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Capacity Region of Vector Gaussian

Interference Channels with Generally Strong

Interference
Xiaohu Shang, and H. Vincent Poor

Abstract

An interference channel is said to have strong interferenceif for all input distributions, the receivers

can fully decode the interference. This definition of stronginterference applies to discrete memoryless,

scalar and vector Gaussian interference channels. However, there exist vector Gaussian interference

channels that may not satisfy the strong interference condition but for which the capacity can still be

achieved by jointly decoding the signal and the interference. This kind of interference is called generally

strong interference. Sufficient conditions for a vector Gaussian interference channel to have generally

strong interference are derived. The sum-rate capacity andthe boundary points of the capacity region

are also determined.

I. INTRODUCTION

A discrete memoryless interference channel (IC) is a quintuplet (X1,X2, p,Y1,Y2) whereX1 andX2

are the input alphabet sets;Y1, andY2 are the output alphabet sets; andp is a collection of conditional

channel probabilitiesp (y1y2 |x1x2 ) of (y1, y2) ∈ Y1 × Y2 given (x1, x2) ∈ X1 × X2. The receiveri,

i = 1, 2, is required to decodeXi from the received signalYi. The capacity region of this channel is

known for the strong interference case [1]:

0 ≤ R1 ≤ I (X1;Y1|X2Q) (1a)

0 ≤ R2 ≤ I (X2;Y2|X2Q) (1b)
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R1 +R2 ≤ min {I (X1X2;Y1|Q) , I (X1X2;Y2|Q)} (1c)

whereQ is a time sharing random variable. The strong interference conditions are that

I (X1;Y1|X2) ≤ I (X1;Y2|X2) (2)

I (X2;Y2|X1) ≤ I (X2;Y1|X1) (3)

are satisfied for all product distributions onX1 × X2.

This definition of strong interference also applies to the scalar Gaussian ICs defined in the standard

form as

Y1 = X1 +
√
a2X2 + Z1

Y2 = X2 +
√
a1X1 + Z2

whereXi and Yi i = 1, 2, are respectively the transmitted and received signals foruser i, Zi is unit

variance Gaussian noise, andai is the cross channel gain known at both transmitters and receivers. In

addition,Xi has a power constraintPi. The capacity region of this channel with strong interference is

given in [2] and [3]:

0 ≤ R1 ≤
1

2
log(1 + P1)

0 ≤ R2 ≤
1

2
log(1 + P2)

R1 +R2 ≤ min

{
1

2
log(1 + P1 + a2P2),

1

2
log(1 + P2 + a1P1)

}
.

The strong interference conditions here are

a1 ≥ 1 and a2 ≥ 1. (4)

It is easy to show that under the above conditions, both (2) and (3) hold for all distributions ofX1 and

X2. Therefore, the strong interference conditions for the scalar Gaussian IC coincide with those for the

discrete memoryless IC.

Since the capacity region was determined for scalar Gaussian ICs under strong interference, substantial

effort has been devoted to extending the strong interference conditions to the multiple-input multiple-

output (MIMO) IC. As shown in Fig. 1, the received signals fora MIMO IC are defined as

yyy1 = H1xxx1 + F2xxx2 + zzz1

yyy2 = H2xxx2 + F1xxx1 + zzz2 (5)
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wherexxxi, i = 1, 2, is the transmitted (column) vector signal of useri which is subject to the average

power constraint
n∑

j=1

tr
(
E
[
xxxijxxx

T
ij

])
≤ nPi (6)

wherexxxi1,xxxi2, . . . ,xxxin, is the transmitted vector sequence of useri, andPi is the power constraint. The

noisezzzi is a Gaussian random vector with zero mean and identity covariance matrix; andHi andFi,

i = 1, 2, are the channel matrices known at both the transmitters andreceivers. Transmitteri has ti

antennas and receiveri hasri antennas. Without loss of generality, we assumeHi 6= 0 andPi > 0.

PSfrag replacements

xxx1

xxx2

yyy1

yyy2

zzz1

zzz2

+

+

H1

F1

F2

H2

Fig. 1. The two-user MIMO IC.

In [4], the capacity region of a single-input-multiple-output (SIMO) IC with strong interference was

determined. In this SIMO IC, the channel matrices areHi = hhhi andFi = fff i wherehhhi andfff i are column

vectors. A SIMO IC is said to have strong interference if

0 < ‖hhhi‖ ≤ ‖fff i‖, i = 1, 2

where‖ · ‖ is the Euclidian vector norm.

The capacity region of a MIMO IC with strong interference wasdetermined in [5]. A MIMO IC is

said to have strong interference if there exists matricesAi such that

Hi = AiFi (7)

AiA
T
i � I (8)

for i = 1, 2, whereI is an identity matrix,AT
i is the transpose ofAi, andA � B means thatA, B and

A−B are all symmetric positive semi-definite. It can be shown that if Hi = hhhi andFi = fff i, then we

can chooseAi = hhhi

(
fffT
i fff i

)−1
fffT
i and (8) reduces to‖hhhi‖ ≤ ‖fff i‖. Therefore, the strong interference

condition in [5] includes that in [4] as a special case. Sinceunder condition (7) and (8), one can show
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that (2) and (3) are always satisfied, the strong interference conditions for the MIMO IC, like the scalar

Gaussian IC, coincide with those for the discrete memoryless IC.

The coincidence of the strong interference conditions for discrete memoryless ICs, scalar ICs and

MIMO ICs seems to have captured the essence of the IC with strong interference. All these channels have

the same capacity achieving coding scheme and the same expression for the capacity region. However,

there are still observations which lead us to reconsider thestrong interference condition.

To elaborate, we first introduce the concept of very strong interference [6]. A discrete memoryless IC

is said to have very strong interference if

I (X1;Y1|X2) ≤ I (X1;Y2) (9)

I (X2;Y2|X1) ≤ I (X2;Y1) (10)

are satisfied for all product distributions onX1×X2. Obviously, the very strong interference condition is

a special case of the strong interference condition. The capacity region of such a channel is also given in

(1a)-(1c) where(1c) becomes inactive. However, the application of (9) and (10) to Gaussian ICs becomes

very difficult. We use instead

ai ≥ 1 + Pi, i = 1, 2

as the very strong interference condition for the scalar Gaussian IC; and use

log
∣∣I+HiS

o
iH

T
i

∣∣ ≤ log
∣∣∣I+ FiS

o
iF

T
i

(
I+HjS

o
jH

T
j

)−1
∣∣∣ , i, j ∈ {1, 2}, i 6= j

where

S
o
i = arg max

tr(Si)≤Pi,Si�0

{∣∣I+HiS
o
iH

T
i

∣∣}

as the very strong interference condition for the MIMO IC [5], [7]. In both the scalar and MIMO ICs,

the very strong interference condition can be generalized into

I
(
xxxoi ;yyyi

∣∣xxxoj
)
≤ I

(
xxxoi ;yyyj

)
, i, j ∈ {1, 2}, i 6= j (11)

where

p (xxxoi ) = argmax
p(xxxi)

I (xxxi;yyyi |xxxj ) . (12)

Or equivalently, a Gaussian IC is said to have very strong interference if its capacity region is

0 ≤ Ri ≤ max
p(xi)

I (Xi;Yi|Xj) , i, j ∈ {1, 2}, i 6= j. (13)

August 6, 2018 DRAFT



5

For the new very strong interference condition, the original requirement of inequalities (9) and (10) being

satisfied for all input distributions has been relaxed to only the special input distribution (12). Clearly,

the new definition includes the old one as a special case, i.e., all the ICs that satisfy (9) and (10) must

also satisfy (11). Although, in both cases, the capacity region is achieved by decoding the interference

before the useful signal, condition (12) considers only thecapacity achieving input distribution instead

of all possible input distributions.

In adapting the very strong interference condition from thediscrete memoryless IC to the Gaussian IC,

necessary changes have been made to make it more appropriate. Comparing the very strong interference

condition (11) and the strong interference conditions (2) and (3) or (7) and (8), we can see some

inconsistency:

1) For the scalar Gaussian IC, the very strong interference condition (ai ≥ 1+Pj ) is a special case of

the strong interference conditionai ≥ 1. However, for the MIMO IC the very strong interference

condition is generally not a special case of strong interference. As an example, we consider a

MIMO IC with

H1 = H2 =


1 0

0 1


 , F1 = F2 =


0.8 0

0 2


 , P1 = P2 = 2.

This MIMO IC has very strong interference (11), and its capacity region is (13). However, the strong

interference conditions (7) and (8) are violated. Similar examples for the MIMO Z interference

channel (ZIC) can be found in [7, example 1], and examples forthe MIMO IC with covariance

constraints can be found in [5, example 1].

2) There exist many MIMO ICs for which even the matrixAi in (7) does not exist. For example,

the multiple-input-single-output (MISO) IC:Hi = hhhTi andFi = fffT
i , wherehhhi andfff i are column

vectors. Ifhhhi andfff i are linearly independent, then theAi (now a scalar) in (7) does not exist.

Moreover, conditions (2) and (3) are also violated if useri implements zero-forcing beamforming:

I (X1;Y1|X2) > 0 = I (X1;Y2|X2) and I (X2;Y2|X1) > 0 = I (X2;Y1|X1). However, one can

still find examples for MISO ICs that have very strong interference.

3) Even for the discrete memoryless IC, there are examples which have very strong interference in

the sense of (11) instead of (9) and (10), and do not have strong interference [8, section IV-B].

The above inconsistencies motivate us to reconsider whether there are more appropriate strong inter-

ference conditions than those in [1]–[3] and [5] for MIMO ICs:

1) The very strong interference condition requires only thecapacity achieving distribution to satisfy

(11). On the contrary, the strong interference condition requires all possible input distributions to
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satisfy (2) and (3) or (7) and (8). This is generally unnecessary since we are interested in only the

capacity achieving distributions. The rates achieved by other input distributions are all superseded

by those achieved by the capacity achieving input distributions.

2) If (2) and (3) hold for any input distribution, the strong interference capacity region for a discrete

memoryless IC can be written as

0 ≤ R1 ≤ min {I (X1;Y1|X2Q) , I (X1;Y2|X2Q)}

0 ≤ R2 ≤ min (I (X2;Y2|X2Q) , I (X2;Y1|X1Q)}

R1 +R2 ≤ min {I (X1X2;Y1|Q) , I (X1X2;Y2|Q)} . (14)

The above region is actually the same as the capacity region of the compound multiple access

channel, in which both receivers are required tocorrectlydecode messages from both transmitters.

However, for an IC any error incurred when useri is trying to decode userj’s message,j 6= i,

does not contribute to its overall error probability. In fact, we will show later in Lemma 1 that

the rate region given in (1a)-(1c) is achieved exactly by requiring useri to jointly decodeXi and

Xj .1 Therefore, the key is whether or not joint decoding can achieve the capacity. Even though the

condition that (2) and (3) hold for any input distribution iscrucial in deriving the strong interference

capacity region in [1] and [2], these two conditions are in general not necessary conditions for joint

decoding to achieve the capacity region.

Therefore, we define a new strong interference condition as follows:

Definition 1: An IC is said to have generally strong interference, if its capacity region is given by (1a)-

(1c); or equivalently, if the capacity region is achieved byjointly decoding the signal and the interference

at each receiver.

In this new definition, as long as joint decoding achieves thecapacity, the IC is said to have generally

strong interference. Thus, we focus on only the input distribution and the coding scheme that achieve the

boundary of the capacity region, instead of any possible input distributions. For the IC with generally

strong interference, there may exist input distributions such that the receiver cannot correctly decode the

signal and the interference.

There are cases in which only part of the boundary of the capacity region is characterized by (1a)-(1c),

1Here ‘jointly decoding’ means that useri recovers the message from transmitteri by searching the jointly typical sequence

setA(n)
ǫ (XiXjYi). Useri is required to correctly decode the message from transmitter i. However, whether useri can correctly

decode the message from transmitterj is not important. See the proof of Lemma 1 for further details.

August 6, 2018 DRAFT



7

i.e., the IC may have generally strong interference at some rates and not at other rates (see Example 4

in which partially decoding the interference outperforms jointly decoding the signal and interference at

some rates). Therefore, we define:

Definition 2: An IC is said to have generally strong interference sum-ratecapacity, if its sum-rate

capacity is given by the maximum sum-rate of region (1a)-(1c); or equivalently, if the sum-rate capacity

is achieved by jointly decoding the signal and the interference at each receiver.

