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Distributed Storage Allocations
Derek Leong, Alexandros G. Dimakis, and Tracey Ho

Abstract—We examine the problem of allocating a given total
storage budget in a distributed storage system for maximum
reliability. A source has a single data object that is to be coded
and stored over a set of storage nodes; it is allowed to store
any amount of coded data in each node, as long as the total
amount of storage used does not exceed the given budget. A data
collector subsequently attempts to recover the original data object
by accessing only the data stored in a random subset of the nodes.
By using an appropriate code, successful recovery can be achieved
whenever the total amount of data accessed is at least the size of
the original data object. The goal is to find an optimal storage
allocation that maximizes the probability of successful recovery.
This optimization problem is challenging in general because of its
combinatorial nature, despite its simple formulation. We study
several variations of the problem, assuming different allocation
models and access models. The optimal allocation and the optimal
symmetric allocation (in which all nonempty nodes store the same
amount of data) are determined for a variety of cases. Our results
indicate that the optimal allocations often have nonintuitive
structure and are difficult to specify. We also show that depending
on the circumstances, coding may or may not be beneficial for
reliable storage.

Index Terms—Data storage systems, distributed storage,
network coding, reliability, storage allocation.

I. I NTRODUCTION

CONSIDER a distributed storage system comprisingn
storage nodes. A source has a single data object of

normalized unit size that is to be coded and stored in a
distributed manner over these nodes, subject to a given total
storage budgetT . Let xi be the amount of coded data stored
in nodei ∈ {1, . . . , n}. Any amount of data may be stored in
each node, as long as the total amount of storage used over
all nodes is at most the given budgetT , i.e.,

n∑

i=1

xi ≤ T.

This paper is an extended version of [1], which is available online
at http://dx.doi.org/10.1109/TIT.2012.2191135 . The material in this pa-
per was presented in part at the NetCod 2009 [2], ICC 2010 [3],and
GLOBECOM 2010 [4] conferences.
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Fig. 1. Information flows in a distributed storage system. The sources has
a single data object of normalized unit size that is to be coded and stored
overn storage nodes. Subsequently, a data collectort attempts to recover the
original data object by accessing only the data stored in a random subsetr
of the nodes.

This is a realistic constraint if there is limited transmission
bandwidth or storage space, or if it is too costly to mirror
the data object in its entirety in every node. At some time
after the creation of this coded storage, a data collector
attempts to recover the original data object by accessing only
the data stored in arandom subsetr of the nodes, where
the probability distribution ofr ⊆ {1, . . . , n} is specified by
an assumed access model or failure model (nodes or links
may fail probabilistically, for example). Fig. 1 depicts such a
distributed storage system.

The reliability of this system, which we define to be the
probability of successful recovery (or recovery probability in
short), depends on both the storage allocation and the coding
scheme. For maximum reliability, we would therefore need to
find

(i) an optimal allocation of the given budgetT over the
nodes, specified by the values ofx1, . . . , xn, and

(ii) an optimal coding scheme
that jointly maximize the probability of successful recovery. It
turns out that these two problems can be decoupled by using a
good coding scheme, specifically one that enables successful
recovery whenever the total amount of data accessed by
the data collector is at least the size of the original data
object. This can be seen by considering the information flows
for a network in which the source is multicasting the data
object to a set of potential data collectors [5], [6]: successful
recovery can be achieved by a data collector if and only if
its corresponding max-flow or min-cut from the source is
at least the size of the original data object. Random linear
coding over a sufficiently large field would allow successful
recovery with high probability when this condition is satisfied
[7], [8]. Alternatively, a suitable maximum distance separable
(MDS) code for the given budget and data object size would
allow successful recovery with certainty when this condition
is satisfied.

Therefore, assuming the use of an appropriate code,
the probability of successful recovery for an allocation
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(x1, . . . , xn) can be written as

P [successful recovery] = P

[
∑

i∈r

xi ≥ 1

]

.

Our goal is to find an optimal allocation that maximizes this
recovery probability, subject to the given budget constraint.

Although we have assumed coded storage at the outset,
coding may ultimately be unnecessary for certain allocations.
For example, if the budget is spread minimally such that
each nonempty node stores the data object in its entirety (i.e.,
xi ≥ 1 for all i ∈ S, and xi = 0 for all i /∈ S, whereS is
some subset of{1, . . . , n}), then uncoded replication would
suffice since the data object can be recovered by accessing
any onenonempty node; the data collector would not need to
combine data accessed from different nodes in order to recover
the data object. Thus, by solving for the optimal allocation,
we will also be able to determine whether coding is beneficial
for reliable storage.

We note that even though no explicit upper bound is im-
posed on the amount of data that can be stored in each node, it
is never necessary to setxi > 1 becausexi = 1 already allows
the data object to be stored in its entirety in that node. The
absence of a tighter per-node storage constraintxi ≤ ci < 1
is reasonable for storage systems that handle a large number
of data objects: we would expect the storage capacity of each
node to be much larger than the size of a single data object,
making it possible for a node to accommodate some of the
data objects in their entirety. As such, it would be appropriate
to apply a storage constraint for each data object via the budget
T , without a separatea priori constraint forxi. Furthermore,
the simplifying assumption ofxi being a continuous variable is
a reasonable one for large data objects: a large data object size
would facilitate the creation of coded data packets with sizes
(closely) matching that of a desired allocation. Incidentally,
the overhead associated with random linear coding or an MDS
code, which is ignored in our model, becomes proportionately
negligible when the amount of coded data is large.

In spite of the simple formulation, this optimization prob-
lem poses significant challenges because of its combinatorial
nature and the large space of feasible allocations. Different
variations of this problem can be formulated by assuming
different allocation models and access models; in this paper,
we will examine three such variations that are motivated by
practical storage problems in content delivery networks, delay
tolerant networks, and wireless sensor networks.

A. Independent Probabilistic Access to Each Node

In the first problem formulation, we assume that the data
collector accesses each of then nodes independently with
constant probabilityp; in other words, each nodei appears
in subsetr independently with probabilityp. The resulting
problem can be interpreted as that of maximizing the reliability
of data storage in a system comprisingn storage devices where
each device fails independently with probability1− p. It is
not hard to show that determining the recovery probability
of a givenallocation is computationally difficult (specifically,
#P-hard). The intuitive approach of spreading the budget

maximally over all nodes, i.e., settingxi =
T
n

for all i, turns
out to be not necessarily optimal; in fact, the optimal allocation
may not even be symmetric (we say that an allocation is
symmetricwhen all nonzeroxi are equal). The following coun-
terexample from [9] demonstrates that symmetric allocations
can be suboptimal: for(n, p, T ) =

(
5, 2

3 ,
7
3

)
, the nonsymmetric

allocation
(
2
3 ,

2
3 ,

1
3 ,

1
3 ,

1
3

)
,

which achieves a recovery probability of0.90535, performs
strictly better than any symmetric allocation; the maximum
recovery probability among symmetric allocations is0.88889,
which is achieved by both

(
7
6 ,

7
6 , 0, 0, 0

)
and

(
7
12 ,

7
12 ,

7
12 ,

7
12 , 0

)
.

Evidently, the simple strategy of “spreading eggs evenly over
more baskets” may not always improve the reliability of an
allocation.

Our Contribution: We show that the intuitive symmetric
allocation that spreads the budget maximally over all nodes
is indeed asymptotically optimal in a regime of interest.
Specifically, we derive an upper bound for the suboptimality
of this allocation, and show that the performance gap vanishes
asymptotically as the total number of storage nodesn grows,
when p > 1

T
. This is a regime of interest because a high

recovery probability is possible whenp > 1
T
⇐⇒ pT > 1: The

expected total amount of data accessed by the data collector
is given by

E

[
n∑

i=1

xiYi

]

=

n∑

i=1

xiE [Yi] = p

n∑

i=1

xi ≤ pT, (1)

where Yi’s are independent Bernoulli(p) random variables.
Therefore, the data collector would be able to access a
sufficient amount of datain expectationfor successful recovery
if pT > 1.

We also show that the symmetric allocation that spreads the
budget minimally is optimal whenp is sufficiently small. In
such an allocation, the data object is stored in its entiretyin
each nonempty node, making coding unnecessary. Addition-
ally, we explicitly find the optimalsymmetricallocation for a
wide range of parameter values ofp andT .

Related Work: This problem was introduced to us through
a discussion at UC Berkeley [9]. We have since learned that
variations of the problem have also been studied in several
different fields.

In reliability engineering, the weighted-k-out-of-n system
[10] comprisesn components, each having a positive integer
weight wi and surviving independently with probabilitypi;
the system is in a good state if and only if the total weight
of its surviving components is at least a specified thresholdk.
Related work on this system and its extensions has focused on
the efficient computation of the reliability of a given weight
allocation (see, e.g., [11]).

In peer-to-peer networking, the allocation problem deals
with the recovery of a data object from peers that are available
only probabilistically. Lin et al. [12] compared the perfor-
mance of uncoded replication vs. coded storage, restrictedto
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symmetric allocations, for the case where the budget is an
integer.

In wireless communications, the allocation problem is stud-
ied in the context of multipath routing, in which coded data
is transmitted along different paths in an unreliable network,
exploiting path diversity to improve the reliability of end-to-
end communications. Tsirigos and Haas [13], [14] examined
the performance of symmetric allocations and noted the exis-
tence of a phase transition in the optimal symmetric allocation;
approximation methods were also proposed by the authors
to tackle the optimization problem, especially for the case
where path failures occur with nonuniform probabilities and
may be correlated. Jainet al. [15] evaluated the performance
of symmetric allocations experimentally in a delay tolerant
network setting, and presented an alternative formulationusing
Gaussian distributions to model partial access to nodes.

Our work generalizes these previous efforts by considering
nonsymmetric allocations and noninteger budgets. We also
correct some inaccurate claims about the optimal symmetric
allocation in [15] and its associated technical report.

B. Access to a Random Fixed-Size Subset of Nodes

In the second problem formulation, we assume that the
data collector accesses anr-subset of then nodes selected
uniformly at random from the collection of all

(
n
r

)
possible

r-subsets, wherer is a given constant. The resulting problem
can be interpreted as that of maximizing the recovery prob-
ability in a networked storage system ofn nodes where the
end user is able or allowed to contact up tor nodes randomly.
We can treat this access model as an approximation to the
preceding independent probabilistic access model by picking
r ≈ np. Finding the optimal allocation in this case is still
challenging. As in the first problem formulation, it is not
hard to show that determining the recovery probability of a
given allocation is computationally difficult (specifically, #P-
complete).

The problem appears nontrivial even if we restrict the
optimization to onlysymmetricallocations. Numerically, we
observe that givenn and r, either a minimal or a maximal
spreading of the budget is optimal among symmetric alloca-
tions for most, if not all, choices ofT . One example of an
exception is(n, r, T ) =

(
14, 5, 83

)
for which it is optimal to

have8 nonempty nodes in the symmetric allocation, instead of
the extremes2 or 13; another example is(n, r, T ) =

(
16, 4, 72

)

for which it is optimal to have7 nonempty nodes in the
symmetric allocation, instead of the extremes3 or 14. Further-
more, the number of nonempty nodes in the optimal symmetric
allocation is not necessarily a nondecreasing function of the
budgetT ; for instance, given(n, r) = (20, 4), it is optimal
to have(4, 18, 14, 19, 20) nonempty nodes in the symmetric
allocation forT = (4.25, 4.5, 4.67, 4.75, 5), respectively.

Our Contribution: We show that the allocation
(
1
r
, . . . , 1

r

)

is optimal in thehigh recovery probability regime. Specifically,
we demonstrate that this allocation, which has a recovery
probability of exactly1, minimizes the budgetT necessary
for achieving any recovery probability exceeding a specified
threshold1− ǫ. Althoughǫ depends onn andr in a compli-

cated way, we can conclude that for anyr, this allocation is
optimal if the recovery probability is to exceed1− 1

n
.

We also make the following conjecture about the optimal
allocation, based on our numerical observations:

Conjecture. A symmetricoptimal allocation always exists for
anyn, r, andT .

Related Work: Sardari et al. [16] presented a method
of approximating an optimal solution to this problem by
considering a data collector that accessesr random nodes
with replacement. More recently, Alonet al. [17] showed that
this problem is related to an old conjecture by Erdős on the
maximum number of edges in a uniform hypergraph [18].

C. Probabilistic Symmetric Allocations

In the third problem formulation, we assume aprobabilistic
allocation model in which the source selects a random allo-
cation from a distribution of allocations, with the constraint
that theexpectedtotal amount of storage used in an allocation
is at most the given budgetT . We specifically consider the
case where each of then nodes is selected by the source
independently with constant probabilitymin

(
ℓT
n
, 1
)

to store
a constant 1

ℓ
amount of data, thus creating a probabilis-

tic symmetricallocation of the budget. The data collector
subsequently accesses anr-subset of then nodes selected
uniformly at random from the collection of all

(
n
r

)
possible

r-subsets, wherer is a given constant. The goal is to find an
optimal allocation, specified by the value of parameterℓ, that
maximizes the recovery probability. This model was conceived
as a simplification of the preceding fixed-size subset access
model which assumes a deterministic allocation of the budget.

