
ar
X

iv
:1

10
6.

53
87

v2
 [

cs
.IT

]
16

 N
ov

 2
01

1
1

Subspace Properties of Network Coding
and their Applications

M. Jafari Siavoshani,Student Member, IEEE, C. Fragouli,Member, IEEE, S. N. Diggavi,Member, IEEE

Abstract—Systems that employ network coding for content
distribution convey to the receivers linear combinations of the
source packets. If we assume randomized network coding, during
this process the network nodes collect random subspaces of
the space spanned by the source packets. We establish several
fundamental properties of the random subspaces induced in
such a system, and show that these subspaces implicitly carry
topological information about the network and its state that can
be passively collected and inferred. We leverage this information
towards a number of applications that are interesting in their
own right, such as topology inference, bottleneck discovery in
peer-to-peer systems and locating Byzantine attackers. Wethus
argue that, randomized network coding, apart from its better
known properties for improving information delivery rate, can
additionally facilitate network management and control.

I. I NTRODUCTION

Randomized network coding offers a promising technique
for content distribution systems. In randomized network cod-
ing, each node in the network combines its incoming packets
randomly and sends them to its neighbours [1], [2]. This is
the approach adopted by most practical applications today.
For example, Avalanche, the first implementation of a peer-
to-peer (P2P) system that uses network coding, adopts such a
randomized operation [3], [4]. In ad-hoc wireless and sensor
networks as well, most proposed protocols employing network
coding again opt for randomized network operation (see [9]
and references therein).

The reason for the popularity of randomized network coding
is because it facilitates a very simple and flexible network
operation without need of synchronization among network
nodes, that is well suited to packet networks. To every packet,
a coding vector is appended that determines how the packet is
expressed with respect to the original data packets produced at
the source node. When intermediate nodes combine packets,
the coding vector keeps track of the linear combinations
contained in a particular packet. A receiver which collects
enough packets, uses the coding vectors to determine the set
of linear equations it needs to solve in order to recover the
original data packets.

The work of M. Jafari Siavoshani and C. Fragouli was supported by the
Swiss National Science Foundation through Grant PP00P2-128639.

M. Jafari Siavoshani and C. Fragouli are with the School of Computer and
Communication Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL),
Lausanne CH 1015, Switzerland (e-mail: mahdi.jafarisiavoshani@ep.ch;
christina.fragouli@ep.ch).

S. N. Diggavi was with the Ecole Polytechnique Fédérale deLausanne
(EPFL), Lausanne CH 1015, Switzerland. He is now with the Department of
Electrical Engineering, University of California, Los Angeles (UCLA), CA
90095 USA (e-mail: suhas@ee.ucla.edu).

Our contributions start with the observation that coding vec-
tors implicitly carry information about the network structure
as well as its state1. Such vectors belong to appropriately
defined vector spaces, and we are interested in fundamental
properties of these (finite-field) vector spaces. In particular,
since we are investigating properties induced by randomized
network coding, we need to characterize random subspaces of
the aforementioned vector spaces. These properties of random
subspaces over finite fields might be of independent interest.
We aim to show, using these properties, that observing the
coding vectors we can passively collect structural and state
information about a network. We can leverage this information
towards several applications that are interesting in theirown
merit, such as topology inference, network tomography, and
network management (we do not claim here the design of
practical protocols that use these properties). However, we
show that randomized network coding, apart from its better
known properties for facilitating information delivery, can
provide us with information about the network itself.

To support this claim, we start by studying the problem
of passive topology inference in a content distribution sys-
tem where intermediate nodes perform randomized network
coding. We show that the subspaces nodes collect during the
dissemination process have a dependence with each other
which is inherited from the network structure. Using this
dependence, we describe the conditions that let us perfectly
reconstruct the topology of a network, if subspaces of all nodes
at some time instant are available.

We then investigate a reverse or dual problem of topology
inference, which is, finding the location of Byzantine attackers.
In a network coded system, the adversarial nodes in the
network can disrupt the normal operation of information flow
by inserting erroneous packets into the network. We use the
dependence between subspaces gathered by network nodes and
the topology of the network to extract information about the
location of attackers. We propose several methods, compare
them and investigate the conditions that allow us to find the
location of attackers up to a small uncertainty.

Finally, we then observe that the received subspaces, even
at one specific node, reveal some information about the
network, such as the existence of bottlenecks or congestion.
We consider P2P networks for content distribution that use
randomized network coding techniques. It is known that the
performance of such P2P networks depends critically on the
good connectivity of the overlay topology. Building on our

1By state we refer to link or node failures, congestion in somepart of the
network, etc.

http://arxiv.org/abs/1106.5387v2

2

observation, we propose algorithms for topology management
to avoid bottlenecks and clustering in network-coded P2P
systems. The proposed approach is decentralized, inherently
adapts to the network topology, and reduces substantially the
number of topology rewirings that are necessary to maintaina
well connected overlay; moreover, it is integrated in the normal
content distribution.

The paper is organized as follows. We start with the notation
and problem modeling in§II. We investigate the properties of
vector spaces in a system that employs randomized network
coding in §III and these properties give the framework to
explore applications in§IV, §V, and§VI. Finally, we conclude
the paper with a discussion in§VII. Shorter versions of these
results have also appeared in [10], [11], [12].

A. Related Work

Network coding started by the work of Ahlswedeet al. [13]
who showed that a source can multicast information at a
rate approaching the smallest min-cut between the source and
any receiver if the middle nodes in the network combine
the information packets. Liet al. [14] showed that linear
network coding with finite field size is sufficient for multicast.
Koetteret al. [15] presented an algebraic framework for linear
network coding.

Randomized network coding was proposed by Hoet al. [16]
where they showed that randomly choosing the network code
leads to a valid solution for a multicast problem with high
probability if the field size is large. It was later applied by
Chouet al. [2] to demonstrate the practical aspects of random
linear network coding. Gkantsidiset al. [3], [4] implemented
a practical file sharing system based on this idea. Several
other works have also adopted randomized network coding
for content distribution, see for example [5], [6], [7].

Network error correcting codes, that are capable of correct-
ing errors inserted in the network, have been developed during
the last few years. For example see the work of Koetteret
al. [17], Jaggiet al. [18], Ho et al. [19], Yeunget al. [20], [21],
Zhang [22], and Silvaet al. [23]. These schemes are capable
of delivering information despite the presence of Byzantine
attacks in the network or nodes malfunction, as long as the
amount of undesired information is limited. These network
error correcting schemes allow to correct malicious packet
corruption up to certain rate. In contrast, we use network
coding to identify malicious nodes in our work. Recently, and
following our work [12], additional approaches are proposed
in the literature, some building on our results [24].

Overlay topology monitoring and management that do not
employ network coding has been an intensively studied re-
search topic, see for example [25]. However, in the context
of network coding, it is a new area of research. Fragouliet
al. [26], [27] took advantage of network coding capabilities for
active link loss network monitoring where the focus was on
link loss rate inference. Passive inference of link loss rates has
also been proposed by Hoet al. [28]. In a subsequent work of
ours, Sharmaet al. [29] study passive topology estimation for
the upstream nodes of every network node. This work is based
on the assumption that the local coding vectors for each node

in the network are fixed, generated in advance and known by
all other nodes in the network, unlike our work that builds
on randomized operation. The idea of passive inference of
topological properties from subspaces that are build over time,
as far as we know, is a novel contribution of this work.

II. M ODELS: CODING AND NETWORK OPERATION

A simple observation motivates much of the work presented
in this paper: the subspaces gathered by the network nodes
during information dissemination with randomized network
coding, are not completely random, but have some rela-
tionship, and this relationship conveys information aboutthe
network topology as well as its state. We will thus investigate
properties of the collected subspaces and show how we can
use them for diverse applications.

Different properties of the subspaces are relevant to each
particular application and therefore we will develop a frame-
work for investigating these properties. This will also involve
some understanding of modeling the problem to fit the re-
quirements of an application and then developing subspace
properties relevant to that model.

A. Notation

Let q ≥ 2 be a power of a prime. In this paper, all vectors
and matrices have elements in a finite fieldFq. We useFn×m

q

to denote the set of alln × m matrices overFq, andFℓ
q to

denote the set of all row vectors of lengthℓ. The setFℓ
q forms

an ℓ-dimensional vector space over the fieldFq. Note that all
vectors are row vectors unless otherwise stated. Bold lower-
case letters,e.g., v, are used for vectors and bold capital letters,
e.g., X, are used to denote matrices.

For a set of vectors{v1, . . . ,vk} we denote their linear span
by 〈v1, . . . ,vk〉. For a matrixX, 〈X〉 is the subspace spanned
by the rows ofX. We then haverank(X) = dim(〈X〉).

We denote subspaces of a vector space byΠ and sometimes
also byπ. In this paper, we work on a vector spaceFℓ

q of
dimensionℓ defined over a finite fieldFq. For two subspaces
Π1,Π2 ⊆ Fℓ

q, we will denote their intersection byΠ1 ∩ Π2

and their joint span byΠ1 +Π2 where

Π1 +Π2 , {v1 + v2|v1 ∈ Π1,v2 ∈ Π2},

is the smallest subspace that contains bothΠ1 andΠ2. It is
well known that

dim(Π1 +Π2) = dim(Π1) + dim(Π2)− dim(Π1 ∩ Π2).

We also use the following metric to measure the distance
between two subspaces,

dS(Π1,Π2) , dim(Π1 + Π2)− dim(Π1 ∩ Π2) (1)

= dim(Π1) + dim(Π2)− 2 dim(Π1 ∩Π2).

This metric was also introduced in [17], where it was used to
design error correction codes.

In addition to the metricdS(·, ·) defined above, in some
cases we will also need a measure that compares how a setA

3

of subspaces differs from another setB of subspaces. For this
we will use the average pair-wise distance defined as follows

DS(A,B) ,
1

|A||B|

∑

πa∈A,πb∈B

dS(πa, πb). (2)

It should be noted that the above relation does not define a
metric for the set of subspaces because the self distance of
a set with itself is not zero. However,DS(·, ·) satisfies the
triangle inequality.

In this paper we will be interested in investigating the
relationship of the collected subspaces at neighboring network
nodes. We consider a network represented as a directed acyclic
graphG = (V,E), with ϑ = |V | nodes andξ = |E| edges.
For an arbitrary edgee = (u, v) ∈ E, we denotehead(e) = v
and tail(e) = u. For an arbitrary nodev ∈ V , we denote
In(v) the set of incoming edges tov andOut(v) the set of
outgoing edges fromv. If a nodeu hasp parentsu1, . . . , up,
we denote withP (u) = {u1, . . . , up} the set of parents ofu.
We useP l(u) to denote the set of all ancestors ofu at distance
l from u in the network (we say that two nodesu andv are
at distancel if there exists a path of length exactlyl that
connects them). We denote withπ(ui)

u (t) the subspace nodeu
receives from parentui at exactly timet, and withπu(t) the
whole subspace (from all parents) that nodeu receives at
time t, that is πu(t) =

∑p
i=1 π

(ui)
u (t). We also denote with

Π
(ui)
u (t) the subspace nodeu has received from parentui up

to timet, that is,Π(ui)
u (t) = Π

(ui)
u (t− 1) + π

(ui)
u (t). Then the

subspaceΠu(t) that the node has at timet can be expressed as
Πu(t) =

∑p
i=1 Π

(ui)
u (t). For a set of nodesU = {u1, . . . , up},

we defineΠU = Πu1 + · · ·+Πup
.

Finally, we use the bigO notation which is defined as
follows. Let f(x) andg(x) be two functions defined on some
subset of the real numbers. We writef(x) = O(g(x)) if
and only if there exists a positive real numberM and a real
numberx0 such that|f(x)| ≤M |g(x)| for all x > x0. During
the rest of the paper we useO to compare functions of the
field sizeq, unless otherwise stated. For example, we will use
f(q) = O(q−1) to imply that the value off(q) goes to zero
asq−1 for q →∞.

B. Network Operation

We assume that there is an information source located on a
nodeS that has a set ofn packets (messages){x1, . . . ,xn},
xi ∈ Fℓ

q, to distribute to a set of receivers, where each
packet is a sequence ofℓ symbols over the finite fieldFq.
To do so, we will employ a dissemination protocol based on
randomized network coding, namely, where each network node
sends random linear combinations (chosen to be uniform over
Fq) of its collected packets to its neighbors. We assume for
simplicity that there are no packet-losses.

Dissemination Protocol

It is possible to separate the dissemination protocols into
the following operation categories.

• Synchronous:All nodes are synchronized and transmit
to their neighbors according to a global clock tick (time-
slot). At timeslott ∈ N, nodev sends linear combinations

from all vectors it has collected up to timet− 1. Once
nodes start transmitting information, they keep transmit-
ting until all receivers are able to decode.

• Asynchronous:Nodes transmit linear combinations at
randomly and independently chosen time instants.

In this paper, we focus on the synchronous network where
we assume that each link has unit delay2 corresponding to each
timeslot, however our results can be extended to asynchronous
networks as well.

Next, we explain in detail the dissemination protocol, that
is summarized in Algorithm II.1.

Timing: We depict in Fig. 1 the relative timing of
events within a timeslot. Nodes transmit at the beginning of
a timeslot. We assume that each packet is received by its
intended receiver before the end of the timeslot. Thus, the
timeslot duration incorporates the packet propagation delay in
one edge of the network.

Timet − 1 t

Slot numbert

A

B

A Transmits

B Receives
{

The point that subspaces
are measured:ΠB(t)

ΠA(t − 1)

Fig. 1. Timing schedule of the dissemination protocol givenby Algo-
rithm II.1.

