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Decoding Cyclic Codes up to a New
Bound on the Minimum Distance

Alexander Zeh, Antonia Wachter-Zeh, and Sergey Bezzateev

Abstract—A new lower bound on the minimum distance ofq-
ary cyclic codes is proposed. This bound improves upon the Bose–
Chaudhuri–Hocquenghem (BCH) bound and, for some codes,
upon the Hartmann–Tzeng (HT) bound. Several Boston bounds
are special cases of our bound. For some classes of codes the
bound on the minimum distance is refined. Furthermore, a
quadratic-time decoding algorithm up to this new bound is
developed. The determination of the error locations is based
on the Euclidean Algorithm and a modified Chien search. The
error evaluation is done by solving a generalization of Forney’s
formula.

Index Terms—Bose–Chaudhuri–Hocquenghem (BCH) bound,
cyclic codes, decoding, Forney’s formula, Hartmann–Tzeng(HT)
bound, Roos bound.

I. I NTRODUCTION

SEVERAL bounds on the minimum distance of cyclic
codes are defined by a subset of the defining set of

the code. The Bose–Chaudhuri–Hocquenghem (BCH) bound
[2], [3] considersone set of consecutiveelements of the
defining set. A first extension of this bound was formulated by
Hartmann and Tzeng (HT) [4]–[7], whereseveralsets ofcon-
secutiveelements are used to increase the lower bound on the
minimum distance. The Roos bound [8], [9] generalizes this
idea by exploitingseveralsets ofnonconsecutiveelements in
the defining set. The contributions of van Lint and Wilson [10],
Duursma and Kötter [11] and Duursma and Pellikann [12] are
further generalizations. Other approaches include the Boston
bounds [13] and the bound by Betti and Sala [14].

Although these improved bounds show that for many codes
the actual distance is higher than the BCH bound, there is
no general decoding algorithm up to any of these bounds.
Hartmann and Tzeng [4], [6] proposed two variants of an
iterative decoding algorithm up to the HT bound. However,
these algorithms require the calculation of missing syndromes
and the solution of non-linear equations. An approach for
decoding all binary cyclic codes up to theiractual minimum
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distance of length less than 63 was given by Feng and Tzeng
[15]. They use a generalized syndrome matrix and fit the
known syndrome coefficients manually for each code into the
structure of the matrix.

This contribution provides a new lower bound on the
minimum distance ofq-ary cyclic codes based on a connection
of the code with rational functions. This approach originates
from decoding Goppa codes [16]–[19]. We match the roots of
a q-ary cyclic code to nonzeros of the power series expansion
of a rational function. This allows to formulate a new lower
bound on the minimum distance of cyclic codes. We identify
some classes of cyclic codes and refine the bound on their
distance. A wide class of codes, which is covered by our
approach, is the class of reversible codes [20]. Our new lower
bound is better than the BCH bound and for most codes also
better than the HT bound. Moreover, it can be seen as a
generalization of some Boston [13] bounds. We give tables for
binary and ternary cyclic codes, where we count the number
of cyclic codes for which our bound is better than the BCH
bound.

As a second part, we give an efficient decoding algorithm
up to our new bound. This decoding algorithm is based on
a generalized key equation, a modified Chien search and a
generalized Forney’s formula [21] for the error evaluation. The
time complexity of the whole decoding procedure is quadratic
with the length of the cyclic code.

This contribution is structured as follows. Section II gives
some basic definitions and recapitulates known bounds on the
minimum distance of cyclic codes. We show how the BCH
bound can be represented by a simple rational function. In
Section III, we explain how we associate a rational function
to a cyclic code and we prove our new lower bound on
the minimum distance. Section IV provides several identified
classes and we refine the lower bound of these codes. We
compare our new lower bound on the minimum distance
with the BCH and the HT bound. In Section V, we show
how several Boston bounds are generalized by our principle.
The decoding algorithm is given in Section VI. Therefore, a
generalized key equation is derived and the decoding radius
is proved. Section VII concludes this contribution.

II. PRELIMINARIES

A. Q-Ary Cyclic Codes and Rational Functions

Let q be a power of a prime, letFq denote the finite field of
orderq and letFq[x] denote the set of all univariate polyno-
mials with coefficients inFq and the indeterminatex. A q-ary
cyclic code of lengthn, dimensionk and minimum distance
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d is denoted byC(Fq;n, k, d). A codeword ofC(Fq;n, k, d) is
a multiple of its generator polynomialg(x) with roots inFqs ,
wheren | (qs − 1). Let α be annth root of unity ofFqs . A
cyclotomic cosetMr is given by:

Mr = {rqj mod n, ∀j = 0, 1, . . . , nr − 1}, (1)

wherenr is the smallest integer such thatrqnr ≡ r mod n.
It is well-known that the minimal polynomialMr(x) ∈ Fq[x]
of the elementαr is given by

Mr(x) =
∏

i∈Mr

(x− αi). (2)

The defining setDC of a q-ary cyclic codeC(Fq;n, k, d) is
the set containing the indices of the zeros of the generator
polynomial g(x) and can be partitioned intow cyclotomic
cosets:

DC
def
= {i : g(αi) = 0} = Mr1 ∪Mr2 ∪ · · · ∪Mrw . (3)

Hence, the generator polynomialg(x) ∈ Fq[x] of degreen−k
of C(Fq;n, k, d) is

g(x) =

w∏

i=1

Mri(x). (4)

The following lemma states the cardinality of all cyclotomic
cosetsMr, if r is co-prime to the lengthn. We use it later to
determine the rate of some classes of cyclic codes.

Lemma 1 (Cardinality):Let s be the smallest integer such
that the lengthn divides(qs − 1), then the cardinality of the
cyclotomic cosetMr is |Mr| = s if gcd(n, r) = 1.

Proof: The cyclotomic cosetMr has cardinality|Mr| = j
if and only if j is the smallest integer such that

r · qj ≡ r mod n ⇐⇒ r · (qj − 1) ≡ 0 mod n.

Sincegcd(n, r) = 1, this is equivalent ton | (qj − 1). Sinces
is the smallest integer such that the lengthn divides(qs− 1),
j = s and hence,|Mr| = s.

