defined as the value
obtained by subtracting the number from a large power of

two (specifically, from2a for ana-bit two’s complement) i.e.,
x = 2a − x.
The Hamming weight ofx, denoted by|x| is the number of
1 in the binary representation ofx. For two integersi, j, we
use the notationi ≡ j, to meani− j = 0 mod 2.

For any matrix of sizen1 × n2, the rows and the columns
of the matrix are labeled by the elements of{0, 1, · · · , n1−1}
and{0, 1, · · · , n2− 1} respectively. IfM is ap×n matrix in
k real variablesx0, x1, x2, · · · , xk−1, such that each non-zero
entry of the matrix isxi or−xi for somei ∈ {0, 1, · · · , k−1},

it is not necessary thatM is an ROD. For example,

[

x0 x1
x1 x0

]

is not an ROD. A sub-matrixM2 of size2×2, constructed by
choosing any two rows and any two columns ofM is called
proper if

• none of the entries ofM2 is zero and
• it contains exactly two distinct variables.
Example 1:Consider the following matrix in three real

variablesx0, x1 andx2






x0 −x1 −x2 0
x1 x0 0 −x2

x2 0 x0 x1

0 x2 −x1 x0






. (4)

The sub-matrix

[

x1 −x2
x2 x1

]

is properwhile

[

x3 0
0 x3

]

is not.

If M(i, j) 6= 0, then we write |M(i, j)| = k whenever
M(i, j) = xk or −xk.

It is easy to see that the following two statements are
equivalent:
1) M is an ROD.
2) (i) Each variable appears exactly once along each column

of M and at most once along each row ofM ,
(ii) if for some i, j, j′, M(i, j) 6= 0 andM(i, j′) 6= 0,

then there existsi′ such that|M(i, j)| = |M(i′, j′)|
and |M(i, j′)| = |M(i′, j)|,

(iii) any proper2× 2 sub-matrix ofM is an ROD.

B. STEP 1: Construction of a new class of square RODs

Square RODs have been constructed by several authors,
for example, Adams et al. [7] and Geramita et al [11]. All
these designs are constructed recursively and the basic building
blocks of these designs are the RODs of order1, 2, 4 and 8.
In this subsection, we take a different approach towards the
construction of square RODs and it leads to a new class of
RODs of which the constructions in [7] and [11] are special
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cases. For any ROD, a non-zero entry of it is characterized
by a pair of two integers, the first component of which takes
value from the set{+1,−1} denoting the sign of the entry
while the second component represents the variable at that
entry. For example, the(0, 0)-th entry of (4) corresponds to
the pair(1, 0) while the(0, 1)-th entry corresponds to(−1, 1).

For a square RODBt of order t in k real variables
x0, · · · , xk−1, we define two functionsµt andλt on the set
Zt × Zt with µt(i, j) ∈ {1,−1} andλt(i, j) ∈ Zk, i, j ∈ Zt
such thatBt(i, j) = µt(i, j)xλt(i,j) wheneverBt(i, j) 6= 0. It
is straightforward to see thatBt is uniquely determined byµt
andλt. However, any arbitrary choice of these two functions
will not lead to a square ROD. Therefore the approach we
take is identifying a pair of functionsµt andλt that results in
a square ROD. Let

γt : Zρ(t) → Zt (5)

be an injective map defined onZρ(t) with the image denoted
by Ẑρ(t) = γt(Zρ(t)) and

ψt : Ẑρ(t) → Zt (6)

be another injective map defined on̂Zρ(t). ρ(t) is given by
(1).

In the following theorem, we define two mapsµt andλt in
terms of the maps (5) and (6) and identify the conditions so
that the resultingBt becomes a square ROD.

Theorem 2:Let t = 2a. Construct a square matrixBt of
ordert in ρ(t) variablesx0, · · · , xρ(t)−1 as follows:

Bt(i, j) =

{

µt(i, j)xλt(i,j) if i⊕ j ∈ Ẑρ(t)

0 otherwise,

whereµt(i, j) = (−1)|i·ψt(i⊕j)| and λt(i, j) = γ−1
t (i ⊕ j).

Suppose∀x, y ∈ Ẑρ(t), x 6= y,

|(ψt(x) ⊕ ψt(y)) · (x⊕ y)| is odd. (7)

ThenBt is a square ROD of size[t, t, ρ(t)].
Proof: By definition, each of the variables

x0, x1, · · · , xρ(t)−1 appears exactly once in each column of
the matrix and at most once along each row ofBt. Secondly,
assume thatBt(i, j) 6= 0 andBt(i, j′) 6= 0, then we show
that there existsi′ such that

|Bt(i, j)| = |Bt(i′, j′)| and |Bt(i, j′)| = |Bt(i′, j)|.
Let i′ = i ⊕ j ⊕ j′. Then |Bt(i, j)| = γ−1

t (i ⊕ j) and
|Bt(i′, j′)| = γ−1

t (i′⊕ j′) = γ−1
t (i⊕ j), therefore|Bt(i, j)| =

|Bt(i′, j′)|. Similarly, |Bt(i, j′)| = |Bt(i′, j)|.
Thirdly, we show that any proper2× 2 sub-matrix ofBt is

an ROD, that is,µt(i, j) · µt(i, j′) · µt(i′, j) · µt(i′, j′) = −1
wheneveri+ i′ = j ⊕ j′. Now

|i · ψt(i⊕ j)|+ |i · ψt(i⊕ j′)|+ |i′ · ψt(i′ ⊕ j)|
+ |i′ · ψt(i′ ⊕ j′)|

≡ |(i⊕ i′) · (ψt(i⊕ j)⊕ ψt(i
′ ⊕ j))|

≡ |((i⊕ j)⊕ (i′ ⊕ j)) · (ψt(i⊕ j)⊕ ψt(i
′ ⊕ j))|

is an odd number. Therefore,µt(i, j) · µt(i, j′) · µt(i′, j) ·
µt(i

′, j′) = −1.

We now construct the mapsψt andγt explicitly such that
(7) is satisfied. The mapγt : Zρ(t) → Zt is given by

γt(i) =

{

i if 0 ≤ i ≤ 7

24l−1 · γ̂(m) if i ≥ 8, i = 8l +m, 0 ≤ m ≤ 7
(8)

whereγ̂ =

(

0 1 2 3 4 5 6 7
1 2 4 7 8 11 13 14

)

,

that is, γ̂(0) = 1, · · · , γ̂(7) = 14.
Let F = γ̂(Z8). For an elementx ∈ Ẑρ(t), either x ∈ Z8

or x = 24y−1z for somey ∈ N \ {0} and z ∈ F . Note that
Ẑρ(t) = γt(Zρ(t)).

We now define a mapφ : Ẑρ(t) → Zt given by

φ(x) =

{

φ1(x) if x ∈ Z8

24y−1 · φ2(z) if x = 24y−1z, z ∈ F
(9)

whereφ1 : Z8 → Z8 be the map given by

φ1 =

(

0 1 2 3 4 5 6 7
0 1 2 3 4 7 5 6

)

(10)

andφ2 : F → Z16 be an injective map given by

φ2 =

(

1 2 4 7 8 11 13 14
1 2 4 6 8 15 10 12

)

. (11)

Let
ψt(x) = φ(x) in F

a
2 ∀x ∈ Ẑρ(t). (12)

Note thatz is two’s complement ofz.
In order to show that the mapψt so constructed satisfies the
condition of (7), we need the following two results related to
the mapsφ1 andφ2.

Lemma 1:Let x, y ∈ Z2a , a ∈ {0, 1, 2, 3}, x 6= y. Then
|(ψ2a(x)⊕ ψ2a(y)) · (x ⊕ y)| is an odd integer.

Proof: It can be proved easily by direct check.
Lemma 2:Let x, y ∈ F, x 6= y. Then

(i) |φ2(x) · x| is odd for allx 6= 0.
(ii) |φ2(x) · y|+ |φ2(y) · x| is odd for allx 6= y, x 6= 0, y 6= 0.

Proof: There are only finitely many possibilities forx and
y and it can be easily checked that both the statements (i) and
(ii) hold for all possible cases.
We now have the following important theorem.

Theorem 3:Let t be a positive integer which is a power
of 2. Let ψt and Ẑρ(t) be as defined above. Then,|(ψt(x) ⊕
ψt(y)) · (x⊕ y)| is odd for allx, y ∈ Ẑρ(t), x 6= y.

Proof: For t = 1, 2, 4 and 8, the statement holds by
Lemma 1. Hence we assume thatt ≥ 16. As ψt(0) = 0,
it is enough to prove that
(i) |ψt(y) · y| is odd for ally 6= 0.
(ii) |ψt(x) ·y|+ |ψt(y) ·x| is odd for allx 6= y, x 6= 0, y 6= 0.
To prove (i), let z = ψt(y) · y. If y ∈ Z8, we have
|ψt(y) · y| = |ψ8(y) · y| which is an odd number by Lemma
1.
On the other hand, ify = 24l−1m, l ≥ 0,m ∈ F , then
|z| = |24l−1φ2(m) · 24l−1m| where the2′s complement of an
element is performed inFa2 . We have|z| = |φ2(m) ·m| where
the 2′s complement ofφ2(m) is performed inF4

2. Hence|z|
is odd by Lemma 2.
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R16 =



















































x0 x1 x2 x3 x4 x5 x6 x7x8 0 0 0 0 0 0 0
−x1 x0−x3 x2−x5 x4 x7−x6 0 x8 0 0 0 0 0 0
−x2 x3 x0−x1−x6−x7 x4 x5 0 0 x8 0 0 0 0 0
−x3−x2 x1 x0−x7 x6−x5 x4 0 0 0 x8 0 0 0 0
−x4 x5 x6 x7 x0−x1−x2−x3 0 0 0 0 x8 0 0 0
−x5−x4 x7−x6 x1 x0 x3−x2 0 0 0 0 0 x8 0 0
−x6−x7−x4 x5 x2−x3 x0 x1 0 0 0 0 0 0 x8 0
−x7 x6−x5−x4 x3 x2−x1 x0 0 0 0 0 0 0 0 x8

