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Abstract—In this paper we propose a feedback scheme for  More recently, [7], [8] both use a secret key to enhance
transmitting secret messages between two legitimate paes, over the secrecy throughput of Wyner’'s scheme. In [7] the secret
an eavesdropped communication link. Relative to Wyner's tadi- key is communicated through an error-free secure channel
tional encoding scheme [1], our feedback-based encodingtefh L L . . , ’
yields larger rate-equivocation regions and achievable seecy while in [8] it is transmitted u.smg Wyner.s schgme on t.he
rates. More importantly, by exploiting the channel randomness feedback channels (and thus its secrecy is subject to Alice’
inherent in the feedback channels, our scheme achieves aistty feedback channel being better than Eve’s). An interestieg i
positive secrecy rate even when the eavesdropper’s channisl of [8] is to use time-sharing on the feedback link. Part of
less noisy than the legitimate receiver’'s channel. All chamels are the feedback transmission is used to generate the secret key

modeled as binary and symmetric (BSC). We demonstrate the hile th - ti dtot it d bol
versatility of our feedback-based encoding method by using in ~ WN!'€ th€ rémaining part Is used to transmit random Symbols

three different configurations: the stand-alone configuraion, the With the purpose of providing the “common randomness”
mixed configuration (when it combines with Wyner's scheme [l), necessary for our secrecy encoding scheme described in this
and the reversed configuration. Depending on the channel cen paper. A mixed secrecy encoding strategy inspired by [9] is
ditions, significant_ improvements over Wyner's secrecy caqity proposed in [8]. The main idea behind this strategy is to
can be observed in all configurations. . . L
simultaneously transmit a combination of secret messages,
Index Terms—Eavesdropper Channel, Secrecy Capacity, Bi- encoded by different methods. However, while a message
hary Symmetric Channels, Feedback. encrypted by a secret key can be transmitted at the same time
as a secret message encoded by Wyner's scheme, the additiona
|. INTRODUCTION secret message encrypted with the use of a random feedback
In the context of a broadcast channel with confidentigequence does not maintain secrecy. The exact reasons why
messages, it was shown in [2] that a strictly positive s@pth Section IV.B. of [9] and the proposed schemes of [8]
crecy capacity cannot be achieved for any arbitrary pair gfe incorrect will be revealed in SectiénllV. None of the
receiver/eavesdropper channels. In particular, [3] pa@t previously mentioned works considers the impact of feeklbac
whenever the eavesdropper's channeleiss noisythan the transmission on the overall bandwidth use. This drawback
receiver's channel, no secret messages can be exchang@ebmes critical in [8], where it results in the “secrecyesit
between the Iegltlmate transmitter and receiver by the Cqﬁbaring no physica| meaning, as will be shown in Appendix
ventional method of [1]. Al
This motivated several works [4], [5], [6], [7], [8] to focus The concept ocommon randomness introduced in [5],
on alternative methods of achieving positive secrecy r¥es [6]. Such randomness can be acquired if all terminals attemp
when the legitimate receiver has a worse channel than fgedecode (note that a necessary condition is that the eaves-
eavesdropper. All these works exploit the idea of feedbagkopper cannot decode perfectly) a sequence of randonabits,
channels. for example a data stream transmitted by a satellite at wsvy |
The simple and interesting method of [4] is based on maki%nm to noise ratio (SNR) [5]. Both [5] and [6] study the €as
the receiver jam the eavesdropper. The receiver can stibtiggen the legitimate users agree on a secret key by employing
its own jamming signal from the received signal, while thgepetitive protocols, which are not efficient for regulatada
wiretapper is kept totally ignorant of the confidential irfo {rgnsmission.
mation flowing between the legitimate users. The drawbackThe idea developed in this paper is inspired by a particular
of this approach is that the receiver has to function in fullase in [5]. As an example and motivation for the feedback
duplex mode. Although an extension to half-duplex mode igpproach to secrecy in the classical Alice (transmitter) -
presented in [4] for binary symmetric channels, it reliesten  goh (receiver) - Eve (eavesdropper) scenario, [5] devetops
assumption that the transmission of symba$ equivalent to scheme where the common randomness is not received from
the absence of a physical signal. We believe that under thisme external source (like a satellite), but introduced bigeA
assumption, the binary symmetric channel is no longer valiérself, and functions as a secret key which allows Bob to

as a simplified model for a physical wireless channel. share a secret message with Alice over a public, error free
G. Amariucai is with the Department of ECpE, lowa State Ursitg. E- channel. Our model _Changes the roles of Alice and Bob.
mail: gamari@iastate.edu. Although at some point we make use of the same concept
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the total rate due to the transmission of feedback. channel is worse than the legitimate receiver's. An altiévaa
While sharing functional similarities with the well-knownscheme, which reverses our protocol to generate a secrget key
one-time pad[10] encryption scheme, our approach is radis provided in Sectiof V. Finally, conclusions are drawn in
cally different in that it requires no secret key to be shangd Sectior[V].
the legitimate parties before the initiation of the transsion
protocol (except maybe a small secret key that guarantees au Il. THE KERNEL
thenticity as in [5]). Instead it exploits the channel ram@ss
as means of confusing the eavesdropper. A. The Unscaled Rates
Our contributions can be summarized as follows: Consider the classical Alice (transmitter) - Bob (recejiver
. , ve (eavesdropper) scenario with binary symmetric channel
» We show how an a_daptatmn of Maurer's scheme [. SCs) between any pair of users. We assume that Eve’s only
can be used fo achieve a non-empty rate-equivocatl Bim of interfering with the transmission is eavesdroppiflg

:]?r'og ?:ri:t?ichh:nsrfgIcstlprSOglstN:inC\rA?r?gnr?ri ?gzﬁ 1ough our present treatment is restrictive to binary ceén
y sy : ( ) . {fe principles and results therein can be easily extended to
channel between Alice and Eve isss noisythan the rr}ore complex models
n .

