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On Sampling and Coding for Distributed
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Abstract—The issue of how to efficiently represent the data
collected by a network of microphones recording spatio-temporal
acoustic wave fields is addressed. Each sensor node in the network
samples the sound field, quantizes the samples and transmits the
encoded samples to some central unit, which computes an estimate
of the original sound field based on the information received from
all the microphones. Our analysis is based on the spectral proper-
ties of the sound field, which are induced by the physics of wave
propagation and have a significant impact on the efficiency of the
chosen sampling lattice and coding scheme. As field acquisition
by a sensor network typically implies spatio-temporal sampling of
the field, a multidimensional sampling theorem for homogeneous
random fields with compactly supported spectral measures is
proved. To assess the loss of information implied by source coding,
rate distortion functions for various coding schemes and sampling
lattices are determined. In particular, centralized coding, inde-
pendent coding and some multiterminal schemes are compared.
Under the assumption of spectral whiteness of the sound field,
it is shown that sampling with a quincunx lattice followed by
independent coding is optimal as it achieves the lower bound given
by centralized coding.

Index Terms—Multidimensional sampling, rate distortion func-
tions, sensor networks, sound waves, source coding, wave equation.

1. INTRODUCTION

OST common applications of sensor networks involve
M some form of area monitoring. The sensor nodes are de-
ployed over a region in order to monitor the evolution of a phys-
ical field such as temperature, pressure or light. They collect
samples of the observed field, use their processing abilities to
carry out some computations on these samples, and transmit the
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partially processed data to a central unit (base station), where the
measured field is approximately reconstructed. Since the data
collected by the sensor nodes is not generated by independent
sources but results from observing a physical phenomenon, it
has a particular spatio-temporal structure that is determined by
the laws of physics. This structure has a significant impact on
many aspects of a wireless sensor network, from the quality of
the chosen sampling configuration to the efficiency of the imple-
mented compression and communication schemes. A thorough
understanding of the physical phenomenon under observation is
crucial for the successful design of sensor network architectures.

Since sensor nodes are typically small and self-powered
devices, they have limited resources such as energy, memory,
computational speed and bandwidth. Moreover, the energy
provisioned for a wireless sensor node is not expected to be
renewed throughout its mission. Hence, power consumption is
the most critical consideration in a wireless sensor network,
directly influencing the network’s lifetime. While on-board data
processing consumes valuable energy, wireless communication
with neighboring nodes and the base station is the dominant
factor in a sensor node’s energy budget. Therefore, to avoid the
transmission of redundant information to the base station, the
sensor nodes have to use appropriate data compression schemes
to reduce the inherent redundancy of the collected data sets.
To further reduce the communication needs, it is essential to
have the nodes process the data in a distributed fashion, i.e.,
without access to the neighboring nodes’ measurements, so
that only minimal (or no) internode communication is required.
In keeping with the digital nature of current off-the-shelf
communication and data processing devices, we assume that
the physical field monitored by the sensor network has to be
transformed into sequences of binary digits, even though it is
known that Shannon’s (source-channel) separation theorem
does not necessarily hold for general multiterminal networks
[1]-[3]. As the sensor networks considered in this paper corre-
spond to the “expanding sensor network model studied in [4]
and [5], for which the separation theorem has been shown to
hold asymptotically, as the number of nodes grows to infinity,
this is a reasonable assumption to make.

In this paper, we study the efficient representation of the
observed physical field under the aforementioned constraints,
which proves to be one of the key issues in sensor network
engineering. We address this issue in the context of acoustic
wave field acquisition by means of an array of sensor nodes
equipped with microphones. The source coding problem for
heat diffusion, i.e., when the physical field under consideration
is the temperature, has been studied in [6]. While the present
paper’s focus lies on acoustic sensing, our results are mainly
based on the expression of a solution of the wave equation
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in free field, so that our analysis can be carried over to any
physical field that obeys this kind of equation, in particular to
electromagnetic waves.

While the recorded acoustic field is continuous in space and
time, the sensor nodes observe it only at specific locations, cor-
responding to their own position, and, at least in the prevailing
digital setups, at discrete time instants. Field acquisition by a
sensor network thus implies spatio-temporal sampling of the
field and raises the question regarding the sufficiency of such
a discrete-space and -time representation of an analog field.
While for nonrandom, one-dimensional signals, an answer to
that question is provided by the classical sampling theorem for
bandlimited functions, due to Shannon and Nyquist, the situa-
tion is slightly more complicated in sensor networks. Indeed,
while sampling in time may be adjusted online by reconfig-
uring the processing performed by the sensor nodes, sampling in
space is determined by the layout of the network at deployment
time. Moreover, since sampling is inherently multidimensional
in sensor networks, the design of an efficient sampling lattice
requires taking advantage of the additional degrees of freedom.
We prove a spatio-temporal sampling theorem for homogeneous
random fields with compactly supported spectral measures and
sampling lattices satisfying a mild regularity condition. Even
though analogous results are often accepted without proof in the
engineering literature, we are not aware of any previous formal
proof. We also explain how the geometrical shape of the random
field’s spectrum should guide the choice of a particular sampling
geometry.

While, under appropriate conditions, a discrete-space and
-time representation of the analog field is sufficient, discretizing
the field’s amplitude, also referred to as source coding, implies
an unavoidable loss of information. The source coding problem
in sensor networks typically amounts to finding the optimal
tradeoff between the quality of the central unit’s estimate and
the amount of resources used by the sensor nodes. This tradeoff
may be expressed in terms of a rate distortion function. We
study various source coding schemes, differing by the amount
of required internode communication and the complexity of the
involved maps. In particular, we compare centralized coding
(all the samples are available at a single encoder), independent
coding (separate encoding and decoding), and multiterminal
coding (distributed encoding, joint decoding). The multiter-
minal coding scheme is of particular interest in sensor network
engineering as it makes use of the spatio-temporal structure of
the collected data without requiring internode communication.
Under the assumption of spectral whiteness of the sound field
1. which essentially corresponds to the worst-case data source
in terms of source coding performance, we show that sam-
pling with a quincunx lattice followed by independent coding
achieves the lower bound given by centralized coding, thus
establishing the multiterminal rate distortion function for the
particular setup considered in the paper.

The main objective that we pursue in this paper consists in
devising a holistic model incorporating physics, multidimen-
sional sampling and rate distortion theory to evaluate the source
coding performance of sensor networks in environmental mon-

I'The spectral density of the recorded sound field is assumed to be constant on
its support, which requires a particular correlation structure of the source field.
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itoring applications. Since the correlation properties of the data
collected by the sensor nodes are determined by the laws of
physics, the reliable assessment of the minimal information rate
needed to accurately represent the recorded samples requires a
thorough understanding of the physical phenomenon monitored
by the sensor nodes. Therefore, we devote the first part of our
work to a rigorous derivation of a solution of the wave equation
driven by a bandlimited, Gaussian random field. The approxi-
mately bow-tie-shaped support of the recorded field’s spectral
measure proves indeed to be one of the key ingredients in the
proof of our paper’s main result. Once the problem is set on a
solid basis, we investigate the interplay between multidimen-
sional sampling and source coding in the context of physical
fields. Indeed, rather than in designing novel sampling schemes
or in establishing new, purely information-theoretic results, our
paper’s main ambition consists in illustrating the potential gains
that may be achieved by a judicious adjustment of the sampling
geometry and the source coding scheme to the physical proper-
ties of the data sources monitored by the sensor network. In par-
ticular, for the worst-case data source, we show that traditional
point-to-point source coding leads to the optimal rate distortion
tradeoff (the one achieved by multiterminal source coding), as
long as it is preceded by sampling with the appropriate quin-
cunx lattice. In other words, the dexterous choice of the sam-
pling geometry exempts us from having to resort to any mul-
titerminal binning, which would be computationally far more
intensive than point-to-point coding.

