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Abstract—We examine the problem of allocating a given total
storage budget in a distributed storage system for maximum
reliability. A source has a single data object that is to be cded
and stored over a set of storage nodes; it is allowed to store
any amount of coded data in each node, as long as the total
amount of storage used does not exceed the given budget. A dat

collector subsequently attempts to recover the original da object
by accessing only the data stored in a random subset of the nesd.
By using an appropriate code, successful recovery can be defied
whenever the total amount of data accessed is at least the sinf
the original data object. The goal is to find an optimal storag
allocation that maximizes the probability of successful reovery.
This optimization problem is challenging in general becaus of its
combinatorial nature, despite its simple formulation. We sudy
several variations of the problem, assuming different alloation
models and access models. The optimal allocation and the amial
symmetric allocation (in which all nonempty nodes store the same
amount of data) are determined for a variety of cases. Our reslts
indicate that the optimal allocations often have nonintuitve
structure and are difficult to specify. We also show that depeding
on the circumstances, coding may or may not be beneficial for
reliable storage.

Index Terms—Data storage systems, distributed storage,
network coding, reliability, storage allocation.

I. INTRODUCTION
ONSIDER a distributed storage system comprising

Fig. 1. Information flows in a distributed storage systeme Bburces has
a single data object of normalized unit size that is to be doaled stored
overn storage nodes. Subsequently, a data collecaitempts to recover the
original data object by accessing only the data stored innda@a subser
of the nodes.

This is a realistic constraint if there is limited transnuss
bandwidth or storage space, or if it is too costly to mirror
the data object in its entirety in every node. At some time
after the creation of this coded storage, a data collector
attempts to recover the original data object by accessihg on
the data stored in @andom subsetr of the nodes, where
the probability distribution ofr C {1,...,n} is specified by

an assumed access model or failure model (nodes or links
may fail probabilistically, for example). Fi§] 1 depictscbua
distributed storage system.

storage nodes. A source has a single data object ofThe reliability of this system, which we define to be the
normalized unit size that is to be coded and stored in iobability of successful recovery (or recovery probaiin

distributed manner over these nodes, subject to a giveh tathort), depends on both the storage allocation and the godin
storage budget’. Let ; be the amount of coded data storegcheme. For maximum reliability, we would therefore need to
in nodei € {1,...,n}. Any amount of data may be stored infind

each node, as long as the total amount of storage used ov€}) an optimal allocation of the given budgét over the

all nodes is at most the given buddgti.e.,

n
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nodes, specified by the values ©f, ..., z,, and

(i) an optimal coding scheme
that jointly maximize the probability of successful recoudt
turns out that these two problems can be decoupled by using a
good coding scheme, specifically one that enables suctessfu
recovery whenever the total amount of data accessed by
the data collector is at least the size of the original data
object. This can be seen by considering the information flows
for a network in which the source is multicasting the data
object to a set of potential data collectdrs [5], [6]: sustels
recovery can be achieved by a data collector if and only if
its corresponding max-flow or min-cut from the source is
at least the size of the original data object. Random linear
coding over a sufficiently large field would allow successful
recovery with high probability when this condition is sé&d
[7], [8]. Alternatively, a suitable maximum distance segizle
(MDS) code for the given budget and data object size would
allow successful recovery with certainty when this cormditi
is satisfied.

Therefore, assuming the use of an appropriate code,
the probability of successful recovery for an allocation
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(z1,...,2z,) Can be written as maximally over all nodes, i.e., setting = % for all 7, turns
out to be not necessarily optimal; in fact, the optimal adkimn
) may not even be symmetric (we say that an allocation is
symmetriovhen all nonzera; are equal). The following coun-
gerexample from[]9] demonstrates that symmetric allocetio
can be suboptimal: fofn, p, T') = (5, 2, I), the nonsymmetric

P [successful recovefy= P [Z z; > 1
1€r
Our goal is to find an optimal allocation that maximizes thi
recovery probability, subject to the given budget conastrai ocation
Although we have assumed coded storage at the outsaék,
coding may ultimately be unnecessary for certain allocatio
For example, if the budget is spread minimally such thgjhich achieves a recovery probability 6f90535, performs
each nonempty node stores the data object in its entiréty (igyricty petter than any symmetric allocation; the maximum
w; > 1 forallicS, andz; =0 forall i ¢ S, where S is  yo0overy probability among symmetric allocation$)igs8s9,

(22111)’

373737373

some su_bset of1,.. .,n}),_ then uncoded replication WOUIdwhich is achieved by both
suffice since the data object can be recovered by accessing
any onenonempty node; the data collector would not need to (Z,1,0,0,0) and (5, 5, 5 15,0) -

combine data accessed from different nodes in order to ezcov ) ]
the data object. Thus, by solving for the optimal allocatiofFvidently, the simple strategy of “spreading eggs evenlgrov
we will also be able to determine whether coding is beneficig]ore baskets” may not always improve the reliability of an
for reliable storage. allocation. o _

We note that even though no explicit upper bound is im- Our _Contr|but|on: We show that the |_ntumve symmetric
posed on the amount of data that can be stored in each nod@!lgcation that spreads the budget maximally over all nodes
is never necessary to set > 1 becauser; = 1 already allows IS mqlged asymptot{callyoptlmal in a regime of interest.
the data object to be stored in its entirety in that node. TiRPecifically, we derive an upper bound for the suboptimality
absence of a tighter per-node storage constrajnt ¢; < 1 of this aII(_)cat|0n, and show that the performance gap vasish
is reasonable for storage systems that handle a large nunfsafmptotically as the total number of storage nodegows,
of data objects: we would expect the storage capacity of eatien p > 7. This is a regime of interest because a high
node to be much larger than the size of a single data obje@&covery probability is possible whern> 7 <= pT > 1:The
making it possible for a node to accommodate some of t_ﬁép_ected total amount of data accessed by the data collector
data objects in their entirety. As such, it would be apprateri 1S given by
to apply a storage constraint for each data object via thgdiud n

> &Y
i=1

T, without a separata priori constraint forxz;. Furthermore, E

the simplifying assumption af; being a continuous variable is
Where Y;’s are independent Bernoulli) random variables.
Therefore, the data collector would be able to access a

a reasonable one for large data objects: a large data oiject
would facilitate the creation of coded data packets witlesiz
gfficient amount of datim expectatiorfor successful recovery
T > 1.

(closely) matching that of a desired allocation. Incidénta
the overhead associated with random linear coding or an M[ﬁ

€' We also show that the symmetric allocation that spreads the
budget minimally is optimal whep is sufficiently small. In

code, which is ignored in our model, becomes proportiogat
negligible when the amount of coded data is large.

In spite Of. thg_snmple formulation, this opt|m|zat|on .prOb'such an allocation, the data object is stored in its entimety
lem poses significant challenges because of its combia&tori

. . ) each nonempty node, making coding unnecessary. Addition-
nature and the large space of feasible allocations. Diftere Py 9 g Y

variations of this problem can be formulated by assumin\?é:gévzznz);pIcl)?g);:;nrgetti? Sg)lﬂgsg);?r;;trlwllocatlon for a

dlﬁere_nt alloc_atlon models and access models; in th|s PAPE pelated Work: This problem was introduced to us through
we will examine three such variations that are motivated b

: . . ¥ discussion at UC Berkeley][9]. We have since learned that
practical storage problems in content delivery networlksayl o S
. variations of the problem have also been studied in several
tolerant networks, and wireless sensor networks.

different fields.
In reliability engineering, the weighteklout-of-n system
A. Independent Probabilistic Access to Each Node [10] comprises: components, each having a positive integer
In the first problem formulation, we assume that the daveeight w; and surviving independently with probability;;
collector accesses each of thenodes independently with the system is in a good state if and only if the total weight
constant probabilityp; in other words, each nodeappears of its surviving components is at least a specified threshold
in subsetr independently with probability. The resulting Related work on this system and its extensions has focused on
problem can be interpreted as that of maximizing the rditgbi the efficient computation of the reliability of a given weigh
of data storage in a system comprisingtorage devices whereallocation (see, e.g/ [11]).
each device fails independently with probability- p. It is In peer-to-peer networking, the allocation problem deals
not hard to show that determining the recovery probabilityith the recovery of a data object from peers that are aviailab
of a givenallocation is computationally difficult (specifically, only probabilistically. Linet al. [12] compared the perfor-
#P-hard). The intuitive approach of spreading the budgetance of uncoded replication vs. coded storage, restricted

:inE V3] :pri <pT, 1)
=1 i=1



symmetric allocations, for the case where the budget is eated way, we can conclude that for anythis allocation is
integer. optimal if the recovery probability is to exceéd— %

In wireless communications, the allocation problem is stud We also make the following conjecture about the optimal
ied in the context of multipath routing, in which coded datallocation, based on our numerical observations:
is transmitted along different paths in an unreliable nekywo Coni . . : .

" . . . L onjecture. A symmetricoptimal allocation always exists for

exploiting path diversity to improve the reliability of e#td- anyn, r, andT
end communications. Tsirigos and Hahs|[1B],l [14] examined” "~ "’ '
the performance of symmetric allocations and noted the exis Related Work: Sardari et al. [16] presented a method
tence of a phase transition in the optimal symmetric aliooat of approximatingan optimal solution to this problem by
approximation methods were also proposed by the authoemnsidering a data collector that accessesandom nodes
to tackle the optimization problem, especially for the caseith replacement. More recently, Alcet al. [17] showed that
where path failures occur with nonuniform probabilitiesianthis problem is related to an old conjecture by &dn the
may be correlated. Jaiet al. [15] evaluated the performancemaximum number of edges in a uniform hypergréph [18].
of symmetric allocations experimentally in a delay toldéran
network setting, and presented an alternative formulat8ing . Probabilistic Symmetric Allocations
Gaussian distributions to model partial access to nodes.

Our work generalizes these previous efforts by consideri
nonsymmetric allocations and noninteger budgets. We al
correct some inaccurate claims about the optimal symme
allocation in [15] and its associated technical report.