Let us state some preliminaries on rational functions.
Definition 1 (Period of a Power Series):Let a formal

power seriesa(x) =
∑∞

j=0 ajx
j with aj ∈ Fq be given. The

period p(a(x)) of the infinite sequencea(x) is the smallest
p, such that

a(x) =

∑p−1
j=0 ajx

j

−xp + 1

holds.
Throughout this paper we use the power series expansion of
the fraction of two polynomialsh(x) andf(x) in Fq[x] with

v
def
= deg h(x) < u

def
= deg f(x). (5)

We require that:

1) deg gcd(h(x), f(x)) = 0 and
2) deg gcd(f(xαi), f(xαj)) = 0, ∀i 6= j, αi, αj ∈ Fqs

to prove our main theorem on the minimum distance.
The following lemma establishes a connection between the

length n of the code and the period of the power series
h(x)/f(x), such that 2) holds.

Lemma 2 (Code Length, Period of a Power Series):Let α
be annth root of unity of Fqs , where n | (qs − 1). Let
h(x), f(x) ∈ Fq[x] with deg gcd(h(x), f(x)) = 0 and degree

as in (5) be given. The formal power series ish(x)/f(x)
def
=∑∞

j=0 ajx
j over Fq with period p(h(x)/f(x)) = p. If the

periodp andn are co-prime then

deg gcd(f(xαi), f(xαj)) = 0, ∀i 6= j.

Proof: From Definition 1, we have

h(x)(−xp + 1) = f(x)(a0 + a1x+ . . .+ ap−1x
p−1),

and fromdeg gcd(f(x), h(x)) = 0, it follows that−xp+1 ≡ 0
mod f(x). Hence, for two different polynomialsf(xαi) and
f(xαj), for any i 6= j, i, j = 0, . . . , n− 1:

xpαip − 1 ≡ 0 mod f(xαi) and

xpαjp − 1 ≡ 0 mod f(xαj). (6)

Assume there is some elementβ ∈ Fqus \ {0}, such that

f(βαi) = f(βαj) = 0,

i.e., gcd(f(xαi), f(xαj)) ≡ 0 mod (x − β).

Equation (6) gives the following:

βpαip − 1 = 0 and βpαjp − 1 = 0 .

Therefore,βpαip = βpαjp, andαip = αjp, hence,α(i−j)p =
1. For anyi 6= j, i, j = 0, . . . , n− 1, this can be true only if
gcd(p, n) > 1.

B. Known Bounds On the Minimum Distance

Let us shortly recall well-known bounds on the minimum
distance of cyclic codes.

Theorem 1 (Hartmann–Tzeng (HT) Bound, [5]):Let
C(Fq;n, k, d) be aq-ary cyclic code of lengthn, dimension
k, distanced and with defining setDC . Let

{b+ i1m1 + i2m2, ∀i1 = 0, . . . , d0 − 2, i2 = 0, . . . , ν}

⊆ DC ,

wheregcd(n,m1) = 1 andgcd(n,m2) = 1. Thend ≥ dHT
def
=

d0 + ν.
Note that for ν = 0 the HT bound becomes the BCH
bound [2], [3] and it is denoted bydBCH. A further gener-
alization was proposed by Roos [8], [9].

C. BCH Bound with Rational Function

Let c(x) =
∑n−1

i=0 cix
i denote the polynomial represen-

tation of a codeword(c0 c1 . . . cn−1) of a cyclic code
C(Fq;n, k, d ≥ d0). We consider the BCH bound in the
following and assume thatν = 0 andm1 = 1 and therefore
c(αi) = 0, ∀i = b, . . . , b + d0 − 2, such thatd0 is maximal.
Let the formal power seriesa(b, αix)

a(b, αix)
def
=

αib

1− αix
= αib

∞∑

j=0

(αix)j (7)
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be given. For anyc(x) ∈ C(Fq;n, k, d) we can rewrite the
BCH bound as follows:

∞∑

j=0

c(αj+b)xj =

n−1∑

i=0

ciα
ib +

n−1∑

i=0

ciα
iαibx+ . . .

≡ 0 mod xd0−1, (8)

and with (7) we can rewrite (8) as:
n−1∑

i=0

ci
αib

1− αix
=

n−1∑

i=0

ci · a(b, α
ix)

≡ 0 mod xd0−1. (9)

LetW be the set of nonzero positions of a codeword and let
|W| = d. With gcd(1 − αix, 1 − αjx) = 1, ∀i 6= j, we can
write (9) as follows:

∑
i∈W

(
ci · α

ib ·
∏

j∈W
j 6=i

(1− αjx)
)

∏
i∈W (1− αix)

≡ 0 mod xd0−1, (10)

where the degree of the numerator is less than or equal to
d− 1 and has to be greater than or equal tod0 − 1 to obtain
zero on the RHS of (10). Then, the minimum distanced of a
cyclic codeC is d ≥ d0.

III. ROOTS OFCYCLIC CODESREPRESENTED BY

RATIONAL FUNCTIONS

Our idea for bounding the distance ofq-ary cyclic codes
originates from the definition and properties of classical Goppa
codes [16], [17] and generalized Goppa codes [18], [19]. We
do not present the theory of Goppa codes here, since we
use only the properties of rational functions introduced in
Section II.

Let b be an integer and letα be annth root of unity.
Let h(x), f(x) ∈ Fq[x] with degreev and u and with
deg gcd(h(x), f(x)) = 0 be given. The power seriesa(b, αix)
is defined such that:

a(b, αix)
def
=

αibh(αix)

f(αix)
=

∞∑

j=0

ajα
ib(αix)j

= a0α
ib + a1α

ibαix+ a2α
ib(αix)2 + . . . . (11)

Similar to the case of the BCH bound, we associate aq-ary
cyclic codeC with a power seriesa(b, αix) as follows.

Definition 2 (Connection between Power Series and Code):
Let a power seriesa(b, αix) (or respectively two polynomials
h(x), f(x) and an integerb) with deg gcd(h(x), f(x)) = 0
and aq-ary cyclic codeC(Fq;n, k, d) be given. Furthermore,
let gcd

(
n, p(h(x)/f(x))

)
= 1. Let α denote annth root of

unity. Then, there exist aµ ≥ 0, such that for allc(x) ∈ C:
∞∑

j=0

ajc(α
j+b)xj ≡ 0 mod xµ−1 (12)

holds.
Before we prove the main theorem on the minimum distance
of a cyclic codeC, let us describe Definition 2. We search the
longest “sequence“

a0c(α
b), a1c(α

b+1), . . . , aµ−2c(α
b+µ−2),

that is a zero-sequence, i.e., the product of the coefficient
aj and the evaluated codewordc(αb+j) gives zero for all
j = 0, . . . , µ − 2. We require a rootαj of the codeC, if
the coefficientaj−b of the power seriesa(b, αix) is nonzero.

