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Decoding Cyclic Codes up to a New
Bound on the Minimum Distance

Alexander Zeh, Antonia Wachter-Zeh, and Sergey Bezzateev

Abstract—A new lower bound on the minimum distance ofg-  distance of length less than 63 was given by Feng and Tzeng
ary cyclic codes is proposed. This bound improves upon the Be— [15]. They use a generalized syndrome matrix and fit the

Chaudhuri-Hocquenghem (BCH) bound and, for some codes, oy syndrome coefficients manually for each code into the
upon the Hartmann—-Tzeng (HT) bound. Several Boston bounds .
gtructure of the matrix.

are special cases of our bound. For some classes of codes th ) o )
bound on the minimum distance is refined. Furthermore, a  This contribution provides a new lower bound on the

quadratic-time decoding algorithm up to this new bound is minimum distance of-ary cyclic codes based on a connection
developed. The determination of the error locations is bask of the code with rational functions. This approach origésat
on the Euchc_;lear_1 Algorithm and_ a modified C_:hle_n search. The from decoding Goppa codes [16]=[19]. We match the roots of
error evaluation is done by solving a generalization of Forey’s . - .
formula. a g-ary cyclic code to nonzeros of the power series expansion
_ of a rational function. This allows to formulate a new lower
Index Terms—Bose—Chaudhuri-Hocquenghem (BCH) bound, 1, \nq on the minimum distance of cyclic codes. We identify
cyclic codes, decoding, Forney’s formula, Hartmann—TzengHT) . . .
bound, Roos bound. some classes of cyclic codes and refine the bound on their
distance. A wide class of codes, which is covered by our
approach, is the class of reversible codes [20]. Our newrlowe
bound is better than the BCH bound and for most codes also
EVERAL bounds on the minimum distance of cyclimetter than the HT bound. Moreover, it can be seen as a
codes are defined by a subset of the defining set géneralization of some Bostan [13] bounds. We give tables fo
the code. The Bose—Chaudhuri-Hocquenghem (BCH) bousidlary and ternary cyclic codes, where we count the number
[2], [B] considersone set of consecutiveelements of the of cyclic codes for which our bound is better than the BCH
defining set. A first extension of this bound was formulated tyound.
Hartmann and Tzeng (HT)[4]5[7], wheseveralsets ofcon-  As a second part, we give an efficient decoding algorithm
secutiveelements are used to increase the lower bound on ¢ to our new bound. This decoding algorithm is based on
minimum distance. The Roos bourid [€]] [9] generalizes thi generalized key equation, a modified Chien search and a
idea by exploitingseveralsets ofnonconsecutivelements in generalized Forney’s formula[21] for the error evaluatiohe
the defining set. The contributions of van Lint and Wilson][10time complexity of the whole decoding procedure is quadrati
Duursma and Kottet [11] and Duursma and Pellikdnn [12] aigith the length of the cyclic code.
further generalizations. Other approaches include thedBos This contribution is structured as follows. Sectfoh Il give
bounds|[13] and the bound by Betti and Salal [14]. some basic definitions and recapitulates known bounds on the
Although these improved bounds show that for many codgfinimum distance of cyclic codes. We show how the BCH
the actual distance is higher than the BCH bound, theredsund can be represented by a simple rational function. In
no general decoding algorithm up to any of these boundsection[Tl], we explain how we associate a rational function
Hartmann and Tzengd [4]/[6] proposed two variants of a a cyclic code and we prove our new lower bound on
iterative decoding algorithm up to the HT bound. Howevethe minimum distance. Secti@nllV provides several idetifie
these algorithms require the calculation of missing sym#® classes and we refine the lower bound of these codes. We
and the solution of non-linear equations. An approach febmpare our new lower bound on the minimum distance
decoding all binary cyclic codes up to theictual minimum  with the BCH and the HT bound. In Sectidnl V, we show
The material in this contribution was presented in part & tBEEE how Severe.ll BOSton. bOUI?ldS .are general!zed by our principle.
International Symposium on Information Theory (ISIT 20L$t. Petersburg, 1N€ decoding algorithm is given in Sectibnl VI. Therefore, a
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d is denoted bYC(FF; n, k, d). A codeword ofC(Fy; n, k, d) is
a multiple of its generator polynomigl(x) with roots inFy:,
wheren | (¢° — 1). Let o be annth root of unity of Fg-. A
cyclotomic cosetM,. is given by:

M, = {r¢’ modn, Vj =0,1,...,n, — 1}, (1)

wheren,. is the smallest integer such thaj"~ = r mod n.
It is well-known that the minimal polynomialZ, (x) € F[z]
of the element” is given by

M, (z) = H (z —ab).

i€ M,

)

The defining setD¢ of a g-ary cyclic codeC(Fy;n, k,d) is

the set containing the indices of the zeros of the generajp(r

polynomial g(z) and can be partitioned inta cyclotomic
cosets:

De ™ {i: g(a’) =0} = 3)

Hence, the generator polynomiglr) € F,[z] of degreen—k
of C(Fy;n, k,d) is

M, UM,,U---UDM,,.

7) =[] M. (@) (4)
i=1

The following lemma states the cardinality of all cyclot@mi

cosetsM,., if r is co-prime to the length. We use it later to
determine the rate of some classes of cyclic codes.

Lemma 1 (Cardinality):Let s be the smallest integer such
that the lengthn divides (¢° — 1), then the cardinality of the

cyclotomic cosetM, is |M,| = s if ged(n,r) = 1.
Proof: The cyclotomic cosel/, has cardinalityM,.| = j
if and only if j is the smallest integer such that

r-¢=r modn <= 7-(¢/’—1)=0 mod n.

