
ar
X

iv
:1

10
4.

03
84

v1
  [

cs
.I

T
] 

 3
 A

pr
 2

01
1

Relations Between Redundancy Patterns of the Shannon Code and

Wave Diffraction Patterns of Partially Disordered Media

Neri Merhav

Department of Electrical Engineering
Technion - Israel Institute of Technology

Haifa 32000, ISRAEL

Abstract

The average redundancy of the Shannon code, Rn, as a function of the block length n, is
known to exhibit two very different types of behavior, depending on the rationality or irrational-
ity of certain parameters of the source: It either converges to 1/2 as n grows without bound,
or it may have a non–vanishing, oscillatory, (quasi–) periodic pattern around the value 1/2 for
all large n. In this paper, we make an attempt to shed some insight into this erratic behavior
of Rn, by drawing an analogy with the realm of physics of wave propagation, in particular, the
elementary theory of scattering and diffraction. It turns out that there are two types of behavior
of wave diffraction patterns formed by crystals, which are correspondingly analogous to the two
types of patterns of Rn. When the crystal is perfect, the diffraction intensity spectrum exhibits
very sharp peaks, a.k.a. Bragg peaks, at wavelengths of full constructive interference. These
wavelengths correspond to the frequencies of the harmonic waves of the oscillatory mode of Rn.
On the other hand, when the crystal is imperfect and there is a considerable degree of disorder
in its structure, the Bragg peaks disappear, and the behavior of this mode is analogous to the
one where Rn is convergent.

Index Terms: Lossless source coding, redundancy, Shannon code, scattering, diffraction, Bragg
peaks, disorder.

1 Introduction

The analysis of the average redundancy of lossless codes for data compression schemes is a topic

that attracted the attention of considerably many researchers throughout the history of Information

Theory (cf. e.g., [1],[3],[6],[7],[8],[9],[10],[11],[12],[13] and many references therein).

In [13] Szpankowski has derived the asymptotic behavior of the average redundancy Rn, as a

function of the block length n, for the Shannon code, the Huffman code, and other codes, focusing
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primarily on the binary memoryless source, parametrized by p – the probability of zero. His analysis

revealed a rather interesting behavior of Rn, especially in the cases of the Shannon code and the

Huffman code: When α
∆
= log2[(1−p)/p] is irrational, then Rn converges to a constant (which is 1/2

for the Shannon code and 3/2− 1/ ln 2 for the Huffman code) as n → ∞. On the other hand, when

α is rational, Rn has a non–vanishing oscillatory term of the form 〈βm0n〉, where β ∆
= − log2(1−p),

m0 is the denominator of α = ℓ0/m0 in its representation as the ratio between two integers whose

greatest common divisor is 1, and 〈x〉 = x − ⌊x⌋ designates the fractional part of a real number

x. In several places in his paper, Szpankowski describes this behavior of Rn as “erratic” and this

qualifier is, of course, understandable.

Our purpose in this paper is to make an attempt to give some insight into this erratic behavior of

Rn by drawing an analogy with the physics of wave diffraction. From the theory of X–ray scattering

(see, e.g., [2, Chapter 2],[14]), it is known that if the object that causes the diffraction of an incident

wave is a perfect crystal, then the intensity profile of the scattered wave (as a function of the

wavelength or the wave number) exhibits very sharp peaks, known as Bragg peaks, at wavelengths

that correspond to full coherence, where the optical distance differences to all scattering elements

(layers of the crystal) are exactly integer multiples of the wavelength. This continues to be the case

as long as there is enough order in the medium such that all these distances are commensurable

and therefore have a common divisor (common unit of length), which can serve as the fundamental

wavelength. In the realm of the average redundancy analysis, this corresponds to the case where

α is rational and the fundamental frequency of the oscillatory term 〈βm0n〉 of Rn is intimately

related to the fundamental wavelength at which there is a Bragg peak. On the other hand, when

the distances are incommensurable, perfect coherence between all scattered waves is not achieved

at any wavelength and therefore no Bragg peaks are observed. This is the case of strong disorder,

which in the lossless source coding problem, corresponds to the case of α irrational, where Rn is

convergent.