In the third problem formulation, we assum@m@babilistic
Eﬂocation model in which the source selects a random allo-
Cation from a distribution of allocations, with the congtta
tH1Cat theexpectedotal amount of storage used in an allocation
is at most the given budgét. We specifically consider the
case where each of the nodes is selected by the source
B. Access to a Random Fixed-Size Subset of Nodes independently with constant probabilimin(%, 1) to store
R constant% amount of data, thus creating a probabilis-
tic symmetricallocation of the budget. The data collector
subsequently accesses assubset of then nodes selected

In the second problem formulation, we assume that t
data collector accesses arsubset of then nodes selected

uniformly at random from the collection of a(l:f) possible formly at dom f th llecti £ alln ol
r-subsets, where is a given constant. The resulting problerrliml ormly at random from the coflection o a(r). possibie
-subsets, where is a given constant. The goal is to find an

can be interpreted as that of maximizing the recovery proﬁ—

ability in a networked storage system wofnodes where the optlr_na_l allot%atmn, spemﬂedbb)l;_lt_r;e _\r/ﬁl_ue of dp?ramefteﬂrg;_
end user is able or allowed to contact up-tnodes randomly. maximizes 'ne recovery probabiiity. This model was coneelv

We can treat this access model as an approximation to ﬁ!‘lseg |S|mhpl|::catlon of th% ptrece_dlln? flxlfd_sl.ze Sl;t:ﬁetbizcess
preceding independent probabilistic access model by rpxjpkim%uer VCvorI:;rikijstis(;jnm\e/;eashgv?rt?;rt]Itshg:(?h(c))if:z gfrlo W?ﬂch g€
r =~ np. Finding the optimal allocation in this case is still ' -

corresponds to a maximal spreading of the budget, is optimal

challenging. As in the first problem formulation, it is not hen the ai budaer | Hiciently | valentl
hard to show that determining the recovery probability of yhen the given budgel Is sulliciently 1arge, or equivarently,

givenallocation is computationally difficult (specifically, #P-W.hen a_sufﬂmgntly high recovery prgbgblllty (spemﬁca&yor
complete). higher) is achievable. We believe this is a reasonable tipgra

The problem appears nontrivial even if we restrict threegime for applications that require good reliability.
optimization to onlysymmetricallocations. Numerically, we
observe that givem andr, either a minimal or a maximal D- Other Related Work
spreading of the budget is optimal among symmetric alloca-Apart from the work done on the preceding problems, a va-
tions for most, if not all, choices df’. One example of an riety of storage allocation problems have also been studiad
exception is(n,r, T') = (14,5,%) for which it is optimal to nonprobabilisticsetting. For instance, the objective adopted in
have8 nonempty nodes in the symmetric allocation, instead {f9] and [20] is to minimize the total storage budget reciire
the extremeg or 13; another example i&2, r, T') = (16,4, %) to satisfy a given set of deterministic recovery requiretaen
for which it is optimal to have7 nonempty nodes in thein a network. Incidentally, the use of network coding makes
symmetric allocation, instead of the extren3esr 14. Further- it easier to deal with the total cost of content delivery, ethi
more, the number of nonempty nodes in the optimal symmetdovers the initial dissemination, storage, and eventuahfiag
allocation is not necessarily a nondecreasing functiorhef tof data objects; this cost-minimization problem is conside
budgetT’; for instance, givenn,r) = (20,4), it is optimal in [6] and [21], subject to various deterministic consttain
to have(4,18,14,19,20) nonempty nodes in the symmetricinvolving, for example, load balancing or fetching distanc
allocation forT = (4.25,4.5,4.67,4.75,5), respectively. We note that in most of the literature involving reliable

Our Contribution: We show that the allocatiof},..., 1) distributed storage, either the data object is assumed to be
is optimal in thehigh recovery probability regimeSpecifically, replicated in its entirety (see, e.d., [22]), or, if codirsguised,
we demonstrate that this allocation, which has a recovesyery node is assumed to store the same amount of coded
probability of exactlyl, minimizes the budgef’ necessary data (see, e.g.[ [23]=[27]). Allocations of a storage budge
for achieving any recovery probability exceeding a spetifiavith nodes possibly storing different amounts of data are no
thresholdl — e. Althoughe depends om andr in a compli- usually considered.



TABLE | TABLE Il

NOTATION OPTIMAL ALLOCATIONS FORNUMBER OFNODESn = 2,3,4
Symbol Definition n BudgetT Optimal ~ Condition on access probabilify
n  total number of storage nodes,> 2 allocation (if any)
T; amount of data stored in storage nage 2 1<T<2 (1,0
x; > 0, wherei € {1,...,n} 1<T<2 (L0O
T  total storage budget, < T < n =T<3 (1,0,0)
r  subset of nodes accessed: {1,...,n} 3 3<T <9 (1,0,0) if p<3
p  access probability (Secti¢il II), < p < 1 2= (3.3,4) if p>1
r number of nodes acce§sed (Secfioh Il r < n 2<T <3 (1,1,0)
% amount of data stored in each nonempty node 7
(Section1¥),£ > 0 1<T <3 (1,0,0,0)
B (n,p) binomial random Ygriable with trials and icpes (1,0,0,0) if p< 1+%/ﬁ ~ 0.768
success probability 3= 2 (4,4 1) p> 1518 0,768
. . . . . 3737373 - :
1[G] indicator function;1 [G] = 1 if statementG is true, - :
and 0 otherwise 2T <2 (11’ Ol’ 0’10) if p< 2
Z&  the set of nonnegative integers, i.€5 U {0} 4 (3:3:3,0) if p>3
(1,1,0,0) if p< 2
2<T <3 (1,44 1) if S 2
2120272 pZ3
In the following three sections, we define each problem (1,1,0,0) if p<2
formally and state our main results. Proofs of theorems are 35 <7 <3 (1’ P it p N H
deferred to the appendix. Talile | summarizes the notatied us r2rz2re — 2
throughout this paper. 3<T <4 (1,1,1,0)

Il. INDEPENDENTPROBABILISTIC ACCESS TOEACH NODE
In the first variation of the storage allocation problem, wécidentally, computing the recovery probability ofgiven
consider a data collector that accesses each ofitiedes allocation turns out to be #P-hard:

independently with probability; successful recovery occurs - : .
if and only if the total amount of data stored in the accessgé()pos't'on 1. Computing the recovery probability

nodes is at least. We seek an optimal allocatidny, .. ., z,)
of the budgetl’ that maximizes the probability of successful Z = pynitlg sz >1
recovery, for a given choice of, p, and7'. This optimization rC{Tn} o
problem can be expressed as follows: R
I, (n,p, T) : for a given allocationzy, . .., x,) and choice op is #P-hard.
o N ] Table[] lists the optimal allocations fat = 2, 3,4, cov-
maximize Y. prla-prita le 21| (2)  ering all parameter values pfe (0,1) andT € [1,n). These
rc{l,....,n} ver solutions are obtained by minimizirigfor each possible value
subject to of the objective function({2). We observe that
zn: < T 3) (i) for any T, the symmetric allocatiofl,...,1,0,...,0),
= fe which corresponds to a minimal spreading of the budget
2 > 0 Vie{l,. .. n. 4) (uncoded replication), appears to be optimal wheis

sufficiently small, and

The objective function[{2) is just the recovery probabijlity (ii) the optimal symmetricallocation appears to perform
expressed as the sum of the probabilities corresponding to well despite being suboptimal in some cases, e.g., when
the subsets that allow successful recovery. An equivalent  (n,7T) = (4,2) andp > 1.

)
expression for[{2) is

n

P [Z z;Y; > 1], maximally over all nodes turns out to basymptotically

i=1 optimal whenp is sufficiently large, as will be demonstrated
whereY;’s are independent Bernou() random variables. In- in Section[I[-A. Motivated by observatidn {ii), we examine
equality [3) expresses the budget constraint, and iney| @) Fhe optllmlzatlon problem restricted to symmetric allocas
ensures that a nonnegative amount of data is stored in edtt®ection1-.
node. For the trivial budgét = 1, the allocation(1,0,...,0) For brevity, letx(n, T, m) denote thesymmetricallocation
is optimal; for ' = n, the allocation(1,...,1) is optimal. for n nodes that uses a total storagelond contains exactly

We will proceed to show that observation (i) is indeed true in
Section[-B; the opposite approach of spreading the budget




m € {1,2,...,n} nonempty nodes: bo [ | Theorem 2
Corollary 1
T T
>’c(n,T,m)é(—,...,—7 0,...,0). 081
m m
——— N——
m entries  (n—m) entries
0.6+
Since successful recovery for the symmetric allocation L
%(n,T,m) occurs if and only if at leasf1/(L)] = [2]
out of them nonempty nodes are accessed, the correspondingo.4t
probability of successful recovery can be written as
R RITTRR L
W T

A. Asymptotic Optimality of Maximal Spreading 0 5 10 15 20

The recovery probability of the symmetric allocatiortig 2. piot of access probability against budgef”, showing regions
x (n,T,m=n), which corresponds to a maximal spreading aff (7’ p) over which the sufficient conditions of the theorems aresfed,

the budget over all nodes, is given by fa?lro?a;oﬁg'ir,:/ltiﬂi(;n(?(l)lsgsarc(ieig%n(:.ncc’ded replication) is optimal amail

n

Ps(p, T,m=n) =P {B (n,p) > {T_H (5)

To establish the optimality of this allocation, we compdgp ( B. Optimality of Minimal Spreading (Uncoded Replication)
to an upper bound for the recovery probability of an optimal

. . . The recovery probability of the symmetric allocation
allocation. Such a bound can t?e derived by conditioning (%(n(n’ﬂ m=|T), which corresponds to a minimal spreading
the number of accessed nodes:

of the budget, is given by
Lemma 1. The probability of successful recovery for an

optimal allocation is at most Ps(p,T,m=|T])=P[B(|T],p)>1]=1- 1-p)T!. 7)
zn:min (ﬂ’ 1) P[B(n,p) = 1]. (6) Recall that _codi_ng is unnecessary in _such an allocatioresinc
= n the data object is stored in its entirety in each nonemptyenod

A sufficient condition for the optimality of this allocation
The suboptimality ok (n, ', m=n) is therefore bounded by can pe found by comparingl(7) to an upper bound for the
the difference betweei](5) and (6), as given by the followingcovery probabilities of all other allocations. Our apmo
theorem; wherp > 7, this allocation becomes asymptoticallys o classify each allocation according to the number of
optimal since its suboptimality gap vanishes :asgoes 10 individual nodes that store at least a unit amount of data. We
infinity: then find a bound for allocations containing exadilysuch

Theorem 1. The gap between the probabilities of successflPdes, another bound for allocations containing exactych
recovery for an optimal allocation and for the symmetri@©de, and so on. The subsequent pompar|sor1§| of (7) to each
allocation x (n, T, m=n), which corresponds to a maximal©f these bounds result in the following theorem:

spreading of the budget over all nodes, is at most Theorem 2. 1f 1 < T < n and

n
pTP|B(n—1,p) <|7|—2]
Fd L eea(i)
If pandT are fixed such thgt > % then this gap approaches P
zero asn goes to infinity.

