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Abstract—We analyze the second moment of the ripple size
during the LT decoding process and prove that the standard
deviation of the ripple size for an LT-code with length k is of
the order of

√
k. Together with a result by Karp et. al stating

that the expectation of the ripple size is of the order of k [3],
this gives bounds on the error probability of the LT decoder. We
also give an analytic expression for the variance of the ripple size
up to terms of constant order, and refine the expression in [3]
for the expectation of the ripple size up to terms of the order of
1/k, thus providing a first step towards an analytic finite-length
analysis of LT decoding.

I. INTRODUCTION

We assume the reader is familiar with Fountain codes, LT-
codes and belief propagation (BP) decoding. For details, the
reader is referred to [1], [2].

We consider LT-codes with parameters (k,Ω(x)), where k is
the message length and Ω(x) =

P
Ωix

i is the degree distribu-
tion of the output symbols during encoding. An important set
to consider is the set of output symbols of degree 1 (the ripple).
The size of the ripple varies during the decoding process,
as high-degree output symbols become of degree 1 after the
removal of their edges, and as ripple elements become useless
after the recovering of their unique neighbor.

The decoding is in error if and only if the ripple becomes
empty before all the input symbols are recovered. A natural
question is thus whether we can track the size of the ripple,
in the expectation, during the decoding process. Karp et
al. [3] proved that the expected ripple size is linear in k

throughout most of the decoding process. Their asymptotic
analytic expressions for the expected ripple size can be found
in section II. They also derive an expression for the expected
cloud size throughout decoding, where the cloud is defined
at each decoding step as the set of output symbols of degree
strictly higher than 1.

In this paper, we extend their analysis in two ways. First, we
consider higher moments of the cloud and ripple size in order
to upper bound the error probability of the LT decoder. More
specifically, we use similar methods to derive an expression for
the variance of the ripple size and prove that it is also linear in
k throughout most of the decoding process. We can then use
this expression together with the expression for the expectation
to offer a guarantee for successful decoding, as follows: if, for
fixed LT-code parameters, R(u) is the expectation and σR(u)

is the standard deviation of the ripple size when u symbols
are unrecovered, then if the function

hc(u) = R(u)− c · σR(u) (1)

for some parameter c never takes negative values, we can
upper bound the error probability of the LT decoder by the
probability that the ripple size deviates from its mean by more
than c standard deviations.

Second, we take the first step towards an analytic finite-
length analysis of the LT decoder, by providing exact expres-
sions for the expectation (variance) of the ripple size up to
O(1/k) (constant) terms. This is done by considering lower-
order terms in the difference equations, but also by getting
tight bounds on the discrepancy introduced by approximating
difference equations by differential equations.

It is worthy to note that the expressions we deal with are
valid for “most of the decoding process,” that is, the analysis
breaks down when the number of unrecovered symbols is no
longer a constant fraction of k. This is no issue, however,
when one considers Raptor codes, which need only a constant
fraction of the input symbols to be recovered by the LT
decoder [2].

II. PRELIMINARIES - AN EXPRESSION FOR THE EXPECTED
RIPPLE SIZE

Let u be the number of unrecovered (undecoded) input
symbols at a given decoding step. Define the decoder to be in
state (c, r, u) if the cloud size is c and the ripple size is r at
this decoding step. To each state (c, r, u), we can associate the
probability pc,r,u of the decoder being in this state. Define the
state generating function of the LT decoder when u symbols
are undecoded as

Pu(x, y) =
X

c≥0,r≥1

pc,r,ux
cyr−1.

The following theorem by Karp et al. gives a recursion for
the state generating function of the LT decoder.

Theorem 1: [3] Suppose that the original code has k input
symbols and that n = k(1 + δ) output symbols have been
collected for decoding. Further, denote by Ωi, i = 2, . . . , D,

the probability that an output symbol is of degree i, where D
is the maximum degree of an output symbol. Then we have
for u = k + 1, k, . . . , 1

Pu−1(x, y) =
1

y

»
Pu

„
x(1− pu) + ypu,

1

u
+ y

„
1− 1

u

««
− Pu

„
x(1− pu),

1

u

«–
,

(2)
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where for u ≤ k,

pu =

u−1
k(k−1)

PD
d=1 Ωdd(d− 1)

264 k − u
d− 2

375
264 k − 2

d− 2

375

1− u
PD

d=1 Ωdd

264 k − u
d− 1

375
264 k

d

375
−
PD

d=1 Ωd

264 k − u
d

375
264 k

d

375

,

and "
a

b

#
:=

 
a

b

!
b!,

and pk+1 := Ω1. Further, Pk+1(x, y) := xn.