More concretely, the analysis of the scattered wave intensity function is based on a very simple

model of disorder, which is due to Hendricks and Teller [5] (see also [4]). According to the Hendricks–

Teller (HT) model, the distances between every two consecutive layers in the solid are selected

independently at random from a finite set of two or more distances. In the simplest case, where

there are only two possible distances d0 and d1, with probabilities p and 1−p, this random selection
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process is analogous to the memoryless binary source of the data compression problem and the

parameter α of this source plays a role analogous to that of the ratio d1/d0. Thus, α irrational

means that d0 and d1 are incommensurable, which is the case of strong disorder with no Bragg

peaks and no oscillations in Rn. On the other hand when α = d1/d0 is rational, we are in the

(partially) ordered mode, as described above.

From the pure mathematical point of view, the analogy between the average redundancy prob-

lem and the diffraction problem is rooted in that at the heart of the analyzes of both problems,

there is one very simple mathematical fact in common: Given a vector (p0, p1, . . . , pM−1) of non–

negative reals summing to unity (probabilities) and a vector (α1, . . . , αM−1) ∈ IRM−1, the complex

number

Cm = p0 +
M−1
∑

j=1

pje
2πimαj , i =

√
−1, m = 1, 2, 3, . . . (1)

has a modulus that obviously never exceeds unity, and Cm = 1 (i.e., full coherence between all M

phasors) is attained for some integer values of m if and only if {αj} are all rational. When this

is the case, then Cm = 1 for all values of m which are integer multiples of m0, the first positive

integer m for which mαj is integer for all 1 ≤ j ≤ M − 1 at the same time.1 The analogy between

the Shannon code redundancy analysis and the diffraction patterns under the HT model will center

around (1) and its two types of behavior depending on the rationality or irrationality of {αj}.

The remaining part of this short paper consists of two more main sections. For the sake of

completeness, in Section 2, we summarize the main ingredients of the derivation in [13] (with a

few shortcuts), emphasizing the use of the simple mathematical fact described in the previous

paragraph. For reasons of simplicity, we focus on the Shannon code and the derivation specializes

on the memoryless case. In Section 3, we bring the derivation of the diffraction patterns of the

HT model, with a focus on the analogy with Section 2. We then describe in detail the mapping

between the two problems under discussion. Finally, in Section 4 we summarize and conclude, with

a comments on a possible extension to the Markov case.

1The previous paragraph refers to the special case M = 2.
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2 Average Redundancy of the Shannon Code

Throughout the remaining part of this paper, we use capital letters to designate random variables

(e.g., Xi) and the corresponding lower case letters to denote specific realizations (e.g., xi).

Consider a finite alphabet memoryless source X1,X2, . . . with alphabet X = {0, 1, 2, . . . ,M −
1} and symbol probabilities {p0, p1, . . . , pM−1}. The Shannon code for lossless data compression

assigns to every source n–tuple x = (x1, x2, . . . , xn) ∈ X n a binary codeword of length

ℓ(x) = ⌈− log P (x)⌉ = ⌈− log
n
∏

t=1

pxt⌉, (2)

where ⌈u⌉ designates the smallest integer not smaller than u. The average redundancy of the

Shannon code is defined as

Rn = E {ℓ(X)} − nH (3)

where

H = −
M−1
∑

j=0

pj log pj (4)

is the per–symbol entropy. The derivation of the asymptotic expression for Rn in [13] can be

presented (with a few slight shortcuts and modifications) as follows. By using the Fourier series

expansion of the function 〈u〉, according to

〈u〉 = 1

2
−
∑

m6=0

ame2πimu, am =
1

2πim
, (5)

we have the following:

Rn = E{⌈− log P (X)⌉+ log P (X)}

= 1−E{− log P (X)− ⌊− log P (X)⌋}

= 1−E 〈− logP (X)〉

= 1−E







1

2
−
∑

m6=0

am exp [−2πim log P (X)]







=
1

2
+
∑

m6=0

amE {exp [−2πim log P (X)]}

=
1

2
+
∑

m6=0

am
∑

x∈Xn

(

n
∏

t=1

pxt

)

· exp
[

−2πim
∑

t

log pxt

]
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=
1

2
+
∑

m6=0

am
∑

x∈Xn

n
∏

t=1

(pxt exp [−2πim log pxt ])

=
1

2
+
∑

m6=0

am

n
∏

t=1





M−1
∑

xt=0

pxt exp [−2πim log pxt]





=
1

2
+
∑

m6=0

am





M−1
∑

j=0

pj exp [−2πim log pj]





n

=
1

2
+
∑

m6=0

ame−2πimn log p0



p0 +
M−1
∑

j=1

pj exp {2πim log(p0/pj)}




n

. (6)