ST o (= [ [
We note that the regime > % is particularly interesting —s n—1{ r I—p

because it corresponds to the regime of high recovery pibbab

ity; the recovery probability would be bounded away fronfi  for all £ € {0,1,...,|T] — 1}, thenx (n, T, m=|T]), which

p < % <= pT < linstead. This follows from the applicationcorresponds to a minimal spreading of the budget (uncoded
of Markov’s inequality to the random variablé” denoting replication), is an optimal allocation.

the total amount of data accessed by the data collectorfhwh
produces

The following corollary shows that this allocation is indee

optimal for sufficiently smallp:
PW >1] <E[W].
Corollary 1. If 1<T<n and p< ﬁ; then
SinceP [W > 1] is just the probability of successful recoveryy (n,T,m=|T]) is an optimal allocation. "
andE [W] < pT according to[{l), we have T
Fig.[2 illustrates these results in the form of a region plot
PP [successful recovef pT. for an instance of..



Ps 1.0

min (o, 7—1,k)

:Z P[B(|kT],p) =k —1i]-P[B(cgr,p) >i+1]

08 —P[B(|kT],p) =k] -P[B(akr,p) =0],

whereayr = |(k+1)T| — |kT|. The above expression is
obtained by comparing the branches of the probability tree
for |kT] vs. [(k+ 1)T] independent Bernoullp) trials: the
first term describes unsuccessful event8 ((‘x7T'|,p) < k")
becoming successful §'(| (k + 1)T'],p) > k + 1") after the
additional o, 7 trials, while the second term describes suc-
cessful events B (|kT],p) > k") becoming unsuccessful
(“B(|(k+1)T],p) < k+ 1") after the additionaty, 1 trials.
After further simplification, we arrive at

0.6

0.4

0.2

0 5 10 15

— k(1 _ o\ LEED)T =,
Fig. 3. Plot of recovery probability’s against budget” for each symmetric A(p, T, k) p (1 p)
allocationx(n, T, m), for (n,p) = (20, F). Parametein denotes the num- {min (ap,r=1.k) ap,
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ber of nonempty nodes in the symmetric allocation. The btagke gives an —_—
upper bound for the recovery probability of an optimal adiben, as derived

in Lemmall. (10)

The following theorem essentially provides a sufficient
C. Optimal Symmetric Allocation condition onp and T for A(p,T,k) > 0 for any k € Z7,
éhereby eliminating all but the two largest candidate valioe
m* in @), i.e.,m = ||2|T| andm = n, which correspond
to a maximal spreading of the budget over (almost) all nodes

(they are identical whed: € Z*, i.e., T =n, %, %,...):

The optimization problem appears nontrivial even if w
were to consider onlysymmetricallocations. Fig[13, which
compares the performance of different symmetric allocatio
over different budgets for an instance (@f, p), demonstrates
that the value ofn corresponding to the optimal symmetricTheorem 3. If
allocation can change drastically as the budfetaries. 7] 71

Fortunately, we can eliminate many candidates for the (I=p) +2|T]p(1 —p) -1<0, (11)
optimal value ofm by makmg_ _the following obfserva!tmn:then either:’c(n,T, m:HﬂJTJ) or % (n,T,m=n), which
Recall that the recovery probability of the symmetric aditian : £ . g .

_ o A m correspond to a maximal spreading of the budget, is an optima
x(n,T,m) is given by Ps(p,T,m) £ P [B(m,p) > [2]]. : .
! T symmetric allocation.
For fixedn, p, andT, we have
The following corollary restates Theorel 3 in a slightly

m
{?1 =k whenm € ((k — 1)T, KT}, weaker but more convenient form:
for k=1,2,...,|2], and finally, Corollary 2. If p > AL then eitherx (@,T, m:H%JTJ)
or x (n,T,m=n) is an optimal symmetric allocation.
(2] =|7]+1 whenme (|2 ]Tn] he following | irrors Th 3 by providi
7= T m T]H " The following lemma mirrors Theorefn y providing a

) ) o sufficient condition onp and T for A(p,T,k) <0 for any
SinceP’[B (m, p) > k] is nondecreasing im: for constantp i ¢ 7+ thereby eliminating all but the smallest candidate
these intervals ofn when we pickm to be the largest integer minimal spreading of the budget (uncoded replication):
in the corresponding interval. Thus, givenp, and7’, we can )
find an optimalm* that maximizesPs(p, T, m) over all ;m Lemma 2. If 7' > 1, and either

from among| % | candidates:
7] . T = % VAl (12)
{LTJ,L2TJ,...,HTJTJ,TL}. ©
Form = |kT|, wherek € Z*, the corresponding probability 1 1\ [T1-1
of successful recovery is given by T < > and p(1—p) -1 < T (1 — T) , (13)

Ps(p, T,m=[kT]) = P[B([KT],p) = k. thenx (n,T,m=|T|) is an optimal symmetric allocation.

The difference between the probabilities of successfudvery

, , The following lemma restates Lemrh& 2 in a slightly weaker
for consecutive values df € Z* can be written as

but more convenient form:
A(p, T, k) 2 Ps(p, T,m=[(k +1)T]) = Ps(p, T, m=[kT]) Lemma 3. If p< #7 — 7 then x (n,T,m=[T]) is an
=PB((k+1)T],p) > k+ 1] -P[B(|kT],p) > k] optimal symmetric allocation.



| Thcorcm3 (f) possibler-subsets, whereis a given constant; successful
| [ Corollary 2 recovery occurs if and only if the total amount of data stared

081 ! [] Theorem 4 the accessed nodes is at leastVe seek an optimal allocation
\ Y Lemma 3

(z1,...,z,) Of the budgetl’ that maximizes the probability
‘ of successful recovery, for a given choicergfr, andT'. This
081 optimization problem can be expressed as follows:

h H2 (Tl, T, T) :
04+ [\ P
\ maximize  Ps (14)
T1yesTp, Ps
02} subject to
1
Z —-1 sz>1 > Ps (15)
N ) :
0 5 10 15 20 25 30 rC{l,...n}: \7 ver
|r|=r
Fig. 4. Plot of access probability against budgef’, showing regions of n
(T, p) over which the sufficient conditions of the theorems aresfiad. The Z z, < T (16)
black dashed curve marks the points satisfying % Maximal spreading is 1 o
optimal among symmetric allocations in the colored regiabsve the curve, = )
while minimal spreading (uncoded replication) is optimedcag symmetric z; > 0 Vie {17 cey n} (17)

allocations in the colored regions below the curve. ) . . o
The left-hand side of inequality (IL5) is just the recovery
probability, expressed as the sum of the probabilitiesezorr
The following theorem expands the region covered k§ponding to ther-subsetsr that allow successful recovery.
Lemma[3 by showing that (n, T, m=|T|) remains optimal The objective function[{14) is therefore equal to the recpve
between the “peaks” in Fidl 4: probability since Ps is maximized when[(15) holds with
equality. Inequalit expresses the budget constraimd
Theorem 4. If p < -, thenx (n,T,m=|T]), which cor- quality. Inequality[(16) exp g '

inequality [1T) ensures that a nonnegative amount of data is

respongis to. a minimal spreading of the -budget (uncod@fhred in each node. For the trivial bud@et 1, the allocation
replication), is an optimal symmetric allocation. (1,0,...,0) is optimal; forT > =, the allocation(?, ..., 1)

r

Fig. [ illustrates these results in the form of a region plowhich has the maximal recovery probability df is optimal.
The theorems cover all choices pfand 7' except for the Incidentally, computing the recovery probability ofgiven
gap arounch = ~, which diminishes with increasing. Both ~allocation turns out to be #P-complete:

minimal and maximal spreading of the budget may be S”boﬂgfoposition 2. Computing the recovery probability
mal among symmetric allocations in this gap on either side of

the curvep = +: for example, when(n,p, T) = (10, 5=, 5, 1
for which p < £, the optimal symmetric allocation is Z (—n) = sz > 1
X (n’T’ m:LQTJ), when (n7p’ T) = (10’ %7 %)’ for which rC{1,...,n}: \7 i€r

[r|=r

p > 4, the optimal symmetric allocation is(n, T, m=|3T| ). ) . . .
In general, for any budgef > 2, the optimal symmetric for a given allocation(zy,...,z,) and choice ofr is #P-
allocation changes from minimal spreading to maximal sprea“Omplete.

ing eventually, as the access probabiljfyincreases. This  an alternate way of formulating this problem is to minimize

transition, which is not necessarily sharp, appears tor8tu the budgefl required to achieve a desired recovery probability
aroundp = % Interestingly, whemp = % exactly, we observe pg:

numerically thatx (n, T, m=|T]) is the optimal symmetric
allocation formostvalues ofT’; the optimal symmetric allo- IT5(n, 7, Ps)
cation changes continually over the intervals minimize T

T1yeeeyTp,
5 < 5T <2 . .
15T <2 and 25<T < 28911, subject to the three constrainis (15)F(17)If (n, v, T').
ile x = [ i 5 <T <3, . . . -
while x.(n’.T’ m=[2T]) is optlmal for 3 5 = T<3 5694 Fig.[d shows how the optimal recovery probabilityx Ps
These findings suggest that it may be difficult to specify an . . .
; . . . . varies with the budgeT’, for two instances ofn,r). These
optimal symmetric allocation for values pfandT in the gap; : L .
. . lots are obtained by solvinBI,(n, r, Ps) for each possible
we can, however, restrict our search for an optimal symmetH
allocation to the[ﬂ] candidates given by9) value ofPs.. We observe that whe_q the budgétdrops below
T ' =, the optimal recovery probabilitynax Ps is reduced by
a significant margin belowt. In other words, if the desired
recovery probabilityPs in II,(n,r, Ps) is sufficiently high,
In the second variation of the storage allocation problerthen the optimal allocation i$%, cee }) which requires a
we consider a data collector that accesses-aunbset of the:  budget of7" = Z. In Sectior Tl[-4, we examine the optimality
nodes selected uniformly at random from the collection bf abf this allocation for the high recovery probability regime

Ill. ACCESS TO ARANDOM FIXED-SIZE SUBSET OFNODES



max Ps 1.0 . . . . . ® (i3ind)
0.9
0.8 ¢

c subsets, i.e.,

L (1.1.1.1.1.0) Z]l ier;]=b0 Vi€, (19)
0.6 ——o0 (1,1,0,0,0,0) =1

05

04t then

: —0 (1,0,0,0,0,0) Z > E

0.3: : Ti = b

0.2 i€S

] We begin with the special case of probabilityrecovery,

i.e., Ps = 1. The resulting optimization problem is just a linear
program with all(f) possibler-subset constraints.