Sinceged(n,r) = 1, this is equivalent tor | (¢ —1). Sinces
is the smallest integer such that the lengtdivides (¢* — 1),
j = s and hence|M,.| = s. [ |

Let us state some preliminaries on rational functions.

Definition 1 (Period of a Power Seriesjet a formal
power seriesi(z) = >~ a;z’ with a; € F, be given. The
period p(a(z)) of the infinite sequence(z ) is the smallest
p, such that

ZJ 0 4’

a(x) = e}

holds.

Lemma 2 (Code Length, Period of a Power Seridst «
be annth root of unity of F,-, wheren | (¢° — 1). Let
h(z), f(z) € Fylz] with degged(h(x), f(z)) = 0 and degree

as in [) be given. The formal power serieshig)/ f(z) = et
> aja’ over Fy with period p(h(z)/f(x)) = p. If the
periodp andn are co-prime then

deg ged(f(za'), f(za?)) =0, Vi # j.
Proof: From Definition[1, we have
h(z)(—zP +1) =

and fromdeg ged(f(x), h(x)) = 0, it follows that—aP+1 =0
. Hence, for two different polynomialg(za?) and
foranyz;é],zg_() ,n—1:

f(@)(ao + arz+ ...+ ap_1aPh),

o —1=0 mod f(xo/) and

Pa?? —1=0 mod f(za?).

(6)

Assume there is some elemehe F,.- \ {0}, such that

f(Ba’) = f(Ba’) =0,
i.e., ged(f(zal), f(za?)) =0 mod (x — B).
Equation [[6) gives the following:
fPa? —1=0 and fPa’? —1=0.

Therefore,3?a’? = fPa?, anda'? = P, henceali=9P =
1. For anyi # j,i,7 = 0,...,n — 1, this can be true only if
ged(p,n) > 1. [ |

B. Known Bounds On the Minimum Distance

Let us shortly recall well-known bounds on the minimum
distance of cyclic codes.

Theorem 1 (Hartmann-Tzeng (HT) Bourld, [5Pet
C(Fq;n, k,d) be ag-ary cyclic code of lengt, dimension
k, distanced and with defining seD¢. Let

{b—i—z’lml + iomo, Viy :O,...,d0—2,i2=0,...,l/}

C De,
whereged(n, my) = 1 andged(n, ms) = 1. Thend > dur et
do + v.
Note that forr = 0 the HT bound becomes the BCH
bound [2], [3] and it is denoted bygch. A further gener-
alization was proposed by Rodd [8]] [9].

Throughout this paper we use the power series expansion of

the fraction of two polynomial&(z) and f(z) in Fy[z] with

®)

v degh(x) < u® deg f(z).

We require that:

1) degged(h(x), f(x)) =0 and

2) degged(f(za’), f(xza?)) =0, Vi#j,a' al € Fy
to prove our main theorem on the minimum distance.

C. BCH Bound with Rational Function

Let c(x) Z?;OI c;x' denote the polynomial represen-
tation of a codeword(cy ¢ . ¢n—1) of a cyclic code
C(Fg;n,k,d > dy). We consider the BCH bound in the
following and assume that = 0 andm; = 1 and therefore
c(a?) =0, Vi =b,...,b+dy — 2, such thatd, is maximal.
Let the formal power series(b, a'z)

The following lemma establishes a connection between the

length n of the code and the period of the power series

h(zx)/f(z), such that 2) holds.

ib
a(b,a’x) def @

()

1—aiz

oo
at® Z(algc)-7
J=0



be given. For any(z) € C(Fg;n,k,d) we can rewrite the that is a zero-sequence, i.e., the product of the coefficient

BCH bound as follows: a; and the evaluated codeworda’"/) gives zero for all
oo n—1 n—1 j =0,...,u— 2. We require a rootr’ of the codeC, if
(™! =Y o+ o+ the coefficienta; , of the power series(b, o‘z) is nonzero.
j=0 i=0 i=0 Equation [IR) can be rewritten in terms of the polynomials
= 0 mod z% !, (8) h(z) andf(x) as follows:
and with [7) we can rewritd]8) as: > P (i)
o y o | Z;ajc(aj+ Yol = ZO 2 a;ic;o (3+b) 4.
Z ci — = Z ¢i - a(b,a’x) Jf Jil a
o 1o o :ic-(ia-ai(ﬁb)xi)
=0 mod x% T (9) o =0 !
Let W be the set of nonzero positions of a codeword and let n—l azbh(azx)
W] = d. With ged(1 — o'z, 1 — olx) = 1, Vi # j, we can T flaiz)
write () as follows: =0
= 0 mod z" 1. (13)

> (ci ca® Tliew(1 — a-jx))
iEW J#i _ do—1
. =0 mod z“° 7,
HiEW(l —a'z)
where the degree of the numerator is less than or equa
d — 1 and has to be greater than or equalito— 1 to obtain

Let W be the set of nonzero positions of a codeword and
let (W] = d. With degged(f(a’z), f(adx)) = 0, Vi £ j
I(Er(l)at follows fromgcd (n,p(h(z)/f(z))) = 1 according to
Lemmal2), we can writd (13) as

(10)

zero on the RHS of(30). Then, the minimum distarcef a ) (Ci - - h(aéz) - [Liew f(ajx))
cyclic codeC is d > dj. iew i
[Liew f(aix)
IlIl. RooTs orFCycLIC CODESREPRESENTED BY = 0 mod z+! (14)

RATIONAL FUNCTIONS
Our idea for bounding the distance gfary cyclic codes where the degree of the denominatowit and the numerator

originates from the definition and properties of classicap@a has degree _smaller than or equal(_tp— Lu T This leads

codes [[15], [[17] and generalized Goppa codes [18], [19]. we the following t_hgorem on the minimum dlstance_a)f

do not present the theory of Goppa codes here, since wel neorem 2 (Mu_umum Distance).et a g-ary cyclic che

use only the properties of rational functions introduced fn(fa:7: k. d) be given and let denote amith root of unity.