Denoting αj = log(p0/pj), j = 1, 2, . . . ,M − 1, the expression in the square brackets is exactly Cm

as was defined in (1). The behavior of Rn for large n is then as follows. If {αj} are not all rational,

then |Cm| < 1 for all m, and so, limn→∞Cn
m = 0, which causes the entire summation over m to

vanish for large n. In this case, Rn → 1/2 as n → ∞. On the other hand, if {αj} are all rational,

then there exists an integer m such that mαj are all integers. Let m0 be the smallest positive

integer with this property. Then all other integers with the same property are integer multiples of

m0. Consequently, limn→∞Cn
m = 1 whenever m is an integer multiple of m0 and limn→∞Cn

m = 0

otherwise. Thus, denoting β = − log p0, we now have for large n,

Rn ≈ 1

2
+
∑

k 6=0

akm0
e2πikm0nβ

=
1

2
+

1

m0

∑

k 6=0

ake
2πikm0nβ

=
1

2
+

1

m0

(

1

2
− 〈βm0n〉

)

, (7)

where the second line holds since am is inversely proportional to m (see (5) above) and in the third

line we used again (5) with u = βm0n. As can easily be seen from the second line of (7), for large

n, the sequence Rn is harmonic with a fundamental frequency ω0 = 2πm0β. In other words, the

Fourier transform of {Rn} contains Dirac delta functions at integer multiples of ω0 (modulo 2π).

We will see later on that these spectral spikes are analogous to the Bragg peaks of the HT model.

At this point, a technical comment is in order. At first glance, it may seem that the above

approximate expression of Rn is assymetric with respect to permutations of the alphabet, because

β was defined as − log p0 and the choice of the symbol x = 0 as having a special role in the last

line of (6) was completely arbitrary (we could have chosen, of course, any other symbol j as well).
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However, note that 〈βm0n〉 = 〈−m0n log p0〉 is identical to 〈−m0n log pj〉 for all j = 1, . . . ,M − 1

because in the rational case considered above, the numbers {−m0n log pj}M−1
j=0 differ from each

other by integers, and therefore their fractional parts are all the same. Thus, the above expression

of Rn is, in fact, invariant to permutations of the alphabet.

3 Diffraction Patterns of the HT Model

The simplest way to think of the HT model is as a one–dimensional model of an alloy, which is

characterized by a sequence of mass points, positioned along the real line at random locations

Z0, Z1, . . . , Zn−1. The ensemble of the HT model is defined in terms of the spacings ∆j
∆
= Zj −

Zj−1, j = 1, 2, . . . , n − 1, which are n − 1 i.i.d. random variables taking on values in a finite set

{d0, d1, . . . , dM−1} with probabilities p0, p1, . . . , pM−1, respectively (thus, Z0, Z1, . . . is a random

walk). Each point Zi contributes a scattered wave described by the phasor e−iqZj , where in the one–

dimensional setting considered here, q can be understood as the wave number, that is, q = 2π/λ,

where λ is the wavelength. Assuming the same amplitudes at all points, the superposition of all

these contributions is then the sum U(q) =
∑

j e
−iqZj , which can be interpreted as the Fourier

transform of the function u(z) =
∑

j δ(z −Zj). The overall intensity of this superposition of waves

is designated by the structure function [2, Chapter 2]

I(q) = E{|U(q)|2} = E







∑

k,ℓ

eiq(Zk−Zℓ)







=
∑

k,ℓ

E{eiq(Zk−Zℓ)}, (8)

where the expectation is with respect to the random variables {Zj}.

The derivation of I(q) is fairly simple (see, e.g., [4]) and it is brought here for the sake of

completeness.

I(q) =
∑

k,ℓ

E{eiq(Zk−Zℓ)}

= n+
∑

k>ℓ

E{eiq(Zk−Zℓ)}+
∑

k<ℓ

E{eiq(Zk−Zℓ)}

= n+
∑

k>ℓ

E{eiq(Zk−Zℓ)}+
∑

k>ℓ

E{e−iq(Zk−Zℓ)}

∆
= n+ I0(q) + I∗0 (q) (9)

where I0(q) is defined as the second term of the third line and I∗0 (q) is the complex conjugate of
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I0(q). Now,

I0(q) =
∑

k>ℓ

E{eiq(Zk−Zℓ)}

=
∑

k>ℓ

E







exp



iq
k
∑

s=ℓ+1

∆s











=
∑

k>ℓ

E







k
∏

s=ℓ+1

exp [iq∆s]







