Capacity Region of Vector Gaussian
Interference Channels with Generally Strong

Interference

Xiaohu Shang, and H. Vincent Poor

Abstract

An interference channel is said to have strong interferénfoe all input distributions, the receivers
can fully decode the interference. This definition of stramigrference applies to discrete memoryless,
scalar and vector Gaussian interference channels. Howthene exist vector Gaussian interference
channels that may not satisfy the strong interference ¢iondbut for which the capacity can still be
achieved by jointly decoding the signal and the interfeeefitis kind of interference is called generally
strong interference. Sufficient conditions for a vector &dan interference channel to have generally
strong interference are derived. The sum-rate capacitytamdoundary points of the capacity region

are also determined.

. INTRODUCTION

A discrete memoryless interference channel (IC) is a qpietu X, X2, p, V1, Vo) where X; and X,

are the input alphabet sef¥;, and)), are the output alphabet sets; amis a collection of conditional
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channel probabilitie® (y1y2 |x122) Of (y1,y2) € V1 X Vo given (z1,z2) € Xy x Ao, The receiver,
i1 = 1,2, is required to decod&; from the received signal;. The capacity region of this channel is

known for the strong interference case [1]:
0 < Ry <1 (X1;11]X2Q) (1a)

0 < Ry < 1(X2;Y2|X2Q) (1b)
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Ri + Ry < min {I (X1 X2;Y1|Q), I (X1X4;Y2|Q)} (1c)

where(@ is a time sharing random variable. The strong interferemg®litions are that
I(X1;Y1|X2) < 1(Xq;Y2|Xo) 2)
I (X3;Y2|X1) < T (X9;Y1|1X1) 3)

are satisfied for all product distributions ofy x X5.
This definition of strong interference also applies to thalaxcGaussian ICs defined in the standard

form as

Y1 =X1+VaeXe+ 23
Yo = Xo 4+ Va1 X1 + Zo

where X; andY; ¢« = 1,2, are respectively the transmitted and received signala$eri, Z; is unit
variance Gaussian noise, angdis the cross channel gain known at both transmitters andvesse In
addition, X; has a power constrain;. The capacity region of this channel with strong interfeeesis

given in [2] and [3]:

1
<3 log(1+ Pp)

1
<3 log(1l + P)

o
A
=
A

o
A
&
A

1 1
Ry + Ry < min {5 log(l + P+ CLQPQ), 5 10g(1 + P + alPl)} .
The strong interference conditions here are
ap>1 and a9 > 1. (4)

It is easy to show that under the above conditions, both (&)(&h hold for all distributions ofX; and
X,. Therefore, the strong interference conditions for thdasd@aussian IC coincide with those for the
discrete memoryless IC.

Since the capacity region was determined for scalar GauSgunder strong interference, substantial
effort has been devoted to extending the strong interfereranditions to the multiple-input multiple-

output (MIMO) IC. As shown in Fig. 1, the received signals ®&MIMO IC are defined as

y; = Hizy + Foxg + 24

Yo = Hoxo + F121 + 29 (5)
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wherexz;,i = 1,2, is the transmitted (column) vector signal of ugewhich is subject to the average

power constraint

wherex;, o, ..., Z;,, IS the transmitted vector sequence of useand P; is the power constraint. The
noisez; is a Gaussian random vector with zero mean and identity @owse matrix; andd; and F;,
i = 1,2, are the channel matrices known at both the transmittersraceivers. Transmittei hast;

antennas and receivéhasr; antennas. Without loss of generality, we assufie# 0 and P; > 0.

21
X H1 é A1
Fq
F,
xo T Yo
TR
22

Fig. 1. The two-user MIMO IC.

In [4], the capacity region of a single-input-multiple-put (SIMO) IC with strong interference was
determined. In this SIMO IC, the channel matrices Hie= h; andF; = f, whereh; and f, are column

vectors. A SIMO IC is said to have strong interference if
0 <[lhill < IIfll, i=1,2

where|| - || is the Euclidian vector norm.

The capacity region of a MIMO IC with strong interference wetermined in [5]. A MIMO IC is

said to have strong interference if there exists matrisgsuch that
H; = AF; (7)
AAT <1 8)

for i = 1,2, wherel is an identity matrix,Af is the transpose dA;, and A = B means thatA, B and
A — B are all symmetric positive semi-definite. It can be shown th&l; = h; andF; = f,, then we

-1
can chooseA; = h; (finZ) fF and (8) reduces tdh;|| < ||f;||. Therefore, the strong interference

condition in [5] includes that in [4] as a special case. Sinnder condition (7) and (8), one can show
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that (2) and (3) are always satisfied, the strong interfexeromditions for the MIMO IC, like the scalar
Gaussian IC, coincide with those for the discrete memosyl€s

The coincidence of the strong interference conditions fiscrete memoryless ICs, scalar ICs and
MIMO ICs seems to have captured the essence of the IC withgirderference. All these channels have
the same capacity achieving coding scheme and the samessiprdor the capacity region. However,
there are still observations which lead us to reconsidesttang interference condition.

To elaborate, we first introduce the concept of very strongriarence [6]. A discrete memoryless IC

is said to have very strong interference if
I (X1:Y1|Xo) < T(X1:Y2) 9)
I (X2;Ya|Xq) <1 (X2;Y1) (10)

are satisfied for all product distributions a3 x X5. Obviously, the very strong interference condition is
a special case of the strong interference condition. Thaappregion of such a channel is also given in
(1a)-(1c) wherd1c) becomes inactive. However, the application of (9) and (@@paussian ICs becomes

very difficult. We use instead
a;>1+PF, 1=1,2
as the very strong interference condition for the scalarsSiam IC; and use
log | T + HL,S?HT | < log (I +FSoFT (1+ Hjs;HJT)‘l( L dje{1,2),i#
where

S0

7

_ conT
a argn(si)?%’fsito {1+ H,;S{H/ |}

as the very strong interference condition for the MIMO IC, [B]]. In both the scalar and MIMO ICs,

the very strong interference condition can be generalintal i

I (xfsy,; |x9) < I(zfy;), ije{l,2}i#] (11)
where
p(xf) = argmax I (z;;y; [z;) . (12)
p(x;)

Or equivalently, a Gaussian IC is said to have very strongrfietence if its capacity region is

0<R; < maP)d(Xi;Yz’!Xj), i,j € {1,2},i # j. (13)

P(lEi

August 6, 2018 DRAFT



For the new very strong interference condition, the origiequirement of inequalities (9) and (10) being

satisfied for all input distributions has been relaxed toydhke special input distribution (12). Clearly,

the new definition includes the old one as a special caseallahe ICs that satisfy (9) and (10) must

also satisfy (11). Although, in both cases, the capacityoregs achieved by decoding the interference

before the useful signal, condition (12) considers only ¢hpacity achieving input distribution instead

of all possible input distributions.

In adapting the very strong interference condition fromdiserete memoryless IC to the Gaussian IC,

necessary changes have been made to make it more appro@oatearing the very strong interference

condition (11) and the strong interference conditions (Y 43) or (7) and (8), we can see some

inconsistency:

1)

2)

3)

For the scalar Gaussian IC, the very strong interferenoélition @; > 1+ P;) is a special case of
the strong interference conditiary > 1. However, for the MIMO IC the very strong interference
condition is generally not a special case of strong interfee. As an example, we consider a
MIMO IC with

1 0 0.8 0

H,=H;= , F1=Fo= , Pr=P=2.
0 1 0 2

This MIMO IC has very strong interference (11), and its cayaegion is (13). However, the strong
interference conditions (7) and (8) are violated. Similaaraples for the MIMO Z interference
channel (ZIC) can be found in [7, example 1], and examplegHerMIMO IC with covariance
constraints can be found in [5, example 1].

There exist many MIMO ICs for which even the matik; in (7) does not exist. For example,
the multiple-input-single-output (MISO) ICH; = hZ-T andF; = ZT whereh; and f, are column
vectors. Ifh; and f, are linearly independent, then th%; (now a scalar) in (7) does not exist.
Moreover, conditions (2) and (3) are also violated if usenplements zero-forcing beamforming:
I(X1;Y1]1X2) > 0 =1(X;;Y5]Xe) and I (Xo;Y2|X;) > 0 = I(X»;Y1|X;). However, one can
still find examples for MISO ICs that have very strong intezfece.

Even for the discrete memoryless IC, there are exampleéshwiave very strong interference in

the sense of (11) instead of (9) and (10), and do not havegsiraarference [8, section IV-B].

The above inconsistencies motivate us to reconsider whétleee are more appropriate strong inter-

ference conditions than those in [1]-[3] and [5] for MIMO tCs

1)

The very strong interference condition requires only ¢apacity achieving distribution to satisfy

(11). On the contrary, the strong interference conditioguines all possible input distributions to
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2)

satisfy (2) and (3) or (7) and (8). This is generally unneagssince we are interested in only the
capacity achieving distributions. The rates achieved Imepinput distributions are all superseded
by those achieved by the capacity achieving input distidimst

If (2) and (3) hold for any input distribution, the strongtérference capacity region for a discrete

memoryless IC can be written as
0 < Ry <min{l (X1;Y1[X2Q), I (X1;Y2|X2Q) }
0 < Ry < min (1 (Xg; Ya|X2Q) , I (X2; Y1[X1Q)}
Ri 4 Ry < min {I (X1 X2;Y1|Q), I (X1X2;Y2|Q)}. (14)

The above region is actually the same as the capacity redidgheocompound multiple access
channel, in which both receivers are requirecttorectly decode messages from both transmitters.
However, for an IC any error incurred when ugeis trying to decode usej's message; # i,
does not contribute to its overall error probability. In tfawe will show later in Lemma 1 that
the rate region given in (1a)-(1c) is achieved exactly byunggg useri to jointly decodeX; and

X ;. Therefore, the key is whether or not joint decoding can aehiee capacity. Even though the
condition that (2) and (3) hold for any input distributioncigicial in deriving the strong interference
capacity region in [1] and [2], these two conditions are ing@l not necessary conditions for joint

decoding to achieve the capacity region.

Therefore, we define a new strong interference conditiorobaws:

Definition 1: An IC is said to have generally strong interference, if itpaxty region is given by (1a)-

(1c); or equivalently, if the capacity region is achievedjbintly decoding the signal and the interference

at each receiver.

