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Abstract—The maximal rate of a non- square complex orthog- 1) In coherent co-located MIMO systems, for a specified
onal de5|gn for n transmit antennas |s— ; if n is even and number of transmit antennas, non-square designs can
5+ 757 if nis odd and the codes have been constructed for give much higher rate than the square designs [1].

aII n by Liang (IEEE Trans. Inform. Theory, 2003) and Lu et _ . et .
al. (IEEE Trans. Inform. Theory, 2005) to achieve this rate. A 2) In non-coherent MIMO systems with non-differential

lower bound on the decoding delay of maximal-rate complex detect?on, non-square designs wjth= 2n lead to low
orthogonal designs has been obtained by Adams et al. (IEEE decoding complexity STBCs$[[2].

Trans. Inform. Theory, 2007) and it is observed that Liang's 3) Space-time-frequency codes can be viewed as non-
construction achieves the bound on delay for equal to 1 and 3 square designs [3].

modulo 4 while Lu et al.'s construction achieves the bound for e . .
n=0,1,3 mod 4. For n =2 mod 4, Adams et al. (IEEE Trans. 4) In distributed space-ﬂme coding for relay channels,
Inform. Theory, 2010) have shown that the minimal decoding rectangular designs appear naturdlly [4].

delay is twice the lower bound, in which case, both Liang's ath

Lu at al.’s construction achieve the minimum decoding delayFor Definition 1: A complex orthogonal desigfCOD) in com-

large value of n, it is observed that the rate is close to half and plex. variableszo, z1,- -+ ,zx—1 IS a pxn matrix G_ with
the decoding delay is very large. A class of ratd- codes with ~entries 0, £z, £zy,--- ,+x;1, their complex conjugates
low decoding delay for all n has been constructed by Tarokh et a5 +27% ... , a3, such thab"G = (|xo|2—|—|x1|2+- .

al. (IEEE Trans. Inform. Theory, 1999). In this paper, another 2 VR :
class of rate4 codes is constructed for alln in which case the [#5—1]")In, where G™ is the complex conjugate transpose

decoding delay is half the decoding delay of the raté- codes of G ar_ld I, is then x n identity matrix. The matrix is
given by Tarokh et al. This is achieved by giving first a genera also said to be @p,n, k] COD. Whenxy, - - -,z are real
construction of square real orthogonal designs which incldes as variables, the corresponding design is called real orthabo
special cases the well-known constructions of Adams, Lax a@n design (ROD).

Phillips and the construction of Geramita and Pullman, and tien A h | desi oD) will al both |
making use of it to obtain the desired rate% codes. For the case AN orthogonal design (OD) will always mean both real or

of 9 transmit antennas, the proposed rate} code is shown to be Complex orthogonal design. The rate of[an,k] OD G
of minimal-delay. The proposed construction results in degns (defined as the number of complex symbols per channel use )

with zero entries which may have high peak-to-average power js k andp is called the decoding delay of the QB.
p

ratio and it is shown that by appropriate post-multiplicati on, a . . . .

design with no zero entry an bpepobptainedpwith no C?]ange inthe 1he main problem in the construction of orthogonal designs

code parameters. is to construct g x n orthogonal design (for given) in k
variables which maximizes the rafeand then to find @ x n

orthogonal design with maximal rate which minimizes

It has been noted that the rate of the square ODs is very low
for large number of antennas. Letbe a positive integer and
|. INTRODUCTION p be a function (known as Hurwitz-Radon function) given by
the following formula: writen = 2%(2b+1),a = 4c+d; a,b,c
Space-time block codes (STBCs) from complex orthogonghd ¢ are integers witt) < d < 3, then
designs (CODs) have been widely studied for square designs,
since they correspond to minimum-delay codes for co-latate
multiple-antenna coherent communication systems. Hokyveve
non-square designs naturally appear in the following situa
tions. It is known that[[5], [6], [7] the maximal rate of a square ROD
for n transmit antennas ig% while that of a square COD
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variablesxg, z1, -+ ,xr_1 such that each non-zero entry of

v(n) = 20(") where the matrix is a complex linear combinations of the variables
45 if n=8s+1 To, 1, ,xk—1 and their conjugates. lfy, z1,--- ,zr_1 are

5(n) = ds+1 ifn=8s+2 (2 real vari_ables, then the corresporlding design is caifezhr-
4s+2 ifn=8s+3o0r8s+4 processing real orthogonal desig(LPROD). Note that a
4s+3 if n=8s4585+6,85+70r8s+8. scaled-COD is an LPCOD, but not conversely. An exanigle [6]

o ] ~ of an LPCOD which is not a scaled-COD is the following
On the other hand, it is not known, in general, the maxima}qe-

rate of a complex orthogonal design which admits as entri
linear combination of several complex variables for a#itr
number of antennas. However, it is shown by Ligng [1] that th —r] I NG
maximal rate of a COD igfl whenever number of transmit N 1\/25 (Cmo—metei—ei)  (wowg_mio])

antennas i€t — 1 or 2t. Construction of maximal-rate CODs | «f  —ai  (zo—azjtzite})  (zotaitzi—z})

given by Liang [1] is stated in the form of an algorithm whileL v2 V2 2 2

Lu et al [€] have constructed these codes by concatenating sg has been observed that the decoding delay of the Jate-
eral matrices of smaller size. The following theorem dé®si codes obtained by the constructiéh (3) is not the best pessib

the minimum decoding delay of the maximal-rate non-squafgr example, the following code fo8 antennas
CODs:

x

o

Zo Z1

—Z

o

SiESk
S

Theorem 1 ([[9], [10]): A tight lower bound on the decod- Zo _xi —3 9‘x§ 9 0 0
ing delay of a maximum-rate COD for antennas ig,>"")) T1 To 9_3”3 0—a3 9 0
for n = 2m — 1 or n = 2m. Moreover, ifn is congruent to 2 0 25 zy 0 O—z5 O
0,1 or 3 modulo4, then this lower bound on decoding delay 0 z2—21 2 0 0 0-z3
is achievable. Ifn is congruent t® modulo4, the minimum rz 00 0 x5 27 x5 9
decoding delay is twice the lower bound. 0 z3 0 O-21 20 O xﬁ

As the rate of the maximal-rate codes is clos€ tior large 0 0 23 0O-z2 0 2 _xi
number of antennas and the decoding delay of these codes is [ 0 0 0 x5 O—22 a1 af]

large, it is important to know whether there exists rateedes g 5 rate% COD with decoding delays, whereas the cor-

with low decoding delay. The importance of determining thfésponding ratd- code given by the constructiofi](3) has

delay of rate; CODs has also been noted by Adams efal [9ecoding delayi6. This indicates that there may exist rate-
A construction of rate} codes for any number of antenna&2 scaled-COD for any number of antennas with half the

is given by Tarokh et al.[[6]. Their construction is simplegecoding delay of the raté-code given by[(B).

start with a rate-1 RODD for n antennas inv(n) variables  |n this paper, we provide an explicit construction of rate-

%0, T2, ,Tyn)—1, and then form the following matrix 1 scaled-COD for any number of transmit antennas, say
1 o with decoding delay/(n). Table[] gives a comparison of the
TJC, = 7 { O } (3) three classes of codes, namely, maximal rate CODs (denoted

by L,), rate4 scaled-CODsT.JC,) and the rate} codes of
whereO* is obtained fromO by replacing each variable with this paper (denoted by H,,). It shows that for large values

its complex conjugate and(n) is given by [2). Note that the of n, but for a marginal decrease in the rate with respect to
number of rows inl".JC,, is 2v(n) and each variable appearsl,,,, the codes of this paper are the best codes known to date
twice along each column of the matrix. with respect to decoding delay.