Equation (12) can be rewritten in terms of the polynomials
h(x) andf(x) as follows:

∞∑

j=0

ajc(α
j+b)xj =

∞∑

j=0

n−1∑

i=0

ajciα
i(j+b)xj

=

n−1∑

i=0

ci

( ∞∑

j=0

ajα
i(j+b)xj

)

=

n−1∑

i=0

ci
αibh(αix)

f(αix)

≡ 0 mod xµ−1. (13)

Let W be the set of nonzero positions of a codeword and
let |W| = d. With deg gcd(f(αix), f(αjx)) = 0, ∀i 6= j
(that follows fromgcd

(
n, p(h(x)/f(x))

)
= 1 according to

Lemma 2), we can write (13) as
∑
i∈W

(
ci · α

ib · h(αix) ·
∏

j∈W
j 6=i

f(αjx)
)

∏
i∈W f(αix)

≡ 0 mod xµ−1, (14)

where the degree of the denominator isud and the numerator
has degree smaller than or equal to(d − 1)u + v. This leads
to the following theorem on the minimum distance ofC.

Theorem 2 (Minimum Distance):Let a q-ary cyclic code
C(Fq;n, k, d) be given and letα denote annth root of unity.
Let two co-prime polynomialsh(x) and f(x) in Fq[x] with
degreesv andu, respectively and the integersb andµ be given,
such that (14) holds. Letgcd

(
n, p(h(x)/f(x))

)
= 1.

Then, the minimum distanced of C(Fq;n, k, d) satisfies the
following inequality:

d ≥ df
def
=

⌈
µ− 1− v

u
+ 1

⌉
. (15)

Proof: For a codeword(c0 c1 . . . cn−1) of weight d,
the degree of the numerator in (14) is less than or equal to
(d− 1)u+ v and has to be greater than or equal toµ− 1.

Example 1 (Binary Cyclic Code):Consider the binary
cyclic codeC(F2; 17, 9, 5) with defining setDC = M1 =
{1, 2, 4, 8, 16, 15, 13, 9} ≡ {1, 2, 4, 8,−1,−2,−4,−8}
mod 17. Let b = −4, h(x) = x + 1 and
f(x) = x2 + x + 1 ∈ F2[x] be given. Then,a(−4, αix)
has according to Definition 1 period of three and we have
(a0 a1 a2) = (1 0 1).

The following table illustrates how we match the roots of
the generator polynomial to the zeros of the power series
expansiona(−4, αix). In the first row, the defining set is
shown, i.e.,c(αj) = 0 for all j ∈ DC . The� marks elements
that are not necessarily roots of the code. In the second row of
the table, the power series expansiona = (a0 a1 a2 a0 a1 . . . )
is shown for the considered interval.

DC -4 � -2 -1 � 1 2 � 4
a 1 0 1 1 0 1 1 0 1
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We haveaj · c(αj−4) = 0, ∀j = 0, . . . , 8, for all c(x) ∈
C(F2; 17, 9, 5). We obtain a zero-sequence of lengthµ−1 = 9
and therefore with Theorem 2,df = 5. This is the actual
distanced of this code.

In next section, we see thatC(F2; 17, 9, 5) belongs to the
class of reversible codes and we can associate this rational
function to the whole class.
Let us illustrate the case wheredeg h(αix) > 0. Forh(αix) =
h0 + h1α

ix+ · · ·+ hv(α
ix)v we decompose the power series

expansion of (11) into:

a(b, αix) = αib

(
h0

f(αix)
+ · · ·+

hv(α
ix)v

f(αix)

)
. (16)

Our classification ofq-ary cyclic codes based on Theorem 2
works as follows. In the first step, we consider the power series
expansion1/f(x) = (a0 + a1x+ · · ·+ ap−1x

p−1)/(−xp +1)
with period p = p(1/f(αix)). From (16) we can interpret
a(b, αix) as a linear combination ofv + 1 shifted series
expansion1/f(αix):

h0(a0 a1 . . . ap−1)

+ h1(ap−1 a0 . . . ap−2)

+
...

+ hv(ap−v ap−v+1 . . . ap−1−v)

= (a0 a1 . . . ap−1).

Then, we can selectb such that the characteristic sequence
of a0c(αb), a1c(α

b+1), . . . , aµ−2c(α
b+µ−2) becomes zero for

the maximalµ of a given codeC(Fq;n, k, d).

IV. ON THE DISTANCE OFSOME CLASSES

OF Q-ARY CYCLIC CODES

A. Structure of Classification and Cardinality

Before we describe our classification let us extend Defini-
tion 2. We introduce an equivalent parameter tom1 andm2

of the HT bound which is denoted byz1. We search for a
given power seriesa(b, αix) and a cyclic codeC the ”longest”
sequence:

a0c(α
b), a1c(α

b+z1), . . . , aµ−2c(α
b+(µ−2)z1),

that is a zero-sequence of lengthµ− 1.
We classifyq-ary cyclic codes by subsets of their defining

setDC and their lengthn. We specify our new lower bound
(Theorem 2) on the minimum distance for some classes of
codes. Additionally, we compare it to the BCH [2], [3] and
the HT [5] bound, which we denote bydBCH anddHT.

We use the following power series expansions1/f(x) over
Fq with period p, wherea = (a0 a1 . . . ap−1) denotes the
coefficients.

• 1/(x2 + x+ 1) overFq

with a = (1 -1 0) andp = 3,
• 1/(x3 + x2 + x+ 1) overFq

with a = (1 -1 0 0) andp = 4,
• 1/(x3 + x+ 1) overF2

with a = (1 1 1 0 1 0 0) andp = 7,
• 1/(x4 + x+ 1) overF2

with a = (1 1 1 1 0 1 0 1 1 0 0 1 0 0 0) andp = 15.

We match a power series expansiona(b, αix) to the roots
of the generator polynomial, such thataj · g(α

b+jz1 ) = aj ·
c(αb+jz1 ) = 0, ∀j = 0, . . . , µ− 2.

Throughout this section, we assume due to Lemma 2 that
gcd(n, p) = 1 and we use Theorem 2 to state the lower bound
df on the distance of the codes.