In this new definition, as long as joint decoding achievescagacity, the IC is said to have generally

strong interference. Thus, we focus on only the input distibn and the coding scheme that achieve the

boundary of the capacity region, instead of any possibletimistributions. For the IC with generally

strong interference, there may exist input distributionshsthat the receiver cannot correctly decode the

signal and the interference.

There are cases in which only part of the boundary of the ¢gpagion is characterized by (1a)-(1c),

Here ‘jointly decoding’ means that usérecovers the message from transmittdry searching the jointly typical sequence

setA™ (X;3X;Y3). Useri is required to correctly decode the message from transnittéowever, whether usercan correctly

decode the message from transmittds not important. See the proof of Lemma 1 for further details
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i.e., the IC may have generally strong interference at satesrand not at other rates (see Example 4
in which partially decoding the interference outperforramily decoding the signal and interference at
some rates). Therefore, we define:

Definition 2: An IC is said to have generally strong interference sum-catgacity, if its sum-rate
capacity is given by the maximum sum-rate of region (1a):(tc equivalently, if the sum-rate capacity
is achieved by jointly decoding the signal and the interfeszat each receiver.

Definition 3: An IC is said to have generally strong interference{ &, R»}, if {R1, R} is on the
boundary of the capacity region and satisfies (1a)-(1c) éones input distributions ofX; and X»; or
equivalently, if{ Ry, R2} is achieved by jointly decoding the signal and the interfeeeat each receiver.

In this paper, we study the capacity region of MIMO ICs witgeally strong interference. Clearly, the
generally strong interference condition includes stramgrierence, as well as very strong interference,
as special cases.

The rest of the paper is organized as follows: in Section d,derive sufficient conditions for a MIMO
IC to have generally strong interference by comparing aeritmound and an outer bound for the capacity
region; in Sections Il and 1V, we apply these sufficient citinds to SIMO and MISO ICs respectively,
and obtain simplified generally strong interference caodi; numerical examples are given in Section
V; and we conclude in Section VI.

Before proceeding, we introduce some notation that will seduin the paper:

« px(x) is the probability mass function of a discrete random vaeiat, or a probability density

function of a continuous random variah¥, and is simplified ag(x) with no confuse on results.

« ltalic letters (e.g.X) denote scalars; and bold lettersand X denote column vectors and matrices,

respectively.

« I denotes the identity matrix armal denotes the all-zero vector or matrix. The dimension$ ahd

0 are determined by the context.

o |X]|, XT, X~ and rankX) denote respectively the determinant, transpose, inverse,rank of

the matrix X, ||z|| denotes the Euclidean vector normafi.e., |z||?> = 2”7z, and® denotes the
Kronecker product of matrices.

e sign(z) =1if z > 0 and signiz) = —1 if = < 0.

o z" =[] 2], ... ,xZ]T is a long vector that consists of a sequence of veatars=1,...,n.

« diag Xy, -+, X,] is a diagonal matrix with diagonal entriés;.

« Vec(A) denote the vectorization operator, i.e., fet= [a;,as, -+ ,a,], anda;,i = 1,--- ,n be the
column vectors, then V) = [al al ... al]T.
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o 0 = atar(z) meanstanf =z andf € (—3,%).

« £ ~ N (0,X) means that the random vecterhas the Gaussian distribution with zero mean and
covariance matrixz.

« E[] denotes expectation; Coy denotes covariance matriX(-; -) denotes mutual informatior;(-)

denotes differential entropy with the logarithmic basendlog(-) = log.(-).

II. MIMO ICs

In this section we derive sufficient conditions for a MIMO 1€ have generally strong interference by

comparing a special case of the Han and Kobayashi inner bf@jnith a new outer bound.

A. Inner bound

We first obtain the achievable region by jointly decoding signal and the interference.We also show
that this region is a special case of Han and Kobayashi'ssaahle region despite the fact that it has a
different expression from the Han and Kobayashi achievedg@n for the same coding scheme. Then,
we apply this achievable region to MIMO ICs.

Lemma 1:The following rate region is achievable for a discrete mertems IC

0< Ry <I(X1;Y11X20Q) (15a)
0< Ry <I(X5;Y2]X10Q) (15b)
R1+ Ry < I (X1X2;Y1|Q) (15¢)
R1+ Ry < I (X1X2;Y2|Q) (15d)

where the input distribution factors agxiz2q) = p(q)p(x1|q)p(x2|q).

The proof is given in Appendix A and is based on the analysigrodér probability. In this proof,
we require receivei to decode the message by searching the joint typical sequed” (Q X1 X2Y;),
i = 1,2. We emphasize here that joint decoding means, e.g., redeimest correctly decod&’; whereas

the decoding forX, can be incorrect, i.e., its error probability is (170) irsateof

Pr{E%IC U U(i;ﬁl,anyj)Eilj U U(j;él,anyi)Ez’Ij} . (16)
If we consider the Han and Kobayashi achievable region instheplified expression [2], [9], [10],

then our coding scheme is equivalent to letting = X; and W, = X5 in [9, egs. (11)-(18)]. However,
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it is interesting that by lettingV; = X; and W, = X5, [9, egs. (11)-(18)] become a region defined by

(15a)-(15d) with an extra constraint:
R1+ Re < I(X1;Y2|X2Q) +1(X2;Y1[X1Q) . 17)

This apparent inconsistency is caused by the fact that tieecanstraintS; + 7, < I (W2 X5;Y1|W1Q)
in [9, eq. (76)] is redundant wheiV, = X; and W, = X, (similarly, Sy + 71 < I (W1 Xy; Y3|WaQ) is
also redundant). This extra constraint (17) is associafddnaceiveri's error probability of decoding its
own messages that are not carriedlby. Therefore, wherlV; = X;, useri’'s messages are all carried
by W; and this extra constraint is redundant. Therefore, eveh7 is violated, it does not contribute to
the overall error probability of user

In fact the achievable region in Lemma 1 is still a subset eftfan and Kobayashi region. We state
it formally in the following lemma, the proof of which is ginein Appendix B.

Lemma 2: The achievable region in Lemma 1 is a subset of the Han andy&sbaregion.

With Lemma 1, we obtain the achievable rate region for a MIMDMbly jointly decoding the signal
and the interference in the following lemma. We note thattihee sharing procedure is unnecessary
since all the constraints are concave functions.

Lemma 3: The following region is achievable for a MIMO IC:

0<Ri <g1(S1)
U 0< Ry <g2(S2) (18)

S,=0,u(S)<Pi=12 | 1+ B2 < gs1 (S1,82)
Ry + Ry < gs2(S1,S2)

where
91(81) = § log [T+ H, 8, H] | (192)
92(S2) = %1083 T+ H,S,H] | (19b)
951(81,S2) = %log T+ H;S;H + F2S,F7 | (19c)
gs2(S1,82) = %log T+ H,S,H] + FSF]|. (19d)

We now proceed to obtain the maximum sum rate and other boyipdénts of region (18).

Lemma 4: The maximum sum rate of (18) is the maximum in the followindimzation problem:
max R;+ Ry
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10

subjectto R; + Rz < ¢1(S1) + g2(S2)
R1 + Rz < g51(S1,S2)
Ry + Ry < g52(S1,S2)
tr(S;)<pP, S;=0, i=1,2. (20)

Furthermore, ifS?, i = 1,2 is optimal for problem (20), then there exist Lagrangiantipliers v, A;, n;
and W, that satisfy

’7+/\1—|—)\2:1 (21&)
_ A _
W, = —%HlT (I+H,STHT) " H, - 71H1T (I+ H,S{HT + F,S5F]) T H,
A _
—72F1T (14 H,S3HY + F1S{FT) T Fy 4yl (21b)
W, — —%Hg (I+H,S;HL) ' H, — %F{ (I+ H,S;HT + FoS3F]) ' Fy
A _
~H] (I+ H,S3H] + FiSiFY) YHy + ol (21c)
>0  if Ry + Ry = g1 (S*) + go (S
- | 1 2 91( 1) g2 ( 2) (21d)
=0 if R+ Ry < g1 (ST) + g2 (S;)
>0  if Ry + Ry = gy (S%, S
A 1 2 = gsi (S7,55) (21e)
=0 if R1+R2<gsi( T,S;)
>0  iftr(SH) =P
n; (21f)
=0 iftr (S7) < P
tr (W;S;) =0 (219)
W, = 0. (21h)

Proof: Conditions (21a)-(21h) are the Karush-Kuhn-Tucker (KKDnditions of problem (20). The

corresponding Lagrangian is
2 2
L=—(Ri+Ry)+v(Ri+Ry—g1—g2)+ > N (Ri+Ry—gsi) + Y _m (tr(S;) — P)

i=1 i=1

2

i=1
Since (20) is a convex optimization problem, the Lagrangrauitipliers do exist. ]
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11

Lemma 5: The boundary points of the region defined in (18) is deterohipg

U {Ri=Ri(r), Ro=r} (23)

0<r<max % log|I+H,S,HY |

where R; (r) is the maximum of the following optimization problem

max R;
subjectto Ry < g1 (Sy)
r < g2(S2)
R1 < gs1(S1,82) —r
Ry < gs2(S1,82) — 7
tr(S;) <P, S;=0. (24)

Furthermore, ifST andS3 are optimal for problem (24), then there exist Lagrangiattipliers o, 3;, v;

and K; that satisfy

ap+ P+ =1 (25a)
K, = —%HIT (I+H,S7HT) " H, - %H{ (I+ H,STHY + F,S5F]) ' Hy
—%F’{ (T4 H,S3HY + F1STFT) T Fy 4 1 (25b)
_ Q2.7 vy ! B1 w1 wesT e —1
K2 == —7H1 (I + H282H2) H2 - 7F2 (I + HlslHl + FQSQFz) F2
—%Hg (I+ H,S5H] + 1?18’{1?{)‘1 H; + 101 (25c)
>0 if Rj=ug; S;k
o 9 (89) (25d)
>0 if Ry =g (St,S3) —r
3 1 = gsi (S1,S3) (25€)
=0 if Ry < gs(S%,S3) —r
>0 iftr(SH) =P
Vi (25f)
=0 iftr(S}) <P
tr (K;S}) =0 (259)
K; > 0. (25h)
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Proof: We first prove thaf R, = Rj(r), R, = r} is a boundary point of the region given in (18). By
the constraint conditions of (24), the rate péiRj(r),r} belongs to the region (18) determined 8y
andS;. Therefore {R;(r),r} is in the set (18). Next we assume, on the contrary, {{#&t(r),r} is not
on the boundary. Then there exists a rate gdif,r} with R} > R;(r) which is also in region (18).