We define aA-scaled complex orthogonal desigfor  As a byproduct of the above mentioned construction, a
a positive integer), (A-scaled-COD)G as ap x n or- general construction of square RODs is presented which
thogonal matrix with non-zero entries the indeterminatéscludes as special cases the well-known constructions of
+x0, £, -+, £x5_1, their conjugates or all the non-zeroAdams, Lax and Phillipg]7] and the construction of Geramita
entries in a subset of columns of the matrix are of the foremd Pullman[[11].
+w;, £ozaf,i = 0,1,--- .k — 1. Notice that a\-scaled  Though the minimum value of the decoding delay of the
COD corresponds to a COD ¥ = 1. In columns with scaling maximal-rate CODs is well-known 9], nothing is known about
by -, all the variables appear exac#iytimes. In other words, the minimal-delay of the raté- scaled-CODs. However, we
lambda scaling (where Lambda)(is an integer greater thd) have only been able to show that the decoding delay of the
of a complex orthogonal design allows all the non-zero eatriproposed rate- code for9 transmit antennas is minimum.
in a subset of columns of the matrix to take values from the Zero entries in a design increase the peak-to-average power
set{i%xi, i\%xf,i =0,1,---,k — 1}. It must be noted ratio (PAPR) in the transmitted signal and it is preferred no
that scaling of a design is not something new as it has benhave any zero entry in the design. This problem has been
already used by Seberry et al. [16] to construct orthogoreddressed for square and non-square orthogonal desighs [12
designs with fewer zeros. In this paparis always2 and call [15], [16]. Our initial construction of raté- scaled-CODs
these codes simplgcaled-COB. contain zero entries in the design matrix which will lead to

In the most general case,liaear-processing complex or- higher PAPR in contrast to the desighgC,, given by [3).
thogonal desigrlLPCOD) is ap x n orthogonal matrixG in  However, we show that by post-multiplication of appropiat



TABLE |
THE COMPARISON OF MAXIMUM RATE ACHIEVING CODES AND RATEL/2 CODES

n || 5 6 7 8 9 10 11 12 13 14 15 16

Decoding delay ofRH,, 8 8 8 8 16 32 64 64 128 128 128 128
Decoding delay ofl' JC), 16 16 16 16 32 64 128 128 256 256 256 256
Decoding delay of L,, 15 30 56 56 210 420 792 792 3003 6006 11440 11440

Rate of RH,, 12 12 12 12 172 172 1/2 1/2 1/2 1/2 1/2 1/2
Rate of T'JC\, 12 12 12 12 172 1/2 1/2 1/2 1/2 1/2 1/2 1/2
Rate of L, 23 2/13 58 58 35 35 712 7/12 477 477 9/16 9/16

matrices, our construction leads to designs with no zergyentwo (specifically, from2® for an a-bit two’s complement) i.e.,
without any change in the parameters of the designs. T =2%—1.

The remaining part of the paper is organized as follow¥he Hamming weight ofz, denoted by|z| is the number of
In Section], we present the main result of the paper givenin the binary representation of For two integers, j, we
by Theorenl#. For the special case of 9 transmit antennase the notatior = j, to meani — 5 =0 mod 2.
in Sectiorll, it is shown that our construction is of minima For any matrix of size1; x ns, the rows and the columns
delay. In Sectio 1V, we show that the codes discussed sbthe matrix are labeled by the elements{6f1,--- ,n; —1}
far can be made to have no zero entry in it by appropriaéad{0,1,--- ,ne — 1} respectively. IfM is ap x n matrix in
preprocessing without affecting the parameters of thegdesi k real variablescg, z1, 2, - - , zx_1, such that each non-zero
Concluding remarks constitute Sectioh V. entry of the matrix isc; or —x; for somei € {0,1,--- ,k—1},

Zo
is not an ROD. A sub-matrid/, of size2 x 2, constructed
choosing any two rows and any two columnsXdf is called
proper if
STEP 1: Construction of a new set of square RODs (Subsec® "°"€ of the entries a/, is zero and
tion [IEB). « it contains exactly two distinct variables.

Example 1:Consider the following matrix in three real
riableszg, 1 and s

it is not necessary that/ is an ROD. For example[, o
Il. A CONSTRUCTION OF RATE% SCALED COMPLEX Z1
y

ORTHOGONAL DESIGNS

Construction of the raté—codes is obtained in the following
three steps:

STEP 2: Construction of two new sets of rate-1 RODs fro%
the square RODs of STEP 1 (Subsecfionlll-C).

STEP 3: Construction of low-delay rafescaled-CODs using ro —x1 —x2 0
rate-1 RODs (Subsectién IID). il ‘%“ f _;72 . %)
Before explaining these steps, we first build up some 02 2 —x01 m;

preliminary results needed to describe these steps.

T3

The sub-matrix“! ~ 2| is properwhile is not.

To X1 0 23
If M(i,5) # 0, then we write|M(3,5)| = k whenever
IF, denotes the finite field consisting of two elements with/(; ;) = », or —a.

two binary operations addition and multiplication denobsd |t js easy to see that the following two statements are
b1 ® by andby1bs respectivelyp,, by € Fy. Let by + by and by equivalent;
represent respectively the logical disjunction (OR)bofand 1) s is an ROD.

A. Mathematical Preliminaries

by and complement or negation of. 2) (i) Each variable appears exactly once along each column
Let/ be a non-zero positive integer adg = {0,1,--- ,I—1}. of M and at most once along each row If,

We identify Zo. with the setlF3 of a-tuple binary vectors i) if for some i, j, j/, M(i, ;) # 0 and M (i, j') # 0,

in the standard way, i.e., any element 8. is identified then there exists’ such that| M (i, j)| = |M (i, )|

with its radix-2 representation vectors (of length via the and | M (i, )| = |M(', 5)],

correspondencer € Zz« < (Tq-1, "+ ,%0) € F5 such that  (jij) any proper2 x 2 sub-matrix ofM is an ROD.

T = Z‘;;é x;27,z; € Fo. For convenience, depending on the

context, the sef. is used as the set of positive integers and )

sometimes as the set of binary vectors. B. STEP 1: Construction of a new class of square RODs
Forz = (xq—1, "+ ,20),¥y = (Ya—1,""* ;Y0), i, Yi € Fo,i = Square RODs have been constructed by several authors,
0,1,---,a—1, the component-wise modulo-2 addition and théor example, Adams et al[[[7] and Geramita et [all[11]. All
component-wise multiplication of andy are denoted by @y  these designs are constructed recursively and the basiiérioui
andz-y respectively. We have®y = (z4-1®ya—1, - ,20® blocks of these designs are the RODs of ortlel, 4 and 8.
Y0),Z Y = (Ta—1Ya—1," " , ToYo). The two’s complement of In this subsection, we take a different approach towards the
a numberz € Zs., denoted byz is defined as the value construction of square RODs and it leads to a new class of
obtained by subtracting the number from a large power BODs of which the constructions ial[7] and [11] are special



cases. For any ROD, a non-zero entry of it is characterized ]
by a pair of two integers, the first component of which takes We now construct the maps, and~y, explicitly such that
value from the sef+1,—1} denoting the sign of the entry (1) is satisfied. The map, : Z,(,) — Z; is given by
while the second component represents the variable at that fo<i<T?
entry. For example, thé0,0)-th entry of [3) corresponds to 7:(?) = {2411 Am) i i>8i=8l+m0<m<T ®)
the pair(1,0) while the (0, 1)-th entry corresponds t6-1, 1). - T

For a square RODB; of ordert¢ in k real variables where4 — ( 01 2 3 4 5 6 7 )
Zo, - ,Ti—1, we define two functiong,; and \; on the set T=\1 2 4 7 8 11 13 14 )’
Zy x Zy with Mt(l,]) E'{]:, —1} and)\t(i,j) S Z]C,Z,] € Zy that |S,’3/(0) -1, ’/3/(7) — 14,
such thatBy (i, j) = (i, )2, (5,5 WheneverBy (i, j) # 0. It Let FF = 4(Zg). For an element: € Zp(t), eitherx € Zsg

is straightforward to see t_hait is un_lquely determined byt_ of # — 24%-1; for somey € N\ {0} and z € F. Note that
and \;. However, any arbitrary choice of these two functlon% (7
Zo() = Ve (Zp())-

will not lead to a square ROD. Therefore the approach w We now define a map : 2, — Z given b
take is identifying a pair of functiong, and )\, that results in () t9 y

a square ROD. Let é1(x) if xeZ
o) = $ i gy 9)
Ve : Zogy = Zi (5) 2 cpa(z) fx=2%"1z zeF
be an injective map defined of, ;) with the image denoted Where¢, : Zs — Zg be the map given by
by Z,1) = v(Z,)) and 01 2 3456 7
" " . ¢1:<0 123475 6) (10)
Py Zp(t) — Zy (6)

o ) . - and¢, : ' — Z14 be an injective map given by
be another injective map defined &f),). p(t) is given by
@ 1 2 4 7 8 11 13 14
' - - - 2=\1246s8 15 10 12) @D
In the following theorem, we define two mapg and \; in
terms of the mapd15) anfll(6) and identify the conditions $at
that the resultingB, becomes a square ROD. Pi(x) = ¢(z) in Fg Vo € Zp(t). (12)
Theorem 2:Let t = 2%. Construct a square matrig; of

ordert in p(t) variableszo, - - - ,z,)—; as follows: Note thatz is two's complement of.