Iﬁ;wfae r: dggi{: ZilaaigeiglﬁlICt?et?;:er?%%er%?jr(ﬂﬁsz The proposed model is depicted in Figlite 1. The transmitter
q y ?/&Iice) wants to communicate the outputs of a sour€eof

Bob and Eve. . . o
- entropyH to the legitimate receiver (Bob), and maintain some
o Our results also indicate how the forward channel capagc- .
o -""ével of secrecy towards the wiretapper (Eve). The channel
ities scale the overall secrecy rate and what penalties

. L 4€_, B from Alice to Bob is a BSC characterized by its
incurred by the transmission of feedback sequences. crossover probability ¢, while the binary symmetric channel
« We show that even if the forward channel from Alice to b Y1 y 5y

Bob is less noisy than the channel from Alice to EveA — FE from Alice to Eve is characterized by the crossover

feedback can sometimes further improve the achievatimbab'“ty&f' Similarly, the feedback BSCE — A (Bob to

. : . ; : ) —Alice) and B — FE (Bob to Eve) are characterized by their
rate-equivocation region obtained using Wyner's classica S .
crossover probabilities, and d;, respectively.

method [1]. This is done by dividing the transmission o . .
. . The transmission protocol associated with the channel
over the forward channel into two parts, as in [2]. Thus P . . ,
. odel in Figure[1l is an adaptation of Maurer's scheme [5]
we transmit a secret message at a rate less than the

secrecy capacity [1], and allow room for an additionaﬁmd is described as follows. Bob feeds back a sequenake
y capactty 11, @ S L &,bits representing the independent realizations of a Bdlinou
common message, which carries information “encrypte

. . random variableX with expectationE[X] = 0.5. Since
with the help of the feedback sequence. The optimal We¥e bits are independent and identically distributed dj,i.

of splitting the forward message rate is found numericall)% ) ) . .
« We prove that, for a two-user broadcast channel with bot lice’s and Eve’s estimate of each bit should be based solely

channels binary and svmmetric. the optimal auxiliars” the corresponding received bit. Therefore, the bit error
y Y ’ P robabilities that affect Alice’s and Eve’s decoding ageand

random variable of [2] needed to encode both a secret : .
. . respectively. Denote the feedback sequences received by
and a common message into the transmitted sequerAﬁe

has an alphabet of size not more than three. Moreover!Ce ar?d Ev_e ay andz, respectively.
. . T At this point, our feedback-based protocol assumes that
we conjecture that the optimal alphabet is binary. I,&I

the auxiliary random variable is considered to be binaré/rlce can share information with both Bob and Eve through an

(whether or not this results in loss of optimality), we ror free public channel, just like in [5]. The implicat®of

prove that the optimal auxiliary channel [2] that links it t(ll‘%evmg such an error free channel are discussed in Bectio

the input of the physical channel is binary and symmetric=_. . .
P phy y y Since an error free public channel cannot protect Alice’s

» Finally, we take our scheme a step further and implem%n%ormation from the eavesdropper Eve, the protocol has to
it on the reverse channel (from Bob to Alice, rather thalh PP ’ P

from Alice to Bob), in order to generate a secret I(e}Ertlflmally create a pair of channels that are adequatelfer t

Alice uses this key as a one-time pad for the transmissi rﬁgsmtﬁ_smn of secrit::.essagez. ¢ q di ional
of a secret message. or this purpose, if Alice needs to send an n-dimensiona

. _ _ _ sequence to Bob, she first computes®y, whered® denotes
The sequel is organized into seven sections. Secfion$ llafidition mod 2, and feeds this signal through the error free
and[Il-B describe the kernel of our scheme. Our adaptatigRannel. Sinc is a sequence of i.i.d. symbols with a uniform
of Maurer’s idea [5], including the channel model and thgistribution over{0, 1}, the same property holds for the BSC
transmission protocol are presented in Secfion]ll-A undgltputy and, by theCrypto lemm@ [11], [4], for v & y.
the assumption that the forward channels are error free. Thegpth Bob and Eve receive &y with no errors. In order to
public error free channel and the overall rate-equivocatigyptain the original message the optimal strategy for Bob is
region are discussed in SectibnI-B for a general value of
the forwarding rate. Sectidn lll deals with the special case!Special care should be applied when using the Crypto lemrih For
when the eavesdropper’s forward channel is less noisy thiagtance, ifC is a compact Abelian group andl and E are random variables
L. RS . NG IoverC such thatX is independent of2 and uniformly distributed ove€,
the Iegltlmate receiver's forward channel, while sectiafi then X + F is uniform andindependent of2. However, E is not independent
extends the model to the case when the eavesdropper’s thrwar X, X + E).
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Fig. 1. System model.

to computev @y @ x, while Eve’s best strategy is to computevhereC, = Cy; — Cyyw IS the secrecy capacity (representing
vy dz[5]. the maximum rate at which the outputs of the soustean be
As a consequence, a bit error probabilityegf = ¢, will conveyed from Alice to Bob, while remaining perfectly secre
affect Bob’s estimate ok, while a bit error probability of to Eve) achievable by Wyner's scheme in this c&sg, is the
e = € + 0p — 26,0, Will affect Eve’s estimate [5]. The result capacity of Bob’s channel, and,y is the capacity of Eve’s
is an equivalent system in which Eve’s channel is a degradetannel.
version of Bob’s channel, and which is therefore adequateThe following corollary, which will prove useful in the
for the transmission of secret messages from Alice to Bakequel, follows directly from Theorefd 3 and Definitiah 2.
In other words, standard secrecy encoding can be performecorollary 4: If (R,d) is an achievable rate-equivocation
for this equivalent system so that thesequences carries a pair, then as\ — oo the number of secret source symbbls
secret message®' (which will hence forth be represented ashat can be encoded into the-sequencev}! can approach
a sequence of; source symbols). A total transmission raté¢he upper-bound

arbitrarily close to
p MOy )
Riw=1—h(e) (1) d
Proof: By TheorenB and Definitiol] 2 we havgl: >

— v, which implies % > Z-(Rd — vd), and taking the

limit Rd = H,C, we getk > ¢, — 2L But according to

can be achieved as — oo, whereh(-) represents the binaryR
entropy functioni(x) = —zlogy(z) — (1 — x) logy(1 — ).
We shall now restate some of the definitions in [1] and th H, ; .
show how Theorem 2 of [1] can be readily applied to our eoreniB, we have < Hs, h_erL((:ie, ay — 0, if we pick
scenario. a Iar%?cenougIM we can obtainz — C, or equivalently
Definition 1: The equivocation of the sourc# of entropy k— =5 .
H, at Eve is defined as:

If we apply Theoren{]3 to the pair of equivalent chan-
nels derived above, we can conclude that there exists a
A= 1H(s’“|w]1}3’1), @ .k, Ay, P. ;) code satisfying”fs > R —v, Ay >d —v,
k andP,; <vifandonlyif 0 < R < Ry,, 0 < d < Hj,
where the sequenc# of k source symbols are encoded intdid < H,R; ., whereR; ,, is the maximum achievabkecrecy
a codewordw}! of length M which is transmitted over the rate of [1], [2]:
broad_cgg channel, and recejved py Eve;_@é. _ _ Ryw = hiey + 0y — 2648) — h(en). ©6)
Definition 2: The rate-equivocation paifR,d) is achiev-
able if for anyv > 0 there exists ar{M, k, A, P.) code as  Several comments are in order. First, note tRat, > 0 —
defined in [1] such that: and therefore the rate-equivocation region as defined ifs[1]
non-empty — unles§, € {0, 1} (the assumption that feedback
channels exist implies;, # 0.5)
where P, is the average error probability in decoding fdr Seco_nd., the rate, . and R, do not represent.theverall .
at Bob. transmission and secrecy rates of our model, since a pair of
binary symmetric channels such as the forward» B and
A — FE channels cannot provide error free transmission at
infinite rates. The information encoded in the sequemce
mentioned above has to pass through one of these channels
0<R<Cy, 0<d<H,, Rd<H/C,, (4) in order to be available at the other two terminals. While

kHg D
M ZR_V7 AZd—V, PeSV (3)

Theorem 3:(Theorem 2 from [1)] A rate-equivocation pair
(R, d) is achievable for Wyner's scheme wittiscrete memo-
ryless symmetric channeifsand only if



this “correction” will be considered in Sectién 1B, we $ha w, is transmitted by Alice). Note that our decoding method

denote the rate®, , and R, , asthe unscaled transmissionconsists of separate channel and secrecy decoding. That is,

and secrecy rategespectively. Bob estimates the secret messagass = ¢ (d(wg) @ x).
Third, note that under the above protocol, an independéltiere is no guarantee that this separate decoding method is

feedback sequence is transmitted every time for eachoptimal. We define Bob’s optimal (joint) decodgF), yielding

new information-carrying sequenoce Eve’s resulting error the optimal estimat@ = £{(wp). Given the feedback sequence

sequence is always different and independent, and acts like, we can lower bound

one-time pad[10]. As is the case with a one-time pad, the

feedback sequence cannot be recycled. If only one feedback Pri¢(ws) =s"} >

sequence is transmitted and used for a set of several message > Z Pr{ip(wg) =t} Pr{y(t ® x) = s} 9)
Eve’s equivocation about the whole set will be the same as her t

equivocation about any one message in the set. Thus given the feedback sequenceBob’s average proba-

Therefore, an additional rate penalty has to be introducgglity of correctly decoding for the secret messagje can be
to address the channel uses required for the feedbagk@$ |ower bounded as
will be shown in Sectiof II=B.
Z Pr{s*} Z Pr{epa }Pr{v|sk} Z Pr{x}-
B. The Overall Rate-Equivocation Region and Secrecy Rate s*1 V,ebA

This section shows how the overall transmission rates of our . Z Pr{wg|v @ epa ®x}Pr{(wg) = Sm} >
model depend on thenscaledrates of the equivalent system o

wg

presented in Sectidn 1A and on the transmission rates used & &

over the forward binary symmetric channels. E D_Pr{st} Y7 Prieva}Privls 1}ZPT{X}
In Sectior(II=A we showed that, if feedback is allowed, we 5" Voo

can artificially form an equivalent system that allows eringd Y Pri{ws|v®ena ©x} Z Pr{¢(wg) =t} -

by Wyner's scheme [1]. All that is needed is an error free wB
public channel to support the transmission of thsequence Pr{vt®x) = s} >
v ®y. By the channel coding theorem, this channel is readily i N

available ifv @y is transmitted at a rat& 1., (the notation > »_ Pr{s*'} > Pr{epa}Pr{vls ]}ZPT{X}

stands for the rate at which the feedback processed signal iss*: V,ebA
transmitted from Alice to Bob) less than the capacity of the . ZPT{WB|V ® epa DX} -
A — B channelCsyp =1 — h(ey). wo

Proposition 5: There exists a channel codé/,n, P ) - Pr{¢(wp) =V @ epa O X} -
(wheren is the size of the messag@/ is the size of the oy (©)
codeword andP, . is the code’s average error probability) that Prig(v@epa)} =s"} =
can transport the sequencep y over the forward channel in = ZPr{s’“} Z Pr{iepa}Pr{visf}.
such a manner that the secret messslgeis recovered with sk V,eba
asymptotically no errors by Bob. - Pr{v(v @ epa)} = s} ZPT{X} Z

Proof: Denote the error sequences introduced by the
feedback channels by, o — for Alice — andeyg — for Eve.

X
) . X Pr{wg|v ®epa & x} -
According to [1] if the rate of the secret message is less than

(d
R, then there exists an encoding/decoding technique such - Pr{¢(wp) = v ® epa ® x} >)
that for anyr > 0 there existsVy > 0 such that the average (1- Prisk P P ki
probability of correctly decoding for the secret messsfgeis v Z ris }v%;A r{epa}Privis™}-
ZPT‘{Sk]} Z Pr{epa }Pr{v|s™} - ok 2
= Privv e ena)} =57} = (1= )2 (10
Pr{i(v@®epa) =s"}>1—-v (7) Inequality (a) follows from (3), inequality(b) from the fact

for n > Ny, wherey(-) is Bob’s secrecy decoder. that)_, F'(t) > F(t)|¢=vee,a @x fOr any positive function”,

