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Abstract

We construct mixing processes over an infinite alphabet and ergodic

processes over a finite alphabet for which Shannon mutual information

between adjacent blocks of length n grows as nβ, where β ∈ (0, 1). The
processes are a modification of nonergodic Santa Fe processes, which were

introduced in the context of natural language modeling. The rates of mu-

tual information for the latter processes are alike and also established in

this paper. As an auxiliary result, it is shown that infinite direct products

of mixing processes are also mixing.
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I Introduction

Let H(X) := E [− logP (X)] denote the entropy of a discrete variable X on
a probability space (Ω,J , P ), where E is the expectation with respect to P , log
is the binary logarithm, and the variable P (X) takes the value P (X = x) for
X = x. We have the mutual information I(X ;Y ) := H(X) +H(Y )−H(X,Y )
for finite entropies on the right hand side. Besides, we have the conditional
entropy H(X |Z) = H(X,Z) − H(Z) and the conditional mutual information
I(X ;Y |Z) := H(X |Z)+H(Y |Z)−H(X,Y |Z). These definitions are generalized
to arbitrary random variables, e.g., in [1, 2].
Let (Xi)i∈Z be a stationary process on (Ω,J , P ), where Xi : (Ω,J ) →

(X,X ). For its distribution µ = P ((Xi)i∈Z ∈ ·) we denote the mutual informa-
tion between blocks of length n as

Eµ(n) := I (X1:n;Xn+1:2n) . (1)

The limiting value of mutual information, called excess entropy, is defined as

Eµ := I((Xi)i≤0; (Xi)i≥1) = lim
n→∞

Eµ(n) (2)

These quantities are natural measures of dependence for discrete-valued pro-
cesses [3]. We are interested in constructing diverse examples of stationary
measures for which

Eµ(n) ≍ nβ, (3)

where β ∈ (0, 1), because certain measures of this kind may be useful for mod-
eling natural language, cf., [4, 5].
Mentioning related results, let us first consider Gaussian processes. For

theses processes the conditional mutual information equals I(X0;Xn|(Xi)
n−1
i=1 ) =

− log(1 − |α(n)|2), where function α(k) is the partial autocorrelation, cf., [6].
Regardless of the alphabet, the mutual information between blocks may be
reconstructed from conditional mutual information as

Eµ(n) =

n−1
∑

k=1

kI(X0;Xk|(Xi)
k−1
i=1 ) +

2n−1
∑

k=n

(2n− k)I(X0;Xk|(Xi)
k−1
i=1 ). (4)

Thus the asymptotics (3) holds if and only if
∑n

k=1 k |α(k)|
2 ≍ nβ. As a result,

the construction of processes that satisfy condition (3) is easy because the sole
constraint on partial correlation reads |α(k)| ≤ 1 [7]. However, a classical
result [8] says that excess entropy of nonsingular Gaussian autoregressivemoving
average (ARMA) processes is finite, cf., [3], [9, Theorem 9.4.1], [10, Section 5.5].
Some examples of stationary processes for which excess entropy is infinite are

also known for discrete-valued processes. The trivial example for a countably
infinite alphabet is a process such thatXi does not depend on i andH(Xi) = ∞.
Then we have Eµ(n) = ∞ for any n ≥ 1. The aforementioned construction is
impossible for processes over a finite alphabet. Considering those processes,
we mention first that asymptotics E(n) = (k/2) log(n/2πe) + O(1) holds for
any Bayesian mixture of a k-parameter model with a prior concentrated on
a subset of parameters with bounded Fisher information [11, Theorem 8.3].
Similar asymptotics E(n) ≍ logn holds for a binary process constructed by
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Gramss [12], cf., [13, 14]. The distribution of that process is formed by the
frequencies of 0’s and 1’s in the rabbit sequence. As for processes with infinite
excess entropy that are mixing, Bradley [15] constructed a binary process which
satisfies two conditions, cf., [16]: (i) the process is ρ-mixing and (ii) the restricted
measure P ((Xi)i≤0∨i≥n ∈ ·) is singular with respect to the product measure
P ((Xi)i≤0 ∈ ·) × P ((Xi)i≥n ∈ ·) for any n ≥ 1 [15, Lemma 3]. The first
property implies that the process is mixing in the ordinary ergodic theoretic
sense [17, Volume 1, Chapters 3 and 5]. The second property implies that the
excess entropy is infinite.
A few other examples concern hidden Markov chains. By the data process-

ing inequality, excess entropy is finite for hidden Markov chains with a finite
number of hidden states [18]. On the other hand, if the distribution of ergodic
components of a stationary process has infinite entropy then the process has
infinite excess entropy [2, Theorem 5]. Such a situation may arise for hidden
Markov chains with a countably infinite number of hidden states. (Consider
for instance a mixture of periodic processes where the probability of a period
is a sufficiently slowly decreasing function of the cycle length [19].) A less triv-
ial example, constructed in [19], is a stationary ergodic hidden Markov chain
with infinite excess entropy, a finite number of output symbols, and a countably
infinite alphabet of hidden states.
In this paper we will consider another class of processes that are nonergodic,

ergodic, or mixing and satisfy condition (3). The construction of these processes
is motivated linguistically. Let us first sketch this motivation. In our previous
work [5], we have shown that proportionality (3) implies a power law which
resembles Zipf’s law for the distribution of words. Namely, product Eµ(n) logn
is upper bounded by the expected vocabulary size of an admissibly minimal
grammar for the text of length n. It was empirically observed that the latter
quantity approximates the number of distinct words for texts in natural language
[20]. Our bound for mutual information and the vocabulary size holds if the
alphabet X is finite and the process’s distribution has finite energy property [5,
Theorem 3]. There is also another linguistically motivated bound for Eµ(n).
That one is a lower bound. Namely, asymptotics

lim sup
n→∞

Eµ(n)/n
β > 0 (5)

follows from a hypothesis that texts describe an infinite random object in
a highly repetitive way so that nβ independent facts about the object can be
inferred on average from the text of length n [5, Theorem 2].
The goal of this paper is to prove the stronger asymptotics (3) for processes

that were discussed in [5] and to define a new model of texts that describe a ran-
dom object. So far, we have considered objects that do not change in time. This
leads to models of texts being nonergodic measures. Here, we will admit objects
that evolve slowly. That leads to models of texts which are mixing measures and
still satisfy proportionality (3). In this way, linguistic inspiration contributes to
better understanding of yet another problem in information theory.
Let us introduce our basic example. Throughout this paper, (Xi)i∈Z denotes

a stationary process on (Ω,J , P ) with Xi : (Ω,J ) → (X,X ) and X = N×{0, 1},
where N is the set of positive integers. In the series of papers [2, 21, 5] we have
examined some properties of the following process (Xi)i∈Z, called the (original)