Sectior(]. Let two co-prime polypom|aI9}L(:c) a.nd f(z) in Fylz] YVIth
Let b be an integer and let be annth root of unity. degrees andu, respectively and the integdraindy be given,

Let h(z), f(x) € F,[z] with degreev and u and with SUch thatllh) holds. Leted (n, p(h(z)/f(x))) = 1.

deg ged(h(z), f(z)) = 0 be given. The power seriegb, a'x) Then, the minimum distancéof C(F,; n, k, d) satisfies the

is defined such that: following inequality:
ib i 0 . —1—v
i\ def @h(a') ib i Nj def [P 2170
a(b’a (E) = W = 720%04 b(a ZC)J d> df ’V " +1]. (15)
— apa®® +a1aibaix+a2aib(aix)2 F.... @ Proof: For a codewordcy ¢; ... ¢,—1) of weightd,

the degree of the numerator in{14) is less than or equal to
Similar to the case of the BCH bound, we associateady (d — 1)u + v and has to be greater than or equajute 1. m

cyclic codeC with a power series (b, a‘x) as follows. Example 1 (Binary Cyclic Code)Consider the binary
Definition 2 (Connection between Power Series and Codeyclic codeC(F,;17,9,5) with defining setDe = M; =

Let a power seriea(b,a’'x) (or respectively two polynomials {1,2,4,8,16,15,13,9} =  {1,2,4,8,-1,-2, -4, -8}

h(z), f(z) and an integeb) with deggcd(h(z), f(z)) =0 mod 17. Let b = —4,h(z) = = + 1 and

and ag-ary cyclic codeC(Fy;n, k,d) be given. Furthermore, f(z) = 22 + » + 1 € Fq[z] be given. Thena(—4,a'r)
let ged (n, p(h(z)/f(x))) = 1. Let o denote amth root of has according to Definitiof] 1 period of three and we have
unity. Then, there exist @ > 0, such that for alk(z) € C: (ap a1 az) = (10 1).

oo The following table illustrates how we match the roots of

Zajc(a”b):cj =0 mod z+! (12) the generator polynomial to the zeros of the power series

j=0 expansiona(—4, o*x). In the first row, the defining set is
holds. shown, i.e.c(a’) = 0 for all j € D¢. Thed marks elements

Before we prove the main theorem on the minimum distané@@t are not necessarily roots of the code. In the second fow o
of a cyclic codeC, let us describe Definitiofl 2. We search théhe table, the power series expansios: (ao a az ag a1 -..)

longest “sequence” is shown for the considered interval.
_ De |40 ]-2|-1]|0]1]2|0]4
age(a®), are(a®), .. ay_gc(a”tHT?), a [T ]O0[ T[T o011 [0]1



We havea; - c(a?=*) = 0,Vj = 0,...,8, for all ¢(z) € We match a power series expansio(h,a‘r) to the roots

C(F2;17,9,5). We obtain a zero-sequence of length 1 =9  of the generator polynomial, such that - g(a®*7*1) = a; -

and therefore with Theoreid 2y = 5. This is the actual c(a®*7%1) =0,Vj =0,...,u— 2.

distanced of this code. Throughout this section, we assume due to Leriina 2 that
In next section, we see that([F,;17,9,5) belongs to the ged(n,p) =1 and we use Theorefi 2 to state the lower bound

class of reversible codes and we can associate this ratiogialon the distance of the codes.

function to the whole class. In Table[, all cyclic shifts of the power series expansions

Let us illustrate the case whedeg h(a‘z) > 0. Forh(a‘z) = of 1/(z? +x+1) and1/(2® + 2% +z + 1) are shown and the

ho + hia'z + - - -+ hy(a’z)" we decompose the power seriegorresponding numeratdr(z) is given. First, we apply our

expansion of[(1l1) into:

, TABLE |
- . h hy(a'x)?
albratn) =a® (s et BRI ) e B L e e trenone
CYCLIC SHIFT.
Our classification ofj-ary cyclic codes based on Theoréin 2
works as follows. In the first step, we consider the poweeseri (ap ... ap_1) f(z) h(z)
expansionl/f(z) = (g + @iz + - +ap_12P 1) /(—aP + 1) 5
with period p = p(1/f(a'x)). From [I8) we can interpret (1-10) Lot !
a(b,o’z) as a linear combination of + 1 shifted series (-101) 1+e+a? -
expansionl / f (a’z): (01-1) ltata? x
ho(@o @1 ... @y_1) (1-100) 1+z+224 28 1
(@ To ... Ty_a) (01-10) 1+a2+a2+ 23 .
(001-1) 14z +22+ a3 z2
+ : (-1001) l+o+a2+23 | —1—2— a2
+ ho(@p—v Tpvt1 -+ Tp—1—v) _ _
—(ap ar ... ap_1). approach to the wide class of reversible codes. Afterwards,

we show how our principle can equivalently be used for non-
Then, we can seledi such that the characteristic sequencesversible codes.
of age(a®),arc(a*1),. .., a,—2¢(a’T#~2) becomes zero for

the maximaly, of a given code& (F,; n, k, d). B. Reversible Codes

IV. ON THE DISTANCE OF SOME CLASSES In this subsection, we show how our approach can be ap-
OF Q-ARY CycLIC CODES plied for a large class of cyclic codes — the classesersible
codes[20], [22]. A code( is reversible if for any codeword