This recursion gives a way to compute the probability of a
decoding error at each step of the BP decoding as

Perr(u) =
X
c≥0

pc,0,u = 1−
X

c≥0,r≥1

pc,r,u = 1− Pu(1, 1),

and the overall error probability of the decoder as

Perr =

kX
u=1

Perr(u).

If we approximate the LT process by allowing output
symbols to choose their neighbors with replacement during
encoding, pu becomes:

pu =
1

k
f
“u
k

”
− 1

k2
g
“u
k

”
=

1

k
f
“u
k

”
+O(1/k2),

where

f(x) :=
xΩ′′(1− x)

1− xΩ′(1− x)− Ω(1− x)
and g(x) :=

f(x)

x
.

With this assumption, Karp et al. use the recursion to derive
difference equations for the expected size of the ripple and
the cloud, and further approximate these difference equations
by differential equations that they solve to get closed-form
expressions for the expected ripple and cloud size. Formally,
let R(u) denote the expected number of output symbols in
the ripple, and C(u) denote the expected number of output
symbols in the cloud, when u input symbols are undecoded,
where u is assumed to be a constant fraction of the total
number of input symbols k. Then the following theorem
shows that R(u) is linear in k for an appropriate choice of
the LT code parameters.

Theorem 2: [3] Consider an LT-code with parameters
(k,Ω(x)) and assume n = (1+ε)k symbols have been collected
for decoding. During BP decoding, let C(u) and R(u) be
respectively the expected size of the cloud and ripple as a
function of the number u of undecoded input symbols. Then,
under the assumptions that u is a constant fraction of k and
Ω1 > 0, we have

C(u) = n
“

1− u

k
Ω′(1− u/k)− Ω(1− u/k)

”
+O(1)

R(u) = (1 + ε)u

„
Ω′(1− u/k) +

1

1 + ε
ln
u

k

«
+O(1).

In what follows, we let Ĉ(x) be a continuous approximation
of C(u/k) := C(u)/n, a normalized version of C(u). Ĉ(x) can
be shown to be the solution of the differential equation

Ĉ′(x) = f(x)Ĉ(x)

with initial condition

Ĉ(1) = C(1) = (1− Ω1)
`
1− (1− Ω1)n−1´ ,

and is given by

Ĉ(x) = c0
`
1− xΩ′(1− x)− Ω(1− x)

´
,

with c0 = 1− (1− Ω1)n−1.

Similarly, we define R̂(x) as a continuous approximation of
R(u/k) := R(u)/n. R̂(x) is the solution of

R̂′(x) =
R̂(x)

x
− c0xΩ′′(1− x) +

1

1 + ε

with initial condition

R̂(1) = R(1) = Ω1 −
1− (1− Ω1)n

n
,

and is given by

R̂(x) = x

„
c0Ω′(1− x) +

1

1 + ε
lnx+ r0

«
, (3)

with
r0 = Ω1(1− Ω1)n−1 − 1− (1− Ω1)n

n
.

Then we can write

C(u) = nĈ(u/k) +O(1)

R(u) = nR̂(u/k) +O(1).
(4)

III. AN EXPRESSION FOR THE VARIANCE OF THE RIPPLE
SIZE

Let σ2
R(u) be the variance of the ripple size as a function

of the number of undecoded symbols u. In what follows we
will always assume that u is a constant fraction of k. σ2

R(u)

is given by

σ2
R(u) =

X
c≥0,r≥1

(r − 1)2pc,r,u −R(u)2

= N(u)−R(u)2 +R(u),

(5)

where we define

N(u) :=
∂2Pu

∂y2
(1, 1) =

X
c≥0,r≥1

(r − 1)2pc,r,u −R(u). (6)

It is thus enough to find an expression for N(u) to get an
expression for σ2

R(u). We start by differentiating both sides
of the recursion (2) twice with respect to y and evaluating at
(1, 1). This gives us a recursion for N(u) :

N(u− 1) =

„
1− 1

u

«2

N(u)− 2puC(u)− 2

„
1− 1

u

«
R(u)

+ p2
u
∂2Pu

∂x2
(1, 1) + 2pu

„
1− 1

u

«
∂2Pu

∂x∂y
(1, 1)

− 2

»
−Pu(1, 1) + Pu

„
1− pu,

1

u

«–
.

