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Abstract—Systems that employ network coding for content

distribution convey to the receivers linear combinations 6 the
source packets. If we assume randomized network coding, ding

this process the network nodes collect random subspaces of
the space spanned by the source packets. We establish severa

Our contributions start with the observation that coding-ve
tors implicitly carry information about the network strucg
as well as its stafe Such vectors belong to appropriately
defined vector spaces, and we are interested in fundamental

fundamental properties of the random subspaces induced in Properties of these (finite-field) vector spaces. In paldicu
such a system, and show that these subspaces implicitly cgrr since we are investigating properties induced by randaihize

topological information about the network and its state tha can
be passively collected and inferred. We leverage this infonation
towards a number of applications that are interesting in ther
own right, such as topology inference, bottleneck discovgrin
peer-to-peer systems and locating Byzantine attackers. \Wdus
argue that, randomized network coding, apart from its bette
known properties for improving information delivery rate, can
additionally facilitate network management and control.

I. INTRODUCTION

network coding, we need to characterize random subspaces of
the aforementioned vector spaces. These properties obmand
subspaces over finite fields might be of independent interest
We aim to show, using these properties, that observing the
coding vectors we can passively collect structural andestat
information about a network. We can leverage this infororati
towards several applications that are interesting in tbein
merit, such as topology inference, network tomography, and
network management (we do not claim here the design of
practical protocols that use these properties). However, w

Randomized network coding offers a promising techniquoW that randomized network coding, apart from its better
for content distribution systems. In randomized networll-coXnown properties for facilitating information deliveryare
ing, each node in the network combines its incoming packdt&vide us with information about the network itself.
randomly and sends them to its neighbolis [L], [2]. This is TO Support this claim, we start by studying the problem
the approach adopted by most practical applications tod&y.Passive topology inference in a content distribution-sys
For example, Avalanche, the first implementation of a pedfM where intermediate nodes perform randomized network
to-peer (P2P) system that uses network coding, adopts suckPding. We show that the subspaces nodes collect during the
randomized operation [3].[4]. In ad-hoc wireless and sens@iSsemination process have a dependence with each other
networks as well, most proposed protocols employing natwowhich is inherited from the network structure. Using this
coding again opt for randomized network operation ($ee [fPendence, we describe the conditions that let us perfectl

and references therein).

reconstruct the topology of a network, if subspaces of adleso

The reason for the popularity of randomized network codirf} SOMe time instant are available.
is because it facilitates a very simple and flexible network We then investigate a reverse or dual problem of topology
operation without need of synchronization among netwofRference, which s, finding the location of Byzantine akes.
nodes, that is well suited to packet networks. To every packl? @& network coded system, the adversarial nodes in the
a coding vector is appended that determines how the packerﬁ%work can disrupt the normal operation of information flow
expressed with respect to the original data packets pra)imceby inserting erroneous packets into the network. We use the
the source node. When intermediate nodes combine packéffendence between subspaces gathered by network nodes and
the coding vector keeps track of the linear combinatioige topology of the network to extract information about the
contained in a particular packet. A receiver which colleci§cation of attackers. We propose several methods, compare
enough packets, uses the coding vectors to determine thet8efn and investigate the conditions that allow us to find the
of linear equations it needs to solve in order to recover thcation of attackers up to a small uncertainty.

original data packets.
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Finally, we then observe that the received subspaces, even
at one specific node, reveal some information about the
network, such as the existence of bottlenecks or congestion
We consider P2P networks for content distribution that use
randomized network coding techniques. It is known that the
performance of such P2P networks depends critically on the
good connectivity of the overlay topology. Building on our

1By state we refer to link or node failures, congestion in sqrag of the
network, etc.
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observation, we propose algorithms for topology manageémem the network are fixed, generated in advance and known by
to avoid bottlenecks and clustering in network-coded P2 other nodes in the network, unlike our work that builds
systems. The proposed approach is decentralized, inherenh randomized operation. The idea of passive inference of
adapts to the network topology, and reduces substantlaly topological properties from subspaces that are build dxe,t
number of topology rewirings that are necessary to mairgairas far as we know, is a novel contribution of this work.
well connected overlay; moreover, it is integrated in thenmal
content distribution. )
. . . . Il. MoODELS: CODING AND NETWORK OPERATION

The paper is organized as follows. We start with the notation
and problem modeling ifIll We investigate the properties of A simple observation motivates much of the work presented
vector spaces in a system that employs randomized networkthis paper: the subspaces gathered by the network nodes
coding in §llll and these properties give the framework taluring information dissemination with randomized network
explore applications iglV] §V] and§VI] Finally, we conclude coding, are not completely random, but have some rela-
the paper with a discussion Shorter versions of these tionship, and this relationship conveys information abihet
results have also appeared [in[10],1[11].1[12]. network topology as well as its state. We will thus invediéga
properties of the collected subspaces and show how we can
use them for diverse applications.
A. Related Work Different properties of the subspaces are relevant to each

Network coding started by the work of Ahlswedeal.[13] particular application and therefore we will develop a feam
who showed that a source can multicast information atvgork for investigating these properties. This will also diwe
rate approaching the smallest min-cut between the soute 88me understanding of modeling the problem to fit the re-
any receiver if the middle nodes in the network combinguirements of an application and then developing subspace
the information packets. Let al. [14] showed that linear properties relevant to that model.
network coding with finite field size is sufficient for multista
Koetteret al. [15] presented an algebraic framework for linear )
network coding. A. Notation

Randomized network coding was proposed byetal. [16] Let ¢ > 2 be a power of a prime. In this paper, all vectors
where they showed that randomly choosing the network coggd matrices have elements in a finite figld We useF:>™
leads to a valid solution for a multicast problem with higho denote the set of alt x m matrices oveif,, and F! to
probability if the field size is large. It was later applied byjenote the set of all row vectors of lengthThe set, forms
Chouet al. [2] to demonstrate the practical aspects of randogh ¢-dimensional vector space over the fiélg. Note that all
linear network coding. Gkantsidet al. [3], [4] implemented yectors are row vectors unless otherwise stated. Bold lower
a practical file sharing system based on this idea. Sevegake letterse.g, v, are used for vectors and bold capital letters,
other works have also adopted randomized network codiggy, X, are used to denote matrices.
for content distribution, see for example [S]! [6]J [7]. For a set of vectorvy, . . ., v, } we denote their linear span

Network error correcting codes, that are capable of COITeRly (v, ..., vy). For a matrixX, (X) is the subspace spanned
ing errors inserted in the network, have been developeaguriy the rows ofX. We then haveank(X) = dim((X)).
the last few years. For example see the work of Koetter \ye denote subspaces of a vector spacélland sometimes
al. [17], Jaggiet al.[_18], Hoet al.[19], Yeunget al.[20], [21], gis0 by . In this paper, we work on a vector Spagé of
Zhang [22], and Silvat al. [23]. These schemes are capablgimension/ defined over a finite field,. For two subspaces

of delivering information despite the presence of Byzamtiny, 11, ¢ F¢, we will denote their intersection byi; N II,
attacks in the network or nodes malfunction, as long as thgq their jo?nt span byl, + I, where

amount of undesired information is limited. These network

error correcting schemes allow to correct malicious packet I, + 11y £ {v; +ve|vy € 11y, vy € I},
corruption up to certain rate. In contrast, we use network

coding to identify malicious nodes in our work. Recentlydanis the smallest subspace that contains Hdthand II,. It is
following our work [12], additional approaches are progbseVell known that

in the literature, some building on our results|[24]. . L . .
Overlay topology monitoring and management that do not (I + I2) = dim(Ily) + dim(TTz) — dim(ITy N IL).

employ network coding has been an intensively studied e also use the following metric to measure the distance
search topic, see for example [25]. However, in the contexbtween two subspaces,

of network coding, it is a new area of research. Fragetli

al. [26], [27] took advantage of network coding capabilities fo  ds(IT;, I1y) £ dim(IT; + IT5) — dim(IT; N 1I) Q)
active link loss network monitoring where the focus was on = dim(ITy ) + dim(ITy) — 2 dim(IT; N IIy).

link loss rate inference. Passive inference of link loseg#itas

also been proposed by Hat al. [28]. In a subsequent work of This metric was also introduced in [17], where it was used to
ours, Sharmat al. [29] study passive topology estimation fordesign error correction codes.

the upstream nodes of every network node. This work is basedn addition to the metricds(-,-) defined above, in some
on the assumption that the local coding vectors for each nocheses we will also need a measure that compares how.4 set



of subspaces differs from another #bf subspaces. For this from all vectors it has collected up to tinte- 1. Once
we will use the average pair-wise distance defined as follows nodes start transmitting information, they keep transmit-

L1 ting until all receivers are able to decode.
Ds(A,B) = A8l > ds(ma,m). (2) . Asynchronous:Nodes transmit linear combinations at
Ta€A,mpEB randomly and independently chosen time instants.

It should be noted that the above relation does not define an this paper, we focus on the synchronous network where
metric for the set of subspaces because the self distanceyefassume that each link has unit d8lagrresponding to each
a set with itself is not zero. Howevef)s(-,-) satisfies the timeslot, however our results can be extended to asyncheono
triangle inequality. networks as well.

In this paper we will be interested in investigating the Next, we explain in detail the dissemination protocol, that
relationship of the collected subspaces at neighboringaerét js summarized in Algorithri TT]1.
nodes. We consider a network represented as a directedcacycl Timing: We depict in Fig.[]l the relative timing of
graphG = (V, E), with ¥ = |V| nodes and, = |E| edges. events within a timeslot. Nodes transmit at the beginning of
For an arbitrary edge = (u,v) € E, we denotéhead(e) = v a timeslot. We assume that each packet is received by its
and tail(e) = u. For an arbitrary node < V, we denote intended receiver before the end of the timeslot. Thus, the
In(v) the set of incoming edges to and Out(v) the set of timeslot duration incorporates the packet propagatioaydiel
outgoing edges from. If a nodeu hasp parentsuy, ..., u,, one edge of the network.
we denote withP(u) = {u1,...,u,} the set of parents af.
We useP! (u) to denote the set of all ancestorswoét distance A Transmits
[ from w in the network (we say that two nodesandv are
at distancel if there exists a path of length exactlythat

. ) IMa(t—1 .
connects them). We denote witty" (¢) the subspace node S [~ B Receives
receives from pareni; at exactly timet, and withr,(t) the {The point that subspaces
whole subspace (from all parents) that nodeeceives at Slot numbert / are measuredl (t)

(us)

time ¢, that is7,(t) = >.7_; 7 "’ (t). We also denote with ' '

i ) t—1 t Time
H&“T')(t) the subspace node has received from parent, up
to time+. that is ngi)(t) _ ngi)(t — 1)+ W&Ui)(t)_ Thenthe Fi9- 1. Timing schedule of the dissemination protocol given Algo-

. ith
subspacél, (t) that the node has at timecan be expressed as' miL2
IL,(t) =>", Hq(f“)(t). For a set of nodeld = {uy,...,u,}, Rate Allocation and Equivalent Network GraphThe
we definelly, =1L, + - + 1L, . dissemination protocol first associates with each linlof

Finally, we use the bigD notation which is defined asthe network a rater, (measured as the number of packets
follows. Let f(x) andg(z) be two functions defined on sometransmitted per timeslot on edgg. These rates are selected
subset of the real numbers. We wrifdz) = O(g(z)) if in advance using a rate allocation method, for exanigle [8].
and only if there exists a positive real numher and a real  For the rest of the paper, we consider an equivalent network
numberz, such that f(z)| < M|g(x)| for all = > xo. During  graph, where each edgehas capacity equal to its allocated
the rest of the paper we use to compare functions of the rater.. On this new graph, we can define the min-cufrom
field sizeq, unless otherwise stated. For example, we will use source nodeS to a nodev € V. Whenever we refer to
f(g) = O(¢g™") to imply that the value off (¢) goes to zero min-cut values in the following, we imply min-cut values ove
asq~! for ¢ — co. this equivalent graph.