Rate Allocation and Equivalent Network Graph:The
dissemination protocol first associates with each linke of
the network a ratere (measured as the number of packets
transmitted per timeslot on edgee). These rates are selected
in advance using a rate allocation method, for example [8].

For the rest of the paper, we consider an equivalent network
graph, where each edgee has capacity equal to its allocated
ratere. On this new graph, we can define the min-cutcv from
the source nodeS to a nodev ∈ V . Whenever we refer to
min-cut values in the following, we imply min-cut values over
this equivalent graph.

We assume that the rate allocation protocol we use satisfies

re ≤ min[ce, ctail(e)], (3)

wherece is the capacity of edgee. This very mild assumption
says that the nodev = tail(e) does not send more information
than it receives, and is satisfied by all protocols that do not
send redundant packets,i.e., observe flow conservation.

In our work, we consider the case wheren ≫ cv, namely,
the dissemination of then source packets to the receivers takes
place by using the network over several timeslots.

Node operation:When the dissemination starts, at times-
lot say zero, the source starts transmitting at each time slot
and to each of its outgoing edgese, re randomly selected
linear combinations ofn information packets. We will callrS
the source rate. The source continues until it has transmitted
linear combinations of alln packets,i.e., for n

rS
timeslots.

2Unit delay can model a buffering window a node needs to wait tocollect
packets from all its neighbors.

4

Every other nodev ∈ V \ {S} in the network, operates as
follows:

• Initially it does not transmit, but only collects in a buffer
packets from its parents, until a timeτv, which we call
waiting timeand we will define in the following. As we
will see, each node can decide the waiting time by itself
and independently from other nodes.

• At each timeslott, for all t ≥ τv +1, it transmits to each
outgoing edgee, re linear combinations of all packets it
has collected in its buffer up to timet− 1.

Collected Subspaces:We can think of each of then
source messages{xi} as corresponding to one dimension of
an n-dimensional spaceΠS ⊆ Fℓ

q whereΠS = 〈x1, . . . ,xn〉.
We say that nodev ∈ V at timet observes a subspaceΠv(t) ⊆
ΠS , with dimensiondv(t) , dim(Πv(t)), if Πv(t) is the space
spanned by the received vectors at nodev up to timet. Initially,
at time t = 0, the collected subspaces of all nodes (apart the
source) are empty;dv(0) = 0, ∀v ∈ V \ {S}.

Waiting Times: We next define the waiting times, that
will be used in the following sections to ensure that the
subspaces of different nodes be distinct, and are a usual
assumption in dissemination protocols; indeed, for largen
the waiting time does not affect the rate. For example, in the
information-theoretic proof of the main theorem in network
coding [13], each node waits until it collects at least one
message from each of its incoming links before starting
transmissions.

Definition 1: The waiting timeτv for a nodev is the first
timeslot during which nodev receives information from the
source at a rate equal to its min-cutcv, and additionally, has
collected in its buffer a subspace of dimension at leastcv +1.

Note that, because we are dealing with acyclic graphs, we
can impose a partial order on the waiting times of the nodes,
such that all parents of a node have smaller waiting time
than the node. Moreover, each node can decide whether the
conditions for the waiting time are met, by observing whether
it receives information at a rate equal to its min-cut, and what
is the dimension of the subspace it has collected. That is,
a node does not need to know any topological information
(apart from its min-cut), and the waiting times do not need to
be communicated in advance to the nodes, but can be decided
online based on the network conditions.

Algorithm II.1: DISSEMINATIONPROTOCOL(G =
(V,E), S, n, τv, re)

for each v ∈ V \ {S}
do Πv(0) = ∅, dv(0) = 0

t← 1
while minv dv(t) < n

for each v ∈ V

if t ≥ τv + 1

then

for each e ∈ Out(v)

do
{

nodev transmits from
Πv(t− 1) with ratere on e

for each v ∈ V
do updateΠv(t), dv(t)

t← t+ 1

Alg. II.1: Dissemination protocol.

Source Operation and the Source SubspaceΠS

As we discussed, the source needs to convey to the receivers
n source packets that span then-dimensional subspaceΠS =
〈x1, . . . ,xn〉, with ΠS ⊆ Fℓ

q. ΠS is isomorphic toFn
q ; thus,

for the purpose of studying relationships between subspaces
of ΠS , we can equivalently assume thatΠS = Fn

q , and that
nodev ∈ V at time t observes a subspaceΠv(t) ⊆ ΠS . This
simplification is very natural in the case where we employ
coding vectors, reviewed briefly in the following, as we only
need consider the coding vectors for our purposes and ignore
the remaining contents of the packets; however, we can also
use the same approach in the case where the source performs
noncoherent coding, described subsequently.

a) Use of Coding Vectors:To enable receivers to decode,
the source assignsn symbols of each message vector (packet)
to determine the linear relation between that packet and the
original vectorsxi, i = 1, . . . , n. Without loss of generality, let
us assume thesen symbols (which form a vector of lengthn)
are placed at the beginning of each message vector. This vector
is calledcoding vector. Each message vectorxi contains two
parts. The vectorxC

i ∈ Fn
q with lengthn is the coding vector

and remaining part,xI
i ∈ Fℓ−n

q , is the information part where

xi , [xC
i | x

I
i].

The coding vectorsxC
i , i = 1, . . . , n are chosen such that they

form a basis forFn
q . For simplicity we assumexC

i = ei where
ei ∈ Fn

q is a vector with one at positioni and zero elsewhere.
For our purposes, it is sufficient to restrict our algorithms

to examine the coding vectors. Thus, the source has the space
ΠS = Fn

q ; during the information dissemination, if a nodev
at timet has collectedm packetszi with coding vectorszC

i ,
it has observed the subspaceΠv(t) =

〈
zC
1 , . . . , z

C
m

〉
. In other

words, the coding vectors capture all the information we need
for our applications.

b) Subspace Coding:Our approach also works in the
case of subspace coding, that was introduced in [17]. We next
briefly explain the idea of communication using subspaces, in
a network performing randomized network coding.

In the following, we use the same notation as introduced
in §II-B. Let {x1, . . . ,xn}, xi ∈ Fℓ

q denote the set of

5

packets the source has. Assume that there is no error in
the network. An arbitrary receiverRv at nodev collectsm
packetszi, i = 1, . . . ,m, where eachzi can be presented
as zi =

∑n
j=1 hijxj . The coefficientshij are unknown and

randomly chosen overFq. In matrix form, the transmission
model can be represented as

Zv = HSvX,

whereHSv ∈ Fm×n
q is a random matrix andX ∈ Fn×ℓ

q is
the matrix whose rows are the sources’ packets.

The matricesHSv are randomly chosen, under constraints
imposed by the network topology. As stated in [17] and proved
in [30], [31], [32], the above model naturally leads to consider
information transmission not via the choice ofxi but rather
by the choice of the vector space spanned by{xi}.

In the case of subspace coding, the dissemination algorithm
works in exactly the same way as in the case of coding vectors;
what changes is how the source maps the information to the
packets it transmits, and how decoding occurs. However, this is
orthogonal to our purposes, since we perform no decoding of
the information messages, but simply observe the relationship
between the subspaces different nodes in the network collect.
Thus, the same approach can be applied in this case as well.

C. Input to Algorithms

We are interested in designing algorithms that leverage the
relationships between subspaces observed at different network
nodes for network management and control. The algorithms
design will depend on the information that we have access to.
We distinguish between the following.

• Global information: A central entity knows the subspaces
that all ϑ nodes in the network have observed.

• Local Information:There is no such omniscient entity,
and each nodev only knows what it has received, its
own subspaceΠv.

We may also have information between these two extreme
cases. Moreover, we may have astatic view, where we take
a snapshot of the network at a given time instantt, or a non-
static view, where we take several snapshots of the network
and use the subspaces’ evolution to design an algorithm.

We will argue in Section IV that capturing even global
information can be accomplished with relatively low overhead
(sending one additional packet per node at the end of the
dissemination protocol); thus, the algorithms we develop even
assuming global information can in fact be implemented
almost passively and at low cost.

III. PROPERTIES OFRANDOM VECTORSPACES OVER A

FINITE FIELD Fn
q

In this section, we will state and prove basic properties
and results that we will exploit towards various applications
in the following sections. In particular, we will investigate
the properties of random sampling from vector spaces over
a finite field. Such properties give us a better insight and
understanding of randomized network coding and form a
foundation for the results and algorithms presented in this
paper.

A. Sampling Subspaces overFn
q

Here, we explore properties of randomly sampled subspaces
from a vector spaceFn

q . We start with the following lemma
that explores properties of a single subspace.

Lemma1: Suppose we choosem vectors from ann-
dimensional vector spaceΠS = Fn

q uniformly at random to
construct a spaceΠ. Then the subspaceΠ will be full rank (has
dimensionmin[m,n]) w.h.p. (with high probability)3, namely,

P [dim(Π) = min[m,n]] = [1−O
(
q−1

)
].

Proof: Refer to Appendix A.
We conclude that for large values ofq, selectingm ≤ n

vectors uniformly at random fromFn
q to construct a subspace

Π is equivalent to choosing anm-dimensional subspace from
Fn
q uniformly at random. Note that this is not true for small

values ofq.
We next examine connections between multiple subspaces.

Lemma2: Let Π1 andΠ2 be two subspaces ofΠS = Fn
q

with dimensiond1 and d2 respectively, intersection of di-
mensiond12 and Π1 * Π2 (i.e., d12 < d1). ConstructΠ′

1

by choosingm vectors fromΠ1 uniformly at random. Then
P [Π′

1 ⊂ Π2] = O (q−m) .
Proof: Refer to Appendix A.

Lemma3: SupposeΠk is a k-dimensional subspace of a
vector spaceΠS = Fn

q . Selectm vectors uniformly at random
from ΠS to construct the subspaceΠ. We have

dim(Π ∩ Πk) = min[k, (m− (n− k))+]

= (min[m,n] + k − n)
+
, (4)

with probability 1−O
(
q−1

)
.

Proof: Refer to Appendix A.
Corollary 1: SupposeΠ1 andΠ2 are two subspace ofFn

q

with dimensiond1 and d2 respectively and joint dimension
d12. Let us takem1 vectors uniformly at random fromΠ1

andm2 vectors fromΠ2 to construct subspaceŝΠ1 and Π̂2.
We have

dim(Π̂1 ∩ Π̂2) =min
[
d12, (m1 +m2 − (d1 + d2 − d12))

+,

(m1 − (d1 − d12))
+, (m2 − (d2 − d12))

+
]
,

with probability 1−O
(
q−1

)
.

Proof: Refer to Appendix A.
By choosingΠ1 = Π2 = Fn

q in Corollary 1 we have the
following corollary.

Corollary 2: Let us construct two subspacesΠ̂1 andΠ̂2 by
choosingm1 andm2 vectors uniformly at random respectively
from Fn

q . Then the subspaceŝΠ1 andΠ̂2 will be disjoint with
probability1−O

(
q−1

)
if m1 +m2 ≤ n.

We are now ready to discuss one of the important properties
of randomly chosen subspaces which is very useful for our
work: randomly selected subspaces tend to be “as far as
possible”. We will clarify and make precise what we mean
by “as far as possible”, see also [33]. We first review the

3Throughout this paper, when we talk about an event occurringwith high
probability, we mean that its probability behaves like1 − O

(

q−1
)

, which
goes to1 asq → ∞.

6

definition of a subspace in general position with respect to a
family of subspaces.

Definition 2 ([33, Chapter 3]): Let ΠS be an n-
dimensional space over the fieldFq and for i = 1, . . . , r, let
Πi be a subspace ofΠS , with dim(Πi) = di. A subspace
Π ⊆ ΠS of dimensiond is in general position with respect to
the family {Πi} if

dim(Πi ∩Π) = max [di + d− n, 0] , ∀i ∈ {1, . . . , r}. (5)

It should be noted thatmax[di + d− n, 0] is the minimum
possible dimension of(Πi ∩Π). So what the above definition
says is that the intersection ofΠ and eachΠi is as small as
possible. Using the above definition we can state the following
theorem4.

Theorem1: Suppose{Πi}, i = 1, . . . , r, are subspaces
of ΠS = Fn

q . Let us construct a subspaceΠ by randomly
choosingm vectors fromΠS . Then Π will be in general
position with respect to the family{Πi} w.h.p., i.e., with
probability1−O

(
q−1

)
.

Proof: Refer to Appendix A.
Theorem 1 demonstrates a nice property of randomized net-

work coding where the subspaces spanned by coding vectors
tend to be as far as possible on different paths of the network.

B. Rate of Innovative Packets

In the following sections, we will need to know the rate
of receiving innovative message vectors (packets) at receivers
in a dissemination protocol performing randomized network
coding. By innovative we refer to vectors that do not belong
in the space spanned by already collected packets. As it is
shown in [13], the source can multicast at rate equal to the
minimum min-cut of all receivers if the intermediate nodes
can combine the incoming messages. Moreover, it is shown
in [14] that using linear combinations is sufficient to achieve
information transfer at a rate equal to the minimum mincut
of all receivers. In [13], [1], it is also demonstrated that
choosing the coefficients of the linear combinations randomly
is sufficient (no network-specific code design is required) with
high probability if the field size is large enough.

To find the rate of receiving information at each node where
the implemented dissemination protocol performs randomized
network coding, we can use the following result given in
Theorem 2. Note that our described dissemination protocol,
although very common in practice, does not exactly fit to
the previous theoretical results in the literature that examine
rates, because the operation of the network nodes is not
memory-less. That is, while for example in [1], [13], [14] each
transmitted packet at timet is a function of a small subset of
the received packets up to timet (the ones corresponding to the
same information message), in our case a packet transmittedat
time t is a random linear combination of all packets received
up to time t. This small variant of the main theorem on
randomized network coding is very intuitive, and we formally
state it in following.