2



Santa Fe process in [5]. Namely, the variables Xi consist of pairs

Xi = (Ki, ZKi
), (6)

where processes (Ki)i∈Z and (Zk)k∈N are independent and distributed as follows.
First, variables Zk are binary and equidistributed,

P (Zk = 0) = P (Zk = 1) = 1/2, (Zk)k∈N ∼ IID. (7)

Second, variables Ki obey the power law

P (Ki = k) = k−1/β/ζ(β−1), (Ki)i∈Z ∼ IID, (8)

where β ∈ (0, 1) and ζ(x) =
∑∞

k=1 k
−x is the zeta function.

Let us recall that µ = P ((Xi)i∈Z ∈ ·) and Eµ(n) = I (X1:n;Xn+1:2n). The
first new result of this paper is:

Proposition 1 The block mutual information Eµ(n) for the original Santa Fe
process (Xi)i∈Z given by formula (6) obeys

lim
n→∞

Eµ(n)

nβ
=

(2 − 2β)Γ(1− β)

[ζ(β−1)]β
. (9)

The calculation of the limit is facilitated by a decomposition of mutual informa-
tion between blocks X1:n and Xn+1:2n into a series of triple information among
blocks X1:n and Xn+1:2n and variables Zk. This decomposition is a particular
property of the Santa Fe process and some similar measures.
The uncommon construction of process (6) can be interpreted in this way.

Imagine that the Santa Fe process is a sequence of statements which describe
a random object (Zk)k∈N consistently. Each statement Xi = (k, z) reveals both
the address k of a random bit of (Zk)k∈N and its value Zk = z. Observe that
the description is repetitive and consistent: if two statements Xi = (k, z) and
Xj = (k′, z′) describe bits of the same address (k = k′) then they always assert
the same bit value (z = z′). It follows hence that variables Zk can be predicted
from realization (Xi)i∈Z in a shift-invariant way and therefore the Santa Fe
process is (strongly) nonergodic, cf., [2], [5, Definition 1].
Now let us introduce an example of a mixing process which satisfies (3). For

this goal, we will replace individual variables Zk in the Santa Fe process with
Markov chains (Zik)i∈Z. These Markov chains will be obtained by iterating
a binary symmetric channel. Subsequently, the following process (Xi)i∈Z will
be called the generalized Santa Fe process. Let us put

Xi = (Ki, Zi,Ki
), (10)

where processes (Ki)i∈Z and (Zik)i∈Z, where k ∈ N, are independent and dis-
tributed as follows. First, variables Ki are distributed according to formula
(8), as before. Second, each process (Zik)i∈Z is a Markov chain with marginal
distribution

P (Zik = 0) = P (Zik = 1) = 1/2 (11)

and cross-over probabilities

P (Zik = 0|Zi−1,k = 1) = P (Zik = 1|Zi−1,k = 0) = pk. (12)
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A linguistic interpretation of this process is as follows. Facts that are men-
tioned in texts repeatedly fall roughly under two types, as mentioned in the
discussion of Definition 1 in [5]: (i) facts about objects that do not change in
time (like mathematical or physical constants), and (ii) facts about objects that
evolve with a varied speed (like culture, language, or geography). The random
object (Zk)k∈N described by the original Santa Fe process does not evolve, or
rather, no bit Zk is ever forgotten once revealed. On the other hand, the ob-
ject (Zik)k∈N described by the generalized Santa Fe process is a function of an
instant i and the probability that the k-th bit flips at a given instant equals pk.
For vanishing cross-over probabilities, the generalized Santa Fe process collapses
to the original process.
As we will establish later in this paper, the generalized Santa Fe process is

mixing for cross-over probabilities different to 0 or 1.

Proposition 2 The generalized Santa Fe process (Xi)i∈Z given by formula (10)
is mixing for pk ∈ (0, 1).

The proof consists in noticing that infinite direct products of mixing processes
are mixing. This is an easy generalization of the well known fact for finite
products [22, Chapter 10.§1].
We will also demonstrate this fact, which generalizes Proposition 1:

Proposition 3 The block mutual information Eµ(n) for the generalized Santa
Fe process (Xi)i∈Z given by formula (10) obeys

lim sup
n→∞

Eµ(n)

nβ
≤ (2− 2β)Γ(1 − β)

[ζ(β−1)]β
. (13)

The lower limits in particular cases are as follows:

(i) If pk ≤ P (Ki = k) then

lim inf
n→∞

Eµ(n)

nβ
≥ A(β)

[ζ(β−1)]β
, (14)

where

A(β) := sup
δ∈(1/2,1)

(1− η(δ))β
∫ 1

√
δ

(1 − u)2 du

u (− lnu)β+1
(15)

and η(δ) is the entropy of binary distribution (δ, 1− δ),

η(δ) := −δ log δ − (1− δ) log(1− δ).

(ii) If limk→∞ pk/P (Ki = k) = 0 then Eµ(n) obeys (9).