We assume that the rate allocation protocol we use satisfies
B. Network Operation

We assume that there is an information source located on a
nodeS that has a set of packets (messagesx, ..., z,}, wherec, is the capacity of edge. This very mild assumption
z; € F., to distribute to a set of receivers, where eac#ys that the node = tail(e) does not send more information
packet is a sequence @éf symbols over the finite field,. than it receives, and is satisfied by all protocols that do not
To do so, we will employ a dissemination protocol based di¢nd redundant packetss., observe flow conservation.
randomized network coding, namely, where each network noddn our work, we consider the case wheres> c,, namely,
sends random linear combinations (chosen to be uniform o8¢ dissemination of the source packets to the receivers takes
F,) of its collected packets to its neighbors. We assume fBlace by using the network over several timeslots.

re < min[cea Ctail(e)]7 (3)

simplicity that there are no packet-losses. Node operation:When the dissemination starts, at times-
lot say zero, the source starts transmitting at each time slo
Dissemination Protocol and to each of its outgoing edges r. randomly selected
It is possible to separate the dissemination protocols inllhgear combinations of mformatl_on packe?s._ we will CaHS.
the source rate The source continues until it has transmitted

the following operation categories.
« SynchronousAll nodes are synchronized and transmi

to their ngighbors according to a glqbal clock ti_Ck (_time' 2Unit delay can model a buffering window a node needs to waitaitect
slot). At timeslott € N, nodev sends linear combinationspackets from all its neighbors.

Itinear combinations of allh packets,i.e., for o= timeslots.



Every other nodew € V' \ {S} in the network, operates as Algorithm [.1: DISSEMINATIONPROTOCOUG =
follows: (V,E),S,n,Ty,7e)
for eachv € V'\ {S}
do I1,(0) = @,d,(0) =0
t+1
while min, dy(t) <n
« Initially it does not transmit, but only collects in a buffer foreachv e V
packets from its parents, until a time, which we call if t>7,+1
waiting timeand we will define in the following. As we for each e € Out(v)
will see, each node can decide the waiting time by itself then nodew transmits from
and independently from other nodes. d {Hv(t — 1) with rater, one
At each timeslot, for all t > 7, +1, it transmits to each for eachv € V
outgoing edge:, r. linear combinations of all packets it do updatell, (t), d,(t)
has collected in its buffer up to time— 1. tet+1
Alg. [ Il Dissemination protocol.
Source Operation and the Source SubspHge
Collected SubspacesWe can think of each of the As we discussed, the source needs to convey to the receivers
source messagese;} as corresponding to one dimension of: source packets that span thedimensional subspadés =
an n-dimensional spacls C F. wherells = (z1,...,,). (1,..., ), With Ils C Fy. IIs is isomorphic toFy; thus,

We say that node € V at timet observes a subspali () C for the purpose of studying relationships between subspace
IIg, with dimensiond, (t) £ dim(IL,(t)), if IL,(¢) is the space Of Ils, we can equivalently assume thdg = Fy, and that
spanned by the received vectors at neds to timet. Initially, nodev € V' at timet observes a subspaég, (t) C Ils. This
at timet = 0, the collected subspaces of all nodes (apart tisémplification is very natural in the case where we employ
source) are emptyd, (0) = 0, Yo € V' \ {S}. coding vectors, reviewed briefly in the following, as we only
need consider the coding vectors for our purposes and ignore
the remaining contents of the packets; however, we can also
use the same approach in the case where the source performs
Waiting Times: We next define the waiting times, thathoncoherent coding, described subsequently.
will be used in the following sections to ensure that the @) Use of Coding VectorsTo enable receivers to decode,
subspaces of different nodes be distinct, and are a usthg source assignssymbols of each message vector (packet)
assumption in dissemination protoco|s; indeed’ for |afge to determine the linear relation between that paCket and the
the waiting time does not affect the rate. For example, in tifgiginal vectorse;, i = 1,..., n. Without loss of generality, let
information-theoretic proof of the main theorem in networks assume these symbols (which form a vector of lengtk)
coding [13], each node waits until it collects at least on@re placed at the beginning of each message vector. Thisrvect

message from each of its incoming links before startirig calledcoding vector Each message vectay; contains two
transmissions. parts. The vector;” € Fy with lengthn is the coding vector

and remaining part! € Fg—", is the information part where
) e . ) x; 2 [x¢ | z!].
Definition 1: The waiting timer, for a nodewv is the first g g
timeslot during which node receives information from the The coding vectorg{, i = 1,...,n are chosen such that they
source at a rate equal to its min-ayt and additionally, has form a basis foi; . For simplicity we assume{ = e; where
collected in its buffer a subspace of dimension at least1. e; € [y, is a vector with one at positiohand zero elsewhere.
For our purposes, it is sufficient to restrict our algorithms
to examine the coding vectors. Thus, the source has the space
Note that, because we are dealing with acyclic graphs, W = Fy; during the information dissemination, if a node
can impose a partial order on the waiting times of the nodes,timet has collectedn packetsz; with coding vectors:{,
such that all parents of a node have smaller waiting tiniehas observed the subspade(t) = (2{,...,25). In other
than the node. Moreover, each node can decide whether wards, the coding vectors capture all the information wednee
conditions for the waiting time are met, by observing whethéor our applications.
it receives information at a rate equal to its min-cut, andtvh b) Subspace CodingOur approach also works in the
is the dimension of the subspace it has collected. That émse of subspace coding, that was introduced ih [17]. We next
a node does not need to know any topological informatidoriefly explain the idea of communication using subspagces, i
(apart from its min-cut), and the waiting times do not need @ network performing randomized network coding.
be communicated in advance to the nodes, but can be decidebh the following, we use the same notation as introduced
online based on the network conditions. in §l=Bl Let {x1,...,xn}, ®; € IFfI denote the set of



packets the source has. Assume that there is no errorAnSampling Subspaces ovE}

the network. An arbitrary receiveR, at nodewv collectsm Here, we explore properties of randomly sampled subspaces
packetszi,nz = 1,...,m, where eachz; can be presented fom 5 vector spacé&”. We start with the following lemma
asz; = ).;_ hijz;. The coefficientsh;; are unknown and hat explores properties of a single subspace.
randomly chosen oveF,. In matrix form, the transmission | o -nmai: Suppose we choosen vectors from ann-
model can be represented as dimensional vector spacds = F? uniformly at random to
Z,=Hg, X, construct a spack. Then the subspadé will be full rank (has
) . ~dimensionmin[m, n]) w.h.p. (with high probabilityd, namely,
where Hg, € F;»*" is a random matrix and € IF{;X" is
the matrix whose rows are the sources’ packets. P [dim(II) = min[m,n]] = 1 — O (¢7')].

The matricesH g, are randomly chosen, under constraints Proof: Refer to AppendifA -
imposed by the network topology. As stated(in/[17] and provedWe conclude that for large values of selectingm <

in [30], [31], [32], the above model naturally leads to calesi ; "
information transmission not via the choice ®f but rather ve_ctors u_nlformly at rand_om frorﬁ_q to c_onstruct a subspace
by the choice of the vector space spanne . Tis engalent to choosing am-dlmen_spnal subspace from
y p panned iy} n

In the case of subspace coding, the dissemination aIgoritIIE uniformly at random. Note that this is not true for small
works in exactly the same way as in the case of coding vector&/Ues ofg. . . .
what changes is how the source maps the information to thewe next examine connections between multiple subspaces.
packets it transmits, and how decoding occurs. Howevesjshi
orthogonal to our purposes, since we perform no decoding
the information messages, but simply observe the reldtipns
between the subspaces different nodes in the network toll
Thus, the same approach can be applied in this case as

c)jl_emmaZ: Let IT; andIl; be two subspaces dlg = Fy
with dimensiond; and d, respectively, intersection of di-
ensiond;, andII; ¢ II, (i.e, di2 < d;). ConstructIl}
choosingm vectors fromII; uniformly at random. Then
Hll C HQ] =0 (q—m) .
. Proof: Refer to AppendiXxA. [ |
C. Input to Algorithms Lemma3: Suppose€ll; is a k-dimensional subspace of a

We are interested in designing algorithms that leverage th€ctor spacdlg = F. Selectm vectors uniformly at random
relationships between subspaces observed at differembriet from I1g to construct the subspade We have

nodes for network management and control. The algorithms ) ) N

design will depend on the information that we have access to. dim(IINIly) = minfk, (m—(n—k))"]
We distinguish between the following. = (minfm,n] +k—n)", 4)
« Global information A central entity knows the subspaces . . 1
that all ¢ nodes in the network have observed. with probability 1 — O (q )

« Local Information: There is no such omniscient entity, c Prcl)lof: Rlsfesr to Apggndn?\ﬁ W b df:
and each node only knows what it has received, its orotiary - SUpposey andll; are two subspace d,

own subspacél,. with dimensiond; and dy respectively and joint dimension

d1s. Let us takem; vectors uniformly at random fronhl,

We may also have information between these two extremg ms vectors fromIl, to construct subspacd$, and Il,.
cases. Moreover, we may havestatic view where we take We have

a snapshot of the network at a given time instardgr anon-
static view where we take several snapshots of the netwodkm(ﬁl N ﬁQ) =min [d12, (m1 4+ ma — (dy + do — di2)) T,
and use_the subspaces’ svolutlon to deS|gn_ an algorithm. (m1 — (dy — di2))*, (ma — (d2 — dlz))ﬂ ’

We will argue in Sectiori 1V that capturing even global
information can be accomplished with relatively low overtie with probability1 — O (¢71).

(sending one additional packet per node at the end of the Proof: Refer to AppendiX ;. [ ]

dissemination protocol); thus, the algorithms we develgne By choosingIl; = II, = F} in Corollary[1 we have the

assuming global information can in fact be implementeillowing corollary.

almost passively and at low cost. Corollary 2: Let us construct two subspacBs andII, by
choosingn; andms vectors uniformly at random respectively

[1l. PROPERTIES OFRANDOM VECTORSPACES OVER A  from F”. Then the subspacég, andIl, will be disjoint with

FINITE FIELD F}! probability 1 — O (¢~ 1) if m1 +mgy < n.