Our Contribution: We show that the choice ofℓ = r, which
corresponds to a maximal spreading of the budget, is optimal
when the given budgetT is sufficiently large, or equivalently,
when a sufficiently high recovery probability (specifically, 3

4 or
higher) is achievable. We believe this is a reasonable operating
regime for applications that require good reliability.

D. Other Related Work

Apart from the work done on the preceding problems, a va-
riety of storage allocation problems have also been studiedin a
nonprobabilisticsetting. For instance, the objective adopted in
[19] and [20] is to minimize the total storage budget required
to satisfy a given set of deterministic recovery requirements
in a network. Incidentally, the use of network coding makes
it easier to deal with the total cost of content delivery, which
covers the initial dissemination, storage, and eventual fetching
of data objects; this cost-minimization problem is considered
in [6] and [21], subject to various deterministic constraints
involving, for example, load balancing or fetching distance.

We note that in most of the literature involving reliable
distributed storage, either the data object is assumed to be
replicated in its entirety (see, e.g., [22]), or, if coding is used,
every node is assumed to store the same amount of coded
data (see, e.g., [23]–[27]). Allocations of a storage budget
with nodes possibly storing different amounts of data are not
usually considered.
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TABLE I
NOTATION

Symbol Definition

n total number of storage nodes,n ≥ 2

xi amount of data stored in storage nodei,
xi ≥ 0, wherei ∈ {1, . . . , n}

T total storage budget,1 ≤ T ≤ n

r subset of nodes accessed,r ⊆ {1, . . . , n}

p access probability (Section II),0 < p < 1

r number of nodes accessed (Section III),1 ≤ r ≤ n
1
ℓ

amount of data stored in each nonempty node
(Section IV),ℓ > 0

B (n, p) binomial random variable withn trials and
success probabilityp

1 [G] indicator function;1 [G] = 1 if statementG is true,
and0 otherwise

Z
+
0 the set of nonnegative integers, i.e.,Z

+ ∪ {0}

In the following three sections, we define each problem
formally and state our main results. Proofs of theorems are
deferred to the appendix. Table I summarizes the notation used
throughout this paper.

II. I NDEPENDENTPROBABILISTIC ACCESS TOEACH NODE

In the first variation of the storage allocation problem, we
consider a data collector that accesses each of then nodes
independently with probabilityp; successful recovery occurs
if and only if the total amount of data stored in the accessed
nodes is at least1. We seek an optimal allocation(x1, . . . , xn)
of the budgetT that maximizes the probability of successful
recovery, for a given choice ofn, p, andT . This optimization
problem can be expressed as follows:

Π1(n, p, T ) :

maximize
x1,...,xn

∑

r⊆{1,...,n}

p|r|(1− p)n−|r| · 1
[
∑

i∈r

xi ≥ 1

]

(2)

subject to
n∑

i=1

xi ≤ T (3)

xi ≥ 0 ∀ i ∈ {1, . . . , n}. (4)

The objective function (2) is just the recovery probability,
expressed as the sum of the probabilities corresponding to
the subsetsr that allow successful recovery. An equivalent
expression for (2) is

P

[
n∑

i=1

xi Yi ≥ 1

]

,

whereYi’s are independent Bernoulli(p) random variables. In-
equality (3) expresses the budget constraint, and inequality (4)
ensures that a nonnegative amount of data is stored in each
node. For the trivial budgetT = 1, the allocation(1, 0, . . . , 0)
is optimal; for T = n, the allocation(1, . . . , 1) is optimal.

TABLE II
OPTIMAL ALLOCATIONS FORNUMBER OF NODESn = 2, 3, 4

n BudgetT
Optimal
allocation

Condition on access probabilityp
(if any)

2 1 ≤ T < 2 (1, 0)

3

1 ≤ T < 3
2

(1, 0, 0)

3
2
≤ T < 2

(1, 0, 0) if p ≤ 1
2

(

1
2
, 1
2
, 1
2

)

if p ≥ 1
2

2 ≤ T < 3 (1, 1, 0)

4

1 ≤ T < 4
3

(1, 0, 0, 0)

4
3
≤ T < 3

2

(1, 0, 0, 0) if p ≤ 1+
√

13
6

≈ 0.768
(

1
3
, 1
3
, 1
3
, 1
3

)

if p ≥ 1+
√

13
6

≈ 0.768

3
2
≤ T < 2

(1, 0, 0, 0) if p ≤ 1
2

(

1
2
, 1
2
, 1
2
, 0
)

if p ≥ 1
2

2 ≤ T < 5
2

(1, 1, 0, 0) if p ≤ 2
3

(

1
2
, 1
2
, 1
2
, 1
2

)

if p ≥ 2
3

5
2
≤ T < 3

(1, 1, 0, 0) if p ≤ 1
2

(

1, 1
2
, 1
2
, 1
2

)

if p ≥ 1
2

3 ≤ T < 4 (1, 1, 1, 0)

Incidentally, computing the recovery probability of agiven
allocation turns out to be #P-hard:

Proposition 1. Computing the recovery probability

∑

r⊆{1,...,n}

p|r|(1 − p)n−|r| · 1
[
∑

i∈r

xi ≥ 1

]

for a given allocation(x1, . . . , xn) and choice ofp is #P-hard.

Table II lists the optimal allocations forn = 2, 3, 4, cov-
ering all parameter values ofp ∈ (0, 1) andT ∈ [1, n). These
solutions are obtained by minimizingT for each possible value
of the objective function (2). We observe that

(i) for any T , the symmetric allocation(1, . . . , 1, 0, . . . , 0),
which corresponds to a minimal spreading of the budget
(uncoded replication), appears to be optimal whenp is
sufficiently small, and

(ii) the optimal symmetricallocation appears to perform
well despite being suboptimal in some cases, e.g., when
(n, T ) =

(
4, 52
)

andp > 1
2 .

We will proceed to show that observation (i) is indeed true in
Section II-B; the opposite approach of spreading the budget
maximally over all nodes turns out to beasymptotically
optimal whenp is sufficiently large, as will be demonstrated
in Section II-A. Motivated by observation (ii), we examine
the optimization problem restricted to symmetric allocations
in Section II-C.

For brevity, letx̄(n, T,m) denote thesymmetricallocation
for n nodes that uses a total storage ofT and contains exactly
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m ∈ {1, 2, . . . , n} nonempty nodes:

x̄(n, T,m) ,

(
T

m
, . . . ,

T

m
︸ ︷︷ ︸

m entries

, 0, . . . , 0
︸ ︷︷ ︸

(n−m) entries

)

.

Since successful recovery for the symmetric allocation
x̄(n, T,m) occurs if and only if at least

⌈
1
/ (

T
m

)⌉
=
⌈
m
T

⌉

out of them nonempty nodes are accessed, the corresponding
probability of successful recovery can be written as

PS(p, T,m) , P

[

B (m, p) ≥
⌈m

T

⌉]

.

A. Asymptotic Optimality of Maximal Spreading

The recovery probability of the symmetric allocation
x̄ (n, T,m=n), which corresponds to a maximal spreading of
the budget over all nodes, is given by

PS(p, T,m=n) = P

[

B (n, p) ≥
⌈ n

T

⌉]

. (5)

To establish the optimality of this allocation, we compare (5)
to an upper bound for the recovery probability of an optimal
allocation. Such a bound can be derived by conditioning on
the number of accessed nodes:

Lemma 1. The probability of successful recovery for an
optimal allocation is at most

n∑

r=0

min

(
rT

n
, 1

)

P [B (n, p) = r]. (6)

The suboptimality of̄x (n, T,m=n) is therefore bounded by
the difference between (5) and (6), as given by the following
theorem; whenp > 1

T
, this allocation becomes asymptotically

optimal since its suboptimality gap vanishes asn goes to
infinity:

Theorem 1. The gap between the probabilities of successful
recovery for an optimal allocation and for the symmetric
allocation x̄ (n, T,m=n), which corresponds to a maximal
spreading of the budget over all nodes, is at most

p T P

[

B (n− 1, p) ≤
⌈ n

T

⌉

− 2
]

.

If p andT are fixed such thatp > 1
T

, then this gap approaches
zero asn goes to infinity.

We note that the regimep > 1
T

is particularly interesting
because it corresponds to the regime of high recovery probabil-
ity; the recovery probability would be bounded away from1 if
p < 1

T
⇐⇒ pT < 1 instead. This follows from the application

of Markov’s inequality to the random variableW denoting
the total amount of data accessed by the data collector, which
produces

P [W ≥ 1] ≤ E [W ].

SinceP [W ≥ 1] is just the probability of successful recovery,
andE [W ] ≤ pT according to (1), we have

P [successful recovery] ≤ pT.

Fig. 2. Plot of access probabilityp against budgetT , showing regions
of (T, p) over which the sufficient conditions of the theorems are satisfied,
for n = 20. Minimal spreading (uncoded replication) is optimal amongall
allocations in the colored regions.

B. Optimality of Minimal Spreading (Uncoded Replication)

The recovery probability of the symmetric allocation
x̄ (n, T,m=⌊T ⌋), which corresponds to a minimal spreading
of the budget, is given by

PS (p, T,m=⌊T ⌋) = P [B (⌊T ⌋, p)≥1] = 1− (1−p)⌊T⌋. (7)

Recall that coding is unnecessary in such an allocation since
the data object is stored in its entirety in each nonempty node.
A sufficient condition for the optimality of this allocation
can be found by comparing (7) to an upper bound for the
recovery probabilities of all other allocations. Our approach
is to classify each allocation according to the number of
individual nodes that store at least a unit amount of data. We
then find a bound for allocations containing exactly0 such
nodes, another bound for allocations containing exactly1 such
node, and so on. The subsequent comparisons of (7) to each
of these bounds result in the following theorem:

Theorem 2. If 1 < T < n and

1− (1− p)⌊T⌋−n + (n− ℓ)

(
p

1− p

)

+

⌈ n−ℓ
T−ℓ⌉−1
∑

r=2

(

1− T − ℓ

n− ℓ
· r
)(

n− ℓ

r

)(
p

1− p

)r

≥ 0 (8)

for all ℓ ∈ {0, 1, . . . , ⌊T ⌋ − 1}, then x̄ (n, T,m=⌊T ⌋), which
corresponds to a minimal spreading of the budget (uncoded
replication), is an optimal allocation.

The following corollary shows that this allocation is indeed
optimal for sufficiently smallp:

Corollary 1. If 1 < T < n and p ≤ 2
(n−⌊T⌋)2

, then
x̄ (n, T,m=⌊T ⌋) is an optimal allocation.

Fig. 2 illustrates these results in the form of a region plot
for an instance ofn.
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Fig. 3. Plot of recovery probabilityPS against budgetT for each symmetric
allocation x̄(n, T,m), for (n, p) =

(
20, 3

5

)
. Parameterm denotes the num-

ber of nonempty nodes in the symmetric allocation. The blackcurve gives an
upper bound for the recovery probability of an optimal allocation, as derived
in Lemma 1.

C. Optimal Symmetric Allocation

The optimization problem appears nontrivial even if we
were to consider onlysymmetricallocations. Fig. 3, which
compares the performance of different symmetric allocations
over different budgets for an instance of(n, p), demonstrates
that the value ofm corresponding to the optimal symmetric
allocation can change drastically as the budgetT varies.

Fortunately, we can eliminate many candidates for the
optimal value ofm by making the following observation:
Recall that the recovery probability of the symmetric allocation
x̄(n, T,m) is given byPS(p, T,m) , P

[
B (m, p) ≥

⌈
m
T

⌉]
.

For fixedn, p, andT , we have
⌈m

T

⌉

= k whenm ∈
(
(k − 1)T, kT

]
,

for k = 1, 2, . . . ,
⌊
n
T

⌋
, and finally,

⌈m

T

⌉

=
⌊ n

T

⌋

+ 1 whenm ∈
(⌊ n

T

⌋

T, n
]

.

SinceP [B (m, p) ≥ k] is nondecreasing inm for constantp
andk, it follows thatPS(p, T,m) is maximized within each of
these intervals ofm when we pickm to be the largest integer
in the corresponding interval. Thus, givenn, p, andT , we can
find an optimalm∗ that maximizesPS(p, T,m) over all m
from among

⌈
n
T

⌉
candidates:

{

⌊T ⌋, ⌊2T ⌋, . . . ,
⌊⌊ n

T

⌋

T
⌋

, n
}

. (9)

For m = ⌊kT ⌋, wherek ∈ Z
+, the corresponding probability

of successful recovery is given by

PS (p, T,m=⌊kT ⌋) = P [B (⌊kT ⌋, p) ≥ k].