−x8 0 0 0 0 0 0 0x0−x1−x2−x3−x4−x5−x6−x7

0−x8 0 0 0 0 0 0x1 x0 x3−x2 x5−x4−x7 x6

0 0−x8 0 0 0 0 0x2−x3 x0 x1 x6 x7−x4−x5

0 0 0−x8 0 0 0 0x3 x2−x1 x0 x7−x6 x5−x4

0 0 0 0−x8 0 0 0x4−x5−x6−x7 x0 x1 x2 x3

0 0 0 0 0−x8 0 0x5 x4−x7 x6−x1 x0−x3 x2

0 0 0 0 0 0−x8 0x6 x7 x4−x5−x2 x3 x0−x1

0 0 0 0 0 0 0−x8x7−x6 x5 x4−x3−x2 x1 x0



















































(13)

















































































































x0 x1 x2 x3 x4 x5 x6 x7 x8 0 0 0 0 0 0 0x9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
−x1 x0−x3 x2−x5 x4 x7−x6 0 x8 0 0 0 0 0 0 0 x9 0 0 0 0 0 0 0 0 0 0 0 0 0 0
−x2 x3 x0−x1−x6−x7 x4 x5 0 0 x8 0 0 0 0 0 0 0 x9 0 0 0 0 0 0 0 0 0 0 0 0 0
−x3−x2 x1 x0−x7 x6−x5 x4 0 0 0 x8 0 0 0 0 0 0 0 x9 0 0 0 0 0 0 0 0 0 0 0 0
−x4 x5 x6 x7 x0−x1−x2−x3 0 0 0 0 x8 0 0 0 0 0 0 0 x9 0 0 0 0 0 0 0 0 0 0 0
−x5−x4 x7−x6 x1 x0 x3−x2 0 0 0 0 0 x8 0 0 0 0 0 0 0 x9 0 0 0 0 0 0 0 0 0 0
−x6−x7−x4 x5 x2−x3 x0 x1 0 0 0 0 0 0 x8 0 0 0 0 0 0 0 x9 0 0 0 0 0 0 0 0 0
−x7 x6−x5−x4 x3 x2−x1 x0 0 0 0 0 0 0 0 x8 0 0 0 0 0 0 0 x9 0 0 0 0 0 0 0 0
−x8 0 0 0 0 0 0 0 x0−x1−x2−x3−x4−x5−x6−x7 0 0 0 0 0 0 0 0 x9 0 0 0 0 0 0 0

0−x8 0 0 0 0 0 0 x1 x0 x3−x2 x5−x4−x7 x6 0 0 0 0 0 0 0 0 0 x9 0 0 0 0 0 0
0 0−x8 0 0 0 0 0 x2−x3 x0 x1 x6 x7−x4−x5 0 0 0 0 0 0 0 0 0 0 x9 0 0 0 0 0
0 0 0−x8 0 0 0 0 x3 x2−x1 x0 x7−x6 x5−x4 0 0 0 0 0 0 0 0 0 0 0 x9 0 0 0 0
0 0 0 0−x8 0 0 0 x4−x5−x6−x7 x0 x1 x2 x3 0 0 0 0 0 0 0 0 0 0 0 0 x9 0 0 0
0 0 0 0 0−x8 0 0 x5 x4−x7 x6−x1 x0−x3 x2 0 0 0 0 0 0 0 0 0 0 0 0 0 x9 0 0
0 0 0 0 0 0−x8 0 x6 x7 x4−x5−x2 x3 x0−x1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 x9 0
0 0 0 0 0 0 0−x8 x7−x6 x5 x4−x3−x2 x1 x0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 x9

−x9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0x0−x1−x2−x3−x4−x5−x6−x7−x8 0 0 0 0 0 0 0
0−x9 0 0 0 0 0 0 0 0 0 0 0 0 0 0x1 x0 x3−x2 x5−x4−x7 x6 0−x8 0 0 0 0 0 0
0 0−x9 0 0 0 0 0 0 0 0 0 0 0 0 0x2−x3 x0 x1 x6 x7−x4−x5 0 0−x8 0 0 0 0 0
0 0 0−x9 0 0 0 0 0 0 0 0 0 0 0 0x3 x2−x1 x0 x7−x6 x5−x4 0 0 0−x8 0 0 0 0
0 0 0 0−x9 0 0 0 0 0 0 0 0 0 0 0x4−x5−x6−x7 x0 x1 x2 x3 0 0 0 0−x8 0 0 0
0 0 0 0 0−x9 0 0 0 0 0 0 0 0 0 0x5 x4−x7 x6−x1 x0−x3 x2 0 0 0 0 0−x8 0 0
0 0 0 0 0 0−x9 0 0 0 0 0 0 0 0 0x6 x7 x4−x5−x2 x3 x0−x1 0 0 0 0 0 0−x8 0
0 0 0 0 0 0 0−x9 0 0 0 0 0 0 0 0x7−x6 x5 x4−x3−x2 x1 x0 0 0 0 0 0 0 0−x8

0 0 0 0 0 0 0 0−x9 0 0 0 0 0 0 0x8 0 0 0 0 0 0 0 x0 x1 x2 x3 x4 x5 x6 x7

0 0 0 0 0 0 0 0 0−x9 0 0 0 0 0 0 0 x8 0 0 0 0 0 0−x1 x0−x3 x2−x5 x4 x7−x6

0 0 0 0 0 0 0 0 0 0−x9 0 0 0 0 0 0 0 x8 0 0 0 0 0−x2 x3 x0−x1−x6−x7 x4 x5

0 0 0 0 0 0 0 0 0 0 0−x9 0 0 0 0 0 0 0 x8 0 0 0 0−x3−x2 x1 x0−x7 x6−x5 x4

0 0 0 0 0 0 0 0 0 0 0 0−x9 0 0 0 0 0 0 0 x8 0 0 0−x4 x5 x6 x7 x0−x1−x2−x3

0 0 0 0 0 0 0 0 0 0 0 0 0−x9 0 0 0 0 0 0 0 x8 0 0−x5−x4 x7−x6 x1 x0 x3−x2

0 0 0 0 0 0 0 0 0 0 0 0 0 0−x9 0 0 0 0 0 0 0 x8 0−x6−x7−x4 x5 x2−x3 x0 x1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0−x9 0 0 0 0 0 0 0 x8−x7 x6−x5−x4 x3 x2−x1 x0

















































































































(14)

In order to prove the part (ii), we have following three cases:
(i) 1 ≤ x ≤ 7 & 1 ≤ y ≤ 7,
(ii) 1 ≤ y ≤ 7 & x = 24α−1β for someβ ∈ F , α ≥ 1,
(iii) x = 24α̂−1β̂ & y = 24α−1β for someβ, β̂ ∈ F, α, α̂ ≥ 1.
In all the three cases, we havex 6= y. By Lemma 1, (i) is true.
For the second case, letz = ψt(x) · y ⊕ ψt(y) · x. We have
z = (24α−1φ2(β) · y)⊕ ((24α−1β) · φ1(y)).

As 24α−1φ2(β)·y = 0 (the all zero vector inFa2) for α ≥ 1,
we havez = (24α−1β) · φ1(y). But |β| is odd for allβ ∈ F ,
hence|z| is an odd number.

For (iii), let z = ψt(x) · y ⊕ ψt(y) · x. We have

z = 24α−1φ2(β) · 24α̂−1β̂ ⊕ 24α−1β · 24α̂−1φ2(β̂).

If α̂ > α, we have24α−1β ·24α̂−1φ2(β̂) = 0 and24α−1φ2(β)·
24α̂−1β̂ = β̂. Thus |z| is an odd number by Lemma 2. If

α = α̂, it follows that |z| = |φ2(β) · β̂|+ |β · φ2(β̂)|
is an odd number by Lemma 2.
The square ROD obtained using the mapsγt and ψt

given by (8) and (12) respectively will be denoted byRt

throughout. The RODsR16 andR32 are given by (13) and
(14) respectively. In Appendix A, it is shown that the RODs
Rt can be constructed recursively.

One can define the functionsγt andψt different from the
one given above and can have a square ROD different from
Rt. In Appendix B, we provide three different pairs of such
functions and these are shown to give the well-known Adams-
Lax-Phillips’ construction from Octonions and Quaternions
and Geramita and Pullman’s construction of square RODs.

C. STEP 2 : Construction of new sets of rate-1 RODs

Transition from a square ROD to a rate-1 ROD can be
performed using column vector representation of an ROD [6].
In a similar way, we construct a rate-1 RODWn of size
[ν(n), n, ν(n)] for n transmit antennas from an ROD of size
[ν(n), ν(n), n] wheren is any non-zero positive integer, not
necessarily a power of 2.

Any square ROD of orderν(n) obtained via a suitable
pair of mapsγν(n) and ψν(n) satisfying the condition (7)
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W9 =

























































y0 y1 y2 y3 y4 y5 y6 y7 y8
y1 −y0 y3 −y2 y5 −y4 −y7 y6 y9
y2 −y3 −y0 y1 y6 y7 −y4 −y5 y10
y3 y2 −y1 −y0 y7 −y6 y5 −y4 y11
y4 −y5 −y6 −y7 −y0 y1 y2 y3 y12
y5 y4 −y7 y6 −y1 −y0 −y3 y2 y13
y6 y7 y4 −y5 −y2 y3 −y0 −y1 y14
y7 −y6 y5 y4 −y3 −y2 y1 −y0 y15
y8 −y9−y10−y11−y12−y13−y14−y15−y0
y9 y8−y11 y10−y13 y12 y15−y14−y1
y10 y11 y8 −y9−y14−y15 y12 y13−y2
y11−y10 y9 y8−y15 y14−y13 y12−y3
y12 y13 y14 y15 y8 −y9−y10−y11−y4
y13−y12 y15−y14 y9 y8 y11−y10−y5
y14−y15−y12 y13 y10−y11 y8 y9−y6
y15 y14−y13−y12 y11 y10 −y9 y8−y7

























































, Ŵ9 =

























































y0 −y1 −y2 y3 −y4 y5 y6 −y7 −y8
y1 y0 −y3 −y2 −y5 −y4 −y7 −y6 −y9
y2 y3 y0 y1 −y6 y7 −y4 y5−y10
y3 −y2 y1 −y0 −y7 −y6 y5 y4−y11
y4 y5 y6 −y7 y0 y1 y2 −y3−y12
y5 −y4 y7 y6 y1 −y0 −y3 −y2−y13
y6 −y7 −y4 −y5 y2 y3 −y0 y1−y14
y7 y6 −y5 y4 y3 −y2 y1 y0−y15
y8 y9 y10−y11 y12−y13−y14 y15 y0
y9 −y8 y11 y10 y13 y12 y15 y14 y1
y10−y11 −y8 −y9 y14−y15 y12−y13 y2
y11 y10 −y9 y8 y15 y14−y13−y12 y3
y12−y13−y14 y15 −y8 −y9−y10 y11 y4
y13 y12−y15−y14 −y9 y8 y11 y10 y5
y14 y15 y12 y13−y10−y11 y8 −y9 y6
y15−y14 y13−y12−y11 y10 −y9 −y8 y7

























































(15)

(for instance,Rν(n) obtained in the previous subsection or
Aν(n), Âν(n) and Gν(n) obtained in Appendix B) can be
used for this purpose. We refer to any such design byBν(n)
consisting ofn real variables.