In this section, we will state and prove basic properties Ve are now ready to discuss one of the important properties
and results that we will exploit towards various applicatio ©f randomly chosen subspaces which is very useful for our
in the following sections. In particular, we will investiga Work: randomly selected subspaces tend to be “as far as
the properties of random sampling from vector spaces ow@ssible”. We will clarify and make precise what we mean
a finite field. Such properties give us a better insight arlRy ‘@s far as possible”, see also [33]. We first review the

understanding of randomized network coding and form _ Lo
Throughout this paper, when we talk about an event occussiitig high

foundation for the results and algorithms presented in ﬂ‘BﬁJbabiIity, we mean that its probability behaves like- O (¢—1), which
paper. goes tol asq — oo.



definition of a subspace in general position with respect to aTheorem?2: Consider a source that transmiis packets

family of subspaces. over a connected network using the dissemination protocol
Definition 2 ([33, Chapter 3]):Let IIs be an n- describedirfll-B] and assume that the network nodes perform
dimensional space over the fielt} and fori = 1,...,r, let random linear network coding over a sufficiently large finite

II; be a subspace dfig, with dim(Il;) = d;. A subspace field. Then there existg such that for allt > ¢, each node
IT C IIg of dimensiond is in general position with respect tov in the network receives, independent linear combinations
the family {11, } if of the n source packets per time slot, where= mincufv).
. _ Proof: Refer to AppendiXB-A. ]
dim(Il; N 1I) = max [d; +d —n,0], Vie{l,...,r}. (5) Given Theoreni ]2, we can state the following definition.
It should be noted thatax|d; + d — n, 0] is the minimum Definition 3: For a specific information dissemination pro-

possible dimension offI; NII). So what the above definitionto‘:(_)I over a ”et""Prk* we define th‘ﬂeady stateas the time
says is that the intersection of and eacH, is as small as period during which each node in the network receives

possible. Using the above definition we can state the foligwi exactly c, mdgpendent linear combinations of thesource
theorerf packets per time slot and none of the nodes, except source

Theorem1: Suppose{IL,;}, i — 1,...,r, are subspacesS' has collected linearly independent combinations. We call

of Ils = F7. Let us construct a subspage by randomly tr:etnmte t?at t?e net;vc()jrk e?te_;sbstea(il%/titate rtJhasketdmiy
choosingm vectors fromIls. Then IT will be in general StAt€ starting timeand denote it byr. e nework never

osition with respect to the familyII,} w.h.p.,i.e, with attains the steady state phase then weltise oc.
Erollaélbilit\;/vll _O(F;,l) INIE} wh.p. i€, wi For our protocol in§l[-B] 7 depends not only on the

Proof: Refer to AppendifA. network topology, but also on the waiting times. For the

Theoreni]l demonstrates a nice property of randomized n‘é’ﬁ't't”? té”.‘e Eef”:%l 4|1n Definitio@]1 we can upper boufid
work coding where the subspaces spanned by coding vecfors® aed In Lem j

tend to be as far as possible on different paths of the net\NorkEemma_‘k I 1S large enough, for the dissemination
protocol given ind[l-Blwe may upper bound the steady state

starting time as follows
B. Rate of Innovative Packets
. . , T, <2D(G) -1,
In the following sections, we will need to know the rate
of receiving innovative message vectors (packets) atvecei WhereD(G) is the longest path from the source to other nodes
in a dissemination protocol performing randomized netwoiR the network.
coding. By innovative we refer to vectors that do not belong  Proof: Refer to AppendiX_A. u
in the space spanned by already collected packets. As it ign order to be sure that the dissemination protocol given in
shown in [13], the source can multicast at rate equal to tfH-Blenters the steady state phaseshould be large enough.
minimum min-cut of all receivers if the intermediate node¥sing Lemma 4 we have the following result, Corollaty 3.
can combine the incoming messages. Moreover, it is shownCorollary 3: A sufficient condition forn to be sure that the
in [14] that using linear combinations is sufficient to asleie protocol enters the steady state is that
information transfer at a rate equal to the minimum mincut
of all receivers. In[[1B], [[1], it is also demonstrated that J;
choosing the coefficients of the linear combinations rarigom
is sufficient (no network-specific code design is requireith w Where cmax = maxvey cv.
high probability if the field size is large enough.
To find the rate of receiving information at each node where IV. TOPOLOGYINFERENCE
the implemented dissemination protocol performs randethiz In this section, we will use the tools developedifllto
network coding, we can use the following result given iimvestigate the relation between the network topology éed t
Theorem[ 2. Note that our described dissemination protocelibspaces collected at the nodes during information dissem
although very common in practice, does not exactly fit toation. We will develop conditions that allow us to passjvel
the previous theoretical results in the literature thatngr@ infer the network topology with (asymptotically on the valu
rates, because the operation of the network nodes is wéts) no error. The proposed scheme is passive in the sense
memory-less. That is, while for example [0 [1], [13], [14]cka that it does not alter the normal data flow of the network,
transmitted packet at timeis a function of a small subset ofand the information rates that can be achieved. In fact, we
the received packets up to timéthe ones corresponding to thecan think of our protocol as identifying the topology of the
same information message), in our case a packet transratttedetwork which is induced by the traffic.
time ¢ is a random linear combination of all packets received We build our intuition starting from information dissem-
up to timet. This small variant of the main theorem orination in tree topologies, and then extend our results in
randomized network coding is very intuitive, and we formallarbitrary topologies. Note that information disseminatitsing
state it in following. network coding in tree topologies does not offer throughput

2D(G) — 1 < | —

Cmax

“4Versions of this theorem can be easily derived from resnltbé literature 5Note thatD(G) is different from the longest shortest path which is called
[33], but we repeat here the short derivation for completene diameter ofG in the graph theory literature.



benefits as compared to routing; however, it is an intergstin II

case study that will naturally lead to our framework for o
general topologies. We then define conditions under which

the topology of a tree and that of an arbitrary network can be

uniquely identified using the observed subspaces. Note that
uniquely identifying the topology is a strong requiremeas,

the number of topologies for a given number of network nodes
is exponential in the number of nodes.

A. Tree Topologies

Let G = (V,E) be a network that is a directed tree of _ _
depthD(G) rooted at the source node We will present Fig. 2. Directed tree with four nodes rooted at the sousce
(i) necessary and sufficient conditions under which the tree

topology can be uniquely identified, ard) given that these The main idea in our result is that, if we consider two nodes

cond|t|qns are s_at|sf|ed, algorithms that allow us to do so. andw at the network which have collected subspatiggt)
We first consider trees where each edge is allocated the

. %ndHU (t) at timet, then, unless andv have a child-ancestor
same ratec, and thus the min-cut from the source to €aCll ationshi (e, are on the same branch in the tree), it holds
node of the tree equals We then briefly discuss the cas P L€, '

Shat 1L, (t) ¢ I1,(t) andIL,(t) ¢ IL,(t).

of undirected trees. Finally we examine the case Where_ edge%‘he challenge in proving this is that we deal with subspaces
are allocated different rates, and thus nodes may haveetitfe : . )
evolving over time, and thus we cannot directly apply the

min-cuts from the source. ! o
. i results in §lll] For example, for the network in Figurgl 2,

hai) tr?em:a:nrr?: C'\g'né;gmkAsSl;ert;th"::;thogdjeof.ft htrf:]eht;% p(t) andIl(t) are not subspaces that are selected uniformly
assianed the sanF:e Irt;/té " on each eld R gf tlhe iree) at random fromll 4(¢); instead, they are build over time as

9 ) — ¢ 9 1‘{ (t) also evolves. We will thus need the following two
Thus all nodes in the tree have the same min-cut, equal é . . .

. . S . results, that modify the results ifilllto take into account

c. Then according to the dissemination protocol mtroducefﬁ . C :
in Algorithm each nodes will wait time until it e time evolution in the creation of the subspaces. We start
has gollected {'f’ 1 dimensional subspace ;1r}1d then staPty examining in LemmAal5 the relationship between subspaces
* ! ! uospace, collected at the immediate children of a given parent node

_trans_mlttlng to its children. Our_clalm is that, we can the or example, at the childred and C' of node A). These
identify the network topology using a single snapshot of a ;

) ) . are created by sampling the same subspaces (those at node
node’s subspaces at a timéBefore formally proving the result

. I o L A). We then examine in Corollafy 4 the relationship between

in Theoren{ B, we will give some intuition on why this is so :

and why the waiting time is crucial to achieve this. We Staﬁubspaces collected at nodes that have different pareots (f
why waiting ime IS cruct hieve tis. example, a node that hds as parent and a node that h@as

from an example on the simple network in Figlie 2.

Example 1: Consider the tree in Figufd 2 and assume thgtS parent). ,

the edges héve unit capacit 1). Algorithm [IL.7 works Lemma5: Suppose there exist (proper) subspalies)

9 pacity £ 1). Alg (1) c --- < It — 1) with dimensionsdy,...,d:_1,

as follows. At timet = 1, node A receives a vectog; from . .
" . respectively. Let us construct the set of subspak ,
the sourceS. Node A waits, as it has not yet collected a. P Y ; paes:)

c+ 1 = 2 dimensional subspace. At tinte= 2, it receives a :T T')li’s.t.ﬁété a:;] foct)’clIO(W)S;/eSc;:?ct)l;I;((:Zrzos:en%ﬁé;Tr;I(jL\tvrgﬁtrj%m
vectorys. It now has collected the subspdda (2) = (y1,v2), - J P ulJ y

. L e | — ) < (d;j_1—d;_
and thus at the next timeslot it will start transmitting. Abe ;:)(:m 11(12 b Sfcgi::ﬁfﬁ(l\),vz ggr?sr}c?fgt({%e_s(ec? 012 sﬁésQLces
t = 3, node A transmits vectorg?® andy{ to nodesB and JT A V. b

C respectively, withy?, y{" € I14(2). ThusIlg(3) = (y) ggr(]zj)itio_ns %éﬁeqv(]) where- for . (j) we have S|mllar
c : ) Yko(1) < do andk,(j) < (dj—1 —dj-2)
andIl¢(3) = (yf'). Node A also receives a vectays from for 1 — 9 ¢ Then we have
the source, and thul 4(3) = (y1, y2,y3). Consider now the J= 4t
subspace$l 4 (3), II5(3) andII(3). We see thallz(3) C I, (i) € T,(j) and TL,(j) € T, (i) Vi,j€{l,...,t},
I14(3), andIlo(3) C I14(3); we thus conclude that nodds
and C are children of noded. Moreover,I15(3) # II(3), With high probability.
which will allow us to distinguish between children of these ~ Proof: Refer to Appendix_A. ]
two nodes when we deal with larger trees. Corollary 4: Suppose that there exist two set of subspaces
In contrast, if AlgorithniII.1 did not impose a waiting time,{IL. (i) };—5 and{IL,(i)}=; such thafll,(0) C --- C IL,(t—
and nodeA started transmitting to node8 and C' at time 1) and1L,(0) C --- C IL,(¢ — 1). Moreover, assume that
t = 2, then both node® andC would receive the same vectorllu (i) € II,(j) and IL,(j) € (i) Vi,j € {0,...,t —
y1, i.e, Hp(2) = Ie(2) = (y1). In fact, at all subsequentl}. Now, construct two set of subspacgsl,(i)};_; and
times, we will have thatlp(t) = Tlo(t) = [L4(t — 1). Thus, {IL(i)}i_; by settingIl (i) = >°'_, ma(j) and Iy(i) =
we would not be able to distinguish between these two nod@;.:1 () wherer, (i) is chosen uniformly at random from
B II,(i — 1) and m(¢) is chosen uniformly at random from



I, (i — 1) (with some arbitrary dimension). Then we have efficiently. The algorithm that determines the tree topglog
. . _ _ o reduces this information to only two “sufficient statistics
(i) £ Mp(7) and Ih(5) LIa(d) Vi.j € {L.....th yhe dimension of each subspadg = dim(Il,), Yu € V,
with high probability. and the dimension of the intersection of every two subspaces
Proof: Refer to AppendiXA. m duw = dim(Il, N1I,), Yu,v € V, as described in Algo-
Theorem3: Consider a tree of deptt)(G) where each rithm V], assuming that the conditions of Theorgm 3 hold.
edge has capacity, and the dissemination Algorithin T].1.

A static global view of the network at time, with : .
2D(G) —1 <t < | 2], allows to uniquely determine the tree Algorithm V-1 TREE({du}, {du. })
structure with high probability, if the waiting times areasten for eachu e V
according to Definitiof]1. if d, =n
Proof: We will say that a node of the tree is at level then u + S
if it has distancel from the source. In a tree there exists a do nodeu has parent the node with
unique pathP, = {S, Pl»=1(u),..., P(u),u} from sourceS else {v = argmin dy
to nodeu at levell, of the network. WEV: duw=dy

If we consider a timel in steady state (where all nodes Alg. IVl Find the network topology for a tree.

have nonempty subspaces and none has collected the whole ) ) )

space), then clearly using AlgoritHm 1.1 for disseminatia 2) D|re_cted V.S. _Undlrect_ed Networkn a tree with a single

the network for the nodes along the pah it holds that source, since new mformatlon can only flow from the source to

each node along a single path, whether the network is ddecte

I, (t) C Hp(yy(t) C --- CIlpra-1(y(t) CIls.  (6) or undirected makes no difference. In other words, frbin (6),

. .. all vectors that a node will send to its predecessor will bglo

Note that the conditions on ensure that the network is N the subspace the predecessor already has. Thus ThEbrem 3

steady-sta_te. . - still holds for undirected networks with a common mincut.