(7)



Before we can proceed with solving this difference equation,
we need to find expressions for the second-order derivatives
∂2Pu
∂x2 (1, 1) and ∂2Pu

∂x∂y
(1, 1). We do so by following exactly the

same method that we are currently outlining for an expression
for N(u). Define

M(u) :=
∂2Pu

∂x2
(1, 1)

L(u) :=
∂2Pu

∂x∂y
(1, 1).

Let M̂(x) be a continuous approximation of the normalized
function M(u/k) := M(u)/n2. It can be shown that M̂(x) is
the solution of the differential equation

M̂ ′(x) = 2f(x)M̂(x)

with initial condition

M̂(x = 1) =

„
1− 1

n

«
(1− Ω1)2

`
1− (1− Ω1)n−2´ ,

and is given by the expression

M̂(x) = m0

`
1− xΩ′(1− x)− Ω(1− x)

´2
with

m0 =

„
1− 1

n

«`
1− (1− Ω1)n−2´ .

Similarly, let L̂(x) be a continuous approximation of L(u/k) :=

L(u)/n2. It is the solution of

L̂′(x) =

„
1

x
+ f(x)

«
L̂(x)− f(x)M̂(x) +

1

1 + ε
Ĉ(x)

with initial condition

L̂(x = 1) =

„
1− 1

n

«
Ω1(1− Ω1),

and an expression for it is

L̂(x) = x
`
1− xΩ′(1− x)− Ω(1− x)

´
·
„
m0Ω′(1− x) +

c0
1 + ε

lnx+ l0

«
with

l0 =

„
1− 1

n

«
Ω1(1− Ω1)n−2.

Then the following theorem gives closed-form expressions
for M(u) and L(u).

Theorem 3:

M(u) = n2M̂(u/k) +O(k)

L(u) = n2L̂(u/k) +O(k).

As for the “dirt” term

−2

»
−Pu(1, 1) + Pu

„
1− pu,

1

u

«–
, (8)

it does not involve derivatives and we cannot use the same
method to find an expression for it independant the state
generating function. However, we can bound it under an
assumption on the ripple size. More specifically, it is not
difficult to prove that for r ≥ 3, the dirt term is of constant

order. In what follows, we assume that the size of the ripple
does not go below the constant 3.

Replacing M(u) and L(u) by their expressions and bounding
the dirt term in the recursion (7), we obtain the following
difference equation for N(u) :

N(u)−N(u− 1) =

„
2

u
− 1

u2

«
N(u)− p2

uM(u)

− 2pu

„
1− 1

u

«
L(u) + 2puC(u)

+ 2

„
1− 1

u

«
R(u) +O(1).

(9)

Note that N(u) as defined in equation (6) can be as large
as a constant fraction of k2. We thus need to normalize N(u)

if we want to say something meaningful about the difference
N(u) − N(u − 1). We define x := u/k to be the fraction of
undecoded symbols, and let N(x) := N(u)/n2 be a normalized
version of N(u). We similarly normalize the other functions
of u and represent them as functions of x:

M(x) := M(u)/n2 , L(x) := L(u)/n2,

C(x) := C(u)/n , R(x) := R(u)/n.

Normalizing equation (9) and replacing the functions
M(x), L(x), C(x) and R(x) by their continuous approxima-
tions, we obtain

N(x)−N(x− 1/k) =
2

kx
N(x)− 2

k
f(x)L̂(x)

+
2

(1 + ε)k
R̂(x) +O(1/k2).

Neglecting lower-order terms, we approximate N(x) by the
function Ñ(x) which satisfies

Ñ(x)− Ñ(x− 1/k) =
2

kx
Ñ(x)− 2

k
f(x)L̂(x) +

2

(1 + ε)k
R̂(x),

with initial condition Ñ(1) = N(1).

Claim 1: For any x on which N(x) is defined, N(x) and
Ñ(x) differ by a term of the order of 1/k.

We skip the proof of this and subsequent claims for reasons
of space, and refer the reader to the final version of this paper.

We further approximate the discrete function Ñ(x) by the
continuous function N̂(x), and

Ñ(x)− Ñ(x− 1/k)

1/k

by the first-order derivative of N̂(x). N̂(x) satisfies the differ-
ential equation

N̂ ′(x) =
2

x
N̂(x)− 2f(x)L̂(x) +

2

1 + ε
R̂(x) (10)

with initial condition N̂(1) = Ñ(1).