In order to show that the mag, so constructed satisfies the
o mG sy fidge Zp(t) condition of [T), we need the following two results related t
By(i,j) = the mapsp; and ¢s.
Lemma 1:Let 2,y € Z3s,a € {0,1,2,3},2 # y. Then
where ¢ (i,§) = (=1)I"¥ 08Dl and Ay (4,5) = 7, ' (0 @ §).  |(1h2e(2) ©1haa(y)) - (z © y)| is an odd integer.

0 otherwise,

Supposevr,y € Z,u), T # Y, Proof: It can be proved easily by direct check. ]
. Lemma 2:Letx,y € F,x . Then
(W) @ (y) - (2 @ )| s odd. D ) ot o e o o el 2.
Then B, is a square ROD of sizf, t, p(t)]. (ii) [¢2(2) - y[+[¢2(y) - x| is odd for allz # y,z # 0,y # 0.
Proof: By definition, each of the variables

Zo,T1, "+ ,Ty)—1 appears exactly once in each column of Proof: There are only finitely many possibilities ferand

the matrix and at most once along each rowf Secondly, ¥ and it can be easily checked that both the statements (i) and
assume thaiB; (i, j) # 0 and By(i,5') # 0, then we show (ii) hold for all possible cases. u

that there existg’ such that We now have the following important theorem.

Theorem 3:Let t be a positive integer which is a power
|[Bi(i, ) = [Bu(d, 5")| and | By(i, j")| = [Bu(&', 5)I- of 2. Let ¢, and Zp(t) be as defined above. Thelfiy:(z) &
Let i/ = i@ j @ j. Then|By(i,j)| = v (i ® j) and ¥u(y)) - (z@y)|is odd for allz,y € Z,;y,z # y.

|B:(i', )| = v @' @ ') = 7 (i@ ), thereford By (i, j)| = Proof: For ¢t = 1,2,4 and 8, the statement holds by
|B, (', 5)|. Similarly, |B;(i,7")| = |B:(#, )|. Lemmall. Hence we assume that> 16. As ¢,(0) = 0,

Thirdly, we show that any properx 2 sub-matrix ofB, is it is enough to prove that
an ROD, that isu (i, 7) - (i, 5') - e (i, ) - e (i, 5') = =1 () [¥e(y) - y| is odd for ally # 0.

wheneveri + i/ = j @ j/. Now (it) [¢he(2) -y +|¢e(y) 2| is odd for allz # y, x# 0,y # 0.
_ o . o, y L To prove (i), letz = 4(y) - y. If y € Zs, we have
i e (@@ )| + i (G ® )| + |07 (" @ 5)] [¥e(y) - y| = |[¢s(y) - y| which is an odd number by Lemma
+ i (@ @ 7)) .
=|(i®i) (W(ie5) & &) On the other hand, ify = 2*~'m, I > 0,m € F, then

PP PN o 4 o |z| = [24=1¢o(m) - 24~ 1m| where the2’s complement of an

=@ e @ @) Wi @) e vl &) element is performed ifi¢. We have|z| = |¢y(m) - m| where
is an odd number. Thereforey (i,7) - u:(i,5') - ue(i’,5) - the2’'s complement ofpy(m) is performed inF3. Hence|z|
(i, 5" = —1. is odd by Lemmal2.
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0 0 0 0 0 0 0 012—13 Xog 1 X X7—IT4—Ts 0 0—18 0 0 0 0 0
0 0 0 0 0 0 0 0:63 To—x1 T XT7—Te I5—T4 0 0 0—:63 0 0 0 0
0 0 0 0 0 0 0 0:64—:65—:66—I7 g T1 X2 I3 0 0 0 0—:63 0 0 0
0 0 0 0 0 0 0 015 Xg4—I7 TTe—TL1 ITO—T3 T2 0 0 0 0 O—LES 0 0
0 0 0 0 0 0 0 016 X7 T4—T5—T2 I3 ToO—T1 0 0 0 0 0 O—LES 0
0O 0O O O O 0 0 Ozxyr—x x5 T4—T3—T2 T1 X0 0O 0O O O O 0 O—=zg
—X9 0 0 0 0 0 0 Oxg 0 0 0 0 0 0 0 zo 1 z2 r3 T4 T Te T7
O—Ig 0 0 0 0 0 00 rg 0 0 0 0 O—Il Xo—I3 X2—I5 T4 IT7—Tg
0 O—=xz9 0O 0O O O 00 O zg 0O 0 O O O—z2 =3 xo—T1—Te—IT7 T4 X5
0 0 0—19 0 0 0 00 0 0 Ty 0 0 0 O—Ig—mg X1 To—IT7 Te—Is T4
0 0 0 O0—=z9 0O O 00O O O 0 =zsg 0 0 O—z4 x5 X6 T7 To—T1—T2—XT3
0 0 0 0 O—x9 0O 00 O O O O =z 0 O—x5—x4 T7—Te T1 To X3—T2
o o0 o0 0 0 O-x9 OO O O O O O z8 O—xweg—27—T4 T5 T2—T3 Xo T1
o 0O 0O O O O O-z9 0 O O O O O O zg—x7 Te—T5—T4 X3 T2—T1 Tod

In order to prove the part (ii), we have following three casethroughout. The RODs?,4 and R3; are given by [(IB) and

1<e<T7&1<y<7,

(i) 1<y <7&ax=2""14forsomef e F,a>1,
(iii) = =2%~13 & y = 24~15 for somep, B € F,a, & > 1.

In all the three cases, we hawe# y. By Lemmdl, (i) is true.
For the second case, let= ¢.(z) - y ® ¢4(y) - x. We have

2= (21271gy(B) - y) @ (2171 B) - fu(y).

As 24a=1gy(B)-y = 0 (the all zero vector iffg) for a > 1,

we havez = (24*~13) - ¢1(y). But |3] is odd for all g € F,
hence|z| is an odd number.
For (iii), let z = ¢ (z) - y ® Y:(y) - x. We have

2 = 20015, (B) - 244715 @ 21018 . 24619, ().

If & > o, we have2ie—18.246-14,(B) = 0 and2%o—1 ¢y ()
219713 = B. Thus|z| is an odd number by Lemnfd 2. If[y(n), n, v(n)] for n transmit antennas from an ROD of size
a = &, it follows that|z| = [¢2(8) - 8] + |8 - ¢2(8)]
is an odd number by Lemnia 2.
The square ROD obtained using the maps and
given by [8) and [(12) respectively will be denoted By pair of mapsvy,,) and,, satisfying the condition[{7)

(14) respectively. In AppendiX]A, it is shown that the RODs
R; can be constructed recursively.

One can define the functiong and«; different from the
one given above and can have a square ROD different from
R;. In Appendix[B, we provide three different pairs of such
functions and these are shown to give the well-known Adams-
Lax-Phillips’ construction from Octonions and Quaterréon
and Geramita and Pullman’s construction of square RODs.

C. STEP 2 : Construction of new sets of rate-1 RODs

Transition from a square ROD to a rate-1 ROD can be
performed using column vector representation of an RQOD [6].
In a similar way, we construct a rate-1 ROW,, of size

[v(n),v(n),n] wheren is any non-zero positive integer, not
necessarily a power of 2.
Any square ROD of order(n) obtained via a suitable