T (0,0,0,0,0,0)

O
O

0 05 10 15 20 25 30
@ (n,r) =(6,2)

max Ps 1.0
0.9r
gj ********************* o When the desired recovery probabiliff is less thanl, we
0sl (f,g,ﬁ:o,o) can f_;\fford to dropsome of the r-subset constraints _f_rom
sl this linear program (recall that the recovery probabiliiyy o
04} an allocation is just the fraction of thes(é;) constraints
03} that are satisfied). Our task is to determine how many such
0.2 constraints can be dropped before the lower boundTfor
01} o 1 w00 obtained with the help of Lemnid 4 falls belo, in which
07 02 04 06 08 10 12 14 16 T case the allocatiois, ..., 1) may no longer be optimal. We
®) (n,7) = (5,3) do this by constructing collections ofsubset constraints that
Fig. 5. Plot of the optimal recovery probabilityax P’s against budget’, yield the required lower bound of for 7', and counting
for (@) (n,r) = (6,2) and (b)(n,) = (5,3). The optimal allocation corre- |\ any,. subset constraints need to be removed from the

sponding to each value efiax Ps is given on the right-hand side of the plot.

In (a), the red dashed line marks the thresholdParlerived in Theorerll5; the linear program before no such collection remains. Our answe
allocation (L, ..., 1) is optimal for I (n,r, Ps) if and only if the desired depends on the divisibility of, by r.

recovery probability Ps exceeds this threshold. In (b), the red dashed line . .
marks the threshold ofs derived in Theorerl6; the aIIocatio(n}, R %) When is a multiple ofr, we are able to state a necessary

is optimal forIT, (n, r, Ps) if Ps exceeds this threshold. and sufficient condition ois for the allocation to be optimal:

Lemmabs. If Ps=1,then(1,..., 1) is an optimal allocation.

Theorem 5. If n is a multiple ofr, then (£,...,1) is an

. . . optimal allocation if and only if
A. Regime of High Recovery Probability

-
Consider the optimization probledI}(n,r, Ps). We will Ps>1- n’

. A
demonstrate that the allocatign, ..., 7) is optimal whenthe  \yen, is not a multiple of r, we are only able to state a
desired recovery probabilitys exceeds a specified threshold ticient condition onps for the allocation to be optimal:
expressed in terms of and r. Our results follow from the

observation that successful recovery for certain comiginat Theorem 6. If n is not a multiple ofr, then(L,...,1) is an
of r-subsets of nodes can impose a lower bound on thgtimal allocation if

required budgetT'. I_:or example, given(n,r) = (4,2),_ if ged(r, ')

successful recovery is to occur fot, 2} and{3, 4}, possibly Ps>1-

aged(r,r’) + 1’
among other-subsets of nodes, then we have god(r,r’) +
wherea andr’ are uniquely defined integers satisfying

> @zl and Y x>, _ : I
iein) e} n=ar+r, acZj, re{r+1,...,2r—1}
However, if n is a multiple of (n — r), then this sufficient

which would imply that the minimum budgéf must be at i
condition becomes necessary too:

least2, since
, Corollary 3. If n is a multiple of(n — ), then(,... 1) is
T sz _ Z o+ Z 2> 2. an optimal allocation if and only if
i=1 ie{1,2} i€{3,4} Ps > %

This observation is generalized by the following lemma:
9 y 9 Note that Corollary(13 allows us to solHs(n,r,T) com-

Lemma 4. Consider a setS C {1,...,n}, and c subsets of pletelywhenn is a multiple of (n — r): for any T € [1,2),
Sgivenbyr; CS,j=1,...,cIf the allocation(1,0,...,0) is optimal since it has a recovery
) probability of (";1) = L, ie., exactly the threshold in
in21 VvV oje{l,...,c}, (18) (7) "
i Corollary[3; higher recovery probabilities are not achidea

unlessT > 2,
— T
and each element if appears exactly > 0 times among the  Fig.[d illustrates these results for an instance:of



Ps1o0r8
0.9

and only if the total amount of data stored in the accessed
nodes is at leadt. We seek an optimal probabilistic symmetric
allocation of the budgéf’, specified by the value of parameter
¢, that maximizes the probability of successful recovery, fo
a given choice ofn, r, and T'. Since successful recovery
for a particular choice of? occurs if and only if at least

0.8
0.7
0.6

0.5
oal [1/(7)] = [€] out of ther accessed nodes are nonempty,
' the corresponding probability of successful recovery can b
03y written as
0.2f N e
oal Ps(n,r,T,0) =P [B (r,mln(T, 1)) > V”
0 s 10 15 20 s 2 3 27 This optimization problem can therefore be expressed as
follows:
Fig. 6. Plot of the desired recovery probabilitys against the number
of nodes accessed, showing intervals ofPs over which the allocation Hg(n,r, T) :
(%,..., L) is optimal forII}(n,r, Ps), for n = 40. A dotted circle marker o o
denotes an endpoint that may not be tight, i.e., we have nobdstrated that maxt!mlze P [B (7’, Inln(?, 1)) > V”

the allocation is suboptimal everywhere outside the imtlerv

subjectto ¢ > 0.

By combining the proof techniques of Lemnia 1 anfor budgetT > =, the choice of/ =, which yields a
Theoremd 2[5, anfll 6, we can derive the improved upp&covery probability of? [B (r, 1) > r] = 1, is optimal.
bound PY®, given by [20) at the bottom of the page, for the Observe that the recovery probabilif§(n,r, T',£) is zero
recovery probability of an optimal allocation in the indepe when/ > r. Furthermore, for fixed:, r, andT', the recovery
dent probabilistic access model of Section Il (cf. Lenitha 1probability is nondecreasing iri within each of the unit
Variableso andr’ are uniquely defined integers satisfying intervals (0,1], (1,2], (2,3}, ..., since ast increases within

each interval,[/] remains constant whilenin (L, 1) either
n—{=ar+r, ac Z(T, rhedr,. . 2r =1} increases or remains constantlatThus, givenn, r, and T,

Parameter/ denotes the number of individual nodes that'® ¢&" find an optimaf* from amongr candidates:
store at least a unit amount of data. At ledsamount of {1,2,...,r}. (21)

data is stored in theseompletenodes, leaving the remaining , )
budget of at most — ¢ to be allocated over the remaining 19-[4, which compares the performance of different prob-

n — ¢ incompletenodes. Term (i) gives the probability ofabilistic symmetric allocations over different budgets &m
successful recovery from accessing at least one compleig ndnStance ofr, suggests that there are two distinct phases

while term (ii) gives an upper bound on the probability 0|z)ertaini.ngto the optimal chqice 6f when t.he budget is below
successful recovery from accessing exaetly {2, ..., n — ¢} a ce.rt{;un thresholc_i, the choice 6t 1, which corresp_onds to _
incomplete nodes. a minimal spreading of the budget (uncoded replication), is
optimal; when the budget exceeds that same threshold, the
choice of¢ = r, which corresponds to a maximal spreading
of the budget, becomes optimal. This observation echoes our
In the third variation of the storage allocation problem, wéndings on the allocation and access models of the preceding
consider the case where each of thaodes is selected by thesections, namely that minimal spreadirig={ 1) is optimal for
source independently with probabilimin(%, 1) to store% sufficiently small budgets, while maximal spreadidg=(r) is
amount of data, so that the expected total amount of storag@imal for sufficiently large budgets. However, we note two
used in the resultingymmetricallocation is at most - %T . % important distinctions in contrast to the previous modeisst,
= T, the given budget. The data collector subsequentlye recovery probability for a probabilistic symmetricoaih-
accesses am-subset of then nodes selected uniformly attion in this model is acontinuousnondecreasing function of
random from the collection of al(’;) possible r-subsets, the given budget; there are no “jumps” from one discreteevalu

where r is a given constant; successful recovery occurs tib the next. Second, our empirical computations suggest tha

IV. PROBABILISTIC SYMMETRIC ALLOCATIONS

O (i)
UB & Y —
P sy (0w LS (T )
n— . T(T — é) n—/ ng(ﬁ T/) -
Zmln( p— 1 H{T < . ] e P[B(n—4{,p)=r].

cf. Lemmal cf. Theorem§b and]6

(20)
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Fig. 7. Plot of recovery probabilityPs against budget-per-nod% for  Fig. 8. Plot of recovery probability’s against the number of nodes accessed
each choice of parametére {1,2,...,r}, for » = 10. Paramete¥ controls 7, indicating the value ofPs at which the optimal choice of parameter
how much the budget is spread in the probabilistic symmetfiecation; ¢ changes froml to r, for each given value of. Specifically, if it is
specifically, each of thex nodes is selected by the source independentlpossible to achieve a recovery probabilifys above the square marker,
with probability min (£, 1) to store + amount of data. Arrows indicate then maximal spreading & r) is optimal; otherwise, minimal spreading or
the direction of increasing. The black dashed line marks the threshold omincoded replicationé(= 1) is optimal. Observe that the critical value 5%

L derived in Theorenf]7; maximal spreading= r) is optimal for anyZ  for » = 10 (which is approximately).633652) corresponds to the intersection
greater than or equal to this threshold. " point of the curves fo¥ = 1 and¢ = 10 in Fig. 2.

the phase transition from the optimality of minimal spreagdi Corollary 4. If a probability of successful recovery of at least
to that of maximal spreading in this modelsbarp the other 2 is achievable for the given, r, and 7' then the choice of
intermediate values df € {2,...,r — 1} never perform better ¢ = r is optimal.