A. Structure of Classification and Cardinality

C

Before we describe our classification let us extend Definji
tion[2. We introduce an equivalent parametemte andmsy

of the HT bound which is denoted by;. We search for a

=(coc1 ... cpo1) €Casoc = (¢p_1 Cna ... ¢o) €C.
cyclic code is reversible if and only if the reciprocal of
every zero of the generator polynomiglz) is also a zero of

. . ) . g(x), i.e.,

given power series(b, o*x) and a cyclic cod€ the "longest” (=)

sequence: D¢ = {i1, iz, ... e, —i1, —i2,..., —i¢}. 17)
ape(al), are(@t1), ... a,_ac(abT =Dy A special class of reversible codes, which we cgiinmetric

reversible codess given based on the following lemma.

We classifyg-ary cyclic codes by subsets of their deﬁninq Lemma 3 (Symm(_atrlc Reversible .Codelséi " b.e the
set D¢ and their lengthn. We specify our new lower bound.ength (_)f.aq—ary cyclic COd?' Any union of cycloltom:f cosets
(Theorem[R) on the minimum distance for some classes ! fadeflmng setof areversible code if and only.if (¢ +1),
codes. Additionally, we compare it to the BCH [2]] [3] an or some@ €N. ) . )
the HT [5] bound, which we denote bjscy and dir. Proof: Any union of cyclotomic cosets defines a re-

We use the following power series expansidrig (z) over versible code if and only if any coset is reversible, i.e., if
for all » and some integein:

that is a zero-sequence of lengih- 1.

F, with periodp, wherea = (ap a1 ... ap—1) denotes the
coefficients. My ={rrq...r q" Y —r —r-q... —r ¢}
e 1/(z*+2+1) overF, .
with a = (1 -1 0) andp = 3, Therefore for allr, the following has to hold:
o 1/(x3+2%+x+1) overF, g = mod n m _
. . = - = r- +1)=0 mod n.
with a = (1 -1 0 0) andp = 4, T = (" +1)
e 1/(z®+2z+1) overF, Sincer = 1 always defines a cyclotomic coség™ + 1) =0
witha=(1110100)andp =7, mod n has to hold. This is fulfilled if and only if. | (¢™ +1)
e 1/(z* + 2+ 1) overF, and in this case alsp- (¢ + 1) = 0 mod n holds for any

witha=(111101011001000)andp = 15. T [ |



Moreover, the following lemma provides the cardinality ofire shown in Tabl€lll and compared with the BCH and HT
all cyclotomic cosets if2 | (¢™ + 1). bounds.

Lemma 4 (Cardinality of Symmetric Reversible Codes):  As mentioned before, reversible codes are defined such that
Let m be the smallest integer such thatdivides (4" + 1), the reciprocal of each root of the generator polynomial $® al
then the cardinality of the cyclotomic coskf, is |M,.| = 2m a root. Therefore, a defining set whereC D¢, and also
if ged(n,r) = 1. —r C D¢ defines a reversible code ged(r,n) = 1 and

Proof: Sincen | (¢™ + 1), it follows also thatn | (¢ 4+ gcd(—r,n) = 1. The conditions are necessary to guarantee
1)(g™ —1) = (¢*™ —1). Sincem is the smallest integer suchthat both cyclotomic cosets have the same cardinality (@venp
thatn divides (¢™ + 1), also's 9 is the smallest integer Lemmd]) and hence each reciprocal root is also in the defining
such thata | (¢° — 1). With Lemmall, we obtaif), | = s if ~Set. The second row of TaHld Il shows which subsets have to
ged(n,7) = 1. Therefore|M,| = s = 2m. m bein thg defining set in orde_r to obtain the same parameters
In order to illustrate our bound, we first restrict ourselves @S for binarysymmetricreversible codes. Note thatis the

binary codes. To give a new bound on the minimum distancdnallest integer such that the lengtfdivides¢* — 1.
we first use the rational function(z) = h(z)/f(z) with This principle can easily be generalizedgary codes. The
f(z) = 22 + z + 1, where p(a(z)) = 3. For a binary third row of Table[) gives these results in general. Notet tha
’ in Table[l, ged(n,p = 3) = 1 has to hold because of Lemma
TABLE I 2
BOUNDS ON THE DISTANCE OFg-ARY CYCLIC CODES OF LENGTH Example 2 (Binary Symmetric Reversible Cod€je bi-
n [ (¢® = 1) AND ged(n, 3) =1, USING f(z) = % + 2 + 1 nary cyclic codeC(F,;17,9,5) from Exampldll is symmetric
reversible since Lemm@l 3 is fulfilled. If1} C De, then

Binary — = —1.—92.—4. —
symmaoiic| {1} € De (L5} CDe {157} CDe D¢ = {1,2,4,8,16,15,13L?}<_ {1,2,4,8,—1,-2,—4, -8}
Reversible mod 17 and we obtaind; = 5.