4Versions of this theorem can be easily derived from results in the literature
[33], but we repeat here the short derivation for completeness

Theorem2: Consider a source that transmitsn packets
over a connected network using the dissemination protocol
described in§II-B, and assume that the network nodes perform
random linear network coding over a sufficiently large finite
field. Then there existst0 such that for allt > t0 each node
v in the network receivescv independent linear combinations
of the n source packets per time slot, wherecv = mincut(v).

Proof: Refer to Appendix B-A.
Given Theorem 2, we can state the following definition.
Definition 3: For a specific information dissemination pro-

tocol over a network, we define thesteady stateas the time
period during which each nodev in the network receives
exactly cv independent linear combinations of then source
packets per time slot and none of the nodes, except source
S, has collectedn linearly independent combinations. We call
the time that the network enters steady state phase thesteady
state starting timeand denote it byTs. If the network never
attains the steady state phase then we useTs =∞.

For our protocol in§II-B, Ts depends not only on the
network topology, but also on the waiting timesτv. For the
waiting time defined in Definition 1 we can upper boundTs

as stated in Lemma 4.
Lemma4: If n is large enough, for the dissemination

protocol given in§II-B we may upper bound the steady state
starting time as follows

Ts ≤ 2D(G)− 1,

whereD(G) is the longest path from the source to other nodes
in the network5.

Proof: Refer to Appendix A.
In order to be sure that the dissemination protocol given in
§II-B enters the steady state phase,n should be large enough.
Using Lemma 4 we have the following result, Corollary 3.

Corollary 3: A sufficient condition forn to be sure that the
protocol enters the steady state is that

2D(G)− 1 < ⌊
n

cmax
⌋,

wherecmax = maxv∈V cv.

IV. TOPOLOGY INFERENCE

In this section, we will use the tools developed in§III to
investigate the relation between the network topology and the
subspaces collected at the nodes during information dissemi-
nation. We will develop conditions that allow us to passively
infer the network topology with (asymptotically on the value
of q) no error. The proposed scheme is passive in the sense
that it does not alter the normal data flow of the network,
and the information rates that can be achieved. In fact, we
can think of our protocol as identifying the topology of the
network which is induced by the traffic.

We build our intuition starting from information dissem-
ination in tree topologies, and then extend our results in
arbitrary topologies. Note that information dissemination using
network coding in tree topologies does not offer throughput

5Note thatD(G) is different from the longest shortest path which is called
diameter ofG in the graph theory literature.

7

benefits as compared to routing; however, it is an interesting
case study that will naturally lead to our framework for
general topologies. We then define conditions under which
the topology of a tree and that of an arbitrary network can be
uniquely identified using the observed subspaces. Note that
uniquely identifying the topology is a strong requirement,as
the number of topologies for a given number of network nodes
is exponential in the number of nodes.

A. Tree Topologies

Let G = (V,E) be a network that is a directed tree of
depthD(G), rooted at the source nodeS. We will present
(i) necessary and sufficient conditions under which the tree
topology can be uniquely identified, and(ii) given that these
conditions are satisfied, algorithms that allow us to do so.

We first consider trees where each edge is allocated the
same ratec, and thus the min-cut from the source to each
node of the tree equalsc. We then briefly discuss the case
of undirected trees. Finally we examine the case where edges
are allocated different rates, and thus nodes may have different
min-cuts from the source.

1) Common Min-Cut:Assume that each edge of the tree
has the same capacityc (i.e., a rate allocation algorithm has
assigned the same ratere = c on each edge of the tree).
Thus all nodes in the tree have the same min-cut, equal to
c. Then according to the dissemination protocol introduced
in Algorithm II.1, each nodev will wait time τv, until it
has collected ac + 1 dimensional subspace, and then start
transmitting to its children. Our claim is that, we can then
identify the network topology using a single snapshot of all
node’s subspaces at a timet. Before formally proving the result
in Theorem 3, we will give some intuition on why this is so,
and why the waiting time is crucial to achieve this. We start
from an example on the simple network in Figure 2.

Example1: Consider the tree in Figure 2 and assume that
the edges have unit capacity (c = 1). Algorithm II.1 works
as follows. At timet = 1, nodeA receives a vectory1 from
the sourceS. Node A waits, as it has not yet collected a
c+ 1 = 2 dimensional subspace. At timet = 2, it receives a
vectory2. It now has collected the subspaceΠA(2) = 〈y1, y2〉,
and thus at the next timeslot it will start transmitting. At time
t = 3, nodeA transmits vectorsyB1 and yC1 to nodesB and
C respectively, withyB1 , yC1 ∈ ΠA(2). ThusΠB(3) =

〈
yB1

〉

andΠC(3) =
〈
yC1

〉
. NodeA also receives a vectory3 from

the source, and thusΠA(3) = 〈y1, y2, y3〉. Consider now the
subspacesΠA(3), ΠB(3) andΠC(3). We see thatΠB(3) ⊆
ΠA(3), andΠC(3) ⊆ ΠA(3); we thus conclude that nodesB
andC are children of nodeA. Moreover,ΠB(3) 6= ΠC(3),
which will allow us to distinguish between children of these
two nodes when we deal with larger trees.

In contrast, if Algorithm II.1 did not impose a waiting time,
and nodeA started transmitting to nodesB and C at time
t = 2, then both nodesB andC would receive the same vector
y1, i.e., ΠB(2) = ΠC(2) = 〈y1〉. In fact, at all subsequent
times, we will have thatΠB(t) = ΠC(t) = ΠA(t− 1). Thus,
we would not be able to distinguish between these two nodes.

�

S ΠS

A ΠA(t)

BΠB(t) C ΠC(t)

πA(t)

πB(t) πC(t)

Fig. 2. Directed tree with four nodes rooted at the sourceS.

The main idea in our result is that, if we consider two nodes
u andv at the network which have collected subspacesΠu(t)
andΠv(t) at timet, then, unlessu andv have a child-ancestor
relationship (i.e., are on the same branch in the tree), it holds
thatΠu(t) * Πv(t) andΠv(t) * Πu(t).

The challenge in proving this is that we deal with subspaces
evolving over time, and thus we cannot directly apply the
results in §III. For example, for the network in Figure 2,
ΠB(t) andΠC(t) are not subspaces that are selected uniformly
at random fromΠA(t); instead, they are build over time as
ΠA(t) also evolves. We will thus need the following two
results, that modify the results in§III to take into account
the time evolution in the creation of the subspaces. We start
by examining in Lemma 5 the relationship between subspaces
collected at the immediate children of a given parent node
(for example, at the childrenB and C of nodeA). These
are created by sampling the same subspaces (those at node
A). We then examine in Corollary 4 the relationship between
subspaces collected at nodes that have different parents (for
example, a node that hasB as parent and a node that hasC
as parent).

Lemma5: Suppose there exist (proper) subspacesΠ(0) ⊂
Π(1) ⊂ · · · ⊂ Π(t − 1) with dimensionsd0, . . . , dt−1,
respectively. Let us construct the set of subspacesΠu(i),
i = 1, . . . , t, as follows. SetΠu(i) =

∑i
j=1 πu(j) where

πu(j) is the span ofku(j) vectors chosen uniformly at random
fromΠ(j−1) such thatku(1) < d0 andku(j) ≤ (dj−1−dj−2)
for j = 2, . . . , t. Similarly, we construct the set of subspaces
Πv(i) =

∑i
j=1 πv(j) where for kv(j) we have similar

conditions, namely,kv(1) < d0 and kv(j) ≤ (dj−1 − dj−2)
for j = 2, . . . , t. Then we have

Πu(i) * Πv(j) and Πv(j) * Πu(i) ∀i, j ∈ {1, . . . , t},

with high probability.
Proof: Refer to Appendix A.

Corollary 4: Suppose that there exist two set of subspaces
{Πu(i)}

t−1
i=0 and{Πv(i)}

t−1
i=0 such thatΠu(0) ⊂ · · · ⊂ Πu(t−

1) and Πv(0) ⊂ · · · ⊂ Πv(t − 1). Moreover, assume that
Πu(i) * Πv(j) and Πv(j) * Πu(i) ∀i, j ∈ {0, . . . , t −
1}. Now, construct two set of subspaces{Πa(i)}ti=1 and
{Πb(i)}ti=1 by settingΠa(i) =

∑i
j=1 πa(j) and Πb(i) =

∑i
j=1 πb(j) whereπa(i) is chosen uniformly at random from

Πu(i − 1) and πb(i) is chosen uniformly at random from

8

Πv(i− 1) (with some arbitrary dimension). Then we have

Πa(i) * Πb(j) and Πb(j) * Πa(i) ∀i, j ∈ {1, . . . , t},

with high probability.
Proof: Refer to Appendix A.

Theorem3: Consider a tree of depthD(G) where each
edge has capacityc, and the dissemination Algorithm II.1.
A static global view of the network at timet, with
2D(G)− 1 < t < ⌊nc ⌋, allows to uniquely determine the tree
structure with high probability, if the waiting times are chosen
according to Definition 1.

Proof: We will say that a node of the tree is at levell
if it has distancel from the source. In a tree there exists a
unique pathPu = {S, P lu−1(u), . . . , P (u), u} from sourceS
to nodeu at level lu of the network.

If we consider a timet in steady state (where all nodes
have nonempty subspaces and none has collected the whole
space), then clearly using Algorithm II.1 for dissemination in
the network for the nodes along the pathPu it holds that

Πu(t) ⊂ ΠP (u)(t) ⊂ · · · ⊂ ΠP lu−1(u)(t) ⊂ ΠS . (6)

Note that the conditions ont ensure that the network is in
steady-state.

To identify the topology of the tree it is sufficient to show
that Πu(t) * Πv(t) for any nodev that is not inPu. Let lu
andlv be the distance ofu andv from the source, respectively.

First, we observe that, starting from the source, by applying
Lemma 5 and Corollary 4 and because of Definition 1 the
subspaces of the nodes at the same level (same distance from
the source) are different at all times. So it only remains to
check the conditionΠu(t) * Πv(t) for those nodev that are
not in the same level asu.

Consider two cases. First, iflu < lv then let v′ be the
ancestor ofv at the same level asu. By Corollary 4 we have
Πu(t) * Πv′(t) soΠu(t) * Πv(t) becauseΠv(t) ⊆ Πv′(t).

Now consider the second case,lu > lv. We start by assum-
ing Πu(t) ⊆ Πv(t) and then we will show that this assumption
leads to a contradiction. Letu′ be the ancestor ofu at the same
level of v. Then we make the following observation. If at time
t we haveΠu(t) ⊆ Πv(t) by Lemma 2 we should have had
ΠP (u)(t−1) ⊆ Πv(t) and soΠP 2(u)(t−2) ⊆ Πv(t) and finally
we should had hadΠu′(t − lu + lv) ⊆ Πv(t). But according
to Corollary 4 this is a contradiction becauseu′ andv are at
the same level.

In the above argument, we have shown thatΠP (u)(t) is the
smallest subspace containsΠu(t) among all nodes’ subspaces
at time t. So we are done.

Assume now that Theorem 3 holds. To determine the tree
structure, it is sufficient to determine the unique parent each
node has. From the previous arguments, the parent of nodeu is
the unique nodev such thatΠv(t) is the minimum dimension
subspace that containsΠu(t). Then, the parent of nodeu is
the nodev such that

v = argmin
w∈V : duw=du

dw.

As we will discuss in Section IV-C, collecting the subspace
information from the network nodes can be implemented

efficiently. The algorithm that determines the tree topology
reduces this information to only two “sufficient statistics”:
the dimension of each subspacedu = dim(Πu), ∀u ∈ V,
and the dimension of the intersection of every two subspaces
duv = dim(Πu ∩ Πv), ∀u, v ∈ V , as described in Algo-
rithm IV.1, assuming that the conditions of Theorem 3 hold.

Algorithm IV.1: TREE({du}, {duv})

for each u ∈ V

do

if du = n
then u← S

else

{
nodeu has parent the nodev with
v = argmin

w∈V : duw=du

dw

Alg. IV.1: Find the network topology for a tree.

2) Directed v.s. Undirected Network:In a tree with a single
source, since new information can only flow from the source to
each node along a single path, whether the network is directed
or undirected makes no difference. In other words, from (6),
all vectors that a node will send to its predecessor will belong
in the subspace the predecessor already has. Thus Theorem 3
still holds for undirected networks with a common mincut.

3) Different Min-Cuts: Assume now that the edges of the
tree have different capacities, i.e., assigned different rates. In
this case, the proof of Theorem 3 still holds, provided that the
condition in Theorem 3 is modified to

2D(G)− 1 < t < ⌊
n

cmax
⌋,

wherecmax = maxv∈V cv.
We underline that this theorem would not hold without the

assumption in (3) . Without this condition, it is possible that
we cannot distinguish between nodes at same level with a
common parent as explained in the following example.

Example2: If in the network in Figure 2, edgeSA has
unit capacity, while edgeAB and AC have capacity two.
In this case it is easy to see that there existst0 such that
ΠB(t) = ΠC(t) = ΠA(t− 1), ∀t ≥ t0. Clearly in this case,
we cannot distinguish between nodesB and C with this
dissemination protocol. �

B. General Topologies

Consider now an arbitrary network topology, corresponding
to a directed acyclic graph. An intuition we can get from
examining tree structures is that, we can distinguish between
two topologies provided all node subspaces are distinct. This
is used to identify the unique parent of each node. In general
topologies, it is similarly sufficient to identify the parents of
each node, in order to learn the graph topology. The following
theorem claims that having distinct subspaces is in fact a
sufficient condition for topology identifiability over general
graphs as well.