To identify the topology of the tree it is sufficient to show 3) Different Min-Cuts: Assume now that the edges of the

thatIL, (¢) £ IL,(t) for any nodev that is not inP,. Let, tree have different capacities, i.e., assigned differatds. In

andl, be the distance af andv from the source, respectively_.this case, the proof of Theordrh 3 still holds, provided that t

First, we observe that, starting from the source, by applyin. ;- Jition in Th 3 dified t
Lemma[%b and Corollar{l4 and because of Definitidn 1 theOn ition in Theorerl]3 is modified to

. n
subspaces of the nodes at the same level (same distance from 2D(G)—-1<t< | 1,
the source) are different at all times. So it only remains to Cmax
check the conditiorl,, () ¢ 11, (t) for those nodes that are WNerécmax = maxyev cy. .
not in the same level as. We underline that this theorem would not hold without the

Consider two cases. First, if, < I, then letv’ be the assumption in[{3) . Without this condition, it is possiblatth
ancestor of at the same level as. By Corollary[2 we have We cannot distinguish b(_etwegn nodes at. same level with a
IL,(t) & T, (t) soIL,(t) ¢ T1,(t) becausdl,(t) C I, (¢). ~ €ommon parent as explained in the following example.

Now consider the second cadg,> I,. We start by assum- Example2: If in the network in Figurd R, edgéA has
ing I1, (t) C II,(¢) and then we will show that this assumptior!Nit capacity, while edged and AC' have capacity two.
leads to a contradiction. Let be the ancestor of at the same [N this case it is easy to see that there exigtsuch that
level of v. Then we make the following observation. If at timd13(t) = lo(t) = Ila(t — 1), Vt > to. Clearly in this case,
¢ we havell, (t) C II,(¢) by Lemma® we should have had"e car_mot_ distinguish between nodés and C' with this
T p () (t—1) C TL,(t) and SOl p2 ) (i—2) C T,,(¢) and finally ~ dissemination protocol. n
we should had hadl, (¢t — I, + 1) C IL,(¢). But according
to Corollary[3 this is a contradiction becauseandv are at B. General Topologies
the same level. Consider now an arbitrary network topology, corresponding

In the above argument, we have shown g, (¢) is the to a directed acyclic graph. An intuition we can get from
smallest subspace contaifis (t) among all nodes’ subspacesexamining tree structures is that, we can distinguish betwe
at timet. So we are done. B two topologies provided all node subspaces are distinds Th

Assume now that Theoref 3 holds. To determine the trggused to identify the unique parent of each node. In general
structure, it is sufficient to determine the unique paremheatopologies, it is similarly sufficient to identify the patsnof
node has. From the previous arguments, the parent ofm@xle each node, in order to learn the graph topology. The follgwin
the unique node such thafll, (¢) is the minimum dimension theorem claims that having distinct subspaces is in fact a
subspace that contairi, (t). Then, the parent of node is sufficient condition for topology identifiability over gerad

the nodev such that graphs as well.
v —  aremin d Theorem4: In a synchronous network employing random-
- weV:gduw:du w ized network coding oveF,, a sufficient condition to uniquely

As we will discuss in Sectiof TVAC, collecting the subspacltgIentlfy the topology with high probability ag>> 1, is that

information from the network nodes can be implemented IT,(t) #10,(t) Yu,veV, u#wv, @)



for some timet. Under this condition, we can identify theandr,(t) are subspaces collected by nodeandv at timet
topology by collecting global information at timésand¢+1, then,
i.e., two consecutive static views of the network.

Proof: Assume nodeu has thep parents P(u) = () =1L, (t) =11

{u1,...,up}. LetTI™(¢), ... 11" (¢) denote the subspaces T (t) + Iy (t — 1) = mo () + Iy (2 — 1).

node v has received from its parents up to timgwhere pFrom construction, we havll = 11, (t) C Hpe(t — 1) and
L) = 37, ng)(t). From construction it is clear thaty — 11, (¢) C p(y) (t — 1).

T (¢ + 1) C I, (8). On the other hand, since we randomly cha$®’ (¢) from

To identify the network topology, it is sufficient to decidey (t—1) and Sincem(jui)(t) C II (becauser, (t) C II) using
which nodev € V is the parent that sent the subspﬁiﬁki)(t) Lemma2 we conclude that we should have m@l@‘—l) cn

to nodgu for eachz‘,_and thus find the parents of node.. \yhich means we should haWp(, (t— 1) C TL. Similarly, we
We claim that, provided. {7) holds, nodehas as parent the ghqouid havellp(, (t — 1) C T1. As a result (w.h.p.) we have
nodev which at timet has the smallest dimension subspagg payve

containingH&“i)(t + 1). Thus we can uniquely identify the Hpg(t — 1) = Mpy (t — 1) =TI,
network topology, by two static views, at timesandt¢ + 1, o o
as AlgorithmIV.2 describes. which is a contradiction, so we are done. [ |

Indeed, let 7)(¢) denote the subspace that node Corollary 5: If IL,(¢) = TI,(¢) = II for ¢ > | we should
u receives from parenty; at exactly time ¢, that have hadlpi,(t —1) =Ilpi,)(t —1) = II, w.h.p.
is ngi)(t +1) = ngi)(t) + 7T(m)(t +1). For eachi ¢ Proof: Consider the parents of nodesandv as supern-

e () o ‘ odesP(u) and P(v). Using a similar argument as stated in
{1, ’p}{,lf e (t+1) & I () for all v € VA fui}, Lemmd®, we can conclude that the parent®6f) and P(v),
clearly I1i" (¢ + 1) € 1L (t) for all v € V\ {u;}, and we are denoted as”?(u) and P?(v), should satisfy
done. Otherwise, using Lemrh& 2 and becalike (7) holds, with '

high probability we haver"")(t + 1) ¢ T1,(t) for all v € V T p2 (o) (t = 2) = Tpagy (t —2) = I1.
Z)r(:edrgr:ZOSG nodes that their subspaces cofilgjt). So we We use this argumerittimes to get the result. ]

. . Lemma7: If the dissemination protocol is in the steady
Note that to identify the network topology, we need to
know, for all nodeSu,f}t/he dimensiond,, pé d?ri(l‘[u(t)) of state,t > T, we could not havél,,(t) = IL,(t) unless nodes

. . . . ") » uwandv have the same set of ancestors at sérevel above
their observed subspaces at timethe dimensiond,,’ = in the network

dim(Hg“i)(t-i-l)) for all parentsu; of nodew, and the dimen- Proof: Because > T, we haved,, = dim(IL,) < n and
sion of the intersection dﬂ&“i)(t+1) with all 1L, (), w € V, g — dim(Il,) < n. Let us assumél, (t) = II,(t) = II so
denoted ag';) £ dim(I15" (¢ + 1) N IL,(t)). AlgorithmVZ e haved 2 d, = d,. From the Corollar{5 we can write

uses this information to infer the topology.

. ) () (4) for everyl > 1. Increasingl, two cases may happen. First,
Algorithm 1V.2: - GEN({du}, {eu"}, {duu}) either P!(u) or P!(v) contains the source nodethat results
for eachu € V in dim (Il p: () (t — 1)) = n or dim(I1pi(,,) (t — 1)) = n which
if dy,=n is a contradiction since < n. Second, nodes andv have
then u «+ S the same set of ancestors at some lével [ |
for eachie {1,...,p,} Up to here, we have shown that assuming the dissemination
do nodew has as parent thg protocol is in the steady state the subspaces of two arpitrar
else do nodev with nodes are equal only if they have the same ancestors at some
v= argmin d, level above in the network. The following result, Theoren 5
weV: d)=d states sufficient conditions that make the nodes’ subspace

different for dissemination Algorithia 1111.
- - . Theoremb5: Suppose two arbitrary nodesandv have the
The sufficient conditiong{7) in Theorem 4, may or may n@fame set of parent8! = P'(u) = P'(v) at some level. The

hold, depending on the network topology and the informatigg|lowing conditions are sufficient so that the dissemioati
dissemination protocol. Next, we will investigate for winat-  Algorithm [ satisfies conditior{[f)

work topologies the condition§](7) hold for the dissemioati

Alg. V2] Find the topology of a general network.

~ . 1 : l
Algorithm [ so that the network is identifiable. ¢y = min-cu(P", u) < min-cuf(s, P') = ¢,
Lemma6: Consider two arbitrary nodes and v, where ¢, = min-cut P!, v) < min-cut(S, P!) = c,.
P(u) = {u1,...,up, } andP(v) = {v1,...,v,, } are the par- ] . - '
ents ofu andv respectively. Leflp(, (t—1) = Y7, IL,, (t— i Proofi(ConsEEietrtLhe set .OI notdles 'l? ) Fromt;heftljeél— h
1), andTLpy (t - 1) = S T, (t — 1). If Ty (t) = I,(r) "ition we know that there exists at least one path of lerdg

- . .
we should have haillp ) (f — 1) = Ip() (t — 1) w.h.p. from each node iP* to the nodex. But also there might exist

Proof: Supposdlp,)(t — 1) # HP.(”) (t__ 1) an(_j let Us  enote that the min-cut to node, c, = min-cut(S,u), equalsc, —
assume thail,(¢) = II,(t) = II. This implies that ifr,(t) min{éu,cp}-
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paths of length less thanfrom some nodes i’ to w. If this
is the case, because the topology is a directed acyclic graph
we can find a subsé?’ of the nodes inP! such that it forms a
cut for the node: and the shortest path from each node?h
to u is [; see Figurél3. Moreover, we have min{tP’) = ¢,
and min-cutP’, u) = é,.
Now assume thaP’ = {p1,...,px} such thatr, <... <
Tp,- L€t a1, ..., ar, be the accumulative min-cut frorfi to
each node inP’. By this we mean that, = ¢,, andas is
the amount of increase in the min-cut frasnby adding node
p2 and so on. We similarly consider the accumulative min-cut
values fromp; to v and denote these by, ..., b;. So we
haverzl a; = ¢, and 25:1 bj = Cu. Fig. 3. Sets used in the proof of Theoréh 5: the Bét) contains the
From definition of the waiting times (Definitidd 1) we carparents of node: at distance = 1; the setP?(u) contains the set of parents

. at distance = 2; while P’ is the subset of”?(u) at distance no less than
write =9

dp(m1) > a1 + 1,

dp/(12) > dp/(11) + (72 — T1)a1 + ag, Intuitively, what Theorenil5 tell us is that, if for a node

k—1 there exists a path that does not belong in any cut between the
dp (k) > dpr (Th—1) + (Th — Th—1) Z a; + ag. source and another node then nodes: andv will definitely
=1 have distinct subspaces. The only case where nadasd

v may have the same subspace is, if they have a common
set of parents, a common cut. Even then, they would need

dpi (1) > dpr(Tk) both of them to receive all the innovative information that
1 k flows through the common cut at the same time. Note that the

aj + Z a;j +1. (8) condition of Theoreril5 are also necessary for identifiabty fo
=1 the special case of tree topologies, such as the topology in

Then we have

N

(]