The difference between the probabilities of successful recovery
for consecutive values ofk ∈ Z

+ can be written as

∆(p, T, k) , PS (p, T,m=⌊(k + 1)T ⌋)− PS (p, T,m=⌊kT ⌋)
= P [B (⌊(k + 1)T ⌋, p) ≥ k + 1]− P [B (⌊kT ⌋, p) ≥ k]

=

min(αk,T−1,k)
∑

i=1

P [B (⌊kT ⌋, p) = k − i] · P [B (αk,T , p) ≥ i+ 1]

− P [B (⌊kT ⌋, p) = k] · P [B (αk,T , p) = 0],

whereαk,T , ⌊(k + 1)T ⌋ − ⌊kT ⌋. The above expression is
obtained by comparing the branches of the probability tree
for ⌊kT⌋ vs. ⌊(k + 1)T⌋ independent Bernoulli(p) trials: the
first term describes unsuccessful events (“B (⌊kT ⌋, p) < k”)
becoming successful (“B (⌊(k + 1)T⌋, p) ≥ k + 1”) after the
additionalαk,T trials, while the second term describes suc-
cessful events (“B (⌊kT⌋, p) ≥ k”) becoming unsuccessful
(“B (⌊(k + 1)T ⌋, p) < k + 1”) after the additionalαk,T trials.
After further simplification, we arrive at

∆(p, T, k) = pk(1− p)⌊(k+1)T ⌋−k·










min
(

αk,T −1,k
)

∑

i=1

αk,T
∑

j=i+1

(

⌊kT ⌋

k − i

)(

αk,T

j

)(

p

1 − p

)−i+j

−

(

⌊kT ⌋

k

)











.

(10)

The following theorem essentially provides a sufficient
condition on p and T for ∆(p, T, k) ≥ 0 for any k ∈ Z

+,
thereby eliminating all but the two largest candidate values for
m∗ in (9), i.e.,m =

⌊⌊
n
T

⌋
T
⌋

andm = n, which correspond
to a maximal spreading of the budget over (almost) all nodes
(they are identical whenn

T
∈ Z

+, i.e., T = n, n
2 ,

n
3 , . . .):

Theorem 3. If

(1 − p)⌊T⌋ + 2⌊T ⌋p(1− p)⌊T⌋−1 − 1 ≤ 0, (11)

then either x̄
(
n, T,m=

⌊⌊
n
T

⌋
T
⌋)

or x̄ (n, T,m=n), which
correspond to a maximal spreading of the budget, is an optimal
symmetric allocation.

The following corollary restates Theorem 3 in a slightly
weaker but more convenient form:

Corollary 2. If p ≥ 4
3⌊T⌋ , then eitherx̄

(
n, T,m=

⌊⌊
n
T

⌋
T
⌋)

or x̄ (n, T,m=n) is an optimal symmetric allocation.

The following lemma mirrors Theorem 3 by providing a
sufficient condition onp and T for ∆(p, T, k) ≤ 0 for any
k ∈ Z

+, thereby eliminating all but the smallest candidate
value for m∗ in (9), i.e., m = ⌊T ⌋, which corresponds to a
minimal spreading of the budget (uncoded replication):

Lemma 2. If T > 1, and either

T =
1

p
∈ Z

+ (12)

or

T <
1

p
and p (1− p)

⌈T⌉−1 ≤ 1

T

(

1− 1

T

)⌈T⌉−1

, (13)

then x̄ (n, T,m=⌊T ⌋) is an optimal symmetric allocation.

The following lemma restates Lemma 2 in a slightly weaker
but more convenient form:

Lemma 3. If p ≤ 2
⌈T⌉ − 1

T
, then x̄ (n, T,m=⌊T ⌋) is an

optimal symmetric allocation.
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Fig. 4. Plot of access probabilityp against budgetT , showing regions of
(T, p) over which the sufficient conditions of the theorems are satisfied. The
black dashed curve marks the points satisfyingp = 1

T
. Maximal spreading is

optimal among symmetric allocations in the colored regionsabove the curve,
while minimal spreading (uncoded replication) is optimal among symmetric
allocations in the colored regions below the curve.

The following theorem expands the region covered by
Lemma 3 by showing that̄x (n, T,m=⌊T ⌋) remains optimal
between the “peaks” in Fig. 4:

Theorem 4. If p ≤ 1
⌈T⌉ , then x̄ (n, T,m=⌊T ⌋), which cor-

responds to a minimal spreading of the budget (uncoded
replication), is an optimal symmetric allocation.

Fig. 4 illustrates these results in the form of a region plot.
The theorems cover all choices ofp and T except for the
gap aroundp = 1

T
, which diminishes with increasingT . Both

minimal and maximal spreading of the budget may be subopti-
mal among symmetric allocations in this gap on either side of
the curvep = 1

T
: for example, when(n, p, T ) =

(
10, 9

25 ,
5
2

)
,

for which p < 1
T

, the optimal symmetric allocation is
x̄ (n, T,m=⌊2T⌋); when (n, p, T ) =

(
10, 35 ,

12
5

)
, for which

p > 1
T

, the optimal symmetric allocation is̄x (n, T,m=⌊3T⌋).
In general, for any budgetT ≥ 2, the optimal symmetric
allocation changes from minimal spreading to maximal spread-
ing eventually, as the access probabilityp increases. This
transition, which is not necessarily sharp, appears to occur at
aroundp = 1

T
. Interestingly, whenp = 1

T
exactly, we observe

numerically thatx̄ (n, T,m=⌊T ⌋) is the optimal symmetric
allocation formostvalues ofT ; the optimal symmetric allo-
cation changes continually over the intervals

1.5 ≤ T < 2 and 2.5 ≤ T ≤ 2.8911,

while x̄ (n, T,m=⌊2T⌋) is optimal for 3.5 ≤ T ≤ 3.5694.
These findings suggest that it may be difficult to specify an
optimal symmetric allocation for values ofp andT in the gap;
we can, however, restrict our search for an optimal symmetric
allocation to the

⌈
n
T

⌉
candidates given by (9).

III. A CCESS TO ARANDOM FIXED-SIZE SUBSET OFNODES

In the second variation of the storage allocation problem,
we consider a data collector that accesses anr-subset of then
nodes selected uniformly at random from the collection of all

(
n
r

)
possibler-subsets, wherer is a given constant; successful

recovery occurs if and only if the total amount of data storedin
the accessed nodes is at least1. We seek an optimal allocation
(x1, . . . , xn) of the budgetT that maximizes the probability
of successful recovery, for a given choice ofn, r, andT . This
optimization problem can be expressed as follows:

Π2(n, r, T ) :

maximize
x1,...,xn,PS

PS (14)

subject to

∑

r⊆{1,...,n}:
|r|=r

1
(
n
r

) · 1
[
∑

i∈r

xi ≥ 1

]

≥ PS (15)

n∑

i=1

xi ≤ T (16)

xi ≥ 0 ∀ i ∈ {1, . . . , n}. (17)

The left-hand side of inequality (15) is just the recovery
probability, expressed as the sum of the probabilities corre-
sponding to ther-subsetsr that allow successful recovery.
The objective function (14) is therefore equal to the recovery
probability sincePS is maximized when (15) holds with
equality. Inequality (16) expresses the budget constraint, and
inequality (17) ensures that a nonnegative amount of data is
stored in each node. For the trivial budgetT = 1, the allocation
(1, 0, . . . , 0) is optimal; forT ≥ n

r
, the allocation

(
1
r
, . . . , 1

r

)
,

which has the maximal recovery probability of1, is optimal.
Incidentally, computing the recovery probability of agiven
allocation turns out to be #P-complete:

Proposition 2. Computing the recovery probability

∑

r⊆{1,...,n}:
|r|=r

1
(
n
r

) · 1
[
∑

i∈r

xi ≥ 1

]

for a given allocation(x1, . . . , xn) and choice ofr is #P-
complete.

An alternate way of formulating this problem is to minimize
the budgetT required to achieve a desired recovery probability
PS:

Π
′
2(n, r, PS) :

minimize
x1,...,xn,T

T

subject to the three constraints (15)–(17) ofΠ2(n, r, T ).

Fig. 5 shows how the optimal recovery probabilitymaxPS

varies with the budgetT , for two instances of(n, r). These
plots are obtained by solvingΠ′

2(n, r, PS) for each possible
value ofPS. We observe that when the budgetT drops below
n
r

, the optimal recovery probabilitymaxPS is reduced by
a significant margin below1. In other words, if the desired
recovery probabilityPS in Π

′
2(n, r, PS) is sufficiently high,

then the optimal allocation is
(
1
r
, . . . , 1

r

)
, which requires a

budget ofT = n
r

. In Section III-A, we examine the optimality
of this allocation for the high recovery probability regime.
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(a) (n, r) = (6, 2)

(b) (n, r) = (5, 3)

Fig. 5. Plot of the optimal recovery probabilitymaxPS against budgetT ,
for (a) (n, r) = (6, 2) and (b)(n, r) = (5, 3). The optimal allocation corre-
sponding to each value ofmaxPS is given on the right-hand side of the plot.
In (a), the red dashed line marks the threshold onPS derived in Theorem 5; the
allocation

(
1
r
, . . . , 1

r

)
is optimal forΠ′

2(n, r, PS) if and only if the desired
recovery probabilityPS exceeds this threshold. In (b), the red dashed line
marks the threshold onPS derived in Theorem 6; the allocation

(
1
r
, . . . , 1

r

)

is optimal forΠ′
2(n, r, PS) if PS exceeds this threshold.

A. Regime of High Recovery Probability

Consider the optimization problemΠ′
2(n, r, PS). We will

demonstrate that the allocation
(
1
r
, . . . , 1

r

)
is optimal when the

desired recovery probabilityPS exceeds a specified threshold
expressed in terms ofn and r. Our results follow from the
observation that successful recovery for certain combinations
of r-subsets of nodes can impose a lower bound on the
required budgetT . For example, given(n, r) = (4, 2), if
successful recovery is to occur for{1, 2} and{3, 4}, possibly
among otherr-subsets of nodes, then we have

∑

i∈{1,2}

xi ≥ 1 and
∑

i∈{3,4}

xi ≥ 1,

which would imply that the minimum budgetT must be at
least2, since

T ≥
4∑

i=1

xi =
∑

i∈{1,2}

xi +
∑

i∈{3,4}

xi ≥ 2.

This observation is generalized by the following lemma:

Lemma 4. Consider a setS ⊆ {1, . . . , n}, and c subsets of
S given byrj ⊆ S, j = 1, . . . , c. If

∑

i∈rj

xi ≥ 1 ∀ j ∈ {1, . . . , c}, (18)

and each element inS appears exactlyb > 0 times among the

c subsets, i.e.,
c∑

j=1

1 [i ∈ rj ] = b ∀ i ∈ S, (19)

then ∑

i∈S

xi ≥
c

b
.

We begin with the special case of probability-1 recovery,
i.e.,PS = 1. The resulting optimization problem is just a linear
program with all

(
n
r

)
possibler-subset constraints.

Lemma 5. If PS = 1, then
(
1
r
, . . . , 1

r

)
is an optimal allocation.

When the desired recovery probabilityPS is less than1, we
can afford to dropsome of the r-subset constraints from
this linear program (recall that the recovery probability of
an allocation is just the fraction of these

(
n
r

)
constraints

that are satisfied). Our task is to determine how many such
constraints can be dropped before the lower bound forT
obtained with the help of Lemma 4 falls belown

r
, in which

case the allocation
(
1
r
, . . . , 1

r

)
may no longer be optimal. We

do this by constructing collections ofr-subset constraints that
yield the required lower bound ofn

r
for T , and counting

how manyr-subset constraints need to be removed from the
linear program before no such collection remains. Our answer
depends on the divisibility ofn by r.

Whenn is a multiple ofr, we are able to state a necessary
and sufficient condition onPS for the allocation to be optimal:

Theorem 5. If n is a multiple ofr, then
(
1
r
, . . . , 1

r

)
is an

optimal allocation if and only if

PS > 1− r

n
.

Whenn is not a multiple ofr, we are only able to state a
sufficient condition onPS for the allocation to be optimal:

Theorem 6. If n is not a multiple ofr, then
(
1
r
, . . . , 1

r

)
is an

optimal allocation if

PS > 1− gcd(r, r′)

α gcd(r, r′) + r′
,

whereα and r′ are uniquely defined integers satisfying

n = α r + r′, α ∈ Z
+
0 , r′ ∈ {r + 1, . . . , 2r − 1}.

However, if n is a multiple of (n− r), then this sufficient
condition becomes necessary too:

Corollary 3. If n is a multiple of(n− r), then
(
1
r
, . . . , 1

r

)
is

an optimal allocation if and only if

PS >
r

n
.

Note that Corollary 3 allows us to solveΠ2(n, r, T ) com-
pletely whenn is a multiple of(n− r): for any T ∈

[
1, n

r

)
,

the allocation(1, 0, . . . , 0) is optimal since it has a recovery

probability of (n−1
r−1 )
(n

r )
= r

n
, i.e., exactly the threshold in

Corollary 3; higher recovery probabilities are not achievable
unlessT ≥ n

r
.

Fig. 6 illustrates these results for an instance ofn.
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Fig. 6. Plot of the desired recovery probabilityPS against the number
of nodes accessedr, showing intervals ofPS over which the allocation(
1
r
, . . . , 1

r

)
is optimal forΠ′

2(n, r, PS), for n = 40. A dotted circle marker
denotes an endpoint that may not be tight, i.e., we have not demonstrated that
the allocation is suboptimal everywhere outside the interval.

By combining the proof techniques of Lemma 1 and
Theorems 2, 5, and 6, we can derive the improved upper
boundPUB

S , given by (20) at the bottom of the page, for the
recovery probability of an optimal allocation in the indepen-
dent probabilistic access model of Section II (cf. Lemma 1).
Variablesα andr′ are uniquely defined integers satisfying

n− ℓ = α r + r′, α ∈ Z
+
0 , r′ ∈ {r, . . . , 2r − 1}.