While it stands to reason that a comprehensive analysis of
sensor networks requires to take the physics of the underlying
phenomenon into account and to address the issues of sampling
and source coding jointly, previous work has rarely adopted
such a holistic approach to explore the connections among these
three fields. For instance, the influence of the spectral measure’s
decay in the wavenumber-frequency plane on the accuracy of
the interpolated sound field has been studied in [7], but the
analysis is limited to deterministic fields and to signal-to-noise
ratio estimations. Our paper supplements [7] with a random field
model and an information-theoretic performance analysis. An-
other subfield of information technology that physics has re-
cently found its way into is multiple-antenna communication.
Indeed, whereas our study is sort of set at the output of the phys-
ical channel insofar as we address the issue of efficiently rep-
resenting the sound field once it has passed through the prop-
agation medium, the problem of devising realistic models for
the physical channel itself, with the aim of estimating the ca-
pacity scaling in wireless communication networks, has gained
a lot of attention over the last decade. Early results have sug-
gested that, under the assumption of a channel model character-
ized by independent and identically distributed fading across all
antenna pairs, the capacity of a multiple-antenna system grows
proportionally with the minimum of the numbers of transmitters
and receivers [8], [9]. By resorting to physical models of mul-
tiple-antenna channels, recent work has shown, however, that
the capacity scaling of wireless networks is subject to a funda-
mental limitation that is due to the laws of physics [10]-[14].
Although these papers focus on monochromatic, electromag-
netic signals for communication purposes, they suggest that,
in general, the number of degrees of freedom per unit length
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in linear antenna arrays with full angular spread is limited to
Qo /(me), where Qg represents the carrier frequency and ¢ de-
notes the propagation speed [11, Sect. 7.3]. In the present paper,
we show the relevance of this upper bound for the problem
of spatio-temporal sampling of sound fields. Indeed, we argue
that the wavenumber bandwidth of a sound field with frequency
bandwidth Qg is upper bounded by /¢, so that Qg /(wc) spa-
tial samples per unit length are sufficient to accurately repre-
sent this sound field. Hence, whereas this physical constraint
on the number of degrees of freedom limits the communica-
tion performance of multiple-antenna systems, it enhances the
source coding performance of sensor networks by reducing the
required number of spatial measurements.

The paper is organized as follows. In Section II, we study the
equation of sound propagation and derive its solution for the
linear sensor array configuration. Then, in Section III, we pro-
vide a stochastic model for the source term in the wave equa-
tion. Periodic sampling of the acoustic field with different ge-
ometries is studied in Section IV, while in Section V, we specify
the source coding schemes that we let the sensor nodes apply to
the sampled field. Finally, in Section VI, we determine the rate
distortion functions for the various sampling lattices and coding
schemes.

II. SOUND WAVES AND THE WAVE EQUATION

In this section, we introduce the common physical model for
sound propagation, starting with a generic setup and then spe-
cializing the formulas to the linear array configuration, which
is the model that we adhere to throughout the rest of the paper.
We study the spectral characteristics of the sound field and ex-
plain how to determine a solution of the wave equation when
the source is a homogeneous, Gaussian random field. The re-
striction of our study to a shift-invariant setup is entailed by
the fact that the calculation of rate distortion functions for gen-
eral data sources with memory is notoriously difficult [15, Sect.
4.4]. To date, single-letter rate distortion functions are known al-
most exclusively in situations involving stationary (and mostly
Gaussian) sources. This explains why we restrict our attention to
homogeneous random fields, which allows us to properly define
spectral densities and to infer the various rate distortion func-
tions from the Toeplitz distribution theorem. Since the domain
of definition of homogeneous fields has to exhibit sufficient
symmetry, we have chosen to focus our work on setups based on
linear arrangements of the sound sources and the microphones.

A. The Wave Equation in Free Field

We restrict our attention to wave motion in an ideal, homo-
geneous, compressible and nonviscous fluid, which is at rest
in thermodynamic equilibrium, except for the motion caused
by the sound waves themselves. Furthermore, we assume that
this acoustic motion is sufficiently small in magnitude so that
any nonlinear effects are negligible, and that the compression
of the fluid is adiabatic. The fluid is characterized by its adia-
batic compressibility &, its equilibrium density p and its equi-
librium pressure Vg. Let V(z,t), for £ = (x1,72,23) € R3
and ¢ € Ry = [0,+00), denote the acoustic pressure at po-
sition £ and at time ¢, i.e., the pressure change caused by the
sound at position z and at time ¢. Let U : R? x R, — R denote
an external sound source such as a loudspeaker. In the formu-
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lation that we have chosen, U corresponds to —V - f, where
f: R3 x Ry — R? denotes the external force density acting on
the fluid, and V- denotes the divergence operator with respect to
the space variables. The acoustic pressure V : R* x R, — R,
which we also call the sound field, satisfies the following linear
hyperbolic partial differential equation (PDE) [16, Sect. 6.2]:

2
clz %V(z, t) = AV(z,t) + U(z,t), (x,t) € R x (0,+00)
1
where A := Z?Zl 9? /927 denotes the Laplacian operator with
respect to the space variables, and ¢ := 1/,/kp is the speed of
sound. A function V' : R® x R, — R is said to be a solution of
(1)if V is an element of C?(R3 x R, ), and its partial derivatives
0%V /0t? and 62V/0z?, for j = 1, 2, 3, satisfy (1). To ensure
the uniqueness of the solution, we specify initial conditions for
V(z,t) and OV (z,t)/0t at t = 0. Since we are primarily inter-
ested in the effect of the external sound source, we assume that
these initial conditions are identically zero. That is, we search
for a function V € C%(R? x R,.) solving the following Cauchy
problem:

1 92
2 5V (@) = AV(z,1) + Uz, 1),
(z,t) € R® x (0, 4+00)
V(z,0) =0, z € R?
oV (z,t)
T|t=0:07 z € R’

@)
If the function U is an element of C?(R?® x R ), the unique
solution of (2) is given by [17, Sect. VL.§8]

+ .
Vg, t) = / = / Uz — £t —7)dow (€)dr (3)
47 o T. S2(er)

where S%(7) := {€ € R® : ||€]] = 7} is the sphere in R3
centered at the origin and of radius 7 (||.|| denotes the Euclidean
norm in R?), and o, denotes the surface measure on S?(7).
Performing the change of variable  := c¢7 and combining the
iterated integrals into a single one, we rewrite (3) as

1 Ulx—-€&t—r/c)
Vi, t) = E/o /52(7«) " do,.(€)dr
1

Uz — &t —||€ll/c)
€]l
where B3(7) := {€ € R® : ||| < 7} is the open ball in R?

centered at the origin and of radius 7. Defining the generalized
function

dg “

T ar B3(ct)

_ ot = ll=ll/c)

t) =
9.9 = =l

where § := dg is the Dirac distribution at the origin, we rewrite
(4) as

V= [ [ senue-gi-nane

The function g is called the fundamental solution, or the Green’s
function, of the wave equation (1). It is the solution, in the dis-
tributional sense, of the PDE (1) when the source term U (z, t)
is the Dirac distribution at the origin. The function g has also
been named the plenacoustic function in [7], [18].
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Fig. 1. Setup for studying the sound propagation between two parallel lines.
Sound sources concentrated onan infinite line / emit an acoustic field U (1, ),
which induces a sound field V'(:1, t) on another infinite line V, which is parallel
to and at distance d from the line 4.

The right-hand side of (4) is well defined under weaker condi-
tionsthan U € C? (R3 xR ). However, in such a case, the corre-
sponding function V defined by (4) need not satisfy the PDE (1)
in the classical sense. For this reason, we call (4), whenever it is
well defined, a weak solution of the Cauchy problem (2). More-
over, we usually model the sound source U as a homogeneous
random field defined on R3 x R. In order for the solution V to
be a homogeneous random field as well, its domain of definition
must be extended to R? x R. We therefore let V' be the solution of
the Cauchy problem obtained from (2) by replacing (0, +00) by
R, and the initial conditions by lim;_, ., V(z,t) = 0, x € R?,
and lim;_, . OV (z,t)/0t = 0, € R>, respectively. Analo-
gously to (4), we define a weak solution of this modified Cauchy
problem by

V(z,t) =

L[ V& [/
= E/Ha d¢ )

€]l

which is well defined under appropriate regularity conditions on
the function U.

B. Linear Array Configuration

Let us now turn our attention to the setup where the sound
field V is to be recorded along a straight line V, which we
assume to extend to infinity to be able to work with homoge-
neous random fields. We further assume that the source field
U is emitted from a line ¢/ that is parallel to and at distance
d from the line V. This particular choice does not narrow the
applicability of our results because, according to Huygens’s
principle [19], every point of a wave front may be considered as
a secondary source, and we can compute the acoustic pressure
at a given point by considering the cumulative effect of all these
secondary sources. If the sound source generating the wave
front, i.e., the primary source, is sufficiently far away from
the recording devices, the curvature of the wave front may be
neglected so that the wave front may indeed be approximated
by a straight line. This principle is at the basis of wave field
synthesis [20]. Without loss of generality we assume that both
the lines ¢ and V lie in the (21, 72)-plane in R?, and that the
line V coincides with the x; axis, as shown in Fig. 1. The
source function U may then be written as

U(z,t) := [7(331,15) bo(z2 —d, x3)

for some function U : R% — R, while the sound field observed
along the line V is given by

V(z1,t) = V((21,0,0),t).
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Fig. 2. Green’s function for the sound propagation between two parallel lines.
It represents the sound field along the line V induced by a point source on the
line ¢/ that generates a unit impulse at position 2; = 0 and at time t = 0.