Claim 2: For any x on which Ñ(x) is defined, Ñ(x) and
N̂(x) differ by a term of the order of 1/k.



The general solution of the differential equation (10) is
given by

N̂(x) = x2
“
m0Ω′(1− x)2 + 2l0Ω′(1− x)+

2c0
1 + ε

Ω′(1− x) lnx+
2r0

1 + ε
lnx+

1

(1 + ε)2
(lnx)2 + n0

”
,

(11)

where the value of the constant n0 can be found to be, by the
initial conditions,

n0 = −
„

1− 1

n

«
(1− Ω1)n−2Ω2

1 −
2

n
Ω1 +

2

n2
(1− (1− Ω1)n) .

By claims 1 and 2 we thus have

N(x) = N̂(x) +O(1/k),

where N̂(x) is given by equation (11). This gives us an
expression for N(u), up to a term of the order of k:

N(u) = (1 + ε)2u2

„
Ω′(1− u/k)2 +

2

1 + ε
Ω′(1− u/k) ln

u

k

+
1

(1 + ε)2

“
ln
u

k

”2
«

+O(k).

Comparing this expression to that for R(u)2 given by equations
(3) and (4), it is easy to see that these two expressions agree
up to terms of the order of k, so that the variance of the ripple
size

σ2
R(u) = N(u)−R(u)2 +R(u)

is of the order of k.

Theorem 4: Consider an LT-code with parameters (k,Ω(x))

and let σR(u) be the standard deviation of the ripple size
throughout BP decoding. Then

σR(u) = O(
√
k).

IV. TOWARD A FINITE-LENGTH ANALYSIS OF THE LT
DECODER

Our ultimate goal is to be able to bound the error probability
of the decoder as a function of k, without the assumption that
k goes to infinity. We thus need to find an expression for the
variance of the ripple size, instead of simply determining its
order. For this purpose, we must find an expression for N(u)

up to terms of constant order, and an expression for R(u) up to
terms of the order of 1/k. We illustrate the analysis for N(u).

From the recursion given by equation (7), we proceed by first,
assuming that the ripple size does not go below 4 so that the
“dirt” term is of the order of 1/k; and second, replacing C(u),

R(u), M(u), and L(u) by finer approximations as follows:

C(u) = nĈ(u/k)− nDC(u/k)

R(u) = nR̂(u/k)− nDR(u/k)

M(u) = n2M̂(u/k)− n2DM (u/k)

L(u) = n2L̂(u/k)− n2DL(u/k),

(12)

where DC(x) is a discrepancy term introduced by approximat-
ing C(u) by Ĉ(u), and DR(x), DM (x) and DL(x) are defined

similarly. These discrepancy terms are all of the order of 1/k

and are given by the following expressions.

DC(x) =
1

k2

k(1−x)−1X
i=0

Ci

k(1−x)−1Y
j=i+1

“
1− cj

k

”
+O(1/k2)

DR(x) =
1

k2

k(1−x)−1X
i=0

Ri

k(1−x)−1Y
j=i+1

“
1− rj

k

”
+O(1/k2)

DM (x) =
1

k2

k(1−x)−1X
i=0

Mi

k(1−x)−1Y
j=i+1

“
1− mj

k

”
+O(1/k2)

DL(x) =
1

k2

k(1−x)−1X
i=0

Li

k(1−x)−1Y
j=i+1

„
1− lj

k

«
+O(1/k2)

where Ci, Ri,Mi, Li and cj , rj ,mj , lj are constants for most of
the decoding process and are given by

Ci = Ĉ′′(1− i/k)− g(1− i/k)Ĉ(1− i/k)

cj = f(1− j/k)

Ri = R̂′′(1− i/k) + g(1− i/k)Ĉ(1− i/k)

+kf(1− i/k)DC(1− i/k)

rj =
1

1− j/k

Mi = M̂ ′′(1− i/k)−
`
2g(1− i/k) + f(1− i/k)2

´
M̂(1− i/k)

mj = 2f(1− j/k)

Li = L̂′′(1− i/k)− 2g(1− i/k)L̂(1− i/k)

+
`
g(1− i/k) + f(1− i/k)2

´
M̂(1− i/k)

+kf(1− i/k)DM (1− i/k)

− 1

1 + ε
f(1− i/k)Ĉ(1− i/k)− k

1 + ε
DC(1− i/k)

lj =
1

1− j/k + f(1− j/k).

These expressions are obtained by the same method that we
are now following to obtain a more precise approximation of
N(u).