Let y0, y1, · · · , yν(n)−1 be ν(n) real variables. The matrix
Wn is obtained as follows: MakeWn(i, j) = 0 if the i-th row
of Bν(n) does not containzj. Otherwise,Wn(i, j) = yk or
−yk if Bν(n)(i, k) = zj or −zj respectively. The construction
of the matrix Wn ensures that it is a rate-1 ROD. Using
Theorem 2 and Theorem 3, we have

Wn(i, j) = s(i, j)yf(i,j) where

f(i, j) = i⊕ γν(n)(j), s(i, j) = (−1)|i·ψν(n)(γν(n)(j))| (16)

for 0 ≤ i ≤ ν(n) − 1, 0 ≤ j ≤ n − 1. Similarly, we define
another matrixŴn as

Ŵn(i, j) = ŝ(i, j)yf(i,j) wheref(i, j) = i⊕ γν(n)(j),

ŝ(i, j) = (−1)|(i⊕γν(n)(j))·ψν(n)(γν(n)(j))|. (17)

Ŵn is also a rate-1 ROD.̂Wn andWn are used to construct
a rate-12 scaled-COD for(n+ 8) antennas. Two rate-1 RODs
W9 andŴ9 for 9 antennas are given by (15).

D. STEP 3 : Construction of low-delay, rate-1
2 scaled-CODs

The construction of the rate-1
2 code is little involved: it

makes use of two rate-1 RODs constructed in the previous
subsection and the code-matrix contains several copies of
square COD of size[8, 8, 4]. For n transmit antennas, the
desired rate-12 scaled-CODRHn is given by

RHn =

[

E8 Ht

O8 Ĥt

]

(18)

where t = n − 8. The matricesE8, Ht, O8 and Ĥt are
constructed as follows.Ht andĤt are constructed very easily
using rate-1 RODs and an8× 1 column vector given by

C(x0, x1, x2, x3) =
1√
2

[

−x∗
3 x

∗
2 −x∗

1 −x0 x
∗
0 −x1 −x2 −x3

]T

where x0, x1, · · · are complex variables. DefineA(i) =
C(x4i, x4i+1, x4i+2, x4i+3) for all non-negative integeri.

Let Wt and Ŵt be two rate-1 RODs of size[ν(t), t, ν(t)]
in ν(t) real variablesy0, y1, · · · , yν(t)−1 as constructed in the
previous subsection. LetHt be the matrix obtained fromWt

by substitutingyi with A(2i+1) for i = 0 to ν(t)−1. Similarly
constructĤt from Ŵt by substitutingyi with A(2i)

Next, we constructE8 andO8. Let

A(x0, x1, x1, x3) =





















x0−x∗
1−x∗

2 0−x∗
3 0 0 0

x1 x∗
0 0−x∗

2 0−x∗
3 0 0

x2 0 x∗
0 x∗

1 0 0−x∗
3 0

0 x2−x1 x0 0 0 0−x∗
3

x3 0 0 0 x∗
0 x∗

1 x∗
2 0

0 x3 0 0−x1 x0 0 x∗
2

0 0 x3 0−x2 0 x0−x∗
1

0 0 0 x3 0−x2 x1 x∗
0





















, (19)

B(x4, x5, x6, x7) =





















x4−x∗
5−x∗

6−x∗
7 0 0 0 0

x5 x∗
4 0 0−x∗

6−x∗
7 0 0

x6 0 x∗
4 0 x∗

5 0−x∗
7 0

0 x6−x5 0 x4 0 0−x∗
7

x7 0 0 x∗
4 0 x∗

5 x∗
6 0

0 x7 0−x5 0 x4 0 x∗
6

0 0 x7−x6 0 0 x4−x∗
5

0 0 0 0 x7−x6 x5 x∗
4





















(20)

be two square CODs of size[8, 8, 4]. Define

A(2i) = A(x8i, x8i+1, x8i+2, x8i+3)

A(2i+ 1) = B(x8i+4, x8i+5, x8i+6, x8i+7).

We now construct twoν(n)2 × 8 matricesE8 andO8 using
A(i) as follows:

E8 =

















A(0)
A(2)
.
.
.

A(u − 2)

















, O8 =

















A(1)
A(3)
.
.
.

A(u − 1)

















(21)

whereu = ν(n)/8. Note that
[

A(i) A(j)
A(j) A(i)

]

(22)
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is a scaled-COD whenever(i + j) is odd and

[

A(i) −A(j)
A(j) A(i)

]

, (23)

is a scaled-COD for all values ofi andj, i 6= j.
Note that the number of rows and columns of the matrix

RHn are 16 · ν(n − 8) = 8 · ν(n)/8 = ν(n) and t + 8 = n
respectively. The following theorem is the main result of this
paper.

Theorem 4:For any non-zero positive integern, there exists
a rate-12 scaled-COD forn transmit antennas with decoding
delayν(n).

Proof: For n ≤ 8, one can construct rate-1
2 COD of size

[ν(n), n, ν(n)2 ] from a COD of size[8, 8, 4] given by (19). We
assume thatn ≥ 9. We claim that the matrixRHn given
by (18) is a rate-12 scaled-COD forn transmit antennas with
decoding delayν(n).

Let p = ν(n). We have

RHH
n RHn =

[

EH
8 E8 +OH

8 O8 EH
8 Ht +OH

8 Ĥt

HH
t E8 + ĤH

t O8 HH
t Ht + ĤH

t Ĥt

]

.

From the construction ofE8 andO8 given by (21), we have
EH

8 E8 + OH
8 O8 = (|x0|2 + · · ·+ |x p

2−1|2)I8. From equation
(23), we have

HH
t Ht + ĤH

t Ĥt = (|x0|2 + · · ·+ |xp/2−1|2)In−8.

Thus it is enough to prove thatEH
8 Ht + OH

8 Ĥt = 08×(n−8)

where 08×(n−8) is a matrix of size8 × (n − 8) containing
zero only. Let thej-th column ofHt and Ĥt beHt(j) and
Ĥt(j) respectively. Then we show thatZ(j) = EH

8 Ht(j) +
OH

8 Ĥt(j) = 08×1 for all j ∈ {0, 1, · · · , n− 8− 1}.
Let u = p/8. For convenience, we writeγ for γν(t). We have

EH
8 =

[

AH(0) AH(2) · · · AH(u− 2)
]

,
OH

8 =
[

AH(1) AH(3) · · · AH(u− 1)
]

,

Ht(j) =

























s(0, j)A(2(0⊕ γ(j)) + 1)
s(1, j)A(2(1⊕ γ(j)) + 1)

.

.

s(i, j)A(2(i⊕ γ(j)) + 1)
.
.

s(u2 − 1, j)A(2
(

(u2 − 1)⊕ γ(j)
)

+ 1)

























,

Ĥt(j) =

























ŝ(0, j)A(2(0 ⊕ γ(j)))

ŝ(1, j)A(2(1 ⊕ γ(j)))
.
.

ŝ(i, j)A(2(i ⊕ γ(j)))
.
.

ŝ(u2 − 1, j)A(2((u2 − 1)⊕ γ(j)))

























,

wheres(i, j) and ŝ(i, j) are given by (16) and (17) respec-
tively. We have

Z(j) =

u
2 −1
∑

i=0

s(i, j)AH(2i)A(2(i⊕ γ(j)) + 1)

+

u
2 −1
∑

i=0

ŝ(i, j)AH(2i+ 1)A(2(i ⊕ γ(j))).

Now s(i, j) = ŝ(i⊕ γ(j), j) and
u
2 −1
∑

i=0

ŝ(i, j)AH(2i+ 1)A(2(i⊕ γ(j)))

=

u
2 −1
∑

i=0

ŝ(i⊕ γ(j), j)AH(2(i⊕ γ(j)) + 1)A(2i)
)

.

Therefore,

Z(j) =

u
2 −1
∑

i=0

(

s(i, j)AH(2i)A(2(i ⊕ γ(j)) + 1)

+ŝ(i⊕ γ(j), j)AH(2(i⊕ γ(j)) + 1)A(2i)
)

=

u
2 −1
∑

i=0

s(i, j)(AH(2i)A(2(i ⊕ γ(j)) + 1)

+AH(2(i⊕ γ(j)) + 1)A(2i))

= 08×1

as the matrix given by (22) is a scaled-COD.

Example 2:For9 transmit antennas, the rate-1
2 scaled-COD

of size[16, 9, 8] and the known rate-12 scaled-COD [6] of size
[32, 9, 16] are given by (24). For10 transmit antennas, the
proposed rate-12 code of size[32, 10, 16] is given in Appendix
C.

It has been shown by Liang [1] that the maximal rate of a
COD forn transmit antennas is12 +

1
2t whenn = 2t−1 or 2t.

However, the rate of a scaled-COD, with scaling of at least one
column is at most half as each variable appears twice in that
column and thereforek/p ≤ 1/2 wherek is the number of
complex variables andp is the number of rows of the design.