=
∑

k>ℓ





M−1
∑

j=0

pje
iqdj





k−l

=
n−1
∑

r=1

(n− r)[C(q)]r, (10)

where we have denoted

C(q) =
M−1
∑

j=0

pje
iqdj . (11)

For n large, whenever |C(q)| < 1, the last expression is dominated by the term n
∑∞

r=1[C(q)]r =

nC(q)/[1− C(q)], which together with the two other terms of (9), yields

I(q) ≈ n

(

1 +
C(q)

1− C(q)
+

C∗(q)

1− C∗(q)

)

= n · 1− |C(q)|2
|1− C(q)|2 , (12)

or equivalently,

Î(q) = lim
n→∞

I(q)

n
=

1− |C(q)|2
|1− C(q)|2 . (13)

If there are values of q for which |C(q)| = 1, yet C(q) 6= 1, then the geometric series diverges at

these points, but these are only points of removable discontinuity in Î(q) because for every other

point, arbitrarily close to such a discontinuity point, again |C(q)| < 1, and the geometric series

converges. The real problematic points, if any, are those where C(q) = 1 if they exist. For C(q) = 1,

we have to re-derive the expression of I(q) separately, which is very simple as I(q) is just the sum

of n2 1’s, namely, I(q) = n2. In other words, the intensity scales quadratically rather than linearly

with n, which means that these are extremely high peaks in I(q), namely, the Bragg peaks.

For C(q) to take the value 1 for some q, the products qdj must all be integer multiples of 2π.

Suppose that q is such that qd0 = 2πm for some integer m, i.e., q = qm
∆
= 2πm/d0, in which case

we shall denote C(qm) by Cm, as before. In this case,

Cm = p0 +
M−1
∑

j=1

pje
2πimdj/d0 . (14)

7



But this is again exactly the expression in (1), this time with αj = dj/d0, which as mentioned earlier,

may assume the value 1, for some integer values of m, if and only if αj = dj/d0 are all rational,

or equivalently, d0, d1, . . . , dM−1 are commensurable. When this is the case, then as before, there

exists an integer m for which mdj/d0 are all integers simultaneously. Analogously to the derivation

in Section 2, let m0 be the smallest integer with this property. Then, the Bragg peaks appear at

wave-numbers qkm0
, k = 1, 2, . . ., which correspond to wavelengths λ0/k, where λ0 = d0/m0.

The analogy between the two settings is now clear: The memoryless source of Section 2 is

parallel to the random selection process in the HT model. The parameters αj = log(p0/pj) of the

source are analogous to distance ratios dj/d0, j = 1, 2, . . . ,M − 1. Their rationality/irrationality

dictates the mode of behavior in both problems. The integer parameter m0 is then defined in both

settings in the very same way. The partially ordered mode in the diffraction model is parallel to

the oscillatory mode of Rn in the data compression problem, and the Bragg peaks at all harmonics

of the fundamental wave-number qm0
= 2πm0/d0 correspond to all harmonics of the fundamental

frequency ω0 = 2πβm0 in the oscillatory component of Rn. In other words, the parameter β is

conjugate, in this sense, to 1/d0.

4 Conclusion

In this short paper, we have made an attempt to provide some insight into the erratic behavior of the

redundancy pattern of the Shannon code for lossless data compression. The insight we propose is

rooted in the physical point of view, where the two modes of the behavior of the redundancy patterns

are respectively analogous to partial order and complete disorder of a wave diffraction medium,

which dictates the existence or non–existence of Bragg peaks pertaining to perfectly constructive

interference. It is hoped that this physical insight contributes to the intuitive understanding of the

redundancy of the Shannon code and perhaps other codes as well.

Finally, we comment that the above analyses are, in principle, generalizable to the finite–

state Markov case (and indeed, Markov models have been proposed in the diffraction setting too

[5],[14]). When it comes to the Markov case, then both in the data compression problem and in

the HT model, the role played by high powers of Cm is essentially replaced by high powers of state

transition probability matrix whose entries are weighted by the appropriate complex exponentials
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(which depend on m). What matters then are the eigenvalues of this matrix. More concretely, it

is not difficult to see that the spectral radius, in both settings, never exceeds unity. In the data

compression problem, the critical behavior is dictated by the existence or non–existence of integer

values {m} for which the spectral radius is exactly 1. When such values of m exist, then Rn has an

oscillatory behavior. In the diffraction problem, the distinction between the two types of behavior

is dictated by the existence of values of m for which one of the eigenvalues is exactly equal to one.
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