> (e —mi)ar+ -+ (T — Th—1)
J

1

For d, we can also write Figure(2.
du(m1 +1) < by, C. Practical Considerations
dy(m2 +1) < dy(m +1) + (72 — 71) minfaq, b1] + be, We here argue that our proposed scheme can lead to a
k=1 k-1 practical protocol, where nodes passively collect infarora

du(m6 + 1) < du(T-1) + (76 — Tk,l)min[z aj,ij] + by, during the dissemination, and send once a small amount of

j=1  j=1 information to the central node in charge of the topology
or inference. In particular, we assume that the nodes follow
the information dissemination protocol and at some poiat th
du(m +1) < (72 — 72) minfas, b1] central node query them to report the subspaces they gather

k-1 k-1 k at a specifié time ¢.
+e (T — o) min(Y ag, Yy b1+ Y b (9 We now calculate the communication cost (total number
=1 j=1 j=1 of bits required to be transmitted to a central node) of
From [8), [9) and the theorem assumptions we conclude tha¢ proposed passive inference algorithm. Each node has to
dy (7 + 1) < dpi (7). Now for At timeslots later we write ~ transmit at mos2A;(G) subspaces to the central node where
Ai(G) is the maximum in-degree of nodes in the network.

dy (T + 1+ At) ‘2 du(Th + 1) + e, At There ared nodes in the network se9A;(G) subspace have
) to be transmitted. The total number of subspacdgefwhich
< dpi(Tk) + cp Al itself is ann-dimensional space) is
(_C) n n
= dpz (Tk =+ At), Z |:TL:| ~ Zqi(n,i) ~ qn2/4’
where (a) is true because receives packets fron®' with i Ltle i

rate at mosté,; (b) is true becausd, (7, + 1) < dp: (%)
and ¢, < ¢p; and finally (c) is true because aftef all of
the nodes inP’ receive packets at rate equal to their min-c
which means thaP’ (the same is true foP!) receives packets
at rate equal to its min-cut,.

The same inequality holds for the dimension of 7we assume the query is send before tiaetually occurs; Also note that

I,(mx + 1+ At). Thus for timet > 7, + [ we cannot if the number of source packets is much larger than the min-cut to each
h Y Iy — d ) — if node, and if we have an estimate f&;(G), a central node can with high
avellp: (t — ) = Iy(t) andIlpi(t — 1) = I, (¢) if ¢u < ¢p  probaility select at time in steady state. A node can also send a feedback

andé, < ¢,. So using Corollar{l5 we are done. B message to inform the central node if it is not at steady statemet.

where [7] is the Gaussian number, the number of
dimensional subspaces of ardimensional space. To approx-
Yhate the Gaussian number we use [32, Lemma 1]; note that
the approximation holds for large
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So to encode one of the subspacdlf we need approx- these errors [17]. Note that in this technique, we do not need
. 2 . . .
imately %~ log, ¢ bits. As a result, the total number of bitsany knowledge of the network topology for the error correti

need to be transmitted to the central node is at most mechanism. All that is needed is that the intermediate nodes
22 A (G)Y do not alter the transmitted subspace (which can be done if
1 logs . they do linear operations).

The approach of this section to locating adversaries uges th

framework developed in the previous sections, where it was
fiown that under randomized network coding, the subspaces
athered by the nodes of the network provide information
Bout the topology. Therefore, the basic premise in this@ec

is to use the structure of the erroneous subspace inserted by
the adversary to reveal information about its location, mhe
We already know the network topology.

Clearly, the complexity depends on the size of the
number of packets that the source transmits. In our work
assume that is large enough, so that the network enters i
steady state; on the other hand, other considerations sucrg
decoding complexity at network nodes, would requirte take
moderate values. Note that, for our algorithm to woile.(to
sample the network while in the steady state) we only requ
that n = 2B8cmaxD(G) (Corollary[3), wheres > 1 is some
constant that determines how many time slots the network 4s
in the steady state. i has such a size, the maximum number
of bits that need to be transmitted per node (communicat|d1
cost per node) is

Problem Formulation

Consrder a network represented as a directed acyclic graph
. We have a source, sending information 1o
recelvers, and one (or more) Byzantine adversaries, ldcate
Reom-costND= 2% 2D (G)?Ai(G) log, ¢ bits. at intermediate nodes of the network. We assume complete
knowledge of the network topology, and consider the source

In the above equatioff, cmax, andAi(G) are some constants. . 4 the receivers to be trustworthy (authenticated) ndtas,
The only parameter that depends on the network size S

are guaranteed not to be adversaries.
D(G). However for the most of practical content distribution 9

Suppose sourceS sendsn vectors, that span am-
networks the longest path of network is kept small to ensu mensional subspadds of the space™. where we assume
a good connectivity between nodes in the network (see fo

example [34)). 5> 1. In particular, in this section we will consider (without
loss of generality) subspace coding, whéfeg belongs to a
o&)debookc IIg € C designed to correct network errors and
erasures [17].
In the absence of any adversaries in the network each
receiverk;, i = 1,...,r, can decode the exact spdég. Now

cost, let us consider a practical scenario where= 28,
Cmax =— 1, /82 = 5, A(G) = 5, and D(G) = 10. Th
we haveRcom-costnd™ 4 kilobytes. In contrast, in a practical

dissemination scenario (ex. of video) we would dissemiaate Cassume that there is an adversary, Eve, who attacks one of the
large number of information packets each possibly as IarﬂSdes in the network by combiningdadimensional subspace
an a fetvv megaltc;ytest bthus thfe O\r{erhead of the t0p°|og'??l with its incoming space and sending the resulting vectors
Information would not be sighifican to its children. Then the receiveR; collects some linearly
independent vectors that span a subsgége We can write
V. LOCATING BYZANTINE ATTACKERS

In this section we explore a problem that is dual to topology Mg, = Hi(lls + 1),
inference: given complete knowledge of the topology, wehere#,(II) is a linear operator. This operator models the
leverage subspace properties to identify the location ofliaear transformation that the network induces on the ieser
malicious Byzantine attacker. source and adversary packets.

In a network coded system, the adversarial nodes in theWe assume that the receiver is able to at least detect that a
network disrupt the normal operation of the information floidyzantine attack is under way. Moreover, we assume that the
by inserting erroneous packets into the network. This can keceiver is able to decode the subspHgethat the source has
done by inserting spurious data packets into their outgoisgnt. This might be, either because the receiver has clyrrect
edges. One way in which these erroneous packets candseoded the sent message.( using code construction from
prevented from disrupting information flow is by reducing th[17]), or, because after detecting the presence of an afiask
transmission rate to below the min-cut of the network, arréquested the source subspace through a secure channel from
using the redundancy to protect against errars; [20], [[2H]. the source node.

One such technique, using subspaces to code information wa¥/e can restrict the Byzantine attack in several ways, de-
proposed in[[17]. In this approach, the source sends a bagiding on the edges where the attack is launched, the number
of the subspace corresponding to the message. In the abs@i@®rrupted vectors inserted, and the vertices (netwodesp

of errors, the linear operations of the intermediate nodes that the adversary has access to. In this section we will
not alter the sent subspace, and hence the receiver detedeglistinguish between the cases where

message by collecting the basis of the transmitted subspacel. there is a single Byzantine attacker located in a vertex
A malicious attacker inserts vectors that do not belong in  of the network, and

the transmitted subspace. Therefore, if the message coklebo Il. there are multiple independent attackers, located on
uses subspaces that are “far enough” apart (according to an different vertices, that act without coordinating with bac
appropriately defined distance measure), then one canctorre  other.
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We assume that each attacker located on a single vertexas abl
to corrupt any outgoing edges by inserting arbitrary eromse
information. However, in this work we only consider the case
where the attackers inject independent information witlaoy
coordination among themselves.

We are interested in understanding under what conditions
we can uniquely identify the attacker’'s location (or, up to
what uncertainty we can identify the attacker), under thevab
scenarios.

Fig. 4. The sources distributes packets to receiver$; and Ra.

B. The Case of a Single Adversary

In this section we focus on the case where we want to locaten ExampleL8, we were able to exactly identify the location
a Byzantine adversary, Eve, controllingsimgle vertex of the Of the adversary, because the s&f contained a single
network graph. edge, and node; is trustworthy. It is easy to find network

In §V-B1 we illustrate the limitation of usingnly the configurations where 4 contains multiple edges, or in fact
information the receivers have observed along with the knovl the network edges, and thus we can no longer identify the
edge of the topology, to locate the adversary. This motivatgttacker. The following example illustrates one such case.
requiring additional information from the intermediatedes  EXample4: Consider the line network shown in Figure 5.
related to the subspaces observed by themgWiB2 we Suppose the attacker is nodé If the receiverR sees a
show that such additional information allows us to localiz€°rTupted packet, then using just the topology, the atracke

the adversary either uniquely or within an ambiguity of gfould beany of the other nodes in the line network. This
most two nodes. illustrates that just the topology and receiver informatould

1) Identification using only Topological Informationin !€ad to large ambiguity in the location of the attacker. B
order to illustrate the ideas, we will examine the case witeze 1 nerefore, Examplél4 motivates the ideas examined in
corrupted packets are inserted on a single edge of the rietww which obtain additional information and utilize the

say edge 4. The extension to the cases where multiple edg&&uctural properties of the subspaces observed.
get corrupted is easy. 2) Identification using Information from all Network Nodes:

Since each receiveR knows the subspaceﬁig)} it has We will next discuss algorithms where a central authority,

received from its| In(R)| parents, it knows whether what itwhich we will call controller, requests from all nodes in the
received is corrupted or not (a subspacdlaf or not). Using network to report some additional information, relatedhe t
this, we can infer some information regarding topologiCglubspaces they have received from their parents. The adyers

properties that the edges should satisfy. In particular we could send inaccurate information to the controller, b th
have the following result, Lemnid 8 ' other nodes report the information accurately. Our taslois t

Lemmas: Let P. denote the set of paﬁstarting from design the question to the nodes such that we can locate the
the source and ending at edge Then, if £&- is the set of adversary, despite its possible misdirection.

incoming edges to receivers that bring corrupted packetdew . fThe ctpntrci_lltir(;ngydask the, node; of t?e foIIolvvmtg .types of
Es the set of incoming edges to receivers that only brir@ ormation, listed in decreasing order o complexity:

. . . ; . i)
source information, the edge, belongs in the set of edges  Information 1:Each nodev sends all subspacds; (_)'t
£, with has received from its parents, wheie = 3, 5, I,

R Information 2: Each nodev sends a rando_miy chosen
atire-U~rRy vector from each of the received subspaiéd (| In(v)|
ecéc ecfs

vectors in total).

Proof: If R receives corrupted vectors from an incoming Information 2 is motivated by the following well-known
edgee then there exists at least one path that connegtto  observation, see Lemnia 2: [8; andII, be two subspaces
e. Theney is part of at least one path iR.. of Fy, and assume that we randomly select a vegtdrom

Conversely, if a receiverR does not receive corruptedIl;. Then, forq > 1, y € I, if and only if IT; C II,. Thus,
packets from an incoming edgethene, does not form part a randomly selected vector fronh, allows to check whether
of any path inP,. That is, there does not exist a path thdil, C ITg or not.
connectse 4 to e. [ | In fact, we will show in this section that for a single
The following example illustrates this approach. adversary it is sufficient to u8dnformation 2, and classify
Example 3: Consider the network in Figufé 4, and assumihie edges of the network by simply testing whether the
that R, receives corrupted packets from edgé&; and uncor- information flowing through each edge is a subspacélof
rupted packets froml Ry, while R; receives only uncorrupted or not (.e., is corrupted or not).
packets. Ther€4 = {DR;} and the attacker is located on Theorem6: Using Information 1, by splitting the network
nodeD. B edges into corrupted and uncorrupted sets, we can narrow the

8In the following we are going to equivalently think &, as the set of all 9Using Information 2 these statements are made with highatitity, i.e.,
edges that take part in these paths. the probability goes to one as field sigze—+ oco.
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@_,@_, 1) Identification using only Topological Informatiorthe

approach in§V-BI] can be directly extended in the case
of multiple adversaries, but again, offers no identifiapili
guarantees.