- , hile the equality(c) from simply re-arranging the terms. In
Moreover, according to Gallager’s second corollary of The
orem 5.6.2. [12], there exists @/, n, P..) code for Bob's inequality(d) we used((B) and the fact th& {ven s Ox} =

forward channel with the property that if the transmissiater Pr{x} (due _to the Crypto lemma [11]). while inequality
is * = Rap, < Cap, then for anyw > 0 there exists (e) follows directly from [I). The resulting average error

7 o 4

Ny > 0 such that the average probability of correctly decodin?fObab'“ty at Bob is thus

a given transmitted messages P <2v—17, (11)

L= Pe.= Y Pr{t}Pr{wg|t}Pr{¢(ws) =t} > 1 —v (8)yhich goes to zero ag — 0. [
wi,t DenoteCar = 1 — h(ds) the capacity of Eve’s forward

for n > Ny, where¢(-) is Bob’s channel decoder anetg  channel. Note that iiC4sr > Cup, Eve will also be able
is Bob’s received sequence over the forward channel (whendecode the sequense® y with no errors asymptotically.



However, Eve's equivocation about the secret mességeés Rd < HSMRS " (15)

maintained due to the feedback processing. On the other, hand M+n Rappp+1 7

if Cap < Cap, Eve cannot decode for the messagep This yields an overall secrecy rate of

y. Under this scenario, a secret message can be transmitted R

from Alice to Bob by Wyner's scheme, without using any R = Rs,uﬂ. (16)

feedback. The optimal tradeoff between the rate of encoding Rap.pot1

a secret message directly through Wyner’s scheme and #1e rat  Proof: The proof follows from Propositioris 5 and 6m

Rap, s, at which a feedback-processed secret message should

be forwarded to Bob will be discussed in Secfion IV. In whatj|| T 4e FIRsT APPROACH EAVESDROPPERS FORWARD

follows, we prove that Eve’s equivocation about the fee#bac ¢ anNNEL LESSNOISY THAN LEGITIMATE RECEIVER' S

processed secret message is maintained regardless of the CHANNEL

forwarding rateR 4 g, fs. : . ) . .
Proposition 6: Eve’s equivocation about the secret message!n is section we show a first approach to increasing the

does not decrease because of channel coding for the forwgfg'ecy rate by using our feedback-based scheme. We prove
channel. that it can achieve a strictly positive secrecy rate and & non

Proof: Let wg denote Eve's received signal over th&Mmpty rate-equivocation region even if the eavesdropper’s

forward channel ands*' denote the secret message. Alsdorward channeld — [ is less noisy than the legitimate

recall the error sequences corresponding to the feedb&EgEVErs channel — B. The case wheml — B is less

channels were denoted ley, o (for Alice’s feedback channel) noisy th‘:’mA — Eis studied- in Sectio@/. ,
anden (for Eve's feedback channel). If Eve’s forward channel is less noisy than Bob’s forward

Eve’s equivocation about the secret message is channel, or equivalently; < ¢, then no messages can
be transmitted at any level of secrecy over the — B
H(s" |wg,x @ epg) > H(s"|[vo y,x @ epp) = channel by Wyner’'s method [1]. If we take the forwarding rate
= H(s’“|v © epE ® epa,X D epr) = Rap, sy arbitrarily close to Bob’s forward channel capacity
_ k1 C 4, We obtain the following result which is a straightforward
= H(s"lvoen @eva),  (12) adaptation of Theoref 7.
where the inequality follows since®* — v &y — wg form Corollary 8: For anyr, > 0 there exists a code which
a Markov chain, and the last equality is due to the Cryptncodes thé:-sequences” into the M-sequencew!, such
lemma [11] and the fact that the probability distributionsof that if Bob receiveswd! and Eve receivesvh!, we have
is uniform over{0, 1}" (implying thatx ¢ epx is independent ]’Efn > 2R — v, Ay > d -, andP. < vy, as long as
of (s, v epg ®epa)). Hence Eve’s equivocation can only

increas_e because of the imperfect forvya_rd channells._ | 0< " R < Cap Ry, (17)
The impact of the forward channel finite transmission rate M+n Cap+1

on the overall achievable rates is reflected in a scaling ®f th

unscaledrates by the rate used over the forward liRK g . 0<d< H, (18)

That is, a sequence @i, bits carryingk; = nR; ,/H; secret

symbols is mapped to an-sequencev by Alice’s secrecy " Rd< H, Cas s (19)

encoder, such that’* ~ R;,. Next, Alice computesr @y, M+n = "Cap+1 7

and feeds this signal to the channel encoder. Singey is This yields an overall secrecy rate of
a sequence of i.i.d. uniform bits (as shown in Secfion]ll-A),

its error free transmission requires an approximate nuraber Rso = Rs,uﬁ- (20)

M = RA’; o channel uses. Hence, the; source bits are Cap +1

transmitted inA/ channel uses. The following remark is in order. Maurer’s “secrecy capac-
An additional number ofi channel uses have to be considity with public discussion” [5] is upper-bounded as follaws

ered for the transmission of the required feedback sequence ~

x. Noting that - = 742 we can state the following Cs(Pyz1x) < max I(X;Y]Z) (1)

result.

Theorem 7:For any vy, by choosingy such thaty, >
max{v, 2v—1?}, we can find a code — comprising the origina
(n, k1,d, Pe,1) secrecy code, the forwafd/, n, P, ) channel
code and the feedback — which encodes khesequence®:
into the M-sequencav}!, such that if Bob receivesN and
Eve receivesvh!, we havefls > T R—vo, Ay > d—w,

where X, Y and Z denote the input and the outputs of the
on-perfect channel (in our case the input to feedback adann
t Bob and the outputs at Alice and Eve, respectively),2rd
denotes the probability distribution of input. It is also noted
in [5] that in the case of binary symmetric channels, the uppe
bound is achieved. For our case, this means thattisealed

_— M+n secrecy rate; ., = h(e,+0p —2€,0,) —h(ep) can be increased
andP. ; <y, as long as no further.
However, for a practical system with imperfect forward
0< " p< Tt (13) P y P

channels, the objective should be to maximize therall
secrecy rate rather than thenscaledsecrecy rate. In the
0<d< H,, (14) remainder of this section we provide a simple example to