PR P PR For this class of binary cyclic codes, the boudd> 5
: = = = on the minimum distance can be also obtained by another
ReB\'/Z?gble {-1,1} € De {'5&'1’;’5} é-?-f)’c-lbl’ way (as pointed out by a reviewer). With = —4 and
=c T & De m; = 3 we know from the BCH bound that the minimum
k>n—20 k>n—4 k>n—6/0

distance is at least four. A binary cyclic code of even weight
General {4211, {-5-4,-2-1,1, {-10,-7,-5,-4,-2, codewords has the zero in the defining set and we would

g-ary 2,4} CDe 24,5} C De -1,1,2,4,5, obtain five consecutive zeros (resulting in a minimum distan
7,10} € De of at least six). This implies that a codeword of weight four
BCH dpcH = 4 dscH = 5 dpcH = 8 can not exists and therefore a binary cyclic catiewhere
b=—4 b= -5 b=-10 {—4,-2,-1,1,2,4} C D¢, has at least minimum distance
m1 =3 mi1 =3 m1 =3 ﬁVe.
HT dir = 5 dir = 6 dr = 9 In Tablgl]]]l, we list some F:Iasses of.cyc!ic codes where the
denominatorf () of the rational functiom®h(a’z)/ f(aiz)
b=—4 b=—5 b=-10 . 3 2
has degree three and the periogh($/(x* +2*+2+1)) = 4.
my =3 my =3 my =3 The power series expansion ig(z% + 22 + z + 1) = (1 —
mo = 2 mo =1 mo = 2

x)/(—x* +1). Let us consider the second class, where in the

do=4v=1 do=5v=1 do=8v=1 case of a binary symmetric reversible code the{$eb, 11}

Fractions dy =5 dy =7 dy =11 must be in the defining set of the code. The HT bound gives the
b=—4 b= —6 b=-10 same lower bound on the minimum distance as our approach
21 =1 z1=1 z1=1 dyt = 5.
p=10 pn=14 p=22

Example 3 (Binary Cyclic Code)The  binary  cyclic
code C(Fy;45,31,4) with Do = {-5,-3,3,5} =
. . {3,5,6,10,12,20, 21,24, 25,33,35,39,40,42} is in the
symmetric reversible code, we showed that each cyclotomiciass of codes in the first column of Tallel lll. We obtain
coset is symmetric. Therefore, {fl} C D¢, we know that d; = 4, which is the actual distance of the code.

{—4,-2,-1,1,2,4} is in the defining set. Let us use the "Note that3 | 45 and therefore we can not use Table II.
(cyclically shifted) power series expansiarn= (-1 01 ...).

According to Tabld]l, we havé(z) = —1 — 2. We match

the roots ofC for b = —4 andz; = 1, to a zero-sequence ofC. Non-Reversible Codes

lengthx — 1 = 9. Therefore our bound provides> d; = 5. In this subsection, we show that our principle equivalently
Let the defining seD. of the binary symmetric reversiblecan be used for non-reversible codes. We use pne of

codeC additionally include5. Then we obtain fob = —6 degree three and ong¢(z) of degree four. We give some

andz; =1 a sequence of lengiha— 1 = 13, which results in classes of binary cyclic codes in this subsection to show

de =T1. the principle. The power series expansion of the polynomial
In the same way, if1,5,7} C D¢, we obtaing — 1 =21 f(z) = 23 + = + 1 over Fy[z] has periodp = 7. To obtain

with b = —10 andz; = 1 and thusd; = 11. These parametersa bound on the minimum distance, we consider the case of

a=(-101) a=(01-1) a=(-101)



TABLE Il

BOUNDS ON THE DISTANCE OFg-ARY CYCLIC CODES OF LENGTH
n|(g® — 1) AND ged(n,4) = 1, USING f(z) = 2% + 22 + = + 1.

Binary
Symmetric | {3,5} C D¢ {3,5,11} C D¢ {3,5,11,
Reversible 13} C D¢
k>n—20 k>n—3¢ k>n—4¢
Binary {-5,3,3, {-11,-5,-3, {-13,-11,-5,-3, 3,
Reversible 5} C D¢ 3,5,11} C D¢ 5,11,13} C D¢
k>n—4 k>n—06( k>n—8¢
General {-6,-5,-3, {-11,-6,-5, {-13,-11,-6,-5,
q'ary 37576} '37375767 '37 375767
C D¢ 11} C Dc 11,13} C De
BCH dgcr =3 dgcr =3 dgcn =4
b=—6 b=—6 b=—13
m1 =1 m1 =1 m1 =1
HT dut = dpcH dur =5 dyr =6
b=—6 b=—11 b=-13
mi = 1 mi] = 8 m1 = 8
ma = 0 ma = 6 mo = 2
dop =3 do=4,v=1 do=5v=1
Fractions dy =4 dy =5 dy =7
b=—9 b=—11 b=—17
z1 =2 z1 =2 z1 =2
a=(001-1) a=(001-1) a=(001-1)

extended binary cyclic codes, where this in the defining set
De¢. Assume tha{—3,0,1,7} C D¢. The sequence of zeros

p(1/f(x)) = 15. We use the shifted power series expansion
suchthata=(100100011110101).

As required by Lemm@l2, we only consider lengthssuch
that gcd(n,p = 15) = 1. We can match a concatenation of
a to the roots of the generator polynomial for= —6 and
z1 = 1if {1,3,9,—3} C D¢. Our bound on the distance
yieldsd; = 6, sincedeg f(x) = 4, whereas the BCH and the
HT bound givedBCH = dut = 5.

TablelVl and VIl in the appendix show our bound for binary
and ternary cyclic codes. We used the power series expansion
of 1/(z*+ 2z +1) and1/(z® + 2 + z + 1) to obtain a good
refinement of our new bound on the minimum distance. We
list the number of codes, for which the BCH bound is not
tight (#dscn < d), the number of cases, where our bound
is better than the BCH bound#d; > dgcn) and count the
cases, where our bound is not tightd; < d). All lengths
n, for which any union of cyclotomic cosets is a symmetric
reversible code, are marked by a star

V. GENERALIZING BOSTON S BOUNDS

In [13], Boston gave ten bounds, denoted iy, on the
minimum distance ofg-ary cyclic codes, which he proved
using algebraic geometry. These bounds are each for a specifi
subset of the defining set and do not consider whole classes of
codes. In this section, we show how our approach generalizes
some of these bounds.