Theorem4: In a synchronous network employing random-
ized network coding overFq, a sufficient condition to uniquely
identify the topology with high probability asq ≫ 1, is that

Πu(t) 6= Πv(t) ∀ u, v ∈ V, u 6= v, (7)

9

for some timet. Under this condition, we can identify the
topology by collecting global information at timest andt+1,
i.e., two consecutive static views of the network.

Proof: Assume nodeu has the p parentsP (u) =

{u1, . . . , up}. LetΠ(u1)
u (t), . . . ,Π

(up)
u (t) denote the subspaces

node u has received from its parents up to timet, where
Πu(t) =

∑p
i=1 Π

(ui)
u (t). From construction it is clear that

Π
(ui)
u (t+ 1) ⊆ Πui

(t).
To identify the network topology, it is sufficient to decide

which nodev ∈ V is the parent that sent the subspaceΠ
(ui)
u (t)

to nodeu for eachi, and thus find thep parents of nodeu.
We claim that, provided (7) holds, nodeu has as parent the
nodev which at timet has the smallest dimension subspace
containingΠ(ui)

u (t + 1). Thus we can uniquely identify the
network topology, by two static views, at timest and t + 1,
as Algorithm IV.2 describes.

Indeed, let π
(ui)
u (t) denote the subspace that node

u receives from parentui at exactly time t, that
is, Π

(ui)
u (t+ 1) = Π

(ui)
u (t) + π

(ui)
u (t+ 1). For each i ∈

{1, . . . , p}, if π
(ui)
u (t + 1) * Πv(t) for all v ∈ V \ {ui},

clearlyΠ(ui)
u (t+1) * Πv(t) for all v ∈ V \ {ui}, and we are

done. Otherwise, using Lemma 2 and because (7) holds, with
high probability we haveπ(ui)

u (t + 1) * Πv(t) for all v ∈ V
except those nodes that their subspaces containΠui

(t). So we
are done.

Note that to identify the network topology, we need to
know, for all nodesu, the dimensiondu , dim(Πu(t)) of
their observed subspaces at timet, the dimensiond(i)u ,

dim(Π
(ui)
u (t+1)) for all parentsui of nodeu, and the dimen-

sion of the intersection ofΠ(ui)
u (t+1) with all Πw(t), w ∈ V ,

denoted asd(i)wu , dim(Π
(ui)
u (t+ 1) ∩Πw(t)). Algorithm IV.2

uses this information to infer the topology.

Algorithm IV.2: GEN({du}, {d
(i)
u }, {d

(i)
wu})

for each u ∈ V

do

if du = n
then u← S

else

for each i ∈ {1, . . . , pu}

do

nodeu has as parent the
nodev with
v = argmin

w∈V : d
(i)
wu=d

(i)
u

dw

Alg. IV.2: Find the topology of a general network.

The sufficient conditions (7) in Theorem 4, may or may not
hold, depending on the network topology and the information
dissemination protocol. Next, we will investigate for whatnet-
work topologies the conditions (7) hold for the dissemination
Algorithm II.1 so that the network is identifiable.

Lemma6: Consider two arbitrary nodesu and v, where
P (u) = {u1, . . . , upu

} andP (v) = {v1, . . . , vpv
} are the par-

ents ofu andv respectively. LetΠP (u)(t−1) =
∑pu

i=1 Πui
(t−

1), andΠP (v)(t − 1) =
∑pv

i=1 Πvi(t − 1). If Πu(t) = Πv(t)
we should have hadΠP (u)(t− 1) = ΠP (v)(t− 1) w.h.p.

Proof: SupposeΠP (u)(t− 1) 6= ΠP (v)(t− 1) and let us
assume thatΠu(t) = Πv(t) = Π. This implies that ifπu(t)

andπv(t) are subspaces collected by nodesu andv at timet
then,

Πu(t) = Πv(t) = Π

πu(t) + Πu(t− 1) = πv(t) + Πv(t− 1).

From construction, we haveΠ = Πu(t) ⊆ ΠP (u)(t − 1) and
Π = Πv(t) ⊆ ΠP (v)(t− 1).

On the other hand, since we randomly choseπ
(ui)
u (t) from

Πui
(t−1) and sinceπ(ui)

u (t) ⊆ Π (becauseπu(t) ⊆ Π) using
Lemma 2 we conclude that we should have thatΠui

(t−1) ⊆ Π
which means we should haveΠP (u)(t−1) ⊆ Π. Similarly, we
should haveΠP (v)(t − 1) ⊆ Π. As a result (w.h.p.) we have
to have

ΠP (u)(t− 1) = ΠP (v)(t− 1) = Π,

which is a contradiction, so we are done.
Corollary 5: If Πu(t) = Πv(t) = Π for t > l we should

have hadΠP l(u)(t− l) = ΠP l(v)(t− l) = Π, w.h.p.
Proof: Consider the parents of nodesu andv as supern-

odesP (u) andP (v). Using a similar argument as stated in
Lemma 6, we can conclude that the parents ofP (u) andP (v),
denoted asP 2(u) andP 2(v), should satisfy

ΠP 2(u)(t− 2) = ΠP 2(v)(t− 2) = Π.

We use this argumentl times to get the result.
Lemma7: If the dissemination protocol is in the steady

state,t ≥ Ts, we could not haveΠu(t) = Πv(t) unless nodes
u andv have the same set of ancestors at somel level above
in the network.

Proof: Becauset ≥ Ts, we havedu = dim(Πu) < n and
dv = dim(Πv) < n. Let us assumeΠu(t) = Πv(t) = Π so
we haved , du = dv. From the Corollary 5 we can write

ΠP l(u)(t− l) = ΠP l(v)(t− l) = Π,

for every l ≥ 1. Increasingl, two cases may happen. First,
eitherP l(u) or P l(v) contains the source nodeS that results
in dim(ΠP l(u)(t− l)) = n or dim(ΠP l(v)(t− l)) = n which
is a contradiction sinced < n. Second, nodesu and v have
the same set of ancestors at some levell.

Up to here, we have shown that assuming the dissemination
protocol is in the steady state the subspaces of two arbitrary
nodes are equal only if they have the same ancestors at some
level above in the network. The following result, Theorem 5
states sufficient conditions that make the nodes’ subspace
different for dissemination Algorithm II.1.

Theorem5: Suppose two arbitrary nodesu andv have the
same set of parentsP l = P l(u) = P l(v) at some levell. The
following conditions are sufficient so that the dissemination
Algorithm II.1 satisfies condition (7)6:

ĉu = min-cut(P l, u) ≤ min-cut(S, P l) = cp,

ĉv = min-cut(P l, v) ≤ min-cut(S, P l) = cp.

Proof: Consider the set of nodes inP l. From the defi-
nition we know that there exists at least one path of lengthl
from each node inP l to the nodeu. But also there might exist

6Note that the min-cut to nodeu, cu = min-cut(S, u), equalscu =
min{ĉu, cp}.

10

paths of length less thanl from some nodes inP l to u. If this
is the case, because the topology is a directed acyclic graph,
we can find a subsetP ′ of the nodes inP l such that it forms a
cut for the nodeu and the shortest path from each node inP ′

to u is l; see Figure 3. Moreover, we have min-cut(S, P ′) = cp
and min-cut(P ′, u) = ĉu.

Now assume thatP ′ = {p1, . . . , pk} such thatτp1 ≤ · · · ≤
τpk

. Let a1, . . . , ak, be the accumulative min-cut fromS to
each node inP ′. By this we mean thata1 = cp1 and a2 is
the amount of increase in the min-cut fromS by adding node
p2 and so on. We similarly consider the accumulative min-cut
values frompi to u and denote these byb1, . . . , bk. So we
have

∑k
j=1 aj = cp and

∑k
j=1 bj = ĉu.

From definition of the waiting times (Definition 1) we can
write

dP ′(τ1) ≥ a1 + 1,

dP ′(τ2) ≥ dP ′(τ1) + (τ2 − τ1)a1 + a2,

dP ′(τk) ≥ dP ′(τk−1) + (τk − τk−1)
k−1∑

j=1

aj + ak.

Then we have

dP l(τk) ≥ dP ′(τk)

≥ (τ2 − τ1)a1 + · · ·+ (τk − τk−1)
k−1∑

j=1

aj +
k∑

j=1

aj + 1. (8)

For du we can also write

du(τ1 + l) ≤ b1,

du(τ2 + l) ≤ du(τ1 + l) + (τ2 − τ1)min[a1, b1] + b2,

du(τk + l) ≤ du(τk−1) + (τk − τk−1)min[

k−1∑

j=1

aj ,

k−1∑

j=1

bj] + bk,

or

du(τk + l) ≤ (τ2 − τ2)min[a1, b1]

+ · · ·+ (τk − τk−1)min[

k−1∑

j=1

aj,

k−1∑

j=1

bj] +

k∑

j=1

bj. (9)

From (8), (9) and the theorem assumptions we conclude that
du(τk + l) < dP l(τk). Now for ∆t timeslots later we write

du(τk + l +∆t)
(a)
≤ du(τk + l) + ĉu∆t
(b)
< dP l(τk) + cp∆t
(c)
= dP l(τk +∆t),

where (a) is true becauseu receives packets fromP l with
rate at most̂cu; (b) is true becausedu(τk + l) < dP l(τk)
and ĉu ≤ cp; and finally (c) is true because afterτk all of
the nodes inP ′ receive packets at rate equal to their min-cut
which means thatP ′ (the same is true forP l) receives packets
at rate equal to its min-cutcp.

The same inequality holds for the dimension of
Πv(τk + l+∆t). Thus for time t > τk + l we cannot
haveΠP l(t− l) = Πu(t) andΠP l(t− l) = Πv(t) if ĉu ≤ cp
and ĉv ≤ cp. So using Corollary 5 we are done.

DE

C

u

P (u)

A

B
P 2(u)

P ′

Fig. 3. Sets used in the proof of Theorem 5: the setP (u) contains the
parents of nodeu at distancel = 1; the setP 2(u) contains the set of parents
at distancel = 2; while P ′ is the subset ofP 2(u) at distance no less than
l = 2.

Intuitively, what Theorem 5 tell us is that, if for a nodeu
there exists a path that does not belong in any cut between the
source and another nodev, then nodesu andv will definitely
have distinct subspaces. The only case where nodesu and
v may have the same subspace is, if they have a common
set of parents, a common cut. Even then, they would need
both of them to receive all the innovative information that
flows through the common cut at the same time. Note that the
condition of Theorem 5 are also necessary for identifiably for
the special case of tree topologies, such as the topology in
Figure 2.

C. Practical Considerations

We here argue that our proposed scheme can lead to a
practical protocol, where nodes passively collect information
during the dissemination, and send once a small amount of
information to the central node in charge of the topology
inference. In particular, we assume that the nodes follow
the information dissemination protocol and at some point the
central node query them to report the subspaces they gather
at a specific7 time t.

We now calculate the communication cost (total number
of bits required to be transmitted to a central node) of
the proposed passive inference algorithm. Each node has to
transmit at most2∆i(G) subspaces to the central node where
∆i(G) is the maximum in-degree of nodes in the network.
There areϑ nodes in the network so2ϑ∆i(G) subspace have
to be transmitted. The total number of subspaces ofΠS (which
itself is ann-dimensional space) is

n∑

i=1

[
n

i

]

q

≈
n∑

i=1

qi(n−i) ≈ qn
2/4,

where
[
n
i

]

q
is the Gaussian number, the number ofi-

dimensional subspaces of ann-dimensional space. To approx-
imate the Gaussian number we use [32, Lemma 1]; note that
the approximation holds for largeq.

7We assume the query is send before timet actually occurs; Also note that
if the number of source packetsn is much larger than the min-cut to each
node, and if we have an estimate for∆i(G), a central node can with high
probability select at timet in steady state. A node can also send a feedback
message to inform the central node if it is not at steady stateat time t.

11

So to encode one of the subspace ofΠS we need approx-
imately n2

4 log2 q bits. As a result, the total number of bits
need to be transmitted to the central node is at most

2n2∆i(G)ϑ

4
log2 q.

Clearly, the complexity depends on the size ofn, the
number of packets that the source transmits. In our work we
assume thatn is large enough, so that the network enters in
steady state; on the other hand, other considerations such as
decoding complexity at network nodes, would requiren to take
moderate values. Note that, for our algorithm to work, (i.e., to
sample the network while in the steady state) we only require
that n = 2βcmaxD(G) (Corollary 3), whereβ > 1 is some
constant that determines how many time slots the network is
in the steady state. Ifn has such a size, the maximum number
of bits that need to be transmitted per node (communication
cost per node) is

Rcom-cost/ND≈ 2β2c2maxD(G)2∆i(G) log2 q bits.

In the above equationβ, cmax, and∆i(G) are some constants.
The only parameter that depends on the network size is
D(G). However for the most of practical content distribution
networks the longest path of network is kept small to ensure
a good connectivity between nodes in the network (see for
example [34]).

To give a specific example for a possible communication
cost, let us consider a practical scenario whereq = 28,
cmax = 1, β2 = 5, ∆i(G) = 5, and D(G) = 10. Then
we haveRcom-cost/nd≈ 4 kilobytes. In contrast, in a practical
dissemination scenario (ex. of video) we would disseminatea
large number of information packets each possibly as large
as a few megabytes; thus the overhead of the topological
information would not be significant.

V. L OCATING BYZANTINE ATTACKERS

In this section we explore a problem that is dual to topology
inference: given complete knowledge of the topology, we
leverage subspace properties to identify the location of a
malicious Byzantine attacker.