than both/ = 1 and ¢ = r simultaneously. - : : . .
. . Fig.[d describes the optimal choice bfor different values
In Section[[V-A, we shall demonstrate that the choice (Hf r. We observe that the gap between the thresholcﬁ of

t=r, W,hi(f‘h corresppnds to a maximal spreading O,f th8erived in Corollary[# and the actual critical value &%
budget, is indeed optimal when the given budgets suffi- indicated in the plot appears to be no more thar2.
ciently large, or equivalently, when a sufficiently highaogery

robability is achievable.
P y V. CONCLUSION AND FUTURE WORK

We examined the problem of allocating a given total storage
- ) budget in a distributed storage system for maximum religbil
Assume that- > 2. As noted earlier, the choice @f=r, Three variations of the problem were studied in detail, ard w
which corresponds to a maximal spreading of the budget, §& aple to specify the optimal allocation or optimal syminet
optimal for anyT" >  because it yields the maximal recoveryiocation for a variety of cases. Although the exact optima
probability of 1. The following lemma provides an uppergjiocation is difficult to find in general, our results suggas
bound for the recovery probabilities corresponding todtier  gjmple heuristic for achieving reliable storageéen the budget
candidate values fof* in (2I) at the critical budgel’ = ;i small, spread it minimally; when the budget is large, spre
Lemma 6. The probability of successful recovely(n, r, T, £) it maximally.ln other_words, (_:qding is unnecessary when the
atT =2 is at most? for any/ € {1,2,...,r — 1}. budget is small,_but is beneficial when th(_e budget |sllargfa.
) o ~ Thework in this paper can be extended in several directions.
Such an upper bound allows us tq derive a sufficient conditiQle can impose additional system design constraints on the
for the optimality of¢ = r, by making use of the fact that thepodel; one practical example is the application of a tighter
recovery probabilityPs(n,r,.T, ¢) is a nondecreasing fU”Cti‘?”per-node storage constraimt < ¢; < 1. The independent
of the budgef". The following theorem shows that the Cho'c%robabilistic access model of Secti@d Il can be naturally

of /= r is optimal when the budgef is at least a specified generalized to the case of nonuniform access probabilities

A. Optimality of Maximal Spreading

threshold expressed in terms ofand p; for individual nodes. It would also be interesting to find
Theorem 7. If reliable allocations for specific codes with desirable eliog
n 73\ " or decoding properties, e.g., sparse codes that offer egftici
T > - (Z) ) algorithms (see, e.g.[ [24]=[27]). A related problem would

_ . ~ be to construct such codes that work well under different
then the choice of = r, which corresponds to a maximalallocations. Another set of interesting problems involtes
spreading of the budget, is optimal. application of richer access models; for instance, we can

The following corollary states an equivalent result in termintroduce a network topology to a set of storage nodes and

of the achievable recovery probability; it demonstrates ttflat@ collectors, and allow each data collector to access onl
optimality of ¢ = 7 in the high recovery probability regime: th_e npdes close to it. More generally, we can assign difteren
priorities to each node for data storage and access, so as to
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. . L TABLE Il
reflect the costs of storing data in the node and commun@atin_ construCTING A#LSSINSTANCE FOR A GIVEN#3SATINSTANCE

with it.

V1L V2t U C1 : Cs Lo C
vi | 1 1[v1€C1] 0 + 1L[v1€C2] 0 1[v1€Ck] O
APPENDIX or| 1 1[v1eCi] 0 1[v1eC2] 0 ¢ 1[v1eCy] 0
PROOFS OFTHEOREMS w1 | 1[02€C1] 0 ! L[v2€C5] 0 ¢ -+ @ 1[v2€Ci] 0
Proof of Proposition[]l: We note that the computa-- 2%} -1 -] Llv2€Ch] 00 2[2€Ca) 0 1 o ) 1[2eCH 0
tional complexity of this problem was well understood in : ' : o : SR : :
the Berkeley meetings [9] and is by no means a majot.| 1| 1[om€C1] 0 1um€Ca] 01 -+ 1 Lom€Ci] 0
contribution in this paper. We present the detailed proefgh 7= 1| 1[@m€C1] 0 ! 1[Hm€C] 0 ! -+ ! 1[Tm€C] 0
for completeness. 0 1. : :

Consider an allocation{zy, . ..,z,) where eachz; is a " ; 1
nonnegative rational number. The problem of computing the-f----------}----7------ IR --- -----------
recovery probability of this allocation for the special €as ., ! 1 !
of p= 1, for which pl*l(1 — p)»=I*I = (3)" for any subset b, g !

r C{l1,...,n}, is equivalent to the counting version of the.”| "~~~ 7|7~ T oy

following decision problem (which happens to be polynomial | ... ___|_.____.___ . il

time solvable): ! ! ! ot
Ch | \ \ 1 1

Definition. LARGESTSUBSET SuM (LSS) 2 1

Instance Finite n-vector (a1, . .., a,) with a; € Z(J{, and file 4] 1 1 -1 3 1 3 Lo ! 3 1

size d € Z*, where alla; and d can be written as decimal

numbers of length at mogt

Question Is there a subsetr C {1,...,n} that satisfies be computed by calling twice: first with d taking the value

iepai > d? as prescribed above, and second wittaking the prescribed

value plus one The difference between the outputs from the

Note that the allocation and file size have been scaled §o, g proutine calls is equal to the number of distinct stsbse
that the problem parameters are all integers. We will prdceg satisfy", ., a; = d, which is equal to the number of

to show that the counting problem #LSS is #P-complet€aiistying truth assignments far Finally, we note that this is
this would in turn establish the #P-hardness of computirg th}, joeq polynomial-time Turing reduction since the talaie c

recovery probability for an arbitrary value of _ be populated irO (m2k?) simple steps, and the subroutifie
The index setr can be represented as arvector of bits. 5 ¢ajled exactly twice. -

Using this representation af as the certificate, it is easy to Proof of Lemmalll: Consider a feasible alloca-

see that the binary relation corresponding to #LSS is b N (1,...,2,); we have Y z; <T, where z; > 0,

polynomially balanced (since the size of each certificate sy “_’ n.’ Let S, denote tﬁ:el number of-subsets of

n), and polynomial-time decidable (since the inequality ca{}E1 .’_. a’rn} that have a sum of at least, where

be verified inO(nf) time for each certificate). It therefore | 6’{1,.’..,71}. By conditioning on the number of nodes

follows that #LSS is in #Pj . accessed by the data collector, the probability of sucakssf
To show that #LSS is also #P-hard, we describe \@:qyery for this allocation can be written as

polynomial-time Turing reduction of the #P-complete prob-

lem #3SAT [28] to #LSS. Our approach is similar to the [successful recovely

standard method of reducing 3SAT twESET SUM (See,

e.g., [29]). Let$ be the Boolean formula in the given:ZP[succeSSfUI recovelexactlyr nodes were accesded

#3SAT instance; denote its variables byv,...,v,, and  — P [exactlyr nodes were accesged

k clauses byCh,...,Ck. To count the number of satisfying _»

truth assignments fop, we construct a #LSS instance with= (TT) -P[B(n,p) =] (22)
r=1 \r

the help of Tabldll, whose entries afge 1, 2, or 3 (all
blank entries are)’'s). The entries of then-vector for the We proceed to find an upper bound f6r. For a givenr, we
#LSS instance are given by the firgtm + 3k) rows of ... write S, inequalities of the form

the table; the file sizel is given by the last row of the

table. Each entrya;, i € {1,...,2m + 3k}, as well asd, o442l > 1

is a positive integer with at mostn + 2k) decimal digits.

Observe that the set of satisfying truth assignmentsjfoan Summing up these,. inequalities produces an inequality of
be put in a one-to-one correspondence with the collectigine form

of subsetsr C {1,...,2m + 3k} that satisfy) ., a; = d; a1+ +apz, > S

for eachi € {1,...,m}, we have %;" er if and only if =

v; = TRUE, and ;" c r if and only if v; = FALSE. There-  gjnce eachr; belongs to exactl;(’;j) distinct r-subsets of
fore, if f((a1,...,an),d) is a subroutine for computing

#LSS, then the number of satisfying truth assignments cé#it: -}, it follows that0 < a; < (7:;) i=1,...,n
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Therefore, a unit amount of data; for brevity, we refer to these nodes
as beingcomplete It follows from the budget constraint that
. the number of complete nodésc {0,1,...,|T]}. When
< (n - i) S < (n - 1) T ¢ =|T]|, the allocation has a recovery probability identical
r—
i=1

Sp < a1z + -+ anTn

r—1 to Pi(p,T). Now, assuming that € {0,1,...,|T] — 1},
successful recovery can occur in two ways:

(i) when the accessed subset contains one or more complete

) n—1 n nodes, which occurs with probability— (1 — p)*, or
Sr < min <<T _ 1> T, ( )> : (i) when the accessed subset contains no complete nodes
Substituting this bound intd_(22) completes the proof. m but has a sum of at least )
Proof of Theorenf]1: The suboptimality gap for the I case[ (i), the accessed subset would consist of two or

symmetric allocatiork (n, T, m=n) is at most the difference more incompletenodes. Using the argument in the proof of
between its recovery probabilit](5) and the upper bodid (6fMmall, we can show that there are at most

Sinces,. is also at mos(ﬁ), i.e., the total number of-subsets,
we have

from Lemmal[l for the optimal recovery probability. This ) n—»~—1 n—J¢
difference is given by E— << r—1 ) (T =0), < - >)
[#]-1 T n r-subsets of incomplete nodes whose sum is at leasince
— (T)pr(l -p)"" the total amount of data stored over the- ¢ incomplete
r=1 nodes is at mostl’ — ¢. It follows then that the recov-
[4]-1 ) ery probability for a feasible allocation with exactly €
=T <n B ) ) p"(1—p)" " {0,1,...,|T| — 1} complete nodes is at most
r—
(R Pan,p, 7,0 2 1= (1=p)" + (1= p)"
T
n—1 n—~_
Y ( >pr1(1_p)<n1><r1> (Tt A
— \r-1 TZ:len 7 r 1 . p"(1—p) .
[#1-2
n—1 Thus
—pT V4 1 (n—1)—¢ )
> (", 1)ra-n PAp,T) > Pa(n.p. T, )
—pTP {B (n—1,p) < [ﬁw _ 2} 2 §(n,p,T), for all ¢ € {0,1,...,|T| —1} is a sufficient condition for
T x(n,T,m=|T]) to be an optimal allocation. After further
as required. Assuming now that> 1., we have simplification of this inequality, we arrive at inequaliff)(as
n—1 required. |
6(n,p,T) <pTP {B (n—1,p) < T} (23) Proof of Corollary[d: Suppose that < 7' < n. We will
1 show that the sufficient condition of Theordrh 2 is satisfied
=pTP {B (n—1,p) < ﬁ(n - 1)p] for anyp < ﬁ Note that whem — |T'| = 1, or equiv-
) alentlyT" € [n — 1,n), we have to show that (n, T, m=|T])
(n—1)p 1 is an optimal allocation foany p, i.e., in the interval0, 1).
spT exp <_ 2 1= pT - (24) First, observe that the summation term in inequalfy (8) is