Definition 3: An IC is said to have generally strong interference at{R1, R2}, if {R1, R2} is on the

boundary of the capacity region and satisfies (1a)-(1c) for some input distributions ofX1 andX2; or

equivalently, if{R1, R2} is achieved by jointly decoding the signal and the interference at each receiver.

In this paper, we study the capacity region of MIMO ICs with generally strong interference. Clearly, the

generally strong interference condition includes strong interference, as well as very strong interference,

as special cases.

The rest of the paper is organized as follows: in Section II, we derive sufficient conditions for a MIMO

IC to have generally strong interference by comparing an inner bound and an outer bound for the capacity

region; in Sections III and IV, we apply these sufficient conditions to SIMO and MISO ICs respectively,

and obtain simplified generally strong interference conditions; numerical examples are given in Section

V; and we conclude in Section VI.

Before proceeding, we introduce some notation that will be used in the paper:

• pX(x) is the probability mass function of a discrete random variable X, or a probability density

function of a continuous random variableX, and is simplified asp(x) with no confuse on results.

• Italic letters (e.g.X) denote scalars; and bold lettersxxx andX denote column vectors and matrices,

respectively.

• I denotes the identity matrix and0 denotes the all-zero vector or matrix. The dimensions ofI and

0 are determined by the context.

• |X|, XT , X−1 and rank(X) denote respectively the determinant, transpose, inverse,and rank of

the matrixX, ‖xxx‖ denotes the Euclidean vector norm ofxxx, i.e., ‖xxx‖2 = xxxTxxx, and⊗ denotes the

Kronecker product of matrices.

• sign(x) = 1 if x ≥ 0 and sign(x) = −1 if x < 0.

• xxxn =
[
xxxT1 ,xxx

T
2 , . . . ,xxx

T
n

]T
is a long vector that consists of a sequence of vectorsxxxi, i = 1, . . . , n.

• diag[X1, · · · ,Xn] is a diagonal matrix with diagonal entriesXi.

• Vec(A) denote the vectorization operator, i.e., letA = [a1,a2, · · · ,an], andai, i = 1, · · · , n be the

column vectors, then Vec(A) = [aT1 ,a
T
2 , · · · ,aTn ]T .
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• θ = atan(x) meanstan θ = x andθ ∈
(
−π

2 ,
π
2

)
.

• xxx ∼ N (0,Σ) means that the random vectorxxx has the Gaussian distribution with zero mean and

covariance matrixΣ.

• E[·] denotes expectation; Cov(·) denotes covariance matrix;I(·; ·) denotes mutual information;h(·)
denotes differential entropy with the logarithmic basee, and log(·) = loge(·).

II. MIMO IC S

In this section we derive sufficient conditions for a MIMO IC to have generally strong interference by

comparing a special case of the Han and Kobayashi inner bound[2] with a new outer bound.

A. Inner bound

We first obtain the achievable region by jointly decoding thesignal and the interference.We also show

that this region is a special case of Han and Kobayashi’s achievable region despite the fact that it has a

different expression from the Han and Kobayashi achievableregion for the same coding scheme. Then,

we apply this achievable region to MIMO ICs.

Lemma 1:The following rate region is achievable for a discrete memoryless IC

0 ≤ R1 ≤ I (X1;Y1|X2Q) (15a)

0 ≤ R2 ≤ I (X2;Y2|X1Q) (15b)

R1 +R2 ≤ I (X1X2;Y1|Q) (15c)

R1 +R2 ≤ I (X1X2;Y2|Q) (15d)

where the input distribution factors asp (x1x2q) = p(q)p(x1|q)p(x2|q).
The proof is given in Appendix A and is based on the analysis oferror probability. In this proof,

we require receiveri to decode the message by searching the joint typical sequence setAn
ǫ (QX1X2Yi),

i = 1, 2. We emphasize here that joint decoding means, e.g., receiver 1 must correctly decodeX1 whereas

the decoding forX2 can be incorrect, i.e., its error probability is (170) instead of

Pr
{
E1

11
c
⋃

∪(i 6=1,anyj)E
1
ij

⋃
∪(j 6=1,anyi)E

1
ij

}
. (16)

If we consider the Han and Kobayashi achievable region in thesimplified expression [2], [9], [10],

then our coding scheme is equivalent to lettingW1 = X1 andW2 = X2 in [9, eqs. (11)-(18)]. However,
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it is interesting that by lettingW1 = X1 andW2 = X2, [9, eqs. (11)-(18)] become a region defined by

(15a)-(15d) with an extra constraint:

R1 +R2 ≤ I (X1;Y2|X2Q) + I (X2;Y1|X1Q) . (17)

This apparent inconsistency is caused by the fact that the rate constraintS1 + T2 ≤ I (W2X1;Y1|W1Q)

in [9, eq. (76)] is redundant whenW1 = X1 andW2 = X2 (similarly, S2 + T1 ≤ I (W1X2;Y2|W2Q) is

also redundant). This extra constraint (17) is associated with receiveri’s error probability of decoding its

own messages that are not carried byWi. Therefore, whenWi = Xi, useri’s messages are all carried

by Wi and this extra constraint is redundant. Therefore, even if (17) is violated, it does not contribute to

the overall error probability of useri.

In fact the achievable region in Lemma 1 is still a subset of the Han and Kobayashi region. We state

it formally in the following lemma, the proof of which is given in Appendix B.

Lemma 2:The achievable region in Lemma 1 is a subset of the Han and Kobayashi region.

With Lemma 1, we obtain the achievable rate region for a MIMO IC by jointly decoding the signal

and the interference in the following lemma. We note that thetime sharing procedure is unnecessary

since all the constraints are concave functions.

Lemma 3:The following region is achievable for a MIMO IC:

⋃

Si�0,tr(Si)≤Pi,i=1,2





0 ≤ R1 ≤ g1 (S1)

0 ≤ R2 ≤ g2 (S2)

R1 +R2 ≤ gs1 (S1,S2)

R1 +R2 ≤ gs2 (S1,S2)





(18)

where

g1(S1) =
1

2
log
∣∣I+H1S1H

T
1

∣∣ (19a)

g2(S2) =
1

2
log
∣∣I+H2S2H

T
2

∣∣ (19b)

gs1(S1,S2) =
1

2
log
∣∣I+H1S1H

T
1 + F2S2F

T
2

∣∣ (19c)

gs2(S1,S2) =
1

2
log
∣∣I+H2S2H

T
2 + F1S1F

T
1

∣∣ . (19d)

We now proceed to obtain the maximum sum rate and other boundary points of region (18).

Lemma 4:The maximum sum rate of (18) is the maximum in the following optimization problem:

max R1 +R2

August 6, 2018 DRAFT
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subject to R1 +R2 ≤ g1(S1) + g2(S2)

R1 +R2 ≤ gs1(S1,S2)

R1 +R2 ≤ gs2(S1,S2)

tr (Si) ≤ Pi, Si � 0, i = 1, 2. (20)

Furthermore, ifS∗
i , i = 1, 2 is optimal for problem (20), then there exist Lagrangian multipliers γ, λi, ηi

andWi that satisfy

γ + λ1 + λ2 = 1 (21a)

W1 = −γ

2
H

T
1

(
I+H1S

∗
1H

T
1

)−1
H1 −

λ1

2
H

T
1

(
I+H1S

∗
1H

T
1 + F2S

∗
2F

T
2

)−1
H1

−λ2

2
F
T
1

(
I+H2S

∗
2H

T
2 + F1S

∗
1F

T
1

)−1
F1 + η1I (21b)

W2 = −γ

2
H

T
2

(
I+H2S

∗
2H

T
2

)−1
H2 −

λ1

2
F
T
2

(
I+H1S

∗
1H

T
1 +F2S

∗
2F

T
2

)−1
F2

−λ2

2
H

T
2

(
I+H2S

∗
2H

T
2 + F1S

∗
1F

T
1

)−1
H2 + η2I (21c)

γ




> 0 if R1 +R2 = g1 (S

∗
1) + g2 (S

∗
2)

= 0 if R1 +R2 < g1 (S
∗
1) + g2 (S

∗
2)

(21d)

λi




> 0 if R1 +R2 = gsi (S

∗
1,S

∗
2)

= 0 if R1 +R2 < gsi (S
∗
1,S

∗
2)

(21e)

ηi




> 0 if tr (S∗

i ) = Pi

= 0 if tr (S∗
i ) < Pi

(21f)

tr (WiS
∗
i ) = 0 (21g)

Wi � 0. (21h)

Proof: Conditions (21a)-(21h) are the Karush-Kuhn-Tucker (KKT) conditions of problem (20). The

corresponding Lagrangian is

L = −(R1 +R2) + γ (R1 +R2 − g1 − g2) +

2∑

i=1

λi (R1 +R2 − gsi) +

2∑

i=1

ηi (tr(Si)− Pi)

+

2∑

i=1

tr (WiSi) . (22)

Since (20) is a convex optimization problem, the Lagrangianmultipliers do exist.
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Lemma 5:The boundary points of the region defined in (18) is determined by

⋃

0≤r≤max 1

2
log|I+H2S2H

T

2
|

{R1 = R∗
1 (r) , R2 = r} (23)

whereR∗
1 (r) is the maximum of the following optimization problem

max R1

subject to R1 ≤ g1 (S1)

r ≤ g2 (S2)

R1 ≤ gs1 (S1,S2)− r

R1 ≤ gs2 (S1,S2)− r

tr (Si) ≤ Pi, Si � 0. (24)

Furthermore, ifS∗
1 andS∗

2 are optimal for problem (24), then there exist Lagrangian multipliers αi, βi, νi

andKi that satisfy

α1 + β1 + β2 = 1 (25a)

K1 = −α1

2
H

T
1

(
I+H1S

∗
1H

T
1

)−1
H1 −

β1
2
H

T
1

(
I+H1S

∗
1H

T
1 + F2S

∗
2F

T
2

)−1
H1

−β2
2
F
T
1

(
I+H2S

∗
2H

T
2 + F1S

∗
1F

T
1

)−1
F1 + ν1I (25b)

K2 = −α2

2
H

T
1

(
I+H2S

∗
2H

T
2

)−1
H2 −

β1
2
F
T
2

(
I+H1S

∗
1H

T
1 + F2S

∗
2F

T
2

)−1
F2

−β2
2
H

T
2

(
I+H2S

∗
2H

T
2 + F1S

∗
1F

T
1

)−1
H2 + ν2I (25c)

αi




> 0 if Ri = gi (S

∗
i )

= 0 if Ri < gi (S
∗
i )

(25d)

βi




> 0 if R1 = gsi (S

∗
1,S

∗
2)− r

= 0 if R1 < gsi (S
∗
1,S

∗
2)− r

(25e)

νi




> 0 if tr (S∗

i ) = Pi

= 0 if tr (S∗
i ) < Pi

(25f)

tr (KiS
∗
i ) = 0 (25g)

Ki � 0. (25h)
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Proof: We first prove that{R1 = R∗
1(r), R2 = r} is a boundary point of the region given in (18). By

the constraint conditions of (24), the rate pair{R∗
1(r), r} belongs to the region (18) determined byS∗

1

andS∗
2. Therefore,{R∗

1(r), r} is in the set (18). Next we assume, on the contrary, that{R∗
1(r), r} is not

on the boundary. Then there exists a rate pair{R′
1, r} with R′

1 > R∗
1(r) which is also in region (18).

Therefore, there exist matricesS′
i with tr (S′

i) ≤ Pi andS′
i � 0, i = 1, 2, such that

R′
1 ≤ g1

(
S
′
1

)

r ≤ g2
(
S
′
2

)

R′
1 + r ≤ gs1

(
S
′
1,S

′
2

)

R′
1 + r ≤ gss

(
S
′
1,S

′
2

)
.

Thus, {R′
1, r} is feasible for optimization problem (24) and henceR′

1 ≤ R∗
1(r) since R∗

1(r) is the

maximum of problem (24). This contradicts our assumptionR′
1 > R∗

1(r). Therefore,{R∗
1(r), r} is on

the boundary.

Conditions (25a)-(25h) are the KKT conditions of problem (24). The corresponding Lagrangian is

L = −R1 + α1 (R1 − g1) + α2 (r − g2) +

2∑

i=1

βi (R1 − gsi + r) +

2∑

i=1

νi (tr(Si)− Pi)

+

2∑

i=1

tr (KiSi) . (26)

Since (24) is a convex optimization problem, the Lagrangianmultipliers do exist.