Therefore, there exist matric& with tr (S) < P, andS) = 0, i = 1, 2, such that
R <q ( /1)
r<go ( /2)
/1+7°§951( ’1,8’2)
Ry +7 < gss (S7,85) -
Thus, {R},r} is feasible for optimization problem (24) and henk¢ < Rj(r) since Ri(r) is the
maximum of problem (24). This contradicts our assumptidn> Rj(r). Therefore {R;j(r),r} is on

the boundary.
Conditions (25a)-(25h) are the KKT conditions of problerd)(2The corresponding Lagrangian is

2 2
L=—Ri+ai(Ri—g)+as(r—g)+ > Bi(Ri—gsi+r)+ > v(tr(S;) — P)
i=1 1=1
2
i=1
Since (24) is a convex optimization problem, the Lagrangmauitipliers do exist. ]

B. Outer bounds

The outer bound is obtained by providing additional infotiorato both receivers.

Lemma 6: The closure of the following s&is an outer bound on the capacity region of a MIMO IC:

\

R1 < g1(S1)
Ry < S

U 2 < ga( 2)_ 27)

S,-0,u(S)<Pyi=12 | 1 + B2 < gs1(S1,S2)

Ri + Ry < Gs2(S1,82)

20Obviously, any of the constraints in (27) can be removed, taedclosure of the resulting set is still an outer bound on the

capacity region.
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whereg; and g, are defined in (19a) and (19b), respectively, and

T
1 _ 1 H H
9s1(S1,82) = 5 log [T+ HS HY (I+ F2SoF7) Y Slog [T+ 18| 7% E;Y (28)
F F,
1 — 1
= 5 log [T+ H S HY (I + F2S,F}) Yy 5 1og |1+ S2FTF; + 25,0, (29)
T
1 — 1 H H
§s2(S1,82) = 7 log |1+ HaSoHJ (I+ F1S,FY) ! + 5 log [T+ sy | EDY O (30)
Fq Fq
1 — 1
=3 log [T+ HzS2Hg (I + FlSlF?) ! + 3 log ‘I + SlF?Fl + 28101‘ (32)
andE; andO;, i = 1,2, are defined &s
I A,
AT 1
1 _
0, = 3 (H; — A,F)T" (I- Az'AZT) ' (H; — A;F;). (33)
Proof: Letz? = [z}, - ,mg;]T be an input sequence of usethat satisfies
j=1
tr (S;) < P (35)

Then we immediately obtain th&; < ¢; (S1) and Ry < g5 (S2) in (27). Fore > 0 ande — 0 when

n — oo, by Fano’s inequality we have

n(Ry + Ra) — ne

<I(z;y7) + 1 (x3;95)

& I(afsyh) + T @332, Fash + n3)

= h(Hiz! + Foxy + 27) — h (Foxh + 27) + h (Fazy +n3) — h(ny) + h (Fxh + 25 |Foz5 4 nj)
—h(z3|n3)

b
© h (Hiz} + Foxy + 27) — nh (Fazag + 21) + nh (Foxag +n2) — h (ny) + h (Fozxhy + z5|Faxy + n)

*We note that the of (32) in the first row has dimension; and thel in the second row has dimension wherej €

{1,2},5 #1.
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—h(z3|n3)

(c)
< nh(Hiz1c + Foxog + 21) — nh (Fazog + 21) + nh (Fazog + n2) — nh (ng)

+nh (Faaq + 22|Foxac + n2) — nh (22n2)

2 22
=nl (x1¢; Hiz16 + Faag + 21) + nl | z2c; Toq +
F2 N9
T
1 11 H, H; _
= 3 log [1+ HiSH (I+ F,S:F}) ‘ + 5 log T+ S, E;! (36)
Fy F

where, in (a) we lehj be a sequence of independent and identically distributags§ian vectors each
has the following joint distribution witkz,:

{%] ~ N (0,Ey) = N (0, ! Az]) . (37)
ny AT 1

Equality (b) is by the fact that, andz; have identical marginal distributions, and thus

—h (Faxy + 27) + h (Faoxh +nj)
=0
= —nh (Foxog + 21) + nh (Faxog + ng)
where
x;,qg ~ N(O, Si) -

Inequality (c) is by [5, Lemma 2].

To show (29), we have

T
H H
log [T+ ? Sa ? E2_1
F, Fy
T ~1
a H I A H
@ log |T + So ? ? ?
F, AT 1 F,

T T —1
F I A F
= log [T+ S» ? 2 ?
Hy| |Ay I H,
T T
F I 0 A _ F
©ogT+8, |2 + |77 (1- AAD) T Ay, T 2
H, 00 -1 H,
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— log (1 + SyFFL + Sy (Hy — AsFy)T (I AyAT) ' (H, — AgFy)
= log |T + SoF,F7 + 25,04 (38)
where (a) is by the matrix identity
I+ AB|=|I+BA| (39)

and (b) is by [11, Lemma 3]. The other sum-rate boygggdis similarly obtained.
We have established the fact that for any input sequeagesndzh that satisfy (34) and (35), the

corresponding rate pair is bounded by

R; < gi(Si) (40)
R1 + Ry < Gsi(S1,S2). (41)
Therefore, (27) is an outer bound for the capacity region. [ |

Lemma 7:The g1 and gs, are both concave functions &; andS, for any E; and E, that satisfy
(32).

Proof: This is an immediate result of [11, Lemma 2]. Considering, [@4.(16)], if we choos&; =1
andE, as in (32), then [11, eq.(16)] reducesdq. Similarly, if we chooseéEs =1 andE; as in (32),
then [11, eq.(16)] reduces @-. Thereforegs; andgs, are both concave functions. |

Using Lemmas 6 and 7, we obtain the maximal sum-rate and thedasies of the outer bound in the
following lemmas.

Lemma 8: The maximum in the following optimization problem is an upp®und on the sum-rate

capacity of the MIMO IC:
max Ri+ Ry
subject to Ry + Ra < ¢1(S1) + 92(S2)
Ry + Ra < g51(S1,S2)
Ry + Ra < g52(S1,S2)
tr(S;)) <P, S;>=0, i=12. (42)
Furthermore, ifS7 andS; are optimal for problem (42), and there exist matridggs = 1, 2, that satisfy
SiHY = S{FTAT (@3)

AAT <1 (44)
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for i = 1,2, then there exist Lagrangian multipliefs\;, 7; and W; that satisfy
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F4+A+A =1 (45a)
_ - _ by _
W, — _%H{ (I+H,S{HY) ' H, — SHT (1+ HiS{H + FoS3F)) "H,
A _ _
—72F"1F (14 H,S3HY + F1STFT) T Fy + I — 30, (45b)
_ - _ by _
W =~ HJ (I+ HoS3H]) ' Hy — J'FS (I+ HuS{HT + FuS3F]) ' Fy
—%Hg (I+H,S3HS + Fls’{FlT)_l H, + 7,1 — ;05 (45c)
>0 if R+ Ry = g1 (S*) + go (S
5 | 1 2 91( 1) 92( 2) (45d)
=0 if Ri+ Ry < g1 (Sik) + g2 (S;)
_[>0 if Ry + Ry =gs(S*,S%) = g (ST, S
by | 1 2=4 ( 1 2) g ( 1 2) (45¢)
=0 if R+ Ro < Gsi (S?SE) :gSi( T?SE)
>0 iftr(SH)=p
i (45f)
=0 iftr(S}) <P
tr (W;S;) =0 (459)
W, =0 (45h)

for i = 1,2, whereO; is defined in (33).
Proof: By Lemma 7, (42) is a convex optimization problem; thereftinere exist Lagrangian multipliers

that satisfy the KKT conditions (45a)-(45h). The corregiing Lagrangian is

2 2
L=—(Ri+ Ra) +7(R1+Ro—g1—g2) + Zj\i (R1 + Ry — gsi) + Zﬁi (tr(S;) — Pi)
=1 i=1
2
=1
Thus, comparing to Lemma 4 we need only to show thatifgre {1,2} andi # j,

Gsi (S1,83) = gsi (S, S3) (47)
agsi 893@'
= 48
0S; |s1 =51 0S; |s1 =57 (48)
Sy =83 Sy = S3
agsi 893@'
= 0O.. 49
0S; |s:1=si 0S; |s1 =57 0 (49)
Sy =S} Sy = S3
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Equalities (47) and (48) are straightforward by (43). By syetry, it suffices to show (49) far=1 and

j=2

agsl
0Sq |81 =57
S, = S3
1 — 1 _
= SF5 (I+ HiSTH] + FuS3F]) 'Fy— 5F3 (1+ FaS3FY) 'Fy
1 _
+5 (F§F2 4 202) (I+ S3FTF, + 2530) !
(ﬁ)lT syl T\ —1 1T T\ —1

1 .
5 (F3F24200) (I+ S3FTF,)

_l’_

1 ] .
2 SF (1+ HiS{HT + FoSiF]) 7' Fa o+ 0, (1+ S3FIF,)
o1 - B
9 FF (14 HSTHT + FaSiE]) ot O (1- 8 (T4 FIRss)) ) PO
| .
@ §F'§ (I+H;S{HT + F2S3F]) " Fy + 0,
8931
) o 50
| o, (50)
Sy =85

where (a) and (d) are both from (43) which implies

Sr0:f = 0. (51)

Equality (b) is by the matrix identity [12, p. 151]:

CI+DC)'=@1+cCcD)'C (52)

which implies

—F] (T4 FoS5F]) ' Fy + FIF, (14 S;FLF,) ' = 0;

and (c) is by the Woodbury matrix identity [13, p. 19]:

(C+UBV)'=c'-c'UB'+vCc'u)'vcl (53)

Lemma 9:Let Ry = r with 0 < r < max £ log [T+ H,S,Ho|, and letR;(r) be the maximum in the

following optimization problem:

max R;

subjectto Ry < ¢1(S1)
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7 < g2(S2)