Now let us introduce a similar ergodic process over a finite alphabet. For
this goal we use a transformation of processes over an infinite alphabet into
processes over a finite alphabet that preserves stationarity and (non)ergodicity
and does not distort entropy too much, as we have shown in [21]. We call
this transformation stationary (variable-length) coding. (The same or a similar
construction has been considered in [23, 24, 25].) It is a composition of two
operations.
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First, let a function f : X → Y
∗, called a coding function, map symbols from

alphabet X into strings over another alphabet Y. We define its extension to
double infinite sequences fZ : XZ → Y

Z ∪ (Y∗ × Y
∗) as

fZ((xi)i∈Z) := ...f(x−1)f(x0).f(x1)f(x2)..., (16)

where xi ∈ X and the bold-face dot separates the 0-th and the first symbol.
Then for a stationary process (Xi)i∈Z on (Ω,J , P ), where variables Xi take
values in space (X,X ), we introduce process

(Yi)i∈Z := fZ((Xi)i∈Z), (17)

where variables Yi take values in space (Y,Y), as long as the right hand side is
a double infinite sequence almost surely.
The second operation is as follows. Transformation (17) does not preserve

stationarity in general but process (Yi)i∈Z is asymptotically mean stationary
(AMS) under mild conditions [21, Proposition 2.3], which are satisfied in the
setting considered further. Then for the distribution

P ((Yi)i∈Z ∈ ·) = ν (18)

and the shift operation T ((yi)i∈Z) := (yi+1)i∈Z there exists a stationary measure

ν̄(A) := lim
n→∞

1

n

n−1
∑

i=0

ν ◦ T−i(A), (19)

called the stationary mean of ν [24, 21]. It is convenient to suppose that prob-
ability space (Ω,J , P ) is rich enough to support a process (Ȳi)i∈Z with the
distribution

P ((Ȳi)i∈Z ∈ ·) = ν̄. (20)

Whereas process (Yi)i∈Z need not be stationary, process (Ȳi)i∈Z is stationary
and will be called the stationary (variable-length) coding of (Xi)i∈Z.
Processes (Xi)i∈Z, (Yi)i∈Z, and (Ȳi)i∈Z have isomorphic shift-invariant alge-

bras for some nice coding functions, called synchronizable injections [21, Propo-
sition 3.3]. For example, for the infinite alphabet X = N× {0, 1}, let us assume
the ternary alphabet Y = {0, 1, 2} and the coding function

f(k, z) = b(k)z2, (21)

where b(k) ∈ {0, 1}+ is the binary representation of a natural number k stripped
of the leading digit 1. Coding function (21) is an instance of a synchronizable
injection. Hence we have the following fact:

Proposition 4 Let (Ȳi)i∈Z be the stationary coding obtained from applying the
coding function (21) to the generalized Santa Fe process (10). Process (Ȳi)i∈Z

is nonergodic if pk = 0 and ergodic if pk ∈ (0, 1).

Notice, however, that the stationary coding of a mixing process is not mixing
for a synchronizable coding function in general. For example, if we take the
generalized Santa Fe process and the coding function f(k, z) = 01, which is also
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a synchronizable injection, the stationary coding (Ȳi)i∈Z is not mixing because
of periodic oscillations in the realizations of the process (Yi)i∈Z. Such regular
periods do not arise for the generalized Santa Fe process and the coding function
(21) since variables |f(Xi)|, where |w| is the length of string w, differ from
constants and are independent and identically distributed. Thus, we conjecture
that the resulted process (Ȳi)i∈Z is mixing for pk ∈ (0, 1).
Now let us consider block mutual information for the stationary coding of

the generalized Santa Fe process. Let us recall that ν̄ = P ((Ȳi)i∈Z ∈ ·) and
Eν̄(m) = I

(

Ȳ1:m; Ȳm+1:2m

)

. As the last new result, we will show this fact:

Proposition 5 Let (Ȳi)i∈Z be the stationary coding obtained from applying the
coding function (21) to the generalized Santa Fe process (10). Define the ex-
pansion rate L := E |f(Xi)|. The block mutual information Eν̄(m) for process
(Ȳi)i∈Z satisfies

lim sup
m→∞

Eν̄(m)

mβ
≤ 1

Lβ

(2− 2β)Γ(1− β)

[ζ(β−1)]β
. (22)

The lower limits in particular cases are as follows:

(i) If pk ≤ P (Ki = k) then

lim inf
m→∞

Eν̄(m)

mβ
≥ 1

Lβ

A(β)

[ζ(β−1)]β
. (23)

where A(β) is defined in (15).

(ii) If limk→∞ pk/P (Ki = k) = 0 then

lim
m→∞

Eν̄(m)

mβ
=

1

Lβ

(2− 2β)Γ(1 − β)

[ζ(β−1)]β
. (24)

Proposition 5 follows from Proposition 3 by the conditional data processing
inequality and Chernoff bounds. This proposition strengthens inequality

lim sup
m→∞

Eν̄(m)

mβ
> 0, (25)

which follows for pk = 0 by [21, Proposition 1.4] and [5, Theorem 2].
The further organization of this paper is as follows. The rate of mutual infor-

mation for the original and generalized Santa Fe processes is discussed in Section
II. The rate of mutual information for the stationary coding is established in
Section III. Subsequently, the mixing property for the generalized Santa Fe
process is shown in Appendix A. As an auxiliary result, we demonstrate that
infinite direct products of mixing processes are also mixing.

II The rate of mutual information

In this section we evaluate the rate of block mutual information for the Santa
Fe process and its mixing counterpart. The main tool is conditional mutual
information for stochastic processes as discussed, e.g., in [1, 2].
Here are some facts about conditional information that will be used, cf., [2]:
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(a) continuity I(X ; (Yk)k∈N|Z) = limn→∞ I(X ; (Yk)
n
k=1|Z),

(b) chain rule I(X ;Y, Z|W ) = I(X ;Y |W ) + I(X ;Z|Y,W ), and

(c) equality I(X ;Y |Z) = 0 for X and Y conditionally independent given Z.

Two simple corollaries of the chain rule will be used as well:

(i) I(X ;Y ) = I(X ;Y ;Z)+ I(X ;Y |Z) for H(X), H(Y ) < ∞, where we define
triple information

I(X ;Y ;Z) := I(X ;Z) + I(Y ;Z)− I((X,Y );Z),

(ii) I(X ;Z|Y ) = I(X ;Z) for X and Y independent and conditionally inde-
pendent given Z.