B. Outer bounds

The outer bound is obtained by providing additional information to both receivers.

Lemma 6:The closure of the following set2 is an outer bound on the capacity region of a MIMO IC:

⋃

Si�0,tr(Si)≤Pi,i=1,2





R1 ≤ g1(S1)

R2 ≤ g2(S2)

R1 +R2 ≤ ḡs1(S1,S2)

R1 +R2 ≤ ḡs2(S1,S2)





(27)

2Obviously, any of the constraints in (27) can be removed, andthe closure of the resulting set is still an outer bound on the

capacity region.
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whereg1 andg2 are defined in (19a) and (19b), respectively, and

ḡs1(S1,S2) =
1

2
log
∣∣∣I+H1S1H

T
1

(
I+ F2S2F

T
2

)−1
∣∣∣+ 1

2
log

∣∣∣∣∣∣∣
I+


H2

F2


S2


H2

F2



T

E
−1
2

∣∣∣∣∣∣∣
(28)

=
1

2
log
∣∣∣I+H1S1H

T
1

(
I+ F2S2F

T
2

)−1
∣∣∣+ 1

2
log
∣∣I+ S2F

T
2 F2 + 2S2O2

∣∣ (29)

ḡs2(S1,S2) =
1

2
log
∣∣∣I+H2S2H

T
2

(
I+ F1S1F

T
1

)−1
∣∣∣+ 1

2
log

∣∣∣∣∣∣∣
I+


H1

F1


S1


H1

F1



T

E
−1
1

∣∣∣∣∣∣∣
(30)

=
1

2
log
∣∣∣I+H2S2H

T
2

(
I+ F1S1F

T
1

)−1
∣∣∣+ 1

2
log
∣∣I+ S1F

T
1 F1 + 2S1O1

∣∣ (31)

andEi andOi, i = 1, 2, are defined as3

Ei =


 I Ai

A
T
i I


 ≻ 0. (32)

Oi =
1

2
(Hi −AiFi)

T
(
I−AiA

T
i

)−1
(Hi −AiFi) . (33)

Proof: Let xxxni =
[
xxxTi1, · · · ,xxxTin

]T
be an input sequence of useri that satisfies

n∑

j=1

Cov(xxxij) = nSi (34)

tr (Si) ≤ Pi. (35)

Then we immediately obtain theR1 ≤ g1 (S1) andR2 ≤ g2 (S2) in (27). For ǫ > 0 and ǫ → 0 when

n → ∞, by Fano’s inequality we have

n(R1 +R2)− nǫ

≤ I (xxxn1 ;yyy
n
1 ) + I (xxxn2 ;yyy

n
2 )

(a)

≤ I (xxxn1 ;yyy
n
1 ) + I (xxxn2 ;yyy

n
2 ,xxx

n
1 ,F2xxx

n
2 +nnnn

2 )

= h (H1xxx
n
1 + F2xxx

n
2 + zzzn1 )− h (F2xxx

n
2 + zzzn1 ) + h (F2xxx

n
2 +nnnn

2 )− h (nnnn
2 ) + h (F2xxx

n
2 + zzzn2 |F2xxx

n
2 +nnnn

2 )

−h (zzzn2 |nnnn
2 )

(b)
= h (H1xxx

n
1 + F2xxx

n
2 + zzzn1 )− nh (F2xxx2G + zzz1) + nh (F2xxx2G +nnn2)− h (nnnn

2 ) + h (F2xxx
n
2 + zzzn2 |F2xxx

n
2 +nnnn

2 )

3We note that theI of (32) in the first row has dimensionri and theI in the second row has dimensionrj where j ∈

{1, 2}, j 6= i.
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−h (zzzn2 |nnnn
2 )

(c)

≤ nh (H1xxx1G + F2xxx2G + zzz1)− nh (F2xxx2G + zzz1) + nh (F2xxx2G +nnn2)− nh (nnn2)

+nh (F2xxx2G + zzz2|F2xxx2G +nnn2)− nh (zzz2|nnn2)

= nI (xxx1G;H1xxx1G + F2xxx2G + zzz1) + nI


xxx2G;


H2

F2


xxx2G +


zzz2
nnn2






=
1

2
log
∣∣∣I+H1S1H

T
1

(
I+ F2S2F

T
2

)−1
∣∣∣+ 1

2
log

∣∣∣∣∣∣∣
I+


H2

F2


S2


H2

F2



T

E
−1
2

∣∣∣∣∣∣∣
(36)

where, in (a) we letnnnn
2 be a sequence of independent and identically distributed Gaussian vectors each

has the following joint distribution withzzz2:
zzz2
nnn2


 ∼ N (0,E2) = N


0,


 I A2

A
T
2 I




 . (37)

Equality (b) is by the fact thatnnn2 andzzz1 have identical marginal distributions, and thus

−h (F2xxx
n
2 + zzzn1 ) + h (F2xxx

n
2 +nnnn

2 )

= 0

= −nh (F2xxx2G + zzz1) + nh (F2xxx2G +nnn2)

where

xxxiG ∼ N (0,Si) .

Inequality (c) is by [5, Lemma 2].

To show (29), we have

log

∣∣∣∣∣∣∣
I+


H2

F2


S2


H2

F2



T

E
−1
2

∣∣∣∣∣∣∣

(a)
= log

∣∣∣∣∣∣∣
I+ S2


H2

F2



T 
 I A2

A
T
2 I



−1 
H2

F2




∣∣∣∣∣∣∣

= log

∣∣∣∣∣∣∣
I+ S2


F2

H2



T 
 I A

T
2

A2 I



−1 
F2

H2




∣∣∣∣∣∣∣

(b)
= log

∣∣∣∣∣∣∣
I+ S2


F2

H2



T 


I 0

0 0


+


A

T
2

−I


(I−A2A

T
2

)−1
[A2, −I]




F2

H2




∣∣∣∣∣∣∣
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= log
∣∣∣I+ S2F2F

T
2 + S2 (H2 −A2F2)

T
(
I−A2A

T
2

)−1
(H2 −A2F2)

∣∣∣

= log
∣∣I+ S2F2F

T
2 + 2S2O2

∣∣ (38)

where (a) is by the matrix identity

|I+AB| = |I+BA| (39)

and (b) is by [11, Lemma 3]. The other sum-rate boundḡs2 is similarly obtained.

We have established the fact that for any input sequencesxxxn1 andxxxn2 that satisfy (34) and (35), the

corresponding rate pair is bounded by

Ri ≤ gi(Si) (40)

R1 +R2 ≤ ḡsi(S1,S2). (41)

Therefore, (27) is an outer bound for the capacity region.

Lemma 7:The ḡs1 and ḡs2 are both concave functions ofS1 andS2 for anyE1 andE2 that satisfy

(32).

Proof: This is an immediate result of [11, Lemma 2]. Considering [11, eq.(16)], if we chooseE1 = I

andE2 as in (32), then [11, eq.(16)] reduces toḡs1. Similarly, if we chooseE2 = I andE1 as in (32),

then [11, eq.(16)] reduces tōgs2. Therefore,̄gs1 and ḡs2 are both concave functions.

Using Lemmas 6 and 7, we obtain the maximal sum-rate and the boundaries of the outer bound in the

following lemmas.

Lemma 8:The maximum in the following optimization problem is an upper bound on the sum-rate

capacity of the MIMO IC:

max R1 +R2

subject to R1 +R2 ≤ g1(S1) + g2(S2)

R1 +R2 ≤ ḡs1(S1,S2)

R1 +R2 ≤ ḡs2(S1,S2)

tr (Si) ≤ Pi, Si � 0, i = 1, 2. (42)

Furthermore, ifS∗
1 andS∗

2 are optimal for problem (42), and there exist matricesAi, i = 1, 2, that satisfy

S
∗
iH

T
i = S

∗
iF

T
i A

T
i (43)

AiA
T
i � I (44)
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for i = 1, 2, then there exist Lagrangian multipliers̄γ, λ̄i, η̄i andWi that satisfy

γ̄ + λ̄1 + λ̄2 = 1 (45a)

W1 = − γ̄

2
H

T
1

(
I+H1S

∗
1H

T
1

)−1
H1 −

λ̄1

2
H

T
1

(
I+H1S

∗
1H

T
1 + F2S

∗
2F

T
2

)−1
H1

− λ̄2

2
F
T
1

(
I+H2S

∗
2H

T
2 + F1S

∗
1F

T
1

)−1
F1 + η̄1I− λ̄2O1 (45b)

W2 = − γ̄

2
H

T
2

(
I+H2S

∗
2H

T
2

)−1
H2 −

λ̄1

2
F
T
2

(
I+H1S

∗
1H

T
1 + F2S

∗
2F

T
2

)−1
F2

− λ̄2

2
H

T
2

(
I+H2S

∗
2H

T
2 + F1S

∗
1F

T
1

)−1
H2 + η̄2I− λ̄1O2 (45c)

γ̄




> 0 if R1 +R2 = g1 (S

∗
1) + g2 (S

∗
2)

= 0 if R1 +R2 < g1 (S
∗
1) + g2 (S

∗
2)

(45d)

λ̄i




> 0 if R1 +R2 = ḡsi (S

∗
1,S

∗
2) = gsi (S

∗
1,S

∗
2)

= 0 if R1 +R2 < ḡsi (S
∗
1,S

∗
2) = gsi (S

∗
1,S

∗
2)

(45e)

η̄i




> 0 if tr (S∗

i ) = Pi

= 0 if tr (S∗
i ) < Pi

(45f)

tr
(
WiS

∗
i

)
= 0 (45g)

Wi � 0 (45h)

for i = 1, 2, whereOi is defined in (33).

Proof: By Lemma 7, (42) is a convex optimization problem; therefore, there exist Lagrangian multipliers

that satisfy the KKT conditions (45a)-(45h). The corresponding Lagrangian is

L = −(R1 +R2) + γ̄ (R1 +R2 − g1 − g2) +

2∑

i=1

λ̄i (R1 +R2 − gsi) +

2∑

i=1

η̄i (tr(Si)− Pi)

+

2∑

i=1

tr
(
WiSi

)
. (46)

Thus, comparing to Lemma 4 we need only to show that fori, j ∈ {1, 2} and i 6= j,

ḡsi (S
∗
1,S

∗
2) = gsi (S

∗
1,S

∗
2) (47)

∂ḡsi
∂Si

∣∣∣∣S1 = S
∗

1

S2 = S
∗

2

=
∂gsi
∂Si

∣∣∣∣S1 = S
∗

1

S2 = S
∗

2

(48)

∂ḡsi
∂Sj

∣∣∣∣
S1 = S

∗

1

S2 = S
∗

2

=
∂gsi
∂Sj

∣∣∣∣
S1 = S

∗

1

S2 = S
∗

2

+Oj. (49)
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Equalities (47) and (48) are straightforward by (43). By symmetry, it suffices to show (49) fori = 1 and

j = 2:

∂ḡs1
∂S2

∣∣∣∣S1 = S
∗

1

S2 = S
∗

2

=
1

2
F
T
2

(
I+H1S

∗
1H

T
1 + F2S

∗
2F

T
2

)−1
F2 −

1

2
F
T
2

(
I+ F2S

∗
2F

T
2

)−1
F2

+
1

2

(
F
T
2 F2 + 2O2

) (
I+ S

∗
2F

T
2 F2 + 2S∗

2O2

)−1

(a)
=

1

2
F
T
2

(
I+H1S

∗
1H

T
1 +F2S

∗
2F

T
2

)−1
F2 −

1

2
F
T
2

(
I+ F2S

∗
2F

T
2

)−1
F2

+
1

2

(
F
T
2 F2 + 2O2

) (
I+ S

∗
2F

T
2 F2

)−1

(b)
=

1

2
F
T
2

(
I+H1S

∗
1H

T
1 + F2S

∗
2F

T
2

)−1
F2 +O2

(
I+ S

∗
2F

T
2F2

)−1

(c)
=

1

2
F
T
2

(
I+H1S

∗
1H

T
1 + F2S

∗
2F

T
2

)−1
F2 +O2

(
I− S

∗
2

(
I+F

T
2 F2S

∗
2

)−1
)
F
T
2 F2

(d)
=

1

2
F
T
2

(
I+H1S

∗
1H

T
1 + F2S

∗
2F

T
2

)−1
F2 +O2

=
∂gs1
∂S2

∣∣∣∣S1 = S
∗

1

S2 = S
∗

2

+O2 (50)

where (a) and (d) are both from (43) which implies

S
∗
iO

∗
i = 0. (51)