It follows from (5) that the functions U and V are related by

N 1 [ Uz =&, t— /& +E/c)
V(w,t) = — - . (6)
Am Jr Vd? + &
Defining the generalized function
~ o(t —/d2+22/c
g(z1,t) == ( 1/) 7

4r\/d? + a3

we rewrite (6) as
V(a1 t) = / / (e, )T (@ — 1.t — 7) drdéy.
J JR2

Hence, the function g may be regarded as the fundamental so-
lution for the sound propagation between the two parallel lines.
It is illustrated in Fig. 2 and represents the sound field along the
line V induced by a point source on the line I/ that generates a
unit impulse at position z; = 0 and at time ¢ = 0. Let g denote
the Fourier transform of g in the distributional sense. Then one
can show that [7, Appendix I]

_%Hg <d (Q/c)” - @%) ifQ >0
9(21,9Q) = (8)

j |
! H, (d (©2/e)” - <I>§> i <0

where ®; and (2 represent the wavenumber (spatial frequency)
and the frequency (temporal frequency)?, respectively, Hy de-
notes the Hankel function of the first kind of order zero, and H;
is the complex conjugate of Hy. For later reference, we state
the following results about the asymptotic forms of the Hankel
function [21, Sect. 8.40 and 8.45]:

2
|H0(1/)|2:1+ <%10g (71//2)> +o(v) asv—0(9)

2We use the following convention for defining the Fourier transform jA of an
integrable function f : R? — R:

F(®,.0) = // Flar, t) eI P1m1490) qu ar.
J Jr2
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Fig. 3. Magnitude of the fundamental solution’s Fourier transform in dB.

? ==+ o(1/1)

|H0(1/) as v — 0o
(10)

|Ho(j1/)|2 :%672’/4-0(672”/1/) as v — 0o
an

where v = €€, and C ~ 0.577 denotes Euler’s constant. The
magnitude of g in dB is illustrated in Fig. 3. Interpreting g as the
transfer function of a linear and shift-invariant filter, we note that
its passband approximately coincides with the bow-tie shaped
region of the wavenumber-frequency pairs (®1,(2) satisfying
|®1| < |©2|/c. Outside this region the argument of the Hankel
function in (8) is purely imaginary, and it follows from (11) that,
for fixed Q, [g(®1, Q)| decays exponentially fast as |®1| —
0o. We also notice that this exponential decay becomes faster
with increasing d. For this reason, when the two parallel lines
are separated by a sufficiently large distance, we may and will
assume that g(®q, ) vanishes whenever |®1| > |Q|/c. This
is the so-called far-field approximation of the sound field [7], as
opposed to the near-field setting where we consider g to be given
by (8). The bow-tie shaped support of the Fourier transform g
in the far-field approximation is a consequence of ignoring the
curvature of the acoustic wave fronts and the attenuation along
the line of observation.

To simplify the notation in what follows, we drop the tildes
on U, V, and g, and we relabel x4, {1, and ®; by z, &, and ®,
respectively.

III. STOCHASTIC SOURCE MODEL

In this section, we describe the stochastic model that we use
for the sound source U, as well as its implications on the nature
of the induced acoustic field V. As is usual in engineering mod-
eling, we assume that the source is a real-valued, zero-mean,
homogeneous, Gaussian random field {U(z,t) : (z,t) € R*}
defined on a probability space (€2, F, P). We further assume
that the field’s covariance function K7 : R?2 — R is continuous,
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and that the field admits a spectral density Sy : R? — [0, +00)
such that

Kullr) = ﬁ / /R Sur(®,2)e/ €T+ V4dd0.  (12)

In fact, it follows from Kolmogorov’s existence theorem [22,
Th. 36.1] that for every choice of a nonnegative and Lebesgue
integrable function Si; : R? — [0, +00), there exists a Gaussian
random field {U(z,t) : (z,t) € R?} with spectral density Sg.
Furthermore, the random field can be chosen to be separable
and measurable [23, Th. I1.2.4 and Th. I1.2.6]. That is, the field
U is determined, with probability one, by its values taken on
a countable dense subset S C RZ2, and it is measurable as a
function of (z,t,w) € R? x Q. Throughout the paper we restrict
our attention to source fields {U(xz,t) : (x,t) € R?} whose
spectral densities Sy are bounded and have compact supports.
To be explicit, we assume that the source field is bandlimited
to the wavenumber? @, and to the frequency 2o, i.e., that its
spectral density Sy vanishes outside the rectangle (—®q, ®g) x
(—Q0, Q).
Analogously to (6), we define a random field {V(z,t)

(z,t) € R?} by

V(z,t) =

T 4m

T — — 2 2/c
1/RU( Et—+\/d +£/)d£. 13)

N

In [24, Appendix B], we show that, for each (z,t) € R2, the
integral in (13) exists as an improper Lebesgue integral in the
quadratic-mean (q.m.) sense, and V' (z,t) is a well-defined

3We denote the wavenumber bandwidth of the source by ®, because, un-
like its frequency bandwidth €2, which always determines the frequency band-
width of the induced acoustic field, it does not necessarily coincide with the
wavenumber bandwidth, denoted by @, of the recorded sound field but only
constitutes an upper bound, as we will show later.
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random variable. More explicitly, we prove that, for every
(x,t) € R?, there exists a random variable V (z,¢) such that

i 1 [P U(:E—f7t— \/d2—|—§2/c)
A B 7/ P+ 4
P a +¢
2
—V(,1) ]:0 (14)

by arguing that the integral in (14), considered as a function of
its integration limits, satisfies, as @« — —oo and § — o0,
a “Cauchy-like” criterion in the Hilbert space L?(Q2, F, P) of
square-integrable random variables. The only hypotheses that
our proof relies on are that the spectral density Sy of the source
field is bounded and has a compact support. Neither of these
assumptions restricts the applicability of our results since the
boundedness of Sy follows from Bochner’s theorem [23, Th.
X1.3.2], if we make the reasonable assumption that the source
field’s covariance function Ky is continuous, and the compact-
ness of the support may be assumed without loss of generality,
as we argue at the end of the section. Since we are primarily
interested in the mean-squared-error fidelity criterion, the inter-
pretation of the integral in (13) as a q.m. linear operation is ad-
equate for our purposes. It follows that {V (z,t) : (z,t) € R?}
is a zero-mean, homogeneous, Gaussian random field, whose
spectral density is given by [25, Sect. 3.6]

Sy (@,9) = [5(®, )| Sy (¢,2) (15)
where g denotes the Fourier transform of the fundamental so-
lution and is given by (8). As argued in Section II, the field V'
may be considered to be a weak solution of the sound propaga-
tion problem.

While being amenable to the tools of information theory, the
source model specified above is sufficiently general to apply to
many physical phenomena of interest. Indeed, whenever the ob-
served field is generated by a large number of small effects that
act additively and independently, the central limit theorem sug-
gests that the outcome has an approximately Gaussian distri-
bution. Moreover, from a source coding perspective, Gaussian
random processes are useful for gaining insight into the worst-
case performance of source coding schemes as these processes
are the hardest to describe among all random processes with
a given covariance function [15, Th. 4.6.3]. As to the assump-
tion of finite bandwidths, most physical fields encountered in
practice, even though they are not perfectly bandlimited and
no spatial low-pass prefiltering can be applied to these fields in
sensor networks, typically contain a large fraction of their total
power in a confined spectral domain. To keep the analysis suffi-
ciently simple, we have therefore chosen to restrict our attention
to bandlimited fields and not to address the issue of aliasing in
our paper. Indeed, we aim at evaluating the net performance of
source coding schemes, and aliasing contributes to the overall
distortion an additional term that is difficult to evaluate [26].
In Section IV, we argue that, for any bandlimited random field,
we can choose a sufficiently dense sampling lattice to enable
alias-free interpolation of the field’s samples.
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IV. SENSOR ARRAY AND SPATIO-TEMPORAL SAMPLING

As mentioned in the introduction, the acquisition of the sound
field V is performed by means of an array of microphones that
are deployed on the observation line V. We restrict our atten-
tion to periodic sampling and study the representation of the
analog field {V (z,t) : (z,t) € R?} by its samples taken at the
vertices of a regular lattice in the spatio-temporal plane. In this
section, we look at the relationship between the continuous-pa-
rameter field and the sampled field obtained from it by periodic
sampling, we illustrate the potential gains in efficiency that can
be achieved by adjusting the sampling geometry to the analog
field’s spectral support, and we address the question of how to
reconstruct the analog field from its samples. Note however that
only the sampling in the temporal dimension may be adjusted
online by reconfiguring the processing performed by the sen-
sors, while the sampling in the spatial dimension is determined
by the sensors’ locations (unless the sensors are able to move,
which we do not assume). In this section, we study two dif-
ferent sampling geometries, obtained from the rectangular and
the quincunx lattices, respectively. The issue of periodic sam-
pling with arbitrary sampling geometries has been addressed in
[27, Sect. 1.4] for the case of deterministic fields. We gener-
alize the arguments in [27] to random fields and provide a formal
proof of the convergence of the interpolating series.