. always nonnegative, i.e.,
Inequality [23) follows from the fact that y 9

n n n 1 [#=2]-1 r
[T—‘—2<T—|—1—2<T—T. Z (1_Z_§'T)<nr£><%) >0,
Inequality [24) follows from the observation th{# € (0,1), =2
and the subsequent application of the Chernoff bound fghce for any r € {2,..., [n_:ﬂ — 1} and ¢ ¢
deviation below the mean of the binomial distribution (se% 1 |T| — 1}, we have
e.g., [30]). For fixedp and T, this upper bound approaches = "’ '
zero asn goes to infinity. _ I V_—g n-¢, ., T-¢
Proof of Theoreni]2: We compare the recovery proba- — |T —¢

T/ n—1/{
bility of % (n,T,m=|T|) to an upper bound for the recoveryTherefore, a simpler but weaker sufficient condition for

probabilities of all other allocations. - T : T
Suppose that < T' < n. Recall from [[¥) that the probabil- % (n,T,m=(T]) to be an optimal allocation is
ity of successful recovery fak (n,T,m=|T]) is given by 1 \IT)-n _ B P -
L= = = () = 1) (725 ) 20

A= (0p 1+ (n—|T))p—(1-p)'~ T >0
— - —(1- ,
Consider a feasible allocatiorfzy,...,z,); we have (n Np=Q-p -

S x; <T,wherex; >0,i=1,...,n. Let/ be the num- which is an inequality in only two variablep and
ber of individual nodes in this allocation that store at teas =n — |T'|, wheres € {1,...,n—1}. Whens=1, or

W—1<:>7*< -r > 0.



equivalentlyT” € [n — 1, n), this inequality is satisfied for any

€ (0,1), as required. Defining the function

fls,p) £ 1+sp—(1—p) >,

it suffices to show thatf(s,p) > 0 for any s € Z*, s > 2,

andp € (0,%]. We do this by demonstrating that for anyy

s€Zt, s> 2, the function f (s, p) is concave inp on the
intervalp € (0,
f(s,p= 0)>Oandf(sp— %) >0.

The second-order partial derivative s, p) wrt p is given
by

82 —1-—s
e (s,p) = =s(s =1)(L—p)~ "
Smcea ~f(s,p) <0foranys e Z*, s> 2 andp € (0, %],
it follows that the functionf(s,p) is concave inp on the
intervalp € (0, 2] foranys € Z*, s > 2.

Suppose that € Z*, s > 2. Clearly, f(s,p=0) =0. To
show thatf (s p= 2) > 0, we define the function

g(s)ﬁ1n<1+§)+(s—1)1n<1_832),

and show thay(s) > 0 for any s € Z*, s > 2. Direct eval-
uation of the function gives ug(s=2) =0, and g(s=3) =

In2 —2In2 > 0. For s > 4, we consider the derivatives of

3

g(s):
s en (- 3)
P _8(3 -5 —68—2)
s2(s +2)2 (s — 2)°

Since ¢’ (s) > 0 for any s >4, and lim,_,, ¢'(s) =0, it
follows that ¢’(s) < 0 for any s > 4. Now, sinceg’(s) <0
for any s > 4, andlim,_, . g(s) = 0, it follows thatg(s) > 0
for any s > 4. Therefore, for any € Z™, s > 2, we have

2 2
ln(l—i—;)—i—(s—l)ln(l—s—Q)zg(s)ZO
1—s
2 2
=14+ -2> (1——2>
s S

2
@f (S’p:S_2> >0,

as required. |

Proof of Theorerf3:We will show that if condition[{T/1)
is satisfied, ther\(p, T', k) > 0 for anyk € Z*. First, we note
that

(&%)

(kaTJ) kT -k +1
= (7] +I:)J _k+1,whereréT—LTJ €10,1)
k
T k[T + kT —k+1
> (25)

= } and is nonnegative at both endpoints, i.e

13

1

Inequality [2%) follows from the fact that
k1| <kt <k < |k1|<k—-1 < [k7] -k+1<0.

ow, if condition [11) is satisfied, then we necessarily have
T > 2; otherwise,I" € [1,2) would imply that|T"| = 1, which
produceg1 — p)L71 + 2LTJp(1 —p)TI=1 —1=p>0,con-
tradicting our assumption. It follows that

U <o
PIB(T).p) =0+ 2P [B(IT).p) =1] 10
PIB(T)p) 2 2 = PIB(IT)p) = 1]

LT)

> (L?J ) P (1 =p) " > T p(1 — )T
j=2

SRRV

=>m (7)) = “n

L (Y (e )

—Xm(5) () = )

Observe thatv, + = |(k+ 1)T) — |kT] € {|T],[T]}, be-

causeay r € (T -1, T+ 1) and there are only two integers

|T] and [T, which are possibly nondistinct, in this interval.

It follows from (Z7) and [[ZB) that

O%ZTL (ak.,T> (L)J_l > 1.
AN l—p

Jj=2

(29)

Therefore, we have

min(ay,r—1,k) ok (UCTJ)

> X i

-3 i (V) ()
2w (V) () e
> i,_from (29)

Inequality [30) follows from the fact that
min(ag,r—1,k) > min(2—1,1) = 1.
Consequently,

min(ag p—1,k) op 1

> Y (i

2GS =)

<~ A(p, T, k) >0, from (I0)
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It follows that foranyT > 2 andp > SLTJ , as required. ]
Proof of Lemmad12: Suppose thaf’ > 1. We will show
Ps(p, T,m=|T}) < Ps(p, T, m=[2T]) that if condition [IR) or condition[{13) is satisfied, then
<< Ps(p,T,m=||2]|T]), A(p,T,k) <0 for any k € Z*. First, we note that for any

and so we conclude that an optimal* is given by either i€ {L.... Kk},
m=||Z]T] orm =n. = i terms
Proof of Corollary(2: If p > 3LTJ' then we necessarily ( k—i ) B (k)(k=1)---(k—i+1)

haveT > 2; otherwise, T’ € [1,2) would imply that|T'| = 1, (LkTJ) T (KT] —k+i)---([kT] — k+2)([kT| — k +1)
which produceg > -1 = 32, contradicting the definition of \ *
p. We will show that condition[CIll) of Theoreln 3 is satisfied

1 terms

foranyT > 2 andp > SLTJ To do this, we define the function < k '
[kT| —k+1
f,7) & (1 =p)tT 42T p(1 = p)tTI =1 -1, ( k )
and show thatf(p,T) < f (p:ﬁ,T) <0 for any T > 2 R —1-k+1
andp > gryy. - = (L) . (31)
The partial derivative off (p, T) wrt p is given by T-1
) s Now, if condition [I2) is satisfied, then
—f(,T) = |T|(1 -p)" I (1+p—2(T]p). o1 [T . ey
Observe thatf (p,T') is decreasing wrp for any 7' > 2 and Z Z ( ) ( j ) (1 —p)
. =1 j=i+1
p > 3LTJ’ since

T-1 T 1N /T 1 it
NI - 3 (75) (5) ()
B ~ ilji-i—l T-1 J L—7

P23 T 37 T AT 1 |
= 2(Tlp—p>1<=1+p—2[T)p<0<= Zf(p.T) < 0. Z Z ( )( )'7

Now, consider the function i=1 j=i+1
T

. ¢
o2 s 1) = (i) () =xeen(§) () -

We will proceed to show thay(7)) < 0 for any T'> 2. For - op the other hand, if conditiofi{lL3) is satisfied, then
T €[2,3), we have|T| =2 and ¢(T) = 0. To show that

g(T) < 0 for any T > 3, we consider the function rTz]:l S ( >l <[T]> ( » >_i+-j
MT) & (T —1)In 1—i +In 4 =1 j=itl 7 bop
which has the derivatives - Z < j ) (p(T _ 1)) <1 _p)
1 11 4 L
W(T) = In{1l—— [T /o— r
(T) 3T—4+11T—4+n< 3T>’ _ i( 1-p ) ([T])( P )f
W) — 16 (1172 — 24T — 16) =\ \p(T-1) ¢ 1—p
T (3372 — 56T + 16)* T (% (1= 2 pa—p) !—T‘\*l)
Sinceh”(T) > 0 for any T' > 3, andlimy_,o, h'(T) =0, it =1- - = L

_ _oNTI=t Tt
follows thath/(T") < 0 for any T > 3. Now, sinceh/(T) <0 (1-pT) (1~ 1) (1-p)
for any 7> 3, andh(T=3) = n 2 —2In ¥ < 0, it follows Thus, if either condition is satisfied, we have

that h(T") < 0 for any T > 3. Thus, for anyl’ > 3, we have [T1-1 [77] A —itj
, <1 (32)
(LTJ—1)1n<1—i>+ln<E—i)_h(LTJ)<0 z; j§1< > ( j ) (1 )
817 3 3l (7)-1 7] i 7] —itj
a \Y g SN ( )( , )(L> <1 (33)
‘E’m{(l‘m) (? 3T J)} = A
4 \TI-1 As in the proof of Theorenl]3, we note that r =
— (1 - m) ( <1=g(T) <0 |(k+1)7T|— |kT| € {|T],[T]}. It follows from (Z2) and
Combining these results, we obtaln (sz ;h?t - , it
- () () (25) < oo
f(paT)§f<p—maT) =g(T)<0 Zz; 7;1 J I—p



Therefore, we have

LkJ

() (25)
UcTJ —-p

(
>( S
()

min(ay,r—1,k) ok

2 12

j= 1+1

SDIRNDS

J=1+1

ag,r—1 agT

<Y Yo

=1 gJ=i+1

<1, from (33).

Consequently,

—i+j
) , from (31)
p

min(og,r—1,k) akT(

min(ag 7—1,k) ok 1

o2 () = ()
<~ A(p,T,k) <0, from (I0)
It follows that

Ps(p,T,m:LTJ) > Ps(p,T,m:LQTJ)
> Ps(p, T,m=|3T]) > ---,
and since

— R Tom=|[3]T)) i § ezt

Ps (p, T, m=n) {S Ps(p,T,m=|(|%] + 1) T|) otherwise,

we conclude that an optimab* is given bym = |T'|. [ |
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We will proceed to show thagy(7) <0 for any 7" > 1
by reparameterizingy(T) as h(c,7), where ¢ = [T] and
TE([T]-T:

e—1
h(c,7) & g(T=c—7) = (%_CiT)(l_%—i_ciT) —1.