Equality (b) is by the matrix identity [12, p. 151]:

C (I+DC)−1 = (I+CD)−1
C (52)

which implies

− F
T
2

(
I+ F2S

∗
2F

T
2

)−1
F2 + F

T
2 F2

(
I+ S

∗
2F

T
2F2

)−1
= 0;

and (c) is by the Woodbury matrix identity [13, p. 19]:

(C+UBV)−1 = C
−1 −C

−1
U
(
B

−1 +VC
−1

U
)−1

VC
−1. (53)

Lemma 9:Let R2 = r with 0 ≤ r ≤ max 1
2 log |I+H2S2H2|, and letR̄∗

1(r) be the maximum in the

following optimization problem:

max R1

subject to R1 ≤ g1(S1)
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r ≤ g2(S2)

R1 ≤ ḡs1(S1,S2)− r

R1 ≤ ḡs2(S1,S2)− r

tr (Si) ≤ Pi, Si � 0, i = 1, 2. (54)

Then
{
R̄∗

1(r), r
}

is on the boundary of the outer bound given in (27). Furthermore, if S∗
1 andS

∗
2 are

optimal for problem (54), and there exist matricesAi, i = 1, 2, that satisfy (43) and (44), then there

exist Lagrangian multipliers̄αi, β̄i, ν̄i andKi that satisfy

ᾱ1 + β̄1 + β̄2 = 1 (55a)

K1 = − ᾱ1

2
H

T
1

(
I+H1S

∗
1H

T
1

)−1
H1 −

β̄1
2
H

T
1

(
I+H1S

∗
1H

T
1 + F2S

∗
2F

T
2

)−1
H1

− β̄2
2
F
T
1

(
I+H2S

∗
2H

T
2 + F1S

∗
1F

T
1

)−1
F1 + ν̄1I− β̄2O1 (55b)

K2 = − ᾱ2

2
H

T
2

(
I+H2S

∗
2H

T
2

)−1
H2 −

β̄1
2
F
T
2

(
I+H1S

∗
1H

T
1 + F2S

∗
2F

T
2

)−1
F2

− β̄2
2
H

T
2

(
I+H2S

∗
2H

T
2 + F1S

∗
1F

T
1

)−1
H2 + ν̄2I− β̄1O2 (55c)

ᾱi




> 0 if R1 = g1 (S

∗
i )

= 0 if R1 < g1 (S
∗
i )

(55d)

β̄i




> 0 if R1 = ḡsi (S

∗
1,S

∗
2)− r = gsi (S

∗
1,S

∗
2)− r

= 0 if R1 < ḡsi (S
∗
1,S

∗
2)− r = gsi (S

∗
1,S

∗
2)− r

(55e)

ν̄i




> 0 if tr (S∗

i ) = Pi

= 0 if tr (S∗
i ) < Pi

(55f)

tr
(
KiS

∗
i

)
= 0 (55g)

Ki � 0 (55h)

for i = 1, 2, whereOi is defined in (33).

Proof: Similarly to the proof of Lemma 5, it can be shown that
{
R̄∗

1(r), r
}

is on the boundary of the

outer bound (27). Conditions (55a)-(55h) are the KKT conditions of problem (54). The corresponding

Lagrangian is

L = −R1 + ᾱ1 (R1 − g1(S1)) + ᾱ2 (r − g2(S2)) +

2∑

i=1

β̄i (R1 + r − ḡsi (S1,S2)) +

2∑

i=1

ν̄i (tr(Si)− Pi)

+

2∑

i=1

tr
(
KiSi

)
. (56)
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Since (24) is a convex optimization problem, the Lagrangianmultipliers do exist. The rest of the proof

is similar to that of Lemma 8 and is hence omitted.

C. Sum-rate capacity and capacity region

Now we obtain the capacity results for MIMO ICs with generally strong interference by comparing

the inner and outer bounds.

Theorem 1:SupposeS∗
i i = 1, 2, are maximizers of problem (20) and fori = 1, 2, let λi andWi be

the Lagrangian multipliers in (21a)-(21h). For anyλj > 0, j = 1, 2, if there existAi, i = 1, 2, i 6= j,

that satisfy (43) and (44), and

Wi � λjOi (57)

whereOj is defined in (33), then the sum-rate capacity of the MIMO IC isthe maximum in problem

(20) and is achieved by the input distributionsxxxi ∼ N (0,S∗
i ), i = 1, 2, and jointly decoding the signal

and the interference.

Proof: SinceS∗
1 andS∗

2 maximize problem (20), the KKT conditions in (21a)-(21h) hold.

If λ1 = λ2 = 0, the maximal achievable sum rate ismaxtr(Si)≤Pi,Si�0 [g1(S1) + g2(S2)] which is also

an obvious upper bound on the sum-rate capacity. Therefore,it is the sum-rate capacity.

If λ1 > 0 andλ2 > 0, we let

γ̄ = γ, λ̄i = λi, η̄i = ηi Wi = Wi − λjOi, i, j ∈ {1, 2}, i 6= j (58)

and sinceS∗
iOi = 0, i = 1, 2, then the KKT conditions (45a)-(45h) for the upper bound (42) are also

satisfied. By the convexity of (42),S∗
1 andS∗

2 also maximize problem (42). Furthermore, problems (20)

and (42) have the same maximum by the fact thatgsi (S
∗
1,S

∗
2) = ḡsi (S

∗
1,S

∗
2), i = 1, 2. Therefore, the

lower and upper bounds on the sum-rate capacity converge at(S∗
1,S

∗
2).

If λ1 > 0 and λ2 = 0, then we remove the constraintR1 + R2 ≤ ḡs2(S1,S2) in problem (42).

Consequently, in Lemma 8, we need the existence of onlyA2 to satisfy (43) and (44). The corresponding

KKT conditions in (45a)-(45h) are changed into those equivalent to letting λ̄2 = 0. Then we can still

choose the Lagrangian multipliers as in (58). Therefore,S
∗
1 andS∗

2 also maximize problem (42). Problems

(20) and (42) have the same maximum which is also the sum-ratecapacity.

The case forλ1 = 0 andλ2 > 0 is similarly proved by removing the constraintR1+R2 ≤ ḡs1(S1,S2)

from problem (42).

Remark 1: In the proof of Theorem 1, we remove the constraintR1+R2 ≤ ḡs2(S1,S2) whenλ2 = 0

only because we do not need the existence ofA2 to satisfy (43) and (44) which implygs2 (S∗
1,S

∗
2) =

August 6, 2018 DRAFT



20

ḡs2 (S
∗
1,S

∗
2). Since the rate constraintgs2 is inactive in the inner bound whenλ2 = 0 we can simply

remove the constraint̄gs2 from the outer bound.

Theorem 2:SupposeS∗
i , i = 1, 2 are maximizers of problem (24) for a givenr ∈

[
0,max 1

2 log
∣∣I+H2S2H

T
2

∣∣].
For i = 1, 2, let βi andKi be the corresponding Lagrangian multipliers satisfying (25a)-(25h). For any

βj > 0, j = 1, 2, if there existAi, i = 1, 2, i 6= j, that satisfies (43) and (44) and

Ki � βjOi (59)

whereOj is defined in (33), then the rate pair{R1 = R∗
1(r), R2 = r} is on the boundary of the capacity

region, and is achieved by the input distributionsxxxi ∼ N (0,S∗
i ), i = 1, 2, and jointly decoding the

signal and the interference.

Proof: The proof is similar to the proof of Theorem 1. We first modify problem (54) according toβj .

If βj = 0, then we remove the constraintR1 ≤ ḡsj − r.

By choosing

ᾱ = α, β̄i = βi, ν̄i = ηi Ki = Ki − βjOi, i, j ∈ {1, 2}, i 6= j

then the KKT conditions in (55a)-(55h) for the modified problem (54) are satisfied. Therefore, the modified

problem (54) is also maximized atS∗
1 and S

∗
2. Problems (24) and the modified (54) have the same

maximum by the factgsj (S∗
1,S

∗
2) = ḡsj (S

∗
1,S

∗
2) for any j with βj > 0.

Remark 2:Theorem 2 is used to establish the boundary of the capacity region. For each boundary

point, we need to find the corresponding matricesAi satisfying (43) and (44) which gives one outer

bound. This outer bound is tight at this particular point. Therefore, to find the whole capacity region, we

need to find the tight outer bound for each boundary point. There are cases in which only part of the

boundary points can be determined by Theorem 2, see Example 4.

Remark 3: In Theorems 1 and 2, in case ofλj 6= 0 or βj 6= 0, we always need the existence of matrix

Ai, i 6= j, satisfying (43) and (44) even ifOi = 0. The reason is that the corresponding tight outer

bound can be established only when suchAi exists.

Remark 4: If the conditions in Theorems 1 and 2 are satisfied, then the MIMO IC has generally

strong interference at the sum-rate capacity or at the rate pair {R∗
1(r), r}. In both cases, the capacity

is achieved by Gaussian input sequences and jointly decoding the signal and the interference. We show

in the following that under conditions (43) and (44), inequalities (2) and (3) are satisfied for the input

distributionxxx∗i ∼ N (0,S∗
i ), i = 1, 2:

I (xxx∗1;yyy1 | xxx∗2 ) = I (xxx∗1;H1xxx
∗
1 + F2xxx

∗
2 + zzz1 | xxx∗2 )
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= I (xxx∗1;H1xxx
∗
1 + zzz1)

=
1

2
log
∣∣I+H1S

∗
1H

T
1

∣∣

(a)
=

1

2
log
∣∣I+H1S

∗
1F

T
1 A

T
1

∣∣

(b)
=

1

2
log
∣∣I+A1F1S

∗
1F

T
1 A

T
1

∣∣

= I (xxx∗1;A1F1xxx
∗
1 + zzz1)

(c)
= I

(
xxx∗1;A1 (F1xxx

∗
1 + zzz1) +

(
I−A1A

T
1

)
z̃zz
)

≤ I
(
xxx∗1;A1 (F1xxx

∗
1 + zzz1) +

(
I−A1A

T
1

)
z̃zz, z̃zz
)

= I (xxx∗1;A1 (F1xxx
∗
1 + zzz1))

(d)

≤ I (xxx∗1;F1xxx
∗
1 + zzz1)

= I (xxx∗1;yyy2 | xxx∗2 ) (60)

where (a) is by (43); (b) is also by (43) which impliesH1S
∗
1 = A1F1S

∗
1; (c) is by (44) and we let

z̃zz ∼ N (0, I) be independent ofxxx∗1 and zzz1; and (d) is by the Markov relationshipxxx∗1 → xxx∗1 + zzz1 →
A1 (xxx

∗
1 + zzz1). Similarly, we can showI (xxx∗2;yyy2 | xxx∗1 ) ≤ I (xxx∗2;yyy1 | xxx∗1 ). Therefore, the strong interference

conditions (2) and (3) are both satisfied for a MIMO IC with generally strong interference at the capacity

achieving input distributions. For other input distributions, the MIMO IC with generally strong interference

may not satisfy the strong interference conditions (2) and (3).

Remark 5: If an MIMO IC has generally strong interference at rate pair{R1, R2} and satisfies the

conditions in Theorem 2, then this rate pair is in the achievable region given in (18) by replacingSi with

S
∗
i , for i = 1, 2. By Remark 4, we have

R1 ≤
1

2
log
∣∣I+ F1S

∗
1F

T
1

∣∣

R2 ≤
1

2
log
∣∣I+ F2S

∗
2F

T
2

∣∣ .

On combining the above constraints with those in (18), we have

0 ≤ R1 ≤ min {I (xxx∗1, yyy1 | xxx∗2 ) , I (xxx∗1, yyy2 | xxx∗2 )}

0 ≤ R2 ≤ min {I (xxx∗2, yyy2 | xxx∗1 ) , I (xxx∗2, yyy2 | xxx∗1 )}

R1 +R2 ≤ min {I (xxx∗1xxx∗2, yyy1) , I (xxx∗1xxx∗2, yyy2)} .

The above region is the same as the achievable region of a compound multiple access channel (by

requiring both receivers to correctly decode messages fromboth transmitters). Therefore, under generally
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strong interference, the receivers can still correctly decode the interference for the capacity achieving

distribution.