A. Two-Dimensional Periodic Sampling

For notational convenience we let z denote the vector (z,t) €
R2. Assume that {V(2) : z € R?} is a bandlimited, Gaussian
random field, like the one defined in Section III. A regular lat-
tice in R? is characterized by a nonsingular 2 x 2 matrix M with
real coefficients, which we call the sampling matrix (also called
the generating matrix in the literature). The points in the set
Ap := {M1 : 1 € 77} are the vertices of the lattice. Sampling
the analog field V' at these vertices produces the discrete-pa-
rameter field {V[l] := V(M) : I € Z?}. The average number
of samples per unit area is given by 1/|det M|. Note that the
field {V[l] : I € 72} is a discrete-parameter, zero-mean, ho-
mogeneous, Gaussian random field whose covariance function
K : 7% — R s given by

Ko\ :=F [V[l + ,\]V[l]]

= Ky(M)
where Ky : R? — R denotes the covariance function of the
field {V(z) : z € R?}. Expressing Ky in terms of the spec-
tral density Sy, analogously to (12), letting ¥ denote the vector

(,9Q) € R2, and performing the change of variable 9 :=
MW, we obtain

1 .
M= (D) I (MA)
Ko = 52 /R Sv(B)e 507

Sy (M~ ) X9 dgh
(16)

1 / 1
T (2m)2 Jge [det M|

where (-, -) denotes the canonical inner product of R?, and M~ "
is the transposed inverse of the matrix M. Splitting the inte-
gral over R? in (16) into an infinite series of integrals, each of
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which is over a square obtained from (—,7]? by translation,

we rewrite (16) as

K= 2

mezZ?2

|detM|

(—m,m)?

- Sy (M~ (9 — 27m)) 7P dep

1 / 1
_(27T)2 J (=772 |detM|

3 sl

mezZ?

oy — 2rm)) eI X g
(17)

where the interchange of summation and integration is justi-
fied by the fact that the series in (17) is a finite sum due to
the compact support of Sy . It follows from (17) and the spec-
tral representation theorem for the covariance functions of dis-
crete-parameter, homogeneous random fields [23, Th. X.3.2]
that the spectral density S5 : (-, 72 — [0, 4+00) of the field

{V[I] : 1 € 7%} is given by
1 —
v W)= (G m m%;g Sv(M™H (¢ —2xm))  (18)

except possibly on a set of Lebesgue measure zero. Hence, the
spectral density of the sampled field consists of the superposi-
tion of periodically repeated versions of Sy . Whenever there is
some overlap between the supports of these replicas, we speak
of aliasing.

The question that remains to be answered is the one about
how to reconstruct the analog field {V(z) : z € R?} from its
samples. To start, we rewrite (18) in terms of ¥

1

57 (MT\II) | det M|

Z Sy (¥ —27M "m). (19

The spectral replicas in (19) are centered at the vertices of the
regular lattice generated by the matrix 2 M~ ", which we de-
note by A}, and which we call the spectral lattlce. If we denote
the support of the spectral density Sy by Gy, the support of the
function ¥ — S (M) is given by

U (&v+#k)

ke,

where Gy + k denotes the set of points of the form ¥ + k, for
W € Gy,. We say that the lattice Ay allows alias-free sampling
of the field {V (z) : z € R?} if the replicas &y + k, for k €
A3, \{0}, do not overlap with Gy, except possibly on a set of
Lebesgue measure zero.

Since the spectral density Sy has a compact support, the ma-
trix M can be adjusted so that there is no aliasing. The support
of the term corresponding to m = 0 in (19), which is Gy, is
then contained inside a primitive cell, say B, of the spectral lat-
tice Aj,. Hence, we can recover the spectral density Sy from
S5 (knowing B) by writing

S (W) = {|detM| S (M™) if¥eB
otherwise
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i.e., by multiplying S~ (M'¥) by 5(¥) := |det M|15(¥),
where 15 denotes the indicator function of the set B. We there-
fore choose the inverse Fourier transform of the function 5 as a
candidate for the interpolating function s : R> — R

|detM| /e]<z’q’>d\If
JB

Since the spectrum of a homogeneous random field is symmetric
with respect to the origin, we always assume, without loss of
generality, that the primitive cell B is symmetric as well. The
function s is then indeed a real-valued function. Letting Q, :=
[-L, L)? N Z2, we define the random fields {V7(2) : z € R?},
for L € N, as finite linear combinations of the analog field’s
samples, each sample being weighted by the interpolating func-
tion centered at the corresponding vertex of the sampling lattice
A M-

s(z) := (20)

=Y Vil]s(z— Ml). 1)
leQr
Our aim is to prove that for all z € R2
Jim E [|v VL(z)ﬂ =0. 22)

For bandlimited stochastic processes on R and random fields
on RY with bounded spectra of rectangular shape, it is known
that convergence in (22) holds for rectangular primitive cells
B satisfying Gy C B (see, for example, [25, Th. 3.7.1], [28],
[29]). However, to justify quincunx sampling below, we have to
extend these results to more general spectral geometries.

To avoid some potentially pathological cases, we assume that
the primitive cell B can be written as the union of a finite number
of convex sets (this mild regularity condition is called U-con-
vexity in [24]). Assuming further that &y, C 15, we then have
the following result.

Theorem 1: For each z € R?,

lim E U V(z

L—oo

VL(z)ﬂ —0.

Hence, the analog field V'(x, t) can be arbitrarily well approx-
imated by Vr,(x,t) by taking L sufficiently large.
Proof: Expressing Ky in terms of the spectral density Sy,
we obtain

E [|V 2) - VL(Z)ﬂ -

‘ j(z,¥)
27r

since Sy vanishes outside B. Once we show that for each z € R2

Z IMLE)

leQr

. 2
> AP (o — M) Sy () a¥,
IGQL

lim
L—oo

— Ml) = J=0 (23)

pointwise in ¥ € B (the interior of B), the partial sums being
uniformly bounded for ¥ € B and L € N, the proposition
follows from the dominated convergence theorem and the
Lebesgue integrability of the spectral density Sy .
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For fixed z € RZ, the left-hand side of (23) may be inter-
preted as the generalized Fourier series representation of the
2 M~ T -periodic function defined by ¥ — /=¥ if ¥ € B,
and extended to R? by periodicity, the numbers s (z -Ml ) being
the Fourier coefficients. As we argue in [24, Sect. 3.4], it follows
from the U-convexity of the primitive cell B that this function is
of bounded harmonic variation [30]. The required convergence
in (23) then follows from the main theorem in [31]. |

For any bandlimited random field {V(z) : z € R?} we can
choose a rectangular spectral lattice with sufficiently large prim-
itive cell B such that the field’s spectrum is contained inside 5.
However, the area of the primitive cell, (27)2/| det M|, is di-
rectly related to the number of samples per unit area, 1/| det M.
Since increasing the sampling density generally requires the de-
ployment of additional sensors, we aim at choosing B as small as
possible and consider nonrectangular lattices in addition to the
rectangular ones. However, the sampling density of any alias-
free sampling lattice Aps satisfies

1 > /,L(Gv)
[det M| = (27)2

(24)

where 11(Sy) denotes the Lebesgue measure of the random
field’s spectrum. We say that the lattice Aps allows critical sam-
pling of the random field V' if it allows alias-free sampling of V'
and if there is equality in (24). We therefore call

_ wGv)
v = (271';2

(25)

the critical sampling density for the random field V. Through
a judicious choice of the sampling geometry we may thus re-
duce the sampling density while still avoiding aliasing. In par-
ticular, as we show in what follows, the spectrum of a bandlim-
ited sound field under the far-field assumption cannot be well
approximated by rectangles, so that choosing primitive cells of
nonrectangular shape is more appropriate.