The next step is to write a recursion for N(x) which is exact
up to terms of the order of 1/k3. We then approximate N(x)

by Ñ(x) which satisfies the same recursion except that we
neglect terms of the order of 1/k3:

Ñ(x)− Ñ(x− 1/k) =

„
2

kx
− 1

k2x2

«
Ñ(x)− 1

k2
f(x)2M̂(x)

+

„
− 2

k
f(x) +

4

k2
g(x)

«
L̂(x) +

2

k
f(x)DL(x)

+
2

(1 + ε)k2
f(x)Ĉ(x) +

„
2

(1 + ε)k
− 2

(1 + ε)k2x

«
R̂(x)

− 2

(1 + ε)k
DR(x)− 2

(1 + ε)2k2
.



Claim 3: For any x on which N(x) is defined, N(x) and
Ñ(x) differ by a term of the order of 1/k2.

We further approximate Ñ(x) by N̂(x) which satisfies the
differential equation (10) and is given by expression (11). A
more careful analysis of the discrepancy beween N̂(x) and
Ñ(x) leads to the following claim:

Claim 4: For any x on which Ñ(x) is defined, Ñ(x) and
N̂(x) differ by a term of the order of 1/k.

More precisely,

N̂(x)− Ñ(x) = DN (x),

where

DN (x) =
1

k2

k(1−x)−1X
i=0

"
N̂ ′′(1− i/k)− 1

(1− i/k)2
N̂(1− i/k)

− f(1− i/k)2M̂(1− i/k) + 4g(1− i/k)L̂(1− i/k)

+ 2kf(1− i/k)DL(1− i/k) +
2f(1− i/k)

(1 + ε)
Ĉ(1− i/k)

− 2

(1 + ε)(1− i/k)
R̂(1− i/k)− 2k

1 + ε
DR(1− i/k)

− 2

(1 + ε)2

#
·

k(1−x)−1Y
j=i+1

„
1− 2

k(1− j/k)

«
+O(1/k2).

By claims 3 and 4 we thus have

N(x) = N̂(x)−DN (x) +O(1/k2),

where N̂(x) is given by equation (11). Using the resulting
expression for N(u), and the expression for R(u) given by
equation (12), we finally get an expression for the variance
of the ripple size up to terms of constant order.

Theorem 5: Consider an LT-code with parameters (k,Ω(x))

and overhead ε and let σ2
R(u) be the variance of the ripple size

throughout BP decoding. Then

σ2
R(u) = −(1 + ε)

u2

k

„
Ω′(1− u/k)2 +

2

1 + ε
ln
u

k
+ 2Ω1

«
+ (1 + ε)u

„
Ω′(1− u/k) +

1

1 + ε
ln
u

k

«
·
“

1 + 2
“u
k

+ nDR(u/k)
””

− n2DN (u/k) +O(1).

Figure 1 shows a plot of the expected ripple size and the
functions h1(u) and h2(u) given by equation (1), throughout
the decoding process, for an LT-code with k = 800 and ε = 0.1,

and with the “Capped Soliton” degree distribution

Ω(x) =
1

1
50

+
P50

i=2
1

i(i−1)

"
1

50
x+

50X
i=2

1

i(i− 1)
xi

#
,

inspired from Luby’s Ideal Soliton distribution [1]. The plot
also shows the result of real simulations of this code, and
confirms that the problem zones of the decoder are those
predicted by the functions hi(u): the closer they are to the
x-axis, the more probable it is that the decoder fails. As can
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Fig. 1. Ripple size expectation and standard deviation versus the fraction of
decoded input symbols. The black line is the empirical failure probability of
the decoder based on 100 million simulations. It confirms that the “problem
zones” of the decoder are the ones predicted by the second moment method.

be seen, there is a fair chance that the decoder fails when the
fraction of decoded input symbols is between 0 and 0.2, and
there is a very good chance that the decoder fails when the
fraction of decoded input symbols is close to 0.95.

V. CONCLUSION

We have given an analytic expression for the variance of
the ripple size throughout the LT decoding process. This
expression is asymptotically of the order of k, and we have
expressed it as a function of k as a first step toward finite-
length analysis of the LT decoding. The next step is to work
around the assumption that u is a “constant fraction” of k.
Then we would obtain a guarantee for successful decoding
as a function of the LT-code parameters and overhead for
practical values of k. This would then allow us to solve
the corresponding design problem, namely to choose degree
distributions that would make the function hc(u) stay positive
for as large a value of c as possible, for a fixed code length k.
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