The second identity follows from I(X ; (Y, Z)) = I(X ;Y ) + I(X ;Z|Y ) =
I(X ;Z) + I(X ;Y |Z) where both I(X ;Y ) = 0 and I(X ;Y |Z) = 0.
Now we can evaluate block mutual information Eµ(n) for the Santa Fe pro-

cesses. The case of the original Santa Fe process is simpler and will be consid-
ered separately to guide the reader through the more complicated proof for the
generalized process.

Proof of Proposition 1: Notice that variables Zk, k ∈ N, are independent
and conditionally independent given any finite block Xn:m. Hence

I (X1:n; (Zk)k∈N) =
∞
∑

k=1

I(X1:n;Zk|Z1:k−1) =
∞
∑

k=1

I(X1:n;Zk).

Also X1:n and Xn+1:2n are conditionally independent given (Zk)k∈N. Hence
I (X1:n;Xn+1:2n|(Zk)k∈N) = 0. Both results yield

Eµ(n) = I (X1:n;Xn+1:2n)

= I (X1:n;Xn+1:2n; (Zk)k∈N) + I (X1:n;Xn+1:2n|(Zk)k∈N)

= I (X1:n;Xn+1:2n; (Zk)k∈N)

= 2I (X1:n; (Zk)k∈N)− I (X1:2n; (Zk)k∈N)

=

∞
∑

k=1

[2I(X1:n;Zk)− I(X1:2n;Zk)]

=
∞
∑

k=1

I(X1:n;Xn+1:2n;Zk). (26)

Computing simple expressions

H(Zk|X1:n) = 1 · P (Ki 6= k for all i ∈ {1, ..., n})
+ 0 · P (Ki = k for some i ∈ {1, ..., n}),

I(X1:n;Zk) = P (Ki = k for some i ∈ {1, ..., n})
= (1− [1− P (Ki = k)]n),

we obtain the triple mutual information

I(X1:n;Xn+1:2n;Zk) = (1− [1− P (Ki = k)]n)2

7



and the block mutual information

Eµ(n) =

∞
∑

k=1

(

1−
(

1− A

k1/β

)n)2

, (27)

where A := 1/ζ(β−1).
The right-hand side of (27) equals up to an additive constant ≤ 1 to the

integral

∫ ∞

1

(

1−
(

1− A

k1/β

)n)2

dk = β(An)β
∫ 1

(1−A)n
fn(u)du,

where we use substitution

u :=
(

1−Ak−1/β
)n

(28)

and functions

fn(u) :=
(1 − u)2

u1−1/n[n(1− u1/n)]β+1
. (29)

We have the limit

lim
n→∞

fn(u) = f(u) :=
(1− u)2

u(− lnu)β+1

with the upper bound

fn(u)

f(u)
≤ sup

0<x<1

x(− lnx)β+1

(1− x)β+1
= 1, u, β ∈ (0, 1).

Moreover, function f(u) is integrable on u ∈ (0, 1). Hence

lim
n→∞

Eµ(n)

nβ
= βAβ

∫ 1

0

f(u)du

follows by the dominated convergence theorem.
It remains to compute

∫

f(u)du. Putting t := − lnu yields

∫ 1

0

f(u)du =

∫ ∞

0

(1− e−t)2 t−β−1dt

=

∫ ∞

0

[e−2t − 1− 2(e−t − 1)] t−β−1dt

= (2− 2β)β−1Γ(1− β),

where integral

∫ ∞

0

(e−kt − 1)t−β−1dt = (e−kt − 1)(−β−1)t−β |∞0

−
∫ ∞

0

(−ke−kt)(−β−1)t−βdt = −kββ−1Γ(1− β)

can be integrated by parts for the considered β. �
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Next, we prove the more general statement, partly using the preceding proof.

Proof of Proposition 3: Observe that processes Z̃k := (Zik)i∈Z, where k ∈ N,
are independent and conditionally independent given any finite block Xn:m.
Also X1:n and Xn+1:2n are conditionally independent given (Z̃k)k∈N. Thus we
obtain

Eµ(n) =

∞
∑

k=1

I(X1:n;Xn+1:2n; Z̃k)

by replacing Zk with Z̃k in derivation (26) from the previous proof.
By the assumed Markov property, process Z̃k = (Zik)i∈Z is independent

from X1:n given (Zik)1≤i≤n. This yields

I
(

X1:n;Xn+1:2n; Z̃k

)

= 2I (X1:n; (Zik)1≤i≤n)− I (X1:2n; (Zik)1≤i≤2n) .

The expressions on the right-hand side can be analyzed as

I (X1:n; (Zik)1≤i≤n) =

n
∑

i=1

I (Xi;Zik|X1:i−1)

because (Zik)1≤i≤n is independent from Xi given Zik and X1:i−1. Moreover,

I (Xi;Zik|X1:i−1) = H (Zik|X1:i−1)−H (Zik|X1:i) .

To evaluate the conditional entropies, put ank := η(P (Zik = z|Zi−n,k = z))
and bk := P (Ki = k). Notice that by the Markovity of (Zik)i∈Z we have

H (Zik|X1:i−1) =

i−1
∑

n=1

ankP (Kj 6= k for i− n < j ≤ i− 1)P (Ki−n = k)

+ η(P (Zik = z))P (Kj 6= k for 1 ≤ j ≤ i− 1)

=

i−1
∑

n=1

ankbk(1− bk)
n−1 + (1− bk)

i−1.

Similarly, since a0k = 0, we obtain

H (Zik|X1:i) =

i−1
∑

n=0

ankP (Kj 6= k for i− n < j ≤ i)P (Ki−n = k)

+ η(P (Zik = z))P (Kj 6= k for 1 ≤ j ≤ i)

=

i−1
∑

n=1

ankbk(1− bk)
n + (1− bk)

i.

Thus we may reconstruct

I (Xi;Zik|X1:i−1) =

i−1
∑

n=1

ankb
2
k(1 − bk)

n−1 +
[

(1− bk)
i−1 − (1− bk)

i
]

,

I (X1:n; (Zik)1≤i≤n) =

n−1
∑

m=1

(n−m)amkb
2
k(1− bk)

m−1 + [1− (1− bk)
n] ,

9



and

I
(

X1:n;Xn+1:2n; Z̃k

)

=−
n−1
∑

m=1

mamkb
2
k(1− bk)

m−1

−
2n−1
∑

m=n

(2n−m)amkb
2
k(1− bk)

m−1 + [1− (1− bk)
n]

2
.