In Table I, all cyclic shifts of the power series expansions
of 1/(x2+x+1) and1/(x3+x2 +x+1) are shown and the
corresponding numeratorh(x) is given. First, we apply our

TABLE I
POWER SERIES(a0 . . . ap−1) FOR THE RATIONAL FUNCTIONS

1/(x2 + x+ 1) AND 1/(x3 + x2 + x+ 1) AND THEIR CORRESPONDING

CYCLIC SHIFT.

(a0 . . . ap−1) f(x) h(x)

(1 -1 0) 1 + x+ x2 1

(-1 0 1) 1 + x+ x2 −1− x

(0 1 -1) 1 + x+ x2 x

(1 -1 0 0) 1 + x+ x2 + x3 1

(0 1 -1 0) 1 + x+ x2 + x3 x

(0 0 1 -1) 1 + x+ x2 + x3 x2

(-1 0 0 1) 1 + x+ x2 + x3 −1− x− x2

approach to the wide class of reversible codes. Afterwards,
we show how our principle can equivalently be used for non-
reversible codes.

B. Reversible Codes

In this subsection, we show how our approach can be ap-
plied for a large class of cyclic codes — the class ofreversible
codes[20], [22]. A codeC is reversible if for any codeword
c = (c0 c1 . . . cn−1) ∈ C alsoc = (cn−1 cn−2 . . . c0) ∈ C.
A cyclic code is reversible if and only if the reciprocal of
every zero of the generator polynomialg(x) is also a zero of
g(x), i.e.,

DC = {i1, i2, . . . , iℓ,−i1,−i2, . . . ,−iℓ}. (17)

A special class of reversible codes, which we callsymmetric
reversible codesis given based on the following lemma.

Lemma 3 (Symmetric Reversible Codes):Let n be the
length of aq-ary cyclic code. Any union of cyclotomic cosets
is a defining set of a reversible code if and only ifn | (qm+1),
for somem ∈ N.

Proof: Any union of cyclotomic cosets defines a re-
versible code if and only if any coset is reversible, i.e., if
for all r and some integerm:

Mr = {r, r · q, . . . , r · qm−1,−r,−r · q, . . . ,−r · qm−1}.

Therefore for allr, the following has to hold:

r · qm ≡ −q mod n ⇐⇒ r · (qm + 1) ≡ 0 mod n.

Sincer = 1 always defines a cyclotomic coset,(qm + 1) ≡ 0
mod n has to hold. This is fulfilled if and only ifn | (qm+1)
and in this case alsor · (qm + 1) ≡ 0 mod n holds for any
r.
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Moreover, the following lemma provides the cardinality of
all cyclotomic cosets ifn | (qm + 1).

Lemma 4 (Cardinality of Symmetric Reversible Codes):
Let m be the smallest integer such thatn divides (qm + 1),
then the cardinality of the cyclotomic cosetMr is |Mr| = 2m
if gcd(n, r) = 1.

Proof: Sincen | (qm + 1), it follows also thatn | (qm +
1)(qm− 1) = (q2m− 1). Sincem is the smallest integer such

that n divides(qm + 1), alsos
def
= 2m is the smallest integer

such thatn | (qs − 1). With Lemma 1, we obtain|Mr| = s if
gcd(n, r) = 1. Therefore,|Mr| = s = 2m.
In order to illustrate our bound, we first restrict ourselvesto
binary codes. To give a new bound on the minimum distance,
we first use the rational functiona(x) = h(x)/f(x) with
f(x) = x2 + x + 1, where p(a(x)) = 3. For a binary

TABLE II
BOUNDS ON THE DISTANCE OFq-ARY CYCLIC CODES OF LENGTH

n | (qs − 1) AND gcd(n, 3) = 1, USINGf(x) = x2 + x+ 1

Binary
Symmetric {1} ⊆ DC {1, 5} ⊆ DC {1, 5, 7} ⊆ DC

Reversible

k ≥ n− ℓ k ≥ n− 2ℓ k ≥ n− 3ℓ

Binary {-1, 1} ⊆ DC {-5,-1, 1, 5} {-7,-5,-1, 1,
Reversible ⊆ DC 5, 7} ⊆ DC

k ≥ n− 2ℓ k ≥ n− 4ℓ k ≥ n− 6ℓ

General {-4,-2,-1, 1, {-5,-4,-2,-1, 1, {-10,-7,-5,-4,-2,
q-ary 2, 4} ⊆ DC 2, 4, 5} ⊆ DC -1, 1, 2, 4, 5,

7, 10} ⊆ DC

BCH dBCH = 4 dBCH = 5 dBCH = 8

b = −4 b = −5 b = −10

m1 = 3 m1 = 3 m1 = 3

HT dHT = 5 dHT = 6 dHT = 9

b = −4 b = −5 b = −10

m1 = 3 m1 = 3 m1 = 3

m2 = 2 m2 = 1 m2 = 2

d0 = 4, ν = 1 d0 = 5, ν = 1 d0 = 8, ν = 1

Fractions df = 5 df = 7 df = 11

b = −4 b = −6 b = −10

z1 = 1 z1 = 1 z1 = 1

µ = 10 µ = 14 µ = 22

a = (−1 0 1) a = (0 1 − 1) a = (−1 0 1)

symmetric reversible codeC, we showed that each cyclotomic
coset is symmetric. Therefore, if{1} ⊆ DC , we know that
{−4,−2,−1, 1, 2, 4} is in the defining set. Let us use the
(cyclically shifted) power series expansiona = (−1 0 1 . . . ).
According to Table I, we haveh(x) = −1 − x. We match
the roots ofC for b = −4 and z1 = 1, to a zero-sequence of
lengthµ− 1 = 9. Therefore our bound providesd ≥ df = 5.

Let the defining setDC of the binary symmetric reversible
codeC additionally include5. Then we obtain forb = −6
andz1 = 1 a sequence of lengthµ− 1 = 13, which results in
df = 7.

In the same way, if{1, 5, 7} ⊆ DC , we obtainµ − 1 = 21
with b = −10 andz1 = 1 and thus,df = 11. These parameters

are shown in Table II and compared with the BCH and HT
bounds.