B. Sampling of the Sound Field

In the following, we assume, as aforementioned at the end
of Section II, that the Fourier transform g(®, ) of the Green’s
function vanishes whenever |®| > [2|/c, and, as mentioned
in Section III, that the source field {U(z,t) : (x,t) € R*} is
bandlimited to the wavenumber ®( and to the frequency €,
i.e., that its spectral density Sy vanishes outside the rectangle
(=Pg, Do) X (—0, Qo). It then follows from (15) that the sup-
port of the spectral density Sy, which is given by the intersec-
tion of the supports of g and Sy, is contained inside the bow-tie
shaped region B illustrated in Fig. 4. Note that the wavenumber
bandwidth of the sound field is at most equal to @ := Qo/c,
independently of the actual wavenumber bandwidth ® of the
source. In what follows, we consider the traditional rectangular
sampling lattice as well as the so-called quincunx lattice, which
turns out to be particularly well adapted to the spectral charac-
teristics of the sound field. One of the properties of these lattices
is that the projection of the vertex set {Ml : I € Z?} onto the
first coordinate forms a regular one-dimensional lattice, so that
the deployment of a finite number of sensors per unit distance
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Qo f &

Py =No/c

B

Fig. 4. Bow-tie shaped cell B containing the support of the sound field’s spec-
tral density Sv (@, €2) in the far-field approximation.

is sufficient, which is an obvious requirement for any practical
implementation.

1) Sampling With Rectangular Geometry: The most straight-
forward generalization of one-dimensional periodic sampling
to the two-dimensional case is periodic sampling with rectan-
gular geometry. Since the sound field {V (1) : (z,t) € R?} is
bandlimited to the wavenumber g /c and to the frequency o,
it can be sampled without aliasing if the Nyquist condition is
satisfied in both the spatial and the temporal dimensions. That
is, the sensors are equally spaced on the line ) with an inter-
sensor spacing X of at most ¢/, and each sensor records
its measurements with a sampling period Ty of at most 7 /.
Furthermore, all the sensors record the samples at the same time
instants. Since we do not consider oversampling, we choose
Xo :=me/Qq and Ty := /€. These values define the rectan-
gular sampling lattice A ps, shown in Fig. 5(a), whose generating
matrix may be written as

_ T c 0
T Qe \0 1)°

The analog field can then be reconstructed from its samples by
means of the interpolation with an ideal low-pass filter. The con-
vergence of the corresponding interpolation series is proved in
[28] and [29].

As explained in Section IV-A, the spectral density S; of the
sampled field {V[l] := V(M.,l) : I € 72} is composed of
shifted copies of Sy, and these copies are centered at the ver-
tices of the spectral lattice A}, , which is generated by the ma-
trix 2r M T Fig. 5(b) shows that, with our choice of the sam-
pling parameters, the supports of these copies do not overlap,
and hence, there is no aliasing. However, the figure also shows
that the rectangular sampling lattice is a conservative choice, in
the sense that it does not lead to the tightest possible tiling of the
wavenumber-frequency plane with the replicas of Sy-. The gaps
that remain between the replicas contribute to the correlation
of the spatio-temporal samples. Since any spatial processing of
the samples is impossible in a distributed setting, a transform
coding approach to reduce the correlation, as in [5] and [32], is
not an option. Moreover, we show below that the samples’ spa-
tial correlation prevents the spatially independent source coding
scheme described in Section V-C from leading to a good rate dis-
tortion tradeoff. This motivates the choice of a sampling lattice
that is better adapted to the spectral characteristics of the sound
field.

2) Sampling With Quincunx Geometry: Periodic sampling
with quincunx geometry has been suggested in [7] to achieve
a tighter packing of the spectral replicas. As mentioned above,

M, (26)
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Fig. 5. Sampling lattice (a) and support of the spectral density of the sampled
field (b) for periodic sampling with rectangular geometry. The rectangular lat-
tice allows alias-free sampling, but not critical sampling, of the sound field.

S

T <>

/
Primitive cell of Ay, 200/c

(b)

the support of the sound field’s spectral density Sy is contained
inside the bow-tie shaped region Billustrated in Fig. 4. The set B
may be regarded as a primitive cell of the rhombic (or centered
rectangular) lattice generated by the matrix

D (1 1

()

It follows from the discussion in Section I'V-A that, if we choose
this rhombic lattice as the spectral lattice Ay, of our sampling
scheme, the shifted copies of the spectral deflsity Sy that ap-
pear in (18) do not overlap. Hence, the sound field {V (z,t) :
(z,t) € R?} can be sampled without aliasing at the vertices of
the corresponding sampling lattice Az, , whose generating ma-
trix may be written as

™ C C
o= (501),

Although the sampling lattice Aps,, which is shown in
Fig. 6(a), is again a rhombic lattice, we call it a quincunx lat-
tice, in keeping with the terminology introduced in [7]. As with
the rectangular lattice above, the intersensor spacing is equal to
Xo = wc/Qp, but each sensor now records its measurements
with a sampling period of 27y = 27 /€y and with a temporal
offset of T;, with respect to its two neighboring sensors. Al-
though each sensor samples the local sound field below the
Nyquist rate, the overall sampling density is sufficiently high to
avoid aliasing. Even if the quincunx lattice does not allow us to
decrease the number of microphones deployed per unit length,
it leads to a reduction of the sampling density by a factor of

27)
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Fig. 6. Sampling lattice (a) and support of the spectral density of the sam-
pled field (b) for periodic sampling with quincunx geometry. In addition to the
replicas obtained with the rectangular lattice, sampling at the vertices of the
quincunx lattice generates the light-hatched copies. Thus, the quincunx lattice
allows critical sampling of the sound field.

two, as compared with the rectangular lattice. The interpolating
function sq(z,t) to be used with the quincunx lattice is given
by (20). Since the primitive cell B is the union of two convex
sets (ter, B is U-convex), Theorem 1 allows us to assert that
the corresponding interpolation series converges in quadratic
mean.

Fig. 6(b) shows that sampling with the quincunx lattice Az,
leads to a gap-free tiling of the wavenumber-frequency plane
with the replicas of Sy . Hence, the lattice AMq allows critical
sampling of the sound field V. We show below that this prop-
erty affects the rate distortion tradeoff achieved by the spatially
independent source coding scheme in a significant way.

To simplify the arguments in what follows, we perform a
change of indices and denote by V [k, n], for (k,n) € 72, the
sample V (kXo, tx ) taken by the sensor at position kX, and
at time

ten = n2Ty + (k mod 2) T.

V. SOURCE CODING SCHEMES

As aforementioned in the Introduction, the sound field
{V(x,t) : (x,t) € R?} along the line V is sampled by an
array of sensors, and its samples V'[k,n] are supposed to be
transmitted to the base station through digital channels. That is,
each sensor encodes its measurements into a sequence of binary
digits, and the base station computes its estimates V[k‘ n] of
the field’s samples based on these bits. The setup is shown in
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U(z,t)

Base Station

Fig. 7. Sampling and source coding for acoustic wave acquisition. The sensor
nodes sample the sound field V'(, t), encode the samples V' [k, n] and transmit
the encoded samples to the base station through digital channels. The base sta-
tion computes estimates V' [k, n] of the field’s samples.

Vik,n

Fig. 7. While in Section IV we have dealt with the sampling
operation, we now address the source coding problem.

Since in this paper we address neither the problem of making
point-to-point communications reliable nor the one of devising
efficient network communication schemes, we assume that
the channels are perfect bit pipes carrying the transmitted
bits without error to the destination. Furthermore, although
joint source-channel coding strategies may potentially lead to
an improved performance in general multiterminal networks
[1]-[3], our setup corresponds to the “expanding sensor net-
work” model studied in [4] and [5], for which Shannon’s
(source-channel) separation theorem has been shown to hold, at
least in a scaling-law sense, i.e., asymptotically, as the number
of sensors grows to infinity. This allows us to address the source
coding problem independently of the channel coding problem
without sacrificing the optimal performance of the system.