Six of Boston’s ten bounds are given as follows.

Theorem 3 (Boston Bound$, [13]¥he following bounds
on the minimum distance of gary cyclic codeC hold:

of the binary code can be matched to the rational functioril')
for b = —4 and z; = 1. The corresponding distance is then
dy = 5. This and some other combinations of subsetgf

are shown in TablETV. Another class of binary cyclic codes

If 34n and{0,1,3,4} C D¢, thendg = 4,

2) 1f {0,1,3,5} C De, thends = 4,
5) If 31tn and{0,1,3,4,6} C D¢, thendg = 5,
) If 44n and{0,1,2,4,5,6,8} C D¢, thendg = 6,

) If 3tn and{0,1,3,4,6,7} C D¢, thendg = 6,

TABLE IV 10)

If 34n and{0,1,3,4,6,7,9} C D¢, thendg = 7.

BOUNDS ON THE DISTANCE OF BINARY CYCLIC CODES OF LENGTH
n | (2% — 1) AND gcd(n,7) = 1, USING f(z) = 2% +z + 1

We use again two power series expansiofig(x). The first
power series expansion 1§ (z% +z + 1) of periodp = 3 with

Binary (3007 {-3.01.7.9) {-3.0.1,7,9.11) (ap ar qg) = (21 -1 0). The s_econd considered power series
Codes C pe c e " pe expansionl/(xz* + 1) has periodp = 4 with (ap a1 a3 a3) =
o s P P (1 0-10). Note that the latter is aqtually a special case of the
— — — BCH bound. Tablé€)/ shows the six Boston bounds. Boston’s
BCH dpen = 4 dgen = 4 dpen = 4 bounds 1,2,5,6 and 7 are special cases of our bounds. Hqwever
b= -3 b= -3 b= -3 for Boston’s bound 10, our approach gives a worse bound.
c1 =5 c1 =5 c1 =5
HT | dr=t i = 4 i = 4 BosTON SBoUNDS
b= -3 b= -3 b= -3
Z; z g Z; z g Z; z g No = f(x) a dy Conditions
dy=4,v=0 do=4v=0  dy=4,v=0 1| [LE) | a®+a+1 ] (01-1...) | 4 | ged(n,3) =
Fractions dy =5 d; =6 dy =7 2 | [o,6] z? +1 (010-1...) | 4 | ged(n,2) =
b= —4 b= —4 b= —4 5 | [1,6] | 22+z+1 | (01-1...) 5 | ged(n,3) =1
z1=1 z1=1 z1=1 6 | [1,8] z2 41 (010-1...) | 6 | ged(n,2)=1
“:_14 ”:_16 “a:_lg 7 | [1,8 | 224241 | (01-1...) | 6 | ged(n,3) =1
(1001110) (1001110) (1001110) 10 | [1,9] | 224z+1 ] (01-1...) | 6 | ged(n,3)=1

can be identified using the polynomiflz) = x* 4z +1 with

Moreover, Boston raised the following question|[13]:



Question 1 (Boston’s Question, [13]1:et 3 1 n and the sincev < w.
setT = {0,1,3,4,6,7,9,10,...,r} C D¢. Is the minimum  The main step of our decoding algorithm is to determine
distanced thend > dg = |T'|? A(z) andQ(z) if S(z) is given. The following lemma shows
Counter-examples show that Boston’s conjecture is not trtheat there is a unique solution far(z) if the number of errors
(see ExamplEl4), since the actual distance of such codes isismot too big.
alwaysdg = r+1. However, using the power series expansion Lemma 5 (Solving the Key Equatiorlet  S(z)  with
of 1/(z?+z+1)witha= (01-1...) we obtainu—1 = r+2. deg S(z) = u — 2 be given by [(IP). If
The minimum distance of such codes can be boundet}by de — 1
[(r+1)/2 + 1] with u = deg f(«) = 2 andv = h(z) = 1. = lg] < L f = J (23)
Example 4 (Distance of thé(Fs; 20, 6, 8) code): Let 2
D¢ = {0,1,2,3,4,6,7,8,9,10,12,14, 16, 18}. For Boston's there is a unique solution (up to a scalar factor) of the key
scheme, we can usé& = {0,1,3,4,6,7,9,10,12} with equation[[ZR) withleg Q2(z) < (t—1)u—+v < deg A(z) = tu.

IT| = 9. The actual distance isl = 8 and therefore, \we can find this solution by the Extended Euclidean Algorithm
Boston’s conjecture is not true. The BCH bound yieldgEEA) with the input polynomials:*~—! and S(z).
dgcn > 6. Our new bound is tight and with = 12, we Proof: We use the properties of the EEA as proven
obtaind; = [(r +1)/2+1] =8. in [23] (see alsol[22, Theorem 16, p. 367]). It guarantees the
uniqueness (up to a scalar factor) of the solution[of (22) and
VI. GENERALIZED KEY EQUATION AND provides the stopping criteria of the EEA to obtalifz) and
DECODING ALGORITHM Qx).