Yo Yr Y2 Ys Y4 Ys Ye Y7 Y8 Yo —Y1 —Y2 Y3 —Y4 Y5 Ye —Yr —Ys
Yo =% Y3 —Y2 Ys —Ya —Y7 Y Yo Yr Yo —Y3 —Y2 —Ys Y4 —Y7 —Ye —Y9
Y2 —Y3 —Yo Y1 Ye Y7 —Ya —Ys5 Y10 Y2 Y Yo Y1 —Yse Y7 —Y4 Y5—Y10
Ys Y2 —Yr —Yo Yr —Ys Y5 —Y4 Y11 Ys —Y2 Y1 —Yo —Yr —Ys Y5 Ya—Yn
Ya —Ys —Ye¢ —Y7 —Yo Y1 Y2 Y3 Y12 Y« Ys Y —Yr Yo Y1 Y2 —Y3—Yi2
Ys  Ya —Yr Ys —Y1 —Yo —Y3 Y2 Yi3 Ys —Ya  Yr Y6 Y1 —Yo —Y3 —Y2—Y13
Y Y7 Y4 —Ys —Y2 Y3 —Yo —Y1 Y14 Y —Y7 —Y4 —Ys Y2 Y3 —Yo Y1—Yi4
Wo = Y1 —Ys Y5 Y4 —Ys Y2 Y1 —Yo Y15 . W = Y7 Ye —Ys Y4 Y3 ~Y2 Y1 Yo~ Y15 (15)
Ys —Yo—Y10—Y11—¥Y12—Y13—Y14—Y15—Yo Ys Yo Yio—Yi1 Yi2—Y13—Yi4 Y15 Yo
Yo Ys—Yi1 Yio—Yi3 Y12 Yis5—Y14—Y1 Yo —Ys Y11 Yio Y13 Y12 Yis Y4 Y1
Yo Y11 Ys —Y9—Yia—Yis Y12 Y13—Y2 Yio—Y11 —Ys —Y9 Y14—Y15 Y12—Y13 Y2
Yii—Yo Y9 Ys—Yi5 Yi4a—Y13 Y12—Y3 Y11 Yo —Y9 Ys Yis Y14~ Y13~ Y12 Y3
Y12 Y13 Y14 Yis  Ys —Yo—Yi0—Y11—Y4 Y12—Y13—Y14 Y15 —Ys —Yo—Yio Yi1 Y4
Y1z3—Y12 Yis—Yi4 Yo Y8 Yi1—Yi0—Ys5 Y13 Y12—Yi5—Y14 —Y9 Y8 Yi1 Yio Y5
Y14—Y15—Y12 Y13 Yo—Y11 Ys Y9—Ys Y14 Y15 Y12 Yiz3—Yio—Yi1 Ys —Yo Ys
LY15 Y14—Y13—Y12 Y11 Yo —Y9 Ys—Y7 | |Y15—Y14 Y13—Y12—Y11 Yo —Y9 —Ys Y7 |

(for instance,R, () obtained in the previous subsection or _
Ay(n),Ay(n) and G,(,) obtained in Appendi{B) can be where zg,z1,--- are complex variables. Definel(i) =
used for this purpose. We refer to any such designBpy,)  C(@4i, Zait1, Taj+2, T4i+3) for all non-negative integei.
consisting ofn real variables. Let W, and WW; be two rate-1 RODs of siz@/(t),t,v(t)]
Let Yo, Y1, » Yu(n)_1 bEv(n) real variables. The matrix in v(t) real variablesj, y1, -+, 4,1 as constructed in the
W, is obtained as follows: Mak#/, (i, j) = 0 if the i-th row previous subsectlon._l_drlt be the matrix obtained frori/;
of B,(,) does not contair;. Otherwise,IW,,(i, ) = y, or Dy substituting; with A(2i+1) fori = 0to v(¢)—1. Similarly
—yi, if B,(n)(i, k) = z; or —z; respectively. The constructionconstructt, from W, by substitutingy; with A(2i)
of the matrix W,, ensures that it is a rate-1 ROD. Using Next, we construct andOs. Let

Theoren{ 2 and Theorel 3, we have [ wo—xi—x3 O0—x5 0 0 0]
r1 x5 O0—z5 0—xz35 0 O
Wi (i, j) = s(i, )y, where 2 0 af x; 0 0—-z3 0

) . 0 x2o—x1 T 0 0 0—=x35
Flir) =i Yomy (3), (5, 5) = (=1 el (16) Ao, zi,a,ms) = | 070770 N0 ga g e o (19)

0 zz3 0 O—z1 o O x3

for0 <i<w(n)—1, 0 <j <n-—1. Similarly, we define 0 0 3 O—zo 0 zo—zt
another matrixi?,, as L 0 0 0 23 O—mz2 z1 x4l
Wali, §) = 800 )ys(i.5) Wheref (i, j) = i © v (4), B i - R
8(i,7) = (_1)‘(iea')'u(n)(j))'wu(n)('}/u(n)(j))'. (17) s 0 xi 0 zi O—ai O
P . B(z4, x5, 6, 27) = 0 wo—ws 0 ws 0 O-ar (20)
W, is also a rate-1 RODIV,, and W,, are used to construct LESLOLL = ey 0 0 xp 0 2 oz O
a rate scaled-COD for(n + 8) antennas. Two rate-1 RODs 0 zz O-x5 0 x4 O w5
i ; 0 0 zr—x26 0 0 zs—xs
Wy and Wy for 9 antennas are given bly_(15). L0 0 0 0 azr—ms o5 2o

, be two square CODs of siZ8, 8, 4]. Define
D. STEP 3 : Construction of low-delay, ra@scaled-CODs

The construction of the raté-code is little involved: it _
makes use of two rate-1 RODs constructed in the previous A2i+1) = B(Zgita, T8its, Tit6; L8i+7)-

subsection and the code-matrix contains several copiesvgé now construct two”(Q—") x 8 matricesFs and Og using
square COD of sizd8,8,4]. For n transmit antennas, the A(;) as follows:

desired rat% scaled-CODRH,, is given by

Es H, A(2) A(3)
Og I‘L:| (18) E8: R 08: (21)

A(2i) = A(wsi, Tgiy1, Tgit2, T8it3)

RHn:[

wheret = n — 8. The mat(icesEg, H;,Og and H, are . .
constructed as followsd, and H; are constructed very easily Au —2) A(u—1)

using rate-1 RODs and ahx 1 column vector given by whereu = v(n)/8. Note that

1 Coe . A(@)  Aj)
C(xo,xl,xz,xg) = ﬁ [ —X3 Ty —T1 —To Ty —T1 —T2 —T3 }T { A(j) Z(Z) } (22)



is a scaled-COD whenevéi + j) is odd and where s(i,j) and 5(z, 7) are given by[(16) and_(17) respec-
tively. We have

A(i) —AQ) u_y
20 70 &) Y= S (e ) AR 2ACE B
J Z(G) = Y sli,HAH)ARG @ ~(5)) + 1)
is a scaled-COD for all values efand j, i # ;. z:;l
Note that the number of rows and columns of the matrix a(i N\ AH (9; T(9(; :
RH, arel6-v(n —8) =8-v(n)/8 =v(n) andt +8 =n * ; 3, ) AT 2+ DARE S ()))-
respectively. The following theorem is the main result aéth . .
paper. Now s(i,5) = §(i ® v(j),7) and
Theorem 4:For any non-zero positive integer there exists 31 o
a rated scaled-COD for transmit antennas with decoding 3(i,5) A (21 + 1)A26 ® v(j)))
delayv(n). i=0
Proof: For n < 8, one can construct rate-COD of size 3] o NPT _ _
[v(n),n, ”(2")] from a COD of siz€8, 8, 4] given by [19). We = sie (1), NA™ (26 @ () + 1)A(20)).
assume that, > 9. We claim that the matrixRH,, given =0
by (I8) is a rate} scaled-COD fom transmit antennas with Therefore,
decoding delay/(n). -1
Let p = v(n). We have Z(G) = Y (s(i,)AM™(2i)AQ26 ®y(5) + 1)
=0
no HMEs+ H]'Os H]*H, + H}*H, L1

= Z s(i, ) (AT (20)A(2(i ® v(5)) + 1)

From the construction of’s and Og given by [21), we have et

EéHEg + O?’Og = (|;1:0|2 4+ oo+ |I§71|2)Ig. From equation +AH(2(Z ® ’Y(])) + 1)2(22))
(23), we have
= Osx1
HIH, + HYHy = (Jzo|* + - + |2pj2 1) Tn—s. as the matrix given by[(22) is a scaled-COD. [ ]
Thus it is enough to prove that' H; + O H; = Ogy(n_s) Example 2:For9 transmit antennas, the rafescaled-COD

where 0s (,—s) is @ matrix of size8 x (n — 8) containing of size[16,9, 8] and the known raté- scaled-CODI[[6] of size
zero only. Let thej-th column of H; and H, be H(j) and [32,9,16] are given by [(2K). Forl0 transmit antennas, the
H,(j) respectively. Then we show that(j) = EJ'H,(j) + proposed rate- code of sizg32, 10, 16] is given in Appendix
O H,(j) = 0gx; forall j € {0,1,--- ,n—8—1}. C.
Let u = p/8. For convenience, we writg for +,;). We have It has been shown by Liang![1] that the maximal rate of a
COD forn transmit antennas i+ 5; whenn = 2t —1 or 2¢.
E}t =1 AM(0) AM(2) -+ AM(u-2) ], However, the rate of a scaled-COD, with scaling of at least on
Off = A"(1) AM3) -+ AM(u-1) |, column is at most half as each variable appears twice in that
column and thereforé/p < 1/2 wherek is the number of
complex variables ang is the number of rows of the design.