Parameterℓ denotes the number of individual nodes that
store at least a unit amount of data. At leastℓ amount of
data is stored in thesecompletenodes, leaving the remaining
budget of at mostT − ℓ to be allocated over the remaining
n− ℓ incompletenodes. Term (i) gives the probability of
successful recovery from accessing at least one complete node,
while term (ii) gives an upper bound on the probability of
successful recovery from accessing exactlyr ∈ {2, . . . , n− ℓ}
incomplete nodes.

IV. PROBABILISTIC SYMMETRIC ALLOCATIONS

In the third variation of the storage allocation problem, we
consider the case where each of then nodes is selected by the
source independently with probabilitymin

(
ℓT
n
, 1
)

to store 1
ℓ

amount of data, so that the expected total amount of storage
used in the resultingsymmetricallocation is at mostn · ℓT

n
· 1
ℓ

= T , the given budget. The data collector subsequently
accesses anr-subset of then nodes selected uniformly at
random from the collection of all

(
n
r

)
possible r-subsets,

where r is a given constant; successful recovery occurs if

and only if the total amount of data stored in the accessed
nodes is at least1. We seek an optimal probabilistic symmetric
allocation of the budgetT , specified by the value of parameter
ℓ, that maximizes the probability of successful recovery, for
a given choice ofn, r, and T . Since successful recovery
for a particular choice ofℓ occurs if and only if at least
⌈
1
/ (

1
ℓ

)⌉
= ⌈ℓ⌉ out of the r accessed nodes are nonempty,

the corresponding probability of successful recovery can be
written as

PS(n, r, T, ℓ) , P

[

B
(

r,min
(
ℓT
n
, 1
))

≥
⌈
ℓ
⌉]

.

This optimization problem can therefore be expressed as
follows:

Π3(n, r, T ) :

maximize
ℓ

P

[

B
(

r,min
(
ℓT
n
, 1
))

≥
⌈
ℓ
⌉]

subject to ℓ > 0.

For budgetT ≥ n
r

, the choice of ℓ = r, which yields a
recovery probability ofP [B (r, 1) ≥ r] = 1, is optimal.

Observe that the recovery probabilityPS(n, r, T, ℓ) is zero
whenℓ > r. Furthermore, for fixedn, r, andT , the recovery
probability is nondecreasing inℓ within each of the unit
intervals(0, 1], (1, 2], (2, 3], . . ., since asℓ increases within
each interval,⌈ℓ⌉ remains constant whilemin

(
ℓT
n
, 1
)

either
increases or remains constant at1. Thus, givenn, r, andT ,
we can find an optimalℓ∗ from amongr candidates:

{
1, 2, . . . , r

}
. (21)

Fig. 7, which compares the performance of different prob-
abilistic symmetric allocations over different budgets for an
instance ofr, suggests that there are two distinct phases
pertaining to the optimal choice ofℓ: when the budget is below
a certain threshold, the choice ofℓ = 1, which corresponds to
a minimal spreading of the budget (uncoded replication), is
optimal; when the budget exceeds that same threshold, the
choice of ℓ = r, which corresponds to a maximal spreading
of the budget, becomes optimal. This observation echoes our
findings on the allocation and access models of the preceding
sections, namely that minimal spreading (ℓ = 1) is optimal for
sufficiently small budgets, while maximal spreading (ℓ = r) is
optimal for sufficiently large budgets. However, we note two
important distinctions in contrast to the previous models.First,
the recovery probability for a probabilistic symmetric alloca-
tion in this model is acontinuousnondecreasing function of
the given budget; there are no “jumps” from one discrete value
to the next. Second, our empirical computations suggest that

PUB
S , max

ℓ∈{0,1,...,⌊T⌋}

(i)
︷ ︸︸ ︷

1− (1 − p)ℓ +

(ii)
︷ ︸︸ ︷

1 [ℓ < ⌊T ⌋] · (1 − p)ℓ·
n−ℓ∑

r=2

min

(

r(T − ℓ)

n− ℓ
︸ ︷︷ ︸

cf. Lemma 1

, 1− 1

[

T − ℓ <
n− ℓ

r

]

· gcd(r, r′)

α gcd(r, r′) + r′
︸ ︷︷ ︸

cf. Theorems 5 and 6

)

· P [B (n− ℓ, p) = r].

(20)
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Fig. 7. Plot of recovery probabilityPS against budget-per-nodeT
n

for
each choice of parameterℓ ∈ {1, 2, . . . , r}, for r = 10. Parameterℓ controls
how much the budget is spread in the probabilistic symmetricallocation;
specifically, each of then nodes is selected by the source independently
with probability min

(
ℓT
n
, 1

)
to store 1

ℓ
amount of data. Arrows indicate

the direction of increasingℓ. The black dashed line marks the threshold on
T
n

derived in Theorem 7; maximal spreading (ℓ = r) is optimal for anyT
n

greater than or equal to this threshold.

the phase transition from the optimality of minimal spreading
to that of maximal spreading in this model issharp; the other
intermediate values ofℓ ∈ {2, . . . , r − 1} never perform better
than bothℓ = 1 andℓ = r simultaneously.

In Section IV-A, we shall demonstrate that the choice of
ℓ = r, which corresponds to a maximal spreading of the
budget, is indeed optimal when the given budgetT is suffi-
ciently large, or equivalently, when a sufficiently high recovery
probability is achievable.

A. Optimality of Maximal Spreading

Assume thatr ≥ 2. As noted earlier, the choice ofℓ = r,
which corresponds to a maximal spreading of the budget, is
optimal for anyT ≥ n

r
because it yields the maximal recovery

probability of 1. The following lemma provides an upper
bound for the recovery probabilities corresponding to theother
candidate values forℓ∗ in (21) at the critical budgetT = n

r
:

Lemma 6. The probability of successful recoveryPS(n, r, T, ℓ)
at T = n

r
is at most34 for any ℓ ∈ {1, 2, . . . , r − 1}.

Such an upper bound allows us to derive a sufficient condition
for the optimality ofℓ = r, by making use of the fact that the
recovery probabilityPS(n, r, T, ℓ) is a nondecreasing function
of the budgetT . The following theorem shows that the choice
of ℓ = r is optimal when the budgetT is at least a specified
threshold expressed in terms ofn andr:

Theorem 7. If

T ≥ n

r

(
3

4

) 1
r

,

then the choice ofℓ = r, which corresponds to a maximal
spreading of the budget, is optimal.

The following corollary states an equivalent result in terms
of the achievable recovery probability; it demonstrates the
optimality of ℓ = r in the high recovery probability regime:

Fig. 8. Plot of recovery probabilityPS against the number of nodes accessed
r, indicating the value ofPS at which the optimal choice of parameter
ℓ changes from1 to r, for each given value ofr. Specifically, if it is
possible to achieve a recovery probabilityPS above the square marker,
then maximal spreading (ℓ = r) is optimal; otherwise, minimal spreading or
uncoded replication (ℓ = 1) is optimal. Observe that the critical value ofPS
for r = 10 (which is approximately0.633652) corresponds to the intersection
point of the curves forℓ = 1 and ℓ = 10 in Fig. 7.

Corollary 4. If a probability of successful recovery of at least
3
4 is achievable for the givenn, r, andT , then the choice of
ℓ = r is optimal.

Fig. 8 describes the optimal choice ofℓ for different values
of r. We observe that the gap between the threshold of3

4
derived in Corollary 4 and the actual critical value ofPS

indicated in the plot appears to be no more than0.12.

V. CONCLUSION AND FUTURE WORK

We examined the problem of allocating a given total storage
budget in a distributed storage system for maximum reliability.
Three variations of the problem were studied in detail, and we
are able to specify the optimal allocation or optimal symmetric
allocation for a variety of cases. Although the exact optimal
allocation is difficult to find in general, our results suggest a
simple heuristic for achieving reliable storage:when the budget
is small, spread it minimally; when the budget is large, spread
it maximally.In other words, coding is unnecessary when the
budget is small, but is beneficial when the budget is large.

The work in this paper can be extended in several directions.
We can impose additional system design constraints on the
model; one practical example is the application of a tighter
per-node storage constraintxi ≤ ci < 1. The independent
probabilistic access model of Section II can be naturally
generalized to the case of nonuniform access probabilities
pi for individual nodes. It would also be interesting to find
reliable allocations for specific codes with desirable encoding
or decoding properties, e.g., sparse codes that offer efficient
algorithms (see, e.g., [24]–[27]). A related problem would
be to construct such codes that work well under different
allocations. Another set of interesting problems involvesthe
application of richer access models; for instance, we can
introduce a network topology to a set of storage nodes and
data collectors, and allow each data collector to access only
the nodes close to it. More generally, we can assign different
priorities to each node for data storage and access, so as to
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reflect the costs of storing data in the node and communicating
with it.

APPENDIX

PROOFS OFTHEOREMS

Proof of Proposition 1: We note that the computa-
tional complexity of this problem was well understood in
the Berkeley meetings [9] and is by no means a major
contribution in this paper. We present the detailed proofs here
for completeness.

Consider an allocation(x1, . . . , xn) where eachxi is a
nonnegative rational number. The problem of computing the
recovery probability of this allocation for the special case
of p = 1

2 , for which p|r|(1− p)n−|r| =
(
1
2

)n
for any subset

r ⊆ {1, . . . , n}, is equivalent to the counting version of the
following decision problem (which happens to be polynomial-
time solvable):

Definition. LARGESTSUBSET SUM (LSS)
Instance: Finite n-vector (a1, . . . , an) with ai ∈ Z

+
0 , and file

size d ∈ Z
+, where allai and d can be written as decimal

numbers of length at mostℓ.
Question: Is there a subsetr ⊆ {1, . . . , n} that satisfies
∑

i∈r
ai ≥ d?

Note that the allocation and file size have been scaled so
that the problem parameters are all integers. We will proceed
to show that the counting problem #LSS is #P-complete;
this would in turn establish the #P-hardness of computing the
recovery probability for an arbitrary value ofp.

The index setr can be represented as ann-vector of bits.
Using this representation ofr as the certificate, it is easy to
see that the binary relation corresponding to #LSS is both
polynomially balanced (since the size of each certificate is
n), and polynomial-time decidable (since the inequality can
be verified inO(nℓ) time for each certificate). It therefore
follows that #LSS is in #P.

To show that #LSS is also #P-hard, we describe a
polynomial-time Turing reduction of the #P-complete prob-
lem #3SAT [28] to #LSS. Our approach is similar to the
standard method of reducing 3SAT to SUBSET SUM (see,
e.g., [29]). Let φ be the Boolean formula in the given
#3SAT instance; denote itsm variables byv1, . . . , vm, and
k clauses byC1, . . . , Ck. To count the number of satisfying
truth assignments forφ, we construct a #LSS instance with
the help of Table III, whose entries are0, 1, 2, or 3 (all
blank entries are0’s). The entries of then-vector for the
#LSS instance are given by the first(2m+ 3k) rows of
the table; the file sized is given by the last row of the
table. Each entryai, i ∈ {1, . . . , 2m+ 3k}, as well asd,
is a positive integer with at most(m+ 2k) decimal digits.
Observe that the set of satisfying truth assignments forφ can
be put in a one-to-one correspondence with the collection
of subsetsr ⊆ {1, . . . , 2m+ 3k} that satisfy

∑

i∈r
ai = d;

for each i ∈ {1, . . . ,m}, we have “vi” ∈ r if and only if
vi = TRUE, and “vi” ∈ r if and only if vi = FALSE. There-
fore, if f

(
(a1, . . . , an), d

)
is a subroutine for computing

#LSS, then the number of satisfying truth assignments can

TABLE III
CONSTRUCTING A#LSSINSTANCE FOR A GIVEN#3SAT INSTANCE

v1 v2 · · · vm C1 C2 · · · Ck

v1 1 1 [v1∈C1] 0 1 [v1∈C2] 0 · · · 1 [v1∈Ck] 0

v1 1 1 [v1∈C1] 0 1 [v1∈C2] 0 · · · 1 [v1∈Ck] 0

v2 1 1 [v2∈C1] 0 1 [v2∈C2] 0 · · · 1 [v2∈Ck] 0

v2 1 1 [v2∈C1] 0 1 [v2∈C2] 0 · · · 1 [v2∈Ck] 0

.

.

.
. . .

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

vm 1 1 [vm∈C1] 0 1 [vm∈C2] 0 · · · 1 [vm∈Ck] 0

vm 1 1 [vm∈C1] 0 1 [vm∈C2] 0 · · · 1 [vm∈Ck] 0

C1

0 1

1 1

2 1

C2

0 1

1 1

2 1

.

.

.
. . .