~“M+n RAB,fb'i‘ 1 b
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Fig. 2. The operator corresponding to the repetition coglireprocessing.

prove that by altering the feedback sequence we can increase

the overall secrecy rate of the system over the value Fig. 3. Overall secrecy rate achievable by our feedbackrsetfere ; = 0.02
anddy = 0.01.
Cap

Cap+1

provided by the maximization of the unscaled secrecy rate. Although the above result may seem counter-intuitive (in
éight of Maurer’s Theorem 4 [5]), the improvement in our case
results exactly from the imperfection of the forward chdane
So far we assumed that the feedback i.i.d. uniform sequerggich translates to scaling coefficients for all achievahtes,
of bits x is transmitted by Bob with no further processing. a5 shown in Sectiof I[3B.
Further processing of the feedback sequence results iNote that if a ratel /N repetition coding is used for the
equivalent feedback channels with altered error proti&sili transmission of the feedback sequence, the total number of

Although the overall achievable secrecy rate depends on #iannel uses needed for feedbackiis, leading to the overall
rate at which the feedback is transmitted, an error and raigcrecy rate

reducing encoding/decoding scheme for the feedback sequen
implemented among the three parties can improve the system’ p - "%  _ p )
performance. One such simple scheme, which preserves the ~ 7/Rap,so +nN " NRap,jp +1

independence between the symbolsyofafter decoding, is The unscaled secrecy rafe, , increases withV, while the

obtained if Bob encodes the feedback sequeRcesing correction factory 542 decreases withV, hence the need

repetition coding of ratd /N, and Alice and Eve employ theqg find the optimal value ofV that maximizesR, .
optimal decoding scheme, which is majority decoding. The some numerical results ’

oK1 rate-equivocation region, throughout this paper we focos o
;o 2K +1 i1 \2K+H1—i illustrating the improvements in the achievable secredg ra
b= N R ) (23) . . secre
( due to feedback. We first consider a model in which the
forward channels have crossover probabilitigs= 0.02 and
and oK1 8¢ = 0.01, respectively. In this scenario, Wyner's scheme
/ 2K +1 i1 _ s \2K+1—i cannot deliver a secret message from Alice to Bob at any
5= S )= &) . (24) camn _
positive rate. However, the secrecy rates achievable by our
, , ) . feedback based scheme (in Figure 3) are strictly positive
where N = 2K + 1 if Nis odd andN = 2K +2if N'is (gxcept in the pathological cases whin= 0 or ¢, = 0.5).
even, andx” > 0. o In Figured? an@5 we show the additional improvement in
The optimum/ that maximizes the overall secrecy ratgne gyerall achievable secrecy rate obtained if we useitipet
can be obtained numerically. The improvement in the overlhging for the transmission of the feedback sequence, and
secrecy rate due to repetition coding, as well as the optimgl, ontimal repetition ordeN. Although the improvement is
choice of N' will be shown in Figurd 4 anl5 of SectiénllV. yarginal, it proves that Maurer's upper bound on the secrecy

However at this point we note that a processing method thagsacity with public discussion [5] does not hold if the fare
decreases equivalent crossover probabilities is bett@nwh nannels are imperfect.

is decreased more thaf, i.e. when the strength of Bob’s
channel is increased relative to that of Eve’s. By inspectin
(23) and[(24), we notice that the operator correspondingito o
preprocessing method is exponential. It is therefore ewgec
that the method gives better results whgn< §,, as can be
seen from Figur&l2 (this phenomenon is indeed observed iflf ¢; < d;, a non-empty rate-equivocation region and a
our numerical results of Sectign]lV) . strictly positive secrecy rate less thah = Cap — Cag are

R570 = [h(eb + 0p — 261,55) — h(éb)] (22)

Processing the feedback sequence improves performanc

nRs .y RaB,fb (25)

i=K+1

i=k+1

IV. THE SECONDAPPROACH LEGITIMATE RECEIVER'S
FORWARD CHANNEL LESSNOISY THAN EAVESDROPPERS
CHANNEL



Improvementin secrecy rate due to feedback repetiton coding picked according to the output message of a uniform source
of entropy H,, = my — ks, which can carry useful information
for Bob [2].

At a first glance, it would appear that by encoding the mes-
sagev @y into thems — ko non-secret bits, we could transmit
it asymptotically error free to Bob, at a rate arbitrarilpsé to
Cuap — Cs = Cyg, in addition to the original secret message
s®2 . In this case, even if Eve had perfect access to these bits
(which she has not), the equivocation of both secret message
would be preserved. This argument is the starting point ef th
proposed mixed secrecy scheme of [8] (see Appehdix A for
more remarks on [8]). Unfortunately, the argument above is
false. By using the sequeneedby = v x D epa to pick the
coset representative to be transmitted over the forwardredia
the equivocation of the secret messafe encoded into the
other ks bits is compromised. As shown in Appendi} A, this
OptimalN for feedback repettion coding happens because Eve has access to a distorted version of the
feedback sequence® epg, Which is correlated withv @ y.

Therefore we need an encoding technique in which Eve'’s
information about the message® y, obtained through @
epE, does not influence the secrecysbf. Such a technique is
readily provided by [2]. The encoding technique of [2] aimis a
transmitting not only a secret message from Alice to Bob, but
also a common message from Alice to both Bob and Eve. The
code is designed following a 2-cycle maximal construction
idea. First, a sub-code which can carry information rejiabl
over both channels, at a sub-optimal rate is picked for the
common message. Other codewords are then added to the sub-
code (in two cycles) — such that Bob can distinguish between
any two codewords, while Eve can only distinguish between
Fig. 5. The optimal value ofV" for feedback repetition coding. any two codewords corresponding to the same secret message

— until no more such codewords exist.