Remark 6:Theorems 1 and 2 specify the sum-rate capacity and the boundary points of the capacity

region for a MIMO IC with generally strong interference. Theconditions of Theorems 1 and 2 require the

optimization of problems (20) and (24) and the solution of (43) for matricesA1 andA2. Since both (20)

and (24) are convex optimization problems, they can be efficiently solved using standard optimization

algorithms. Equation (43) for matricesA1 andA2 is a special case of the Sylvester equation [14]. Once

S
∗
1 andS∗

2 are obtained, the matricesA1 andA2 can be obtained by solving the following linear equations

[11, Remark 7]:

I⊗
(
S
∗
1F

T
1

)
Vec(A1) = Vec

(
S
∗
1H

T
1

)

I⊗
(
S
∗
2F

T
2

)
Vec(A2) = Vec

(
S
∗
2H

T
2

)

Therefore, the existence ofA1 andA2 can be determined by the theory of linear equations. OnceS
∗
1,

S
∗
2, A1 andA2 are obtained, the Lagrangian multipliersλi, Wi, βi andKi, i = 1, 2, can be obtained by

solving the KKT conditions. Therefore, Theorems 1 and 2 can be efficiently applied to any MIMO IC.

Remark 7: If the strong interference conditions (7) and (8) are satisfied, we haveOi = 0, i = 1, 2.

Therefore, the generally strong interference conditions are automatically satisfied. Furthermore, for the

very strong interference we haveβ1 = β2 = 0 when r = 1
2 maxS2

log
∣∣I+H2S2H

T
2

∣∣. Therefore, the

generally strong interference conditions are also satisfied and we do not need the existence ofA1 or A2.

In the following, we apply Theorems 1 and 2 to SIMO and MISO ICsand derive their capacity region

under generally strong interference.

III. SIMO IC S

The received signals of a SIMO IC can be written as

yyy1 = X1hhh1 +X2fff2 + zzz1

yyy2 = X2hhh2 +X1fff1 + zzz2. (61)

wherehhhi andfff i i = 1, 2, are bothti× 1 column vectors. We need to findti× ti matricesAi that satisfy

(43) and (44). Since theS∗
i ’s are now scalars, we have

Ai =
hhhiρ

T
i

ρ
T
i fff i

, i = 1, 2 (62)
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whereρi is a nonzeroti × 1 column vector. For condition (44), we need

I � AiA
T
i =

hhhiρ
T
i ρihhh

T
i(

ρ
T
i fff i

)2 =
hhhihhh

T
i

‖fff i‖2 cos2∠ (ρi, fff i)
i = 1, 2. (63)

By [5, Lemma 6 byB = I] the above condition is equivalent to

‖hhhi‖2 ≤ ‖fff i‖2 cos2 ∠ (ρi, fff i) ≤ ‖fff i‖2, i = 1, 2. (64)

On the other hand, we haveOi = 0, i = 1, 2, by (62). Therefore, the SIMO IC has generally strong

interference for the entire capacity region if fori = 1, 2, ‖hhhi‖ ≤ ‖fff i‖ for anyfff i 6= 0. This condition is

the same as that in [4] and is also included as a special case of[5], i.e., the generally strong interference

obtained from Theorems 1 and 2 is exactly the same as strong interference.

It is straightforward to show that the very strong interference condition (11)

log
∣∣∣I+ Pihhhihhh

T
i

∣∣∣ ≤ log
∣∣∣I+ Pifff ifff

T
i + Pjhhhjhhh

T
j

∣∣∣− log
∣∣∣I+ Pjhhhjhhh

T
j

∣∣∣ i, j ∈ {1, 2}, i 6= j (65)

is equivalent to

‖fff i‖2
‖hhhi‖2

≥ 1 + Pj‖hhhj‖2
1 + Pj‖hhhj‖2 sin2∠(fff i,hhhj)

, i, j ∈ {1, 2}, i 6= j. (66)

Therefore, for the SIMO IC the very strong interference condition is a special case of the (generally)

strong interference condition.

IV. MISO ICS

In this section, we use the MISO IC as an example to show how Theorems 1 and 2 are applied to

obtain its capacity region under the generally strong interference. The received signals of a MISO IC are

defined as

Ŷ1 = ĥhh
T

1 x̂xx1 + f̂ff
T

2 x̂xx2 + Z1

Ŷ2 = ĥhh
T

2 x̂xx2 + f̂ff
T

1 x̂xx1 + Z2 (67)

whereĥhhi andf̂ff i, i = 1, 2, areti × 1 channel vectors,Zi ∼ N (0, 1) and
n∑

j=1

tr
(
E
[
x̂xxijx̂xx

T
ij

])
≤ nP̂i, i = 1, 2. (68)

It has been shown that the capacity region of channel (67) is the same as that of a MISO IC with

only two transmit antennas [15]. In fact, the capacity region of anm-user MISO IC is the same as that

of anm-user MISO IC with eachith transmitter havingmin{ti,m} antennas. The reduction process of

transmitter antennas is shown in [16, eqs.(45)-(47)] and its application to the two-user MISO IC is shown
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in [11, eqs.(78)-(83)]. We rewrite the result of [11] as follows: channel (67) is equivalent to the MISO

IC defined as

Y1 = hhhT1 xxx1 + fffT
2 xxx2 + Z1

Y2 = hhhT2 xxx2 + fffT
1 xxx1 + Z2 (69)

where, fori = 1, 2,

hhhi =


cos θi
sin θi


 (70)

fff i =



√
ai

0


 (71)

and

θi = ∠

(
ĥhhi, f̂ff i

)
(72)

ai =

∥∥∥f̂ff i

∥∥∥
2

∥∥∥ĥhhi
∥∥∥
2 . (73)

The power constraint is now
n∑

j=1

tr
(
E
[
xxxijxxx

T
ij

])
≤ nPi = nP̂i

∥∥∥ĥhhi
∥∥∥
2
, i = 1, 2. (74)

If Si is the input covariance matrix of useri for equivalent channel (69), the corresponding input

covariance matrix̂Si for the original channel is obtained in [11, eq. (88)]. In thesequel, we use (69) as

the channel model for MISO ICs.

We first obtain the joint decoding achievable rate region given in Lemma 3.

Lemma 10:The achievable rate region (18) for a MISO IC is

⋃

φi∈[0, π
2
]





R1 ≤ 1
2 log

(
1 + P1 sin

2(θ1 + τ1φ1)
)

R2 ≤ 1
2 log

(
1 + P2 sin

2(θ2 + τ2φ2)
)

R1 +R2 ≤ 1
2 log

(
1 + P1 sin

2(θ1 + τ1φ1) + a2P2 sin
2 φ2

)

R1 +R2 ≤ 1
2 log

(
1 + P2 sin

2(θ2 + τ2φ2) + a1P1 sin
2 φ1

)





(75)

whereτi = sign(cos(θi)), and is achieved by

Si = Pi


 sinφi

τi cosφi




 sinφi

τi cosφi



T

= Pi


 sin2 φi τi cosφi sinφi

τi cosφi sinφi cos2 φi


 , i = 1, 2. (76)
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Proof: It has been shown in [16, Lemma 2] that given

fffT
i Sifff i = aiPi sin

2 φi, φ ∈
[
0,

π

2

]
(77)

we have

hhhT
i Sihhhi ≤ Pi sin

2(θi + τiφi) (78)

and the equality is achieved by (76). Therefore, region (18)reduces to (75).

Lemma 10 reveals the fact that all the boundary points of the rate region (18) can be achieved by

rank-1 beamforming. Therefore, to determine whether the boundary points of region (18) are also the

boundary points of the capacity region, we need to consider only the rank-1 covariance matrices. By

Theorems 1 and 2, we obtain the sum-rate capacity and the boundary of the capacity region in the

following propositions.

Proposition 1: For a MISO IC defined in (67) and its equivalent channel (69), let S∗
i , i = 1, 2, be

optimal for problem (20) whereHi = hhhT
i andFi = fffT

i , i = 1, 2; then there existφ∗
i ∈

[
0, π2

]
, i = 1, 2,

such that

S
∗
i = Pi


 sin2 φ∗

i τi cosφ
∗
i sinφ

∗
i

τi cosφ
∗
i sinφ

∗
i cos2 φ∗

i


 (79)

whereτi = sign(cos θi). Furthermore, letλi andWi, i = 1, 2, be the Lagrangian multipliers satisfying

(21a)-(21h). For anyλj > 0, j = 1, 2, j 6= i, if

sin2 (θi + τiφ
∗
i ) < ai sin

2 φ∗
i (80)

Wi �
λj

2
· a sin2 θi

a sin2 φ∗
i − sin2 (θi + φ∗

i )


 cos2 φ∗

i −τi sinφ
∗
i cosφ

∗
i

−τi sinφ
∗
i cosφ

∗
i sin2 φ∗

i


 (81)

then the sum-rate capacity is the maximum in (20) and is achieved by Gaussian inputsxxxi ∼ N (0,S∗
i )

and by jointly decoding the signal and the interference.

Proof: The fact that the optimalS∗
i ’s have the form in (79) is determined by (77) and (78). By Theorem

1, the maximum in (20) is the sum-rate capacity, if for anyλj > 0, j = 1, 2, j 6= i the following conditions

are satisfied:
 1 Ai

Ai 1


 � 0 (82)

S
∗
ihhhi = S

∗
ifff iAi (83)

Wi � λjOi =
λj

2
(
1−A2

i

) (hhhi −Aifff i) (hhhi −Aifff i)
T , i, j ∈ {1, 2}, i 6= j. (84)
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SinceS∗
i is a unit-rank matrix, there always exists a scalarAi that satisfies (83), and

Ai =
τi sin (θi + τiφ

∗
i )√

ai sinφ
∗
i

. (85)

With (85), conditions (82)-(84) reduce to (80) and (81).

Proposition 2: For a MISO IC defined in (67) and its equivalent channel (69), let S∗
i , i = 1, 2, be

optimal for problem (24) for a givenr ∈
[
0, 12 log(1 + P2)

]
whereHi = hhhTi andFi = fffT

i , i = 1, 2; then

for i = 1, 2, there existφ∗
i ∈

[
0, π2

]
such that

S
∗
i = Pi


 sin2 φ∗

i τi cosφ
∗
i sinφ

∗
i

τi cosφ
∗
i sinφ

∗
i cos2 φ∗

i


 (86)

whereτi = sign(cos θi). Furthermore, letR∗
1(r) be the maximum in problem (24), and letβi andKi,

i = 1, 2, be the Lagrangian multipliers satisfying (25a)-(25h). For any βj > 0, j = 1, 2, j 6= i, if

sin2 (θi + τiφ
∗
i ) < ai sin

2 φ∗
i (87)

Ki �
βj
2

· a sin2 θi

a sin2 φ∗
i − sin2 (θi + φ∗

i )


 cos2 φ∗

i −τi sinφ
∗
i cosφ

∗
i

−τi sinφ
∗
i cosφ

∗
i sin2 φ∗

i


 (88)

then the rate pair(R∗
1 (r) , r) is on the boundary of the capacity region, and is achieved by Gaussian

inputsxxxi ∼ N (0,S∗
i ) and by fully decoding the interference.

Proof: The proof is identical to that of Proposition 1 and hence is omitted.

Propositions 1 and 2 provide sufficient conditions for a MISOIC to have generally strong interfer-

ence. Those conditions are more amenable to numerical evaluation since the optimal input covariance

matricesS∗
i can be obtained using standard convex optimization algorithms, while analytical closed-form

expressions forS∗
i are difficult to derive in general except in the very strong interference case:

Proposition 3: For the MISO IC ifai = 0 or ai cos2 θi ≥ 1 +Pi, i = 1, 2, then the capacity region is

0 ≤ Ri ≤ 1
2 log(1 + Pi), i = 1, 2, and is achieved by choosingxxxi ∼ N (0,S∗

i ), i = 1, 2, where

S
∗
i = Pi


 cos2 θi τi cos θi sin θi

τi cos θi sin θi sin2 θi


 (89)

andτi = sign(cos θi).

The proof is straightforward and hence is omitted.

In the following, we apply these two propositions to two special cases of MISO ICs: the MISO ZIC

with fff1 = 0, and the symmetric MISO IC withθ1 = θ2 6= π
2 , a1 = a2 > 0 andP1 = P2 > 0.
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A. MISO ZIC

A MISO ZIC is defined as in (67) witĥfff1 = 0. By using (69), the capacity region of such a MISO

IC is equivalent to the channel defined as

Y1 = X1 + fffTxxx2 + Z1

Y2 = hhhTxxx2 + Z2 (90)

where we letθ1 = ∠(hhh1, fff1) = 0 when fff1 = 0. Therefore,xxx1 reduces to a scalarX1. The power

constraints are stillP1 andP2 for users1 and2, respectively.