As mentioned before, reversible codes are defined such that
the reciprocal of each root of the generator polynomial is also
a root. Therefore, a defining set wherer ⊆ DC , and also
−r ⊆ DC defines a reversible code ifgcd(r, n) = 1 and
gcd(−r, n) = 1. The conditions are necessary to guarantee
that both cyclotomic cosets have the same cardinality (compare
Lemma 1) and hence each reciprocal root is also in the defining
set. The second row of Table II shows which subsets have to
be in the defining set in order to obtain the same parameters
as for binarysymmetricreversible codes. Note thats is the
smallest integer such that the lengthn dividesqs − 1.

This principle can easily be generalized toq-ary codes. The
third row of Table II gives these results in general. Note that
in Table II, gcd(n, p = 3) = 1 has to hold because of Lemma
2.

Example 2 (Binary Symmetric Reversible Code):The bi-
nary cyclic codeC(F2; 17, 9, 5) from Example 1 is symmetric
reversible since Lemma 3 is fulfilled. If{1} ⊆ DC , then
DC = {1, 2, 4, 8, 16, 15, 13, 9} ≡ {1, 2, 4, 8,−1,−2,−4,−8}
mod 17 and we obtaindf = 5.

For this class of binary cyclic codes, the boundd ≥ 5
on the minimum distance can be also obtained by another
way (as pointed out by a reviewer). Withb = −4 and
m1 = 3 we know from the BCH bound that the minimum
distance is at least four. A binary cyclic code of even weight
codewords has the zero in the defining set and we would
obtain five consecutive zeros (resulting in a minimum distance
of at least six). This implies that a codeword of weight four
can not exists and therefore a binary cyclic codeC, where
{−4,−2,−1, 1, 2, 4} ⊆ DC , has at least minimum distance
five.
In Table III, we list some classes of cyclic codes where the
denominatorf(x) of the rational functionαibh(αix)/f(αix)
has degree three and the period isp(1/(x3+x2+x+1)) = 4.
The power series expansion is1/(x3 + x2 + x + 1) = (1 −
x)/(−x4 +1). Let us consider the second class, where in the
case of a binary symmetric reversible code the set{3, 5, 11}
must be in the defining set of the code. The HT bound gives the
same lower bound on the minimum distance as our approach
dHT = 5.

Example 3 (Binary Cyclic Code):The binary cyclic
code C(F2; 45, 31, 4) with DC = {−5,−3, 3, 5} =
{3, 5, 6, 10, 12, 20, 21, 24, 25, 33, 35, 39, 40, 42} is in the
class of codes in the first column of Table III. We obtain
df = 4, which is the actual distance of the code.

Note that3 | 45 and therefore we can not use Table II.

C. Non-Reversible Codes

In this subsection, we show that our principle equivalently
can be used for non-reversible codes. We use onef(x) of
degree three and onef(x) of degree four. We give some
classes of binary cyclic codes in this subsection to show
the principle. The power series expansion of the polynomial
f(x) = x3 + x + 1 over F2[x] has periodp = 7. To obtain
a bound on the minimum distance, we consider the case of
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TABLE III
BOUNDS ON THE DISTANCE OFq-ARY CYCLIC CODES OF LENGTH

n|(qs − 1) AND gcd(n, 4) = 1, USINGf(x) = x3 + x2 + x+ 1.

Binary
Symmetric {3, 5} ⊆ DC {3, 5, 11} ⊆ DC {3, 5, 11,
Reversible 13} ⊆ DC

k ≥ n− 2ℓ k ≥ n− 3ℓ k ≥ n− 4ℓ

Binary {-5,-3, 3, {-11,-5,-3, {-13,-11,-5,-3, 3,
Reversible 5} ⊆ DC 3, 5, 11} ⊆ DC 5, 11, 13} ⊆ DC

k ≥ n− 4ℓ k ≥ n− 6ℓ k ≥ n− 8ℓ

General {-6,-5,-3, {-11,-6,-5, {-13,-11,-6,-5,
q-ary 3, 5, 6} -3, 3, 5, 6, -3, 3, 5, 6,

⊆ DC 11} ⊆ DC 11, 13} ⊆ DC

BCH dBCH = 3 dBCH = 3 dBCH = 4

b = −6 b = −6 b = −13

m1 = 1 m1 = 1 m1 = 1

HT dHT = dBCH dHT = 5 dHT = 6

b = −6 b = −11 b = −13

m1 = 1 m1 = 8 m1 = 8

m2 = 0 m2 = 6 m2 = 2

d0 = 3 d0 = 4, ν = 1 d0 = 5, ν = 1

Fractions df = 4 df = 5 df = 7

b = −9 b = −11 b = −17

z1 = 2 z1 = 2 z1 = 2

µ = 11 µ = 13 µ = 19

a = (0 0 1 -1) a = (0 0 1 -1) a = (0 0 1 -1)

extended binary cyclic codes, where the0 is in the defining set
DC . Assume that{−3, 0, 1, 7} ⊆ DC. The sequence of zeros
of the binary code can be matched to the rational function
for b = −4 and z1 = 1. The corresponding distance is then
df = 5. This and some other combinations of subsets ofDC

are shown in Table IV. Another class of binary cyclic codes

TABLE IV
BOUNDS ON THE DISTANCE OF BINARY CYCLIC CODES OF LENGTH

n | (2s − 1) AND gcd(n, 7) = 1, USINGf(x) = x3 + x+ 1

Binary {−3, 0, 1, 7} {−3, 0, 1, 7, 9} {−3, 0, 1, 7, 9, 11}

Codes ⊆ DC ⊆ DC ⊆ DC

k ≥ n− 4ℓ k ≥ n− 5ℓ k ≥ n− 6ℓ

BCH dBCH = 4 dBCH = 4 dBCH = 4

b = −3 b = −3 b = −3

c1 = 5 c1 = 5 c1 = 5

HT dHT = 4 dHT = 4 dHT = 4

b = −3 b = −3 b = −3

m1 = 5 m1 = 5 m1 = 5

m2 = 0 m2 = 0 m2 = 0

d0 = 4, ν = 0 d0 = 4, ν = 0 d0 = 4, ν = 0

Fractions df = 5 df = 6 df = 7

b = −4 b = −4 b = −4

z1 = 1 z1 = 1 z1 = 1

µ = 14 µ = 16 µ = 19

a = a = a =
(1 0 0 1 1 1 0) (1 0 0 1 1 1 0) (1 0 0 1 1 1 0)

can be identified using the polynomialf(x) = x4+x+1 with

p(1/f(x)) = 15. We use the shifted power series expansion
such thata = (1 0 0 1 0 0 0 1 1 1 1 0 1 0 1).