Ck

0 1

1 1

2 1

d 1 1 · · · 1 3 1 3 1 · · · 3 1

be computed by callingf twice: first with d taking the value
as prescribed above, and second withd taking the prescribed
valueplus one. The difference between the outputs from the
two subroutine calls is equal to the number of distinct subsets
r that satisfy

∑

i∈r
ai = d, which is equal to the number of

satisfying truth assignments forφ. Finally, we note that this is
indeed a polynomial-time Turing reduction since the table can
be populated inO

(
m2k2

)
simple steps, and the subroutinef

is called exactly twice.
Proof of Lemma 1: Consider a feasible alloca-

tion (x1, . . . , xn); we have
∑n

i=1 xi ≤ T , where xi ≥ 0,
i = 1, . . . , n. Let Sr denote the number ofr-subsets of
{x1, . . . , xn} that have a sum of at least1, where
r ∈ {1, . . . , n}. By conditioning on the number of nodes
accessed by the data collector, the probability of successful
recovery for this allocation can be written as

P [successful recovery]

=

n∑

r=1

P [successful recovery| exactlyr nodes were accessed]·
P [exactlyr nodes were accessed]

=

n∑

r=1

Sr
(
n
r

) · P [B (n, p) = r]. (22)

We proceed to find an upper bound forSr. For a givenr, we
can writeSr inequalities of the form

x′
1 + · · ·+ x′

r ≥ 1.

Summing up theseSr inequalities produces an inequality of
the form

a1x1 + · · ·+ anxn ≥ Sr.

Since eachxi belongs to exactly
(

n−1
r−1

)

distinct r-subsets of

{x1, . . . , xn}, it follows that 0 ≤ ai ≤
(

n−1
r−1

)

, i = 1, . . . , n.
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Therefore,

Sr ≤ a1x1 + · · ·+ anxn

≤
(
n− 1

r − 1

) n∑

i=1

xi ≤
(
n− 1

r − 1

)

T.

SinceSr is also at most
(
n
r

)
, i.e., the total number ofr-subsets,

we have

Sr ≤ min

((
n− 1

r − 1

)

T,
(n

r

))

.

Substituting this bound into (22) completes the proof.
Proof of Theorem 1: The suboptimality gap for the

symmetric allocation̄x (n, T,m=n) is at most the difference
between its recovery probability (5) and the upper bound (6)
from Lemma 1 for the optimal recovery probability. This
difference is given by

⌈ n
T ⌉−1
∑

r=1

rT

n

(n

r

)

pr(1− p)n−r

= T

⌈ n
T ⌉−1
∑

r=1

(
n− 1

r − 1

)

pr(1− p)n−r

= p T

⌈ n
T ⌉−1
∑

r=1

(
n− 1

r − 1

)

pr−1(1− p)(n−1)−(r−1)

= p T

⌈ n
T ⌉−2
∑

ℓ=0

(
n− 1

ℓ

)

pℓ(1− p)(n−1)−ℓ

= p T P

[

B (n− 1, p) ≤
⌈ n

T

⌉

− 2
]

, δ(n, p, T ),

as required. Assuming now thatp > 1
T

, we have

δ(n, p, T ) ≤ p T P

[

B (n− 1, p) ≤ n− 1

T

]

(23)

= p T P

[

B (n− 1, p) ≤ 1

pT
(n− 1)p

]

≤ p T exp

(

− (n− 1)p

2

(

1− 1

pT

)2
)

. (24)

Inequality (23) follows from the fact that
⌈ n

T

⌉

− 2 <
n

T
+ 1− 2 <

n

T
− 1

T
.

Inequality (24) follows from the observation that1
pT

∈ (0, 1),
and the subsequent application of the Chernoff bound for
deviation below the mean of the binomial distribution (see,
e.g., [30]). For fixedp and T , this upper bound approaches
zero asn goes to infinity.

Proof of Theorem 2: We compare the recovery proba-
bility of x̄ (n, T,m=⌊T ⌋) to an upper bound for the recovery
probabilities of all other allocations.

Suppose that1 < T < n. Recall from (7) that the probabil-
ity of successful recovery for̄x (n, T,m=⌊T ⌋) is given by

P1(p, T ) , 1− (1− p)⌊T⌋.

Consider a feasible allocation(x1, . . . , xn); we have
∑n

i=1 xi ≤ T , wherexi ≥ 0, i = 1, . . . , n. Let ℓ be the num-
ber of individual nodes in this allocation that store at least

a unit amount of data; for brevity, we refer to these nodes
as beingcomplete. It follows from the budget constraint that
the number of complete nodesℓ ∈ {0, 1, . . . , ⌊T ⌋}. When
ℓ = ⌊T ⌋, the allocation has a recovery probability identical
to P1(p, T ). Now, assuming thatℓ ∈ {0, 1, . . . , ⌊T ⌋ − 1},
successful recovery can occur in two ways:

(i) when the accessed subset contains one or more complete
nodes, which occurs with probability1− (1− p)ℓ, or

(ii) when the accessed subset contains no complete nodes
but has a sum of at least1.

In case (ii), the accessed subset would consist of two or
more incompletenodes. Using the argument in the proof of
Lemma 1, we can show that there are at most

min

((
n− ℓ− 1

r − 1

)

(T − ℓ),

(
n− ℓ

r

))

r-subsets of incomplete nodes whose sum is at least1, since
the total amount of data stored over then− ℓ incomplete
nodes is at mostT − ℓ. It follows then that the recov-
ery probability for a feasible allocation with exactlyℓ ∈
{0, 1, . . . , ⌊T ⌋ − 1} complete nodes is at most

P2(n, p, T, ℓ) , 1− (1− p)ℓ + (1− p)ℓ·
n−ℓ∑

r=2

min

(
T − ℓ

n− ℓ
· r, 1

)(
n− ℓ

r

)

pr(1− p)n−ℓ−r.

Thus,
P1(p, T ) ≥ P2(n, p, T, ℓ)

for all ℓ ∈ {0, 1, . . . , ⌊T ⌋ − 1} is a sufficient condition for
x̄ (n, T,m=⌊T ⌋) to be an optimal allocation. After further
simplification of this inequality, we arrive at inequality (8) as
required.

Proof of Corollary 1: Suppose that1 < T < n. We will
show that the sufficient condition of Theorem 2 is satisfied
for anyp ≤ 2

(n−⌊T⌋)2
. Note that whenn− ⌊T ⌋ = 1, or equiv-

alentlyT ∈ [n− 1, n), we have to show that̄x (n, T,m=⌊T ⌋)
is an optimal allocation forany p, i.e., in the interval(0, 1).

First, observe that the summation term in inequality (8) is
always nonnegative, i.e.,

⌈ n−ℓ
T−ℓ⌉−1
∑

r=2

(

1− T − ℓ

n− ℓ
· r
)(

n− ℓ

r

)(
p

1− p

)r

≥ 0,

since for any r ∈
{

2, . . . ,
⌈
n−ℓ
T−ℓ

⌉

− 1
}

and ℓ ∈
{0, 1, . . . , ⌊T ⌋ − 1}, we have

r ≤
⌈
n− ℓ

T − ℓ

⌉

− 1 ⇐⇒ r <
n− ℓ

T − ℓ
⇐⇒ 1− T − ℓ

n− ℓ
· r > 0.

Therefore, a simpler but weaker sufficient condition for
x̄ (n, T,m=⌊T ⌋) to be an optimal allocation is

1− (1− p)⌊T⌋−n + (n− (⌊T ⌋ − 1))

(
p

1− p

)

≥ 0

⇐⇒1 + (n− ⌊T ⌋) p− (1− p)1−(n−⌊T⌋) ≥ 0,

which is an inequality in only two variablesp and
s , n− ⌊T ⌋, where s ∈ {1, . . . , n− 1}. When s = 1, or
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equivalentlyT ∈ [n− 1, n), this inequality is satisfied for any
p ∈ (0, 1), as required. Defining the function

f(s, p) , 1 + s p− (1 − p)1−s,

it suffices to show thatf(s, p) ≥ 0 for any s ∈ Z
+, s ≥ 2,

and p ∈
(
0, 2

s2

]
. We do this by demonstrating that for any

s ∈ Z
+, s ≥ 2, the functionf(s, p) is concave inp on the

intervalp ∈
(
0, 2

s2

]
, and is nonnegative at both endpoints, i.e.,

f(s, p=0) ≥ 0 andf
(
s, p= 2

s2

)
≥ 0.

The second-order partial derivative off(s, p) wrt p is given
by

∂2

∂p2
f(s, p) = −s(s− 1)(1− p)−1−s.

Since ∂2

∂p2 f(s, p) < 0 for anys ∈ Z
+, s ≥ 2, andp ∈

(
0, 2

s2

]
,

it follows that the functionf(s, p) is concave inp on the
interval p ∈

(
0, 2

s2

]
for any s ∈ Z

+, s ≥ 2.
Suppose thats ∈ Z

+, s ≥ 2. Clearly, f(s, p=0) = 0. To
show thatf

(
s, p= 2

s2

)
≥ 0, we define the function

g(s) , ln

(

1 +
2

s

)

+ (s− 1) ln

(

1− 2

s2

)

,

and show thatg(s) ≥ 0 for any s ∈ Z
+, s ≥ 2. Direct eval-

uation of the function gives usg(s=2) = 0, and g(s=3) =
ln 5

3 − 2 ln 9
7 > 0. For s ≥ 4, we consider the derivatives of

g(s):

g′(s) =
1

s
+

1

s+ 2
− 2(s− 2)

s2 − 2
+ ln

(

1− 2

s2

)

,

g′′(s) =
8
(
s3 − s2 − 6s− 2

)

s2(s+ 2)2 (s2 − 2)
2 .

Since g′′(s) ≥ 0 for any s ≥ 4, and lims→∞ g′(s) = 0, it
follows that g′(s) ≤ 0 for any s ≥ 4. Now, sinceg′(s) ≤ 0
for any s ≥ 4, andlims→∞ g(s) = 0, it follows thatg(s) ≥ 0
for any s ≥ 4. Therefore, for anys ∈ Z

+, s ≥ 2, we have

ln

(

1 +
2

s

)

+ (s− 1) ln

(

1− 2

s2

)

= g(s) ≥ 0

⇐⇒1 +
2

s
≥
(

1− 2

s2

)1−s

⇐⇒f

(

s, p=
2

s2

)

≥ 0,

as required.
Proof of Theorem 3:We will show that if condition (11)

is satisfied, then∆(p, T, k) ≥ 0 for anyk ∈ Z
+. First, we note

that
(

⌊kT ⌋
k−1

)

(
⌊kT ⌋
k

) =
k

⌊kT ⌋ − k + 1

=
k

⌊k(⌊T ⌋+ τ)⌋ − k + 1
, whereτ , T − ⌊T ⌋ ∈ [0, 1)

=
k

k⌊T ⌋+ ⌊kτ⌋ − k + 1

≥ k

k⌊T ⌋ (25)

=
1

⌊T ⌋ . (26)

Inequality (25) follows from the fact that

⌊kτ⌋ ≤ kτ < k ⇐⇒ ⌊kτ⌋ ≤ k− 1 ⇐⇒ ⌊kτ⌋− k+1 ≤ 0.

Now, if condition (11) is satisfied, then we necessarily have
T ≥ 2; otherwise,T ∈ [1, 2) would imply that⌊T ⌋ = 1, which
produces(1− p)⌊T⌋ + 2⌊T ⌋p(1− p)⌊T⌋−1 − 1 = p > 0, con-
tradicting our assumption. It follows that

(1− p)⌊T⌋ + 2⌊T ⌋p(1− p)⌊T⌋−1 − 1 ≤ 0

⇐⇒ P [B (⌊T ⌋, p) = 0] + 2P [B (⌊T ⌋, p) = 1]− 1 ≤ 0

⇐⇒ P [B (⌊T ⌋, p) ≥ 2] ≥ P [B (⌊T ⌋, p) = 1]

⇐⇒
⌊T⌋
∑

j=2

(⌊T ⌋
j

)

pj(1− p)⌊T⌋−j ≥ ⌊T ⌋p(1− p)⌊T⌋−1

⇐⇒
⌊T⌋
∑

j=2

1

⌊T ⌋

(⌊T ⌋
j

)(
p

1− p

)j−1

≥ 1 (27)

=⇒
⌈T⌉
∑

j=2

1

⌊T ⌋

(⌈T ⌉
j

)(
p

1− p

)j−1

≥ 1. (28)

Observe thatαk,T , ⌊(k + 1)T ⌋ − ⌊kT ⌋ ∈ {⌊T ⌋, ⌈T ⌉}, be-
causeαk,T ∈

(
T − 1, T + 1

)
and there are only two integers

⌊T ⌋ and⌈T ⌉, which are possibly nondistinct, in this interval.
It follows from (27) and (28) that

αk,T∑

j=2

1

⌊T ⌋

(
αk,T

j

)(
p

1− p

)j−1

≥ 1. (29)

Therefore, we have

min(αk,T−1,k)
∑

i=1

αk,T∑

j=i+1

(
⌊kT ⌋
k−i

)

(
⌊kT ⌋
k

)

(
αk,T

j

)(
p

1− p

)−i+j

≥
1∑

i=1

αk,T∑

j=i+1

(
⌊kT ⌋
k−i

)

(
⌊kT ⌋
k

)

(
αk,T

j

)(
p

1− p

)−i+j

(30)

=

αk,T∑

j=2

(
⌊kT ⌋
k−1

)

(
⌊kT ⌋
k

)

(
αk,T

j

)(
p

1− p

)j−1

≥
αk,T∑

j=2

1

⌊T ⌋

(
αk,T

j

)(
p

1− p

)j−1

, from (26)

≥ 1, from (29).

Inequality (30) follows from the fact that

min(αk,T−1, k) ≥ min(2−1, 1) = 1.