Whena = 0 or θ = π
2 , the capacity region of this MISO ZIC is trivially obtained.Whenθ ∈ {0, π},

the MISO ZIC reduces to a scalar Gaussian ZIC of which the capacity region under (generally) strong

interference has been obtained. Without loss of generality, we assumea 6= 0 and θ /∈
{
0, π2 , π

}
in the

sequel.

We obtain the joint decoding achievable region of this MISO ZIC by Lemma 10.

Lemma 11:For a MISO ZIC defined in (90), the achievable rate region (75)is

⋃

φ∈[0, π
2
]





R1 ≤ 1
2 log(1 + P1)

R2 ≤ 1
2 log

(
1 + P2 sin

2 (θ + τφ)
)

R1 +R2 ≤ 1
2 log

(
1 + P1 + aP2 sin

2 φ
)





(91)

whereτ = sign(cos θ).

Proof: For a MISO ZIC withfff1 = 0, the second receiver has no interference. Therefore, the second

constraint onR1 +R2 in (75) is not necessary and is hence removed.

Using Lemma 11, we obtain the largest sum rate and the boundary of the region defined in (91)

respectively in the following two lemmas.

Lemma 12:The largest sum rate of the region defined in (91) is

R1 +R2

=





1
2 log(1 + P1) +

1
2 log(1 + P2) if cos2 θ ≥ 1+P1

a

1
2 log(1 + P1 + aP2) if cos2 θ ≥ a

1+P1

1
2 log

(
1 + P1 + aP2 sin

2 φez

)
= 1

2 log(1 + P1)

+1
2 log

(
1 + P2 sin

2 (θ + τφez)
)

if cos2 θ ≤ min
{

a
1+P1

, 1+P1

a

}
(92)

whereτ = sign(cos θ) and

φez = atan
sin θ√

a
1+P1

− τ · cos θ
. (93)
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The correspondingS that achieves the sum rate is

S
∗ =





P2


 cos2 θ τ sin θ cos θ

τ sin θ cos θ sin2 θ


 if cos2 θ ≥ 1 + P1

a
(94a)


P2 0

0 0


 if cos2 θ ≥ a

1 + P1
(94b)

P2


 sin2 φez τ sinφez cosφez

τ sinφez cosφez cos2 φez


 if cos2 θ ≤ min

{
a

1 + P1
,
1 + P1

a

}
. (94c)

Proof: We consider the case ofcos θ ≥ 0, and consequentlyτ = 1. The case forcos θ < 0 can be

similarly proved. The sum rate for the achievable region given in Lemma 11 is bounded as

R1 +R2 ≤
1

2
log(1 + P1) +

1

2
max

φ∈[0, π
2
]
min

{
log
(
1 + P2 sin

2(θ + φ)
)
, log

(
1 +

aP2 sin
2 φ

1 + P1

)}

=
1

2
log(1 + P1) +

1

2
log

(
1 + P2 · max

φ∈[0, π
2
]
min {d1(φ), d2(φ)}

)
(95)

where

d1(φ) , sin2(θ + φ) (96)

d2(φ) =
a sin2 φ

1 + P1
. (97)

When cos2 θ ≥ a
1+P1

, we haved1 (φ) ≥ d2 (φ) for all φ; therefore,φ = π
2 maximizes (95). When

cos2 θ < a
1+P1

, we have

max
φ∈[0, π

2
]
{d1(φ), d2(φ)} =




d1(φ) if 0 ≤ φ ≤ φez

d2(φ) if φez ≤ φ ≤ π
2

(98)

whereφez is defined in (93), which means that

sin2 (θ + φez) =
a sin2 φez

1 + P1
. (99)

It can be shown that whencos2 θ ≥ 1+P1

a
, (95) is maximized byφ = π

2 − θ; and whencos2 θ ≤
min

{
1+P1

a
, a
1+P1

}
, (95) is maximized byφ = φez.

We then obtain the boundary of the region defined in Lemma 11.
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Lemma 13:The following rate pairs are on the boundary of the region defined in (91):




{
R1 =

1

2
log(1 + P1), R2 =

1

2
log(1 + P2)

}
if cos2 θ ≥ 1 + P1

a
(100a)

⋃

φ∈[τ(π

2
−θ), π

2
]




R1 =

1
2 log

(
1 + P1 + aP2 sin

2 φ
)
−R2

R2 =
1
2 log

(
1 + P2 sin

2 (θ + τφ)
)



 if cos2 θ ≥ a

1 + P1
(100b)

⋃

φ∈[τ(π

2
−θ),φ∗]




R1 =

1
2 log

(
1 + P1 + aP2 sin

2 φ
)
−R2

R2 =
1
2 log

(
1 + P2 sin

2 (θ + τφ)
)



 if cos2 θ ≤ min

{
a

1 + P1
,
1 + P1

a

}

(100c)

whereτ = sign(cos θ) andφez is defined in (93). The correspondingS that achieves these boundary

points is

S
∗ =





P2


 cos2 θ τ sin θ cos θ

τ sin θ cos θ sin2 θ


 if cos2 θ ≥ 1 + P1

a
(101a)

P2


 sin2 φ τ sinφ cosφ

τ sinφ cos φ cos2 φ


 otherwise. (101b)

Proof: It is obvious that whencos2 θ ≥ 1+P1

a
, theR1 +R2 constraint becomes redundant by choosing

τφ = π
2 − θ which maximizesR2. Therefore, (100a) determines the boundary points. For thecase of

cos2 θ ≤ 1+P1

a
, we prove (100b) and (100c) forcos θ ≥ 0. The results forcos θ < 0 can be proved

similarly.

By Lemma 5, forR2 = r, the maximalR1 is determined by

max R1

subject to R1 ≤
1

2
log(1 + P1)

R2 = r

R2 ≤
1

2
log
(
1 + P2 sin

2 (θ + ω)
)

R1 ≤
1

2
log
(
1 + P1 + aP2 sin

2 ω
)
− r

ω ∈
[
0,

π

2

]
. (102)

By Lemma 12, whencos2 θ ≥ a
1+P1

, the sum rate (100b) can be achieved by choosingS as (94b). For

this input covariance matrixS, the line segment connecting the following two points are onthe boundary:
(
R1 =

1

2
log(1 + P1), R2 =

1

2
log

(
1 +

aP2

1 + P1

))
(103)
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(
R1 =

1

2
log(1 + P1 + aP2)−

1

2
log
(
1 + P2 cos

2 θ
)
, R2 =

1

2
log
(
1 + P2 cos

2 θ
))

. (104)

Therefore, we need to consider only the boundary points with1
2 log

(
1 + P2 cos

2 θ
)
≤ R2 ≤ 1

2 log (1 + P2).

Let

r =
1

2
log
(
1 + P2 sin

2 (θ + φ)
)
, φ ∈

[π
2
− θ,

π

2

]
; (105)

then problem (102) becomes

max
1

2
log
(
1 + P1 + aP2 sin

2 ω
)
− r

subject to sin2 (θ + ω) ≥ sin2 (θ + φ)

ω ∈
[
0,

π

2

]
. (106)

We note that in this case the boundR1 ≤ 1
2 log(1 + P1) is redundant becausecos2 θ ≥ a

1+P1

. It can

be shown that the maximum in problem (106) is achieved whenω = φ. Therefore, the points given in

(100b) are on the boundary.

When cos2 θ ≤ min
{

a
1+P1

, 1+P1

a

}
, the sum-rate line segment defined in (103) and (104) shrinksto

one point:
(
R1 =

1

2
log(1 + P1), R2 =

1

2
log
(
1 + P2 sin

2 (θ + φez)
)
=

1

2
log

(
1 +

aP2 sin
2 φez

1 + P1

))
. (107)

Therefore, we need to consider only the boundary points with1
2 log

(
1 + P2 sin

2 (θ + φ∗)
)
≤ R2 ≤

1
2 log (1 + P2). Let

r =
1

2
log
(
1 + P2 sin

2 (θ + φ)
)
, andφ ∈

[π
2
− θ, φez

]
; (108)

then problem (102) becomes (106), which is maximized also byω = φ. Therefore, (100c) is the boundary.

Lemma 14:The capacity region of a MISO ZIC is outer bounded by

⋃

tr(S)≤P2,S�0





R1 ≤
1

2
log(1 + P1)

R2 ≤
1

2
log(1 + hhhTShhh)

R1 +R2 ≤
1

2
log

(
1 +

P1

1 + fffT
Sfff

)
+

1

2
log

∣∣∣∣I+ S

(
ffffffT +

(hhh−Afff)(hhh−Afff)T

1−A2

)∣∣∣∣





(109)

whereA can be any value satisfyingA2 < 1.

Proof: We choose

E1 = I
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E2 =


1 A

A 1


 ; (110)

then by (33), we have

O2 =
(hhh−Afff)(hhh−Afff)T

2 (1−A2)
. (111)

By Lemma 6 and substituting (111) into (27), we have that (109) is an outer bound for the capacity

region.

Next, we obtain the sum-rate capacity and the boundary of thecapacity for a MISO ZIC with generally

strong interference.

Proposition 4: For the MISO ZIC defined in (90), if

a cos2 θ ≥ 1 + P1 (112)

then the sum-rate capacity is

R1 +R2 =
1

2
log(1 + P1) +

1

2
log(1 + P2) (113)

and is achieved by (94a). If

0 <
1 + P1 sin

2 θ

1− P2 sin
2 θ

≤ a ≤ (1 + P1) cos
2 θ (114)

then the sum-rate capacity is

R1 +R2 =
1

2
log (1 + P1 + aP2) (115)

and is achieved by (94b). If

cos2 θ ≤ min

{
a

1 + P1
,
1 + P1

a

}
(116)

P1

√
a

1 + P1
· τ cos θ ≥

(
1−

√
a

1 + P1
· τ cos θ

)

1 + P1 +

aP2 sin
2 θ

a

1 + P1
+ 1− 2

√
a

1 + P1
· τ cos θ


(117)

then the sum-rate capacity is

R1 +R2 =
1

2
log
(
1 + P1 + aP2 sin

2 φez

)

=
1

2
log (1 + P1) +

1

2
log
(
1 + P2 sin

2 (θ + τφez)
)

(118)

and is achieved by (94c).

Proof: We consider only the case in whichcos θ ≥ 0, and consequently,τ = 1. The case forτ = −1

can be similarly proved. Whena cos2 θ ≥ 1+P1, the MISO IC has very strong interference. Its sum-rate
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capacity is trivially proved. Next, we first consider the case of (114). Using Lemma 12, the maximal sum

rate of (91) is (115) and is achieved by (94b). Then from Lemma4 there exist Lagrangian multipliers

that satisfy

γ + λ1 = 1 (119a)

W2 = − γhhhhhhT

2 (1 + P2 cos2 θ)
− λ1ffffff

T

2 (1 + P1 + aP2)
+ η2I (119b)

γ = 0 (119c)

λ1 > 0 (119d)

η2 > 0 (119e)

tr (W2S
∗
2) = 0 (119f)

W2 � 0 (119g)

whereS∗ is given in (94b) which implies

φ∗ =
π

2
. (120)

We note that since the constraintR1+R2 ≤ gs2 in (20) is removed, the associated Lagrangian multiplier

λ2 in (25a)-(21h) is also removed (which is equivalent to setting λ2 = 0).

Solving (119a)-(119g), we have

W2 =



0 0

0
a

2(1 + P1 + aP2)


 . (121)

By Proposition 1, (115) is the sum-rate capacity if

cos2 θ < a (122)

W2 �
1

2
· a sin2 θ

a− cos2 θ


0 0

0 1


 . (123)

The above two conditions reduce to (114). We note thatcos2 θ < a is redundant since (114) implies

a > 1.