As required by Lemma 2, we only consider lengthsn, such
that gcd(n, p = 15) = 1. We can match a concatenation of
a to the roots of the generator polynomial forb = −6 and
z1 = 1 if {1, 3, 9,−3} ⊆ DC . Our bound on the distance
yieldsdf = 6, sincedeg f(x) = 4, whereas the BCH and the
HT bound givedBCH = dHT = 5.

Table VI and VII in the appendix show our bound for binary
and ternary cyclic codes. We used the power series expansions
of 1/(x2 + x+ 1) and1/(x3 + x2 + x+ 1) to obtain a good
refinement of our new bound on the minimum distance. We
list the number of codes, for which the BCH bound is not
tight (#dBCH < d), the number of cases, where our bound
is better than the BCH bound (#df > dBCH) and count the
cases, where our bound is not tight (#df < d). All lengths
n, for which any union of cyclotomic cosets is a symmetric
reversible code, are marked by a star∗.

V. GENERALIZING BOSTON’ S BOUNDS

In [13], Boston gave ten bounds, denoted bydB, on the
minimum distance ofq-ary cyclic codes, which he proved
using algebraic geometry. These bounds are each for a specific
subset of the defining set and do not consider whole classes of
codes. In this section, we show how our approach generalizes
some of these bounds.

Six of Boston’s ten bounds are given as follows.
Theorem 3 (Boston Bounds, [13]):The following bounds

on the minimum distance of aq-ary cyclic codeC hold:

1) If 3 ∤ n and{0, 1, 3, 4} ⊆ DC , thendB = 4,
2) If {0, 1, 3, 5} ⊆ DC , thendB = 4,
5) If 3 ∤ n and{0, 1, 3, 4, 6} ⊆ DC , thendB = 5,
6) If 4 ∤ n and{0, 1, 2, 4, 5, 6, 8} ⊆ DC , thendB = 6,
7) If 3 ∤ n and{0, 1, 3, 4, 6, 7} ⊆ DC , thendB = 6,

10) If 3 ∤ n and{0, 1, 3, 4, 6, 7, 9} ⊆ DC , thendB = 7.

We use again two power series expansions1/f(x). The first
power series expansion is1/(x2+x+1) of periodp = 3 with
(a0 a1 a2) = (1 -1 0). The second considered power series
expansion1/(x2 +1) has periodp = 4 with (a0 a1 a2 a3) =
(1 0 -1 0). Note that the latter is actually a special case of the
BCH bound. Table V shows the six Boston bounds. Boston’s
bounds 1,2,5,6 and 7 are special cases of our bounds. However,
for Boston’s bound 10, our approach gives a worse bound.

TABLE V
BOSTON’ S BOUNDS

No I = f(x) a df Conditions

1 [-1, 5] x2 + x+ 1 (0 1 -1 . . . ) 4 gcd(n, 3) = 1

2 [0, 6] x2 + 1 (0 1 0 -1 . . . ) 4 gcd(n, 2) = 1

5 [-1, 6] x2 + x+ 1 (0 1 -1 . . . ) 5 gcd(n, 3) = 1

6 [-1, 8] x2 + 1 (0 1 0 -1 . . . ) 6 gcd(n, 2) = 1

7 [-1, 8] x2 + x+ 1 (0 1 -1 . . . ) 6 gcd(n, 3) = 1

10 [-1, 9] x2 + x+ 1 (0 1 -1 . . . ) 6 gcd(n, 3) = 1

Moreover, Boston raised the following question [13]:
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Question 1 (Boston’s Question, [13]):Let 3 ∤ n and the
setT = {0, 1, 3, 4, 6, 7, 9, 10, . . . , r} ⊆ DC . Is the minimum
distanced thend ≥ dB = |T |?
Counter-examples show that Boston’s conjecture is not true
(see Example 4), since the actual distance of such codes is not
alwaysdB = r+1. However, using the power series expansion
of 1/(x2+x+1) with a = (0 1 -1 . . . ) we obtainµ−1 = r+2.
The minimum distance of such codes can be bounded bydf =
⌈(r + 1)/2 + 1⌉ with u = deg f(x) = 2 andv = h(x) = 1.

Example 4 (Distance of theC(F3; 20, 6, 8) code): Let
DC = {0, 1, 2, 3, 4, 6, 7, 8, 9, 10, 12, 14, 16, 18}. For Boston’s
scheme, we can useT = {0, 1, 3, 4, 6, 7, 9, 10, 12} with
|T | = 9. The actual distance isd = 8 and therefore,
Boston’s conjecture is not true. The BCH bound yields
dBCH ≥ 6. Our new bound is tight and withr = 12, we
obtaindf = ⌈(r + 1)/2 + 1⌉ = 8.

VI. GENERALIZED KEY EQUATION AND

DECODING ALGORITHM

In this section, we present an efficient decoding algorithm
up our new bound based on a generalized key equation.

Let (r0 r1 . . . rn−1) denote the received word, i.e.,

(r0 r1 . . . rn−1) = (c0 c1 . . . cn−1) + (e0 e1 . . . en−1),

and let r(x) =
∑n−1

i=0 rix
i be the received polynomial. Let

E ⊆ {0, . . . , n−1} be the set of error positions and let|E| = t.
We define the syndrome polynomialS(x):

S(x) ≡

n−1∑

i=0

ri
αibh(αix)

f(αix)

=
∑

i∈E

ei
αibh(αix)

f(αix)
mod xµ−1. (18)

Thus, the explicit form of the syndrome polynomialS(x) is

S(x) =

µ−2∑

j=0

ajr(α
j+b)xj =

µ−2∑

j=0

aje(α
j+b)xj . (19)

Based on the relation between the rational functionαib ·
h(αix)/f(αix) and all codewords of aq-ary cyclic code
C(Fq;n, k, d) as defined in Definition 2 in Section III, we
introduce a generalized error-locator polynomialΛ(x) and
error-evaluator polynomialΩ(x) and relate it to the syndrome
definition of (18). LetE denote the set of error positions and
let t = |E|. We defineΛ(x) as:

Λ(x)
def
=

∏

i∈E

f(αix). (20)

Let

Ω(x)
def
=

∑

i∈E

(
ei · α

ib · h(αix) ·
∏

j∈E
j 6=i

f(αjx)
)
, (21)

and we obtain with (18) a so-called generalized key equation:

Λ(x) · S(x) ≡ Ω(x) mod xµ−1 with

deg Ω(x) ≤ (t− 1)u+ v

< deg Λ(x) = tu,

(22)

sincev < u.
The main step of our decoding algorithm is to determine

Λ(x) andΩ(x) if S(x) is given. The following lemma shows
that there is a unique solution forΛ(x) if the number of errors
is not too big.