5(0,7)A(200 ®v(5)) + 1) E. Summary of the proposed rajecodes
s(L,7)A(1@~()) +1) It has been observed that the number of complex variables
: in the proposed raté-code forn transmit antennas i§$
Hi(j) = = ) , and the number of rows is(n) (the numberv(n) is given
s(i, )A2>E @ () +1) by (2)). The construction of these codes requires two rate-1
: RODs forn — 8 antennas. In this paper, we constriict and
N e ) W; (wheret = n — 8) given by [16) and[(17) respectively
L s(5 —1,7) (2_((5 —1@®90)) +1) | which are used to construct ratescaled-CODsH; and H,
[ 5(0,7)A2(0 @ 7(4))) T (for ¢ transmit antennas) respectively. The matrix
S(L)ARL & v(7)) a
' [ H, }

constitutes the last: — 8 columns of the proposed ra@-
scaled-COD forn antennas while the matriceSs and Og
given by [21) constitute the first eight columns of the praubs

82— 1, )ARIE - 1) ®A() | code.




[ o —T1 —X2 —T3 —X4 —T5 —Te —T7 —Tg |
xr1 xo xr3 —I2 xr5 —T4 —I7 x6 x9
T2 —T3 ) x1 T6 T7 —x4a —T5 T10
3 T2 —T1 o T7  —Te T5 —T4 Tl
r —zz x -z —x -z x x x x x
zo -t —a} 0 —az 0 0 0 xy 4 5 6 7 0 1 2 3 Z12
\f* x5 Ty —x7 T —T1 ro —x3 T2 T13
x1 z§ 0 -z 0 —=3 0 7% z6 T7 T4 —T5 T2 T3 To —T1 T4
" " " —zk T7  —T6 z5 T4 —T3 —IT2 z1 o 15
T2 0 z{) z] 0 0 —x3 0 S _ _ _ _ — — —
V2 xs z9 10 11 12 13 T14 z15 xo
0 xo —@1 Z0 0 0 0 —ax} 754 x9 rg —T11 Tl0 —T13 T12 T15 —T14 —T1
0 0 0 " " " 0 <) z10 11 T8 —T9 —T14 —T15  T12  T13 —I2
3 *o ! T2 V2 T11 —T10 Ty r§ —T15 T4 —T13 Ti2 —T3
— T
x3 0 —T1 xo x5 \/5 Ti2 T3 T4 T15 Tg§ —T9 —T10 —T11 —T4
0 3 0 —xo 0 o —x* =26 T13 —T12 T15 —ZT14 9 rg Ti11 —T10 —Ts
o2 T4 —T15 —w12 T13 T —T11 Ts L9 —Tg
0 0 x3 0 -2 z1 Yo & 1 15 T4 —T13 —T12 T11 Tl —T9  T§ —I7 (24)
X y T = * * * * * * * * *
I T et R I T et S B S S S
xr X XZ- —T Te —Z —T xX X
* 0 0 —x* —g 0 0 25 1 _ 9 3 2 2 ¢ T 8 2
z5 Ty Zg Z7 V2 Ty z3 Zg 1 Zg Z7 Ty Ts 1o
* * * * * * * * *
* * —xx ! T3 Ty —T Zo Tr —Te Ty —Ty Ty
e 0 Ty 0 T 0 Ty 0 V2 * * * * * * * * *
N 7&620 ZB4 71’5 7336 71’7 {L’O :Bl 1’2 £B3 1’12
0 Te —Ts 0 T4 0 0 -z 72 x} z; —xb zf  —xf zy —x N
* * * * * * * * * *
x7 0 0 z* 0 x*  —x* 0o Zo T Z7 Ty —E5 T T3 Tog TT Ty
* 2 ’ 2 xy —mg ®y oy —T3 —xT; L] x5 Zig
0 x7 0 -5 0 T4 0 g \/51 Ty —my —xyy —T] —Tlp, —Tl3 —TY, —T]p;  T)
—_ * * * * * * * * *
0 0 T7  —Tg 0 0 Ty -z \/%2 L9 g T P ~¥3 T Py~ T
o 0 0 0 a -z a5 af — Jio T T TP P4 "5 T2 Tis T
- v e St (D R e S
$i2 11/"1‘3 $i4 .Tis LU§ —$2 —x}‘o _xil —$$
Tz ~Ti2 Tis T4 g Tg Ty Ty — s
Ty —w5 —T]; Tl Tlp T zg Ty —Tg
* * * * * * * * *
L 15 Tiqg P13 —T12 Ty T g Tg —Tg -
I1l. DELAY-MINIMALITY FOR 9 TRANSMIT ANTENNAS The following theorem gives a lower bound grfor fixed

values ofn and k.

In this section, it is shown that the proposed rateealed-  Theorem 5 (Hopf-Stiefel Theoref [14])f there exists a
COD for 9 transmit antennas achieves minimal delay. TRonsingular bilinear map of sizlp, n, k] over R, then (z +

prove this, we need some preliminary facts regarding thgr — ¢ in the ringFs[z, y]/ (2™, y*).

interrelationship between ODs and certain bilinear magsgs  Definition 3: Let n, k be positive integers. Then the three
been observed that [13] the orthogonal designs and bilineffantitiesn o &, ppr(n, k) andpypr(n, k) are defined by
maps are intimately related in the sense that an LPROD of, ,, .. — min{p : (z +y)? = 0 in Fafz, y]/(z", y")},
size[p,n, k] exists if and only if there exists a type of bilinear peL(n, k) = min{p : there is a nonsingular bilinear map
map callednormed bilinear mapwith parameterg, n and k. [p,n, k] overR }

The normed bilinear maps have been studied extensively and pz\’rB;(n k) = min{p : there is a normed bilinear map
one can find a good introduction to this topic in the book by [p,n, k] ;)ver]R}

Shapi_r(_) [14]. ) ) The following basic facts about these quantities are well-
A bilinear mapf (over a fieldF) is a map known [14].

" pner(n, k) > ppr(n,k) > n o k. It follows from the
fiFEXE" = B (25) definit(ion c))fn ok tha(lt )
(x,y) = f(z,y) (26)  Proposition 1 ([14]): nok is a commutative binary opera-

tion.

such that it is linear in both: andy, i.e., f(x1 + z2,y) = (I)If k<lthennok<mnol

f(z1,y)+f(22,y) and f(z, y1+y2) = f(z,y1)+f(z,y2) for — (IT) nok =27 if and only if k,n < 2™ andk +n > 2™ .

all x, z1, 22 € F* andy, y1, y2 € F™. If the vector space under (I1I) If n < 2™ thenno (k+2™) =nok + 2™,

consideration is an inner product space, for example, wihen t Example 3: To computel0 o 10, note that10 < 2%, but

field is real numbers or complex numbers, the Euclidean nofm + 10) > 16. Therefore,10 0 10 = 16.

of a vectorz is denoted byjz||. If a bilinear map preserves the The relation between RODs and NRBMs has been observed

norm, then it is called a normed bilinear map. More preciselyy Wang and Xia[[13]. The following theorem states that
RODs and normed bilinear maps are equivalent.

Definition 2: A normed real bilinear magNRBM) of size Lemma 3:An LPROD of size[p, n, k| exists if and only if

[p,n, k] is a mapf : R* x R* — RP such thatf is bilinear there exists a normed real bilinear map of sizen, k.

and normed i.e || f(z,y)| = ||z||||ly||Vz € RF,y € R™. Proof:

A bilinear mapf is called nonsingular iff (x,y) = 0 implies Let = € R¥ be the column vectofz,, - - - ,xy)”.

z=0o0ry=0. Similarly, definey = (y1,--+ ,yn)” andz = (z1,--+,2,)7.