Next, we prove the sum-rate capacity for conditions (116) and (117). By Lemma 12, the maximal sum

rate of (91) is (118) and is achieved by (94c) which implies

φ∗ = φez. (124)
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There exist Lagrangian multipliers that satisfy

γ + λ1 = 1 (125a)

W2 = − γhhhhhhT

2
(
1 + P2 sin

2 (θ + φez)
) − λ1ffffff

T

2
(
1 + P1 + aP2 sin

2 φez

) + η2I (125b)

γ > 0 (125c)

λ1 > 0 (125d)

η2 > 0 (125e)

tr (W2S
∗
2) = 0 (125f)

W2 � 0. (125g)

We note that we also removed the terms associate withλ2 from (25a)-(21h) for the same reason. By

solving (125a)-(125g), we have

λ1 =
sin 2 (θ + φez)

sin 2 (θ + φez)−
a sin 2φez

1 + P1

(126)

γ = 1− λ1 (127)

η2 = k sin2 φez +
(1− λ1) sin

2 θ

2
(
1 + P2 sin

2 (θ + φez)
) (128)

W2 = k


 cos2 φez − sinφez cosφez

− sinφez cosφez sin2 φez


 (129)

where

k =
1− λ1

2
(
1 + P2 sin

2 (θ + φez)
) · sin 2θ

sin 2φez

. (130)

We note that under condition (114), we haveπ
2 < φez + θ < π.

By Proposition 1, (115) is the sum-rate capacity if

sin2 (θ + φez) < a sin2 φez (131)

k ≥ λ1

2
· a sin2 θ

a sin2 φez − sin2 (θ + φez)
. (132)

Condition (131) is satisfied by (93), and condition (132) is satisfied by (117).

The MISO ZIC under conditions (113), or (114), or (116) and (117) is said to have the generally strong

interference sum-rate capacity of type I (very strong interference), type II and type III, respectively.

Proposition 5: For the MISO ZIC defined in (90), ifa cos2 θ ≥ 1 + P1, then the capacity region is

0 ≤ R1 ≤
1

2
log(1 + P1) (133)
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0 ≤ R2 ≤
1

2
log(1 + P2) (134)

and is achieved by (101a). Ifa cos2 θ ≤ 1 + P1, then for anyφ that satisfies

Q(φ) ≥ 0, φ ∈ Φ (135)

where

Φ ,





[
τ
(
π
2 − θ

)
, π2
]

if a
1+P1

≤ cos2 θ ≤ 1+P1

a[
τ
(
π
2 − θ

)
, φez

]
if cos2 θ ≤ min

{
a

1+P1

, 1+P1

a

} (136)

Q(φ) , a sin2 φ− sin2 (θ + τφ) +
sin 2 (θ + τφ) sin2 θ

sin 2θ

(
1 + P1 + aP2 sin

2 φ
)

(137)

whereτ = sign(cos θ), the following rate pair is on the boundary of the capacity region:

R1 =
1

2
log
(
1 + P1 + aP2 sin

2 φ
)
−R2 (138)

R2 =
1

2
log
(
1 + P2 sin

2 (θ + φ)
)
; (139)

and the rate pair is achieved by choosingS as (101b) and jointly decoding the signal and the interference

at receiver1.

Proof: We prove only the casecos θ ≥ 0. Since whena cos2 θ ≥ 1 + P1, the MISO ZIC has very

strong interference and the capacity region is trivially proved, we need to consider only the case with

a cos2 θ ≤ 1 + P1. By Lemma 13, the rate pair(R1, R2) in (138) and (139) is on the boundary of the

inner bound defined in (102). Therefore, thisR1 given in (138) is the maximum in the optimization

problem (24) withr = R2 given in (139). By Lemma 5, there exist Lagrangian multipliers that satisfy

α1 + β1 = 1 (140a)

K2 = − α2hhhhhh
T

2
(
1 + P2 sin

2(θ + φ)
) − β1ffffff

T

2
(
1 + P1 + aP2 sin

2 φ
) + ν2I (140b)

α1 = 0 (140c)

α2 > 0 (140d)

β1 > 0 (140e)

ν2 > 0 (140f)

tr (K2S
∗
2) = 0 (140g)

K2 � 0. (140h)
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We note thatα1 = 0 simply because constraintR1 ≤ 1
2 log(1+P1) is always inactive byπ2 − θ ≤ φ ≤ π

2

anda ≤ (1 + P1) cos
2 θ. Then we have

α2 = − a
(
1 + P2 sin

2(θ + φ)
)
sin 2φ(

1 + P1 + aP2 sin
2 φ
)
sin 2(θ + φ)

(141a)

β1 = 1 (141b)

ν2 = k sin2 φ+
α2 sin

2 θ

2
(
1 + P2 sin

2(θ + φ)
) (141c)

W2 = k


 sin2 φ − sinφ cosφ

− sinφ cos φ cos2 φ


 (141d)

where

k =
α2 sin 2θ

2
(
1 + P2 sin

2(θ + φ)
)
sin 2φ

. (142)

We note thatα2 > 0 sinceπ ≤ sin 2(θ + φ) ≤ 3
2π.

By Proposition 2, this(R∗
1(r), r) is on the boundary of the capacity region if

sin2(θ + φ) < a sin2 φ (143)

k ≥ 1

2

a sin2 θ

a sin2 φ− sin2 (θ + φ)
. (144)

Condition (144) is equivalent toQ(φ) ≥ 0 in (135). Condition (143) is satisfied by requiringQ(φ) ≥ 0,

since the third term ofQ(φ) is always non-positive.

Remark 8:Propositions 4 and 5 establish the full capacity region of a MISO ZIC with generally strong

interference. When a
1+P1

≤ cos2 θ ≤ 1+P1

a
andQ(φ) ≥ 0 for all φ ∈ Φ, the capacity boundary points

consist of (see Fig. 7 as an example)







R1 =

1
2 log

(
1 + P1 + aP2 sin

2 φ
)
−R2

R2 =
1
2 log

(
1 + P2 sin

2 (θ + φ)
)



 , φ ∈ Φ

R1 +R2 =
1
2 log(1 + P1 + aP2),

1
2 log

(
1 + aP2

1+P1

)
≤ R2 ≤ 1

2 log
(
1 + P2 cos

2 θ
)

R1 =
1
2 log(1 + P1), 0 ≤ R2 ≤ 1

2 log
(
1 + aP2

1+P1

)

R2 =
1
2 log(1 + P2), 0 ≤ R1 ≤ 1

2 log
(
1 + P1 + aP2 cos

2 θ
)
−R2.

(145)

Whencos2 θ ≤ min
{

a
1+P1

, 1+P1

a

}
andQ(φ) ≥ 0 for all φ ∈ Φ, the capacity boundary points consist of

(see Fig. 9 as an example)






R1 =

1
2 log

(
1 + P1 + aP2 sin

2 φ
)
−R2

R2 =
1
2 log

(
1 + P2 sin

2 (θ + φ)
)



 , φ ∈ Φ

R1 =
1
2 log(1 + P1), 0 ≤ R2 ≤ 1

2 log
(
1 + aP2

1+P1

)

R2 =
1
2 log(1 + P2), 0 ≤ R1 ≤ 1

2 log
(
1 + P1 + aP2 cos

2 θ
)
−R2.

(146)
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B. Symmetric MISO IC

A symmetric MISO IC hasθ1 = θ2 = θ ∈
(
0, π2

)
, a1 = a2 = a > 0 and P1 = P2 = P > 0.

In this section, we derive sufficient conditions to determine the sum-rate capacity with generally strong

interference. The derivation is similar to that of the MISO ZIC and is hence omitted. In the following,

we only summarize the main result.

By symmetry, the maximal sum rate of region (75) is determined by

max R1 +R2

subject to R1 +R2 ≤ qu(φ)

R1 +R2 ≤ qs(φ)

0 ≤ φ ≤ π

2
(147)

where

qu(φ) = log
(
1 + P sin2(θ + φ)

)
(148)

qs(φ) =
1

2
log
(
1 + P sin2(θ + φ) + aP sin2 φ

)
. (149)

Obviously

max
φ∈[0, π

2
]
qu(φ) = qu (φ = φu) = log(1 + P ) (150)

where

φu =
π

2
− θ. (151)

It can be shown that

max
φ∈[0, π

2
]
qs(φ) = qs (φ = φs) (152)

where

φs =





π

2
− 1

2
atan

(
sin 2θ

a+ cos 2θ

)
, if a+ cos 2θ > 0 (153a)

π

4
, if a+ cos 2θ = 0 (153b)

−1

2
atan

(
sin 2θ

a+ cos 2θ

)
, if a+ cos 2θ < 0. (153c)

Define the set

Φe ,

{
φ
∣∣∣qu(φ) = qs(φ), 0 ≤ φ ≤ π

2

}
(154)
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and denote

φe = argmax
φ∈Φe

qu(φ). (155)

The maximum in problem (147) and the corresponding optimalφ∗ are given in Tab. I.

TABLE I

THE SOLUTION OF PROBLEM(147) FOR A SYMMETRICMISO IC.

case condition maximum φ∗ active constraints

I qs (φu) ≥ qu (φu) log(1 + P ) φu qu

II qs (φs) ≤ qu (φs)
1
2
log(1 + P sin2(θ + φs) + aP sin2 φs) φs qs

III
qs (φu) < qu (φu)

qs (φs) > qu (φs)

1
2
log(1 + P sin2(θ + φe) + aP sin2 φe) φe qu, qs

By symmetry, the Lagrangian multipliers in (21a)-(21h) satisfy λ1 = λ2 , λ, η1 = η2 , η and

W1 = W2 , W. Using Tab. I and Proposition 1, we obtain sufficient conditions for a symmetric MISO

IC to have generally strong interference:

1) Case I: the constraintqs is inactive and thus the Lagrangian multiplier associated with this constraint

is λ = 0. By Proposition 1,log(1 + P ) is the sum-rate capacity. In this case, the MISO IC has

very strong interference.

2) Case II: the constraintqs is inactive and thus the Lagrangian multiplier associated with this constraint

is γ = 0. By solving (21a)-(21h), we have

λ =
1

2
(156)

W = k


 cos2 φs − cosφs sinφs

− cosφs sinφs sin2 φs


 (157)

where

k =
sin θ cos θ

4 sinφ cosφ
(
1 + P sin2(θ + φs) + aP sin2 φs

) . (158)

By Proposition 1, if

sin2 (θ + φs) < a sin2 φs (159)

k ≥ 1

4
· a sin2 θ

a sin2 φs − sin2(θ + φs)
(160)

then the sum rate capacity isqs(φs).
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3) Case III: constraintsqu andqs are both active, therefore,γ 6= 0 andλ 6= 0. By solving (21a)-(21h),

we have

λ =
1

d+ 2
(161)

W = k


 cos2 φe − cosφe sinφe

− cosφe sinφe sin2 φe




(162)

where

k =

(
d
(
1 + P sin2 (θ + φe)

)
+ 1
)
sin θ cos θ

2(d+ 2)
(
1 + P sin2 (θ + φe) + aP sin2 φe

)
sinφe cosφe

(163)

d = − sin 2 (θ + φe) + a sin 2φe(
1 + P sin2 (θ + φe)

)
sin 2 (θ + φe)

. (164)

By Proposition 1, if

sin2 (θ + φe) < a sin2 φe (165)

k ≥ λ

2
· a sin2 θ

a sin2 φe − sin2(θ + φe)
(166)

thenqu(φe) (or qs(φe) is the sum-rate capacity.

V. NUMERICAL EXAMPLES

Example 1:Consider a MIMO IC with

H1 =


1.1388 −0.2236

0.8445 −2.7614


 , F1 =


0.1489 5.0975

1.3055 1.9099




H2 =


1.1307 1.0983

0.1415 0.2041


 , F2 =


−0.0970 0.7639

1.9346 1.4774




P1 = P2 = 10.

The maximal sum rate for the achievable region (18) is

R1 +R2 ≤
1

2
log
∣∣I+H1S

∗
1H

T
1 + F2S

∗
2F

T
2

∣∣ = 3.2998

and is achieved by

S
∗
1 =


8.2319 0.3636

0.3636 1.7681


 , S

∗
2 =


7.7370 4.1843

4.1843 2.2630


 .
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The corresponding Lagrangian multipliers are

λ1 = 1, λ2 = 0, η1 = 0.0545, η2 = 0.0394

W1 = 0, W2 =


 0.3794 −0.7015

−0.7015 1.2972


× 10−2.

Since onlyλ1 > 0, the matrixA2 that satisfies (43) can be chosen as

A2 =


0.2802 0.5985

0.1146 0.0789


 andA2A

T
2 � I.

From (33) we haveO2 = 0 and henceW2 � λ1O2. By Theorem 1, this MIMO IC has generally strong

interference. Therefore, the sum-rate capacity isR1 +R2 = 3.2998.