Ry < g51(S1,82) —r

R1 < g52(S1,82) — 7

tr(S;)) <P, S;>=0, i=12. (54)

Then {R“{(r),r} is on the boundary of the outer bound given in (27). Furtheend S; and S5 are
optimal for problem (54), and there exist matricAs, i = 1,2, that satisfy (43) and (44), then there

exist Lagrangian multipliersy;, 5;, 7; andK; that satisfy

G+ B+ B=1 (553)
K, = —%H{ (I+H,S7HT) " H, - %H{ (I+ H,STHY + F,S3F7) ' H,y
—72F:1F (14 H,S3HY + F1S{FT) ' Fy + I — 5,04 (55b)
R, — _2uT 1 N Bi — sl 1
2= —5H, (I+H,S;H;) H,— ?F2 (I+H;STH] + FoS5F; )  Fy
—%Hg (I+H,S3HS + Fls>{F1T)‘1 H, + 751 — 5,04 (55c)
>0 if Ry = S
a; 1= 0 (87) (55d)
=0 if Ry <g1(S))
_ | >0 if Ry =g (S%,S%) —r =gy (St S5 —r
B 1 = Jsi (S1,S3) 9si (S1,83) (55€)
=0 if Ry < gsi (S%,85) —r = gs; (ST,85) —r
>0 iftr (S} ="
7 (55f)
=0 iftr(SH) <P
tr (K;S}) =0 (559)
K, =0 (55h)

for i = 1,2, whereQ; is defined in (33).
Proof: Similarly to the proof of Lemma 5, it can be shown tt{di’,{(r),r} is on the boundary of the
outer bound (27). Conditions (55a)-(55h) are the KKT cadond# of problem (54). The corresponding

Lagrangian is
2

2
L=—Ri+a (Ri—gi1(S1) + a2 (r—g2(82)) + > Bi (Ri +7— g5 (S1,8)) + >_ i (tr(Sy) — P,)
i=1 i=1

2
=1
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Since (24) is a convex optimization problem, the Lagrangmaditipliers do exist. The rest of the proof

is similar to that of Lemma 8 and is hence omitted. [ |

C. Sum-rate capacity and capacity region

Now we obtain the capacity results for MIMO ICs with generadtrong interference by comparing
the inner and outer bounds.

Theorem 1:SupposeS? i = 1,2, are maximizers of problem (20) and foe 1,2, let \; and W; be
the Lagrangian multipliers in (21a)-(21h). For ahy > 0, j = 1,2, if there existA;, i = 1,2, i # j,
that satisfy (43) and (44), and

W, = \;0; (57)

where O; is defined in (33), then the sum-rate capacity of the MIMO IGhis maximum in problem
(20) and is achieved by the input distributioms~ A (0, SY), i = 1,2, and jointly decoding the signal
and the interference.
Proof: SinceS7 andS3 maximize problem (20), the KKT conditions in (21a)-(21h)ico

If A1 = X2 = 0, the maximal achievable sum ratenisixy(s,)<p, s,-0 [91(S1) + 92(S2)] which is also
an obvious upper bound on the sum-rate capacity. Therafasethe sum-rate capacity.

If A\y >0 andXy >0, we let
=7, N=X, Ti=mn W;=W,;—X\O0;, i,j €{1,2},i #j (58)

and sinceS70; = 0, ¢ = 1,2, then the KKT conditions (45a)-(45h) for the upper bound) (@& also
satisfied. By the convexity of (4287 andS; also maximize problem (42). Furthermore, problems (20)
and (42) have the same maximum by the fact hha{S;,S5) = g« (S7,S5), i = 1,2. Therefore, the
lower and upper bounds on the sum-rate capacity conver¢®;as’).

If Ay > 0 and Ay = 0, then we remove the constraifit; + Ry < gs2(S1,S2) in problem (42).
Consequently, in Lemma 8, we need the existence of dnlyo satisfy (43) and (44). The corresponding
KKT conditions in (45a)-(45h) are changed into those edaivato letting A, = 0. Then we can still
choose the Lagrangian multipliers as in (58). TherefBieandS:; also maximize problem (42). Problems
(20) and (42) have the same maximum which is also the sumcegtacity.

The case for\; = 0 and 2 > 0 is similarly proved by removing the constraiRt + Rs < gs1(S1,S2)
from problem (42). [ |

Remark 1:In the proof of Theorem 1, we remove the constrdiit: Ry < gs2(S1,S2) when\y, =0

only because we do not need the existence\efto satisfy (43) and (44) which imply. (S7,S3) =
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gs2 (S7,S%). Since the rate constraints is inactive in the inner bound whek, = 0 we can simply
remove the constrairi,, from the outer bound.

Theorem 2:SupposeS;, i = 1, 2 are maximizers of problem (24) for a givere [0, max 3 log |I + HyS;HY|].
Fori =1,2, let 3; andK; be the corresponding Lagrangian multipliers satisfyinga2(25h). For any
B >0, j=1,2, if there existA;, i = 1,2, i # j, that satisfies (43) and (44) and

K; = 5;0; (59)

whereO; is defined in (33), then the rate pdiR; = Rj(r), R2 = r} is on the boundary of the capacity
region, and is achieved by the input distributians~ N (0,S}), ¢ = 1,2, and jointly decoding the
signal and the interference.

Proof: The proof is similar to the proof of Theorem 1. We first modifpplem (54) according t@;.
If 3; =0, then we remove the constraifty < g,; — 7.

By choosing
a = q, Blzﬁly v = KZZKZ_BJOM 17]6{172}72#]

then the KKT conditions in (55a)-(55h) for the modified prerol (54) are satisfied. Therefore, the modified
problem (54) is also maximized &} and S;. Problems (24) and the modified (54) have the same
maximum by the facy; (S7,S3) = g,; (S7,S5) for any j with 5; > 0. [ |

Remark 2: Theorem 2 is used to establish the boundary of the capadigrreFor each boundary
point, we need to find the corresponding matrickes satisfying (43) and (44) which gives one outer
bound. This outer bound is tight at this particular pointefiéfore, to find the whole capacity region, we
need to find the tight outer bound for each boundary pointrtaee cases in which only part of the
boundary points can be determined by Theorem 2, see Example 4

Remark 3:In Theorems 1 and 2, in case ®f # 0 or 3; # 0, we always need the existence of matrix
A,;, i # j, satisfying (43) and (44) even ©; = 0. The reason is that the corresponding tight outer
bound can be established only when suchexists.

Remark 4:1f the conditions in Theorems 1 and 2 are satisfied, then thMI®MIIC has generally
strong interference at the sum-rate capacity or at the rate{f;(r),r}. In both cases, the capacity
is achieved by Gaussian input sequences and jointly degdban signal and the interference. We show
in the following that under conditions (43) and (44), inelifies (2) and (3) are satisfied for the input
distributionz} ~ A (0,S}), i = 1, 2:

I(xy;y | 25) = 1 (21 Huzy + Foxy + 21| 25)
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(z7; Hiz] + 21)
log I+ Hls’{Hﬂ
log |+ H;S{F{ AT |

log [T+ A FS{F{ AT |

NN RN =N =N

(Qf{; A1F19§>{ + 21)

(é) I ({ET7 Ay Flflf{ + 21) + (I — AIAT) 2)
(1

(
I (x5 A (Fiz} +21) + (I- A1AT) 2,2)

IN

[(ff{;Al (Fl.’l»'){ +21))

—
SH
=

< I (.’lf{7 F1$>{ + zl)

I(z7;y, | 23) (60)

where (a) is by (43); (b) is also by (43) which impli&$;S; = A;F;S3; (c) is by (44) and we let
z ~ N (0,I) be independent of; and z;; and (d) is by the Markov relationship; — 2} + 21 —
A, (] + z1). Similarly, we can show (z3;y, | 7) < I (x};y, | 7). Therefore, the strong interference
conditions (2) and (3) are both satisfied for a MIMO IC with gaally strong interference at the capacity
achieving input distributions. For other input distrilmurts, the MIMO IC with generally strong interference
may not satisfy the strong interference conditions (2) &8)d (

Remark 5:1f an MIMO IC has generally strong interference at rate pdi;, R} and satisfies the
conditions in Theorem 2, then this rate pair is in the acliv/aegion given in (18) by replacing; with

Sy, for i = 1,2. By Remark 4, we have
R < %log I+ F1S’{F1T|
Ry < %log T+ F2S5F7].
On combining the above constraints with those in (18), weshav
0< Ry <min{l (21,9, |23),1 (21,92 ] 23)}
0 < Ry <min{I (5,y,| x7),1 (23,9, ] 1)}
Ry + Ry < min{I (2125,91), 1 (£123,92)} -

The above region is the same as the achievable region of aaorpmultiple access channel (by

requiring both receivers to correctly decode messages lfratim transmitters). Therefore, under generally
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strong interference, the receivers can still correctlyodiecthe interference for the capacity achieving
distribution.

Remark 6: Theorems 1 and 2 specify the sum-rate capacity and the boupdants of the capacity
region for a MIMO IC with generally strong interference. Tetwnditions of Theorems 1 and 2 require the
optimization of problems (20) and (24) and the solution &)(#r matricesA; and A,. Since both (20)
and (24) are convex optimization problems, they can be efftti solved using standard optimization
algorithms. Equation (43) for matrices; and A, is a special case of the Sylvester equation [14]. Once
S} andS; are obtained, the matrice’s; and A, can be obtained by solving the following linear equations

[11, Remark 7]:
I® (S{F]) Vec(A) = Vec(SiHY)
I® (S3F3) Vec(A,) = Vec (S5H3)

Therefore, the existence df; and A, can be determined by the theory of linear equations. G8ice
5, A1 and A, are obtained, the Lagrangian multipliexs W;, 3; andK;, i = 1,2, can be obtained by
solving the KKT conditions. Therefore, Theorems 1 and 2 carefficiently applied to any MIMO IC.
Remark 7:If the strong interference conditions (7) and (8) are satisfive haveO; = 0, i = 1, 2.
Therefore, the generally strong interference conditiomsautomatically satisfied. Furthermore, for the
very strong interference we hayg = 82 = 0 whenr = %maxsz log \I+ HQSQHﬂ. Therefore, the
generally strong interference conditions are also satisfied we do not need the existencefof or As.
In the following, we apply Theorems 1 and 2 to SIMO and MISO #Dsl derive their capacity region

under generally strong interference.