Lemma 5 (Solving the Key Equation):Let S(x) with
degS(x) = µ− 2 be given by (19). If

t = |E| ≤

⌊
df − 1

2

⌋
, (23)

there is a unique solution (up to a scalar factor) of the key
equation (22) withdeg Ω(x) ≤ (t−1)u+v < degΛ(x) = tu.
We can find this solution by the Extended Euclidean Algorithm
(EEA) with the input polynomialsxµ−1 andS(x).

Proof: We use the properties of the EEA as proven
in [23] (see also [22, Theorem 16, p. 367]). It guarantees the
uniqueness (up to a scalar factor) of the solution of (22) and
provides the stopping criteria of the EEA to obtainΛ(x) and
Ω(x).

We require thatdeg gcd(Λ(x),Ω(x)) = 0 (which follows
from deg gcd(f(x), h(x)) = 0 and (20) and (21)). Let the
polynomialsxµ−1 and S(x) be given as input for the EEA
and let the EEA stop as soon as the degree of the remainder
deg ri(x) in the ith step is less than or equal to⌊(µ− 1)/2⌋.
Then, we obtain the unique (except for a scalar factor) solution
Λ(x) andΩ(x) of (22), if (23) holds. For the explicit proof
we refer to [22, Theorem 16, p. 367]. It shows that there is a
unique solution of the generalized key equation (22) and that
the EEA finds it if

deg Λ(x) = tu ≤

⌊
µ− 1

2

⌋
, (24)

and therefore

t ≤

⌊
µ− 1

2u

⌋
=

⌊
(df − 1)u+ v

2u

⌋
=

⌊
(df − 1)

2

⌋
, (25)

sincev/2u < 1/2.
Key equation (22) can be written as a linear system of equa-
tions, with tu coefficients of a normalizedΛ(x) as unknowns.
If we consider only the equations which do not depend on
Ω(x), we obtain:




Stu Stu−1 . . . S0

Stu+1 Stu . . . S1

...
Sµ−2 Sµ−3 . . . Sµ−tu−2


 ·




1
Λ1

...
Λtu


 = 0. (26)

There is a unique solution if and only if the rank of the
syndrome matrix istu. One coefficient ofΛ(x) can be chosen
arbitrarily (hereΛ0 = 1), since a scalar factor does not change
the roots. From this we obtain the same condition on the
decoding radius as in Lemma 5.

If we have foundΛ(x), we can determine its factors
f(αix), where i ∈ E . These factors are disjoint since
deg(gcd(f(αix), f(αjx))) = 0, ∀i 6= j and therefore these
factors provide the error positions. We calculate onlyone
root βi of eachf(αix) in a preprocessing step. To find the
error positions ifΛ(x) is given, we do a Chien search with



8

β0, β1, . . . , βn−1. This is shown in Algorithm 1 and Theorem 4
proves that eachβi uniquely determinesf(αix).

For the non-binary case, we have to calculate the error
values at the error positions. This can be done by a generalized
Forney’s formula [21]. In order to obtain this error evaluation
formula, we use the explicit expression forΩ(x) from (21). As
mentioned before, the preprocessing step calculatesn values
β0, β1, . . . , βn−1 such that

f(αiβi) = 0, ∀i = 0, . . . , n− 1, andf(αjβi) 6= 0, ∀j 6= i.

The evaluation ofΩ(x) at βℓ, ℓ ∈ E , yields:

Ω(βℓ) =
∑

i∈E

(
ei · α

ib · h(αiβℓ) ·
∏

j∈E
j 6=i

f(αjβℓ)
)
.

With f(αℓβℓ) = 0, the product
∏

j∈E,j 6=i f(α
jβℓ) is zero if

ℓ ∈ E\{i} and nonzero only ifℓ = i. Hence, we obtain

Ω(βℓ) = eℓ · α
ℓb · h(αℓβℓ) ·

∏

j∈E
j 6=ℓ

f(αjβℓ). (27)

This derivation provides the following lemma.

Lemma 6 (Generalized Error Evaluation):Let the integer
b, the polynomialsh(αix), f(αix), Λ(x) =

∏
i∈E f(α

ix)
and Ω(x) from (21), for all i = 0, . . . , n − 1 with
deg(gcd(f(αix), f(αjx))) = 0 be given. Then, the error
valueseℓ for all ℓ ∈ E are given by

eℓ =
Ω(βℓ)

αℓb · h(αℓβℓ)
∏

j∈E
j 6=ℓ

f(αjβℓ)

=
Ω(βℓ) · f

′(αℓβℓ)

Λ′(βℓ) · αℓb · h(αℓβℓ)
,

(28)

wheref ′(αix) andΛ′(x) denote the derivatives off(αix) and
Λ(x).

Proof: The lemma follows from (27) and the fact that

Λ′(x) =
∑

i∈E

f ′(αix)
∏

j∈E
j 6=i

f(αjx)

and therefore

Λ′(βℓ) = f ′(αℓβℓ)
∏

j∈E
j 6=ℓ

f(αjβℓ).

Note that (28) is the classical Forney’s formula [21], for
f(αix) = 1− αix andαib · h(αix) = 1.

The decoding approach is summarized in Algorithm 1 and
its correctness is proved in Theorem 4.

Algorithm 1 : Decoding q-ary Cyclic Codes

Input : Received wordr(x), f(αix), αib · h(αix)

Preprocessing: Calculate one root of eachf(αix) =⇒
β0, β1, . . . , βn−1

CalculateS(x) by (19)1

Solve Key Equation: ObtainΛ(x), Ω(x) as output of2

EEA(xµ−1, S(x))

Chien–Search: Find alli for which Λ(βi) = 0, save them3

as Ê = {i0, i1, . . . , it}

Error Evaluation:4

êℓ = Ω(βℓ)/
(
h(αℓβℓ)

∏
j∈E,j 6=ℓ f(α

jβℓ)
)
, for all ℓ ∈ Ê

ê(x) ←
∑

ℓ∈Ê
êℓx

ℓ5

ĉ(x) ← r(x) − ê(x)6

Output : Estimated codeword̂c(x)

Theorem 4 (Correctness of Algorithm 1):If the distance
d(r(x), c(x)) ≤ ⌊(df − 1)/2⌋ for some codewordc(x) ∈ C,
then Algorithm 1 returnsĉ(x) = c(x) with complexity
O((deg f(x) · n)2) operations.