In what follows, we specify the source coding schemes that
we let the sensors apply to the samples V[k,n] before their
transmission to the base station. These schemes differ from each
other by the amount of explicit collaboration allowed between
the sensors and by the extent to which the spatio-temporal cor-
relation of the samples is taken into account. Since we assume
that the sensors operate without communicating with each other,
the coding scheme that they are supposed to use is multiterminal
source coding. However, since we are unable to determine the
rate distortion function for this scheme, we consider the cen-
tralized and the spatially independent coding schemes. The rate
distortion functions that we compute for these schemes provide
lower and upper bounds for the multiterminal rate distortion
function. While centralized coding achieves the same rate dis-
tortion tradeoff for any sampling scheme, provided that there is
no aliasing, the performance of spatially independent coding is
affected by the chosen sampling lattice, as it depends on how
strongly the sound field’s samples are correlated in the spatial
dimension.

As we assume a digital communication infrastructure, the
cost of transmission is measured in terms of the average bit rate,
i.e., in terms of the average number of bits per unit length and
unit time sent to the base station. As is usual in Gaussian source
coding, we choose to measure the quality of the base station’s
estimates by the mean squared error (MSE) per sample

1 1 ~ R
v o 2 B|IVIkn] = Vikn)l]
|[E|I<K |n|<N

3207

with K, N € N. The source coding problem can now be formu-
lated as follows: find the minimal average bit rate used by the
sensors for a given MSE of the base station’s estimates, as K,
N — oo. The optimal tradeoff is typically expressed in terms of
a rate distortion function R(D). Furthermore, one can argue, as
in [15, Sect. 4.6.3], that this is indeed equivalent to the problem
of producing an estimate of the analog field V (z,t) to within
a given MSE per unit length and unit time. The choice of the
MSE fidelity criterion is consistent with the interpretation of
the integral in (13) as a q.m. linear operation as well as with
the g.m. convergence of the interpolation series stated in The-
orem 1. However, we will argue in Section VI below that, once
the sound field has been sampled, the main implication of The-
orem 2, namely the one pertaining to the optimality of spatially
independent coding, remains valid for any single-letter fidelity
criterion. Choosing the MSE measure allows us nevertheless to
provide closed-form expressions for the various rate distortion
functions. To simplify the notation in the figures below, we let
Z¥ denote the vector (Z[k,0),...,Z[k, N —1]).

A. Multiterminal Source Coding

In the multiterminal source coding scheme, both the encoding
performed by the sensors and the decoding done at the base sta-
tion are based on the spatio-temporal correlation of the sam-
ples, although the sensors operate without communicating with
each other. That is, the encoding is distributed. The setup is
shown in Fig. 8. A detailed description of multiterminal source
coding is given in [24, Sect. 2.4.1]. This scheme is of highest
interest in sensor network engineering as it allows taking the
spatial correlation into account without requiring intersensor
communication.

It is known that, for discrete-valued, correlated data sources
and asymptotically lossless (i.e., zero distortion) compression,
the constraint of noncollaborative encoding does not induce any
increase in the required rate [33]. However, in the lossy (i.e.,
nonzero distortion) multiterminal source coding scheme, there
is in general a cost in rate due to the separation of the encoders
[34]. A complete characterization of the region of achievable
rate distortion pairs for that scheme has not been found to date.
In her thesis [35], Tung gave inner and outer bounds to this rate
distortion region (known today as the Berger-Tung bounds), and
Oohama obtained an outer bound for Gaussian sources and MSE
distortion that partially coincides with the Berger-Tung inner
bound [36]. Zamir and Berger obtained a complete solution for
general sources in the extreme of high resolution (i.e., high rate)
[34], while Wagner, Tavildar, and Viswanath determined the rate
distortion region for the two-terminal Gaussian/MSE problem
[37]. (They also provided a partial answer for the setup with
several sources, assuming a symmetric covariance structure and
symmetric distortion constraints.) It remains unknown how to
generalize the latter result to the multiterminal source coding
problem with an arbitrary number of sources/terminals, which
is the problem of interest in the present paper. That is why we
study two other source coding schemes, which provide lower
and upper bounds for the multiterminal rate distortion function,
namely the centralized and the spatially independent coding
schemes.
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Fig. 8. Multiterminal source coding. The sensors do not communicate while encoding their samples, but the decoding at the base station is performed jointly.
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Fig. 9. Centralized source coding. All the spatio-temporal samples are available at a single encoder.
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Fig. 10. Spatially independent source coding. Both the encoding at the sensors and the decoding at the base station are performed without cooperation.

B. Centralized Source Coding

In the centralized source coding scheme, we assume that there
is a single encoder that has access to all the spatio-temporal sam-
ples of the field {V[k,n] : (k,n) € Z*}. We may for instance
assume that there is a genie informing each sensor about other
sensors’ measurements, or, slightly more realistically, that the
sensors have unconstrained channels at their disposal to com-
municate with each other at no cost. As a consequence, the sen-
sors may encode their measurements jointly. The setup is shown
in Fig. 9. A detailed description of centralized source coding is
given in [24, Sect. 2.4.3].

Using the reverse water-filling principle [15, Corollary 2.8.3]
and generalizing [15, Th. 4.5.3] to homogeneous, Gaussian
random fields (see also [15, Exercise 4.27]), we obtain the fol-
lowing parametric representation of the rate distortion function
for the centralized coding scheme:

CY(DUQO 1
Ry=———
? (2m)2

S~(¢,
. // max [0, 1 log M} dwd¢
(_7‘—!77]2 2 6

(28)

T2

Dgzﬁ / /(_”]2 min [6,55(6,0)]dods (29)

where S5 denotes the spectral density of the random field
{Vk,n] : (k,n) € Z2}, and « is a parameter depending on
the chosen sampling lattice. For the rectangular lattice « = 1,
while for the quincunx lattice « = 1/2. The rate has been
normalized by the sampling density, so that both the rate and
the distortion are computed on a per unit length and unit time
basis. Note that, despite the presence of the parameter « in
(28), the centralized coding scheme achieves the same rate
distortion tradeoff for both the rectangular and the quincunx
sampling lattices. Since the centralized source coding scheme
allows more flexibility in the design of the encoder and the
decoder than the multiterminal coding scheme does, the rate
distortion function for centralized coding is a lower bound for
the multiterminal rate distortion function.

C. Spatially Independent Source Coding

In the spatially independent source coding scheme, we make
each sensor encode its measurements ignoring the correlation
they have with the samples recorded by the neighboring sensors.
Similarly, the base station decodes the bit sequence received
from each sensor separately. The setup is shown in Fig. 10. Fur-
thermore, each encoder-decoder pair in Fig. 10 is chosen to im-
plement an efficient point-to-point source code. A detailed de-
scription of spatially independent source coding is given in [24,
Sect. 2.4.4].
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The overall performance of the spatially independent coding
scheme depends on the characteristics of the stationary,
Gaussian random processes that are locally observed by the
sensors. By the homogeneity of the sampled sound field

{Iw/[kn] : (k,n) € Z?}, these processes all have the same
spectral density, which is given by
1
Solw) = o= [ Sp(dw)ds

b <_7777T]

The point-to-point rate distortion functions for these processes
then follow from [15, Th. 4.5.3]. Regarding the aggregate rate
distortion function, the only degree of freedom remaining is
the choice of the rate at which each encoder-decoder pair is
supposed to operate. By the symmetry of the setup, the homo-
geneity of the random field, and the convexity of the point-to-
point rate distortion functions, we conclude that allocating the
same rate to every sensor is optimal. Therefore, we obtain the
following parametric representation of the rate distortion func-
tion for the spatially independent coding scheme:

OJ(I)()QO 1 1 So(w)
= _ 2 og 20\
Ry e - max [0, 5 og g dw (30)
Dy = — i [65()}d 31)
=5 o min |6, So(w) [dw

where « is the same lattice-dependent parameter as in
Section V-B. As before, both the rate and the distortion
are computed on a per unit length and unit time basis. Since the
spatially independent source coding scheme imposes stronger
constraints on the structure of the encoders and the decoders
than the multiterminal coding scheme does, the rate distortion
function for spatially independent coding is an upper bound for
the multiterminal rate distortion function.

Although the encoding of the samples does not require any
communication between the sensors in the present scheme,
either the sensors have to cooperate to determine the appro-
priate sampling time offsets for the quincunx lattice, or these
offsets must be configured when the sensors are deployed. In
Appendix A, we describe a coding scheme that does not require
synchronization and still achieves a tighter packing of the
replicas of Sy than sampling with rectangular geometry does.