Il. SIMO ICs

The received signals of a SIMO IC can be written as

Yy = Xih + Xofy + 21
Yo = Xoho + X1 f1 + 20. (61)

whereh; andf, i = 1,2, are botht; x 1 column vectors. We need to firtgx ¢; matricesA; that satisfy
(43) and (44). Since thB8}’s are now scalars, we have
hip}

A; = ,
' PZsz

i=1,2 (62)
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where p; is a nonzera; x 1 column vector. For condition (44), we need
hip! pihi hih!

I=AA] = 5 = i=1,2. (63)
(plf:) 1£ill” cos® Z(p;, £ )
By [5, Lemma 6 byB = I] the above condition is equivalent to
1hill* < 1£:ll? cos® 2 (pis £2) < Ifsll% i=1,2. (64)

On the other hand, we hav®; = 0, i = 1,2, by (62). Therefore, the SIMO IC has generally strong
interference for the entire capacity region if foe 1,2, [|k;|| < ||f;| for any £, # 0. This condition is
the same as that in [4] and is also included as a special cd5& ak., the generally strong interference
obtained from Theorems 1 and 2 is exactly the same as stroaderence.

It is straightforward to show that the very strong interfere condition (11)

log ‘I + Pihl-h;fp

<log [T+ Pifof] + Pkl | ~log L+ Pihsh]| ij e {1,2hi#]  (69)

is equivalent to
A L+ Py
1hll> = 1+ Py[|h;||* sin® Z(£;, hy)

Therefore, for the SIMO IC the very strong interference dtioid is a special case of the (generally)

i,j € {1,2},i # j. (66)

strong interference condition.

IV. MISO ICs

In this section, we use the MISO IC as an example to show hovorEnes 1 and 2 are applied to
obtain its capacity region under the generally strong fatence. The received signals of a MISO IC are

defined as
T AT
Yi=h 21+ fo2o+ 724
T AT
Yo=hyZo + f1 21 + 22 (67)
whereh; andf,, i = 1,2, aret; x 1 channel vectorsZ; ~ A/(0,1) and
n
3 tr (E [xjmﬂ) <nP, i=1,2 (68)
j=1

It has been shown that the capacity region of channel (67hassime as that of a MISO IC with
only two transmit antennas [15]. In fact, the capacity ragid anm-user MISO IC is the same as that
of anm-user MISO IC with eachith transmitter havingnin{¢;, m} antennas. The reduction process of

transmitter antennas is shown in [16, eqs.(45)-(47)] amdpiplication to the two-user MISO IC is shown
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in [11, egs.(78)-(83)]. We rewrite the result of [11] as fells: channel (67) is equivalent to the MISO
IC defined as

Vi =hiz, + flas + 73

Yo =hizs+ fla, + 2o (69)
where, fori =1, 2,
_cos 0;
h, = (70)
sin 6
Vai
fi= (71)
0
and
0:= 2 (hi. 1) (72)
L 12
fi
a; — NP (73)
h;
The power constraint is now
2
Ztr [z;2L]) <nP =nP, . i=1,2. (74)

If S; is the input covariance matrix of usérfor equivalent channel (69), the corresponding input
covariance matrixS; for the original channel is obtained in [11, eq. (88)]. In #$eguel, we use (69) as
the channel model for MISO ICs.

We first obtain the joint decoding achievable rate regioregiin Lemma 3.

Lemma 10:The achievable rate region (18) for a MISO IC is

/

R < %log (1 + Py sin?(0; + Tl(bl))

Ry < Llog (1+ P sin?(6y + T2¢2))
R+ Ry < % log (1 + Py sin?(0 4 11¢1) + ag Py sin® <;52)
Ry + Ry < % log (1 + Pysin?(0y + Ta¢o) + a1 Py sin? qﬁl) )

(75)

wherer; = sign(cos(6;)), and is achieved by

T
S, — P, [ sin ¢; ] { sin ¢; ] _p { sinzqﬁi T; COS ; sin ¢; =1, (76)

T; cos ¢; | | 7 cos ¢; T; COS ; sin @; cos? ¢;
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Proof: It has been shown in [16, Lemma 2] that given

fIsifi=aiPsi? o, oo, g} (77)

we have
hl'S;h; < P;sin®(0; + 7i;) (78)
and the equality is achieved by (76). Therefore, region (&8uces to (75). ]

Lemma 10 reveals the fact that all the boundary points of #te region (18) can be achieved by
rank-1 beamforming. Therefore, to determine whether thentary points of region (18) are also the
boundary points of the capacity region, we need to considér the rank-1 covariance matrices. By
Theorems 1 and 2, we obtain the sum-rate capacity and thedaourmf the capacity region in the
following propositions.

Proposition 1: For a MISO IC defined in (67) and its equivalent channel (68),SI’, : = 1,2, be
optimal for problem (20) wheré&l; = hiT andF; = ZT i = 1,2; then there exist; [0, g] i=1,2,

such that

(79)

i

s — p, sin? ox T; COS @5 sin ¢}

T; cOs ¢ sin ¢ cos? ¢
where 7; = sign(cos §;). Furthermore, let\;, and W;, i = 1,2, be the Lagrangian multipliers satisfying
(21a)-(21h). For any; > 0, j =1,2,5 # 1, if

sin? (6; + 7} < a;sin? ¢} (80)
A in? 6; cos? ¢ —T; sin ¢} cos ¢

| A L . g Pieos (81)
2 asin® @7 —sin” (6i + ¢7) | _r;sin ¢ cos ¢F sin? ¢f

then the sum-rate capacity is the maximum in (20) and is sebidy Gaussian inputs; ~ N (0, S})
and by jointly decoding the signal and the interference.

Proof: The fact that the optim&;’s have the form in (79) is determined by (77) and (78). By Teeo
1, the maximum in (20) is the sum-rate capacity, if for any> 0, j = 1,2, j # i the following conditions

are satisfied:

1 A
o (82)

A 1
Sth; = Sif,A; (83)
W; = X0, = 2(1/%142) (hi — Aif;) (hi — Aif))", 0,5 € {1,2},0 # . (84)
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SinceS; is a unit-rank matrix, there always exists a scadarthat satisfies (83), and

T sin (91 + Tlgb;k)

A; 85
V@ sin @7 (85)
With (85), conditions (82)-(84) reduce to (80) and (81). |

Proposition 2: For a MISO IC defined in (67) and its equivalent channel (68)SI', : = 1,2, be
optimal for problem (24) for a given € [O, % log(1 + PQ)] whereH,; = hZ-T andF; = ZT i =1,2; then
for i = 1,2, there existp; € [0, Z] such that
S —p sin? ¢ T; COS @) sin ¢} (86)

T; COS ¢; sin ¢} cos? ¢f
where7; = sign(cos 6;). Furthermore, letR}(r) be the maximum in problem (24), and I8t and K;,

i = 1,2, be the Lagrangian multipliers satisfying (25a)-(25h)r Bay 8; > 0, j = 1,2,j # 4, if

sin? (92 + 7’“}5:) < a; sin? (;5: (87)
. 2 % : * *
K> B .2 *asu‘12 292 : cos” ¢} —T; sin ¢ cos ¢ (8)
2 asin® ¢} —sin® (6; + ¢}) —7;sin ¢ cos ¢f sin? ¢f

then the rate pai(Rj (r),r) is on the boundary of the capacity region, and is achieved ays&ian
inputsz; ~ N (0,S}) and by fully decoding the interference.

Proof: The proof is identical to that of Proposition 1 and hence istteah. [ |

Propositions 1 and 2 provide sufficient conditions for a MIEDto have generally strong interfer-
ence. Those conditions are more amenable to numerical agi@iusince the optimal input covariance
matricesS; can be obtained using standard convex optimization atguost while analytical closed-form
expressions fo? are difficult to derive in general except in the very strontgiference case:

Proposition 3: For the MISO IC ifa; = 0 or a; cos®§; > 1+ P;, i = 1,2, then the capacity region is
0<R; <ilog(l+P,),i=1,2, and is achieved by choosing ~ N (0,S}), i = 1,2, where

cos? 6; 7; cos B; sin 6;
S; =P (89)
T; cos 0; sin 0; sin? 6;
andr; = sign(cos 6;).
The proof is straightforward and hence is omitted.
In the following, we apply these two propositions to two specases of MISO ICs: the MISO ZIC

with f; = 0, and the symmetric MISO IC with; = 03 # 5, a1 = a2 >0 and Py = P, > 0.
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A. MISO ZIC

A MISO ZIC is defined as in (67) witI)A“1 = 0. By using (69), the capacity region of such a MISO

IC is equivalent to the channel defined as
Vi=Xi+flas+ 24
Yo =hTxy + Zo (90)

where we letd; = Z(hy,f;) = 0 when f, = 0. Therefore,z; reduces to a scalak;. The power
constraints are stilP; and P, for usersl and2, respectively.

Whena = 0 or 6§ = 7, the capacity region of this MISO ZIC is trivially obtainedthen6 < {0, r},
the MISO ZIC reduces to a scalar Gaussian ZIC of which the @gpeegion under (generally) strong
interference has been obtained. Without loss of generaligyassume: # 0 and6 ¢ {0, %, 7} in the
sequel.

We obtain the joint decoding achievable region of this MISIT by Lemma 10.

Lemma 11:For a MISO ZIC defined in (90), the achievable rate region (g5)

Ry < $log(1+ Py)
U Ry < $log (1+ Pysin? (6 +79¢)) (91)
%3 | Ry + Ry < Llog (1 + Py + aPysin? ¢)

wherer = sign(cos 9).

Proof: For a MISO ZIC with f; = 0, the second receiver has no interference. Therefore, ttende
constraint onR; + Rs in (75) is not necessary and is hence removed. [ |

Using Lemma 11, we obtain the largest sum rate and the boyrafathe region defined in (91)
respectively in the following two lemmas.