In a network coded system, the adversarial nodes in the
network disrupt the normal operation of the information flow
by inserting erroneous packets into the network. This can be
done by inserting spurious data packets into their outgoing
edges. One way in which these erroneous packets can be
prevented from disrupting information flow is by reducing the
transmission rate to below the min-cut of the network, and
using the redundancy to protect against errors; [20], [21],[22].
One such technique, using subspaces to code information was
proposed in [17]. In this approach, the source sends a basis
of the subspace corresponding to the message. In the absence
of errors, the linear operations of the intermediate nodes do
not alter the sent subspace, and hence the receiver decodes the
message by collecting the basis of the transmitted subspace.
A malicious attacker inserts vectors that do not belong in
the transmitted subspace. Therefore, if the message codebook
uses subspaces that are “far enough” apart (according to an
appropriately defined distance measure), then one can correct

these errors [17]. Note that in this technique, we do not need
any knowledge of the network topology for the error correction
mechanism. All that is needed is that the intermediate nodes
do not alter the transmitted subspace (which can be done if
they do linear operations).

The approach of this section to locating adversaries uses the
framework developed in the previous sections, where it was
shown that under randomized network coding, the subspaces
gathered by the nodes of the network provide information
about the topology. Therefore, the basic premise in this section
is to use the structure of the erroneous subspace inserted by
the adversary to reveal information about its location, when
we already know the network topology.

A. Problem Formulation

Consider a network represented as a directed acyclic graph
G = (V,E). We have a source, sending information tor
receivers, and one (or more) Byzantine adversaries, located
at intermediate nodes of the network. We assume complete
knowledge of the network topology, and consider the source
and the receivers to be trustworthy (authenticated) nodes,that
are guaranteed not to be adversaries.

Suppose sourceS sends n vectors, that span ann-
dimensional subspaceΠS of the spaceFℓ

q, where we assume
q ≫ 1. In particular, in this section we will consider (without
loss of generality) subspace coding, whereΠS belongs to a
codebookC, ΠS ∈ C designed to correct network errors and
erasures [17].

In the absence of any adversaries in the network each
receiverRi, i = 1, . . . , r, can decode the exact spaceΠS . Now
assume that there is an adversary, Eve, who attacks one of the
nodes in the network by combining aδ-dimensional subspace
Πε with its incoming space and sending the resulting vectors
to its children. Then the receiverRi collects some linearly
independent vectors that span a subspaceΠRi

. We can write

ΠRi
= Hi(ΠS +Πε),

whereHi(Π) is a linear operator. This operator models the
linear transformation that the network induces on the inserted
source and adversary packets.

We assume that the receiver is able to at least detect that a
Byzantine attack is under way. Moreover, we assume that the
receiver is able to decode the subspaceΠS that the source has
sent. This might be, either because the receiver has correctly
decoded the sent message (i.e., using code construction from
[17]), or, because after detecting the presence of an attackhas
requested the source subspace through a secure channel from
the source node.

We can restrict the Byzantine attack in several ways, de-
pending on the edges where the attack is launched, the number
of corrupted vectors inserted, and the vertices (network nodes)
that the adversary has access to. In this section we will
distinguish between the cases where

I. there is a single Byzantine attacker located in a vertex
of the network, and

II. there are multiple independent attackers, located on
different vertices, that act without coordinating with each
other.

12

We assume that each attacker located on a single vertex is able
to corrupt any outgoing edges by inserting arbitrary erroneous
information. However, in this work we only consider the case
where the attackers inject independent information without any
coordination among themselves.

We are interested in understanding under what conditions
we can uniquely identify the attacker’s location (or, up to
what uncertainty we can identify the attacker), under the above
scenarios.

B. The Case of a Single Adversary

In this section we focus on the case where we want to locate
a Byzantine adversary, Eve, controlling asinglevertex of the
network graph.

In §V-B1 we illustrate the limitation of usingonly the
information the receivers have observed along with the knowl-
edge of the topology, to locate the adversary. This motivates
requiring additional information from the intermediate nodes
related to the subspaces observed by them. In§V-B2, we
show that such additional information allows us to localize
the adversary either uniquely or within an ambiguity of at
most two nodes.

1) Identification using only Topological Information:In
order to illustrate the ideas, we will examine the case wherethe
corrupted packets are inserted on a single edge of the network,
say edgeeA. The extension to the cases where multiple edges
get corrupted is easy.

Since each receiverR knows the subspaces{Π(i)
R } it has

received from its| In(R)| parents, it knows whether what it
received is corrupted or not (a subspace ofΠS or not). Using
this, we can infer some information regarding topological
properties that the edgeeA should satisfy. In particular we
have the following result, Lemma 8.

Lemma8: Let Pe denote the set of paths8 starting from
the source and ending at edgee. Then, if EC is the set of
incoming edges to receivers that bring corrupted packets, while
ES the set of incoming edges to receivers that only bring
source information, the edgeeA belongs in the set of edges
EA, with

EA ,

{
⋂

e∈EC

Pe −
⋃

e∈ES

Pe

}

.

Proof: If R receives corrupted vectors from an incoming
edgee then there exists at least one path that connectseA to
e. TheneA is part of at least one path inPe.

Conversely, if a receiverR does not receive corrupted
packets from an incoming edgee, theneA does not form part
of any path inPe. That is, there does not exist a path that
connectseA to e.

The following example illustrates this approach.
Example3: Consider the network in Figure 4, and assume

thatR1 receives corrupted packets from edgeDR1 and uncor-
rupted packets fromAR1, whileR2 receives only uncorrupted
packets. ThenEA = {DR1} and the attacker is located on
nodeD. �

8In the following we are going to equivalently think ofPe as the set of all
edges that take part in these paths.

S

A

B

C

DR1 R2

Fig. 4. The sourceS distributes packets to receiversR1 andR2.

In Example 3, we were able to exactly identify the location
of the adversary, because the setEA contained a single
edge, and nodeR1 is trustworthy. It is easy to find network
configurations whereEA contains multiple edges, or in fact
all the network edges, and thus we can no longer identify the
attacker. The following example illustrates one such case.

Example4: Consider the line network shown in Figure 5.
Suppose the attacker is nodeA. If the receiverR sees a
corrupted packet, then using just the topology, the attacker
could beany of the other nodes in the line network. This
illustrates that just the topology and receiver information could
lead to large ambiguity in the location of the attacker. �

Therefore, Example 4 motivates the ideas examined in
§V-B2 which obtain additional information and utilize the
structural properties of the subspaces observed.

2) Identification using Information from all Network Nodes:
We will next discuss algorithms where a central authority,
which we will call controller, requests from all nodes in the
network to report some additional information, related to the
subspaces they have received from their parents. The adversary
could send inaccurate information to the controller, but the
other nodes report the information accurately. Our task is to
design the question to the nodes such that we can locate the
adversary, despite its possible misdirection.

The controller may ask the nodes of the following types of
information, listed in decreasing order of complexity:

Information 1: Each nodev sends all subspacesΠ(i)
v it

has received from its parents, whereΠv =
∑

i∈P (v) Π
(i)
v .

Information 2: Each nodev sends a randomly chosen
vector from each of the received subspacesΠ

(i)
v (| In(v)|

vectors in total).
Information 2 is motivated by the following well-known

observation, see Lemma 2: letΠ1 andΠ2 be two subspaces
of Fn

q , and assume that we randomly select a vectory from
Π1. Then, forq ≫ 1, y ∈ Π2 if and only if Π1 ⊆ Π2. Thus,
a randomly selected vector fromΠv allows to check whether
Πv ⊆ ΠS or not.

In fact, we will show in this section that for a single
adversary it is sufficient to use9 Information 2, and classify
the edges of the network by simply testing whether the
information flowing through each edge is a subspace ofΠS

or not (i.e., is corrupted or not).
Theorem6: Using Information 1, by splitting the network

edges into corrupted and uncorrupted sets, we can narrow the

9Using Information 2 these statements are made with high probability, i.e.,
the probability goes to one as field sizeq → ∞.

13

S A B C D R

Fig. 5. The sourceS sends information to receiverR over a line network.

location of the adversary up to a set of at most two nodes.
With Information 2, the same result holds w.h.p.

Proof: The network is a directed acyclic graph, so we
can impose a partial order on the edges of the graph, such that
e1 > e2 if e1 is an ancestor edge ofe2 (i.e., there exists a path
from e1 to e2). Then having Information 1 or Information 2,
we can divide the edges of the network into two sets: the set
of edgesEC through which are reported to flow corrupted
subspaces, and the remaining edgesES through which the
source information flows so we haveE = ES ∪EC andES ∩
EC = ∅. Note that all the outgoing edges from the source
belong inES .

Nodes in the network perform randomized network coding
so every node that receives corrupted information on at least
one of its incoming edges makes all of the outgoing edges
polluted w.h.p. Lettv be the number of corrupted outgoing
edges of a nodev where we have1 ≤ tv ≤ |Out(v)|. For
each nodev that is not an adversary we have eithertv = 0 or
tv = |Out(v)|.

Now, to prove the theorem we consider the following
possible cases.

1) If the adversary Eve corruptstA outgoing edges where
1 < tA < |Out(A)| we can identify the node she has
attacked uniquely because its behavior is different from
all other nodes.

2) If she corrupts all of its outgoing edges,tA = |Out(A)|,
then she can fraud us by declaring that one of the node’s
incoming edges is corrupted. IfA declares more than
one of the incoming edges as corrupted we can find its
location uniquely.

3) She can also corrupt only one of its outgoing edges,
tA = 1, and pretends that its children is in fact the
adversary by declaring all of its incoming edges bring
non-corrupted information. She cannot declare that any
of its incoming edges are polluted since then we may
find its location uniquely.

In all of the above cases the adversary is on the boundary
of two setsES andEC and the ambiguity about its location
is at most withing a set of two vertices where this set contains
those two vertices that are connected by the corrupted edge
with highest order among all corrupted edges (recall that we
can compare all of the corrupted edges using the imposed
partial order).

C. The Case of Multiple Adversaries

In the case of a single adversary, it was sufficient to divide
the set of edges into two sets,ES andEC , as described in the
previous section. In the presence of multiple adversaries,this
may no longer be sufficient. An additional dimension is that
realistically, we may not know the exact number of adversaries
present. In the following, we discuss a number of algorithms,
that offer weaker or stronger identifiability guarantees.

1) Identification using only Topological Information:The
approach in§V-B1 can be directly extended in the case
of multiple adversaries, but again, offers no identifiability
guarantees.

Example5: Consider again the network in Figure 4, and
assume thatR1 receives corrupted packets only from edge
DR1 while R2 receives corrupted packets only from edge
DR2. ThenEA = {AD,CD,DR1, DR2} and (depending on
our assumptions) we may have,

- a single adversary located on nodeD,
- two adversaries, located on nodesA andC,
- two adversaries, located on nodesA andD, or nodesC

andD, or
- three adversaries, located on nodesA, C, andD.

�

2) Identification using Splitting:Similarly to §V-B2, using
Information 1 or Information 2, we can divide the set of
edges into two setsES and EC , depending on whether the
information flowing through each edge belongs inΠS or
not. Depending on the network topology, we may be able to
uniquely identify the location of the attackers. However, this
approach, although it guarantees to find at least one of the
attackers (within an uncertainty of at most two nodes), does
not necessarily find all the attackers, even if we know their
exact number.

To show this let us state the following definition.
Definition 4: We say that nodev is in the shadow of node

A, if there exists a path that connects every incoming edge of
v to a corrupted outgoing edge ofA.
Then we have the following result.

Lemma9: By splitting the network edges into two setsES

andEC we cannot identify adversarial nodes that are in the
shadow of an adversaryA.

Proof: This is because if an attacker is in the shadow of
another attacker, it may corrupt only already corrupted vectors
and thus not incur a detectable effect. So we cannot distinguish
between an attacker and a normal node that are in the shadow
of A.

The following example illustrates these points.
Example6: For the example in Figure 4, assume that each

attacker corrupts all its outgoing edges, and consider the
following two situations:

1) Assume that nodesA and C are attackers. IfA
reports truthfully while C lies we get EC =
{AD,AR1, DR1, DR2, BC,CR2, CD}, which allows
to identify the attackers.

2) Assume that nodesB andD are attackers. Then we say
that nodeD is in the shadow of nodeB, as it corrupts
only already packets corrupted byB. Indeed, ifEC =
{SB,BA,BC,AD,AR1, DR1, DR2, BC,CR2, CD},
knowing that the source is trustworthy, we can infer that
nodeB is an attacker. However, any of the nodesA,
C, andD can equally probably be the second attacker.
All these nodes are in the shadow of nodeD.

�

Theorem7: Using Information 1 it is possible to narrow
down the location of those adversaries that have the highest

14

order in the network using the splitting method. The same
result holds for Information 2 w.h.p.

Proof: As stated in the proof of Theorem 6 we can impose
a partial order on the edges of the network graph. Then, by
using Information 1 or Information 2 we may split the network
edges into two setsES andEC .

Because every node in the network performs randomized
network coding, there are only two possibilities for each
adversary to corrupt its outgoing edges and report subspaces
for its incoming edges such that it is not located uniquely.
These are as follows.

1) She corrupts some (or all) of its outgoing edges but
reports its incoming edges as uncorrupted.

2) She corrupts all of its outgoing edges and reports some
(at least one) of its incoming edges as corrupted.

Now, let us consider the set of all the corrupted edges that
have highest order with respect to other corrupted edges and
cannot be compared against each other. For each of the above
cases there should be at least one adversary connected to every
edge in this set.

3) Identification using Subset Relationships:In this subsec-
tion we develop a new algorithm to find the adversaries which
is based on Information 1.