E. Summary of the proposed rate-1
2 codes

It has been observed that the number of complex variables
in the proposed rate-12 code forn transmit antennas isν(n)2
and the number of rows isν(n) (the numberν(n) is given
by (2)). The construction of these codes requires two rate-1
RODs forn− 8 antennas. In this paper, we constructWt and
Ŵt (where t = n − 8) given by (16) and (17) respectively
which are used to construct rate-1

2 scaled-CODsHt and Ĥt

(for t transmit antennas) respectively. The matrix
[

Ht

Ĥt

]

constitutes the lastn − 8 columns of the proposed rate-1
2

scaled-COD forn antennas while the matricesE8 and O8

given by (21) constitute the first eight columns of the proposed
code.
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















































































x0 −x∗
1 −x∗

2 0 −x∗
3 0 0 0

−x∗
7√
2

x1 x∗
0 0 −x∗

2 0 −x∗
3 0 0

x∗
6√
2

x2 0 x∗
0 x∗

1 0 0 −x∗
3 0

−x∗
5√
2

0 x2 −x1 x0 0 0 0 −x∗
3

−x4√
2

x3 0 0 0 x∗
0 x∗

1 x∗
2 0

x∗
4√
2

0 x3 0 0 −x1 x0 0 x∗
2

−x5√
2

0 0 x3 0 −x2 0 x0 −x∗
1

−x6√
2

0 0 0 x3 0 −x2 x1 x∗
0

−x7√
2

x4 −x∗
5 −x∗

6 −x∗
7 0 0 0 0

−x∗
3√
2

x5 x∗
4 0 0 −x∗

6 −x∗
7 0 0

x∗
2√
2

x6 0 x∗
4 0 x∗

5 0 −x∗
7 0

−x∗
1√
2

0 x6 −x5 0 x4 0 0 −x∗
7

−x0√
2

x7 0 0 x∗
4 0 x∗

5 −x∗
7 0

x∗
0√
2

0 x7 0 −x5 0 x4 0 x∗
6

−x1√
2

0 0 x7 −x6 0 0 x4 −x∗
5

−x2√
2

0 0 0 0 x7 −x6 x5 x∗
4

−x3√
2

















































































,
1√
2















































































































x0 −x1 −x2 −x3 −x4 −x5 −x6 −x7 −x8

x1 x0 x3 −x2 x5 −x4 −x7 x6 x9

x2 −x3 x0 x1 x6 x7 −x4 −x5 x10

x3 x2 −x1 x0 x7 −x6 x5 −x4 x11

x4 −x5 −x6 −x7 x0 x1 x2 x3 x12

x5 x4 −x7 x6 −x1 x0 −x3 x2 x13

x6 x7 x4 −x5 −x2 x3 x0 −x1 x14

x7 −x6 x5 x4 −x3 −x2 x1 x0 x15

x8 −x9 −x10 −x11 −x12 −x13 −x14 −x15 x0

x9 x8 −x11 x10 −x13 x12 x15 −x14 −x1

x10 x11 x8 −x9 −x14 −x15 x12 x13 −x2

x11 −x10 x9 x8 −x15 x14 −x13 x12 −x3

x12 x13 x14 x15 x8 −x9 −x10 −x11 −x4

x13 −x12 x15 −x14 x9 x8 x11 −x10 −x5

x14 −x15 −x12 x13 x10 −x11 x8 x9 −x6

x15 x14 −x13 −x12 x11 x10 −x9 x8 −x7

x∗
0 −x∗

1 −x∗
2 −x∗

3 −x∗
4 −x∗

5 −x∗
6 −x∗

7 −x∗
8

x∗
1 x∗

0 x∗
3 −x∗

2 x∗
5 −x∗

4 −x∗
7 x∗

6 x∗
9

x∗
2 −x∗

3 x∗
0 x∗

1 x∗
6 x∗

7 −x∗
4 −x∗

5 x∗
10

x∗
3 x∗

2 −x∗
1 x∗

0 x∗
7 −x∗

6 x∗
5 −x∗

4 x∗
11

x∗
4 −x∗

5 −x∗
6 −x∗

7 x∗
0 x∗

1 x∗
2 x∗

3 x∗
12

x∗
5 x∗

4 −x∗
7 x∗

6 −x∗
1 x∗

0 −x∗
3 x∗

2 x∗
13

x∗
6 x∗

7 x∗
4 −x∗

5 −x∗
2 x∗

3 x∗
0 −x∗

1 x∗
14

x∗
7 −x∗

6 x∗
5 x∗

4 −x∗
3 −x∗

2 x∗
1 x∗

0 x∗
15

x∗
8 −x∗

9 −x∗
10 −x∗

11 −x∗
12 −x∗

13 −x∗
14 −x∗

15 x∗
0

x∗
9 x∗

8 −x∗
11 x∗

10 −x∗
13 x∗

12 x∗
15 −x∗

14 −x∗
1

x∗
10 x∗

11 x∗
8 −x∗

9 −x∗
14 −x∗

15 x∗
12 x∗

13 −x∗
2

x∗
11 −x∗

10 x∗
9 x∗

8 −x∗
15 x∗

14 −x∗
13 x∗

12 −x∗
3

x∗
12 x∗

13 x∗
14 x∗

15 x∗
8 −x∗

9 −x∗
10 −x∗

11 −x∗
4

x∗
13 −x∗

12 x∗
15 −x∗

14 x∗
9 x∗

8 x∗
11 −x∗

10 −x∗
5

x∗
14 −x∗

15 −x∗
12 x∗

13 x∗
10 −x∗

11 x∗
8 x∗

9 −x∗
6

x∗
15 x∗

14 −x∗
13 −x∗

12 x∗
11 x∗

10 −x∗
9 x∗

8 −x∗
7















































































































(24)

III. D ELAY-MINIMALITY FOR 9 TRANSMIT ANTENNAS

In this section, it is shown that the proposed rate-1
2 scaled-

COD for 9 transmit antennas achieves minimal delay. To
prove this, we need some preliminary facts regarding the
interrelationship between ODs and certain bilinear maps. It has
been observed that [13] the orthogonal designs and bilinear
maps are intimately related in the sense that an LPROD of
size[p, n, k] exists if and only if there exists a type of bilinear
map callednormed bilinear mapwith parametersp, n andk.
The normed bilinear maps have been studied extensively and
one can find a good introduction to this topic in the book by
Shapiro [14].

A bilinear mapf (over a fieldF) is a map

f : Fk × F
n → F

p (25)

(x, y) 7→ f(x, y) (26)

such that it is linear in bothx and y, i.e., f(x1 + x2, y) =
f(x1, y)+f(x2, y) andf(x, y1+y2) = f(x, y1)+f(x, y2) for
all x, x1, x2 ∈ Fk andy, y1, y2 ∈ Fn. If the vector space under
consideration is an inner product space, for example, when the
field is real numbers or complex numbers, the Euclidean norm
of a vectorx is denoted by‖x‖. If a bilinear map preserves the
norm, then it is called a normed bilinear map. More precisely,

Definition 2: A normed real bilinear map(NRBM) of size
[p, n, k] is a mapf : Rk × Rn → Rp such thatf is bilinear
and normed i.e.,‖f(x, y)‖ = ‖x‖‖y‖∀x ∈ Rk, y ∈ Rn.
A bilinear mapf is called nonsingular iff(x, y) = 0 implies
x = 0 or y = 0.

The following theorem gives a lower bound onp for fixed
values ofn andk.

Theorem 5 (Hopf-Stiefel Theorem [14]):If there exists a
nonsingular bilinear map of size[p, n, k] over R, then (x +
y)p = 0 in the ringF2[x, y]/(x

n, yk).
Definition 3: Let n, k be positive integers. Then the three

quantitiesn ◦ k, pBL(n, k) andpNBL(n, k) are defined by
• n ◦ k = min{p : (x+ y)p = 0 in F2[x, y]/(x

n, yk)},
• pBL(n, k) = min{p : there is a nonsingular bilinear map

[p, n, k] overR },
• pNBL(n, k) = min{p : there is a normed bilinear map

[p, n, k] overR},
The following basic facts about these quantities are well-
known [14].
pNBL(n, k) ≥ pBL(n, k) ≥ n ◦ k. It follows from the
definition ofn ◦ k that

Proposition 1 ([14]): n ◦ k is a commutative binary opera-
tion.
(I) If k ≤ l thenn ◦ k ≤ n ◦ l
(II) n ◦ k = 2m if and only if k, n ≤ 2m andk + n > 2m .
(III) If n ≤ 2m thenn ◦ (k + 2m) = n ◦ k + 2m.

Example 3:To compute10 ◦ 10, note that10 < 24, but
(10 + 10) > 16. Therefore,10 ◦ 10 = 16.

The relation between RODs and NRBMs has been observed
by Wang and Xia [13]. The following theorem states that
RODs and normed bilinear maps are equivalent.

Lemma 3:An LPROD of size[p, n, k] exists if and only if
there exists a normed real bilinear map of size[p, n, k].

Proof:
Let x ∈ R

k be the column vector(x1, · · · , xk)T .
Similarly, definey = (y1, · · · , yn)T andz = (z1, · · · , zp)T .
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Let A be an ROD of size [p, n, k] in k variables
x1, x2 · · · , xk. Let

f : Rk × R
n → R

p

(x, y) 7→ Ay.

Thei-th row ofA is given byxT Bi where the matricesBi, i =
1, 2, · · · , p are uniquely determined by the matrixA. Let z =
f(x, y). As zi = xT Biy for i = 1, 2, · · · , p, the mapf is
bilinear.
f is normed as‖f(x, y)‖2 = ‖Ay‖2 = (Ay)T Ay = yT (x21 +
x22 + · · ·+ x2k)In)y = ‖x‖2‖y‖2.

We now prove the converse. Letf be the normed bilinear
map given by

f : Rk × R
n → R

p

(x, y) 7→ z.

As f is linear in bothx and y, we havez = Ay where
A is a p × n matrix where each entry of the matrix is a
real linear combination of the variablesx1, · · · , xk. As f
is normed, we have‖z‖2 = ‖f(x, y)‖2 = ‖x‖2‖y‖2. But
f(x, y) = Ay. Then, ‖Ay‖2 = (x21 + · · · + x2k)y

T y i.e.,
yT AT Ay = (x21 + · · ·+ x2k)y

T y. As y consists of variables,
this equation is equivalent toAT A = (x21 + · · ·+ x2k)In.

We now prove the main result of this section.
Theorem 6:The minimum value of the decoding delay of

a rate-12 LPCOD for 9 transmit antennas is16.
Proof: We prove it by contradiction. If the minimum value

of decoding delay is less than16, then there exists an LPCOD
of size [2x, 9, x] with x ≤ 7 and therefore an LPROD of size
[4x, 18, 2x] exists withx ≤ 7. By Lemma 3, there exists a
normed real bilinear map of size[4x, 18, 2x] and hence4x ≥
pNBL(18, 2x) ≥ 18 ◦ 2x ≥ 18. Therefore,x ≥ 5. But for
x = 5, 6 and7, 18 ◦ 2x = 26, 28 and30 respectively. In each
case,18 ◦ 2x > 4x.
It must be noted that the above argument fails to work when
number of antennas is more than9. However, it is likely that
the proposed rate-12 scaled-CODs are delay-optimal.