VI. RATE DISTORTION FUNCTIONS

In this section, we evaluate the rate distortion functions for
the various sampling lattices and coding schemes described in
Sections IV and V. As mentioned before, we assume that the
Fourier transform g(®, () of the Green’s function vanishes
whenever |®| > |Q|/c (far-field approximation), and that
the sound source {U(z,t) : (z,t) € R?} is a homogeneous,
Gaussian random field whose spectral density Sy vanishes
outside the rectangle (—®g,Pg) x (—0,€). The sound
field’s spectral density Sy follows from (15).

A. Rate Distortion Functions for a White Sound Field

We first consider the case where the spectral density Sy of
the sound field is constant on its support, i.e.

' 0 otherwise
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where oy is some positive parameter, and B denotes the bow-tie
shaped region shown in Fig. 4. This setting is a worst-case sce-
nario in the sense that, for given bandwidth and total power, the
homogeneous, Gaussian random field that requires the highest
bit rate for the centralized source coding scheme is the one
whose spectral density is constant on 3. Under these assump-
tions we obtain the following rate distortion functions in closed
form:
* centralized coding:

2
Ro(D) = 2V log <"‘g" >

(32)

» sampling with the rectangular lattice (26) followed by spa-

tially independent coding:
D
T+ /1= —5—
oy PV

D
+pV 1- 1- P
Oy pPv

» sampling with the quincunx lattice (27) followed by spa-
tially independent coding:

2
4% oy Pv
Rsio(D) = > 10%( ‘D )

oy
RiirD =py 1 v
sip(D) = py og( D

(33)

(34)

where D € (0,0%,pv), and
a3

2m2¢

pv

denotes the critical sampling density for the sound field V, as
defined by (25). The rate distortion functions above, the deriva-
tion of which is given in Appendix B, are plotted in Fig. 11.
We have chosen o3 := 0.0027 to ensure that the sound field
in the present setting has approximately the same total power
as the one in Section VI-B with 012] = 1. Note that (32) and
(34) are equal. Hence, in the present setting, the scheme that
consists in sampling the sound field with the quincunx lattice,
generated by the matrix (27), followed by spatially indepen-
dent coding achieves the same rate distortion tradeoff as cen-
tralized coding. Since this scheme may also be regarded as a
multiterminal source coding scheme, and since no multiterminal
scheme can outperform centralized coding, the rate distortion
function for multiterminal source coding is given by expression
(34). This result follows from the independence of the sound
field’s samples. Indeed, since sampling with the quincunx lattice
leads to a gap-free tiling of the wavenumber-frequency plane
with the replicas of Sy, as shown in Fig. 6(b), and since Sy
is constant on B, the spectral density S;; of the sampled field
{V[k,n] : (k,n) € Z%} is a constant function. Hence, the
random processes sampled by different sensors are independent
and may therefore be encoded independently without any loss
in terms of the rate distortion tradeoff. Let us summarize the dis-
cussion above by the following theorem.

Theorem 2: In the far-field setting and with a bandlimited,
white, Gaussian sound field, the rate distortion function for mul-
titerminal source coding is given by

03 o203
Rmt(D) = 47[_20 IOg <27I'2CD -
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Fig. 11. Rate distortion functions for different sampling lattices and coding
schemes in the far-field setting with a bandlimited, white, Gaussian sound field.
The parameters are ¢ = 340 m/s, o7, = 0.0027, and Q¢ = 8 000 7 rad/s.

Of course, the statement in Theorem 2 is only valid if we
choose the parameters of the quincunx sampling lattice so
that its primitive cell perfectly matches the support of the
sound field’s spectral density, and that the gap-free tiling of the
wavenumber-frequency plane in Fig. 6(b) is obtained. Indeed,
if we choose the sampling density not high enough, aliasing is
the consequence, and the sound field cannot be perfectly re-
constructed from its samples. However, if the sampling density
is too high, the gaps that appear between the shifted copies of
Sy make the samples correlated and, in general, prevent the
spatially independent coding scheme from being optimal.

The proof of Theorem 2 mainly consists in showing that spa-
tially independent coding, preceded by sampling with an appro-
priately adjusted quincunx lattice, achieves the same rate dis-
tortion tradeoff as centralized coding, and this in turn follows
from the independence of the sound field’s samples. The MSE
fidelity criterion, despite allowing us to provide closed-form ex-
pressions for the rate distortion functions, plays no role in this
regard. With independent samples, independent coding is op-
timal for any single-letter fidelity criterion of the form

> > E[a(Viknl Vika)]

|K[<K [n]<N

1 1
2K +12N+1

where K, N € N,and d : R X R — [0, 4+00) is a measurable
distortion function. Hence, we have the following theorem.

Theorem 3: In the far-field setting and with a bandlimited,
white, Gaussian sound field, the rate distortion function for mul-
titerminal source coding is equal to those of both centralized and
spatially independent coding. This result holds for any single-
letter fidelity criterion.

In other words, the judicious choice of the sampling lattice ex-
empts us from having to resort to any multiterminal binning as
the same rate distortion tradeoff may be achieved with the com-
putationally less intensive spatially independent source coding
scheme.
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Fig. 12. Rate distortion functions for different sampling lattices and coding
schemes in the far-field setting with a bandlimited, white, Gaussian sound
source. The parameters are ¢ = 340 m/s, d = 10 m, 0,2] = 1, and
Qo = 8000 7 rad/s.

B. Rate Distortion Functions for a White Sound Source

To further study the influence of the wave equation’s Green’s
function on the rate distortion tradeoff, we next consider the case
where the source field’s spectral density Sy is constant on its
support, i.e.

Sy (®,Q) = {G% if (@,2) € (—=@o, ®o) x (—Q0, )
' 0 otherwise

where oy is some positive parameter. Then, the sound field’s
spectral density Sy, which is given by (15), is no longer con-
stant on the set B. Without loss of generality we assume that
Dy > Qp/c. For this setup we have to resort to numerical inte-
gration to compute the various rate distortion functions, which
are shown in Fig. 12. Unlike in the previous setting, where Sy
is constant on B, the spatially independent coding scheme with
the quincunx sampling lattice does not achieve the performance
of centralized coding, but it still outperforms the scheme with
the rectangular sampling lattice by a significant margin. Hence,
by adjusting the sampling lattice to the spectral properties of the
sound field, we achieve a good performance even with a source
coding scheme that does not take into account the spatial cor-
relation of the samples. As a complete characterization of the
region of achievable rate distortion pairs for the multiterminal
source coding scheme has not been found to date, this scheme’s
rate distortion function for the present setup remains undeter-
mined within the bounds provided by centralized coding and by
spatially independent coding with quincunx sampling.

VII. CONCLUSION

The problem addressed in this paper is an instance of the
multiterminal source coding problem, which has proven to be
one of the biggest challenges in information theory. Although
some significant progress towards a solution of that problem has
been made [37], [38], the question regarding the tightness of the
known bounds to the region of achievable rate distortion pairs
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Fig. 13. Spectral decomposition of the sound field in the subband coding
scheme. (a) L =1, M = 2.(b) L =2, M = 4.

remains unanswered. The vast majority of studies on multiter-
minal source coding focuses on Gaussian data sources with ar-
bitrary correlation, without further exploring the physical phe-
nomenon generating the data. While the present paper keeps
with the Gaussian/MSE setup, we incorporate both physics and
multidimensional sampling into our analysis to obtain a real-
istic model for the data sources typically encountered in sensor
network applications. Based on this model, we determine both
upper and lower bounds to the rate distortion function of the
multiterminal source coding scheme for the case of acoustic
wave acquisition by means of linear sensor arrays. Under the
assumption of a worst-case data source, we argue that sam-
pling with a quincunx lattice produces independent samples, ex-
empting us from using multiterminal source coding. Indeed, we
show that the rate distortion function of the generally less ef-
ficient spatially independent source coding scheme then coin-
cides with the lower bound given by centralized coding, thus
establishing the multiterminal rate distortion function for this
particular setup. Even though our results do not have imme-
diate implications on the general multiterminal source coding
problem, they suggest a guideline for engineering real-world
sensor networks and motivate the general advice that communi-
cation schemes should be tailored to the physical properties of
the underlying problems.