For each nodeu ∈ V , let P (u) = {u1, . . . , upu
} denote

the set of parent nodes ofu. We are going to treatP (u) as a
super node, and use the notationΠP (u) =

∑pu

i=1 Πui
for the

union of the subspaces of all nodes inP (u). Also recall that
Π

(u)
v denotes the subspace received by nodev from nodeu.
Our last algorithm checks, for every nodeu ∈ V , whether

Π(u)
v

?
⊆ ΠP (u) ∀v ∈ V : euv ∈ E. (10)

Then we have the following result, Theorem 8.
Theorem8: If the pairwise distance between adversaries is

greater than two, it is possible to find the exact number as
well as the location of the attackers (within an uncertaintyof
parent-children sets) using the subset method.

Proof: First, let us focus on a single adversary case where
A ∈ V is the node attacked by the adversary. Then we will
generalize the idea for an arbitrary number of adversaries.

If (10) is satisfied for all children ofu, we know that node
u is not an adversary. If the relationship is not satisfied, that is
Π

(u)
v * ΠP (u) for at least one child ofu, we consider node

u as a potential candidate for being an adversary. For sure we
know that

Π(A)
v * ΠP (A) ∀v ∈ V : eAv ∈ E,

but depending on the subspace that the adversary reports, the
relation (10) may not be also satisfied for other nodes. Based
on what the adversary reports there would be two possible
cases.

If the adversary pretends that it is a trustworthy node (just
declares the received subspace from its parents) the above
relation also fails for the children ofA who receive corrupted
subspaces. On the other hand, if the adversary tells the truth
and declares its corrupted subspace, we have

Π
(u)
A * ΠP (u) ∀u ∈ V : uA ∈ E.

Thus the ambiguity set we have identified includes the ad-
versary and its parents and/or its children depending on the
adversary’s report.

Repeating this procedure for every node in the network,
we can identify sets of potential adversaries. We know that
depending on the adversaries action there exists ambiguity
in finding their exact location. In fact in the worst case, the
uncertainty is within a set of nodes including the adversary, its
parents and its children. So if the distance between adversaries
is greater than two, the “uncertainty” sets do not overlap. In
this case we can easily distinguish between different adver-
saries.

This procedure allows to identify adversaries (within the
mentioned parent-children ambiguity set), even if one is inthe
shadow of another, and even if we do not know their exact
number, provided they are “far enough” in the network to be
distinguishable.

VI. PRACTICAL IMPLICATIONS FORTOPOLOGY

MANAGEMENT

In §IV, we demonstrated that using subspaces of all nodes,
we can infer the network topology under certain conditions.In
this section, we will show that even from what a single node
observes, it is possible to get some information regarding the
bottlenecks and clustering in the network.

Leveraging this observation in the context of P2P networks,
we propose algorithms that use this information in a distributed
peer-initiated manner to avoid bottlenecks and clustering.

A. Problem Statement and Motivation

In peer-to-peer networks that employ network coding for
content distribution (see for example Avalanche [3], [4])
we want to create and maintain a well-connected network
topology, to allow the information to flow fast between the
nodes; however, this is not straightforward. Peer-to-peerare
very dynamically changing networks, where hundreds of nodes
may join and leave the network within seconds. All nodes in
this network are connected to a small number of neighbors
(four to eight). An arriving node is allocated neighbors among
the active participating nodes10, which accept the solicited
connection unless they have already reached their maximum
number of neighbors. As a result, nodes that arrive at around
the same time tend to get connected to each other, since they
are all simultaneously available and looking for neighbors.
That is, we have formation of clusters and bottlenecks in the
network.

To avoid this problem, one method adopted in protocols is to
ask all nodes to periodically drop one neighbor and reconnect
to a new one among an active peers list. This randomized
rewiring results in a fixed average number of reconnections per
node independently of how good or bad is the formed network
topology. Thus to achieve a good, on the average, performance
in terms of breaking clusters, it entails a much larger number
of rewiring than required, and unnecessary topology changes.

10This is usually done by a central node which we call it (following
Avalanche) “registrat”. This is the central authority thatkeeps the list of all
nodes in the network and gives every new node a set of neighbors.

15

(a)
S

A

B

C

D

(b)

S

A

B

C

D

Fig. 6. The sourceS distributes packets to the peersA, B, C andD over
the overlay network (a), that uses the underlying physical network (b).

An alternative approach is to have peers initiate topology
rewirings when they detect they are in a cluster. Clearly
a central node could keep some structural information,i.e.,
keep track of the current network topology, and use it to
make more educated choices of neighbor allocations. However,
the information this central node can collect only reflects
the overlay network topology, and is oblivious to bandwidth
constraints from the underlying physical links. Acquiring
bandwidth information for the underlying physical links atthe
central node requires costly estimation techniques over large
and heterogeneous networks, and steers towards a centralized
network operation. We will argue that such bottlenecks can
be inferred almost passively in a peer-initiated manner, thus
alleviating these drawbacks.

Here, we will show that the coding vectors the peers receive
from their neighbors can be used to passively infer bottleneck
information. This allows individual nodes to initiate topology
changes to correct problematic connections. In particular, peers
by keeping track of the coding vectors they receive can detect
problems in both the overlay topology and the underlying
physical links. The following example illustrates these points.

Example7: Consider the toy network depicted in Fig-
ure 6(a) where the edges correspond to logical (overlay
network) links. The sourceS hasn packets to distribute to
four peers. NodesA, B andC are directly connected to the
sourceS, and also among themselves with logical links, while
nodeD is connected to nodesA, B andC. In this overlay
network, there exist three edge-disjoint paths between source
and any other nodes.

Assume now (as shown in Figure 6(b)) that the logical links
SA, SB, SC share the bandwidth of the same underlying
physical link, which forms a bottleneck between the source and
the remaining nodes of the network. As a result, assume the
bandwidth on each of these links is only1/3 of the bandwidth
of the remaining links. A central node (registrat), even if
it keeps track of the complete logical network structure by
querying each node asking about its neighbors, is oblivious
to the existence of the bottleneck and the asymmetry between
the link bandwidths.

NodeD however, can infer this information by observing
the coding vectors it receives from its neighborsA, B and
C. Indeed, when nodeA receives a coded packet from the
source, it will forward a linear combination of the packets it
has already collected to nodesB and C and D. Now each

of the nodesB and C, once they receive the packet from
nodeA, they also attempt to send a coded packet to nodeD.
But these packets will not bring new information to nodeD,
because they will belong in the linear span of coding vectors
that nodeD has already received. Similarly, when nodesB
and C receive a new packet from the source, nodeD will
end up being offered three coded packets, one from each of
its neighbors, and only one of the three will bring to nodeD
new information. �

More formally, the coding vectors nodesA, B andC will
collect will effectively span the same subspace; thus the coded
packets they will offer to nodeD to download will belong in
significantly overlapping subspaces and will thus be redundant
(we formalize these intuitive arguments in§VI-B). NodeD can
infer from this passively collected information that thereis a
bottleneck between nodesA, B, C and the source, and can
thus initiate a connection change.

B. Theoretical Framework

Here we use the same notations introduced in§II. For
simplicity we will assume that the network is synchronous11.
Nodes are allowed to transmit linear combinations of their
received packets only at clock ticks, at a rate equal to the
adjacent link bandwidth.

Now we use the framework of§III to investigate the
information that we can obtain from the local information ofa
node’s subspace. From notations defined in§II, we know that
for an arbitrary nodev we can write

Πv(t) =
∑

i∈P (v)

Π(i)
v (t).

We are interested in understanding what information we can
infer from these received subspacesΠ

(i)
v , i ∈ P (v), about

bottlenecks in the network. For example, the overlap of
subspaces from the neighbors reveals some information about
bottlenecks. Therefore, we need to show that such overlaps
occur due to topological properties and not due to particular
random linear combinations chosen by the network code.

Let us assume that the subspacesΠ
(i)
v a nodev receives

from its set of parentsP (v) have an intersection of dimension
d. Then we have the following observations.

Observation1: The subspacesΠ(i)
v , i ∈ P (v), of the neigh-

bors have an intersection of size at leastd (see Corollary 1).
Observation2: The min-cut between the set of nodesP (v)

and the source is smaller than the min-cut between the node
v and setP (v) (see Theorem 2).
In the following, we will discuss algorithms that use such
observations for topology management.

C. Algorithms

Our peer-initiated algorithms for topology management con-
sist of three tasks:

1) Each peer decides whether it is satisfied with its con-
nection or not, using adecision criterion.

11This is not essential for the algorithms but simplifies the theoretical
analysis.

16

2) An unsatisfied peer sends arewiring request, that can
contain different levels of information, either directly to
the registrat, or to its neighbors (these are the only nodes
the peer can communicate with).

3) Finally, the registrat, having received rewiring requests,
allocates neighborsto nodes to be reconnected.

The decision criterion can capitalize on the fact that over-
lapping received subspaces indicate an opportunity for im-
provement. For example, in the first algorithm we propose
(Algorithm 1), a node can decide it is not satisfied with a
particular neighbor, if it receivesk > 0, non-innovative coding
vectors from it, wherek is a parameter to be decided. Then
it has each unsatisfied node directly contact the registrat and
specify the neighbor it would like to change. The registrat
randomly selects a new neighbor. This algorithm, as we
demonstrate through simulation results, may lead to more
rewirings than necessary: indeed, all nodes inside a cluster
may attempt to change their neighbors, while it would have
been sufficient for a fraction of them to do so.

Our second algorithm (Algorithm 2) uses a different de-
cision criterion: for every two neighborsu and v, each peer
computes the rate at which the received joint spaceΠ̂u + Π̂v

and intersection spacêΠu∩ Π̂v increases. If the ratio between
these two rates becomes greater than a thresholdT , the node
decides it would like to change one of the two neighbors.
However, instead of directly contacting the registrat, it uses a
decentralized voting method that attempts to further reduce
the number of reconnections. Then the registrat randomly
selects and allocates one new neighbor for the nodes have
sent rewiring request.

Our last proposed algorithm (Algorithm 3), while still peer-
initiated and decentralized, relies more than the two previous
ones in the computational capabilities of the registrat. The
basic observation is that, nodes in the same cluster will not
only receive overlapping subspaces from their parents, but
moreover, they will end up collecting subspaces with very
small distance (this follows from Theorem 2 and Corollary 1
and is also illustrated through simulation results in§VI-D; see
Figure 8). Each unsatisfied peerv sends a rewiring request
to the registrat, indicating to the registrat the subspaceΠv it
has collected. A peer can decide it is not satisfied using for
example the same criterion as in Algorithm 2.

The registrat waits for a short time period, to collect requests
from a number of dissatisfied nodes. These are the nodes
of the network that have detected they are inside clusters. It
then calculates the distance between the identified subspaces
to decide which peers belong in the same cluster. While
exact such calculations can be computationally demanding,
in practice, the registrat can use one of the many hashing
algorithms to efficiently do so. Finally the registrat breaks the
clusters by rewiring a small number of nodes in each cluster.
The allocated new neighbors are either nodes that belong in
different clusters, or, nodes that have not send a rewiring
request at all.

We will compare our proposed algorithms against the
Random Rewiringcurrently employed by many peer-to-peer
protocols (e.g., see [3], [4], [34]). In this algorithm, each
time a peer receives a packet, with probabilityp contacts the

registrat and asks to change a neighbor. The registrat randomly
selects which neighbor to change, and randomly allocates a
new neighbor from the active peer nodes.

1

23

4

5

6

7

8

9
10

11

12

13

14

15

16

17

18 19

20

2122

23 24

25

26
27

28

29

30

Topolog of a network with 3 clusters.

Fig. 7. A sample of topology with three clusters: cluster1 contains nodes
1–10, cluster2 nodes11–20 and cluster3 nodes21–30.

D. Simulation Results

For our simulation results we will start from randomly
generated topologies similar to Figure 7, that consists of30
nodes connected into three distinct clusters. The source is
node1, and belongs in the first cluster. The bottleneck links
are indicated with arrows (and thus indicate the underlying
physical link structure). Our first set of simulation results
depicted in Figure 8 show that the subspaces within each
cluster are very similar, while the subspaces across clusters
are significantly different, where we use the distance measure
DS(·, ·) defined in (2). These results indicate for example
that knowledge of these subspaces will allow the registrat to
accurately detect and break clusters (Algorithm 3).

Our second set of simulation results considers again topolo-
gies with three clusters: cluster1 has15 nodes and contains the
source, cluster2 has also15 nodes, while the number of nodes
in cluster3 increases from15 to 250. During the simulations
we assume that the registrat keeps the nodes’ degree between
2 and5, with an average degree of3.5. All edges correspond
to unit capacity links.

We compare the performance of the three proposed algo-
rithms in§VI-C with random rewiring. We implemented these
algorithms as follows. For random rewiring, every time a
node receives a packet it changes one of its neighbors with
probability p = 8

500 . For Algorithm 1, we use a parameter
of k = 10, and check whether the non-innovative packets
received exceed this value every four received packets. For
Algorithm 2, every node checks each received subspaces every
four received packets using the threshold valueT = 1. Finally
for Algorithm 3, we assume that nodes use the same criterion
as in Algorithm 2 to decide whether they form part of a cluster,
again with T = 1. Dissatisfied nodes send their observed
subspaces to the registrat. The registrat assigns nodesu andv
in the same cluster ifdS(Πu,Πv) ≤ 7.