In this section, we present an efficient decoding algorithm We require thatdeg ged(A(x), 2(z)) = 0 (which follows
up our new bound based on a generalized key equation. from degged(f(z), h(z)) = 0 and [20) and[{21)). Let the

Let (ro r1 ... rn_1) denote the received word, i.e., polynomialsz#~' and S(z) be given as input for the EEA
and let the EEA stop as soon as the degree of the remainder

(ror1 - rn1) =(cocr oo enn) + (€0 €1 -v en1), degry(z) in theith step is less than or equal tou — 1)/2).

and letr(z) = r_z:ol riz' be the received polynomial. Let Then, we obtain the unique (except for a scalar factor) swiut
£ C{0,...,n—17 be the set of error positions and |&f = ¢. A(%) andQ(x) of @), if (Z3) holds. For the explicit proof
We define the syndrome polynomisi(z): we refer to [22, Theorem 16, p. 367]. It shows that there is a
unique solution of the generalized key equatiod (22) and tha
S() = ”i N a;(hcgo;):z:) the EEA finds it if
=0 , deg A(z) =tu < {M—_lJ , (24)
a®h(aiz) 1 2
= Z e;—————— mod z!" . (18)
= [fla'z) and therefore
Thus, the explicit form of the syndrome polynomig(z) is t < V - 1J _ {(df —Du+ UJ _ {(df - 1)J . (@5)
p—2 n—2 2u 2u 2
S(@) =Y a2 = aje(a’ ). (19) sincev/2u < 1/2. n
J=0 J=0 Key equation[(2R) can be written as a linear system of equa-

Based on the relation between the rational functigh . tions, withtu coefficients of a normalized (z) as unknowns.
h(aiz)/f(aiz) and all codewords of a-ary cyclic code If we Consider only the equations which do not depend on
C(F,;n,k,d) as defined in Definitio]2 in Sectidnlill, we £2(z), we obtain:

introduce a generalized error-locator polynomiglz) and Sou St ... So 1
error-evaluator polynomidl(x) and relate it to the syndrome Sius1 Se ... S, Ay
definition of [I8). Let€ denote the set of error positions and ) -1 . | =0. (26)
lett = |€|. We defineA(x) as: : :
. X Sl,—2 SL—3 s St—tu—Z Atu
A@) E ] (o). (20) S ’

There is a unique solution if and only if the rank of the

e syndrome matrix igu. One coefficient ofA(z) can be chosen
Let arbitrarily (hereAy = 1), since a scalar factor does not change
Q(x) def Z (ei Lot h(a'z) - Hf(o‘jx))v (21) the roots. From this we obtain the same condition on the
icE jee decoding radius as in Lemnéa 5.

7 If we have foundA(z), we can determine its factors
and we obtain with[{18) a so-called generalized key equatiof(a’z), where i € &. These factors are disjoint since
A@)- S(@) = Qz) mod z°~1  with ?eg(gcd(f(af:z:),f(aﬂx))) =0, Vz # j and therefore these

actors provide the error positions. We calculate onlye
degQ(z) < (t —Lu+v (22) oot B; of each f(a‘z) in a preprocessing step. To find the
< deg A(z) = tu, error positions ifA(z) is given, we do a Chien search with



Bo, B, ..., Bn_1. Thisis shown in Algorithrill and Theordh 4  Algorithm 1: Decoding g-ary Cyclic Codes
proves that eacl$; uniquely determineg (a‘z).

For the non-binary case, we have to calculate the error
values at the error positions. This can be done by a genedaliz
Forney’s formulal[21L]. In order to obtain this error evaloat Po, B, s By
formula, we use the explicit expression fofz) from (21). As CalculateS(x) by (19)
mentioned before, the preprocessing step calculatealues 2 Solve Key Equation: Obtain (), 2(z) as output of

Input : Received word-(z), f(a’z), o' - h(a'z)

Preprocessing Calculate one root of eacf(aiz) =

[

Bo,ﬂl,.. -757171 such that EEA(xuilts(x))
3 Chien—Search: Find all for which A(3;) = 0, save them
faB) =0, Vi=0,...,n—1, and f(a’B;) # 0, Vj # i. as& = {io, i, ir}
4 Error Evaluation:
The evaluation of(z) at 5, £ € &, yields: e = QBe)/ (M’ Be) [ je f(a7B0)), for all L€ €
5 e(x) « ezt
Q) =Y (ei o (e ] f(ajﬂg))_ 6 o(x) « r(z) — ()
i€ j_ié_‘ Output: Estimated codeword(x)
J#i —

Theorem 4 (Correctness of Algoritirh 1If: the distance
With f(a‘B,) = 0, the product]'[jeg_#if(ajﬁg) is zero if d(r(x),c(z)) < [(df —1)/2] for some codeword(z) € C,
¢ € E\{i} and nonzero only i¥ = i. Hence, we obtain then Algorithm[1 returnsc(z) = c(x) with complexity
O((deg f(zx) - n)?) operations.
Proof: Let S(x) be defined by [(19). As shown in
Lemma[®, we can then solve the key equation uniquely for

QBe) = er- - h(a“By) - H F(a Be). (27)

i A(w) if t < [(dy —1)/2). Therefore, we obtaim\(z) =
[L;ce f(x,a;) with deg A(z) = tu in Step 2 of Algorithn{lL
This derivation provides the following lemma. and alsoQ(z) = A(z) - S(z) mod z#~!. To explain the