) _ ) o Adapting this strategy to our case, we can treat the sequence
asymptotically achievable Wlthout feedl_oack [1]. In thistgen v@y as a common message, intended for both Bob and Eve. In
we show that even under this scenario, sometimes feedbagfition to the common message, we can also transmit a secret
can improve the achievable secrecy rate. For example, Whﬁ@ssaggkg to Bob. Since the common message is designed
C; is small compared td’43,and the unscaled secrecy ratg, pe perfectly decoded by Eve, the additional information
achievable with feedback; ., is relatively large (i.e. when cqontained inx @ epp cannot compromise the secrecy of
the channelB — A is significantly better than the channelkr. The drawback is that the transmission of a common
B — E, while the channell — B is only slightéy better than message decreases the rate at which the secret medsage
the channeld — E) , we can havels < Ry g 245 can be conveyed to Bob [2]. However, the transmission of

However, in general, neither Wyner's original scheme, neih additional secret messagfe, encoded in the sequenee
our feedback based scheme is optimal. Instead, as we s@alh make up for this loss and, in many circumstances, bring
see shortly, encoding a combination of a secret message anhficeable improvements over Wyner's scheme [1].
feedback-processed message into the forwarded sequeqice |n order to pursue this path, we first need to establish what
can achieve a higher overall secrecy rate. is the optimal tradeoff between the common message rate and

The method behind the direct part of Wyner's Theorem 2 [he secret message rate. Denote by, Wp and Wx the
assumes the transmission e, bits, containingks = n2Cs  input to the forward channel and the outputs at Bob and Eve,
secret bits, by mapping the,-bit secret message" to a respectively. According to Theorem 1 of [2], the two rates
specific coset. The rest ofi; — ko bits correspond to the have to satisfy:

index of the randomly picked coset representative which is

Secrecy rate improvement

o

Fig. 4. Secrecy rate improvement due to feedback repetaazting.

Secrecy rate improvement

transmitted. Since Bob can decode the transmitted codeword R. < I(V;Wg|U) — I(V; Wg|U), (26)
perfectly, he has access to atl, bits. Thems — ko non-
secret bits are neither secret to, nor can they be decoded R, <min[I(U;Wg),I(U; Wg)], (27)

by Eve without errors [2]. It was assumed in [1] that these

bits are picked randomly (according to a uniform distribo)i where R. is the secret message ratB. is the common
and carry no information. In their extension of Wyner’s workmessage rate, artd andV are two auxiliary random variables
Csiszar and Korner [2] observe that these bits can actually $uch thaty — V — W4 — Wpg, Wg form a Markov chain.



For our special BSC case, and under the scenario wheré®nce we pick the auxiliary channel crossover probabifity
e; < 7, we can further simplify[(27): we can compute

R, < I(U; Wg). (28) Ry =1—h(y+d5 —2v5y) (32)

Following the proof of Corollary 3 in [2], we can writé (26)and
as: RE = [h(d5) — hlef)] —
Re < I(V;Wg|U) — I(V; Wg|U) —[h(y + 85 — 2787) — h(7 + €5 — 2vey)). (33)
]

=1(V;Wp) = I(V;WEg) = [I(U; Wg) — I(U; W) Similar arguments to those in the previous section apply to
=[I(Wa;Wpg) — I(Wa; Wg)] show that the messages® y, containing the secret message
—[I(Wa; Wg|V) — [(Wa; Wg|V)] — sk, can now be transmitted to Bob asymptotically error free
U W) — I(U; W), (29) at a rate arbitrarily close tdz}, in the form of a common
(U: W (U W), message. In addition, another secret messdgecan be
where the equalities follow from the fact thatif — Y — z transmitted simultaneously to Bob at rate closefo In the
form a Markov chain, therd (Y; Z) = I(X; Z) + I(Y; Z|X) remainder of this section we calculate the resulting ovVeral
(Lemma 1 in [2]). Note that the ternil(Wa;Wg|V) — Secrecy rate. N _ _
I(Wa; Wg|V)] is always positive [2], and is minimized for ~Proposition 12:1f the legitimate receiver's channel is less

V = Wy4. The condition in[{20) is thus reduced to noisy than the eavesdropper’s channel, the secrecy rate
Re <[I(Wa;Wg) = I(Wa; Wg)] — R, = max |max (e + RCRS’U), CapRou (34)
’ ¥ R:+1 Cap +1
—[[(U;Wg) — I(U; Wg)], (30) . .

is achievable by our feedback-based scheme, wirend

or equivalently R are given by[(3P) and(83), respectively.
Proof: Define the equivocations A; =
Re < I(Was Wp|U) = I(Wa; We|U). B LH(sh |wh,x" + eps”) and Ay = AH(s"|wh),

At this point we are looking for the auxiliary r(.jmdomwheres’C2 is the ko-sequence of secret source symbols that

variableU, and its relationship with the channel input rando'ﬁ;e_encode_d in the codewowd)' as a secret message, and
variable W4, that achieve the points on the boundary of the lisa d|_st|nctk1-sequence of secret source symbols that are
(R., R.) region described above. The only information abo@c0ded in the sequeneed y by our feedback scheme. The
U that is provided in [2], is that its alphabet size may, Wimou'selg[uencev @y is in turn mapped into the same codeword
loss of generality, be assumed to be at most three lettgysrlar™”a @S @ common m(lev.?sage. The transmitted codewd(t
than the alphabet o4 (in our binary case, the alphabet ofS réceived by Eve asg’. We know that for any > 0 there
U would have at most five letters). exists such an encoding technique which satisfies
. The following threg results(two propositions _and one con- kzj\;ls >Ry—v, Ny>dy—v, Pog<u, (35)
jecture) greatly simplify the search for the optimal awadi
random variable and channel. The two propositions are pov@s long as
and the_ arguments behind the conjecture are presented, iy < Ry < Cap, 0<ds<H, Reds<H.,R:, (36)
Appendix[B.
Proposition 9: The optimal auxiliary random variabl& and
can be defined, without loss of optimality, over a three- ki H. —_—
dimensional alphabet. Min 2B —v, M zdi—v, Pea<v, (37)
Conjecture 10:The optimal auxiliary random variabl&  as long as
can be defined, without loss of optimality, over a binary

R
alphabet. 0< R < Reugeiy 0<d < H,, (39)
Proposition 11:If U is considered binary, then its optimal Ridy < HSRS_,ule—jrl.