The partial derivative oh(c,7) wrt 7 is given by
272(0—2)( iT)C
( (0—1—7’)—|—27')2( ciT)c'

Since Zh(c,7) <0 for anyc € Z*, ¢ > 2, andr € [0,1), it
follows that for anyT” > 1, we have
9(T) = h(c=[T],7=[T1-T)
< h(e=[T],7=0)

(% - %) (1 7 + m)m 1

0
Eh(c T)

[T] [T]
Combining these results, we obtain
2 1
< = = <
1.1 = 1 (=11 TJ) o(1) <0

forany7 > 1 andp < T T which implies

T~

[T]-1
1 1
11—t (1-2 .

p(l—p) <7 T

Proof of Lemméd13: Since x (n,T,m=|T) is indeed Finally, we apply the appropriate condition from Lemfda 2

optimal for any p whenT' = 1, we need only consider thefgr each pair of T and p. For TeZ", T>1
case ofT > 1. We will show that either conditio_(12) or have _1_ 1.
cond|t|on []3) of Lemmdl2 is satisfied for arly > 1 and

P< -
function
—p) [T]-1

1 N1t
- )
and show that f(p, ) f( —m
T>1andp§;2p T

condition from Lemmal2 for each pair @f andp.
The partial derivative off (p,T') wrt p is given by

(1= p[T]) (1 =p) 12

-1
7)

_1’

—f(p,T) =
o (. T) .

Observe thatf(p,
andp <

T) is nondecreasing wrp for any 7' > 1
7, since

Now, consider the function

9(T) = f(P: ] %7T) i i

. We do this in two steps: First, we define the{z

, we
(TW T =7 we use condition[(12) fop = +, and
cond|t|on [I_:B) forp < T For T ¢ Z*, T > 1, we have
— & < #: we use condition{13) fop < +. [
Proof of Theorenf]4: Sincex (n,T,m=|T|) is indeed
optimal foranyp whenT = 1, we need only consider the case
of T > 1. We will show thatx (n, T, m= LTJ) is an optimal

symmetric allocation for an§” > 1 andp < We do this

) <0 for any by considering subintervals af over whlchf ]1 is constant.
Second, we apply the appropriate Let 7' be confined to the unit intervalc, c + 1], where

ceZr. Accordlng to Lemma&l3x (n, T, m=|T]) is optimal

for anyp € (0 - i} andT € (¢, c+ 1], or equivalently,
for any

) c+1 T

1
5 ,c+1
c+1 -
This is just the area below a “peak” in Fidl 4, ex-
pressed in terms of different independent variables. Foh ea

pE (0, C+1)’ we can always find &, such that

N (c,c+1].

1
0,—— | and T
pe(’c—i—l} €

Ty €

1
27,04—1) N(c,c+1).
o1 P

For example, we can picky = ¢+ 1 — ¢, where

1
(c—i— 1 — max (c, 27>> € (0,1).
c+1 -p

=

N =
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Now, we make the crucial observation thakifn, T, m=|T]) Proof of Lemmdl5: Let % be the collection of all(”)
is an optimal symmetric allocation forl’ =T,, then possibler-subsets of1,...,n}. If Ps= 1, then any feasible
x (n,T,m=|T]) is also an optimal symmetric allocation forallocation must satisfy

any T € [|Ty],To]. This claim can be proven by contradic-

tion: the recovery probability fok (n, T, m=|T]) is given le 21 Vrexr
by €er
Ps(p,T,m=|T|) =P[B(|T],p) > 1] Observe that each element {,...,n} appears the same
number of times among the-subsets in®. Specifically,

which remains constant for alll’ € HTO_J’TO}' and a the number ofr-subsets that contain element {1,...,n}
symmetric allocation that performs strictly better thag, just the number of ways of choosing the otHer— 1)

x (n,T,m=|T]) for some T € [[T)],To] would there- goments of the-subset from the remaining, — 1) elements

fore also outperformx (n,T,m=|T]|) for T =Ty. Since of {1,...,n}, ie.
% (n,T,m=|T]) is indeed optimal for our choice dfy, it oo
follows then thatx (n, T, m=|T]) is also optimal for any Z 1[ier] = (” - i) Vie{l,...,n}
r—
reR,

p€<O,L> and T € (c,c+1]. ) _
c+1 Applying Lemmal[# with S={1,....n}, ¢= ("), and

By applying this result for each e Z*, we reach the conclu- b = (fji) therefore produces
sion thatx (n, T,m=|T]) is an optimal symmetric allocation

1 n n
foranyT >1andp < g7 S () _n
Finally, to extend the optimality ofk (n,T,m=|T]) to — (n—l) r
p= (IT] we note that the recovery probabilitys(p, T, m) rl
£ P [B(m,p) > [2]] is a polynomial inp and is therefore for any feasible allocation. Now(1,...,1) is a feasible

= 177" Sincex (n,T,m=|T]) is optimal as allocation since it has a recovery probability of exactly
p— -7 it remains optimal ap = —L- because it uses the minimum possible total amount of storage

Tl > DN . thi ion i i

roof of Proposition[2: Consider an allocation =’ th;)s allfoc?'_tll_(r)]n 'S ?Elg.gptlmal. that, | ltiol f..
(z1,...,z,) Where each; is a nonnegative rational number. ¢ rfip 0 " eoreb d. f_up%ose h thalts—a muttiple ofr,
The problem of computing the recovery probability for thiée positive integer be define SUTC_ —anr .
allocation and a given subset sizeis equivalent to the We will first prove thathS - 11_ i IS a sufficient condition
counting version of the following decision problem (WhicHeOr the optimality of (?""’?) by showing that if the

continuous ap

happens to be polynomial-time solvable): constraint

Definition. LARGESTr-SUBSET SUM (LRSS) le =1 (35)
Instance Finite n-vector (ay, ..., a,) with a; € Z7, file size ter

d € Z*, and subset size € Z*, where alla; andd can be is satisfied for more than(1— Z) (") distinct r-subsets
written as decimal numbers of length at mést r C {1,...,n}, then the allocatior{2, ..., 1) minimizes the
Question Is there anr-subsetr C {1,...,n} that satisfies required budgetl’. Our approach is motivated by the ob-
D ier @i > d? servation of Lemmdl]4. We begin by constructing a col-

Note that the allocation and file size have been scaled I{ggtlon of r-subsets such that if constraifif [35) is satisfied

. i . . . N Un
that the problem parameters are all integers. To show tleat [ the r-subsets in this collection, theElzl v > . We

. . . en demonstrate that such a collectionresubsets can be
counting problem #LRSS is #P-complete, we essentiallyyap L und amonanvcollection of more thar(l - i) (n) distinct
the proof of Propositiof]1, substituting #LSS with #LRS @any n/Ar

and stipulating that the subset size= m + k in the Turing r-sLuelisets.
reduction. Q2 (v va)
Proof of Lemmdl4: Summing up thec inequalities of T e
(I8) produces be an ordered partition ofl,...,n} that comprisesy parts,
- o where|v;| =r, j =1,...,«. For a given ordered partitio,
'21 ; Ti =6 we specify a collection ofv distinct r-subsets
J=lery
A
The terms on the left-hand side can be regrouped to obtain Ro =A{r1,... ral,
c wherer; £ v;, j=1,...,a.
Z Z Lli €xjlz; 2 c. Fig.[d provides an example of ho§ and %, are constructed.
o fes =t . o Let A be the total number of possible ordered partiti@ps
Substituting [(IB) into the above inequality yields By counting the number of ways of picking;, we have
bei >, _qary ((a=1)r\ ((a=2)r ry _ (ar)!
icS A_(r)( r )( T ”.(r)_(r!)o"
as required. | o orms
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Let (n,r)=(8,4). We proceed to prove thats > 1 — Z is also a necessary

Writing n=ar gives av=2. condition for the optimality of(1 1) by demonstrating
that this allocation is suboptimal for ariys <1-
For r <n, the allocation (0,%,...,1) has a recovery
probability of ("*) / (") = 1 — L and is therefore a feasible
An example of an ordered partition is allocation for anyPs <1 — . Since this allocation uses a
Q=({1,2,3,4},{5,6,7,8}). smaller total amount of storage—! < Z, it |s a strictly better
Its corresponding collection of 7-subsets is allocation than( ) for any Ps < < 1 - =
Ro={{1,2,3,4},{5,6,7,8} }. For the trivial caser =n, we havel — = = 0 The empty

allocation (0, ...,0) is clearly optimal for anyPs < 0. ]

Fig. 9. Example for the construction of the ordered pariit@ and its Proof of Theoreni6: Suppose that is not a multiple

corresponding collection of-subsetskg, in the proof of Theorerfll5 (when

n is a multiple ofr). of r; let integersa andr’ be as defined in the theorem. For
brevity, we additionally define positive integeism, andm/’
such that

Let B be the number of ordered partitio@sfor whichr € Rg,

for a givenr-subsetr C {1,...,n}. By counting the number d=ged(r,r’), r=md, ' =m'd

of ways of pickingv;, subject to the requirement thae R,

We can therefore writes = (am + m/)d.
We will prove that

pea(T) ) T L

we have

(a—1) terms
is a sufficient condition for the optimality of’,...,1) by

We claim that for any given ordered partitiap, if
e P a showing that if the constraint

in >1 VreRg,
ier in >1
Sy
then 3" , 2; > 2. To see this, observe that each element

i€{l,...,n} appears in exactly one of the r-subsets of s satisfied for more tharﬁl - ajm,) (™) distinct r-subsets

RCTRE r C {1,...,n}, then the allocatior{~, ..., 1) minimizes the
Z 1ier]=1 Yie{l,...,nh. required budge_tF. We apply the proof technique of 't'heo-
refy rem[3, but modify the construction of the ordered partitipn

_ _ and its corresponding collection ofsubsets®y to take into
Applying Lemmal# withS = {1,...,n}, c=a, andb=1 account the indivisibility ofn by r.

n

therefore producey”;_, z; > § = For the moment, we will proceed with the assumption that
Let ® be the collection of aII( ) possibler-subsets of > 1. Let

{1,...,n}. Observe that all collections®y can be found in
R, i.e., Q= (uy,..., W, Vi,...,Va)

R € R, R, €K, .., Roua R be an ordered partition dfl, ..., n} that comprisegm’ + «)