IV. PAPR REDUCTION OF RATE- 12 SCALED-CODS

In this section, we study PAPR properties of the scaled-
CODs constructed in this paper. Note that in the construction
of TJCn [6], even though the delay is more, there is no zero
entry in the design matrix. On the contrary, in our construction
of rate-12 codes, there are zero entries. To be specific, observe
that the first eight columns of rate-1

2 codeRHn, n ≥ 9 given
by (18) contains as many zero as the number of non-zero
entries in it, while there is no zero in the remaining columns
of the matrix. When the number of transmit antennasn is more
than 7, the total number of zeros in the codeword matrix is
equal to8(ν(n)/2) = 4ν(n). Hence the fraction of zeros in
the codeword matrix is equal to4ν(n)nν(n) = 4/n for n ≥ 8.

Now in the remaining part of this section, we show that
one can further reduce the number of zeros inRHn by suit-
ably choosing a post-multiplication matrix without increasing
signaling complexity of the code.

As seen easily, only the first eight columns contain zeros
while the others do not. Moreover, the zeros in the0-th column

and the7-th column occupy complementary locations, so is
also for the pairs of columns given by(1, 6), (2, 5) and(3, 4).
What it essentially suggests is that we can perform some
elementary column operations which will result in a code with
no zero entry in it. LetQn be ann× n matrix given by

Qn =

[

A 0
0 In−8

]

whereIn−8 is the (n − 8) × (n − 8) identity matrix and the
matrix A (with entries0, 1 and−1) is given by

A =
1√
2

























1000 0 0 0 1
0100 0 0 1 0
0010 0 1 0 0
0001 1 0 0 0
0001− 0 0 0
0010 0− 0 0
0100 0 0− 0
1000 0 0 0−

























.

Here−1 is represented by simply the minus sign. We post-
multiply RHn with Qn to get a code in which none of the
entries is zero. We formally present this fact as:

Theorem 7:RHnQn is a scaled-COD with no zero entry in
it. Moreover, the matrixQn does not depend on any particular
construction procedure (namely the mapsγt andψt) used to
obtain the constituent rate-1 RODs.

Proof: It is clear that the first8 columns of the matrix has
50% zeros in it and in the remainingn − 8 columns formed
by Ht and Ĥt, there is no zero as both these matrices are
constructed from rate-1 ROD by substituting all the variables
in it with appropriate8-tuple column vectors. Here neither
rate-1 ROD nor the8-tuple column vector has any any zero
in it. Therefore, the matrixQn gives a rate-12 scaled-COD
without any zero irrespective of how the rate-1 RODs are
obtained for the construction ofRHn.

Example 4:For 9 antennas, we construct a rate-1
2 scaled-

COD with no zero entry as shown below



















































x0 −x∗
1 −x∗

2 −x∗
3 x∗

3 −x∗
2 −x∗

1 x0 −x∗
7

x1 x∗
0 −x∗

3 −x∗
2 −x∗

2 x∗
3 x∗

0 x1 x∗
6

x2 −x∗
3 x∗

0 x∗
1 x∗

1 x∗
0 x∗

3 x2 −x∗
5

−x∗
3 x2 −x1 x0 x0 −x1 x2 x∗

3 −x4

x3 x∗
2 x∗

1 x∗
0 −x∗

0 −x∗
1 −x∗

2 x3 x∗
4

x∗
2 x3 x0 −x1 x1 −x0 x3 −x∗

2 −x5

−x∗
1 x0 x3 −x2 x2 x3 −x0 x∗

1 −x6

x∗
0 x1 −x2 x3 x3 x2 −x1 −x∗

0 −x7

x4 −x∗
5 −x∗

6 −x∗
7 −x∗

7 −x∗
6 −x∗

5 x4 −x∗
3

x5 x∗
4 −x∗

7 −x∗
6 x∗

6 x∗
7 x∗

4 x5 x∗
2

x6 −x∗
7 x∗

4 x∗
5 −x∗

5 x∗
4 x∗

7 x6 −x∗
1

−x∗
7 x6 −x5 x4 −x4 −x5 x6 x∗

7 −x0

x7 x∗
6 x∗

5 x∗
4 x∗

4 −x∗
5 −x∗

6 x7 x∗
0

x∗
6 x7 x4 −x5 −x5 −x4 x7 −x∗

6 −x1

−x∗
5 x4 x7 −x6 −x6 x7 −x4 x∗

5 −x2

x∗
4 x5 −x6 x7 −x7 x6 −x5 −x∗

4 −x3



















































with each entry multiplied by
√
2, by post-multiplying the

matrix RH9 (given by the L.H.S of (24)) withQ9.

V. D ISCUSSION

For any positive integern, this paper gives a rate-1
2 scaled-

COD for n transmit antennas with decoding delayν(n). The
decoding delay of these codes is half the decoding delay of the
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rate-12 scaled-CODs given by Tarokh et al [6]. When number
of transmit antennas is large, the maximal rate of CODs is
close to1/2 and therefore the rate-1

2 codes and the maximal-
rate CODs are comparable with respect to the rate of the codes.
However, the proposed rate-1

2 codes have much less decoding
delay than that of the maximal-rate CODs. Another advantage
with the designs reported in this paper is that they do not
contain zero entry leading to low PAPR.

All the four constructions namely Adams, Lax and Phillips’s
construction from Quaternions & Octonion, Geramita-Pullman
construction and the construction given in this paper will give
the same square ROD if number of transmit antennas is less
than or equal to8. Therefore, these four constructions will
generate the same rate-1

2 scaled-COD if the number of transmit
antennas (of the scaled-COD) is less than or equal to16.
For more than16 antennas, rate-12 scaled-CODs will vary
with the methods chosen for the construction of rate-1 RODs.
Due to space constraint, two distinct rate-1

2 scaled-CODs for
17 transmit antennas obtained by two different construction
procedures for rate-1 RODs, are not given in this paper.

It is not known whether the decoding delay of the proposed
rate-12 scaled-COD for given number of transmit antennas is
of minimal delay. It is shown that the proposed code for9
antennas is of minimal delay. In general, we conjecture that
ν(n) is the minimum value of the decoding delay of rate-1

2
scaled-COD for anyn transmit antennas. It will be interesting
to see whether this is indeed true.
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APPENDIX A
RECURSIVE CONSTRUCTION OFRt

In this appendix we show that the RODsRt can be
constructed recursively.

Let Kt = Bt for t = 1, 2, 4 and 8. The four square ODs
Kt, t = 1, 2, 4, 8 are shown below.

(x0),

(

x0 x1

−x1 x0

)

,







x0 x1 x2 x3

−x1 x0 −x3 x2

−x2 x3 x0 −x1

−x3 −x2 x1 x0






,





















x0 x1 x2 x3 x4 x5 x6 x7

−x1 x0 −x3 x2 −x5 x4 x7 −x6

−x2 x3 x0 −x1 −x6 −x7 x4 x5

−x3 −x2 x1 x0 −x7 x6 −x5 x4

−x4 x5 x6 x7 x0 −x1 −x2 −x3

−x5 −x4 x7 −x6 x1 x0 x3 −x2

−x6 −x7 −x4 x5 x2 −x3 x0 x1

−x7 x6 −x5 −x4 x3 x2 −x1 x0





















. (27)

It follows that

KT
t = KT

t (x0, x1, · · · , xt−1) = Kt(x0,−x1, · · · ,−xt−1)
and −KT

t = Kt(−x0, x1, · · · , xt−1)

for t = 1, 2, 4 or 8. The expression forRt of ordert as given
in Theorem 3 gives rise to the following recursive construction
of Rt. Given two matricesU = (uij) of sizev1 × w1 andV
of size v2 × w2, we define theKronecker product or tensor
product of U andV as the followingv1v2 × w1w2 matrix:











u11V u12V · · · u1w1V
u11V u12V · · · u1w1V

...
...

.. .
...

uv11V uv12V · · · uv1w1V











.

Let In be an identity matrix of sizen. Define

I02 =

[

1 0
0 1

]

, I12 =

[

1 0
0 −1

]

,

I22 =

[

0 1
1 0

]

, I32 =

[

0 −1
1 0

]

,

I04 = I4, I14 = I32 ⊗ I22 ,

I08 = I8, I18 = I02 ⊗ I14 ,

I28 = I32 ⊗ I12 ⊗ I22 , I38 = I32 ⊗ I22 ⊗ I02 .
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R2n =

[

Rn xρ(n)In
−xρ(n)In RT

n

]

, R4n =

[

R2n xρ(n)+1I2n
−xρ(n)+1I2n RT

2n

]

,

R8n =

[

R4n T4(y0, y1)⊗ In
T4(−y0, y1)⊗ In RT

4n

]

, R16n =

[

R8n T8(y2, y3, y4, y5)⊗ In
T8(−y2, y3, y4, y5)⊗ In RT

8n

]

(28)

Let y0, · · · , y5 be real variables. Define

T4(y0, y1) = y0I
0
4 + y1I

1
4 ,

T8(y2, y3, y4, y5) = y2I
0
8 + y3I

1
8 + y4I

2
8 + y5I

3
8 .

We have four RODs of ordern = 2a with a = 0, 1, 2, 3 as
given by (27) which are respectivelyK1,K2,K4 andK8.
Assuming that a square ROD of ordern = 24l−1, l ≥ 1

Rn = Rn(x0, · · · , xρ(n)−1)

which hasρ(n) real variables, is given, then we construct
R2n, R4n, R8n, R16n of order2n, 4n, 8n and16n respectively
given by (28) whereyi = xρ(n)+2+i and

RT
t = RT

t (x0, x1, · · · , xρ(t)−1)

= Rt(x0,−x1, · · · ,−xρ(t)−1),

−RT
t = Rt(−x0, x1, · · · , xρ(t)−1).

APPENDIX B
ADAMS-LAX -PHILLIPS AND GERAMITA -PULLMAN

CONSTRUCTIONS AS SPECIAL CASES

In this appendix we show that the well-known constructions
of square RODs by Adams-Lax-Phillips using Octonions and
Quaternions as well as the construction by Geramita and
Pullman are nothing but our construction corresponding to
specific choices of the functionsγt andψt defined by (5) and
(6). It turns out to be convenient to use the mapχt = ψtγt than
the mapψt. Note that bothγt andχt act on the setZρ(t) and

are injective. Now givenγt andχt, we haveψt = χtγ
(−1)
t .