We note that in this case sinceS1 has full rank, the correspondingA1 that satisfies (43) has to be

A1 = F
−1
1 H1, andA1A

T
1 � I. Therefore, [5, Proposition 3] does not apply, and this MIMOIC does

not have strong interference in the sense of [1].

Example 2:Consider a symmetric MISO IC witha = 2, θ = 0.2π andP = 1. By Tab. I, this MISO

IC satisfies the case III condition. The rate constraintsqu(φ) andqs(φ) are shown in Fig. 2. The optimal

input covariance matrix and the correspondingφ∗ are

S1 = S2 =


0.8857 0.3182

0.3182 0.1143




φ∗ = φe = 0.3902π

and the maximal sum rate is

R1 +R2 = 0.6532.

The corresponding Lagrangian multipliers are

γ = 0.2627, λ = 0.3686, η = 0.1974, W = 0.1768


 cos2 φ∗ − cosφ∗ sinφ∗

− cosφ∗ sinφ∗ sin2 φ∗


 .

The matrixλO is

λO = 0.1499


 cos2 φ∗ − cosφ∗ sinφ∗

− cosφ∗ sinφ∗ sin2 φ∗


 .

Therefore,W � λO andR1 +R2 = 0.6532 is the sum-rate capacity.

Example 3:Consider a symmetric MISO IC witha = 2, θ = 0.1π andP = 4. By Tab. I, this MISO

IC satisfies the case II condition. The rate constraintsqu(φ) andqs(φ) are shown in Fig. 3. The optimal
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input covariance matrix and the correspondingφ∗ are

S1 = S2 =


3.9576 0.4096

0.4096 0.0424




φ∗ = φs = 0.4672π

and the maximal sum rate is

R1 +R2 = 1.2724.

The corresponding Lagrangian multipliers are

γ = 0, λ = 0.5000, η = 0.0576, W = 0.0563


 cos2 φ∗ − cosφ∗ sinφ∗

− cosφ∗ sinφ∗ sin2 φ∗


 .

The matrixλO is

λO = 0.0467


 cos2 φ∗ − cosφ∗ sinφ∗

− cosφ∗ sinφ∗ sin2 φ∗


 .

Therefore,W � λO andR1 +R2 = 1.2724 is the sum-rate capacity.

Example 4:Consider a MISO ZIC witha = 6, θ = 0.2π, P1 = 9 andP2 = 3. The functionQ(φ)

and the inner and outer bounds for the capacity region are shown in Figs. 4 and 5, respectively. When

φ ∈
[
π
2 − θ, φ0

]
whereφ0 = 0.3748π, we haveQ(φ) ≥ 0. By Proposition 5, the rate pairs given in (138)

and (139) withφ ∈
[
π
2 − θ, φ0

]
are on the boundary of the capacity region. Those points consist of the

curve segment̂CB of the Han and Kobayashi (HK) inner bound in Fig. 5, where point C(0.8474, 0.6931)

is a corner point corresponding toφ = π
2 − θ and pointB(0.9442, 0.6724) is corresponding toφ = φ0.

The HK inner bound is obtained by rate splitting and superposition coding. Another inner bound is

obtained by jointly decoding the signal and the interference. The two outer bounds are obtained using

Lemma 14. In (109), the outer bound tight at pointC hasA = 0.5046 and the outer bound tight at point

B hasA = 0.4298.

Example 5:Consider a MISO ZIC witha = 1.2, θ = 0.1π, P1 = 0.5 andP2 = 0.5. The function

Q(φ) and the capacity region are shown in Figs. 6 and 7, respectively. Since this channel satisfies

a
1+P1

≤ cos2 θ ≤ 1+P1

a
and for allφ ∈

[
π
2 − θ, π2

]
we haveQ(φ) ≥ 0, by Proposition 5, the rate pairs

given in (138) and (139) withφ ∈
[
π
2 − θ, π2

]
are on the boundary of the capacity region. Those points

consist of the curve segment̂C1B in Fig. 5, where pointC1(0.1544, 0.2027) is a corner point determined

by φ = π
2−θ and pointB(0.1844, 0.1866) is determined byφ = π

2 . By Proposition 4, the rate pair at point

B also achieves the sum-rate capacity. Therefore, the line segmentBC2 satisfyingR1 +R2 = 0.3710 is
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also the boundary of the capacity region whereC2(0.2027, 0.1682) is another corner point. Therefore, the

entire capacity region is determined and the MISO ZIC has generally strong interference for the entire

capacity region.

Example 6:Consider a MISO ZIC witha = 2, θ = 0.2π, P1 = 2 and P2 = 0.4. The function

Q(φ) and the capacity region are shown in Figs. 8 and 9, respectively. Since this channel satisfies

cos2 θ ≤ min
{

a
1+P1

, 1+P1

a

}
and for all φ ∈

[
π
2 − θ, φez

]
where φez = 0.4959π, we haveQ(φ) ≥

0, and by Proposition 5, the rate pairs given in (138) and (139)with φ ∈
[
π
2 − θ, φez

]
are on the

boundary of the capacity region. Those points consist of thecurve segment̂C1C2 in Fig. 5, where point

C1(0.4615, 0.1682) is a corner point determined byφ = π
2 − θ and pointC2(0.5493, 0.1182) is another

corner point determined byφ = φez. By Proposition 4, the rate pair at pointC2 also achieves the sum-rate

capacityR1 +R2 = 0.6675. Therefore, the entire capacity region is determined and the MISO ZIC has

generally strong interference for the entire capacity region.

Example 7:Fig. 10 shows the maximal value ofa for a MISO ZIC to have generally strong interference

sum-rate capacity, and the minimal value ofa for a MISO ZIC to have noisy interference sum-rate capacity

[11]. For all the MISO ZICs witha and θ above the ‘Minimum ofa for GS IF’ curve, the sum-rate

capacity is achieved by jointly decoding the signal and the interference. For all the MISO ZICs witha

andθ below the ‘Maximum ofa for NIF’ curve, the sum-rate capacity is achieved by treating interference

as noise. We also show the region for the MISO ZIC to have the generally strong interference sum-rate

capacity of case II (see eq. (114)), and case III (see eqs. (116) and (117)).

Example 8:Fig. 11 shows the maximal value ofa for a symmetric MISO IC to have generally strong

interference sum-rate capacity, and the minimal value ofa for a MISO ZIC to have noisy interference

sum-rate capacity [11]. For all the symmetric MISO ICs witha andθ above the ‘Minimum ofa for GS

IF’ curve, the sum-rate capacity is achieved by jointly decoding the signal and the interference. For all the

MISO ICs with a andθ below the ‘Maximum ofa for NIF’ curve, the sum-rate capacity is achieved by

treating interference as noise. We also show the region for the symmetric MISO IC to have the generally

strong interference sum-rate capacity of case II (see eqs. (159) and (160)), and case III (see eqs. (165)

and (166)).

VI. CONCLUSION

In this paper, we have extended the capacity result for MIMO ICs with strong interference to those with

generally strong interference. Although in both cases the capacity region is achieved by jointly decoding

the signal and the interference, the strong interference conditions require the receivers to be able to
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decode the signal and interference for any input distribution, while for generally strong interference, the

receivers are required to do so only for the capacity achieving input distributions. The generally strong

interference conditions for a MIMO IC have been obtained andthe application to SIMO and MISO ICs

has also been discussed. The obtained conditions include existing capacity results for strong and very

strong interference as special cases.

APPENDIX

A. Proof of Lemma 1

Generate a length-n random vectorqn with independent and identically distributed (i.i.d.) elements

according to

p (qn) =

n∏

m=1

p(qm).

Let i denote the index of the messages transmitted by user1 and i ∈
{
1, 2, · · · , enR1

}
. For eachi,

generate a length-n random vectorxn1 with i.i.d. elements according to

p (xn1 |qn ) =
n∏

m=1

p (x1m|qm) .

We label this sequence asxn1 (i).

Let j denote the index of the message transmitted by user2 and j ∈
{
1, 2, · · · , enR2

}
. For eachj,

generate a length-n random vectorxnj with i.i.d. elements according to

p (xn2 |qn ) =
n∏

m=1

p (x2m|qm) .

We label this sequence asxn2 (j).

To send message indicesi to receivers1, transmitter1 sends the codewordxn1 (i). To send message

index j to receiver2, transmitter2 sends the codewordxn2 (j).

Receiver1 looks for unique indices(̂i, ĵ) such that
(
qn, xn1

(
î
)
, xn2

(
ĵ
)
, yn1

)
∈ A(n)

ǫ (Q,X1,X2, Y1) (167)

whereA(n)
ǫ denotes the set of jointly typical sequences.

Receiver2 looks for unique indices
(
î, ĵ
)

such that
(
qn, xn1

(
î
)
, xn2

(
ĵ
)
, yn2

)
∈ A(n)

ǫ (Q,X1,X2, Y2) . (168)

An error occurs if there are no such indices or the indices arenot unique.

August 6, 2018 DRAFT



43

By symmetry, we assume that the transmitted indices arei = j = 1. For user1, we define the following

event:

E1
ij =

{
(qn, xn1 (i) , x

n
2 (j) , y

n
1 ) ∈ A(n)

ǫ (Q,X1,X2, Y1)
}
. (169)

The error probability at receiver1 is

Pe1 = Pr
{
E1

11
c
⋃

∪(i 6=1,anyj)E
1
ij

}

≤ Pr
{
E1

11
c}

+
∑

i 6=1,j=1

Pr
(
E1

i1

)
+

∑

i 6=1,j 6=1

Pr
(
E1

ij

)

≤ ǫ+ en(R1−I(X1;Y1|X2Q)) + en(R1+R2−I(X1X2;Y1|Q)). (170)

Similarly, the error probability of receiver2 is

Pe2 ≤ ǫ+ en(R2−I(X2;Y2|X1Q)) + en(R1+R2−I(X1X2;Y2|Q)). (171)

Therefore, the rate region in Lemma 1 is achievable.

B. Proof of Lemma 2

For completeness, we rewrite the simplified Han and Kobayashi region [9] in the following and denote

it asHK (W1,W2):

0 ≤ R1 ≤ I (X1;Y1|W2Q)

0 ≤ R2 ≤ I (X2;Y2|W1Q)

R1 +R2 ≤ I (X1W2;Y1|Q) + I (X2;Y2|W1W2Q)

R1 +R2 ≤ I (X1;Y1|W1W2Q) + I (X2W1;Y2|Q)

R1 +R2 ≤ I (X1W2;Y1|W1Q) + I (X2W1;Y2|W2Q)

2R1 +R2 ≤ I (X1W2;Y1|Q) + I (X1;Y1|W1W2Q) + I (X2W1;Y2|W2Q)

R1 + 2R2 ≤ I (X2;Y2|W1W2Q) + I (X2W1;Y2|Q) + I (X1W2;Y1|W1Q) .

We denote the region defined in (15a)-(15d) asR. To show thatR is a subset of the Han and Kobayashi

region, it suffices to show

R ⊆ HK(X1,X2)
⋃

HK(empty,X2)
⋃

HK(X1,empty). (172)

Let {R1, R2} ∈ R. ThenR1 andR2 satisfy (15a)-(15d). IfR1 andR2 also satisfy the extra constraint

(17), then{R1, R2} ∈ HK(X1,X2). Otherwise, we have

R1 +R2 > I (X1;Y2|X2Q) + I (X2;Y1|X1Q) . (173)

August 6, 2018 DRAFT



44

We have only three possible scenarios:

R1 ≥ I (X1;Y2|X2Q) , R2 ≤ I (X2;Y1|X1Q) or

R1 ≤ I (X1;Y2|X2Q) , R2 ≥ I (X2;Y1|X1Q) or

R1 ≥ I (X1;Y2|X2Q) , R2 ≥ I (X2;Y1|X1Q) .

SupposeR1 ≥ I (X1;Y2|X2Q). By (15d) we have

R2 ≤ I (X2;Y2|Q) . (174)

On the other hand,HK(empty,X2) is given by

0 ≤ R1 ≤ I (X1;Y1|X2Q) (175)

0 ≤ R2 ≤ I (X2;Y2|Q) (176)

R1 +R2 ≤ I (X1X2;Y1|Q) (177)

Since {R1, R2} satisfies (15a), (15c) and (174), we have{R1, R2} ∈ HK(empty,X2). Similarly, if

R2 ≥ I (X2;Y1|X1Q), then{R1, R2} ∈ HK(X1,empty).
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