For a fixed bk, we see that I
(

X1:n;Xn+1:2n; Z̃k

)

is minimized for amk = 1.

This case arises when pk = 1/2 and (Zik)i∈Z are IID. A direct evaluation yields
then H (Zik|X1:i−1) = 1, H (Zik|X1:i) = (1 − bk), I (X1:n; (Zik)1≤i≤n) = nbk,

and I
(

X1:n;Xn+1:2n; Z̃k

)

= 0. In this way we have proved that

n−1
∑

m=1

mb2k(1− bk)
m−1 +

2n−1
∑

m=n

(2n−m)b2k(1− bk)
m−1 = [1− (1 − bk)

n]
2
. (30)

On the other hand, I
(

X1:n;Xn+1:2n; Z̃k

)

is maximized for amk = 0. This holds

if pk = 0 or pk = 1. For pk = 0, the process (Xi)i∈Z collapses to (6).
By equality (30), we obtain

I
(

X1:n;Xn+1:2n; Z̃k

)

∈
[

(1 − ǫ) [1− (1− bk)
n]

2
, [1− (1− bk)

n]
2
]

if amk ≤ ǫ for m ≤ 2n− 1. To bound coefficients amk, observe

P (Zik = z|Zi−n,k = z) ≥ (1− pk)
n.

Hence amk ≤ η(δ) for m ≤ 2n− 1 if (1 − pk)
2n ≥ δ ≥ 1/2. Thus we obtain

Eµ(n) ∈



(1− η(δ))
∑

k∈N:(1−pk)2n≥δ

[1− (1 − bk)
n]

2
,
∑

k∈N

[1− (1− bk)
n]

2



 .

(31)

The most tedious part of the proof is completed.
The limiting behavior of the upper bound in (31) has been analyzed in

the proof of Proposition 1, and by that reasoning (13) holds. Now we will
consider the limit of the lower bound in (31). As in the previous proof, we will
approximate the respective sum with an integral. Recall that bk = Ak−1/β with
A = 1/ζ(β−1). Let us define bk for real k in the same way.

(i) For pk ≤ bk: notice that (1 − bk)
2n ≥ δ implies (1 − pk)

2n ≥ δ. Thus
Eµ(n)/(1 − η(δ)) + 1 is greater than

∫ ∞

(1−bk)n≥
√
δ

(1− (1− bk)
n
)
2
dk = β(An)β

∫ 1

√
δ

fn(u)du,

where we use substitution (28) and functions (29). This yields (14) by the
dominated convergence theorem.

10



(ii) For limk pk/bk = 0: let k(n) be the largest number k such that (1−pk)
2n <

δ or put k(n) = 1 if there is no such number. Then Eµ(n)/(1− η(δ)) + 1
is greater than

∫ ∞

k(n)

(1− (1− bk)
n
)
2
dk = β(An)β

∫ 1

u(n)

fn(u)du,

where u(n) :=
(

1− bk(n)
)n
. We have limn u(n) = 0 if limn k(n) < ∞. On

the other hand, if limn k(n) = ∞ then we use lim infn npk(n) > − ln
√
δ

and limk pk/bk = 0 to infer limn nbk(n) = ∞ and hence limn u(n) = 0.
Thus the dominated convergence theorem in both cases yields

lim inf
n→∞

Eµ(n)

nβ
≥ (1− η(δ))βAβ

∫ 1

0

f(u)du.

Taking δ → 1 gives (9).

�

III Encoding into a finite alphabet

In this section we study the rate of mutual information for the stationary coding
of the generalized Santa Fe process. Let |w| be the length of string w and let
(Xi)i∈Z denote the generalized Santa Fe process. For the coding function (21),
regardless of the value of pk, the expansion rate

lim
n→∞

1

n

n
∑

i=1

|f(Xi)| (32)

is almost surely constant and equals the expansion rate L := E |f(Xi)|. Hence
the stationary coding (Ȳi)i∈Z can be constructed as detailed below. This con-
struction was formally introduced in [21, Section 6] and justified by [21, Propo-
sition 2.3].
Suppose that probability space (Ω, J, P ) is sufficiently rich to support some

previously unmentioned random variable N : Ω → N ∪ {0}, called a random
shift, and a nonstationary process (X̄i)i∈Z where X̄i : Ω → X. We assume that
N and (X̄i)i∈Z are conditionally independent given X̄0 and their distribution is

P (X̄k:l = xk:l) = P (Xk:l = xk:l) ·
|f(x0)|

L
, k ≤ 0 ≤ l, (33)

P (N = n|X̄0 = x0) =
1{0≤n≤|f(x0)|−1}

|f(x0)|
, n ∈ N ∪ {0} . (34)

Process (Ȳi)i∈Z with the desired distribution ν̄ = P ((Ȳi)i∈Z ∈ ·), where ν =
P ((Yi)i∈Z ∈ ·) for (Yi)i∈Z = fZ((Xi)i∈Z), can be obtained as

(Ȳi)i∈Z = T−NfZ((X̄i)i∈Z), (35)

where T ((yi)i∈Z) := (yi+1)i∈Z is the shift operation.

Lemma 1 Denote blocks X̄k:l with X̄0 removed as X̄k:l\0. For the Santa Fe
processes variables X̄k:l\0 and Xk:l\0 have the same distribution.

11



Proof: Notice that |f(X0)| does not depend on Z0,K0
and K0 is independent

of Xk:l\0. Hence

P (X̄k:l\0) = P (Xk:l\0)
∑

x0

|f(x0)|
L

P (X0 = x0|Xk:l\0)

= P (Xk:l\0)
∑

k0,z0

|f(k0, 1)|
L

P (K0 = k0)P (Z0,k0
= z0|Xk:l\0)

= P (Xk:l\0). (36)

�

In the following we write Li := |f(Xi)| and L̄i :=
∣

∣f(X̄i)
∣

∣. Variables Li are
independent and identically distributed. For these variables we define indices

L+
t :=

1

t
logE 2tLi, (37)

L−
t := −1

t
logE 2−tLi , (38)

where t > 0. For the given distribution of Li, we have 0 < L−
t , L

+
t < ∞ for

sufficiently small t. By the Jensen inequality L+
t is a growing function of t and

L−
t is a decreasing function of t. Jensen inequality implies also L

−
t ≤ L ≤ L+

t .