With this new definition, we can reformulate the criterion
given in Theorem 3 as follows.

|(χt(x) ⊕ χt(y)) · (γt(x)⊕ γt(y))| (29)

is an odd integer∀x, y ∈ Zρ(t), x 6= y.

In the following lemma, we defineγt andχt in three different
ways and these maps are shown to satisfy the relation given by
(29). Although bothγt andχt are different for all the three
cases for arbitrary values oft, γt is the identity map when
t = 1, 2, 4 or 8. Henceχt = ψt if t ∈ {1, 2, 4, 8}.

Lemma 4:Let t = 2a, a = 4c+ d, m ∈ {0, 1, · · · , 7}. Let
γt andχt be two maps defined overZρ(t) in three different
ways as given below. Identifyγt(Zρ(t)) and χt(Zρ(t)) as
subsets ofFa2 . Then|(γt(x1)⊕ γt(x2)) · (χt(x1)⊕χt(x2))| is
odd for all x1, x2 ∈ Zρ(t), x1 6= x2. For x = 8l+m ∈ Zρ(t),
(i)

γt(8l+m) = t(1− 2−l) + 8lm

χt(8l+m) =



















0 if l = 0,m = 0

t.2−l if l 6= 0,m = 0

8lχ2d(m) if l = c,m 6= 0

t.2−l−1 + 8lχ8(m) if l 6= c,m 6= 0

(ii)

γt(8l +m) =

{

t(1 − 2−2l) + 22lm if 0 ≤ m ≤ 3

t(1 − 2−2l−1) + 22l(m − 4) if 4 ≤ m ≤ 7,

χt(8l +m) =











































0 if l = 0, m = 0

t.2−2l if l 6= 0, m = 0

t.2−2l−1 if l 6= 0, m = 4

4 if l = 0, m = 4

22lχ2d (m) if l = c,m 6= 0

t.2−2l−1 + 22lχ4(m) if l 6= c,m ∈ {1, 2, 3}
t.2−2l−2 + 22lχ′

4(m− 4) if l 6= c,m ∈ {5, 6, 7}

whereχ′
4 =

(

0 1 2 3
0 1 3 2

)

,

(iii)

γt(8l +m) =

{

8t
15 (1− 2−4l) + tm

16l+1 if l < c,
8t
15 (1− 2−4l) +m if l = c

χt(8l +m) =



















0 if l = 0,m = 0
t
22

−4(l−1) if l 6= 0,m = 0

χ2d(m) if l = c,m 6= 0.
t
22

−4l + tχ8(m)

24(l+1) if l 6= c,m 6= 0.

Proof: We give proof only for the case (i). The cases (ii)
and (iii) can be proved similarly.
It is enough to prove that
(B1) |γt(x) · χt(x)| is odd for allx 6= 0, x ∈ Zρ(t) and
(B2) |γt(x1) ·χt(x2)|+ |γt(x2) ·χt(x1)| is odd for allx1, x2 ∈
Zρ(t), x1 6= x2, x1 6= 0, x2 6= 0.

Let γt(8l +m) = γ
(1)
t (8l + m) + γ

(2)
t (8l +m) such that

γ
(1)
t (8l+m) = t(1− 2−l) andγ(2)t (8l +m) = 8lm.

Similarly, letχt(8l+m) = χ
(1)
t (8l+m)+χ

(2)
t (8l+m) such

that

χ
(1)
t (8l+m) =



















0 if l = 0,m = 0,

t2−l if l 6= 0,m = 0,

0 if l = c,m 6= 0,

t2−l−1 if l 6= c,m 6= 0,

χ
(2)
t (8l +m) =



















0 if l = 0,m = 0,

0 if l 6= 0,m = 0,

8lχ2d(m) if l = c,m 6= 0,

8lχ8(m) if l 6= c,m 6= 0.

Let 8l + m 6= 0 and 8l′ + m′ 6= 0. From the definition of
γit , χ

i
t, i = 1, 2, it follows that
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(A1) |χ(2)
t (8l +m) · γ(2)

t (8l′ +m′)| = 0 if l 6= l′,

(A2) |χ(1)
t (8l +m) · γ(1)

t (8l′ +m′)| = 1 if l < l′,

(A3) |χ(1)
t (8l +m) · γ(1)

t (8l′ +m′)| = 0 if l > l′

or if l = l′,m 6= 0,

(A4) |χ(1)
t (8l) · γ(1)

t (8l +m)| = 1 if l 6= 0,

(A5) |χ(1)
t (x) · γ(2)

t (y)| = |χ(2)
t (x) · γ(1)

t (y)| = 0 ∀ x, y ∈ Zρ(t),

(A6) |χ(2)
t (8l) · γ(2)

t (8l +m)| = |χ(2)
t (8l +m) · γ(2)

t (8l)| = 0.

First we prove (B1). Letx = 8l+m with m 6= 0. We have

|χt(x) · γt(x)| ≡ |χ(1)
t (8l +m) · γ(1)

t (8l +m)|+ |χ(2)
t (8l +m)

·γ(2)
t (8l +m)|+ |χ(1)

t (8l +m) · γ(2)
t (8l +m)|

+|χ(2)
t (8l +m) · γ(1)

t (8l +m)|
= |χ(1)

t (8l +m) · γ(1)
t (8l +m)|

+|χ(2)
t (8l +m) · γ(2)

t (8l +m)| by (A5)

= |χ(2)
t (8l +m) · γ(2)

t (8l +m)| using (A3)

= |χe(m) ·m|, e = 2d if l = c, elsee = 8

But |χe(m) ·m| is an odd number by Lemma 1.
If m = 0, we have|γt(x) · χt(x)| = 1 by (A4).

To prove (B2), letx1 6= 0 andx2 6= 0. Write x2 = 8l2+m2,
x1 = 8l1 +m1 with x2 > x1. We have two cases:
(C1): l2 > l1, (C2): l2 = l1 = l, m2 > m1.

Case (C1):we have

χt(x2) · γt(x1) = χ
(1)
t (8l2 +m2) · γ(1)

t (8l1 +m1)

⊕χ
(2)
t (8l2 +m2) · γ(2)

t (8l1 +m1) by (A5) .

But |χ(1)
t (8l2 +m2) · γ(1)t (8l1 +m1)| = 0 by (A3)

and |χ(2)
t (8l2 +m2) · γ(2)t (8l1 +m1)| = 0 by (A1),

thus |χt(x2) · γt(x1)| = 0.
Now χt(x1) · γt(x2) = χ

(1)
t (8l1 + m1) · γ(1)t (8l2 + m2) ⊕

χ
(2)
t (8l1 +m1) · γ(2)t (8l2 +m2) by (A5).

But |χ(2)
t (8l1 + m1) · γ(2)t (8l2 + m2)| = 0 by (A1) and

|χ(1)
t (8l1 +m1) · γ(1)t (8l2 +m2)| = 1 by (A2).

Hence|χt(x1) · γt(x2)|+ |χt(x2) · γt(x1)| is an odd number.
Case (C2):we consider two following cases:
(i) m1 6= 0 and (ii)m1 = 0. Note thatm2 is always non-zero.
Let d = |(χt(x1) · γt(x2))⊕ (χt(x2) · γt(x1))|.

Case (i): We have

d ≡ |χ(2)
t (8l +m1) · γ(2)

t (8l +m2)|
+|χ(2)

t (8l +m2) · γ(2)
t (8l +m1)| by (A3) and (A5)

= |(χe(m1) ·m2)⊕ (χe(m2) ·m1)|, e = 2d if l = c, elsee = 8

which is an odd number by Lemma 1.
Case (ii): Sincem1 = 0, thereforel 6= 0. We have

d ≡ |χ(1)
t (8l) · γ(2)t (8l +m2)|

+|χ(1)
t (8l +m2) · γ(1)t (8l)| by (A6).

= 1 by (A3) and (A4).

By Lemma 4 and Theorem 2, the matrixBt defined by
two functionsγt and χt is a square ROD in all the three
cases. We refer to these three different RODs byAt, Ât and
Pt corresponding to the pair of functions defined in (i), (ii)
and (iii) respectively.

Now, we proceed to show that the designsAt, Ât andPt are
essentially the Adams-Lax-Phillips construction using Octo-
nions and Quaternions and the Geramita-Pullman construction
respectively with change in sign of some rows or columns.

A. Adams-Lax-Phillips Construction from Octonions as a spe-
cial case

The Adams-Lax-Phillips construction from Octonions is
given by induction from ordern = 2a to 16n as follows [1]:
denoting the square ROD of ordern = 2a resulting from the
Adams-Lax-Phillips construction using Octonions by

On = On(x0, · · · , xρ(n)−1)

which hasρ(n) real variables, the square ROD of order16n
with (ρ(n) + 8) real variablesxi, i = 0, 1, · · · , ρ(n) + 7,

O16n = O16n(x0, · · · , xρ(n)+7)

is given by

O16n =

[

In ⊗K8(y0, · · · , y7) On ⊗ I8
OT
n ⊗ I8 In ⊗ (−KT

8 (y0, · · · , y7))

]

with yi = xρ(n)+i.
With re-arrangement of variables and change in signs, we
rewrite the designO16n as

O
(O)
16n =

[

In ⊗K8(x0, · · · , x7) O
(O)
n (y0, · · · , yρ(n)−1) ⊗ I8

−O
(O)T
n (y0, · · · , yρ(n)−1)⊗ I8 In ⊗KT

8 (x0, · · · , x7)

]

with yi = x8+i andO(O)
n = On, n = 1, 2, 4, 8. The reason

why we consider this rearranged version is that we show in
Lemma 5 thatAt is same asO(O)

2n with t = 16n.