Proof: Let S(x) be defined by (19). As shown in
Lemma 5, we can then solve the key equation uniquely for
Λ(x) if t ≤ ⌊(df − 1)/2⌋. Therefore, we obtainΛ(x) =∏

i∈E f(x, αi) with deg Λ(x) = tu in Step 2 of Algorithm 1
and alsoΩ(x) ≡ Λ(x) · S(x) mod xµ−1. To explain the
preprocessing and the Chien–search, we note that for each
polynomiala(x) of degreeu defined overFqs there exists a
splitting field, i.e., an extension fieldFqus of Fqs , in which
a(x) hasu roots. Therefore, eachf(αix) can be decomposed
into u = deg f(αix) linear factors over a fieldFqus . These
factors are disjoint sincedeg(gcd(f(αix), f(αjx))) = 0 and
hence,one root of f(αix) uniquely definesf(αix) and i.
Hence,Λ(βj) = 0 if and only if j ∈ E and Step 3 correctly
identifies the error positions.

Lemma 6 proves the generalized error evaluation and there-
fore, if d(r(x), c(x)) ≤ ⌊(df − 1)/2⌋ for some codeword
c(x) ∈ C, Algorithm 1 returnŝc(x) = c(x).

To prove the complexity, we note that the input polynomials
S(x) and xµ−1 of the EEA have degrees at mostµ − 2
and µ − 1, respectively. Therefore, the complexity of the
EEA is quadratic inµ, i.e., O(µ2) ≈ O((u · df )

2). The
Chien–search and the generalized error evaluation requirethe
same complexity as for the classical case, which isO(n2).
Therefore, we can upper bound the complexity of Algorithm 1
by O((u · n)2) = O((deg f(x) · n)2).

We consider the code from Example 1 to illustrate the
decoding algorithm in the following.

Example 5 (Decoding Binary Code):We consider again
the C(F2; 17, 9, 5) code and write explicitly the associated
power seriesa(−4, αix) in polynomial form:

a(−4, αix) =
αi13 · h(αix)

f(αix)

=
α13i + α14ix

1 + αix+ α2ix2

= α13i + α15ix2 + α16ix3+

αix5 + α2ix6 + α4ix8 mod x9.

(29)
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For the syndrome polynomial, we obtain withµ− 1 = 9 and
(18), (19) and (29):

S(x) =

n−1∑

i=0

ei · (α
13i + α15ix2 + · · ·+ α4ix8)

=
∑

i∈E

(α13i + α15ix2 + · · ·+ α4ix8)

= r(α13) + r(α15)x2 + · · ·+ r(α4)x8

= S0 + S2x
2 + S3x

3 + S5x
5 + S6x

6 + S8x
8.

As in Algorithm 1, we calculateEEA (x9, S(x)) and stop if
the degree of the remainder is smaller than⌊(µ − 1)/2⌋ =
4. Assume, two errors occurred, then we obtainΛ(x) with
deg Λ(x) = tu = 2 · 2 = 4.

Using the EEA is equivalent to solving the following system
of equations forΛ(x):




0 S3 S2 0 S0

S5 0 S3 S2 0
S6 S5 0 S3 S2

0 S6 S5 0 S3


 ·




1
Λ1

...
Λ4


 = 0, (30)

and with both approaches,Λ(x) has the rootsf(αix) = (1 +
αix + (αix)2), ∀ i ∈ E . We know that eachf(αix) = (1 +
αix+(αix)2) has two roots inF28 which are unique. We have
a look-up-table with one rootβi of eachf(αix) and we do
the Chien search forΛ(x) with β0, β1, . . . , βn−1. Since this
is a binary code, we do not need an error evaluation and can
reconstruct the error.

VII. C ONCLUSION

A new lower bound on the minimum distance ofq-ary cyclic
codes is proved. For several classes of codes, a more explicit
bound on their distance is given. The connection to existing
bounds (BCH, HT and Boston) is shown.

Furthermore, we derived a generalized key equation, which
relates the syndrome definition and the polynomial for the de-
termination of the error locations. This allows the realization of
a quadratic-time decoding algorithm and provides an explicit
expression for the error evaluation.
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APPENDIX

TABLE VI
BINARY CODES AND BOUNDS WITHa = (1 − 1 0) AND a = (1 − 1 0 0)

n # codes # dBCH < d # df > dBCH # df < d
15 32 2 2 0
17* 8 2 2 0
19 4 0 0 0
21 8 2 2 0
23 8 4 0 4
25* 8 0 0 0
27 0 0 0 0
29 4 0 0 0
31 128 34 7 31
33* 0 0 0 0
35 64 24 8 22
37 4 0 0 0
39 0 0 0 0
41* 8 4 4 4
43* 16 6 3 6
45 256 69 22 57
47 8 4 0 4
49 4 0 0 0
51 256 122 4 118
53 4 0 0 0
55 32 16 4 16
57* 32 10 4 10
59 4 0 0 0
61 4 0 0 0
63 8192 4088 509 4088

TABLE VII
TERNARY CYCLIC CODES AND BOUNDS WITHa = (1 − 1 0) AND

a = (1 − 1 0 0)

n # codes # dBCH < d # df > dBCH # df < d
8 32 2 2 0
11 8 4 2 4
13 32 6 0 0
16 128 16 8 8
20 128 38 6 36
22 64 40 22 40
23 8 4 0 4
26 1024 512 108 490
28 128 18 2 18
32 512 102 46 57
35 32 16 2 16
37 8 4 0 4

Alexander Zeh studied electrical engineering at the Uni-
versity of Applied Science in Stuttgart, with the main topic
automation technology. He received his Dipl.-Ing. (BA) degree
in 2004. He continued his studies at Universität Stuttgartuntil
2008, where he received is Dipl.-Ing. in electrical engineering.
He participated in the double-diploma program with Télécom
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