Let A be an ROD of size[p,n,k] in k variables and the7-th column occupy complementary locations, so is
Z1,%a - ,xk. Let also for the pairs of columns given l§¥, 6), (2,5) and (3, 4).
& n What it essentially suggests is that we can perform some
f:RFXR" — RP ; L . .
elementary column operations which will result in a codehwit

(z,y) — Ay no zero entry in it. Let),, be ann x n matrix given by
Thei-th row of A is given byz” B; where the matriceB;,i = A 0
1,2,---,p are uniquely determined by the mattik Let z = Qn = 0 I, g
f(z,y). As z; = 27 By for i = 1,2,--- ,p, the mapf is

bilinear wherel,,_s is the (n — 8) x (n — 8) identity matrix and the
£ is normed as|f (z, y)||2 = | Ay||? = (Ay)T Ay = y7 (a2 + matrix A (with entries0,1 and —1) is given by

23+ -+ a)In)y = |z ?lly]. [10000001]

We now prove the converse. L¢tbe the normed bilinear 01000010

map given by 00100100

1 00011000

. Rk n p -

f:RFXR® - R A_\/§ 0001— 000

(z,y) = =z 0010 0— 0 0

As f is linear in bothz andy, we havez = Ay where 010000-0

A is ap x n matrix where each entry of the matrix is a | 100000 0—
_real linear combination of the variables,--- ,zx. As f Here —1 is represented by simply the minus sign. We post-

is normed, we have|z||? = |f(z,»)||*> = llz|?|yl*>. But multiply RH,, with Q. to get a code in which none of the

f(z,y) = Ay. Then, |Ay|? = (#1+ --- + 23)y”y i.e., entries is zero. We formally present this fact as:
yTATAy = (z% + .-+ 27)y" y. As y consists of variables, Theorem 7:RH,,Q, is a scaled-COD with no zero entry in
this equation is equivalenttd” A = (22 +---+22)I,,. B it. Moreover, the matrixQ,, does not depend on any particular

We now prove the main result of this section. construction procedure (namely the mapsand ;) used to
Theorem 6:The minimum value of the decoding delay ofobtain the constituent rate-1 RODSs.
a rate% LPCOD for9 transmit antennas i$6. Proof: It is clear that the firs8 columns of the matrix has

Proof: We prove it by contradiction. If the minimum value50% zeros in it and in the remaining — 8 columns formed
of decoding delay is less thass, then there exists an LPCODby H, and H,, there is no zero as both these matrices are
of size[2z,9, z] with 2 < 7 and therefore an LPROD of sizeconstructed from rate-1 ROD by substituting all the vaesbl
[4z,18,2x] exists withaz < 7. By LemmalB, there exists ain it with appropriates-tuple column vectors. Here neither
normed real bilinear map of siZéz, 18, 2x] and hencelz > rate-1 ROD nor thes-tuple column vector has any any zero
pnpr(18,2z) > 18 0 2z > 18. Therefore,x > 5. But for in it. Therefore, the matrixQ,, gives a rate} scaled-COD
x=>5,6 and7, 18 o 2z = 26,28 and 30 respectively. In each without any zero irrespective of how the rate-1 RODs are
case,18 o 2z > 4z. B obtained for the construction @t H,,. [ ]
It must be noted that the above argument fails to work whenExample 4:For 9 antennas, we construct a ragescaled-
number of antennas is more thanHowever, it is likely that COD with no zero entry as shown below
the proposed raté—scaled-CODs are delay-optimal.

r w0 -—-z7 —-x5 -3 xy —xy  —x] 0 —TF ]
* * * * * * *
IV. PAPRREDUCTION OF RATE 3 SCALED-CODs O R T T T T I
T3 —Ty z; x] x] x x3 T2 —TF

In this section, we study PAPR properties of the scaled{ —z3 22 -z1 z0 @0 -z1 22 T3 -4

*

CODs constructed in this paper. Note that in the constractio| *3 %2 #1 % —% —2i —o3 &3 2]

* - — — - — —
of TJC, [B], even though the delay is more, there is N0 zer0| _o% 4o 2y —os  o» @y —wy o —ng
entry in the design matrix. On the contrary, in our constaurct xy  ®  —w2 X3 L3 X2 —x1 —xy —L7
of rate$ codes, there are zero entries. To be specific, observe 4 ~%3 —T¢ —I7 T —rg I m4 o
that the first eight columns of ratecode RH,,,n > 9 given w6 -z ot of —of ozt of  zg —ai

by (I8) contains as many zero as the number of non-zerp —=; @6 —a5 xa —x4 —x5 T TH —T0
entries in it, while there is no zero in the remaining columns|  *7 6 5 i @ e ow o
of the matrix. When the number of transmit antennas more _xg zs  mr —ms —x5 @7 —4 22 .
than 7, the total number of zeros in the codeword matrix isL  z; 25 -z¢ 27 -—z7 26 -—z5 —zj -3 J
equal to8(r(n)/2) = 4v(n). Hence the fraction of zeros in
the codeword matrix is equal té’,% =4/n forn > 8.

Now in the remaining part of this section, we show th
one can further reduce the number of zerosif,, by suit-
ably choosing a post-multiplication matrix without incs@y V. DiscussioN
signaling complexity of the code. For any positive integen, this paper gives a ratl;-scaled-

As seen easily, only the first eight columns contain zer@0OD for n transmit antennas with decoding delagn). The
while the others do not. Moreover, the zeros in@hia column decoding delay of these codes is half the decoding delayeof th

with each entry multiplied by/2, by post-multiplying the
Jpatrix RHy (given by the L.H.S of[(24)) withQs.
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rate-% scaled-CODs given by Tarokh et al [6]. When numbef12] Smarajit Das and B. Sundar Rajan, “Square Complex @ahal
of transmit antennas is large, the maximal rate of CODs is Designs with Low PAPR and Signaling ComplexitlEEE Trans.

I tol/2 and therefore the raté-codes and the maximal- Wireless Communicationsol. 8 No. 1, pp. 204-213, Jan. 2009.
close 1o / . 13] Haiquan Wang and Xiang-Gen Xia, “Upper Bounds of Ratdés o
rate CODs are comparable with respect to the rate of the codes  complex Orthogonal Space-Time Block Code€EE Trans. Inform.
However, the proposed rate€odes have much less decoding  Theory,vol. 49, No. 10, pp. 2788-2796, Oct. 2003.

: 4] D. B. Shapiro, Compositions of Quadratic forms, BerllBermany:
delay than that of the maximal-rate CODs. Another advantad% Walter de Gruyter, 2000.

with the designs reported in this paper is that they do nqis] L. C. Tran, T. A. Wysocki, J. Seberry, A. Mertins, and S. $pence,
contain zero entry leading to low PAPR. “Generalized Williamson and Wallis-Whiteman construegiofor im-

All the four constructions namely Adams, Lax and Phillips’s Eg_’vff;?ffgg ozrggg's CO STBCsProc. IEEE PIMRC,11-14 Sep.,
construction from Quaternions & Octonion, Geramita-Palim [16] J. Seberry, S. A. Spence, and T. A. Wysocki, “A consiarctechnique
construction and the construction given in this paper wileg for generalized complex orthogonal designs and applicatio wireless
the same square ROD if number of transmit antennas is less gg?g““”'cat'ons"""”ear Algebra Appl.vol. 405, pp. 163-176, Aug.
than or equal tB. Therefore, these four constructions will '
generate the same ra%escaled-COD if the number of transmit
antennas (of the scaled-COD) is less than or equal6to APPENDIXA
For more thanl6 antennas, raté- scaled-CODs will vary RECURSIVE CONSTRUCTION OFR;
with the methods cho§en for thg c_:onstructlon of rate-1 RODs.In this appendix we show that the RODB, can be
Due to space constraint, two distinct r%tescaled—CODs for :
. ) . . constructed recursively.

17 transmit antennas obtained by two different construction

. ; . Let K, = B, fort = 1,2,4 and 8. The four square ODs
procedures for rate-1 RODs, are not given in this paper.