Lemma 2 We have

lim
t→0

L+
t = lim

t→0
L−
t = L. (39)

Proof: Consider function g(t, x) = t−2(2tx − 1− tx). For x > 0, it is a growing
function of t. Consider next such a t0 that E 2t0Li < ∞. For 0 < t ≤ t0, we
obtain

E 2tLi = 1 + tELi + t2 E g(t, Li) ≤ 1 + tELi + t2 E g(t0, Li).

This yields

L ≤ L+
t ≤ 1

t
log
(

1 + tELi + t2 E g(t0, Li)
) t→0−−−→ L.

On the other hand, for t > 0, we have

E 2−tLi ≤ 1− tELi +
t2 EL2

i

2

Hence

L ≥ L−
t ≥ −1

t
log

(

1− tELi +
t2 EL2

i

2

)

t→0−−−→ L.

�
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Define events

S+
n :=

(

n
∑

i=1

Li < n(L+
t + ǫ)

)

, (40)

S−
n :=

(

n
∑

i=1

Li > n(L−
t − ǫ)

)

, (41)

T+
n :=

( −1
∑

i=−n+1

Li < (n− 1)(L+
t + ǫ)

)

, (42)

T−
n :=

( −1
∑

i=−n+1

Li > (n− 1)(L−
t − ǫ)

)

. (43)

Subsequently, we will use the Chernoff bounds:

Lemma 3 For t > 0 and ǫ > 0,

P
(

S+
n

c) ≤ 1

2ntǫ
, (44)

P
(

S−
n

c) ≤ 1

2ntǫ
, (45)

P
(

T+
n

c) ≤ 1

2(n−1)tǫ
, (46)

P
(

T−
n

c) ≤ 1

2(n−1)tǫ
. (47)

Proof: Because variables Li are independent and identically distributed, using
Markov inequality we observe

P
(

S+
n

c)
= P

(

2t
∑

i
Li ≥ 2tn(L

+

t +ǫ)
)

≤ E 2t
∑

i
Li

2tn(L
+

t +ǫ)
≤ 1

2ntǫ
,

P
(

S−
n

c)
= P

(

2−t
∑

i
Li ≥ 2−tn(L−

t −ǫ)
)

≤ E 2−t
∑

i
Li

2−tn(L−

t −ǫ)
≤ 1

2ntǫ
.

Analogously we obtain the claims for T+
n

c
and T−

n
c
. �

Next, for an event E, we introduce conditional entropy H(X |E) and mutual
information I(X ;Y |E) which are respectively the entropy of variable X and
mutual information between variablesX and Y taken with respect to probability
measure P (·|E).

Lemma 4 For the generalized Santa Fe process, let γ := β/(1 − β) and s <
min(t/2, γ/2). Then for sufficiently large n,

P
(

S+
n

c)
H
(

L1

∣

∣S+
n

c) ≤ 1

2nsǫ
, (48)

P
(

T+
n

c)
H
(

L−1

∣

∣T+
n

c) ≤ 1

2(n−1)sǫ
. (49)

Proof: We have

P (Li = l) =

2l−1
∑

k=2l−1

k−1/β

ζ(β−1)
≤
∫ ∞

2l−2

k−1/βdk = γ2−γ(l−2).

13



Write i(p) := −p log p. Then for sufficiently large N ,

∞
∑

l=N

i(P (Li = l))

≤
∞
∑

l=N

i(γ2−γ(l−2))

≤
∞
∑

l=N

γ22γ2−γl (− log γ + γl)

= γ22γ
(

2−γN

1− 2−γ
(− log γ) +

2−γ(N+1) +N2−γN(1− 2−γ)

(1− 2−γ)2
γ

)

≤ A(γ)N2−γN .

Let M = n(L+
t + ǫ) and N = ⌈nǫ/2⌉ − 1. Then, for sufficiently large n,

P
(

S+
n

c)
H
(

L1

∣

∣S+
n

c)

= P
(

S+
n

c)
∞
∑

l=0

i

(

P (L1 = l,
∑n

i=2 Li ≥ M − l)

P
(

S+
n

c)

)

= P
(

S+
n

c)
∞
∑

l=0

i

(

P (L1 = l)P (
∑n

i=2 Li ≥ M − l)

P
(

S+
n

c)

)

≤
∞
∑

l=0

i

(

P (L1 = l)P

(

n
∑

i=2

Li ≥ M − l

))

≤
N−1
∑

l=0

i

(

P

(

n
∑

i=2

Li ≥ M − l

))

+

∞
∑

l=N

i (P (L1 = l))

≤ Ni

(

P

(

n
∑

i=2

Li ≥ M −N + 1

))

+

∞
∑

l=N

i (P (L1 = l))

≤ n(n− 1)tǫ2

2(n−1)tǫ/2
+

nA(γ)ǫ

2(n−1)γǫ/2
≤ 1

2nsǫ
.