Consequently,

min(αk,T −1,k)
∑

i=1

αk,T
∑

j=i+1

(

⌊kT ⌋

k − i

)(

αk,T

j

)(

p

1− p

)−i+j

≥

(

⌊kT ⌋

k

)

⇐⇒ ∆(p, T, k) ≥ 0, from (10).
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It follows that

PS (p, T,m=⌊T ⌋) ≤ PS (p, T,m=⌊2T ⌋)
≤ · · · ≤ PS

(
p, T,m=

⌊⌊
n
T

⌋
T
⌋)
,

and so we conclude that an optimalm∗ is given by either
m =

⌊⌊
n
T

⌋
T
⌋

or m = n.
Proof of Corollary 2: If p ≥ 4

3⌊T⌋ , then we necessarily
haveT ≥ 2; otherwise,T ∈ [1, 2) would imply that⌊T ⌋ = 1,
which producesp ≥ 4

3⌊T⌋ = 4
3 , contradicting the definition of

p. We will show that condition (11) of Theorem 3 is satisfied
for anyT ≥ 2 andp ≥ 4

3⌊T⌋ . To do this, we define the function

f(p, T ) , (1− p)⌊T⌋ + 2⌊T ⌋p(1− p)⌊T⌋−1 − 1,

and show thatf(p, T ) ≤ f
(

p= 4
3⌊T⌋ , T

)

≤ 0 for any T ≥ 2

andp ≥ 4
3⌊T⌋ .

The partial derivative off(p, T ) wrt p is given by

∂

∂p
f(p, T ) = ⌊T ⌋(1− p)⌊T⌋−2 (1 + p− 2⌊T ⌋p) .

Observe thatf(p, T ) is decreasing wrtp for any T ≥ 2 and
p ≥ 4

3⌊T⌋ , since

p ≥ 4

3⌊T ⌋ =
1

3
4⌊T ⌋

>
1

2⌊T ⌋ − 1

=⇒ 2⌊T ⌋p− p > 1 ⇐⇒ 1 + p− 2⌊T ⌋p < 0 ⇐⇒ ∂
∂p

f(p, T ) < 0.

Now, consider the function

g(T ) , f
(

p= 4
3⌊T⌋ , T

)

=
(

1− 4
3⌊T⌋

)⌊T⌋−1(
11
3 − 4

3⌊T⌋

)

−1.

We will proceed to show thatg(T ) ≤ 0 for any T ≥ 2. For
T ∈ [2, 3), we have⌊T ⌋ = 2 and g(T ) = 0. To show that
g(T ) ≤ 0 for anyT ≥ 3, we consider the function

h(T ) , (T − 1) ln

(

1− 4

3T

)

+ ln

(
11

3
− 4

3T

)

,

which has the derivatives

h′(T ) =
1

3T − 4
+

11

11T − 4
+ ln

(

1− 4

3T

)

,

h′′(T ) =
16
(
11T 2 − 24T − 16

)

T (33T 2 − 56T + 16)
2 .

Sinceh′′(T ) > 0 for any T ≥ 3, and limT→∞ h′(T ) = 0, it
follows thath′(T ) ≤ 0 for anyT ≥ 3. Now, sinceh′(T ) ≤ 0
for any T ≥ 3, andh(T=3) = ln 29

9 − 2 ln 9
5 < 0, it follows

that h(T ) < 0 for anyT ≥ 3. Thus, for anyT ≥ 3, we have

(⌊T ⌋−1) ln

(

1− 4

3⌊T ⌋

)

+ ln

(
11

3
− 4

3⌊T ⌋

)

= h(⌊T ⌋) < 0

⇐⇒ ln

{(

1− 4

3⌊T ⌋

)⌊T⌋−1(
11

3
− 4

3⌊T ⌋

)}

< 0

⇐⇒
(

1− 4

3⌊T ⌋

)⌊T⌋−1(
11

3
− 4

3⌊T ⌋

)

< 1 ⇐⇒ g(T ) < 0.

Combining these results, we obtain

f(p, T ) ≤ f

(

p=
4

3⌊T ⌋ , T
)

= g(T ) ≤ 0

for anyT ≥ 2 andp ≥ 4
3⌊T⌋ , as required.

Proof of Lemma 2: Suppose thatT > 1. We will show
that if condition (12) or condition (13) is satisfied, then
∆(p, T, k) ≤ 0 for any k ∈ Z

+. First, we note that for any
i ∈ {1, . . . , k},

(
⌊kT ⌋
k−i

)

(
⌊kT ⌋
k

) =

i terms
︷ ︸︸ ︷

(k)(k − 1)· · ·(k − i+ 1)

(⌊kT ⌋ − k + i)· · ·(⌊kT ⌋ − k + 2)(⌊kT ⌋ − k + 1)
︸ ︷︷ ︸

i terms

≤
(

k

⌊kT ⌋ − k + 1

)i

≤
(

k

kT − 1− k + 1

)i

=

(
1

T − 1

)i

. (31)

Now, if condition (12) is satisfied, then
⌈T⌉−1
∑

i=1

⌈T⌉
∑

j=i+1

(
1

T − 1

)i(⌈T ⌉
j

)(
p

1− p

)−i+j

=

T−1∑

i=1

T∑

j=i+1

(
1

T − 1

)i (
T

j

)( 1
T

1− 1
T

)−i+j

=

T−1∑

i=1

T∑

j=i+1

(
T

j

)(
1

T − 1

)j

=
T∑

ℓ=2

(ℓ− 1)

(
T

ℓ

)(
1

T − 1

)ℓ

= 1.

On the other hand, if condition (13) is satisfied, then
⌈T⌉−1
∑

i=1

⌈T⌉
∑

j=i+1

(
1

T − 1

)i (⌈T ⌉
j

)(
p

1− p

)−i+j

=

⌈T⌉−1
∑

i=1

⌈T⌉
∑

j=i+1

(⌈T ⌉
j

)(
1− p

p(T − 1)

)i(
p

1− p

)j

=

⌈T⌉
∑

ℓ=2

(
ℓ−1∑

r=1

(
1− p

p(T − 1)

)r
)(⌈T ⌉

ℓ

)(
p

1− p

)ℓ

= 1−
T
(

1
T

(
1− 1

T

)⌈T⌉−1 − p(1− p)⌈T⌉−1
)

(1− pT )
(
1− 1

T

)⌈T⌉−1
(1 − p)⌈T⌉−1

≤ 1.

Thus, if either condition is satisfied, we have
⌈T⌉−1
∑

i=1

⌈T⌉
∑

j=i+1

(
1

T − 1

)i (⌈T ⌉
j

)(
p

1− p

)−i+j

≤ 1 (32)

=⇒
⌊T⌋−1
∑

i=1

⌊T⌋
∑

j=i+1

(
1

T − 1

)i (⌊T ⌋
j

)(
p

1− p

)−i+j

≤ 1. (33)

As in the proof of Theorem 3, we note thatαk,T ,

⌊(k + 1)T ⌋ − ⌊kT ⌋ ∈ {⌊T ⌋, ⌈T ⌉}. It follows from (32) and
(33) that

αk,T−1
∑

i=1

αk,T∑

j=i+1

(
1

T − 1

)i(
αk,T

j

)(
p

1− p

)−i+j

≤ 1. (34)
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Therefore, we have

min(αk,T−1,k)
∑

i=1

αk,T∑

j=i+1

(
⌊kT ⌋
k−i

)

(
⌊kT ⌋
k

)

(
αk,T

j

)(
p

1− p

)−i+j

≤
min(αk,T−1,k)

∑

i=1

αk,T∑

j=i+1

(
1

T − 1

)i(
αk,T

j

)(
p

1− p

)−i+j

, from (31)

≤
αk,T−1
∑

i=1

αk,T∑

j=i+1

(
1

T − 1

)i(
αk,T

j

)(
p

1− p

)−i+j

≤ 1, from (34).

Consequently,

min(αk,T −1,k)
∑

i=1

αk,T
∑

j=i+1

(

⌊kT ⌋

k − i

)(

αk,T

j

)(

p

1− p

)−i+j

≤

(

⌊kT ⌋

k

)

⇐⇒ ∆(p, T, k) ≤ 0, from (10).

It follows that

PS (p, T,m=⌊T ⌋) ≥ PS (p, T,m=⌊2T⌋)
≥ PS (p, T,m=⌊3T⌋) ≥ · · · ,

and since

PS (p, T,m=n)

{

= PS
(
p, T,m=

⌊⌊
n
T

⌋
T
⌋)

if n
T
∈ Z

+,

≤ PS
(
p, T,m=

⌊(⌊
n
T

⌋
+ 1
)
T
⌋)

otherwise,

we conclude that an optimalm∗ is given bym = ⌊T ⌋.
Proof of Lemma 3: Since x̄ (n, T,m=⌊T ⌋) is indeed

optimal for any p when T = 1, we need only consider the
case ofT > 1. We will show that either condition (12) or
condition (13) of Lemma 2 is satisfied for anyT > 1 and
p ≤ 2

⌈T⌉ − 1
T

. We do this in two steps: First, we define the
function

f(p, T ) ,
p(1− p)⌈T⌉−1

1
T

(
1− 1

T

)⌈T⌉−1
− 1,

and show thatf(p, T ) ≤ f
(

p= 2
⌈T⌉− 1

T
, T
)

≤ 0 for any

T > 1 and p ≤ 2
⌈T⌉ − 1

T
. Second, we apply the appropriate

condition from Lemma 2 for each pair ofT andp.
The partial derivative off(p, T ) wrt p is given by

∂

∂p
f(p, T ) =

(1− p⌈T ⌉) (1 − p)⌈T⌉−2

1
T

(
1− 1

T

)⌈T⌉−1
.

Observe thatf(p, T ) is nondecreasing wrtp for any T > 1
andp ≤ 2

⌈T⌉ − 1
T

, since

p ≤ 2

⌈T ⌉ − 1

T
≤ 2

⌈T ⌉ − 1

⌈T ⌉ =
1

⌈T ⌉

=⇒ p⌈T ⌉ ≤ 1 ⇐⇒ 1− p⌈T ⌉ ≥ 0 ⇐⇒ ∂

∂p
f(p, T ) ≥ 0.

Now, consider the function

g(T ) , f
(

p= 2
⌈T⌉− 1

T
, T
)

=
( 2

⌈T⌉−
1
T )(1−

2
⌈T⌉+

1
T )

⌈T⌉−1

1
T (1−

1
T )

⌈T⌉−1 − 1.

We will proceed to show thatg(T ) ≤ 0 for any T > 1
by reparameterizingg(T ) as h(c, τ), where c , ⌈T ⌉ and
τ , ⌈T ⌉ − T :

h(c, τ) , g (T=c−τ) =

(
2
c
− 1

c−τ

)(

1− 2
c
+ 1

c−τ

)c−1

1
c−τ

(

1− 1
c−τ

)c−1 − 1.

The partial derivative ofh(c, τ) wrt τ is given by

∂

∂τ
h(c, τ) = −

2τ2(c− 2)
(

1− 2
c
+ 1

c−τ

)c

(
c(c− 1− τ) + 2τ

)2
(

1− 1
c−τ

)c .

Since ∂
∂τ

h(c, τ) ≤ 0 for any c ∈ Z
+, c ≥ 2, andτ ∈ [0, 1), it

follows that for anyT > 1, we have

g(T ) = h (c=⌈T ⌉, τ=⌈T ⌉−T )

≤ h (c=⌈T ⌉, τ=0)

=

(
2

⌈T⌉ − 1
⌈T⌉

)(

1− 2
⌈T⌉ +

1
⌈T⌉

)⌈T⌉−1

1
⌈T⌉

(

1− 1
⌈T⌉

)⌈T⌉−1
− 1 = 0.

Combining these results, we obtain

f(p, T ) ≤ f

(

p=
2

⌈T ⌉−
1

T
, T

)

= g(T ) ≤ 0

for anyT > 1 andp ≤ 2
⌈T⌉ − 1

T
, which implies

p (1− p)
⌈T⌉−1 ≤ 1

T

(

1− 1

T

)⌈T⌉−1

.

Finally, we apply the appropriate condition from Lemma 2
for each pair of T and p. For T ∈ Z

+, T > 1, we
have 2

⌈T⌉ − 1
T
= 1

T
: we use condition (12) forp = 1

T
, and

condition (13) for p < 1
T

. For T /∈ Z
+, T > 1, we have

2
⌈T⌉ − 1

T
< 1

T
: we use condition (13) forp < 1

T
.

Proof of Theorem 4: Since x̄ (n, T,m=⌊T ⌋) is indeed
optimal foranyp whenT = 1, we need only consider the case
of T > 1. We will show thatx̄ (n, T,m=⌊T ⌋) is an optimal
symmetric allocation for anyT > 1 andp ≤ 1

⌈T⌉ . We do this
by considering subintervals ofT over which⌈T ⌉ is constant.

Let T be confined to the unit interval(c, c+ 1], where
c ∈ Z

+. According to Lemma 3,̄x (n, T,m=⌊T ⌋) is optimal

for anyp ∈
(

0, 2
c+1 − 1

T

]

andT ∈ (c, c+ 1], or equivalently,
for any

p ∈
(

0,
1

c+ 1

]

and T ∈
[

1
2

c+1 − p
, c+ 1

]

∩ (c, c+ 1].