. . ¢+t =1,24 8 are shown below.
It is not known whether the decoding delay of the propose

rate-% scaled-COD for given number of transmit antennas is

of minimal delay. It is shown that the proposed code Jor o T1 T2 T3
antennas is of minimal delay. In general, we conjecture that(zo), ( _i? :;(1) ) , _g sz 52 _ij ,
v(n) is the minimum value .Of the decoding deIay of r%t_e— —xs —ms om0
scaled-COD for any. trgnsmn antennas. It will be interesting 2o 11 ®» w3 x4 15z 27
to see whether this is indeed true. —x To —m3 o —xs z4 7 —T6

—T2 xrs3 Xo —T1 —Te6 —X7 T4 X5

—T3 —T2 1 o —X7 e —s T4
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R ), R I
Roy, = n p(n)in , Ry, = 2n (n)+1 2n :| ,
? [ ~Zp(n)In Rr)f } ! [ —Tp(n)+112n R,
Ryn Ty(yo,y1) @ In } [ Rsy, Ts(y2, 3 y4 Ys) @ I, }
R " — b ) , R n — ) ) 3 28
* Ti(~yo, 1) @ In R], 16 T3(~y2,Y3, Y4, y5) @ I, RI, (28)
Let yo,- - ,y5 be real variables. Define (i)
T4(yo, y1) ol + 114, I

0 1 2 3 t(1—272) 42 fo<m<3

Ts(y2,y3,44,y5) = y2lg +yslg +yals +ysls. 7Bl +m) = {tE1—22l)1)+$’(m—4) if 45257,

We have four RODs of ordet = 2 with a = 0,1,2,3 as 0 if1=0,m=0
given by [2T) which are respectively;, K>, K, and K. t.9—2l if 1#£0,m=0
Assuming that a square ROD of order= 24-1,1 > 1 t.o-2-1 if 1#0,m=4

xt(8l+m) = 4 ifl=0m=4
Ry = R (w0, Zp(n)-1) 22y q (1) ifl=c,m#0

which hasp(n) real variables, is given, then we construct

Ray,, Ryn, Rsn, Rign Of Order2n, 4n, 8n and16n respectively
given by [28) wherey; = x,(,)124; and

t'272l71 +22lx4(m)
t.272l72 + 22LX£1(m _ 4)

if 1l #c,m € {1,2,3}
if 1 #¢,m e {5,6,7}

01 2 3
R] = R](wo,21," ,Tpt)-1) where ), = < 0 1 3 9 >,
= Ry(wo, —x1, -+, —Tp)-1), (iii)
_RZ— - Rt(_ZCO,Il,"' 7'rp(t)—1)'
8t 41 tm ;
APPENDIXB (8l +m) = Te(1 =274 + i ff l<ec,
ADAMS-LAX-PHILLIPS AND GERAMITA-PULLMAN Ba-2"+m ifl=c
CONSTRUCTIONS AS SPECIAL CASES 0 if 1= 0.m=0
In this appendix we show that the well-known constructions t9—4(i-1) if 1£0,m=0
of square RODs by Adams-Lax-Phillips using Octonions and x:(8! +m) = {2 . ’
. . . Xad(m) if l=c,m#0.
Quaternions as well as the construction by Geramita and o u . txs(m)
Pullman are nothing but our construction corresponding to 3270+ S i L#em #0.

specific choices of the functions and+; defined by[(b) and
(©). It turns out to be convenient to use the map= v,7; than
the mapy;. Note that bothy; andx; act on the seZ, ;) and

are injective. Now giveny, and x;, we havey, = x;v,

With this new definition, we can reformulate the criteriong1) |~,(z) -

given in Theoreni]3 as follows.

| (@) @ xe(y) - (@) © 7e(y))]
is an odd integeVz,y € Z,),x # y-

(29)

In the following lemma, we defing, andy; in three different

ways and these maps are shown to satisfy the relation given

(29). Although bothy; andy; are different for all the three
cases for arbitrary values df -, is the identity map when
t=1,2,4 or 8. Hencex; = v, if t € {1,2,4,8}.

Lemma 4:Let¢ =2% a=4c+d, me€ {0,1,---,7}. Let
v¢ and x; be two maps defined ovef, ;) in three different
ways as given below. Identifyy;(Z,)) and x:(Z,)) as
subsets of§. Then|(y:(x1) ® v (x2)) - (xe(z1) ® xe(22))] is
odd for all xy, w2 € Z, 1), ¥1 # 2. FOrz =8l +m € Z,,

(i)

v@8l+m) = t(1-2"1)+8m
0 ifl=0,m=0
t.2~! if l£0,m=0
8'xa(m) if l=c,m#0
t2711 1 8lxg(m)  if l#e,m#0

Proof: We give proof only for the case (i). The cases (ii)
and (iii) can be proved similarly.
It is enough to prove that
xt(z)| is odd for allz # 0, x € Z,,;) and
(B2) |ve(z1) - xe(z2)|+ |7 (z2) - x¢ (21)] is odd for allzy, x2 €
Zy(tyy 1 # 12,21 # 0,02 # 0.

Let (80 +m) = 7(1)(81 + m) + ~{# (81 +m) such that
(1)

D81+ m) = (1 — 271) and~\? (81 + m) = 8'm.
%milarly, let x:(8+m) = xgl)(SH-m) +x(2) (81 +m) such

if l=0,m=0,

81+m !fl#O,sz,

if l=c,m#0,

t2l1 if 1 #£¢c,m#0,

0 if 1=0,m=0,

(2)(81+m) 0 if l£0,m=0,

8xaa(m) if I =c,m #0,

8xs(m)  if 1 # c,m #0.

Let 81 + m # 0 and 8’ + m’ # 0. From the definition of
vi Xt i = 1,2, it follows that



(A1) XD @ +m) - A28 +m') =0if L £,
(42) |xV @+ m) 4D @ +m) =1if 1<,
(A3) V(8L +m) -V +m) =0if 1>

orif I =1,m#0,

(A4) V(8D -y (8L 4+ m)| = 1if L #0,
(45) iV (@) 72 )l = I (@) A ) =0V 2,y € Zygy,
(46) X (81) - 2 (81 +m)| = [x{* (81 +m) - 42 (81)| = 0.

First we prove (B1). Let: = 8/ + m with m # 0. We have

A D81+ m)| + X (81 + m)
72 (814 m)|

IxV (81 +m) -
P (81 4+m)| + X\ (81 +m) -
+|x§2)(81 +m) -~ (84 m))|
= V@4 m) -8+ m)|
+x2 (8L + m) - (P (81 + m)| by (A5)
= P @Bl+m)- <2)(81 + m)| using (A3)
= |xe(m)-m|, e=2%if l =c, elsee =8

Ixe(z) - (@) =

But |x.(m) - m| is an odd number by Lemnid 1.
If m =0, we have|y.(z) - x:(z)] =1 by (A4).

To prove (B2), letr; # 0 andxs # 0. Write 2o = 8l5+mo,
x1 = 811 +m1 with x5 > 1. We have two cases:
(Cl)lg > Iy, (C2)12:ll =1, mg > myq.

Case (C1):we have

XiV (8l + ma) -4 (8 +ma)
) (81y +m1) by (A5) .

2) - ve(x1) =
EBX(Z)(SZQ + mz)

xt(x

But [\ (8 + ma) - 7 (811 +my)| = 0 by (A3)

and |x\? (815 + ms2) - v >(811 +m1)| = 0 by (A1),
thus |y (z2) - ve(x1)| = 0.
Now X (a1) - u(z3) = V@Bl 4 my) -
Xt (811 +ma) - 9 (812 + ma) by (A5).
But [x\? (81 + m1) - 72 (8l + m2)| = 0 by (A1) and
Y 811+ ma) -7V (8la + ma2)| = 1 by (A2).

%(1)(812 + ma) @

Hence|x:(x1) - ye(x2)| + |x¢(z2) - % (21)| is an odd number.

Case (C2):we consider two following cases:

(i) m1 # 0 and (i) m; = 0. Note thatm,, is always non-zero.

Letd = |(x¢(x1) - 1e(x2)) @ (xe(z2) - (1))l
Case (i): We have

d = [P B1+m)- v (81 +ma)|
+1x 2 (81 + m2) - 72 (81 + m1)| by (A3) and (A5)

= |(xe(m1) - m2) ® (xe(m2) -m1)|, e=2%if | =c, elsee = 8

which is an odd number by Lemnha 1.

Case (ii): Sincem; = 0, thereforel # 0. We have
It (81) - 4™ (81 4 mo)|

+xi (814 ma) - 4{"(81)] by (AB),
1 by (A3) and (A4).

d =

12

By Lemmal4 and Theorer 2, the matri¥; defined by
two functions~, and x; is a square ROD in all the three
cases. We refer to these three different RODs/by/lt and
P, corresponding to the pair of functions defined in (i), (ii)
and (iii) respectively.

Now, we proceed to show that the desighs/lt andP; are
essentially the Adams-Lax-Phillips construction usingtddc
nions and Quaternions and the Geramita-Pullman constructi
respectively with change in sign of some rows or columns.