distribution over its two-dimensional alphabet (pick it{@is 1}

for convenience) is a uniform one. Moreover, the optim

auxiliary channel that linkg/ to the physical channel input

W4 is a simplt_a binary symmetric channel. _ A — 1 H(s", s%2 [wM x™ + epe™). (39)
In the remainder of this paper we shall assume thas k1 + k2

a binary, uniform random variable, linked &4 through a gjnceskt ands*: are independent, we can write

BSC of crossover probability. Note that even if Conjecture

[I0 were false, this assumption would not interfere with the N L+ ka

achievability of our secrecy rates. Instead, our rates @oul ki A4 ko ki A4 ko

lower-bound the secrecy rates achievable under the optimidte that the overall rate at which the secret source is 4rans

distribution of a ternaryU and the corresponding optimalmitted is now%. Therefore, a correction 01{4Mﬂ has

auxiliary channel betweeti and W 4. to be applied to the rat&,. As a result, the rate-equivocation

a The equivocation of the secret message at Eve is now
(Jefined as:

As. (40)



palr (R7 d) |S aChIevab|e |fR — min{ M]\f_n R2 + Rl,CAB} Secrecyraleach\evablewilhfeedbackscheme:sf=0v01,6(=0v02
andd = —5—d, + kl’%kzd} Note that this implieR < Cxp

ki+ko
andd < H,.
Also, due to Corollarf}, ifM is large enough, we have
kads — MR} andkid; — (M + n)%RM. Due to [35) 0s
and [37) we also have, + ky — Aﬁ;”(l\ﬁn Ry + Ry), SO o
we can write gos
kydy + kads 1[ M R!R.., e
d= A1 g Rf 4 e (41 o
k1 + ko R IMtn e Ryl (41) -
Recall that for this case, the-sequencev @ y is encoded 05
in the M-sequencew’! at rate R;. Thus, 7 = R}, which
implies - = =, leading to

1 R+ RiR.u

d— H,
T RT R4

(42)

Fig. 6. Secrecy rate achievable by the feedback schemesfer 0.01 and
q §p = 0.02.
an
Rd N H (R: + RzRSKUI)
R 4+1

Note that the condition for achieving equality asymptdtjca
(as M — o0) in [@3) above is that the two levels of

Optimum value of y for the feedback scheme: £70.01, 6(=0.02

(43)

secrecy operate dt.ds = H,C! and R1d; = HSR?—_ZHRS,U
respectively. ‘
Several comments are in order. if = 0, we obtain

Optimum y

R = Cap, and R} = 0. However in this case, since no
secret message is transmitted directly by Wyner’s scherae, w
can safely transmit the feedback-processed message & a r
Rag, i, = Cap justlike in (Subsectiofll). This discontinuity
in v = 0 is why in (34) we have to compare the result of
the maximization ovefy (corresponding to the mixed scheme)
with the rate achieved by the pure feedback scheme.
.0'5’ we h,aveR.: — 0, andR; = Cap — Cap = C.S’ reSlflltlr.]g .Fig. 7. The optimal value ofy for the feedback scheme whep = 0.01
in Wyner’s original scheme [1] — hence no discontinuity iRnds, = 0.02.

~ = 0.5. Any value of~ in the open interval0,0.5) results

in a combination of the two schemes. |

Some more numerical results over the forward channel. The main idea behind this construc
To illustrate the performance of our second approach {@n is based on the capability of the legitimate transmitte
implementing the feedback-based secrecy scheme, we eonsidjice) to transmit two types of messages simultaneous]y [2
a model in which the forward channels have crossover prof-irst secret message to Bob, and a common message to both
abilities ey = 0.01 and §y = 0.02, respectively. The secrecygop and Eve. In our case, the common message carries a
rate achievable by Wyner’s original schemeCis = 0.06. second secret message, the encoding of which is based on
In Figure[6 we show the overall achievable secrecy rafgyificially degrading Eve’s equivalent channel by the uge o
when we use our feedback scheme, for different values of th&eedback sequence. But on a deeper level, the encoding of
crossover probabilities characterizing the feedback b0 pgth secret messages uses the same principle developdd in [1
The corresponding optimal value of the parameter given in - g3nd none of them uses an explicit secret key.
Figure[7. Recall that whenever= 0.5, our feedback scheme | this section, we discuss another approach to increasing
reduces to Wyner's scheme, and hence the achievable seCiggysecrecy rate, namely when the feedback-based scheme is
rate is C's. Also, wheny = 0, our scheme uses the whole;seq on the reversed channel (in the sense that the secret
capacity Csp of Bob's forward channel to convey a secrefyessage encoded with the help of our feedback-based scheme
message encoded with the help of the feedback sequenceigngoyy transmitted from Bob to Alice instead of from Alice
additional directly encoded secret message is presend. 1§ Bop) to send a secret key from Bob to Alice, much like in
improvements are significant. [7] and [8] (in fact the scenarios of [7] and the correct pdrt o
[8] can be considered as special cases of our reversed mixed
V. THE THIRD APPROACH THE REVERSEDFEEDBACK  feedback scheme.). Alice can subsequently use this seeyet k
SCHEME as a one-time pad, for transmitting a secret message of the
The feedback-based scheme discussed in the previous seene entropy [10] to Bob.
tion encodes two secret messages into the sequence trestsmit Although this new protocol requires more bandwidth than
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Secrecy rate achievable with reversed feedback scheme:£'=0.02. 6'=D.01

the previous one, it can sometimes achieve better overe
performance in terms of rate-equivocation region and sgcre
rate. However, this can only happen under the (necessary b
not sufficient) condition that the rate at which the secret ke
is transmitted from Bob to Alice exceeds the secrecy rate
achievable by the original feedback scheme.

Denote byR; , the supremum of the rates at which Bob can
transmit a secret key (or a one-time pad) to Alice by usinc
the feedback scheme developed in the previous section on tl
reversed channel. Note th#t, , can be obtained from the .
expression ofR; o in (34) by replacinges by €, d; by d, 0s
and vice versa.