Example5: Consider again the network in Figuré 4, and
location of the adversary up to a set of at most two nodessume that?; receives corrupted packets only from edge
With Information 2, the same result holds w.h.p. DR, while R, receives corrupted packets only from edge

Proof: The network is a directed acyclic graph, so wé 2. Thené4 = {AD,CD, DRy, DR,} and (depending on
can impose a partial order on the edges of the graph, such ®idt assumptions) we may have,
e1 > ey if €1 is an ancestor edge ef (i.e. there exists a path - a single adversary located on nofle
from e; to e3). Then having Information 1 or Information 2, - two adversaries, located on nodésand C,
we can divide the edges of the network into two sets: the set- two adversaries, located on noddsand D, or nodesC'
of edgesE through which are reported to flow corrupted andD, or
subspaces, and the remaining eddgs through which the - three adversaries, located on nodesC, and D.
source information flows so we have= Fs U Es andEgsN n

Eg = 0. Note that all the outgoing edges from the source 2y |dentification using SplittingSimilarly to §V-B2] using
belong inEs. Information 1 or Information 2, we can divide the set of
Nodes in the network perform randomized network codingyges into two set#s and Ec, depending on whether the
so every node that receives corrupted information on at leggormation flowing through each edge belongs Ty or
one of its incoming edges makes all of the outgoing edgggt Depending on the network topology, we may be able to
polluted w.h.p. Lett, be the number of corrupted outgoing,niquely identify the location of the attackers. Howevéist
edges of a node where we havel < ¢, < [Out(v)|. For approach, although it guarantees to find at least one of the
each node that is not an adversary we have eithgr= 0 or  attackers (within an uncertainty of at most two nodes), does

Fig. 5. The sources sends information to receiveR over a line network.

ty = [ Out(v)]. ) _ not necessarily find all the attackers, even if we know their
Now, to prove the theorem we consider the followingysct number.
possible cases. To show this let us state the following definition.

1) If the adversary Eve corrupts, outgoing edges where  Definition 4: We say that node is in the shadow of node
1 <ts < [Out(A)| we can identify the node she has4, if there exists a path that connects every incoming edge of
attacked uniquely because its behavior is different fromto a corrupted outgoing edge df.
all other nodes. Then we have the following result.

2) If she corrupts all of its outgoing edgés, = | Out(A)|,  Lemma9: By splitting the network edges into two ses;
then she can fraud us by declaring that one of the nod@d £ we cannot identify adversarial nodes that are in the
incoming edges is corrupted. A declares more than shadow of an adversary.
one of the incoming edges as corrupted we can find its  proof: This is because if an attacker is in the shadow of
location uniquely. another attacker, it may corrupt only already corruptedorsc

3) She can also corrupt only one of its outgoing edgegnd thus not incur a detectable effect. So we cannot disthgu

ta = 1, and pretends that its children is in fact thgetween an attacker and a normal node that are in the shadow
adversary by declaring all of its incoming edges bringf 4. n

non-corrupted information. She cannot declare that anyThe following example illustrates these points.

of its incoming edges are polluted since then we may Example6: For the example in Figufd 4, assume that each

find its location uniquely. attacker corrupts all its outgoing edges, and consider the
In all of the above cases the adversary is on the bound#sjlowing two situations:

of two setsFEgs and E¢c and the ambiguity about its location 1) Assume that nodesd and C' are attackers. IfA
is at most withing a set of two vertices where this set costain reports truthfully while C' lies we get Ec =

those two vertices that are connected by the corrupted edge {AD, ARy, DR, DRy, BC,CR,,CD}, which allows
with highest order among all corrupted edges (recall that we ¢, idéntify the attackers. ’

can compare all of the corrupted edges using the imposedz) Assume that nodeB and D are attackers. Then we say

partial order). . that nodeD is in the shadow of nod®, as it corrupts
only already packets corrupted Y. Indeed, if Ec =
C. The Case of Multiple Adversaries {SB,BA,BC,AD,ARy,DR;, DRy, BC,CR,,CD},

In the case of a single adversary, it was sufficient to divide ~ knowing that the source is trustworthy, we can infer that
the set of edges into two setSg and E, as described in the node B is an attacker. However, any of the nodés
previous section. In the presence of multiple adversaties, C, and D can equally probably be the second attacker.
may no longer be sufficient. An additional dimension is that  All these nodes are in the shadow of nable
realistically, we may not know the exact number of adveesari |

present. In the following, we discuss a number of algorithms Theorem7: Using Information 1 it is possible to narrow
that offer weaker or stronger identifiability guarantees. down the location of those adversaries that have the highest
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order in the network using the splitting method. The sankhus the ambiguity set we have identified includes the ad-
result holds for Information 2 w.h.p. versary and its parents and/or its children depending on the
Proof: As stated in the proof of Theordm 6 we can imposadversary’s report.
a partial order on the edges of the network graph. Then, byRepeating this procedure for every node in the network,
using Information 1 or Information 2 we may split the networkve can identify sets of potential adversaries. We know that
edges into two set&s and F¢. depending on the adversaries action there exists ambiguity
Because every node in the network performs randomizadfinding their exact location. In fact in the worst case, the
network coding, there are only two possibilities for eachncertainty is within a set of nodes including the adverstsy
adversary to corrupt its outgoing edges and report subspaparents and its children. So if the distance between adiessa
for its incoming edges such that it is not located uniquelis greater than two, the “uncertainty” sets do not overlap. |

These are as follows. this case we can easily distinguish between different adver
1) She corrupts some (or all) of its outgoing edges b§grie§. _ . . n
reports its incoming edges as uncorrupted_ This procedure allows to |dent|fy adversaries (W|th|n the

2) She corrupts all of its outgoing edges and reports soffentioned parent-children ambiguity set), even if one ithen
(at least One) of its incoming edges as Corrupted_ shadow of another, and even if we do not know their exact

mber, provided they are “far enough” in the network to be

Now, let us consider the set of all the corrupted edges t e
atlngwshable.

have highest order with respect to other corrupted edges
cannot be compared against each other. For each of the above
cases there should be at least one adversary connectedyo eve V! PRACTICAL IMPLICATIONS FORTOPOLOGY
edge in this set. [ MANAGEMENT
3) Identification using Subset Relationships:this subsec-  In §IV] we demonstrated that using subspaces of all nodes,
tion we develop a new algorithm to find the adversaries whistte can infer the network topology under certain conditiéns.
is based on Information 1. this section, we will show that even from what a single node
For each node: € V, let P(u) = {u1,...,u,,} denote observes, it is possible to get some information regardieg t
the set of parent nodes ef We are going to treaP(u) as a bottlenecks and clustering in the network.
super node, and use the notatiip,) = > /", II,, for the Leveraging this observation in the context of P2P networks,
union of the subspaces of all nodes/{u). Also recall that we propose algorithms that use this information in a disted
HSJ“) denotes the subspace received by nodeom nodeu.  Peer-initiated manner to avoid bottlenecks and clustering
Our last algorithm checks, for every node= V', whether
? A. Problem Statement and Motivation
HSj“) Clpw) YoeV:ew€E. (10) In peer-to-peer networks that employ network coding for
Then we have the following result, Theoréin 8. content distribution (see for example Avalanche [3] [4])
Theorem8: If the pairwise distance between adversaries W& want to create and maintain a well-connected network
greater than two, it is possible to find the exact number ¥Pology, to allow the information to flow fast between the
well as the location of the attackers (within an uncertaifty nNodes; however, this is not straightforward. Peer-to-geer
parent-children sets) using the subset method. very dynamically changing networks, where hundreds of sode
Proof: First, let us focus on a single adversary case whefeay join and leave the network within seconds. All nodes in
A € V is the node attacked by the adversary. Then we wiinis network are connected to a small number of neighbors
generalize the idea for an arbitrary number of adversaries. (four to eight). An arriving node is allocated neighbors ago
If (Z0) is satisfied for all children ofi, we know that node the active participating nod® which accept the solicited

u is not an adversary. If the relationship is not satisfiedt, ha Connection unless they have already reached their maximum
R ¢ Tp(, for at least one child of,, we consider node number of neighbors. As a result, nodes that arrive at around
u )

u as a potential candidate for being an adversary. For sure 1§ Same time tend to get connected to each other, since they
know that are all simultaneously available and looking for neighbors

That is, we have formation of clusters and bottlenecks in the
I ¢ Mpay VeV :ean €E, network.

. To avoid this problem, one method adopted in protocols is to
but depending on the subspace that the adversary repaats, t - .
: I ask all nodes to periodically drop one neighbor and recannec
relation [10) may not be also satisfied for other nodes. Basg . ; . .
.16"a new one among an active peers list. This randomized
on what the adversary reports there would be two possible . . ; ' !
cases rewiring results in a fixed average number of reconnectiens p

If the adversary pretends that it is a trustworthy node (junf)de independently of how good or bad is the formed network

declares the received subspace from its parents) the aboo\PObgy' Thus to achieve a good, on the average, perforenanc

. . ; . mn terms of breaking clusters, it entails a much larger numbe
relation also fails for the children ol who receive corrupted of rewiring than reauired. and unnecessary topoloay change
subspaces. On the other hand, if the adversary tells thie tru{ 9 q ' y topology g
and declares its corrupted subspace, we have 10This is usually done by a central node which we call it (follogy

(u) Avalanche) “registrat”. This is the central authority thateps the list of all
IT, 52 Opwy VueV: uA € E. nodes in the network and gives every new node a set of neighbor
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e of the nodesB and C, once they receive the packet from
node A, they also attempt to send a coded packet to node
9 But these packets will not bring new information to nable
(@) (b) ® because they will belong in the linear span of coding vectors
that nodeD has already received. Similarly, when nodés
e e and C receive a new packet from the source, nadewill
end up being offered three coded packets, one from each of
its neighbors, and only one of the three will bring to ndde
new information. [
More formally, the coding vectors nodes B and C will
(D) (D) collect will effectively span the same subspace; thus tliedo
packets they will offer to nodé® to download will belong in
Fig. 6. The source distributes packets to the peess B, C and D over  gjgnificantly overlapping subspaces and will thus be reduand
the overlay network (a), that uses the underlying physiesvark (b). (we formalize these intuitive arguments{ii-B). Node D can
An alternative approach is to have peers initiate topologgfer from this passively collected information that thésea
rewirings when they detect they are in a cluster. Clearhottleneck between node$, B, C' and the source, and can
a central node could keep some structural informatian, thus initiate a connection change.
keep track of the current network topology, and use it to
make more educated choices of neighbor allocations. Haweug Tneoretical Framework
the information this central node can collect only reflects . .
the overlay network topology, and is oblivious to bandwidth . Hefe. we use the same notations mtroQuced§]iﬂi For
constraints from the underlying physical links. Acquirin implicity we will assume that _thg network IS syr_lchroHnEus .
bandwidth information for the underlying physical linksthe Od?S are allowed to transmit I!near combinations of their
central node requires costly estimation techniques ngelarec_:elved packets Of?'y at clock ticks, at a rate equal to the
and heterogeneous networks, and steers towards a c&rdral&djacem link bandwidth.

network operation. We will argue that such bottlenecks can Now we use the framevyork offll to myesﬂgatg the
be inferred almost passively in a peer-initiated mannersth'nformat'on that we can obtain from the local informationeof

alleviating these drawbacks node’s subspace. From notations definedllhwe know that

Here, we will show that the coding vectors the peers recei%r an arbitrary node we can write
from their neighbors can be used to passively infer botdkne I, (t) = Z 1 (t).
information. This allows individual nodes to initiate tdpgy ieP(v)
changes to correct problematic connections. In particp&ers
by keeping track of the coding vectors they receive can det

problems in both the overlay topology and the underlyin ;
bottlenecks in the network. For example, the overlap of

physical links. The following example illustrates thesénpa ; : .
Example7: Consider the toy network depicted in Fig_subspaces from the neighbors reveals some informatiornt abou

ure [B(a) where the edges correspond to logical (Over|g§;ttlenecks. Therefor.e, we neeq to show that such ovgrlaps

network) links. The sourcé hasn packets to distribute to O¢CUr due to topological properties and not due to particula

four peers. Nodes!, B and C are directly connected to thef@ndom linear combinations chosen b_g/ the network code.

sourceS, and also among themselves with logical links, while L€t us assume that the subspa¢&s a nodew receives

node D is connected to noded, B and C. In this overlay from its set of parent®(v) have an intersection of dimension

network, there exist three edge-disjoint paths betweencsoud- Then we have the following o?gerva'uons. _

and any other nodes. Observationl: The subspaced,’, i € P(v), of the neigh-
Assume now (as shown in FiguTe 6(b)) that the logical linka0rs have an intersection of size at ledssee Corollary1).