Analogously we obtain the claim for T+
n

c
. �

Now, define events

S̄+
n :=

(

n
∑

i=1

L̄i < n(L+
t + ǫ)

)

, (50)

S̄−
n :=

(

n
∑

i=1

L̄i > n(L−
t − ǫ)

)

, (51)

T̄+
n :=

( −1
∑

i=−n+1

L̄i < (n− 1)(L+
t + ǫ)

)

, (52)

T̄−
n :=

( −1
∑

i=−n+1

L̄i > (n− 1)(L−
t − ǫ)

)

, (53)

B̄ :=
(

L̄0 ≤ l
)

. (54)

14



Lemma 5 For m ≥ n(L+
t + ǫ) + l we have

I
(

X̄−n+1:−1; X̄1:n

∣

∣S̄+
n ∩ T̄+

n

)

= I
(

X̄−n+1:−1; X̄1:n

∣

∣B̄ ∩ S̄+
n ∩ T̄+

n

)

≤ I
(

Ȳ−m+1:0; Ȳ1:m

∣

∣B̄ ∩ S̄+
n ∩ T̄+

n

)

, (55)

whereas for m ≤ (n− 1)(L−
t − ǫ) we have

I
(

Ȳ−m+1:0; Ȳ1:m

∣

∣S̄−
n ∩ T̄−

n

)

≤ I
(

X̄−n+1:0; X̄0:n

∣

∣S̄−
n ∩ T̄−

n

)

. (56)

Proof: The claims follow by equality (35) and conditional data processing
inequality

I(U ′;V ′|C) ≤ I(U ;V |C),

which holds if equalities U ′ = g(U) and V ′ = h(V ) are satisfied on C. �

There is an additional fact that we shall use. Let IC be the indicator function
of event C. Observe that

P (C)I(X ;Y |C) ≤ P (C)I(X ;Y |C) + P (Cc)I(X ;Y |Cc)

= I(X ;Y |IC) = I(X ;Y )− I(X ;Y ; IC), (57)

where |I(X ;Y ; IC)| ≤ H(IC) ≤ 1 by the information diagram [26].

Proof of Proposition 5: Observe that

H
(

X1

∣

∣S+
n

c)
= H (X1|L1) +H

(

L1

∣

∣S+
n

c)

≤ H (X0) +H
(

L1

∣

∣S+
n

c)
, (58)

H
(

X−1

∣

∣T+
n

c)
= H (X−1|L−1) +H

(

L−1

∣

∣T+
n

c)

≤ H (X0) +H
(

L−1

∣

∣T+
n

c)
. (59)

because X1 is conditionally independent from S+
n

c
given L1 and X−1 is condi-

tionally independent from T+
n

c
given L−1. Now, assume that n is sufficiently

large so that bounds (48) and (49) hold true. For brevity, define events

C+
n := T+

n ∩ S+
n ,

C̄+
n := T̄+

n ∩ S̄+
n .

Then inequalities (58), (59), (44), (46), (48), and (49) yield

P
(

C+
n

c)
I
(

X−n+1:−1;X1:n

∣

∣C+
n

c)

≤ P
(

S+
n

c)
nH

(

X1

∣

∣S+
n

c)
+ P

(

T+
n

c)
(n− 1)H

(

X−1

∣

∣T+
n

c)

≤ 2n

2(n−1)tǫ
H (X0) +

2n

2(n−1)sǫ
. (60)
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Moreover, assume that m ≥ n(L+
t + ǫ) + l. Then applying subsequently (57),

(55), (36), (57), and (60) we obtain

Eν̄(m) = I
(

Ȳ−m+1:0; Ȳ1:m

)

≥ P
(

B̄ ∩ C̄+
n

)

I
(

Ȳ−m+1:0; Ȳ1:m

∣

∣B̄ ∩ C̄+
n

)

− 1

≥ P
(

B̄
)

P
(

C̄+
n

)

I
(

X̄−n+1:−1; X̄1:n

∣

∣C̄+
n

)

− 1

= P
(

B̄
)

P
(

C+
n

)

I
(

X−n+1:−1;X1:n

∣

∣C+
n

)

− 1

≥ P
(

B̄
)

P
(

C+
n

) [

I
(

X−n+1:0;X1:n

∣

∣C+
n

)

−H(X0|C+
n )
]

− 1

≥ P
(

B̄
)

P
(

C+
n

)

I
(

X−n+1:0;X1:n

∣

∣C+
n

)

−H(X0)− 1

≥ P
(

B̄
) [

Eµ(n)− 1− P
(

C+
n

c)
I
(

X−n+1:0;X1:n

∣

∣C+
n

c)]−H(X0)− 1

≥ P
(

B̄
)

Eµ(n)− P
(

C+
n

c)
I
(

X−n+1:−1;X1:n

∣

∣C+
n

c)− 2H(X0)− 2

≥ P
(

B̄
)

Eµ(n)−
[

2n

2(n−1)tǫ
+ 2

]

H (X0)−
2n

2(n−1)sǫ
− 2. (61)

Next, define events

C−
n := T−

n ∩ S−
n ,

C̄−
n := T̄−

n ∩ S̄−
n .

By (45) and (47) we have

P
(

C−
n

c)
I
(

Ȳ−m+1:0; Ȳ1:m

∣

∣C−
n

c)

≤
(

P
(

S−
n

c)
+ P

(

T−
n

c))
m log 3 ≤ 2m

2(n−1)tǫ
log 3. (62)

Assume that m ≤ (n− 1)(L−
t − ǫ). Then applying subsequently (36), (57), (56),

(57), and (62) we obtain

Eµ(n) = I (X−n+1:0;X1:n)

≥ I (X−n+1:−1;X1:n)

= I
(

X̄−n+1:−1; X̄1:n

)

≥ I
(

X̄−n+1:0; X̄0:n

)

− 2H(X̄0)

≥ P
(

C̄−
n

)

I
(

X̄−n+1:0; X̄0:n

∣

∣C̄−
n

)

− 1− 2H(X̄0)

≥ P
(

C̄−
n

)

I
(

Ȳ−m+1:0; Ȳ1:m

∣

∣C̄−
n

)

− 2H(X̄0)− 1

≥ Eν̄(m)− 1− P
(

C−
n

c)
I
(

Ȳ−m+1:0; Ȳ1:m

∣

∣C−
n

c)− 2H(X̄0)− 1

≥ Eν̄(m)− 2m

2(n−1)tǫ
log 3− 2H(X̄0)− 2. (63)

From bounds (61) and (63) we obtain

1

[L−
t − ǫ]β

lim sup
n→∞

Eν̄(n)

nβ
≥ lim sup

m→∞

Eν̄(m)

mβ
≥ P (L̄0 ≤ l)

[L+
t + ǫ]β

lim sup
n→∞

Eν̄(n)

nβ
,

1

[L−
t − ǫ]β

lim inf
n→∞

Eν̄(n)

nβ
≥ lim inf

m→∞
Eν̄(m)

mβ
≥ P (L̄0 ≤ l)

[L+
t + ǫ]β

lim inf
n→∞

Eν̄(n)

nβ
.