Lemma 6 (Generalized Error Evaluation)et the integer Preprocessing and the Chien—search, we note that for each
b, the polynomialsh(a’z), f(aiz), A(z) = [[,ce fla'z) polynomiala(z) of degreeu defined overf . there exists a

and Q(z) from @), for all i = 0,...,n — 1 with SPplitting field, i.e., an extension fielfl.. of F,., in which
deg(ged(f(a'z), f(adz))) = 0 be given. Then, the error_a(ff) hasu roots. Therefore, eacfi(a'z) can be decomposed
valuese, for all £ € € are given by into u = deg f(a'z) linear factors over a field,... These
factors are disjoint sincdeg(ged(f(o’x), f(a?x))) = 0 and
Q(B) hence,one root of f(a‘z) uniquely definesf(a‘r) and i.
e Hence,A(3;) = 0 if and only if j € £ and Step 3 correctly

o - h(o’fr) Hﬁi Fla?Be) (2g) identifies the error positions.
LAl Lemmal® proves the generalized error evaluation and there-
— QBe) - [ Be) .
= XG0 ot h(alfy)’ fore, if d(r(a:),_c(a:)) < L(de— 1)/2] for some codeword
c(z) € C, Algorithm[d returnsc(x) = c(x).

, o . To prove the complexity, we note that the input polynomials
wheref’(a*z) andA’(z) denote the derivatives gf(a’z) and S(z) and 2~ of the EEA have degrees at mogt— 2
A). and u — 1, respectively. Therefore, the complexity of the

Proof: The lemma follows from[(27) and the fact that EEA is quadratic inu, i.e., O(u?) ~ O((u - ds)?). The
Chien—search and the generalized error evaluation rethére

N (z) = Zf/(aix) H f(odxz) same complexity as for the classical case, whiclDis?).
iee jee Therefore, we can upper bound the complexity of Algorifim 1
7 by O((un)*) = O((deg f(x) - n)?). =
We consider the code from Examgdlé 1 to illustrate the
and therefore decoding algorithm in the following.
Example 5 (Decoding Binary CodeWe consider again
N(Be) = f'(o'By) Hf(ajﬁf)' the C(F»;17,9,5) code and write explicitly the associated
jee power seriesi(—4, a’x) in polynomial form:
7t ) a3 . h(aiz)
a(—4,a't) = —————=
m flaiz)
Note that [2B) is the classical Forney’s formulal[21], for _ 0‘131_4‘0‘141?‘ (29)
fla’r) =1— o'z anda® - h(a'z) = 1. 1+ o'z ‘EQQZIQ ‘
The decoding approach is summarized in Algorifiim 1 and =o' ol + ol

its correctness is proved in Theor&in 4. o'z® + a?2b + a*2®  mod 2°.



For the syndrome polynomial, we obtain wijth— 1 =9 and
(@9). (19) and[(29):

n—1

(4

(5]

S(:Z?) _ Zei . (al?n’ +a15ix2 —|—--~+Oé4i178)
=0 - . - [6]
_ Z(al& +a151x2 NI +OL4ZI8)

€€
=r(@®) +r@®)z? + - +r(at)2®
=50+ 521'2 + 531'3 + 551'5 + 56:106 + SS,TS.

(7]

8
As in Algorithm[d, we calculate&eEa (2°, S(x)) and stop if e

the degree of the remainder is smaller thdp — 1)/2] =
4. Assume, two errors occurred, then we obtdif) with
degA(z) =tu=2-2=4.

Using the EEA is equivalent to solving the following system
of equations forA(z):

El

[10]
0 S3 S2 0 Sp A
S5 0 S; S 0 |
SG 55 0 53 52 ' - Oa (30) [11]
0 S S5 0 S5/ \a,

and with both approache4,z) has the roots (aiz) = (1+ [12

o'z + (afz)?), Vi € £. We know that eaclf(a’z) = (1 +
o’z +(a’r)?) has two roots irffys which are unique. We have [13]
a look-up-table with one roof; of each f(a;2) and we do
the Chien search foA(z) with 5o, 51, ..., 8,—1. Since this [14]
is a binary code, we do not need an error evaluation and can
reconstruct the error.

[15]

VII. CONCLUSION

A new lower bound on the minimum distancegeéry cyclic
codes is proved. For several classes of codes, a more éxpliél
bound on their distance is given. The connection to existipg,
bounds (BCH, HT and Boston) is shown.

Furthermore, we derived a generalized key equation, whiBf!
relates the syndrome definition and the polynomial for the de
termination of the error locations. This allows the redlma of
a quadratic-time decoding algorithm and provides an eitpli¢'®]
expression for the error evaluation. [20]
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APPENDIX

TABLE VI
BINARY CODES ANDBOUNDSWITHa = (1 —10)ANDa= (1 —100)

n # codes | # dgch < d # df > dpcH # df <d
15 32 2 2 0
17* 8 2 2 0
19 4 0 0 0
21 8 2 2 0
23 8 4 0 4
25* 8 0 0 0
27 0 0 0 0
29 4 0 0 0
31 128 34 7 31
33* 0 0 0 0
35 64 24 8 22
37 4 0 0 0
39 0 0 0 0
41* 8 4 4 4
43* 16 6 3 6
45 256 69 22 57
47 8 4 0 4
49 4 0 0 0
51 256 122 4 118
53 4 0 0 0
55 32 16 4 16
57* 32 10 4 10
59 4 0 0 0
61 4 0 0 0
63 8192 4088 509 4088
TABLE VII
TERNARY CycLIC CODES ANDBOUNDS WITHa = (1 — 10) AND
a=(1-100)

n # codes | # dgch <d | #dy >dgcn | #df <d
8 32 2 2 0
11 8 4 2 4
13 32 6 0 0
16 128 16 8 8
20 128 38 6 36
22 64 40 22 40
23 8 4 0 4
26 1024 512 108 490
28 128 18 2 18
32 512 102 46 57
35 32 16 2 16
37 8 4 0 4
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