SA, SB, SC share the bandwidth of the same underlying Observation2: The min-cut between the set of nodeév)

physical link, which forms a bottleneck between the sourgk a@nd the source is smaller than the min-cut between the node

the remaining nodes of the network. As a result, assume th@nd setP(v) (see Theorern]2). _

bandwidth on each of these links is orily3 of the bandwidth In the following, we will discuss algorithms that use such

of the remaining links. A central node (registrat), even Pbservations for topology management.

it keeps track of the complete logical network structure by

querying each node asking about its neighbors, is obliviogs Algorithms

to th_e eX|stenc_e of the bottleneck and the asymmetry betweerbur peer-initiated algorithms for topology management.con
the link bandwidths. sist of three tasks:

Node D however, can infer this information by observing . i - _
the coding vectors it receives from its neighbots B and 1 Eacth peer d?mde_s w:ethe_r It |s_tsa_\t|sf|ed with its con-
C. Indeed, when nodel receives a coded packet from the nection or not, using aecision criterion
source, it will forward a linear combination of the packéts i 1i1his is not essential for the algorithms but simplifies theotietical
has already collected to nodés and C and D. Now each analysis.

e are interested in understanding what information we can
i&fer from these received subspacﬁéz), i € P(v), about
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2) An unsatisfied peer sendsrawiring request that can registrat and asks to change a neighbor. The registrat nalgdo
contain different levels of information, either directly t selects which neighbor to change, and randomly allocates a
the registrat, or to its neighbors (these are the only nodesw neighbor from the active peer nodes.
the peer can communicate with).

3) Finally, the registrat, having received rewiring reqages
allocates neighborso nodes to be reconnected.

The decision criterion can capitalize on the fact that over-
lapping received subspaces indicate an opportunity for im-
provement. For example, in the first algorithm we propose
(Algorithm 1), a node can decide it is not satisfied with a
particular neighbor, if it receivels > 0, non-innovative coding
vectors from it, wheret is a parameter to be decided. Then
it has each unsatisfied node directly contact the registrdt a
specify the neighbor it WOUIq like to Change' The regls”%g. 7. A sample of topology with three clusters: clustecontains nodes
randomly selects a new neighbor. This algorithm, as Wejo, cluster2 nodes11-20 and cluster3 nodes21-30.
demonstrate through simulation results, may lead to more
rewirings than necessary: |_ndee_d, all node§ mgde a clus& Simulation Results
may attempt to change their neighbors, while it would have
been sufficient for a fraction of them to do so. For our simulation results we will start from randomly

Our second algorithm (Algorithm 2) uses a different degenerated topologies similar to Figure 7, that consist80of
cision criterion: for every two neighbors and v, each peer nodes connected into three distinct clusters. The source is
computes the rate at which the received joint spﬁgeJr 1, nodel, and belongs in the first cluster. The bottleneck links
and intersection spadé, N 11, increases. If the ratio betweenare indicated with arrows (and thus indicate the underlying
these two rates becomes greater than a threshpltie node physical link structure). Our first set of simulation result
decides it would like to change one of the two neighborgepicted in Figuré 18 show that the subspaces within each
However, instead of directly contacting the registrat,sesia cluster are very similar, while the subspaces across chiste
decentralized voting method that attempts to further redu@re significantly different, where we use the distance neasu
the number of reconnections. Then the registrat randomfBs(-,-) defined in [(2). These results indicate for example
selects and allocates one new neighbor for the nodes h#t knowledge of these subspaces will allow the registrat t
sent rewiring request. accurately detect and break clusters (Algorithm 3).

Our last proposed algorithm (Algorithm 3), while still peer Our second set of simulation results considers again tepolo
initiated and decentralized, relies more than the two presvi gies with three clusters: clustéihasl5 nodes and contains the
ones in the computational capabilities of the registrate Tisource, cluste2 has alsal5 nodes, while the number of nodes
basic observation is that, nodes in the same cluster will ntcluster3 increases from5 to 250. During the simulations
only receive overlapping subspaces from their parents, g assume that the registrat keeps the nodes’ degree between
moreover, they will end up collecting subspaces with veigand5, with an average degree 8f5. All edges correspond
small distance (this follows from Theordm 2 and Corollary o unit capacity links.
and is also illustrated through simulation resultgVi-D] see We compare the performance of the three proposed algo-
Figure[8). Each unsatisfied peersends a rewiring requestrithms in §VI-Clwith random rewiring. We implemented these
to the registrat, indicating to the registrat the subspdgdt algorithms as follows. For random rewiring, every time a
has collected. A peer can decide it is not satisfied using fapde receives a packet it changes one of its neighbors with
example the same criterion as in Algorithm 2. probability p = 5. For Algorithm 1, we use a parameter

The registrat waits for a short time period, to collect rexjge of £ = 10, and check whether the non-innovative packets
from a number of dissatisfied nodes. These are the nodeseived exceed this value every four received packets. For
of the network that have detected they are inside clustersAlgorithm 2, every node checks each received subspaceg ever
then calculates the distance between the identified subspdour received packets using the threshold vélue- 1. Finally
to decide which peers belong in the same cluster. Whiler Algorithm 3, we assume that nodes use the same criterion
exact such calculations can be computationally demandi@g,in Algorithm 2 to decide whether they form part of a cluster
in practice, the registrat can use one of the many hashiagain with 7 = 1. Dissatisfied nodes send their observed
algorithms to efficiently do so. Finally the registrat bredke subspaces to the registrat. The registrat assigns nodasdv
clusters by rewiring a small number of nodes in each clustér.the same cluster ifls(IL,, IL,) < 7.

The allocated new neighbors are either nodes that belong iffable[l compares all algorithms with respect to the average
different clusters, or, nodes that have not send a rewirigllection time, defined as the difference between the time a
request at all. peer receives the first packet and the time it can decode all

We will compare our proposed algorithms against thgackets, and averaged over all peers. All algorithms perfor
Random Rewiringcurrently employed by many peer-to-peesimilarly, indicating that all algorithms result in breakji the
protocols é.g, see [3], [4], [34]). In this algorithm, eachclusters. It is important to note that the average collectio
time a peer receives a packet, with probabilitgontacts the time is in terms of number of exchanges needed doebs not

Topolog of a network with 3 clusters.
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Fig. 8. Simulation results for the topology in Figure 7, withttleneck link capacity values equal @ol (left) and 1 (right).
. - TABLE |
account for the delays incurred due to rewiring. We compare AVERAGE COLLECTION TIME
the number of such rewirings needed next. Topology | Random | Algo 1 | Algo 2 | Algo 3
Figure[9 plots the average number of rewirings each algo- 15-15—20 20.98 | 22.14 | 20.57 | 20.39
rithm employs. Random rewiring incurs a number of rewirings ig—}g—‘;g }g-gg g}éi }g-g? }3-‘511
proportional to the number of P2P nodes, and independently 1515100 18.6 2148 | 1891 | 21.42
from the underlying network topology. Our proposed algo- 15-15-150 | 19.56 | 20.85 | 19.96 | 20.18
rithms on the other hand, adapt to the existence and size 15-15-250 | 18.79 19.8 | 19.18 | 18.99

of clusters. Algorithm3 leads to the smallest number of

rewirings. Algorithm2 leads to a larger number of rewiringscoding and found that there exists an intricate relatignshi
partly due to that the new neighbors are chosen randonpgtween the structure of the network and these properties.
and not in a manner that necessarily breaks the clusterhis observation led us to utilize these relationships iresal

The behavior of algorithml is interesting. This algorithm different applications. As the first application, we stubitbe
rewires any node that has received more thaon-innovative conditions under which we can passively infer the network
packets. Consider cluste; whose size we increase for thetopology during content distribution. We showed that these
simulations. Ifk is small with respect to the cluster size, thegonditions are not very restrictive and hold for a general
a large number of nodes will collect close#mon-innovative class of information dissemination protocols. As our secon
packets; thus a large number of nodes will ask for rewiringgpplication, we focused on locating Byzantine attackertién
Moreover, even after rewirings that break the cluster gccuietwork. We studied and formulated this problem and found
some nodes will still collect linearly dependent infornoati that for the single adversary we can identify the adversary
and ask for additional rewirings. As clusteéincreases in size, within an uncertainty of two nodes. For the case of mul-
the information disseminates more slowly within the clustetiple adversaries, we discussed a number of algorithms and
Nodes in the border, close to the bottleneck links, will na@v bconditions under which we can guarantee identifiabilityr Fo
the ones to first ask for rewirings, long before other nodes dur last application, we investigated the relation betwiren

the network collect a large number of non-innovative paekebottienecks in a logical network and the subspaces received
Thus once the clusters are broken, no new rewirings will kg a specific network node. We leveraged our observations to
requested. This desirable behavior of Algoritinmanifests propose decentralized peer-initiated algorithms for riegiin

itself for large clusters; for small clusters, such as @ustthe P2P systems to avoid clustering in a cost-efficient manme, a
second algorithm for example achieves a better performansgluated our algorithms through simulations results.

using less reconnections. The applications studied in this paper demonstrate ad-
vantages of using randomized network coding for network

400 . management and control, that are additional to throughput

w00 -*-‘Zagldlom PPta . benefits._These are just a fe_w e_zxamples and we believe that

—a— Algo? LT there exist a lot more applications where we can use the
a00- [ TET A0S PPt e subspace properties developed in this work. We hope thsé the

properties will become part of a toolbox that can be used to

100 develop applications for systems that employ network apdin

Average number of rewirings

K —— e @ "° technigues.
50 100 150 200 250 300 350 400 450 500 550
Total number of P2P nodes
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g
which is of orderO (¢~™) provided thafl; ¢ II, , i.e., di2 <
dy. |

Proof of Lemm&l3:Let vy, ..., v,, be the vectors chosen
randomly fromIlgs to constructll, namely, we havdl =
(v1,...,v,). Then construct the sequence of subspabEs,
i=0,...,m, as follows. First, sef[(0) £ II;, and then define
II(7) for i # O recursively,II(i) = I(i — 1) + (v;). We also
defined(i) £ dim(I1(4)), i = 0,...,m. From Lemmd[R, by
choosingll; = Ilg, Il = II(i — 1) andm = 1 we deduce
thatd(i) = d(i — 1) + 1 with probability1 — O (¢7'), unless
d(i—1)=n.