Table I compares all algorithms with respect to the average
collection time, defined as the difference between the time a
peer receives the first packet and the time it can decode all
packets, and averaged over all peers. All algorithms perform
similarly, indicating that all algorithms result in breaking the
clusters. It is important to note that the average collection
time is in terms of number of exchanges needed anddoes not

17

0 20 40 60 80 100
0

2

4

6

8

10

12

14

16

18

Time (Round)

Av
er

ag
e

Di
st

an
ce

Average distance between clusters, links that connect clusters have capacity 0.1

Dst(1,1)
Dst(1,2)
Dst(1,3)
Dst(2,2)
Dst(2,3)
Dst(3,3)

(1,2)

(1,3)

(1,1)

(2,3)

(2,2) (3,3)

0 5 10 15 20 25 30 35 40
0

2

4

6

8

10

12

14

Time (Round)

Av
er

ag
e

Di
st

an
ce

Average distance between clusters, links that connect clusters have capacity 1

Dst(1,1)
Dst(1,2)
Dst(1,3)
Dst(2,2)
Dst(2,3)
Dst(3,3)

(2,3)

(2,2)

(1,2)

(3,3)

(1,1)

(1,3)

Fig. 8. Simulation results for the topology in Figure 7, withbottleneck link capacity values equal to0.1 (left) and1 (right).

account for the delays incurred due to rewiring. We compare
the number of such rewirings needed next.

Figure 9 plots the average number of rewirings each algo-
rithm employs. Random rewiring incurs a number of rewirings
proportional to the number of P2P nodes, and independently
from the underlying network topology. Our proposed algo-
rithms on the other hand, adapt to the existence and size
of clusters. Algorithm3 leads to the smallest number of
rewirings. Algorithm2 leads to a larger number of rewirings,
partly due to that the new neighbors are chosen randomly
and not in a manner that necessarily breaks the clusters.
The behavior of algorithm1 is interesting. This algorithm
rewires any node that has received more thank non-innovative
packets. Consider cluster3, whose size we increase for the
simulations. Ifk is small with respect to the cluster size, then
a large number of nodes will collect close tok non-innovative
packets; thus a large number of nodes will ask for rewirings.
Moreover, even after rewirings that break the cluster occur,
some nodes will still collect linearly dependent information
and ask for additional rewirings. As cluster3 increases in size,
the information disseminates more slowly within the cluster.
Nodes in the border, close to the bottleneck links, will now be
the ones to first ask for rewirings, long before other nodes in
the network collect a large number of non-innovative packets.
Thus once the clusters are broken, no new rewirings will be
requested. This desirable behavior of Algorithm1 manifests
itself for large clusters; for small clusters, such as cluster2, the
second algorithm for example achieves a better performance
using less reconnections.

50 100 150 200 250 300 350 400 450 500 550
0

100

200

300

400

Total number of P2P nodes

A
ve

ra
ge

 n
um

be
r

of
 r

ew
iri

ng
s

Random
Algo1
Algo2
Algo3

Fig. 9. Average number of rewirings, for a topology with three clusters:
cluster1 has15 nodes, cluster2 has15 nodes, while the number of nodes
in cluster3 increases from20 to 250 as described in Table I.

VII. C ONCLUSIONS ANDDISCUSSION

In this work we explored the properties of subspaces each
node collects in networks that employ randomized network

TABLE I
AVERAGE COLLECTION T IME

Topology Random Algo 1 Algo 2 Algo 3
15–15–20 20.98 22.14 20.57 20.39
15–15–40 18.72 21.13 19.36 19.47
15–15–70 18.88 21.54 18.97 19.54
15–15–100 18.6 21.48 18.91 21.42
15–15–150 19.56 20.85 19.96 20.18
15–15–250 18.79 19.8 19.18 18.99

coding and found that there exists an intricate relationship
between the structure of the network and these properties.
This observation led us to utilize these relationships in several
different applications. As the first application, we studied the
conditions under which we can passively infer the network
topology during content distribution. We showed that these
conditions are not very restrictive and hold for a general
class of information dissemination protocols. As our second
application, we focused on locating Byzantine attackers inthe
network. We studied and formulated this problem and found
that for the single adversary we can identify the adversary
within an uncertainty of two nodes. For the case of mul-
tiple adversaries, we discussed a number of algorithms and
conditions under which we can guarantee identifiability. For
our last application, we investigated the relation betweenthe
bottlenecks in a logical network and the subspaces received
at a specific network node. We leveraged our observations to
propose decentralized peer-initiated algorithms for rewiring in
P2P systems to avoid clustering in a cost-efficient manner, and
evaluated our algorithms through simulations results.

The applications studied in this paper demonstrate ad-
vantages of using randomized network coding for network
management and control, that are additional to throughput
benefits. These are just a few examples and we believe that
there exist a lot more applications where we can use the
subspace properties developed in this work. We hope that these
properties will become part of a toolbox that can be used to
develop applications for systems that employ network coding
techniques.

REFERENCES

[1] T. Ho, R. Koetter, M. Medard, M. Effros, J. Shi, and D. Karger, “A
random linear network coding approach to multicast,”IEEE Transactions
on Information Theory, vol. 52, pp. 4413–4430, Oct. 2006.

[2] P. A. Chou, Y. Wu, and K. Jain, “Practical network coding,” Allerton,
Monticello, IL, Oct. 2003.

[3] C. Gkantsidis and P. Rodriguez, “Network coding for large scale content
distribution,” in the Proceedings of IEEE INFOCOM, Mar. 2005.

18

[4] C. Gkantsidis, J. Miller, and P. Rodriguez, “Comprehensive view of a live
network coding P2P system,”ACM SIGCOMM/USENIX IMC, 2006.

[5] Wei Li-shuang, Song Wei, Hu Wen-bin and Hu Zheng-bing, “Using
network coding makes P2P content sharing scalable”, 2nd International
Workshop on Database Technology and Applications (DBTA), 2010.

[6] Xi Wei and Dong-Yang Long, “P2P Content-Propagation Mechanism
Tailored by Network Coding”, International Symposium on Computer
Network and Multimedia Technology, CNMT 2009.

[7] X. Zhang and B. Li, “On the market power of network coding in P2P
content distribution systems,”INFOCOM, pp. 334–342, Apr. 2009.

[8] D. S. Lun, N. Ratnakar, M. Medard, R. Koetter, D. R. Karger, T. Ho,
E. Ahmed, and F. Zhao, “Minimum-cost multicast over coded packet
networks”, IEEE Trans. Inform. Theory, vol. 52, no. 6, pp. 2608–2623,
Jun. 2006.

[9] C. Fragouli, J. Widmer and J. Y. Le Boudec, “A network coding approach
to energy efficient broadcasting: from theory to practice,”Proceedings
INFOCOM, 25th IEEE International Conference on Computer Commu-
nications, Barcelona, pp. 1–11, Apr. 2006.

[10] M. Jafari Siavoshani, C. Fragouli, and S. Diggavi, “Subspace properties
of randomized network coding,”IEEE Information Theory Workshop,
pp. 17–21, Bergen, Norway, Jul. 2007.

[11] M. Jafari Siavoshani, C. Fragouli, S Diggavi, and C. Gkantsidis, “Bot-
tleneck discovery and overlay management in network coded peer-to-peer
systems,”ACM SIGCOMM Workshop on Internet Network Management,
Kyoto, Japan, Aug. 2007.

[12] M. Jafari Siavoshani, C. Fragouli, S. Diggavi, “On locating byzantine
attackers,”Network Coding Workshop, Jan. 2008.

[13] R. Ahlswede, N. Cai, S-Y. R. Li, and R. W. Yeung, “Networkinforma-
tion flow,” IEEE Transactions on Information Theory, vol. 46, pp. 1204–
1216, Jul. 2000.

[14] S.-Y. R. Li, R. W. Yeung, and N. Cai., “Linear network coding,” IEEE
Transactions on Information Theory, vol. 49, pp. 371–381, 2003.

[15] R. Koetter, M. Medard, “An algebraic approach to network coding,”
Transactions on Networking, Oct. 2003.

[16] T. Ho, R. Koetter, M. Medard, D. Karger and M. Effros, “The benefits
of coding over routing in a randomized setting,”IEEE International
Symposium on Information Theory, 2003.

[17] R. Koetter and F. Kschischang, “Coding for errors and erasures in
random network coding,”IEEE Transactions on Information Theory,
vol. 54, no. 8, pp. 3579–3591, Aug. 2008.

[18] S. Jaggi, M. Langberg, S. Katti, T. Ho, D. Katabi, and M. Medard,
“Resilient network coding in the presence of byzantine adversaries,” in
the Proceedings of IEEE INFOCOM, pp. 616–624, 2007.

[19] T. Ho, B. Leong, R. Koetter, M. Medard, M. Effros, and D. Karger,
“Byzantine modification detection in multicast networks using random-
ized network coding,”IEEE International Symposium of Information
Theory, Jun. 2004.

[20] R. W. Yeung and N. Cai, “Network error correction, i: basic concepts and
upper bounds,”Communication and Information System, vol. 6, pp. 19–
35, 2006.

[21] N. Cai and R. W. Yeung, “Network error correction, ii: lower bounds,”
Communication and Information System, vol. 6, pp. 37–54, 2006.

[22] Z. Zhang, “Network error correction coding in packetized networks,”
IEEE Information Theory Workshop, Oct. 2006.

[23] D. Silva and F. R. Kschischang, “Universal secure network coding via
rank-metric codes,”IEEE Transactions on Information Theory, vol. 57,
no. 2, pp. 1124–1135, Feb. 2011.

[24] E. Kehdi and B. Li, “Null keys: Limiting malicious attacks via null space
properties of network coding,”in the Proceedings of IEEE INFOCOM,
pp. 19–25, Brazil, Apr. 2009.

[25] “RON: Resilient Overlay Networks,” available online at
http://nms.csail.mit.edu/ron.

[26] C. Fragouli and A. Markopoulou, “A network coding approach to overlay
network monitoring,”Allerton, Oct. 2005.

[27] C. Fragouli, A. Markopoulou, and S. Diggavi, “Active topology infer-
ence using network coding,”Allerton, Oct. 2006.

[28] T. Ho, B. Leong, Y. Chang, Y. Wen, and R. Koetter, “Network moni-
toring in multicast networks using network coding,”IEEE International
Symposium on Information Theory, Jun. 2005.

[29] G. Sharma, S. Jaggi, and B. K. Dey, “Network tomography via network
coding,” in Proceeding of ITA Workshop, UCSD, 2007.

[30] M. Jafari Siavoshani, C. Fragouli, and S. Diggavi, “Noncoherent multi-
source network coding,”IEEE International Symposium on Information
Theory, Toronto, Canada, pp. 817–821, Jul. 2008.

[31] D. Silva, F. R. Kschischang, and R. Koetter, “Communication over finite-
field matrix channels,”IEEE Transactions on Information Theory, vol. 56,
iss. 3, pp. 1296–1305, Mar. 2010.

[32] M. Jafari Siavoshani, S. Mohajer, C. Fragouli, S N. Diggavi, “On
the capacity of non-coherent network coding,”IEEE Transactions on
Information Theory, to be appeared in Feb. 2011.

[33] L. Babai and P. Frankl, “Linear algebra methods in combinatorics,”
preliminary version, University of Chicago.

[34] A. Al-Hamra, A. Legout, and C. Barakat, “Understandingthe properties
of the BitTorrent overlay,”INRIA Technical Report, available online at
http://arxiv.org/pdf/0707.1820, Sophia Antipolis, France.

[35] D. Laksov and A. Thorup, “Counting matrices with coordinates in finite
fields and of fixed rank,”Mathematica Scandinavica, vol. 74, pp. 19–33,
1994.

[36] R. Motwani and P. Raghavan, “Randomized Algorithms,”Cambridge
University Press, 2000.

APPENDIX A
PROOFS

Proof of Lemma 1:First, let us fix a basis forΠS . Then
choosingm vector uniformly at random fromΠS is equivalent
to choose anm× n matrix A uniformly at random fromFq

and constructΠ = 〈A〉 with respect to this fixed basis.
It is well known (e.g., see [35]) that the number of different

m × n matricesA with rank 0 ≤ k ≤ min[m,n] over Fq is
equal to

Nm,n(k) , q(m+n−k)k
k−1∏

i=0

(1− qi−n)(1− qi−m)

(1− qi−k)
.

So we can write

P [dim(Π) = k] =
Nm,n(k)

qmn
.

Then using the Taylor series11−ǫ = 1+ǫ+ǫ2+· · · for |ǫ| < 1,
choosingǫ = q−1, we can write

Pr[dim(Π) = k] = q−(m−k)(n−k)[1−O(q−1)].

By settingk = min[m,n] we are done.
Proof of Lemma 2: The probability that allm vectors

are in the intersection is

P [Π′
1 ⊂ Π2] =

(
qd12

qd1

)m

= q(d12−d1)m,

which is of orderO (q−m) provided thatΠ1 * Π2 , i.e., d12 <
d1.

Proof of Lemma 3:Let v1, . . . ,vm be the vectors chosen
randomly fromΠS to constructΠ, namely, we haveΠ =
〈v1, . . . ,vm〉. Then construct the sequence of subspacesΠ(i),
i = 0, . . . ,m, as follows. First, setΠ(0) , Πk and then define
Π(i) for i 6= 0 recursively,Π(i) = Π(i − 1) + 〈vi〉. We also
defined(i) , dim(Π(i)), i = 0, . . . ,m. From Lemma 2, by
choosingΠ1 = ΠS , Π2 = Π(i − 1) andm = 1 we deduce
that d(i) = d(i− 1) + 1 with probability1−O

(
q−1

)
, unless

d(i− 1) = n.
Now we consider two cases. First, ifm + k ≤ n then we

havedim(Π+Πk) = k+m or equivalentlydim(Π∩Πk) = 0
with high probability,i.e., 1−O

(
q−1

)
. Secondly, whenm+

k > n we havedim(Π+Πk) = n with probability1−O
(
q−1

)
.

From Lemma 1 we havedim(Π) = min[m,n] w.h.p. So we
havedim(Π ∩ Πk) = dim(Πk) + dim(Π) − dim(Πk ∪ Π) =
k +min[m,n]− n.