Lemma 5:Let t ≥ 16 be a power of2. Also, letAt be the
square ROD of ordert as given in Lemma 4 (i), andO(O)

16n be
the square ROD which is of order16n. ThenAt = O

(O)
16n for

t = 16n.
Proof: We prove it by induction ont. For t = 1, 2, 4 and

8, At = Kt and the CODO(O)
t of order t is also given by

Kt. Hence the lemma holds fort = 1, 2, 4 and 8. Assuming
that the lemma holds fort = n, i.e.,An = O

(O)
n of ordern,

we have to prove that the lemma also holds fort = 16n, i.e.,
A16n = O

(O)
16n. Let

A16n =

[

Â11 Â12

Â21 Â22

]

whereÂij , 1 ≤ i, j ≤ 2 are square matrices of size8n× 8n.
It is easy to check that the location of non-zero variables in
the matrixA16n coincide with that ofO(O)

16n. Therefore it is
enough to show the signs (positive/negative polarity) of the
corresponding entry in the two designs are same i.e.,

1) µ16n(i, j) = µ16n(i%8, j%8) for 0 ≤ i, j ≤ 8n− 1,
2) µ16n(i, j) = µ8(i, j) for 0 ≤ i, j ≤ 7,
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O
(Q)
16n =









In ⊗ L4(x0, x1, x2, x3) 04n In ⊗R4(x4, x5, x6, x7) O1(y0, · · · , yρ(n)−1)⊗ I4
04n In ⊗ L4(x0, x1, x2, x3) −O

T
1 (y0, · · · , yρ(n)−1)⊗ I4 In ⊗RT

4 (x4, x5, x6, x7)
In ⊗−RT

4 (x4, x5, x6, x7) O1(y0, · · · , yρ(n)−1)⊗ I4 In ⊗ LT
4 (x0, x1, x2, x3) 04n

−O
T
1 (y0, · · · , yρ(n)−1)⊗ I4 In ⊗−R4(x4, x5, x6, x7) 04n In ⊗ LT

4 (x0, x1, x2, x3)









(30)

3) µ16n(i, j) = µ16n(i⊕ i%8, j ⊕ j%8)
if 0 ≤ i ≤ 8n− 1, 8n ≤ j ≤ 16n− 1,

4) µ16n(8i, 8n⊕ 8j) = µn(i, j) for 0 ≤ i, j ≤ n− 1,
5) µ16n(8n⊕ i, 8n⊕ j) = µ16n(i, j) if i⊕ j = 0 or i⊕ j >

8n,
6) µ16n(8n ⊕ i, 8n ⊕ j) = −µ16n(i, j) if i ⊕ j ∈

{1, 2, · · · , 7} ∪ {8n}.

Note that
1) & 2) together implyÂ11 = In ⊗K8(x0, · · · , x7),
3) & 4) together implyÂ12 = O

(O)
n ⊗ I8 and

5) & 6) together implyÂ22 = AT
11, Â21 = −AT

12.
Let A16n(i, j) 6= 0.
Then i⊕ j ∈ Ẑρ(16n) andµ16n(i, j) = (−1)|i·ψ16n(i⊕j)|.
To prove 1), we have to show that|i ·ψ16n(i⊕ j)| ≡ |(i%8) ·
ψ16n(i%8⊕ j%8) for 0 ≤ i, j ≤ 8n− 1.
We havei ⊕ j = (16n)(1 − 2−l) + 8lm and i ⊕ j < 8n. So
l = 0 and i⊕ j = m. i.e., i⊕ j = i%8⊕ j%8.
Thus it is enough to prove that|(i⊕ i%8) · ψ16n(i ⊕ j)| ≡ 0
Now (i⊕ i%8) < 8n, 8 divides(i⊕ i%8) andψ16n(i⊕ j) =
8n⊕ ψ8(m), hence the statement holds.

The statement 2) is true as|i ·ψ16n(i⊕ j)| ≡ |i ·ψ8(i⊕ j)|
for 0 ≤ i, j ≤ 7.
In order to prove 3), we must have

|i · ψ16n(i⊕ j)| ≡ |(i ⊕ i%8) · ψ16n((i⊕ i%8)⊕ (j ⊕ j%8))|

i.e., |(i%8) · ψ16n((i ⊕ i%8) ⊕ (j ⊕ j%8))| ≡ 0. As 8n ≤
i⊕ j ≤ 16n− 1, we havei⊕ j = (16n)(1− 2−l) + 8lm with
l ≥ 1. So8 dividesi⊕ j as8 divides both(16n)(1−2−l) and
8lm. So i%8 = j%8 i.e., i ⊕ j = ((i ⊕ i%8) ⊕ (j ⊕ j%8)).
Thus it is enough to prove that|(i%8) · ψ16n(i ⊕ j)| ≡ 0. It
is indeed true asψ16n(i⊕ j) is a multiple of8.

To prove 4), we have to show that

|(8i) · ψ16n(8n⊕ 8i⊕ 8j)| ≡ |(i · ψn((i ⊕ j).

We have8n ⊕ 8i ⊕ 8j = (16n)(1 − 2−l) + 8lm for somel
with l ≥ 1 andm ∈ Z8. Let 16n = 2a anda = 4c+ d.
If l = c, we haveψ16n(8n⊕8i⊕8j) = 8lχ2d(m) andψn(i⊕
j) = 8l−1χ2d(m). One can easily see that the above statement
holds.
On the other hand, ifl < c, we haveψ16n(8n ⊕ 8i ⊕ 8j) =
(16n)2−l−1 + 8lχ8(m) andψn(i⊕ j) = n.2−l+ 8l−1χ8(m).
In this case too, the statement holds.

To prove 5), we have to show that

|(i⊕ 8n) · ψ16n(i ⊕ j)| ≡ |i · ψ16n(i⊕ j)|,

i.e., |(8n) · ψ16n(i ⊕ j)| ≡ 0. Now for i ⊕ j = 0 or greater
than8n, (8n) · ψ16n(i⊕ j) = 0.

To prove 6), we have to show that

|(i ⊕ 8n) · ψ16n(i⊕ j)| ≡ 1 + |i · ψ16n(i⊕ j)|,

i.e., |(8n) · ψ16n(i⊕ j)| ≡ 1. But (8n) · ψ16n(i⊕ j) = 8n for
all (i⊕ j) ∈ {1, 2, 3, 4, 5, 6, 7, 8n}.

B. Adams-Lax-Phillips Construction from Quaternions and
Geramita-Pullman Construction as special cases

Adams-Lax-Phillips has also provided another construction
of square RODs using Quaternions [1]. Assuming that a square
ROD of ordern = 2a

O
(Q)
n = O

(Q)
n (x0, · · · , xρ(n)−1)

which hasρ(n) real variables, is given, then a square ROD
of order 16n with ρ(n) + 8 real variablesxi for i =
0, 1, · · · , ρ(n) + 7

O
(Q)
16n = O

(Q)
16n(x0, · · · , xρ(n)+7)

is given by (30), where the matricesL4 andR4 are given by

L4(x0, x1, x2, x3) =









x0 x1 x2 x3
−x1 x0 −x3 x2
−x2 x3 x0 −x1
−x3 −x2 x1 x0









,

R4(x4, x5, x6, x7) =









x4 x5 x6 x7
−x5 x4 x7 −x6
−x6 −x7 x4 x5
−x7 x6 −x5 x4









.

respectively withyi = x8+i.
The Geramita-Pullman construction of square RODs [1] is
given as follows.

Consider a recursive construction of square ROD of order
n = 2a to 16n as follows:O(GP )

n = O
(GP )
n (x0, · · · , xρ(n)−1)

which hasρ(n) real variables is given, then a square ROD
O

(GP )
16n of order16n with ρ(n) + 8 real variablesxi for i =

0, 1, · · · , ρ(n) + 7 is given by






K8(x0, · · · , x7) ⊗ In I8 ⊗ O
(GP )
n (y0, · · · , yρ(n)−1)

I8 ⊗ (−O
(GP )
n )T (y0, · · · , yρ(n)−1) KT

8 (x0, · · · , x7) ⊗ In






(32)

with yi = x8+i.
It can be checked that both Adams-Lax-Phillips construction

from Quaternions and Geramita-Pullman’s construction differ
from the constructions ofO(Q)

16n andO(GP )
16n defined above only

in rearrangement of variables and in signs of some of the rows
or columns of the design matrix.

Lemma 6:Let t ≥ 16 and Ât andPt be the square RODs
of order t given by Lemma 4 (ii) and (iii) respectively, and
also letO(Q)

16n andO
(GP )
16n be the square RODs of order16n

given by (30) and (32) respectively. Then̂At = O
(Q)
16n and

Pt = O
(GP )
16n for t = 16n .

Proof: Similar to that of Lemma 5 and hence omitted.
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















































































































x0 0 x1 0 x2 0 x3 0 x4 0 x5 0 x6 0 x7 0 x8x9 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 x0 0 x1 0 x2 0 x3 0 x4 0 x5 0 x6 0 x7−x9x8 0 0 0 0 0 0 0 0 0 0 0 0 0 0

−x1 0 x0 0−x3 0 x2 0−x5 0 x4 0 x7 0−x6 0 0 0 x8 x9 0 0 0 0 0 0 0 0 0 0 0 0
0−x1 0 x0 0−x3 0 x2 0−x5 0 x4 0 x7 0−x6 0 0−x9 x8 0 0 0 0 0 0 0 0 0 0 0 0

−x2 0 x3 0 x0 0−x1 0−x6 0−x7 0 x4 0 x5 0 0 0 0 0 x8 x9 0 0 0 0 0 0 0 0 0 0
0−x2 0 x3 0 x0 0−x1 0−x6 0−x7 0 x4 0 x5 0 0 0 0−x9 x8 0 0 0 0 0 0 0 0 0 0

−x3 0−x2 0 x1 0 x0 0−x7 0 x6 0−x5 0 x4 0 0 0 0 0 0 0 x8 x9 0 0 0 0 0 0 0 0
0−x3 0−x2 0 x1 0 x0 0−x7 0 x6 0−x5 0 x4 0 0 0 0 0 0−x9 x8 0 0 0 0 0 0 0 0

−x4 0 x5 0 x6 0 x7 0 x0 0−x1 0−x2 0−x3 0 0 0 0 0 0 0 0 0 x8 x9 0 0 0 0 0 0
0−x4 0 x5 0 x6 0 x7 0 x0 0−x1 0−x2 0−x3 0 0 0 0 0 0 0 0−x9 x8 0 0 0 0 0 0

−x5 0−x4 0 x7 0−x6 0 x1 0 x0 0 x3 0−x2 0 0 0 0 0 0 0 0 0 0 0 x8 x9 0 0 0 0
0−x5 0−x4 0 x7 0−x6 0 x1 0 x0 0 x3 0−x2 0 0 0 0 0 0 0 0 0 0−x9 x8 0 0 0 0

−x6 0−x7 0−x4 0 x5 0 x2 0−x3 0 x0 0 x1 0 0 0 0 0 0 0 0 0 0 0 0 0 x8 x9 0 0
0−x6 0−x7 0−x4 0 x5 0 x2 0−x3 0 x0 0 x1 0 0 0 0 0 0 0 0 0 0 0 0−x9 x8 0 0

−x7 0 x6 0−x5 0−x4 0 x3 0 x2 0−x1 0 x0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 x8 x9