Now we consider two cases. First,nt + £ < n then we
havedim(II+ 1) = k+m or equivalentlydim(ITNII;) = 0
with high probability,i.e, 1 — O (¢~'). Secondly, whem +
k > n we havedim(IT+I1;) = n with probability1—O (¢71).
From LemmdJl we havdim(II) = min[m,n] w.h.p. So we

P [H/l C HQ] = ( > = q(dm*dl)m’

[30] M. Jafari Siavoshani, C. Fragouli, and S. Diggavi, “Noherent multi- havedim(IT N 1) = dim(I1;) + dim(IT) — dim(IT; UII) =

source network codingJEEE International Symposium on Information

Theory Toronto, Canada, pp. 817-821, Jul. 2008.

[31] D. Silva, F. R. Kschischang, and R. Koetter, “Commutiaraover finite-
field matrix channels,TJEEE Transactions on Information Theompol. 56,
iss. 3, pp. 1296-1305, Mar. 2010.

k + min[m, n] — n.
Combining these two cases we can write

dim(IT N 1) = (k + min[m,n] — n)*,
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w.h.p., which completes the proof. m where(a) follows becauser, (1) C II(0) and (c) is a result
Proof of Corollary1: Let us defindl,, = II;NII,, where of Corollary 2. SoVj € {1,...,t} we haver,(1) ¢ IL,(j)

di2 = dim(Il;2). Using LemmdB, and takinfls = II; and which results inIL, (i) ¢ II,(j), Vi, € {1,...,t}. By

II;, = I1;2, we have symmetry, we have the second assertion of the lemma, namely,

. , I, (j) ¢ Ia(3), Vi, j € {1,....1}.
_ (e +
dim(Tl; NThi2) = min [dia, (M1 — (d1 — d12))*], Now, it only remains to checkb). We will prove this by

with probability1 — O (¢~!). Now, we can write induction. ObviouslyI1(0) NI, (1) = 7, (1). Suppose that we
A haveIl(0) N II,(k) = m, (1) wherek < t then we show that
P [dlg = a} = it also holds fork + 1.

. . . We know thatr, (1) C II(0) N II,(k 4+ 1). To show that
P {dl? = afdim(Il; N1Tg) = ﬂ]P [dlm(nl NIlp) = ﬂ] I1(0) N I, (k + 1) C 7, (1) we proceed as follows. Lab €

5 . . I1(0) N I, (k + 1) thenw € II(0) andw € II,(k + 1) =
P |di2 = a|dim(I1; N 1T P |dim(IT; N 1T
+ { 12 = af dim(Il M) # B} { im(Ih 1) # ﬁ}’ S ¥, (i). We may decompose asw = 3. w; where

where di; = dim(Il; N II,). Substituting 3 = Wi € (). Then we notice thatoyy, = w — Y wi €
min [di2, (m1 — (dy — d12))*] we obtain II(k—1) andIl(k — 1) Nm, (k + 1). = 0 w.h.p. (by Lemma 3).
So we conclude thaty.; = 0 which meansu € I1,, (k). This
P {Czlg = a} = shows thatw € II(0) N1I, (k) where by induction assumption
) ) we havew € m,(1) and we are done. [ ]
P ldi2 = o|dim(Il; N1L2) = ﬂ] (1-0("))+0(¢ ). Proof of Corollary[4: Because we have, (0) ¢ T1,(5)

&hen by Lemma 2 we have,(1) ¢ II,(j) w.h.p. So as a
result we havdl, (i) ¢ II,(j — 1) Vi,j € {1,...,t}. Because
II,(j) € I1,(j — 1) we conclude thafl, (i) ¢ II,(j) Vi,j €
{1,...,t} w.h.p. By symmetry, we also deduce the other part

Selectinga properly and using Lemmid 3 one more time, w
get
]P’{dlgza} Zl—O(q_l),

where = min|8, (ma — (d2 — 3))*], which completes the of the corollary. -
proof. [ ]
Proof of Theoreril1:To prove the theorem, it is sufficient APPENDIXB

to show that[(b) is valid for one specifiavith high probability. ALGEBRAIC MODEL FORSYNCHRONOUSNETWORKS
This is sufficient because #; is the probability thafl is in In this appendix we employ an algebraic approach to
general position with respect to eath, i = 1,....7, then analyze the dissemination protocol given in Algorithmll.1
the probability thatll is in general position with the whole This approach is similar té [15] andl[1], but differs in tha¢ w
family is lower bounded byl — > i (1= pa). introduce memory into the coding process.

Now by applying Lemmal3, we know that =1-0(¢')  we introduce memory as follows. Suppose we are interested
which completes the proof. ® in finding the transfer function between the source and an

Proof of Lemmal4:Here we assume thatis very large. arpitrary nodev. Let X be an x ¢ matrix with rows the
Then in Corollary_B we will derive a sufficient condition on,, packets (vectors) that the source wants to transmit to the
the largeness of. receivers. We assume thdim((X)) = n. Let Y(t) € F§*¢

Let v be the node that has the longest path to the sofircepe a matrix with rows the packets that pass througts théges
Because of Definitiof]1 we can writ, < 7, — 1. Then we of the network at time. Let Z,,(t) be the set of packets that
may upper bound, as follows nodewv receives. Similarly to[[15], we will write state-space

7o <24+ max T, equations that_ involve _these vectors; however, we will emsu
u€P(v) that, at each time, coding at each node occurs across all the

where P(v) is the set of parents af. Now we can repeat the Packets that the node has received before time

above argument until we reach the souigeSo finally we /N €ach timeslott, the source injects Out(S5)| packets
into the network that are random linear combinations of the

have
<9D(C original source packetX. These linear combinations can be
7, < 2D(G), [ Out(S)|xn ;
_ _ captured asVI (¢t) X, whereM (t) € Fy is a random
which leads to the lemma’s assertion. B matrix. Intermediate network nodes will transmit packets o
Proof of Lemmal5: Let us write their outgoing edges depending on the network connectivity

and the state of the dissemination protocol.

The network connectivity can be captured by the< &
@ dim (mu (1) N (1L, (j) N II(0))) adjacency matrixF of the labeled line graph of the graph
G, defined as follows

F.oA 1 head(e;) = tail(e; ),
§ 0 otherwise.

dim(m, (1) N 11, (5))

@ dim (7, (1) Ny (1))
© min[do, (ku (1) + ko (1) — do)*, ku(1), ko(1)]

_ _ +
= (ku(1) + ko(1) = do) To model random coding over a field,, we consider a
< ku(1), sequence of random matric&"” ..., F{" which conform
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to F. That is, the entries of these matrices have ot ;j We define matrixFr which represent how the states are
(F,(f))ij = 0 whereverF;; = 0 and have random numbersrelated to each other
from I, in all other places. 0 0

0 0
The dissemination protocol dictates when a node can start F2 0 0o o
transmitting packets, according to its waiting time (equiv %3) (3)
. . Fr2| FyY F 0 0 € FETXET
lently, when the outgoing edges of the node will have packets LT %4) %4) @ q .
send through them). To capture this, we will use the step F;° F,” F;p° 0
function u(t), : :
u(t) & 1 t>0, Finally, we use matrixUr that captures the time when
0 otherwise transmissions start for each edge
and define the& x ¢ diagonal matrixU (t) as, U(l)
- Ur = € FETXET,
Vi SO U”(t) é u (t - Ttail(i) — 1) ) U(T) 1

wherer, is the waiting timefor nodew. In this section we Using the above definitions, we can rewrifte](11) as follows
assume that the waiting times may have arbitrary values and

we do not restrict them according to Definitibh 1. Yr=Ur(ArMrX + FrY7),
Using the above definitions, the set of packets (vectors) tha

each node receives in every time instant> 0 can be written Zy(T) = Bu(T)Y 1.

as follows

This equation can be solved to find the input-output transfer
matrix at time7" which results in

ZU(T) = [BU(T)(I — UTFT)ilUTATMT] X, (12

Hgs,(T)

Y1) =U@®) (AMOX + L FOY (1)),

Z,(t) = B, Y (t),

(11)
where Y (0) = 0. In the above A € F3*! "™l is a matrix where Hs,(T) € F,"™1*" From the definition of matrix
which represents the connection of naogleo the rest of the f,. we know that it is a “strictly lower triangular matrix”
network. In the same way matriB, € F;™")** defines the which meansF'y is nilpotent and we hav&X, = 0. The same
connection of node to the set of edges in the network. applies for the matrixtUr Fr, namely we havgU r F)T =

It is worth noting that although[(11) is written for theo. So the matrixT—UF7)~! has an inverse which is equal
packets transmitted on each edge, we can write the sametget
of equations for the coding vectors. (I-UrFrp) ' = (I 4t (UTFT)T_l) .

Suppose we are interested in finding the output of such
a system at some time instafit We can rewrite the above Finally, note that if the nodes do not wait before starting th

equations by defining new matrices as follows. We can colldé@nsmission®, = 0 : Vv € V), then we will haveUr =

the source random operations as Ierser.
M(1) A. Proof of Theorerh]2
MT A : c FT\Out(S)|><n' i o ) )
M.(T) a For simplicity, in the following proof, we assume that each

edge of the network has capacityEdges with capacity more
than1 can be modeled by replacing them with multiple edges
of unit capacity.
Y (1) From [12) the transfer matrix fron$ to v at time T is
Y.l . € FETx! equal toH s,(T). Knowing that the min-cut of node is ¢,,
T — : q . . . .
we choose a set @f, incoming edges te such that there exist
Y(T) ¢, edge disjoint paths fron$ to v and find the input-output

We also define a new set of matrices which represent the inplignsfer matrix just for this set of edges. Then we can write
output relation. Using matriXd we define the following matrix ﬁsU(T) _ BU(T)(I —UrFy) 'UrAr Moy (13)
B,

A (T)(I+-+ (UrFr)" Y UrArMr,

Ar 2 I @ A= S where Hs,(T) € F&*™ and B,(T) € Fo*¢7. Let £V
A denote for the entries (F,(f) andmg.) denote for the entries
For the connection of node we define of M (t). Every node in the network performs random linear
network coding SOmZ(-;) and fi(;"k) (those that are not zero)
By(T) 2 [ O/t x(r-1)¢ By | € FimOIXET, are chosen uniformly at random fromy,.

For the states of system we define



From [13) we know that each entry dETSU(T) is a
polynomial of degree at mo4t in variabIesz(.? and fi(;’k).
For T' > to(v) whereto(v) £ max;ep(y) 7, we know that
there exists a trivial solution for variableag;) and fl.(;’k)
(which simply routes:, packets fromS to v through thec,

edge disjoint paths) that results in
Hg(T)=[ I, Ocx(ncy) |- (14)

Note that by changing the routing solution (in fact by chang-
ing the variablesynl(;) properly) we could change the place

of identity matrix in [I4) arbitrarily. We conclude that the

determinant of every:, x c, submatrix oflEISU(T) (which

is a polynomial of degree at mostT in variabIeSml(;) and

fi(;’k)) is not identical to zero. So by using the Schwartz-Zippel
lemma [36] we can upper bound the probability tt#g, (7))
is not full rank if the variable&nz(.;) and fi(;"k) are chosen

uniformly at random as follows

N T
P [rankHSU(T) < cv} <&

We can apply the same argument for< o consecutive
timeslots to show that

A keo(T + k
P {rankHSU(T T+k-1)< kcv} < M,
q
where
Hg,(T)
Hs,(T:T+k-1)2 ;
Hg,(T +k—1)

Now let us define the everd, (v) as follows
Ap(v) : rank Hg(T : T+ k — 1) = ke,
Then we can write

P ey Ar(v)] =1 - P [uvevAE (v)]

>1- 3 P4

veV

k(T + k)
21-=—"—> o

q veV
whereT > t; andty £ max,cy to(v).
This means that assumingis large enough we are sure

that with high probability each node receivesc, innovative
packets per time slot far > ;.
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