A. Adams-Lax-Phillips Construction from Octonions as a spe
cial case

The Adams-Lax-Phillips construction from Octonions is
given by induction from orden = 2¢ to 16n as follows [1]:
denoting the square ROD of order= 2% resulting from the
Adams-Lax-Phillips construction using Octonions by

0, = @n(an T axp(n)fl)
which hasp(n) real variables, the square ROD of ordémn

with (p(n) + 8) real variablest;, i = 0,1,--- ,p(n) + 7,
O16n = O16n(T0, "+, Tp(n)+7)
is given by
G [ ) Ot
n ®1s In ® (=K (yo, -+ ,y7))

with y; = T p(n)i-
With re-arrangement of variables and change in signs, we
rewrite the desigr¢,, as

(O)gg) _ oInT® KS(:B07"' 7"57) ®1(10)(y07"' 7yp(n)71)®18
" 0 (o, ypny—1) ©Is  In @ KT (o0, 1)
with y; = zsy; and @%O) =0,, n=1,2,4,8. The reason

why we consider this rearranged version is that we show in
Lemma[® thatd, is same a{” with t = 16n

Lemma 5:Lett > 16 be a power of. Also, let A; be the
square ROD of ordet as given in Lemm&l4 (i), an@gg,)l be
the square ROD which is of ordé6n. ThenA; = @%2}1 for
t = 16n.

Proof: We prove it by induction on. Fort = 1,2,4 and
8, A; = K; and the COD@ﬁO) of ordert is also given by
K. Hence the lemma holds fdr= 1,2,4 and8. Assuming
that the lemma holds for = n, i.e., 4, = @%O) of ordern,
we have to prove that the lemma also holds#et 16n, i.e.,
Alﬁn = @5(6)7)7. Let
All

)
Ao

Ajpn =
16 [ Ao

whereA;;, 1 <i,j < 2 are square matrices of sife x 8n.
It is easy to check that the location of non-zero variables in
the matrix A6, coincide with that of@&?}l. Therefore it is
enough to show the signs (positive/negative polarity) & th
corresponding entry in the two designs are same i.e.,

1) /Llﬁn(i,j) = ulgn(i%S,j%S) for 0 < i, < 8n—1,

2) paen(i, §) = ps(i, ) for 0 <, j <7,



I, ® La(zo,x1,22,%3)
047L
I, @ —R] (x4, 25,6, T7)
_Of(ym e 7yp(n)71) ® 14

04n

Q
®§67)z =

@1(y07 e

In ® La(z0, %1, 22, 23)
Yp(n)—1) ® L4
In® _R4(:C47:C57:C67:C7)
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I, ® Ry(x4,x5,T6,x7)
—@T(ym e 7yp(n)71) ® 14
I, ® LZ(xo,xl,xg,:c:;)
047L

®1(y07 o 7yp(n)71) ® Iy
I, ® RI($47 T5, :C67:C7)
O4n
I ®LZ—($C0750175627$3)
(30)

3) p6n(i,J) = pien (i © %8, 5 & j%8)
if0<i<8—1,8n<j<16n -1,

4) 1160 (84,80 ® 8j) = pn(i,7) for0 <i,j <mn-—1,

5) wien(8n®,8ndj) = pien(i,j) if i@j=00ridj >

8n,
6) MlGn(Sn ® i,8n & ]) = _,Uflﬁn(iaj) if i ® J €
Note that

1) & 2) together implyA; = I, ® Ks(zo,- - ,27),
3) & 4) together implyA;, = 0 ® I5 and
5) & 6) together implyAq, = A7), Ay, = —AT,.
Let Alﬁn(i,j) 75 0.
Theni @ j € Z,16n) and pien (i, j) = (—1)/" Ve (@1,
To prove 1), we have to show thét 116, (i ® j)| = |(i%8) -
V160 (1%8 & j%8) for 0 < 4,5 < 8n — 1.
We havei @ j = (16n)(1 — 27!) + 8'm andi @ j < 8n. So
I=0andi®j =m.i.e.,i®j=1i%8® j%8.
Thus it is enough to prove thati @ i%8) - Y16, (i ® 5)| =0
Now (i & i%8) < 8n, 8 divides (i @ i%8) and e, (i ® j) =
8n @ ¢g(m), hence the statement holds.

The statement 2) is true && 16, (i ® 5)| = |i - ¥s(i @ j)|
for0<i,j <T.
In order to prove 3), we must have

i - P16n(i © J)| = [(1 D i%8) - P16 ((1 ©i%8) © (j © j%8))|

i.e., [(1%8) - 16n((1 @ i%8) ® (j @ j%8))| = 0. As 8n <
i@ j < 16n—1, we havei® j = (16n)(1 —27") 4+ 8'm with
[ > 1. So8 dividesi @ j as8 divides both(16n)(1 —27!) and
8'm. S0i%8 = j%8 i.e.,i®j = ((i ®i%8) & (j & j%8)).
Thus it is enough to prove th&ti%8) - Y16, (i ® )| = 0. It
is indeed true ag6, (i @ j) is a multiple of8.

To prove 4), we have to show that

We have8n @ 8i @ 85 = (16n)(1 — 27!) + 8'm for some!l
with I > 1 andm € Zg. Let 16n = 2% anda = 4c¢ + d.
If I = ¢, we havey 6, (8n D8 B 8j) = 8'xqa(m) and, (i ®

e., |(8n) - Y16 (i @ )| = 1. But (8n) - ¢16, (i & j) = 8n for
all (i @) €{1,2,3,4,5,6,7,8n}. n

B. Adams-Lax-Phillips Construction from Quaternions and
Geramita-Pullman Construction as special cases

Adams-Lax-Phillips has also provided another constructio
of square RODs using Quaternions [1]. Assuming that a square
ROD of ordern = 2¢

0@ = 0 (o, -+ , T pmy1)

which hasp(n) real variables, is given, then a square ROD
of order 16n with p(n) + 8 real variablesz; for i =

0517"' 7p(n)+7
(O)gcgr)z = @5.%27)1(:607 e axp(n)-i-'?)

is given by [30), where the matricds, and R4 are given by

Zo x1 x2 x3
—T1 To —I3 x2
Ly(xg, 21,79, 23) =
a(wo, w1, 22, 23) — 29 T3 Ty -1 ’
—T3 —T2 T Zo
T4 x5 T6 X7
—I5 T4 7 —Xg
Ry(x4, w5, 26, 27) =
—Teg —X7 T4 I5
—T7 T —Ts T4

respectively withy; = zgy;.
The Geramita-Pullman construction of square RODSs [1] is
given as follows.

Consider a recursive construction of square ROD of order
n = 2% 1o 16n as foIIows:(O)ﬁlGP) = @%GP)(:CO, S Tp(n)—1)
which hasp(n) real variables is given, then a square ROD

@§§f> of order16n with p(n) + 8 real variablesr; for i =

0,1,---,p(n) 4+ 7 is given by
Kg(wg, - o7) ® In 15 ® 0 (o, Ly 1) -
oGP T T ©2)
Ig ® (=0, )" (wo, yYp(n)—1) Kg (xq, yx7) @ I

j) = 8= 1x,4(m). One can easily see that the above statement

holds.
On the other hand, if < ¢, we haveyg, (8n @ 8i @ 85) =
(16n)27 =1 + 8lyg(m) and),, (i @ j) = n.271 + 8" Lxs(m).
In this case too, the statement holds.

To prove 5), we have to show that

(i ®8n) - hr16n (i @ J)| = i Pr6a (i ® 5],

e., |(8n) - ¥ien(i ® 5)| = 0. Now fori @ j = 0 or greater
than8n, (8n) - Y16, (i ® j) = 0.
To prove 6), we have to show that

(i ®8n) - Y16n (i ® J)| = 1+ |i - Y160 (i ® ),

with Yi = Tg4j-

It can be checked that both Adams-Lax-Phillips construnctio
from Quaternions and Geramita-Pullman’s constructiofedif
from the constructions d@ﬁ?}l and@)ggf) defined above only
in rearrangement of variables and in signs of some of the rows
or columns of the design matrix.

Lemma 6:Let ¢t > 16 and A, and P, be the square RODs
of ordert given by Lemmd# (ii) and (iii) respectively, and
also |et@§§,1 and @§§f> be the square RODs of ordé6n
given by [30) and[(32) respectively. Thet, = @&?}l and
P =0 fort = 16n .

Proof: Similar to that of Lemma&l5 and hence omittes.
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