If we consider t → 0, ǫ → 0, and l → ∞ then the requested claims will follow
by equation (39) and Proposition 3. �

16



A Mixing properties

In this appendix we will discuss mixing properties of the generalized Santa Fe
process. The setting makes use of the L2 space of complex valued functions.
Then, for a measure space (Ω,J , µ) let

L2
0(Ω,J , µ) :=

{

f ∈ L2(Ω,J , µ) :

∫

fdµ = 0

}

and denote the inner product (f, g)µ :=
∫

f ḡdµ and the norm ||f ||µ :=
√

(f, f)µ
for f, g ∈ L2(Ω,J , µ). Let also T : Ω → Ω be an invertible transformation that
preserves the measure, µ◦T−1 = µ. The dynamical system (Ω,J , µ, T ) is called
mixing when lim

n→∞
(f ◦ T n, g)µ = 0 for f, g ∈ L2

0(Ω,J , µ). By the way, we know

that any mixing dynamical system is ergodic [22, Chapter 1.§6].
The following proposition generalizes Theorem 2 from [22, Chapter 10.§1].

Whereas the original claim deals with finite direct products of dynamical sys-
tems, we will extend it here to infinite products. To the best of our knowledge
this generalization has not been discussed in the literature so far. The proof is
similar to the finite case, except for using a different orthonormal basis of the
product space.

Proposition 6 Let (Ωj ,Jj , µj , Tj), where j ∈ N, be dynamical systems with
probability measures µj(Ω) = 1. Consider the direct product (Ω,J , µ, T ), where
Ω = ×∞

j=1Ωj, J = ⊗∞
j=1Jj, µ = ×∞

j=1µj, and T (ω) = (Tj(ωj))j∈N for ω =
(ωj)j∈N, ωj ∈ Ωj. If (Ωj ,Jj , µj , Tj) are mixing then (Ω,J , µ, T ) is also mixing.

Proof: Let (eαj ,j)αj∈Aj
be orthonormal bases of spaces L2(Ωj ,Jj , µj) with

e0j = 1 and eαj ,j ∈ L2
0(Ωj ,Jj , µj). Then the set

{e∅(ω) = 1} ∪







eα(ω) =

k
∏

j=1

eαj,j(ωj)







α∈A1×A2×...×(Ak\{0}),k=1,2,...

(64)

with multi-indices α = (α1, α2, ..., αk) is an orthonormal basis of the space
L2(Ω,J , µ), cf., [27, page 29]. (Orthogonality of set (64) is obvious whereas its
completeness follows from the completeness of the analogical orthonormal sets
for finite products and the L2-bounded martingale convergence.) Let α, α′ 6= ∅.
We have eα, eα′ ∈ L2

0(Ω,J , µ) and

|(eα ◦ T n, e′α)µ| =
k
∏

j=1

∣

∣

∣
(eαj ,j ◦ T n

j , eα′

j
,j)µj

∣

∣

∣
≤
∣

∣

∣
(eαk,k ◦ T n

k , eα′

k
,k)µk

∣

∣

∣
(65)

by Schwarz inequality if α and α have the same length k. Otherwise, (eα ◦
T n, e′α)µ = 0. Hence limn→∞(eα ◦ T n, e′α)µ = 0 holds by the hypothesis.
Any other functions f, g ∈ L2

0(Ω,J , µ) can be represented as series f =
∑

α6=∅ fαeα and g =
∑

α6=∅ gαeα, where
∑

α6=∅ |fα|
2
,
∑

α6=∅ |gα|
2
< ∞. Assume

without loss of generality that ||f ||µ = ||g||µ = 1. We will show that for every
ǫ > 0, inequality |(f ◦ T n, g)µ| < ǫ holds for sufficiently large n. Let F and
G be finite subsets of multi-indices such that ||f − f ′||µ , ||g − g′||µ < ǫ/4 for

certain f ′ =
∑

α∈F f ′
αeα and g′ =

∑

α∈G g′αeα where f
′, g′ ∈ L2

0(Ω,J , µ) and
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||f ′||µ = ||g′||µ = 1. For sufficiently large n, we have |(f ′ ◦ T n, g′)µ)| < ǫ/4.
Then

|(f ◦ T n, g)µ)| ≤ |(f ′ ◦ T n, g′)µ)|+ |((f − f ′) ◦ T n, g′)µ)|
+ |(f ′ ◦ T n, (g − g′))µ)|+ |((f − f ′) ◦ T n, (g − g′)µ)|

< ǫ/4 + ||f − f ′||µ + ||g − g′||µ + ||f − f ′||µ ||g − g′||µ < ǫ,

which completes the proof. �

Now let us apply this result to the generalized Santa Fe process. A stochastic
process (Xi)i∈Z on (Ω,J , P ), where Xi : (Ω,J ) → (X,X ), is called mixing if
(XZ,X Z, µ, T ) is mixing for µ = P ((Xk)k∈Z ∈ ·) and T ((xi)i∈Z) = (xi+1)i∈Z.

Proof of Proposition 2: Introduce an auxiliary process (Wi)i∈Z, where
Wi = (Ki, (Zik)k∈N). Process (Wi)i∈Z is a direct product of processes (Ki)i∈Z,
(Zi1)i∈Z, (Zi2)i∈Z, ..., which are all mixing for pk ∈ (0, 1). Hence (Wi)i∈Z is
mixing by Proposition 6. (In our application, we take µ = P ((Wi)i∈Z ∈ ·),
µ1 = P ((Ki)i∈Z ∈ ·), and µk+1 = P ((Zik)i∈Z ∈ ·) for k ≥ 1. The
transformations are T ((wi)i∈Z) = (wi+1)i∈Z, T1((ki)i∈Z) = (ki+1)i∈Z, and
Tk+1((zi)i∈Z) = (zi+1)i∈Z for k ≥ 1.) Having established the mixing property
for (Wi)i∈Z, we notice that Xi = f(Wi) for a measurable function f . Hence
(Xi)i∈Z is mixing by Theorem 3 from [22, Chapter 10.§1]. �
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