Combining these two cases we can write

dim(Π ∩ Πk) = (k +min[m,n]− n)+,

19

w.h.p., which completes the proof.
Proof of Corollary 1: Let us defineΠ12 = Π1∩Π2, where

d12 = dim(Π12). Using Lemma 3, and takingΠS = Π1 and
Πk = Π12, we have

dim(Π̂1 ∩Π12) = min
[
d12, (m1 − (d1 − d12))

+
]
,

with probability1−O
(
q−1

)
. Now, we can write

P
[

d̂12 = α
]

=

P
[

d̂12 = α| dim(Π̂1 ∩ Π12) = β
]

P
[

dim(Π̂1 ∩ Π12) = β
]

+P
[

d̂12 = α| dim(Π̂1 ∩ Π12) 6= β
]

P
[

dim(Π̂1 ∩Π12) 6= β
]

,

where d̂12 = dim(Π̂1 ∩ Π̂2). Substituting β =
min [d12, (m1 − (d1 − d12))

+] we obtain

P
[

d̂12 = α
]

=

P
[

d̂12 = α| dim(Π̂1 ∩ Π12) = β
] (

1−O
(
q−1

))
+O

(
q−1

)
.

Selectingα properly and using Lemma 3 one more time, we
get

P
[

d̂12 = α
]

= 1−O
(
q−1

)
,

whereα = min[β, (m2 − (d2 − β))+], which completes the
proof.

Proof of Theorem 1:To prove the theorem, it is sufficient
to show that (5) is valid for one specifici with high probability.
This is sufficient because ifpi is the probability thatΠ is in
general position with respect to eachΠi, i = 1, . . . , r, then
the probability thatΠ is in general position with the whole
family is lower bounded by1−

∑r
i=1(1− pi).

Now by applying Lemma 3, we know thatpi = 1−O
(
q−1

)

which completes the proof.
Proof of Lemma 4:Here we assume thatn is very large.

Then in Corollary 3 we will derive a sufficient condition on
the largeness ofn.

Let v be the node that has the longest path to the sourceS.
Because of Definition 1 we can writeTs ≤ τv − 1. Then we
may upper boundτv as follows

τv ≤ 2 + max
u∈P (v)

τu,

whereP (v) is the set of parents ofv. Now we can repeat the
above argument until we reach the sourceS. So finally we
have

τv ≤ 2D(G),

which leads to the lemma’s assertion.
Proof of Lemma 5: Let us write

dim(πu(1) ∩ Πv(j))

(a)
= dim (πu(1) ∩ (Πv(j) ∩ Π(0)))

(b)
= dim(πu(1) ∩ πv(1))

(c)
= min[d0, (ku(1) + kv(1)− d0)

+, ku(1), kv(1)]

= (ku(1) + kv(1)− d0)
+

< ku(1),

where(a) follows becauseπu(1) ⊆ Π(0) and (c) is a result
of Corollary 2. So∀j ∈ {1, . . . , t} we haveπu(1) * Πv(j)
which results inΠu(i) * Πv(j), ∀i, j ∈ {1, . . . , t}. By
symmetry, we have the second assertion of the lemma, namely,
Πv(j) * Πu(i), ∀i, j ∈ {1, . . . , t}.

Now, it only remains to check(b). We will prove this by
induction. Obviously,Π(0)∩Πv(1) = πv(1). Suppose that we
haveΠ(0) ∩ Πv(k) = πv(1) wherek < t then we show that
it also holds fork + 1.

We know thatπv(1) ⊆ Π(0) ∩ Πv(k + 1). To show that
Π(0) ∩ Πv(k + 1) ⊆ πv(1) we proceed as follows. Letw ∈
Π(0) ∩ Πv(k + 1) then w ∈ Π(0) and w ∈ Πv(k + 1) =
∑k+1

i=1 πv(i). We may decomposew asw =
∑k+1

i=1 wi where
wi ∈ πv(i). Then we notice thatwk+1 = w −

∑k
i=1 wi ∈

Π(k− 1) andΠ(k− 1)∩πv(k+1) = ∅ w.h.p. (by Lemma 3).
So we conclude thatwk+1 = 0 which meansw ∈ Πv(k). This
shows thatw ∈ Π(0)∩Πv(k) where by induction assumption
we havew ∈ πv(1) and we are done.

Proof of Corollary 4: Because we haveΠu(0) * Πv(j)
then by Lemma 2 we haveπa(1) * Πv(j) w.h.p. So as a
result we haveΠa(i) * Πv(j− 1) ∀i, j ∈ {1, . . . , t}. Because
Πb(j) ⊆ Πv(j − 1) we conclude thatΠa(i) * Πb(j) ∀i, j ∈
{1, . . . , t} w.h.p. By symmetry, we also deduce the other part
of the corollary.

APPENDIX B
ALGEBRAIC MODEL FORSYNCHRONOUSNETWORKS

In this appendix we employ an algebraic approach to
analyze the dissemination protocol given in Algorithm II.1.
This approach is similar to [15] and [1], but differs in that we
introduce memory into the coding process.

We introduce memory as follows. Suppose we are interested
in finding the transfer function between the source and an
arbitrary nodev. Let X be a n × ℓ matrix with rows the
n packets (vectors) that the source wants to transmit to the
receivers. We assume thatdim(〈X〉) = n. Let Y (t) ∈ Fξ×ℓ

q

be a matrix with rows the packets that pass through theξ edges
of the network at timet. Let Zv(t) be the set of packets that
nodev receives. Similarly to [15], we will write state-space
equations that involve these vectors; however, we will ensure
that, at each timet, coding at each node occurs across all the
packets that the node has received before timet.

In each timeslott, the source injects|Out(S)| packets
into the network that are random linear combinations of the
original source packetsX. These linear combinations can be
captured asM(t)X , whereM(t) ∈ F|Out(S)|×n

q is a random
matrix. Intermediate network nodes will transmit packets on
their outgoing edges depending on the network connectivity,
and the state of the dissemination protocol.

The network connectivity can be captured by theξ × ξ
adjacency matrixF of the labeled line graph of the graph
G, defined as follows

Fij ,

{
1 head(ei) = tail(ej),
0 otherwise.

To model random coding over a fieldFq, we consider a
sequence of random matricesF (t)

1 , . . . ,F
(t)
t−1 which conform

20

to F . That is, the entries of these matrices have fori 6= j
(F

(t)
k)ij = 0 whereverFij = 0 and have random numbers

from Fq in all other places.
The dissemination protocol dictates when a node can start

transmitting packets, according to its waiting time (equiva-
lently, when the outgoing edges of the node will have packets
send through them). To capture this, we will use the step
functionu(t),

u(t) ,

{
1 t ≥ 0,
0 otherwise,

and define theξ × ξ diagonal matrixU(t) as,

∀i ∈ E : U ii(t) , u
(
t− τtail(i) − 1

)
,

whereτv is the waiting time for nodev. In this section we
assume that the waiting times may have arbitrary values and
we do not restrict them according to Definition 1.

Using the above definitions, the set of packets (vectors) that
each nodev receives in every time instantt > 0 can be written
as follows

Y (t) = U(t)
(

AM(t)X +
∑t−1

i=1 F
(t)
i Y (t− i)

)

,

Zv(t) = BvY (t),
(11)

whereY (0) = 0. In the above,A ∈ Fξ×|Out(S)|
q is a matrix

which represents the connection of nodeS to the rest of the
network. In the same way matrixBv ∈ F| In(v)|×ξ

q defines the
connection of nodev to the set of edges in the network.

It is worth noting that although (11) is written for the
packets transmitted on each edge, we can write the same set
of equations for the coding vectors.

Suppose we are interested in finding the output of such
a system at some time instantT . We can rewrite the above
equations by defining new matrices as follows. We can collect
the source random operations as

MT ,

M(1)
...

M(T)

 ∈ FT |Out(S)|×n

q .

For the states of system we define

Y T ,

Y (1)
...

Y (T)

 ∈ FξT×ℓ

q .

We also define a new set of matrices which represent the input-
output relation. Using matrixA we define the following matrix

AT , IT ⊗A =

A

. . .
A

 ∈ FξT×T |Out(S)|

q .

For the connection of nodev we define

Bv(T) ,
[
0| In(v)|×(T−1)ξ Bv

]
∈ F| In(v)|×ξT

q .

We define matrixF T which represent how the states are
related to each other

F T ,

0 0 0 0 · · ·

F
(2)
1 0 0 0 · · ·

F
(3)
2 F

(3)
1 0 0 · · ·

F
(4)
3 F

(4)
2 F

(4)
1 0 · · ·

...
...

...
...

.. .

∈ FξT×ξT
q .

Finally, we use matrixUT that captures the time when
transmissions start for each edge

UT ,

U(1)
. . .

U(T)

 ∈ FξT×ξT

q .

Using the above definitions, we can rewrite (11) as follows

Y T = UT (ATMTX + F TY T) ,

Zv(T) = Bv(T)Y T .

This equation can be solved to find the input-output transfer
matrix at timeT which results in

Zv(T) =
[
Bv(T)(I −UTF T)

−1UTATMT

]

︸ ︷︷ ︸

HSv(T)

X, (12)

whereHSv(T) ∈ F| In(v)|×n
q . From the definition of matrix

F T , we know that it is a “strictly lower triangular matrix”
which meansF T is nilpotent and we haveF T

T = 0. The same
applies for the matrixUTF T , namely we have(UTF T)

T =
0. So the matrix(I−UTF T)

−1 has an inverse which is equal
to

(I −UTF T)
−1 =

(
I + · · ·+ (UTF T)

T−1
)
.

Finally, note that if the nodes do not wait before starting the
transmission (τv = 0 : ∀v ∈ V), then we will haveUT =
IξT×ξT .

A. Proof of Theorem 2

For simplicity, in the following proof, we assume that each
edge of the network has capacity1. Edges with capacity more
than1 can be modeled by replacing them with multiple edges
of unit capacity.

From (12) the transfer matrix fromS to v at time T is
equal toHSv(T). Knowing that the min-cut of nodev is cv,
we choose a set ofcv incoming edges tov such that there exist
cv edge disjoint paths fromS to v and find the input-output
transfer matrix just for this set of edges. Then we can write

ĤSv(T) = B̂v(T)(I −UTF T)
−1UTATMT (13)

= B̂v(T)
(
I + · · ·+ (UTF T)

T−1
)
UTATMT ,

where ĤSv(T) ∈ Fcv×n
q and B̂v(T) ∈ Fcv×ξT

q . Let f (t,k)
ij

denote for the entries ofF (t)
k andm(t)

ij denote for the entries
of M (t). Every node in the network performs random linear
network coding som(t)

ij and f
(t,k)
ij (those that are not zero)

are chosen uniformly at random fromFq.

21

From (13) we know that each entry of̂HSv(T) is a
polynomial of degree at mostT in variablesm(t)

ij andf (t,k)
ij .

For T > t0(v) where t0(v) , maxi∈P (v) τi, we know that

there exists a trivial solution for variablesm(t)
ij and f

(t,k)
ij

(which simply routescv packets fromS to v through thecv
edge disjoint paths) that results in

ĤSv(T) =
[
Icv 0cv×(n−cv)

]
. (14)

Note that by changing the routing solution (in fact by chang-
ing the variablesm(t)

ij properly) we could change the place
of identity matrix in (14) arbitrarily. We conclude that the
determinant of everycv × cv submatrix ofĤSv(T) (which
is a polynomial of degree at mostcvT in variablesm(t)

ij and

f
(t,k)
ij) is not identical to zero. So by using the Schwartz-Zippel

lemma [36] we can upper bound the probability thatĤSv(T)

is not full rank if the variablesm(t)
ij and f

(t,k)
ij are chosen

uniformly at random as follows

P
[

rank ĤSv(T) < cv

]

<
cvT

q
.

We can apply the same argument fork < n
cv

consecutive
timeslots to show that

P
[

rank ĤSv(T : T + k − 1) < kcv

]

<
kcv(T + k)

q
,

where

ĤSv(T : T + k − 1) ,

ĤSv(T)
...

ĤSv(T + k − 1)

 .

Now let us define the eventAk(v) as follows

Ak(v) : rank ĤSv(T : T + k − 1) = kcv.

Then we can write

P [∩v∈VAk(v)] = 1− P
[

∪v∈VA
∁
k(v)

]

≥ 1−
∑

v∈V

P
[

A∁
k(v)

]

≥ 1−
k(T + k)

q

∑

v∈V

cv,

whereT > t0 and t0 , maxv∈V t0(v).
This means that assumingq is large enough we are sure

that with high probability each nodev receivescv innovative
packets per time slot fort > t0.

	I Introduction
	I-A Related Work

	II Models: Coding and Network Operation
	II-A Notation
	II-B Network Operation
	II-C Input to Algorithms

	III Properties of Random Vector Spaces over a Finite Field Fqn
	III-A Sampling Subspaces over Fqn
	III-B Rate of Innovative Packets

	IV Topology Inference
	IV-A Tree Topologies
	IV-A1 Common Min-Cut
	IV-A2 Directed v.s. Undirected Network
	IV-A3 Different Min-Cuts

	IV-B General Topologies
	IV-C Practical Considerations

	V Locating Byzantine Attackers
	V-A Problem Formulation
	V-B The Case of a Single Adversary
	V-B1 Identification using only Topological Information
	V-B2 Identification using Information from all Network Nodes

	V-C The Case of Multiple Adversaries
	V-C1 Identification using only Topological Information
	V-C2 Identification using Splitting
	V-C3 Identification using Subset Relationships

	VI Practical Implications for Topology Management
	VI-A Problem Statement and Motivation
	VI-B Theoretical Framework
	VI-C Algorithms
	VI-D Simulation Results

	VII Conclusions and Discussion
	References
	Appendix A: Proofs
	Appendix B: Algebraic Model for Synchronous Networks
	B-A Proof of Theorem 2