With each removal of am-subset from®, we reduce the parts, where

number of collections®, that can be found among the lu;| = d j=1,....m'
remainingr-subsets by at mod3. It follows that the minimum ! ’
number ofr-subsets that need to be removed fr@rso that
no collections®, remain is at leasf4 |, where

vi|=r=md, i=1,...,«
J J

For a given ordered partitioy, we specify a collection of
A (ar)! r (n) (m’ 4+ ) distinctr-subsets

(v — !
B on’.((a 1)7’). n\r L ST
Thus, if fewer thang = Z (") r-subsets are removed from m—1 _
R, then at least one collectiak, would remain; equivalently, wherer. 2 U wi ifj=1,....m,
some collection®, can be found amongny collection of 7)) =0 _
more than(1 — £) (") distinctr-subsets. Viem: M j=m/+1...m +a,
We have therefore shown thatfs > 1 — -, then any fea- andu; £ u;_,, if j>m'.

sible allocation must satisfy";" | z; > 2. Now, (1,...,1
is a feasible allocation since it has a recovery probabdity Fig.[I0 provides an example of hawand®, are constructed.
exactly1; because it uses the minimum possible total amoug¢t A be the total number of possible ordered partitiéhs

of storage?, this allocation is also optimal. By counting the number of ways of picking; andv;, we
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Let (n,r)=(10,4).
Writing n=ar+1r' gives a=1 and r'=6.
We have d=ged(r,r')=2, m=r/d=2, and m'=7r"/d=3.
n
Caflafa] |

m'd=r'

ar
An example of an ordered partition is

Q=({1,2}.{3.,4}.{5,6},{7.8,9,10}).
Its corresponding collection of r-subsets is

Ro={{1.2, 3,4},

556}’

{5767 172}7

{7,8,9,10} }.
Fig. 10. Example for the construction of the ordered pariitt) and its

corresponding collection af-subsetskg, in the proof of Theorerfil6 (when
n is not a multiple ofr).

have
= (T () ()
() (") () e

o terms

Let B be the number of ordered partitio@sfor whichr € Rg,

for a givenr-subsetr C {1,...,n}. By counting the number

{1,...,n} formed by setd/ andV, where

m/ [e3
Uéqu, VéUVj.
j=1 Jj=1

Correspondingly, we partitiorg, into two collections of
r-subsetsgy and %}, where

Kgé{rla"'vr’m/}v Ké‘g/é{rm'+lv"'7rm/+a}'
Observe that each element U appears in exactly ona;,
which in turn appears in exactly. of them’ r-subsets oﬁ(g
(namelyr;,r;_1,...,T;_(m_1), Wherer; = vy, if £<1),
ie.,

Z 1lier]=m VY ieU.

rE‘Rg
Applying Lemmd# withS = U, ¢ = m/, andb = m therefore
produceszieU r; > 7 = . Likewise, observe that each
element; € V appears in exactly one of the r-subsets of

Ry, i.e.,

Y tlier]=1 VieV

rE‘R(‘Q/
Applying Lemmal% withS =V, ¢ = «, andb = 1 therefore
producesziev x; > «. Combining the sums ot/ and V
yields

n

” .

:ZxﬂrzxiZ%/Jra:

icU icV

n
D> i
i=1

of ways of pickingu; andv;, subject to the requirement that Let % be the collection of all(”) possibler-subsets of

r € Ry, we have

B ( ((a—l)m+m')d)( ((a—l)m+m'—1)d)_ _ ( ((a—l)m-‘,—l)d) _

d d d
m/ terms
o () () ()
()0
m terms
(((a—l)?;—i-m’)d) ( ((a—l)mc-ll—m’—l)d) o ((am;—l)d) .

(m/—m) terms
(o) (™) (o)
(((a = )ym+m’)d)! ,(((a = 1)m +m')d)!
(@) ((mad))*~" (@) (mad))*~
(((a — l)m—i—m’)d)!.
()™ ((md))*™"

= (a+m')

We claim that for any given ordered partitiap, if

inzl V re Rg,

S

{1,...,n}. As demonstrated in the proof of Theorémh 5, if
fewer thang r-subsets are removed froRy, then at least one
collection ®y can be found among the remainimgsubsets.
In this case, we have

A 1 ((am +m/)d)! 1 n
a+m/! (((04— 1)m+m’)d)!(md)! Ca+m! (r)

5=

Thus, some collectio®, can be found amongny collection

of more than(l - ﬁ (™) distinct r-subsets.
We have therefore shown that iPs > 1 — ﬁ then
any feasible allocation must satisfi?zlxi > 2. Now,

1 1

R T) is a feasible allocation since it has a recovery
probability of exactlyl; because it uses the minimum possible
total amount of storagé, this allocation is also optimal.

Applying the preceding argument to the degenerate case
of a = 0 producess = -1 (™), which is consistent with the
above expression. [ |

Proof of Corollary[3: Suppose that is a multiple of
(n—r); Ietﬁintegerﬂ > 2 be defined such that = 8(n — )

= n=g57

If 6= 2,7thenn = 2r, i.e.,n is a multiple ofr. According
to Theorenib,(1,...,1) is an optimal allocation if and only
if

r r 1 r
Ps>1——=1——=-=—,
s n 2r 2 n
as required.

If 5> 3, thenn is not a multiple ofr. We can write

then 37" , 2; > . To see this, consider the partition ofn = ar+ 1+, wherea =0andr’ =ne {r+1,...,2r —1}.
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According to Theorerfil6(L,..., 1) is an optimal allocation which leads to inequality(37).

if Combining boundd(36) an@{837) produces
ged(r, 1) ged(r, n) n—r T 1
Ps>1-— =1—- =1— [ eT2(atb) a+b 1,
P b, > - 4+- =4 b
aged(r,r') + 1/ n n n {B<a—|— —i—b) a}< J2n b +2 f(a,b)

To show thatPs > = is also a necessary condition for the
optimality of (2,... ) we demonstrate that this aIIocatior'TOr any positive integers andb. Now, the upper bound(a, b)

is suboptimal for an)Ps * The allocation(1,0, ...,0) has 'S @ decreasing function of botthh and b since f(a,b) is a
o " . symmetric function and the partial derivative
a recovery probability o( 1) / (T) = andis therefore a )
feasible allocation for any’s < ~. Since this allocation uses gf(a b) = _6b2 + 6ab+ a eT2@Ty  [q + b
a smaller total amount of storade< %, it is a strictly better U 12a(a+b)2 21
allocation than(,..., 1) for any Ps< = n
T is negative for any, > 1 andb > 1. Thus, for anyz > 18 and
Proof of Lemmd]6: At T = 2, the recovery probablhty b> 3g we have ¥ = W=
corresponding to a particular ch0|ce ok {1,2,...,r—1} )
w2 /7 1 3
is given by Fla,b) < f(a=18,b=3) = ez’z \/j+ 5~ 0749773 < =,
T
Ps (n,r,T:ﬁ,é) =P {B (7’, é) > 4.
r which implies thatP |B (a + b, a+b) > a] < % for any pos-
We will prove that the above expression is at mgsfor any itive integersa > 18 andb > 3.
¢€{1,2,...,7— 1} andr > 2 by showing that Case 2 Suppose that € {1,2}. We will show that
P [3 <a+b, ib> > a] < % P[B(a+1,:%)>a| <% andP [B (a+2, 74 )>a] < 4
a

for any positive integed. The left-hand side of each inequality

for any positive integera andb. To do this, we consider the can be expanded and simplified to obtain the following:

following three exhaustive cases separately:
Case 1 Suppose that > 18 and b > 3. We will first P [3 (a—i—l,%) > a} = ¢ “2atl) & £ (g),

@t =
derive an upper bound fo®|B(a+b, 75 ) >a| by .

(or.2 _ P[5 (a+2.3%) 2 af = TG £ fa(a)
finding separate bounds foP’[ (a+b, +b) —a] and

P {B (a+ b-2) > a+ 1}; we then proceed to show thatThe first derivatives off;(a) and f2(a), which are given by

this upper bound is smaller thahfor anya > 18 andb > 3.  fi(a) = a+1)a+1 {2—(2a+1)In (1)},
For any positive integerg andb, we have fi(a) = a+2)a+2 {(10a+ 10) — (5a2 + 10a +4) In (%w)}’

a b
P[B (a—i—b,Lb)za] :(a+b)< a ) ( b ) can be shown to be negative for any>1. Since
a—+

a atb) \a+b/  f(a=1)=3, fola=1) = 12 < 3, and bothf;(a) and fo(a)

eT2@ ) [q 4+ b are decreasing functions af for any a > 1, it follows that

< Vo Vab (36)  f1(a) < 3 and f,(a) < 2 for any positive integew, as re-
quired.

Inequality [36) follows from the application of the follomg

bound for the binomial coefficient: Case 3 Suppose that € {1,2,...,17}. We will describe

X ) our approach form = 1 and a = 2; the proofs for the other
a+b - eT2@Fn) (q 4 )Ttz 15 cases are similar, and can be verified with the help of a
a Vor gtttz computer. We will show that

which is derived from the following Stirling-based bounds f B(b+1 >1| < 3 andP [B (b +2 ~9 3
the factorial (see, e.g/ [B1]): [ ( + ’b+1) } =gan [ ( + ’b+2) }<

i\ F \F for any positive integeb. 'i'he ieft—hand side of each inequality
2rk (E) < k! < V2rk (E) eT2k k>1. can be expanded and simplified to obtain the following:
For any positive integerg andb, we have P {B (b +1, b+1) > 1} =1- (bﬂ% = g1(b),
]P’{B <a—i—b,aL+b) Za—i—l] < %, (37) P{B (b+2’ b+2) } =1- bb:r(;;iﬁ) £ ga(b).
which follows from the definition of the median The mean of he first derivatives ofy; (b) andg»(b), which are given by

the binomial random variablB (a + b, ;45 ) is (a +b) - .55 g, (b) = (b+1)b+1 {pIn (22) -1},

= q; since the mean is an integer, the median coincides with ) bio

the mean[[32]. Therefore, according to the definition of the g(b) = 7(b+2)b+2 {(3b +4b)In (T) — (60 + 4)}7
median, we have can be shown to be negative for any> 1. Since

a 1 g1(b=1) = 2, go(b=1) = 2 < 3, and bothg: (b) and g»(b)
P [B (a+ b, b) < a] 2 2’ are decreasing functions &f for any b > 1, it follows that
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g1(b) < 2 and g»(b) < 2 for any positive integet, as re- ACKNOWLEDGMENT
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The recovery probability any

corresponding to
¢e{1,2,...,r} is given by

Ps(n,r,T,0) =P {B (T,min(” 1)) > 4,
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