0−x7 0 x6 0−x5 0−x4 0 x3 0 x2 0−x1 0 x0 0 0 0 0 0 0 0 0 0 0 0 0 0 0−x9 x8

−x8 x9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 x0 0−x1 0−x2 0−x3 0−x4 0−x5 0−x6 0−x7 0
−x9−x8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0x0 0−x1 0−x2 0−x3 0−x4 0−x5 0−x6 0−x7

0 0−x8 x9 0 0 0 0 0 0 0 0 0 0 0 0 x1 0 x0 0 x3 0−x2 0 x5 0−x4 0−x7 0 x6 0
0 0−x9−x8 0 0 0 0 0 0 0 0 0 0 0 0 0x1 0 x0 0 x3 0−x2 0 x5 0−x4 0−x7 0 x6

0 0 0 0−x8 x9 0 0 0 0 0 0 0 0 0 0 x2 0−x3 0 x0 0 x1 0 x6 0 x7 0−x4 0−x5 0
0 0 0 0−x9−x8 0 0 0 0 0 0 0 0 0 0 0x2 0−x3 0 x0 0 x1 0 x6 0 x7 0−x4 0−x5

0 0 0 0 0 0−x8 x9 0 0 0 0 0 0 0 0 x3 0 x2 0−x1 0 x0 0 x7 0−x6 0 x5 0−x4 0
0 0 0 0 0 0−x9−x8 0 0 0 0 0 0 0 0 0x3 0 x2 0−x1 0 x0 0 x7 0−x6 0 x5 0−x4

0 0 0 0 0 0 0 0−x8 x9 0 0 0 0 0 0 x4 0−x5 0−x6 0−x7 0 x0 0 x1 0 x2 0 x3 0
0 0 0 0 0 0 0 0−x9−x8 0 0 0 0 0 0 0x4 0−x5 0−x6 0−x7 0 x0 0 x1 0 x2 0 x3

0 0 0 0 0 0 0 0 0 0−x8 x9 0 0 0 0 x5 0 x4 0−x7 0 x6 0−x1 0 x0 0−x3 0 x2 0
0 0 0 0 0 0 0 0 0 0−x9−x8 0 0 0 0 0x5 0 x4 0−x7 0 x6 0−x1 0 x0 0−x3 0 x2

0 0 0 0 0 0 0 0 0 0 0 0−x8 x9 0 0 x6 0 x7 0 x4 0−x5 0−x2 0 x3 0 x0 0−x1 0
0 0 0 0 0 0 0 0 0 0 0 0−x9−x8 0 0 0x6 0 x7 0 x4 0−x5 0−x2 0 x3 0 x0 0−x1

0 0 0 0 0 0 0 0 0 0 0 0 0 0−x8 x9 x7 0−x6 0 x5 0 x4 0−x3 0−x2 0 x1 0 x0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0−x9−x8 0x7 0−x6 0 x5 0 x4 0−x3 0−x2 0 x1 0 x0


























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


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

















(31)

Note that the square RODs for more than than8 antennas
obtained by Adams-Lax-Phillips construction from Octonion
and Quaternion are different from the square RODs con-
structed in this paper (denoted byRt, t a power of2). On
the other hand, the square RODP16 for 16 antennas obtained
by Geramita-Pullman construction is exactly the square ROD
R16 given by (13). However, for more than16 antennas, they
are not identical. For example, the RODP32 of size[32, 32, 10]
(given by (31)) is different from the matrixR32 given by (14).

APPENDIX C
RATE-1/2 SCALED-COD OF SIZE [32, 10, 16]
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












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
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

x0 −x∗
1 −x∗

2 0 −x∗
3 0 0 0 − x∗

7√
2
− x∗

15√
2

x1 x∗
0 0 −x∗

2 0 −x∗
3 0 0

x∗
6√
2

x∗
14√
2

x2 0 x∗
0 x∗

1 0 0 −x∗
3 0 − x∗

5√
2
− x∗

13√
2

0 x2 −x1 x0 0 0 0 −x∗
3 − x4√

2
− x12√

2

x3 0 0 0 x∗
0 x∗

1 x∗
2 0

x∗
4√
2

x∗
12√
2

0 x3 0 0 −x1 x0 0 x∗
2 − x5√

2
− x13√

2

0 0 x3 0 −x2 0 x0 −x∗
1 − x6√

2
− x14√

2

0 0 0 x3 0 −x2 x1 x∗
0 − x7√

2
− x15√

2

x8 −x∗
9−x∗

10 0−x∗
11 0 0 0− x∗

15√
2

x∗
7√
2

x9 x∗
8 0−x∗

10 0−x∗
11 0 0

x∗
14√
2

− x∗
6√
2

x10 0 x∗
8 x∗

9 0 0−x∗
11 0− x∗

13√
2

x∗
5√
2

0 x10 −x9 x8 0 0 0−x∗
11−

x12√
2

x4√
2

x11 0 0 0 x∗
8 x∗

9 x∗
10 0

x∗
12√
2

− x∗
4√
2

0 x11 0 0 −x9 x8 0 x∗
10−

x13√
2

x5√
2

0 0 x11 0−x10 0 x8 −x∗
9−

x14√
2

x6√
2

0 0 0 x11 0−x10 x9 x∗
8−

x15√
2

x7√
2

x4 −x∗
5 −x∗

6 −x∗
7 0 0 0 0 − x∗

3√
2

x∗
11√
2

x5 x∗
4 0 0 −x∗

6 −x∗
7 0 0

x∗
2√
2
− x∗

10√
2

x6 0 x∗
4 0 x∗

5 0 −x∗
7 0 − x∗

1√
2

x∗
9√
2

0 x6 −x5 0 x4 0 0 −x∗
7 − x0√

2

x8√
2

x7 0 0 x∗
4 0 x∗

5 −x∗
7 0

x∗
0√
2

− x∗
8√
2

0 x7 0 −x5 0 x4 0 x6 − x1√
2

x10√
2

0 0 x7 −x6 0 0 x4 −x∗
5 − x2√

2

x10√
2

0 0 0 0 x7 −x6 x5 x∗
4 − x3√

2

x11√
2

x12−x∗
13−x∗

14−x∗
15 0 0 0 0− x∗

11√
2

− x∗
3√
2

x13 x∗
12 0 0−x∗

14−x∗
15 0 0

x∗
10√
2

x∗
2√
2

x14 0 x∗
12 0 x∗

13 0−x∗
15 0 − x∗

9√
2

− x∗
1√
2

0 x14−x13 0 x12 0 0−x∗
15 − x8√

2
− x0√

2

x15 0 0 x∗
12 0 x∗

13−x∗
15 0

x∗
8√
2

x∗
0√
2

0 x15 0−x13 0 x12 0 x14 − x9√
2

− x1√
2

0 0 x15−x14 0 0 x12−x∗
13−

x10√
2

− x2√
2

0 0 0 0 x15−x14 x13 x∗
12−

x11√
2

− x3√
2







































































































































































15

Smarajit Das (S’2007-M’2010) was born in West Bengal, India. He receivedhis B.E. degree from the Sardar Vallabhbhai National Institute of Technology,
Surat, India, M.Tech in electrical engineering from the Indian Institute of Technology, Delhi, India, and the Ph.D. degree in electrical communication engineering
from the Indian Institute of Science, Bangalore, India, in 2001, 2003 and 2009 respectively. He is currently a Post-doctoral fellow in the School of Technology
and Computer science, Tata Institute of Fundamental Research, Mumbai, India. His primary research interests are in algebraic coding, Classical and Quantum
Information theory.

B. Sundar Rajan (S’84-M’91-SM’98) was born in Tamil Nadu, India. He received the B.Sc. degree in mathematics from Madras University, Madras, India,
the B.Tech degree in electronics from Madras Institute of Technology, Madras, and the M.Tech and Ph.D. degrees in electrical engineering from the Indian
Institute of Technology, Kanpur, in 1979, 1982, 1984, and 1989 respectively. He was a faculty member with the Departmentof Electrical Engineering at the
Indian Institute of Technology in Delhi, from 1990 to 1997. Since 1998, he has been a Professor in the Department of Electrical Communication Engineering
at the Indian Institute of Science, Bangalore. His primary research interests include space-time coding for MIMO channels, distributed space-time coding and
cooperative communication, modulation and coding for multiple-access and relay channels, and network coding.

Dr. Rajan is an Editor of the IEEE TRANSACTIONS ON WIRELESSCOMMUNICATIONS, an Editor of IEEE WIRELESSCOMMUNICATIONS LETTERS,
and an Editorial Board Member ofInternational Journal of Information and Coding Theory. He was an Associate Editor of the IEEE TRANSACTIONS

ON INFORMATION THEORY during 2008-2011. He served as Technical Program Co-Chair of the IEEE Information Theory Workshop (ITW’02), held in
Bangalore, in 2002. He is a Fellow of the Indian National Science Academy, a Fellow of the Indian National Academy of Engineering, and a Fellow of the
National Academy of Sciences, India. He is a recipient of IEEE Wireless Communications and Networking Conference 2011 Best Academic Paper Award, a
recipient of Prof. Rustum Choksi award by I.I.Sc., for excellence in research in Engineering for the year 2009, recipient of the Khosla National Award from
I.I.T. Roorkee for the year 2010, and recipient of the IETE Pune Center’s S.V.C Aiya Award for Telecom Education in 2004. Dr. Rajan is a Member of the
American Mathematical Society.


	I Introduction
	II A Construction of rate-12 Scaled Complex Orthogonal Designs
	II-A Mathematical Preliminaries
	II-B STEP 1: Construction of a new class of square RODs
	II-C STEP 2 : Construction of new sets of rate-1 RODs
	II-D STEP 3 : Construction of low-delay, rate-12 scaled-CODs
	II-E Summary of the proposed rate-12 codes

	III Delay-minimality for 9 transmit antennas
	IV PAPR reduction of rate-12 scaled-CODs
	V Discussion
	References
	Appendix A: Recursive Construction of Rt
	Appendix B: Adams-Lax-Phillips and Geramita-Pullman constructions as special cases
	B-A Adams-Lax-Phillips Construction from Octonions as a special case
	B-B Adams-Lax-Phillips Construction from Quaternions and Geramita-Pullman Construction as special cases

	Appendix C: rate-1/2 scaled-COD of size [32,10,16]
	Biographies
	Smarajit Das
	B. Sundar Rajan