Lemma 12:The largest sum rate of the region defined in (91) is

Ri+ Ro
1log(1+ Py) + 3 log(1 + P) if cos?6 > 1th
Log(1+ P, + aP. if cos?6 > —2 -
_ ) g( 1 ) Z 3P, (92)

+log (14 Py + aPysin? ¢..) = 1 log(1 + Py)

—i—% log (1 + Py sin? (0 + T(bez)) if cos?6 < min { o %}

wherer = sign(cos #) and

in 0
e = atan =

= .
1/TPl—T'COSH
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The correspondin@ that achieves the sum rate is

)
cos? 6 sin 6 cos 0
P, ! it cos?p > LTt (94a)
Tsin 6 cos 6 sin? 6 a
P 0
S* — ? if cos?f > —2 (94b)
0 0 1+ P

a 1+P1

P if cos?f < min { 5 a } (94c)

T SN ¢, COS Py cos? Dex

sin? e T Sin P, COS qSeZ]

Proof: We consider the case ebsf > 0, and consequently = 1. The case forosf < 0 can be

similarly proved. The sum rate for the achievable regioregiin Lemma 11 is bounded as

1 1 P sin?
Bi+ Ry < glog(1+ M)+ 5 max, min {log (1+ Pysin®(0 + ¢)) , log <1+ w»

sefo:3] b
= l10g(1 +P)+ llog 1+ P, - max min {di(¢),d2(4)} (95)
2 2 oel03]
where
di(¢) = sin®(6 + ¢) (96)
B asin? ¢
da(¢) = YN (97)

When cos? 0 > 7, We haved; (¢) > da(¢) for all ¢; therefore,¢ = 7 maximizes (95). When

2 a
cos“ 0 < wp We have

{dlw) it 0< ¢ < de

max {di1(¢),d2(¢)} = _ (98)
(156[0,%] d2(¢) if ¢ez < QS < g
where ¢., is defined in (93), which means that
-2
. 9 _asin® ¢,
sin® (0 + ¢ey) = BT (99)

It can be shown that whenos?6 > 1%’%, (95) is maximized byy = T — ¢; and whencos? <

min { L2, pen b, (95) is maximized by = g -

We then obtain the boundary of the region defined in Lemma 11.

VB
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Lemma 13:The following rate pairs are on the boundary of the regionnaefiin (91):
14+ P

1 1 .
{R1 = 5 log(l + Pl), Ry = 5 log(l + PQ)} if COS2 0> a (1008.)
Ry = tlog (14 Py + aPysin?¢) — R
U ! f g( ! ? (b) ? if cos?6 > 1 aP (100Db)
¢€[T(§—9),§] Ry = ilog (1—|—P2 sin? (9+T¢)) + 1

Ry =1log (1+ P, +aPysin?2¢) — R
U 1 i g ( 1 22 ?) 2 i cos29§min{1 aP71+P1}
oelr(2-0).0°] Ry = 3log (1 + Pysin® (0 4 7¢)) thoa

\ (1000)
where 7 = sign(cos ) and ¢., is defined in (93). The correspondirgthat achieves these boundary

points is

[ cos? 6 78in 6 cosf 14+ P

P, if cos20 >~ 11 (101a)
7sinf cos 6 sin? 6

S* = -
sin? sin ¢ cos

P ¢ 7 sin ¢ cos ¢ otherwise. (101b)

T sin ¢ cos ¢ cos? 10}

Proof: It is obvious that wheros? § > 1+T‘Pl, the R; + R» constraint becomes redundant by choosing
T¢ = 5 — 6 which maximizesR;. Therefore, (100a) determines the boundary points. Forcése of
cos?f < %, we prove (100b) and (100c) fatos# > 0. The results forcos# < 0 can be proved
similarly.

By Lemma 5, forRy; = r, the maximalR; is determined by

max Ry

. 1
subjectto R; < 3 log(1+ Py)

Ro=r
1
Ry < 3 log (1 4 Pysin’® (6 + w))
1
R; < §log (1 + P +ansin2w) -7
T
we [0, 5] . (102)
By Lemma 12, wheros? § > 7. the sum rate (100b) can be achieved by chooSirg (94b). For
this input covariance matri®, the line segment connecting the following two points arg¢temboundary:
1 1 CLP2
= —log(1+ P, =—1 1 103
<R1 5 log(1+ P1), Rp 20g< +1+P1>> (103)
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1 1 1
<R1 = 5 log(1+ P, +aPy) — 3 log (1 + P, cos? 9) , Ry = 5 log (1 + Py cos? 9)) . (104)

Therefore, we need to consider only the boundary points fitlg (1 + P, cos? ) < Ry < $log (1 + P,).
Let
rzllog(1+Pgsin2(9—|—¢)), qbe[z—ﬁ,z}; (105)
2 2 2
then problem (102) becomes

1
max 3 log (1 + P, + aPysin® w) —r

subject to sin? (A 4 w) > sin® (6 + ¢)

we [0, g] . (106)
We note that in this case the boui] < {log(1+ P1) is redundant becauses” > % It can

be shown that the maximum in problem (106) is achieved when ¢. Therefore, the points given in

(100b) are on the boundary.

When cos? 0 < min{lfpl, “:f’l } the sum-rate line segment defined in (103) and (104) shtimks

one point:

1+ P1
Therefore, we need to consider only the boundary points Witbg (1 + P sin? (6 + ¢*)) < Ry <
$log (1 + P,). Let

1 1 1 P sin? ¢
(31 = Slog(L+ P), Ry = 5 log (1 + Pasin® (6 + 6..)) = 5 log <1 n m)) . (107)

s

r= %log (14 Pysin® (0 +¢)), andg e [2 —9,%2}; (108)

then problem (102) becomes (106), which is maximized also by¢. Therefore, (100c) is the boundary.

[ |
Lemma 14:The capacity region of a MISO ZIC is outer bounded by
1
Ry < —log(l+ Py)
Ry < 5 log(1 + hSh)
tr(S)<P»,S=0 1 P 1 r (h—Af)(h— Af)T
< Z S Z
R1+R2_210g<1+1+fTSf>+210g I—I—S(ff + [
(109)

where A can be any value satisfying? < 1.

Proof: We choose

August 6, 2018 DRAFT



31

] A]
; (110)

then by (33), we have

(h = Af)(h—Af)"
2 (1 — A2)

By Lemma 6 and substituting (111) into (27), we have that J1i8%n outer bound for the capacity

0, =

(111)

region. [ |
Next, we obtain the sum-rate capacity and the boundary ofdpecity for a MISO ZIC with generally
strong interference.

Proposition 4: For the MISO ZIC defined in (90), if

acos’l >1+ P, (112)
then the sum-rate capacity is
1 1
Ri+ Ry = 3 log(1+ Pr) + 3 log(1 + P») (113)
and is achieved by (94a). If
1+ Pysin?6 9
0< —————<a<(1+P 0 114
1—Pgsin29_a_( + P cos (114)
then the sum-rate capacity is
1
Ri+ Ry = Slog (14 P +aP) (115)
and is achieved by (94b). If
. 1+ P
29 < _*
cos 9_m1n{1+P1, - (116)
Py sin? 6
P a ~Tcosf > (1— ¢ rcosd 14+ P+ b (117)
L+ 5 L+ 5 —+1-2 ¢ rcosd
1+ P 1+ P

then the sum-rate capacity is
1 .
Ri+ Ry = 3 log (1 + P, + aPysin? gbez)

1 1
=5 log (14 Py) + 3 log (1 + Pysin® (0 + T¢bez)) (118)

and is achieved by (94c).
Proof: We consider only the case in whichs 6 > 0, and consequently; = 1. The case forr = —1

can be similarly proved. Whemcos? # > 1+ Py, the MISO IC has very strong interference. Its sum-rate
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capacity is trivially proved. Next, we first consider the ead (114). Using Lemma 12, the maximal sum

rate of (91) is (115) and is achieved by (94b). Then from Lenmfhthere exist Lagrangian multipliers

that satisfy
Y+ A =1 (119a)
T T
W2 =3 (1 J?D:cos? 0) 2(1 ﬁ;ﬁr Py ol (119b)
y = (119c¢)
A1 >0 (119d)
n2 > 0 (119¢)
tr (W5S3) =0 (1191
W, =0 (1199)

whereS* is given in (94b) which implies
P = —. (120)

We note that since the constraiRt + R2 < gso in (20) is removed, the associated Lagrangian multiplier
A2 in (25a)-(21h) is also removed (which is equivalent to sgttis = 0).
Solving (119a)-(119g), we have

0 0
W, = " . (121)
2(1 + P1 + CLPQ)

By Proposition 1, (115) is the sum-rate capacity if

cos’l < a (122)

asin?6 [0 0

1
W; = 37 (123)

— cos20 0 1

The above two conditions reduce to (114). We note that # < « is redundant since (114) implies
a> 1.
Next, we prove the sum-rate capacity for conditions (116) @17). By Lemma 12, the maximal sum

rate of (91) is (118) and is achieved by (94c) which implies

gb* = ¢ez' (124)
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There exist Lagrangian multipliers that satisfy

YA =1 (125a)
T T
W, = — W; - MFF —— + 7l (125b)
2 (1 + Py sin” (6 + qﬁez)) 2 (1 + P + aPssin qﬁez)
y>0 (125¢)
A >0 (125d)
>0 (125€)
tr (WsS3) =0 (125f)
W, > 0. (1259)

We note that we also removed the terms associate Witfrom (25a)-(21h) for the same reason. By

solving (125a)-(125g), we have

A = Sln2(9+¢ez). (126)
sin2 (0 + ¢e) — asin 29
ez 1 +P1
y=1-\ (227)
. 1 — Ap)sin?6
= ksin? p.. ( 128
72 sin” ¢ +2(1+P2sin2 6+ 600)) (128)
cos? e — sin @, COS Pp
W, =k ¢ ¢ ¢ (129)
— SN @ COS Qe sin? Gex
where
1-— in 2
k= : ?1 ,Sin20 (130)
2 (1+ Pasin® (0 + @ez)) sin2¢e.
We note that under condition (114), we ha§e< ¢.. + 6 < .
By Proposition 1, (115) is the sum-rate capacity if
sin? (0 + ¢e.) < asin? ¢, (131)
A in? 6
k> : (132)
2 asin® ¢e, — sin® (0 + @)
Condition (131) is satisfied by (93), and condition (132) asified by (117). ]

The MISO ZIC under conditions (113), or (114), or (116) an@iA}lis said to have the generally strong
interference sum-rate capacity of type | (very strong fetence), type Il and type lll, respectively.