APPENDIX A
SUBBAND SOURCE CODING

In what follows, we describe a source coding scheme that,
without requiring either intersensor communication or prede-
ployment configuration to set the appropriate sampling time
offsets, achieves a tighter packing of the replicas of Sy than
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Fig. 14. Filter bank used by the sensors in the subband coding scheme with
M = 4.

sampling with rectangular geometry does. The main idea be-
hind this scheme consists in decomposing the sound field into
M spectral subbands by means of filtering in the temporal do-
main, as shown in Fig. 13. Let {V(")(2,t) : (2,t) € R?},
form =1,..., M, denote the subband fields, which we obtain
by making the sensors apply appropriate band-pass filters to the
field {V(z,t) : (x,t) € R?}, as shown in Fig. 14. Note that
this scheme does not require any spatial filtering, which would
preclude its use in any practical setting. Each of the subband
fields is sampled at the vertices of a rectangular lattice, whose
parameters are adjusted to the wavenumber and the frequency
bandwidths of the particular subband field. In general, the im-
plementation of these sampling lattices would require the de-
ployment of a separate set of sensors with the appropriate in-
tersensor spacing for each subband field. To avoid this over-
head, we choose the wavenumber bandwidths of the subband
fields in such a way that the corresponding spatial Nyquist rates
are rational multiples of each other. In that case, we can per-
form spatial sampling at the Nyquist rate by having a suitable
subset of the sensors record the samples of a given subband field.
To be explicit, we choose a positive integer L and deploy the
sensors with an intersensor spacing of Xo/L = (wc)/(L8),
which corresponds to L times the spatial Nyquist rate of the
field {V(z,t) : (z,t) € R%}. Then, for each m = 1,..., M,
we define the subband field {V (") (z,t) : (z,t) € R?} as the
field obtained from the sound field by ideal band-pass filtering
with a passband given by

_ LQy B Ly U Ly Ly
L+m—-1" L+m L+m L+m-—1

Ly Ly
- , f =M.
[ L+M—1’L—|—M—1} orm
Fig. 13 shows the resulting decompositions for . = 1 and
M = 2 [Fig. 13(a)] as well as for L, = 2 and M = 4

[Fig. 13(b)]. The subband field V(M) has a wavenumber band-
width of LQq/(¢(L+m—1)), and thus, it can be sampled with
an intersensor spacing of (L + m — 1)Xo/L. We obtain this
sampling rate by having one sensor out of L + m — 1 record
the samples of the field V (™)

As to source coding, we let the sensors apply the spatially
independent coding scheme, defined in Section V-C, to the
samples of each subband field. Since the spectral densities of
the subband fields have nonoverlapping supports, these random
fields are independent. Hence, they may be encoded inde-
pendently without any penalty in terms of the rate distortion
tradeoff, provided that the rate allocation among the subbands
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Fig. 15. Rate distortion function for the subband coding scheme with L =
1 and M = 2, in the far-field setting with a bandlimited, white, Gaussian
sound field. The parameters are ¢ = 340 m/s, o3 = 0.0027, and 2, =
8000 7 rad/s.

is performed according to the reverse water-pouring principle
[15, Sect. 2.8]. Let R(™) (D), for m = 1,..., M, denote
the rate distortion function for the subband field V(™). The
aggregate rate distortion function is then given by

M
R(D) = Z R(m)(D(m))

m=1

where

M
D:=Y" D™
m=1

and the distortions D™ ..., D) are chosen so that the equal-
slope condition in [15, Sect. 2.8] is satisfied.

To illustrate the performance of the subband coding scheme
defined above, we first consider the decomposition of the sound
field into two subbands of equal width, as shown in Fig. 13(a).
The sensors are deployed with an intersensor spacing of
X = mc/Q, and the subband field V() is sampled by every
other sensor. Fig. 15 shows the resulting rate distortion function
in comparison with the ones for centralized coding and for
spatially independent coding with the rectangular sampling
lattice. Note that, without deploying any additional sensors,
we can improve the performance of the spatially independent
coding scheme if we combine it with the subband decompo-
sition method. Next, we consider the spectral decomposition
into multiple subbands. For a given value of the parameter L,
we choose M := 9L + 1, so that the frequency bandwidth
of the field V() is equal to €y/5. Note that increasing the
parameter L requires a proportional increase of the sensor
density, whereas an increase of the number of subbands M
only adds to the local processing complexity. Fig. 16 shows the
resulting rate distortion functions for L = 1, 2, 3. Note that,
with a moderate increase of the sensor density, the performance
of the spatially independent coding scheme combined with
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Fig. 16. Rate distortion functions for the subband coding scheme with L =
1,2,3,and M = 9L + 1, in the far-field setting with a bandlimited, white,
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the subband decomposition method approaches the one of
centralized coding.

APPENDIX B
RATE DISTORTION FUNCTIONS FOR A WHITE SOUND FIELD

In what follows, we infer the rate distortion tradeoffs
(32)-(34) for the acquisition of a bandlimited, white,
Gaussian sound field from the general parametric expres-
sions (28)—(31). The spectral density Sy of the analog sound
field {V (z,t) : (z,t) € R%} is given by

SV((I’a Q) = 0‘2/ 13((1’7 Q)

where 15 denotes the indicator function of the bow-tie shaped
region shown in Fig. 4. The critical sampling density py- for the
field V, as defined by (25), is then given by

_ 9
pv = 2r2¢’

(35)

A. Centralized Coding

Since the centralized source coding scheme achieves the same
rate distortion tradeoff for any sampling lattice, provided that
there is no aliasing, we choose the rectangular lattice that is gen-
erated by the matrix M, given by (26). The spectral density S o
(=7, 7% — [0,400) of the sampled random field {V[k,n] :
(k,n) € 7%}, which is defined at the end of Section IV-B-1,
then follows from (18):

REAYL;
Se(pw) =1 a1 <[]
0 otherwise.

(36)

Inserting (36) into the parametric expressions (28) and (29), we
obtain

2 o202

w2ch

Ry =
8~ 4n2c
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Dy =

?

N D

for0 < < (02Q3)/(wc). Solving for 6 in the latter equation
and substituting the result into the former, we get

2 2 02
Q o §25

Ry = .
b7 4r2c 08 2m2¢Dag

(37

The rate distortion function (32) for centralized coding then fol-
lows from (37) and (35).

B. Spatially Independent Coding

As argued in Section V-C, the rate distortion function for
the spatially independent source coding scheme depends on the
spectral density of the stationary, Gaussian random process ob-
served by any one of the sensor nodes. Therefore, to deter-
mine this rate distortion tradeoff, we consider the sensor node
at position 0.

1) Rectangular Sampling Lattice: For the rectangular lat-
tice generated by the matrix M in (26), it follows from (36) that
the spectral density of the sampled random process {V[0, n] :
n € 7} is given by

S =g [ Sp0

o202
V3 0 |w

. (38)

T=C

Inserting (38) into the parametric expressions (30) and (31), we

obtain
Q21 [ 1 S,
Rg:—o—/ —logﬂdw

m2e T ) x3c0 2 0
o2 02
v o
™
02 o2 B w
=55 |wlog— —
2m3¢ ch )
T o2 02
Vo
=52 10 2 2
2m2¢ em?cl = 207
3
1 [oza2 1 /[7
Dg=—[ " ° S o(w)dw+ — 0 dw
™ 0 T x3c 6
2 2
7vo
0 w2c6?
-V 2 02’
2075

for 0 < 0 < (02.Q2)/(m%c). Expressing 6 in terms of Dy, we
get

2 02
0 — oy §25
m2c

1—

Substituting this into the expression for Rg, we obtain

212¢Dy
T T 202
oy 25

(39)
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where we have used the fact that

272¢cDg
=" 3202 -
o815

The rate distortion function (33) for spatially independent
coding preceded by sampling with the rectangular lattice (26)
then follows from (39) and (35).

2) Quincunx Sampling Lattice: Since sampling at the ver-
tices of the quincunx lattice that is generated by the matrix
M, given by (27) results in subsampling the random process
{V[0,n] : n € Z} obtained with the rectangular lattice by a
factor 2, the spectral density of the sampled random process ob-
served by the sensor node at position 0 is given by

Sq0(w) = 1 Seo(w/2) + % Spo(w/2—)

2
o0
T o2n2e’

(40)

Inserting (40) into the parametric expressions (30) and (31), we
obtain

2 2 02
Q5 oy §1;

Ry =
= 4n2c 2m2c 0
Dy =0,

for0 < 0 < (J‘Q/Q%) / (27r2(:). Substituting the latter equation
into the former, we get

2 2 2
Q oy 2

Ry = )
"7 4n2c 08 2m2¢Dag

(41)

The rate distortion function (34) for spatially independent
coding preceded by sampling with the quincunx lattice (27)
then follows from (41) and (35).
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