This is just the area below a “peak” in Fig. 4, ex-
pressed in terms of different independent variables. For each
p ∈

(

0, 1
c+1

)

, we can always find aT0 such that

T0 ∈
[

1
2

c+1 − p
, c+ 1

)

∩ (c, c+ 1).

For example, we can pickT0 = c+ 1− δ, where

δ ,
1

2

(

c+ 1−max

(

c,
1

2
c+1 − p

))

∈ (0, 1).
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Now, we make the crucial observation that ifx̄ (n, T,m=⌊T ⌋)
is an optimal symmetric allocation forT = T0, then
x̄ (n, T,m=⌊T ⌋) is also an optimal symmetric allocation for
any T ∈

[
⌊T0⌋, T0

]
. This claim can be proven by contradic-

tion: the recovery probability for̄x (n, T,m=⌊T ⌋) is given
by

PS (p, T,m=⌊T ⌋) = P [B (⌊T ⌋, p) ≥ 1]

which remains constant for allT ∈
[
⌊T0⌋, T0

]
, and a

symmetric allocation that performs strictly better than
x̄ (n, T,m=⌊T ⌋) for some T ∈

[
⌊T0⌋, T0

]
would there-

fore also outperformx̄ (n, T,m=⌊T ⌋) for T = T0. Since
x̄ (n, T,m=⌊T ⌋) is indeed optimal for our choice ofT0, it
follows then that̄x (n, T,m=⌊T ⌋) is also optimal for any

p ∈
(

0,
1

c+ 1

)

and T ∈ (c, c+ 1].

By applying this result for eachc ∈ Z
+, we reach the conclu-

sion thatx̄ (n, T,m=⌊T ⌋) is an optimal symmetric allocation
for anyT > 1 andp < 1

⌈T⌉ .
Finally, to extend the optimality of̄x (n, T,m=⌊T ⌋) to

p = 1
⌈T⌉ , we note that the recovery probabilityPS(p, T,m)

, P
[
B (m, p) ≥

⌈
m
T

⌉]
is a polynomial inp and is therefore

continuous atp = 1
⌈T⌉ . Sincex̄ (n, T,m=⌊T ⌋) is optimal as

p → 1
⌈T⌉

−
, it remains optimal atp = 1

⌈T⌉ .
Proof of Proposition 2: Consider an allocation

(x1, . . . , xn) where eachxi is a nonnegative rational number.
The problem of computing the recovery probability for this
allocation and a given subset sizer is equivalent to the
counting version of the following decision problem (which
happens to be polynomial-time solvable):

Definition. LARGESTr-SUBSET SUM (LRSS)
Instance: Finite n-vector(a1, . . . , an) with ai ∈ Z

+
0 , file size

d ∈ Z
+, and subset sizer ∈ Z

+, where allai and d can be
written as decimal numbers of length at mostℓ.
Question: Is there anr-subsetr ⊆ {1, . . . , n} that satisfies
∑

i∈r
ai ≥ d?

Note that the allocation and file size have been scaled so
that the problem parameters are all integers. To show that the
counting problem #LRSS is #P-complete, we essentially apply
the proof of Proposition 1, substituting #LSS with #LRSS,
and stipulating that the subset sizer = m+ k in the Turing
reduction.

Proof of Lemma 4: Summing up thec inequalities of
(18) produces

c∑

j=1

∑

i∈rj

xi ≥ c.

The terms on the left-hand side can be regrouped to obtain

∑

i∈S

c∑

j=1

1 [i ∈ rj ]xi ≥ c.

Substituting (19) into the above inequality yields
∑

i∈S

b xi ≥ c,

as required.

Proof of Lemma 5: Let R be the collection of all
(
n
r

)

possibler-subsets of{1, . . . , n}. If PS = 1, then any feasible
allocation must satisfy

∑

i∈r

xi ≥ 1 ∀ r ∈ R .

Observe that each element in{1, . . . , n} appears the same
number of times among ther-subsets inR . Specifically,
the number ofr-subsets that contain elementi ∈ {1, . . . , n}
is just the number of ways of choosing the other(r − 1)
elements of ther-subset from the remaining(n− 1) elements
of {1, . . . , n}, i.e.,

∑

r∈R

1 [i ∈ r] =

(
n− 1

r − 1

)

∀ i ∈ {1, . . . , n}.

Applying Lemma 4 with S = {1, . . . , n}, c =
(
n
r

)
, and

b =
(

n−1
r−1

)

therefore produces

n∑

i=1

xi ≥
(
n
r

)

(
n−1
r−1

) =
n

r

for any feasible allocation. Now,
(
1
r
, . . . , 1

r

)
is a feasible

allocation since it has a recovery probability of exactly1;
because it uses the minimum possible total amount of storage
n
r

, this allocation is also optimal.
Proof of Theorem 5:Suppose thatn is a multiple ofr;

let positive integerα be defined such thatn = αr.
We will first prove thatPS > 1− r

n
is a sufficient condition

for the optimality of
(
1
r
, . . . , 1

r

)
by showing that if the

constraint
∑

i∈r

xi ≥ 1 (35)

is satisfied for more than
(
1− r

n

) (
n
r

)
distinct r-subsets

r ⊆ {1, . . . , n}, then the allocation
(
1
r
, . . . , 1

r

)
minimizes the

required budgetT . Our approach is motivated by the ob-
servation of Lemma 4. We begin by constructing a col-
lection of r-subsets such that if constraint (35) is satisfied
for the r-subsets in this collection, then

∑n
i=1 xi ≥ n

r
. We

then demonstrate that such a collection ofr-subsets can be
found amonganycollection of more than

(
1− r

n

) (
n
r

)
distinct

r-subsets.
Let

Q , (v1, . . . ,vα)

be an ordered partition of{1, . . . , n} that comprisesα parts,
where|vj | = r, j = 1, . . . , α. For a given ordered partitionQ,
we specify a collection ofα distinct r-subsets

RQ , {r1, . . . , rα},
whererj , vj , j = 1, . . . , α.

Fig. 9 provides an example of howQ andRQ are constructed.
Let A be the total number of possible ordered partitionsQ.
By counting the number of ways of pickingvj , we have

A =
(αr

r

)( (α− 1)r

r

)(
(α − 2)r

r

)

· · ·
(r

r

)

︸ ︷︷ ︸

α terms

=
(αr)!

(r!)α
.
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Fig. 9. Example for the construction of the ordered partition Q and its
corresponding collection ofr-subsetsRQ, in the proof of Theorem 5 (when
n is a multiple ofr).

LetB be the number of ordered partitionsQ for whichr ∈ RQ,
for a givenr-subsetr ⊆ {1, . . . , n}. By counting the number
of ways of pickingvj , subject to the requirement thatr ∈ RQ,
we have

B = α

(
(α− 1)r

r

)(
(α − 2)r

r

)

· · ·
(r

r

)

︸ ︷︷ ︸

(α−1) terms

=
α
(
(α− 1)r

)
!

(r!)α−1
.

We claim that for any given ordered partitionQ, if
∑

i∈r

xi ≥ 1 ∀ r ∈ RQ,

then
∑n

i=1 xi ≥ n
r

. To see this, observe that each element
i ∈ {1, . . . , n} appears in exactly one of theα r-subsets of
RQ, i.e.,

∑

r∈RQ

1 [i ∈ r] = 1 ∀ i ∈ {1, . . . , n}.

Applying Lemma 4 withS = {1, . . . , n}, c = α, and b = 1
therefore produces

∑n

i=1 xi ≥ α
1 = n

r
.

Let R be the collection of all
(
n
r

)
possibler-subsets of

{1, . . . , n}. Observe that allA collectionsRQ can be found in
R , i.e.,

RQ1 ⊆ R , RQ2 ⊆ R , . . . , RQA
⊆ R .

With each removal of anr-subset fromR , we reduce the
number of collectionsRQ that can be found among the
remainingr-subsets by at mostB. It follows that the minimum
number ofr-subsets that need to be removed fromR so that
no collectionsRQ remain is at least

⌈
A
B

⌉
, where

A

B
=

(αr)!

α r!
(
(α− 1)r

)
!
=

r

n

(n

r

)

.

Thus, if fewer thanA
B

= r
n

(
n
r

)
r-subsets are removed from

R , then at least one collectionRQ would remain; equivalently,
some collectionRQ can be found amongany collection of
more than

(
1− r

n

) (
n
r

)
distinct r-subsets.

We have therefore shown that ifPS > 1− r
n

, then any fea-
sible allocation must satisfy

∑n
i=1 xi ≥ n

r
. Now,

(
1
r
, . . . , 1

r

)

is a feasible allocation since it has a recovery probabilityof
exactly1; because it uses the minimum possible total amount
of storagen

r
, this allocation is also optimal.

We proceed to prove thatPS > 1− r
n

is also a necessary
condition for the optimality of

(
1
r
, . . . , 1

r

)
by demonstrating

that this allocation is suboptimal for anyPS ≤ 1− r
n

.
For r < n, the allocation

(
0, 1

r
, . . . , 1

r

)
has a recovery

probability of
(
n−1
r

) / (
n
r

)
= 1− r

n
and is therefore a feasible

allocation for anyPS ≤ 1− r
n

. Since this allocation uses a
smaller total amount of storagen−1

r
< n

r
, it is a strictly better

allocation than
(
1
r
, . . . , 1

r

)
for anyPS ≤ 1− r

n
.

For the trivial caser = n, we have1− r
n
= 0. The empty

allocation(0, . . . , 0) is clearly optimal for anyPS ≤ 0.
Proof of Theorem 6: Suppose thatn is not a multiple

of r; let integersα and r′ be as defined in the theorem. For
brevity, we additionally define positive integersd, m, andm′

such that

d = gcd(r, r′), r = md, r′ = m′ d.

We can therefore writen = (αm+m′)d.
We will prove that

PS > 1− d

α d+m′ d
= 1− 1

α+m′

is a sufficient condition for the optimality of
(
1
r
, . . . , 1

r

)
by

showing that if the constraint
∑

i∈r

xi ≥ 1

is satisfied for more than
(

1− 1
α+m′

) (
n
r

)
distinct r-subsets

r ⊆ {1, . . . , n}, then the allocation
(
1
r
, . . . , 1

r

)
minimizes the

required budgetT . We apply the proof technique of Theo-
rem 5, but modify the construction of the ordered partitionQ
and its corresponding collection ofr-subsetsRQ to take into
account the indivisibility ofn by r.

For the moment, we will proceed with the assumption that
α ≥ 1. Let

Q , (u1, . . . ,um′ ,v1, . . . ,vα)

be an ordered partition of{1, . . . , n} that comprises(m′ + α)
parts, where

|uj | = d, j = 1, . . . ,m′,

|vj | = r = md, j = 1, . . . , α.

For a given ordered partitionQ, we specify a collection of
(m′ + α) distinct r-subsets

RQ , {r1, . . . , rm′ , rm′+1, . . . , rm′+α},

whererj ,







m−1⋃

ℓ=0

uj+ℓ if j = 1, . . . ,m′,

vj−m′ if j = m′ + 1, . . . ,m′ + α,

anduj , uj−m′ if j > m′.

Fig. 10 provides an example of howQ andRQ are constructed.
Let A be the total number of possible ordered partitionsQ.
By counting the number of ways of pickinguj andvj , we
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Fig. 10. Example for the construction of the ordered partition Q and its
corresponding collection ofr-subsetsRQ, in the proof of Theorem 6 (when
n is not a multiple ofr).

have

A =

(
(αm+m′)d

d

)(
(αm+m′−1)d

d

)

· · ·
(
(αm+1)d

d

)

︸ ︷︷ ︸

m′ terms

·

(
αmd

md

)(
(α−1)md

md

)

· · ·
(
md

md

)

︸ ︷︷ ︸

α terms

=

(
(αm+m′)d

)
!

(d!)m′
(
(md)!

)α .

LetB be the number of ordered partitionsQ for whichr ∈ RQ,
for a givenr-subsetr ⊆ {1, . . . , n}. By counting the number
of ways of pickinguj andvj , subject to the requirement that
r ∈ RQ, we have

B=

((
(α−1)m+m′

)
d

d

)((
(α−1)m+m′−1

)
d

d

)

· · ·

((
(α−1)m+1

)
d

d

)

︸ ︷︷ ︸

m′ terms

·

α

(
(α−1)md

md

)(
(α−2)md

md

)

· · ·

(
md

md

)

︸ ︷︷ ︸

(α−1) terms

+ m′
(
md

d

)(
(m−1)d

d

)

· · ·

(
d

d

)

︸ ︷︷ ︸

m terms

·

((
(α−1)m+m′

)
d

d

)((
(α−1)m+m′−1

)
d

d

)

· · ·

(
(αm+1)d

d

)

︸ ︷︷ ︸

(m′−m) terms

·

(
αmd

md

)(
(α−1)md

md

)

· · ·

(
md

md

)

︸ ︷︷ ︸

α terms

= α

((
(α− 1)m+m′

)
d
)
!

(d!)m′
(
(md)!

)α−1 +m′

((
(α− 1)m+m′

)
d
)
!

(d!)m′
(
(md)!

)α−1

= (α+m′)

((
(α− 1)m+m′

)
d
)
!

(d!)m′
(
(md)!

)α−1 .