Proposition 5: For the MISO ZIC defined in (90), ificos? # > 1 + Py, then the capacity region is

1
0< Ry < glog(l+Py) (133)
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1
0< Ry < 5 log(l + PQ) (134)

and is achieved by (101a). tfcos?# < 1 + Py, then for anyg that satisfies

Q(¢) >0, ¢c@® (135)
where
pe [FE-05 W i eoo < w56
B T(Z —0), e, if cos?2f < min {2, L
2 P a
. . 2
Q(¢) £ asin? ¢ — sin? (6 + 7¢) sin 2 (OS;Z;) sin” 6 (14 Py + aPssin® ¢) (137)

wherer = sign(cos ), the following rate pair is on the boundary of the capacityioa:
1
Ry = 3 log (1 + Py + aPysin® ¢) — Ry (138)
1
Ry = log (1 + Pysin® (6 + ¢)) ; (139)

and the rate pair is achieved by choosthgs (101b) and jointly decoding the signal and the interfezen
at receiverl.

Proof: We prove only the caseosf > 0. Since whena cos?20 > 1 + P;, the MISO ZIC has very
strong interference and the capacity region is triviallpyaed, we need to consider only the case with
acos?f < 1+ P,. By Lemma 13, the rate paiiR;, R>) in (138) and (139) is on the boundary of the
inner bound defined in (102). Therefore, tHg given in (138) is the maximum in the optimization

problem (24) withr = R, given in (139). By Lemma 5, there exist Lagrangian multigi¢hat satisfy

ar+ /=1 (140a)
T T
Ko=3 (1+ Pofs’il:?(e +¢) 2(1+ PlﬁfZPQ sin? ¢) el (140b)
a; =0 (140c)
az >0 (140d)
Br >0 (140e)
vy >0 (140f)
tr (K2S3) =0 (1409)
K> = 0. (140h)
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We note thaty; = 0 simply because constraifit; < %log(l + Pp) is always inactive by —0 < ¢ < §

anda < (1 + P;)cos?6. Then we have
a(1+ Pysin®(6 + ¢)) sin 2¢

= — 141a
@ (1+ P + aP,sin? ¢) sin2(6 + ¢) ( )
pr=1 (141b)
v = ksin? ¢ + apsin® 6 (141c)
T 2(1+ Pysin?(0 + ¢))
W, — sin? ¢ —sin ¢ cos ¢ (141d)
—sin ¢ cos ¢ cos? ¢
where
k= L 20 (142)
2 (1 + P, sin”(0 4+ <25)) sin 2¢
We note thatw, > 0 sincer <sin2( + ¢) < 37.
By Proposition 2, thigR;(r), ) is on the boundary of the capacity region if
sin?(0 + ¢) < asin® ¢ (143)
.2

> 1 asin” 6 (144)

= 2asin¢ —sin? (6 + ¢)
Condition (144) is equivalent t@(¢) > 0 in (135). Condition (143) is satisfied by requiriig(¢) > 0,
since the third term of)(¢) is always non-positive. [ |
Remark 8:Propositions 4 and 5 establish the full capacity region ofl8®ZIC with generally strong
interference. Wherh“—P1 < cos?f < % and Q(¢) > 0 for all ¢ € ®, the capacity boundary points

consist of (see Fig. 7 as an example)

Rlz%log(l—l—Pl—l—ansinqu)—R2 Csed

Ry = }log (1 + Pysin® (6 + )
Ry + Ry = Llog(1+ Py +aPy), Liog (1+ 12 ) < B2 < blog (1+ Pycos? 0) (145)
Ry = 1log(1+ Py), 0< Ry < 3log (1 T ﬁpﬁ)
Ry, = %log(l + B), 0< R < %log (1 + Py + aP; cos? 9) — Rs.

Whencos? < min { T “;Pl} andQ(¢) > 0 for all ¢ € ®, the capacity boundary points consist of

(see Fig. 9 as an example)

( Rl:%10g(1—|—P1+(1P28iD2¢)_R2 ¢€‘b
Ry = $log (1+ Pysin? (6 + ¢)) 7

(146)
Ri = Llog(1 + Py), 0< Ry < blog (1+ )
Ry = %10g(1 + Py), 0< R < %log (1 + Py + aP; cos? 9) — Rs.
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B. Symmetric MISO IC

A symmetric MISO IC has; = 6, = 6 € (0,5), a1 =ax =a >0andP, = P, = P > 0.
In this section, we derive sufficient conditions to detemnthe sum-rate capacity with generally strong
interference. The derivation is similar to that of the MIS@CZand is hence omitted. In the following,
we only summarize the main result.

By symmetry, the maximal sum rate of region (75) is deterhibg
max Ri+ Ry
subject to Ry + Ra < qu(9)

Ri+ Ry < q4(9)

0<¢<3 (147)
where
qu(9) = log (1 + Psin®(0 + ¢)) (148)
1
qs(¢) = 3 log (1 + Psin®(6 + ¢) + aP sin® (;5) . (149)
Obviously
max ¢yu(¢) = qu (¢ = ¢y) = log(1 + P) (150)
sefo.3]
where
b = g —0. (151)
It can be shown that
max qs(¢) = qs (¢ = és) (152)
sefo.3]
where
T 1 sin 20 )
5 — iatan<m> s |f a + cos 29 > 0 (153&)
s = %, if a+cos20=0 (153b)
1 sin 20 :
Define the set
™
@2 {6|au(0) = a(0).0< 0 < 7} (154)
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and denote
¢ = argmax qy (o). (155)
¢e¢e
The maximum in problem (147) and the corresponding optifriadre given in Tab. I.

TABLE |

THE SOLUTION OF PROBLEM(147)FOR A SYMMETRICMISO IC.

case condition maximum ¢* | active constraints
I | 45 (Pu) > qu (¢u) log(1 + P) Pu Gu
| s (0s) < qu(ds) | 3log(l+ Psin®(0 + ¢s) +aPsin® ¢s) | s qs
o | (@) < au (@) Llog(1+ Psin?(0 + ¢e) + aPsin® ¢e) | ¢e Gur s
qs (9s) > qu (5)

By symmetry, the Lagrangian multipliers in (21a)-(21h)isfgt A\, = Xy = X\, 71 = 2 £ n and
W; = W, £ W. Using Tab. | and Proposition 1, we obtain sufficient cowdisi for a symmetric MISO
IC to have generally strong interference:
1) Case I: the constraint is inactive and thus the Lagrangian multiplier associatitk this constraint
is A = 0. By Proposition 1log(1 4+ P) is the sum-rate capacity. In this case, the MISO IC has
very strong interference.
2) Case llI: the constraint, is inactive and thus the Lagrangian multiplier associatitid this constraint

is v = 0. By solving (21a)-(21h), we have

A= 5 (156)
2 B .
W=k cos” ¢ COS (s Sin G (157)
— COS (g Sin Py sin? ¢
where
k= SIIT 920089 . . (158)
4 sin ¢ cos ¢ (1 + Psin®(0 4 ¢s) + aPsin qSS)
By Proposition 1, if
sin? (0 + ¢,) < asin® ¢, (159)
1 asin? @
k>= 160
~ 4 asin? ¢, —sin?(0 + ¢s) (160)

then the sum rate capacity 4g(¢s).
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3) Case lll: constraintg, andgs are both active, therefore,# 0 and A # 0. By solving (21a)-(21h),

we have
A= L (161)
d+2
2 _ .
W= COS” e COS Q¢ sin ¢
— COS Qe sin ¢ sin? e
(162)
where
o (d(1+ Psin® (6 + ¢c)) + 1) sinf cos§ (163)
"~ 2(d+2) (1+ Psin® (0 + ¢¢) + aPsin® ¢, ) sin ¢, cos ¢
_ sm? (29 + ¢e) + a.sm 20, . (164)
(1+ Psin® (8 + ¢c)) sin2 (6 + ¢e)
By Proposition 1, if
sin? (6 4 ¢.) < asin® ¢, (165)
.92
b i asin” 0 (166)

2 asin? @, — sin?(60 + ¢.)

thenq,(¢e) (or gs(¢.) is the sum-rate capacity.

V. NUMERICAL EXAMPLES

Example 1:Consider a MIMO IC with

H 1.1388 —0.2236 F 0.1489 5.0975
1= ) =

0.8445 —2.7614 1.3055 1.9099

1.1307 1.0983 —0.0970 0.7639
H; = , Fy =

0.1415 0.2041 1.9346 1.4774
P, =P, =10.

The maximal sum rate for the achievable region (18) is
1
Ry + Ry < 5 log I+ H;STH{ + F,S5F7 | = 3.2998

and is achieved by

8.2319 0.3636 gt 7.7370 4.1843
’ 2
0.3636 1.7681 4.1843 2.2630

*
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The corresponding Lagrangian multipliers are

)\1 = 1, )\2 = O, m = 0.0545, N2 = 0.0394
0.3794 —0.7015
—0.7015  1.2972

-2

W; =0 W, x 10

Since only\; > 0, the matrixA, that satisfies (43) can be chosen as

0.2802 0.5985
0.1146 0.0789

andAp,Al < 1.

(o}
I

From (33) we havé, = 0 and hencéVs = \{O,. By Theorem 1, this MIMO IC has generally strong
interference. Therefore, the sum-rate capacitiRist Ry = 3.2998.

We note that in this case sin@& has full rank, the corresponding; that satisfies (43) has to be
A, = Fl‘lHl, and A; AT £ 1. Therefore, [5, Proposition 3] does not apply, and this MIMDdoes
not have strong interference in the sense of [1].

Example 2:Consider a symmetric MISO IC with = 2, § = 0.27 and P = 1. By Tab. I, this MISO
IC satisfies the case Il condition. The rate constrain{g)) andg,(¢) are shown in Fig. 2. The optimal

input covariance matrix and the correspondiffgare

0.8857 0.3182
S1 =Sy =
0.3182 0.1143

o" = ¢ = 0.390271
and the maximal sum rate is

Ry + Ry = 0.6532.

The corresponding Lagrangian multipliers are

cos? ¢* — oS ¢* sin ¢*
v=10.2627, A=0.3686, n=0.1974, W =0.1768
— cos ¢* sin p* sin? ¢*
The matrix\O is
2 gx * o1 *
cos — cos ¢* sin
AO =0.1499 ¢ ¢ ¢
— cos ¢* sin ¢* sin? ¢*

Therefore, W > \O and R; + Ry = 0.6532 is the sum-rate capacity.
Example 3:Consider a symmetric MISO IC with = 2, § = 0.17 and P = 4. By Tab. I, this MISO

IC satisfies the case Il condition. The rate constrait®) andg.(¢) are shown in Fig. 3. The optimal
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input covariance matrix and the correspondifigare

3.9576  0.4096
S1 =Sy =
0.4096 0.0424

Q" = ¢, = 0.46727
and the maximal sum rate is

R + Ry = 1.2724.

The corresponding Lagrangian multipliers are

cos? ¢* — oS ¢* sin ¢*
v=0, A=0.5000, 7n=0.0576, W =0.0563
— cos ¢* sin ¢p* sin? ¢*
The matrix\O is
2 x * o1 *
cos — cos ¢* sin
AO = 0.0467 ¢ ¢ ¢
— cos ¢* sin ¢* sin? ¢*

Therefore, W = A\O and R; + Rs = 1.2724 is the sum-rate capacity.

Example 4:Consider a MISO ZIC withw = 6, § = 0.27, P, = 9 and P, = 3. The functionQ(¢)
and the inner and outer bounds for the capacity region arershi Figs. 4 and 5, respectively. When
¢ € [g -0, (bo] whereg¢, = 0.37487, we haveQ(¢) > 0. By Proposition 5, the rate pairs given in (138)
and (139) withg € [% -0, ¢0] are on the boundary of the capacity region. Those pointsisiokthe
curve segmenfl\% of the Han and Kobayashi (HK) inner bound in Fig. 5, where p6if0.8474,0.6931)
is a corner point corresponding to= 7 — 6 and point3(0.9442,0.6724) is corresponding t@ = ¢o.
The HK inner bound is obtained by rate splitting and supétjposcoding. Another inner bound is
obtained by jointly decoding the signal and the interfeeenithe two outer bounds are obtained using
Lemma 14. In (109), the outer bound tight at paihthasA = 0.5046 and the outer bound tight at point
B hasA = 0.4298.

Example 5:Consider a MISO ZIC witha = 1.2, § = 0.17, P, = 0.5 and P, = 0.5. The function

Q(¢) and the capacity region are shown in Figs. 6 and 7, respécti8nce this channel satisfies

o < cos2 6 < 1+TLPl and for all¢ € [Z —6,%] we haveQ(¢) > 0, by Proposition 5, the rate pairs
given in (138) and (139) witkp € [g -0, g] are on the boundary of the capacity region. Those points
consist of the curve segme«ﬁ/‘ﬂB in Fig. 5, where pointC; (0.1544,0.2027) is a corner point determined
by ¢ = 5 —6 and pointB3(0.1844, 0.1866) is determined by = 7. By Proposition 4, the rate pair at point

B also achieves the sum-rate capacity. Therefore, the ligmeptBC, satisfying Ry + Ry = 0.3710 is
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also the boundary of the capacity region whétg0.2027,0.1682) is another corner point. Therefore, the
entire capacity region is determined and the MISO ZIC hasg#ly strong interference for the entire
capacity region.

Example 6:Consider a MISO ZIC witha = 2, § = 0.27, P, = 2 and P, = 0.4. The function
Q(¢) and the capacity region are shown in Figs. 8 and 9, respécti8nce this channel satisfies

cos?§ < min{lfpl, “:fl} and for all¢ € [ —0,¢..] where .. = 0.49597, we haveQ(¢) >

0, and by Proposition 5, the rate pairs given in (138) and (A8®h ¢ < [g —H,QS@Z] are on the
boundary of the capacity region. Those points consist ofcthrge segmer@ in Fig. 5, where point
C1(0.4615,0.1682) is a corner point determined hy= 7 — 6 and pointC(0.5493,0.1182) is another
corner point determined by = ¢... By Proposition 4, the rate pair at poifit also achieves the sum-rate
capacityR; + Ry = 0.6675. Therefore, the entire capacity region is determined ardMISO ZIC has
generally strong interference for the entire capacityaegi

Example 7:Fig. 10 shows the maximal value effor a MISO ZIC to have generally strong interference
sum-rate capacity, and the minimal valuexdbr a MISO ZIC to have noisy interference sum-rate capacity
[11]. For all the MISO ZICs witha and 6 above the ‘Minimum ofa for GS IF’ curve, the sum-rate
capacity is achieved by jointly decoding the signal and tiierference. For all the MISO ZICs witt
andé below the ‘Maximum ofa for NIF’ curve, the sum-rate capacity is achieved by treptiterference
as noise. We also show the region for the MISO ZIC to have tmeigdly strong interference sum-rate
capacity of case Il (see eq. (114)), and case lll (see eg$) @rid (117)).

Example 8:Fig. 11 shows the maximal value affor a symmetric MISO IC to have generally strong
interference sum-rate capacity, and the minimal value &r a MISO ZIC to have noisy interference
sum-rate capacity [11]. For all the symmetric MISO ICs witland# above the ‘Minimum ofa for GS
IF’ curve, the sum-rate capacity is achieved by jointly déing the signal and the interference. For all the
MISO ICs with a and# below the ‘Maximum ofa for NIF’ curve, the sum-rate capacity is achieved by
treating interference as noise. We also show the regiorhtossymmetric MISO IC to have the generally
strong interference sum-rate capacity of case Il (see &§9) (and (160)), and case lll (see eqs. (165)

and (166)).

VI. CONCLUSION

In this paper, we have extended the capacity result for MINI® with strong interference to those with
generally strong interference. Although in both cases #pacity region is achieved by jointly decoding

the signal and the interference, the strong interferencelitons require the receivers to be able to
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decode the signal and interference for any input distrdmytivhile for generally strong interference, the
receivers are required to do so only for the capacity achgeinput distributions. The generally strong
interference conditions for a MIMO IC have been obtained #redapplication to SIMO and MISO ICs

has also been discussed. The obtained conditions includéngxcapacity results for strong and very

strong interference as special cases.

APPENDIX
A. Proof of Lemma 1

Generate a length-random vectorg™ with independent and identically distributed (i.i.d.) ralents

according to
p(@") = ] p(gm)-
m=1

Let i denote the index of the messages transmitted by usamdi € {1,2,--- ,e"}. For each,

generate a length-random vector:7 with i.i.d. elements according to

n

p@lg) = I p(@imlam) -

m=1
We label this sequence a§ (i).
Let j denote the index of the message transmitted by Qsamnd j € {1,2, e ,e"Rz}. For eachyj,

generate a length-random vector? with i.i.d. elements according to

n

p@5lg") = I] p(z2mlam) -

m=1
We label this sequence ag(j).
To send message indicédo receiversl, transmitterl sends the codeword; (i). To send message
index j to receiver2, transmitter2 sends the codeword; (j).

Receiverl looks for unique indices:, j) such that

(a1 (i) 25 (3) ot) € AP (Q. X1, X2 1Y) (167)

whereAE") denotes the set of jointly typical sequences.

Receiver2 looks for unique indice{%,j’) such that

(.t (i) a5 (3) 98) € AP (Q X1, X, V2) (168)

An error occurs if there are no such indices or the indicesnataunique.
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By symmetry, we assume that the transmitted indices arg = 1. For userl, we define the following

event:

Bl = {27 (1), 25 () w) € AP (@, X1, Xz, Y1)} (169)
The error probability at receivelr is
P = P"{Ehc U U(i;ﬁl,anyj)Eilj}
<Pr{EL}+ > Pr(EL)+ D Pr(g})
i#1,j=1 i#1,j#1
< e+ e"(Rl—I(XﬁYl‘XzQ)) + en(Rl'i‘Rz—I(Xle;YﬂQ)). (170)
Similarly, the error probability of receiver is

Po<e+ en(Rz—I(X%Yz\XlQ)) + en(R1+R2—I(X1X2§Y2‘Q)). (171)

Therefore, the rate region in Lemma 1 is achievable.

B. Proof of Lemma 2

For completeness, we rewrite the simplified Han and Kobayagion [9] in the following and denote
itas HK (W, Ws):

0< Ry < I(X1;;Y1|W2Q)
0 < Ry < I(X9;Y2|W1Q)
Ry + Ry < T(XaWa; Y1|Q) + 1 (Xz; Ya|W1WQ)
Ry + Ry < I(X;V1[WiWaQ) + I (XoWh; Y2 Q)
Ry + Ry < T (XqaWa; Y1[WhQ) + I (XoWi; Ya|W2Q)
2Ry + Ry < I (X1Wo; Y1[Q) + I (X1; Vi[WaiWaQ) + I (XoWi; Ya|[WaQ)
Ry 4 2Ry < I (Xo; Ya[WiW2Q) + I (XoW13Y2|Q) + 1 (XaWas Vi [WAQ) .

We denote the region defined in (15a)-(15dyrasTo show thatrR is a subset of the Han and Kobayashi

region, it suffices to show
R C HK(X:,X2) UHK(empty,Xg) UHK(Xl,emptw. (172)

Let {R1, R2} € R. ThenR; and R, satisfy (15a)-(15d). IfR; and R, also satisfy the extra constraint
(17), then{Ry, R2} € HK (X, X2). Otherwise, we have

Ry + Ry > I (X1;Y2|X0Q) + I (X2:Y1]1X1Q) . (173)
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We have only three possible scenarios:

Ry > I(X1;Y2|X2Q), Ry <I(Xy;Y1|X:Q) or
Ry <I(X1;Y2|X2Q), Ro>1(Xy;Y1|X:Q) or

R > 1(X1;Y2|X2Q), Ry >1(X2;:Y11X1Q).

SupposeR; > I (X1;Y3|X2Q). By (15d) we have

Ry < I (X5:Y2|Q). (174)

On the other handH K (empty, X5) is given by

0< Ry <I(X1;Y11X20Q) (175)
0< Ry <I(X9;Y32|Q) (176)
Ry + Ry < 1 (X1X2:Y1|Q) (177)

Since {R;, Ry} satisfies (15a), (15c) and (174), we hayB;, Ry} € HK (empty, X5). Similarly, if
Ry > I (X2; Y1]1X1Q), then{R;, Ry} € HK(X;,empty).

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]
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