We claim that for any given ordered partitionQ, if
∑

i∈r

xi ≥ 1 ∀ r ∈ RQ,

then
∑n

i=1 xi ≥ n
r

. To see this, consider the partition of

{1, . . . , n} formed by setsU andV , where

U ,

m′
⋃

j=1

uj , V ,

α⋃

j=1

vj .

Correspondingly, we partitionRQ into two collections of
r-subsetsR U

Q andR V
Q , where

R
U
Q , {r1, . . . , rm′}, R

V
Q , {rm′+1, . . . , rm′+α}.

Observe that each elementi ∈ U appears in exactly oneuj ,
which in turn appears in exactlym of them′ r-subsets ofR U

Q

(namelyrj , rj−1, . . . , rj−(m−1), whererℓ , rℓ+m′ if ℓ < 1),
i.e., ∑

r∈R U
Q

1 [i ∈ r] = m ∀ i ∈ U.

Applying Lemma 4 withS = U , c = m′, andb = m therefore
produces

∑

i∈U xi ≥ m′

m
= r′

r
. Likewise, observe that each

elementi ∈ V appears in exactly one of theα r-subsets of
R V
Q , i.e.,

∑

r∈R V
Q

1 [i ∈ r] = 1 ∀ i ∈ V.

Applying Lemma 4 withS = V , c = α, andb = 1 therefore
produces

∑

i∈V xi ≥ α. Combining the sums ofU and V
yields

n∑

i=1

xi =
∑

i∈U

xi +
∑

i∈V

xi ≥
r′

r
+ α =

n

r
.

Let R be the collection of all
(
n
r

)
possibler-subsets of

{1, . . . , n}. As demonstrated in the proof of Theorem 5, if
fewer thanA

B
r-subsets are removed fromR , then at least one

collection RQ can be found among the remainingr-subsets.
In this case, we have

A

B
=

1

α+m′

(
(αm+m′)d

)
!

((
(α− 1)m+m′

)
d
)
!(md)!

=
1

α+m′

(n

r

)

.

Thus, some collectionRQ can be found amonganycollection

of more than
(

1− 1
α+m′

) (
n
r

)
distinct r-subsets.

We have therefore shown that ifPS > 1− 1
α+m′ , then

any feasible allocation must satisfy
∑n

i=1 xi ≥ n
r

. Now,
(
1
r
, . . . , 1

r

)
is a feasible allocation since it has a recovery

probability of exactly1; because it uses the minimum possible
total amount of storagen

r
, this allocation is also optimal.

Applying the preceding argument to the degenerate case
of α = 0 producesA

B
= 1

m′

(
n
r

)
, which is consistent with the

above expression.
Proof of Corollary 3: Suppose thatn is a multiple of

(n− r); let integerβ ≥ 2 be defined such thatn = β(n− r)
⇐⇒ n = β

β−1r.
If β = 2, thenn = 2r, i.e.,n is a multiple ofr. According

to Theorem 5,
(
1
r
, . . . , 1

r

)
is an optimal allocation if and only

if
PS > 1− r

n
= 1− r

2r
=

1

2
=

r

n
,

as required.
If β ≥ 3, then n is not a multiple of r. We can write

n = α r + r′, whereα = 0 andr′ = n ∈ {r + 1, . . . , 2r − 1}.
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According to Theorem 6,
(
1
r
, . . . , 1

r

)
is an optimal allocation

if

PS > 1− gcd(r, r′)

α gcd(r, r′) + r′
= 1− gcd(r, n)

n
= 1− n− r

n
=

r

n
.

To show thatPS > r
n

is also a necessary condition for the
optimality of

(
1
r
, . . . , 1

r

)
, we demonstrate that this allocation

is suboptimal for anyPS ≤ r
n

. The allocation(1, 0, . . . , 0) has

a recovery probability of
(

n−1
r−1

)/ (
n
r

)
= r

n
and is therefore a

feasible allocation for anyPS ≤ r
n

. Since this allocation uses
a smaller total amount of storage1 < n

r
, it is a strictly better

allocation than
(
1
r
, . . . , 1

r

)
for anyPS ≤ r

n
.

Proof of Lemma 6: At T = n
r

, the recovery probability
corresponding to a particular choice ofℓ ∈ {1, 2, . . . , r − 1}
is given by

PS

(

n, r, T=
n

r
, ℓ
)

= P

[

B
(

r,
ℓ

r

)

≥ ℓ

]

.

We will prove that the above expression is at most3
4 for any

ℓ ∈ {1, 2, . . . , r − 1} andr ≥ 2 by showing that

P

[

B
(

a+ b,
a

a+ b

)

≥ a

]

≤ 3

4

for any positive integersa andb. To do this, we consider the
following three exhaustive cases separately:

Case 1: Suppose thata ≥ 18 and b ≥ 3. We will first
derive an upper bound forP

[

B
(

a+ b, a
a+b

)

≥ a
]

by

finding separate bounds forP
[

B
(

a+ b, a
a+b

)

= a
]

and

P

[

B
(

a+ b, a
a+b

)

≥ a+ 1
]

; we then proceed to show that

this upper bound is smaller than34 for anya ≥ 18 andb ≥ 3.
For any positive integersa andb, we have

P

[

B
(

a+ b,
a

a+ b

)

= a

]

=

(
a+ b

a

)(
a

a+ b

)a(
b

a+ b

)b

<
e

1
12(a+b)

√
2π

√

a+ b

ab
. (36)

Inequality (36) follows from the application of the following
bound for the binomial coefficient:

(
a+ b

a

)

<
e

1
12(a+b)

√
2π

(a+ b)a+b+ 1
2

aa+
1
2 bb+

1
2

,

which is derived from the following Stirling-based bounds for
the factorial (see, e.g., [31]):

√
2πk

(
k

e

)k

< k! <
√
2πk

(
k

e

)k

e
1

12k , k ≥ 1.

For any positive integersa andb, we have

P

[

B
(

a+ b,
a

a+ b

)

≥ a+ 1

]

≤ 1

2
, (37)

which follows from the definition of the median: The mean of
the binomial random variableB

(

a+ b, a
a+b

)

is (a+ b) · a
a+b

= a; since the mean is an integer, the median coincides with
the mean [32]. Therefore, according to the definition of the
median, we have

P

[

B
(

a+ b,
a

a+ b

)

≤ a

]

≥ 1

2
,

which leads to inequality (37).
Combining bounds (36) and (37) produces

P

[

B
(

a+ b,
a

a+ b

)

≥ a

]

<
e

1
12(a+b)

√
2π

√

a+ b

ab
+

1

2
, f(a, b)

for any positive integersa andb. Now, the upper boundf(a, b)
is a decreasing function of botha and b since f(a, b) is a
symmetric function and the partial derivative

∂

∂a
f(a, b) = −6b2 + 6ab+ a

12a(a+ b)2
e

1
12(a+b)

√
2π

√

a+ b

ab

is negative for anya ≥ 1 andb ≥ 1. Thus, for anya ≥ 18 and
b ≥ 3, we have

f(a, b) ≤ f(a=18, b=3) =
e

1
252

6

√

7

π
+

1

2
≈ 0.749773 <

3

4
,

which implies thatP
[

B
(

a+ b, a
a+b

)

≥ a
]

< 3
4 for any pos-

itive integersa ≥ 18 andb ≥ 3.
Case 2: Suppose thatb ∈ {1, 2}. We will show that

P

[

B
(

a+ 1, a
a+1

)

≥a
]

≤ 3
4 andP

[

B
(

a+ 2, a
a+2

)

≥a
]

< 3
4

for any positive integera. The left-hand side of each inequality
can be expanded and simplified to obtain the following:

P

[

B
(

a+ 1, a
a+1

)

≥ a
]

= aa(2a+1)
(a+1)a+1 , f1(a),

P

[

B
(

a+ 2, a
a+2

)

≥ a
]

= aa(5a2+10a+4)
(a+2)a+2 , f2(a).

The first derivatives off1(a) andf2(a), which are given by

f ′
1(a) =

aa

(a+1)a+1

{
2− (2a+ 1) ln

(
a+1
a

)}
,

f ′
2(a) =

aa

(a+2)a+2

{
(10a+ 10)− (5a2 + 10a+ 4) ln

(
a+2
a

)}
,

can be shown to be negative for anya ≥ 1. Since
f1(a=1) = 3

4 , f2(a=1) = 19
27 < 3

4 , and bothf1(a) andf2(a)
are decreasing functions ofa for any a ≥ 1, it follows that
f1(a) ≤ 3

4 and f2(a) <
3
4 for any positive integera, as re-

quired.
Case 3: Suppose thata ∈ {1, 2, . . . , 17}. We will describe

our approach fora = 1 and a = 2; the proofs for the other
15 cases are similar, and can be verified with the help of a
computer. We will show that

P

[

B
(

b+ 1, 1
b+1

)

≥1
]

≤ 3
4 andP

[

B
(

b+ 2, 2
b+2

)

≥2
]

< 3
4

for any positive integerb. The left-hand side of each inequality
can be expanded and simplified to obtain the following:

P

[

B
(

b+ 1, 1
b+1

)

≥ 1
]

= 1− bb+1

(b+1)b+1 , g1(b),

P

[

B
(

b+ 2, 2
b+2

)

≥ 2
]

= 1− bb+1(3b+4)
(b+2)b+2 , g2(b).

The first derivatives ofg1(b) andg2(b), which are given by

g′1(b) =
bb

(b+1)b+1

{
b ln

(
b+1
b

)
− 1
}
,

g′2(b) =
bb

(b+2)b+2

{
(3b2 + 4b) ln

(
b+2
b

)
− (6b+ 4)

}
,

can be shown to be negative for anyb ≥ 1. Since
g1(b=1) = 3

4 , g2(b=1) = 20
27 < 3

4 , and bothg1(b) and g2(b)
are decreasing functions ofb for any b ≥ 1, it follows that
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g1(b) ≤ 3
4 and g2(b) <

3
4 for any positive integerb, as re-

quired.
Proof of Theorem 7:We have already established that the

choice ofℓ = r is optimal for anyT ≥ n
r

; it therefore suffices

to show thatℓ = r is also optimal for anyT ∈
[
n
r

(
3
4

) 1
r , n

r

)

.
The recovery probability corresponding to any

ℓ ∈ {1, 2, . . . , r} is given by

PS(n, r, T, ℓ) = P

[

B
(

r,min
(
ℓT
n
, 1
))

≥ ℓ
]

,

which is a nondecreasing function ofT since min
(
ℓT
n
, 1
)

either increases or remains constant at1 asT increases. More
precisely,PS(n, r, T, ℓ) is an increasing function ofT on the
interval

(
0, n

ℓ

)
; for higher values ofT , the function saturates

at 1. We can verify this claim by checking that the partial
derivative

∂

∂p
P [B (r, p) ≥ ℓ] = ℓ

(r

ℓ

)

pℓ−1(1 − p)r−ℓ

is positive for anyp ∈ (0, 1).
Now, the recovery probability corresponding to the choice

of ℓ = r at T = n
r

(
3
4

) 1
r is given by

PS

(

n, r, T=n
r

(
3
4

) 1
r , ℓ=r

)

= P

[

B
(

r,
(
3
4

) 1
r

)

≥ r
]

=
3

4
.

SincePS(n, r, T, ℓ) is a nondecreasing function ofT , we have

PS(n, r, T, ℓ=r) ≥ 3

4
for anyT ≥ n

r

(
3

4

) 1
r

.

On the other hand, for anyℓ ∈ {1, 2, . . . , r − 1}, we have

PS(n, r, T, ℓ) ≤
3

4
for anyT ≤ n

r
,

from the upper bound of Lemma 6. It therefore follows that

the choice ofℓ = r is optimal for anyT ∈
[
n
r

(
3
4

) 1
r , n

r

)

, as
required.

Proof of Corollary 4: Theorem 7 already demonstrates

that the choice ofℓ = r is optimal for anyT ≥ n
r

(
3
4

) 1
r ; we

will proceed to show that a recovery probability of at least3
4

is not achievable for anyT < n
r

(
3
4

) 1
r .

Recall from the proof of Theorem 7 that the recovery prob-
ability PS(n, r, T, ℓ) corresponding to anyℓ ∈ {1, 2, . . . , r}
is an increasing function ofT on the interval

(
0, n

ℓ

)
. Thus,

for the choice of ℓ = r, the function PS(n, r, T, ℓ=r) in-

creases wrtT on the subinterval
(

0, n
r

(
3
4

) 1
r

]

⊂
(
0, n

r

)
; since

PS

(

n, r, T=n
r

(
3
4

) 1
r , ℓ=r

)

= 3
4 , it follows that

PS(n, r, T, ℓ=r) <
3

4
for anyT <

n

r

(
3

4

) 1
r

.

On the other hand, for anyℓ ∈ {1, 2, . . . , r − 1}, the
function PS(n, r, T, ℓ) increases wrtT on the subinterval
(
0, n

r

]
⊂
(
0, n

ℓ

)
; since PS

(
n, r, T=n

r
, ℓ
)
≤ 3

4 according to
Lemma 6, it follows that

PS(n, r, T, ℓ) <
3

4
for anyT <

n

r
.

Hence, the optimal recovery probability for anyT < n
r

(
3
4

) 1
r

is strictly less than34 .
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