To acquire this secret key, Alice and Bob engage in ¢
protocol which is the reversed version of the one describe
in the previous sections. Alice broadcasts a random feddbac )
sequence of: bits. Bob can then encode secret bits into E}g;Sd.Ogéirggfsi:rggyl.rate achievable by the reversedotezédscheme for
an n-sequence, which is addedmod 2 to Bob’s received
feedback sequence, and then the result is further encotted in
an M-sequence for asymptotically error free transmission ovgfedback sequence from Alice to Baly, for the transmission
the B — A and B — E channels. of the secret key from Bob to Alice, antd’ for the transmis-

If Cpa > Cgpg, the samel-sequence can carry ansion of the secret message from Alice to Bob), we can write
additional secret message bf bits. A number of M + n  the overall achievable secrecy rate as

channel uses are thus required for the transmission of a

o o o
w = o

o
N

Secrecy rate

0.1

k. = ki + ko-bit secret keyr, and are accounted for in Rg, 5= % =
the expression o2, , (that is, R, , = 752-). v n+ Mt
After adding the secret keyf" to a secret messagg®~ of = (C,+Cp)=Cyup——22 44
g o o oy ZACERESY) AP Cr+R., (44)

her own (also ak,-bit sequence), Alice encodes the result
into an M’-sequence for the forward channel. Note henghere in the second equality we used the fact fat- C; =
that because Alice uses a secret key, the secreay’ofis Cap and that
preserved (by the C_rypto _Iemma [11)) eveg if Ev?c has perfect ;- kv /(n + M) R,
access to the resulting.-bit sum sequencet” © s, *r. R A MM R M+ ket M) Crt Ry (45)

At this point, Alice could choose to encrypt everything she o } '
transmits to Bob. However, that strategy would require the AN observation is now in order. Although a secret key of
generation of a long secret key, and hence cause a large (8fgth equal to that of the transmitted message may be gen-
loss due to feedback — recall that in our results we coupfated by our reversed feedback scheme, employing Wyner's
the bandwidth expenditure due to feedback. Instead, a mixggginal scheme, when possible, in addition to the encoypti
secrecy encoding strategy on the forward link may be optim& the secret key is always optimal. Indeed, Wyner's scheme
For example, a special adaptation of our reversed feedb&y@rantees the transmission of a secret message withotit was
scheme is possible whefi,z > C 4. Recall that in Section N9 any resources othgr than tng’ bits of the forward
[VIlwe made a comment about the possibility to transmit ¢annel sequence, while encrypting a message by a secret
secret message, encoded in the cosets of a code, at a fg¥generated as above requires additional resourcesrthat g
arbitrarily close to the secrecy capacifiy = max{Cap — linearly with the size of the secret key. For example, gelirega
Cag,0}, while using the feedback-processed sequangey & Secret key Iong_enoggh to encrypt the whole secret message
(that was carrying a separate secret message) for seleiting(0f Size M ;%CAB bits) yields an achievable secrecy rate equal
exact coset representative to be transmitted. In Seclithis/ 0 Cas e, 5% -, Which is always less than the secrecy rate
was not possible due to the fact that Eve had some informatiﬁchFR%jgw above, achieved by the mixed scheme.
aboutv @y, from its received feedback sequence epg. In Numerical Results
the present scenario, however, the messédge> s*- is totally For the first data set, of Sectiénlllle { = 0.02 andd; =
unknown to Eve, and can be safely used for selecting the co8#ll), the achievable secrecy rate and the optimdbr the
representative. reversed feedback scheme are given in Figlires § hnd 9.

Thus, a firstkq-bit secret message — denote it by — The improvement in the overall secrecy rate when using
can be transmitted from Alice to Bob using Wyner’s originahe reversed feedback scheme instead of the regular fededbac
scheme [1], at a ratd% ~ (. A second secret messagescheme, i.e. the functiomax{0, R, ,s — Ry}, is shown in
s.F* can be transmitted at a rat@;—, ~ Cr (we denoted Figure[I2. Note that the reversed mixed feedback scheme is
Cr = min{Cap,Cag}) by using the secret keyf~ generated usually a better choice when Eve’s feedback channel is worse
through a reversed feedback scheme. than Alice’s (i.e.d, > €).

With this notation, and taking into account alk- M + M’ For the second data set, of Section ¥y (= 0.01 and
channel uses involved in the protocol (isefor the reversed §; = 0.02), the secrecy rateR; ; achievable by the re-
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Optimum value of y for the reversed feedback scheme:z,:U.OZ. 6'=0.01 Secrecy rate achievable with reversed feedback scheme:£'=0.01. 6'=D.02

”
w,

|

Optimum y
Secrecy rate

0.5

0.3

Fig. 9. The optimal value ofy for the reversed feedback scheme wherFig. 11. Secrecy rate achievable by the reversed mixed éekdécheme for
ef = 0.02 anddy = 0.01. ef = 0.01 anddy = 0.02.

Improvement in secrecy rate with reversed feedback scheme, relative to feedback scheme:z,:o.oz, 67:0'01 Improvement in secrecy rate with reversed feedback scheme, relative to feedback scheme:z,:o.ol, 6':0.02

Secrecy rate improvement
Secrecy rate improvement

Fig. 10.  Improvement in overall secrecy rate when using teemsed Fig. 12, Improvement in secrecy rate when using the revarseed feedback
feedback scheme instead of the regular feedback scheme: 0.02 and  scheme instead of the regular mixed feedback schemes: 0.01 andd; =
dy = 0.01. Represented is the functionax{0, Rs .y — Rs,0} 0.02. Represented is the functianax{0, R ,; — Rs,0}.

versed mixed feedback scheme is given in Figurk 11, apgh Wyner’s scheme, whilenixed feedback schemefers to

the improvement over the regular mixed feedback schemg, jmplementation of Sectidii]V, under the optimal mixture
is depicted in Figuré]9. Once again, the reversed feedbaglyeen the pure feedback scheme and Wyner’s scheme. Sim-
scheme performs better whep > «,. It is also interesting t0 5 considerations hold for theeversed pure/mixed feedback
note the existence of a region in tg, J,) plane (around the schemg(see SectiofiV).

diagonale, = 4;), where our regular mixed fee_dback scheme Our scheme requires a new random sequence to be fed back
beats Wyner's scheme even when> 4, (see FiguréJ6), and from Bob, for each codeword that Alice wants to send over

it also beats the reversed mixed feedback scheme even Wjglg,ard channel, in a manner similar to the one-time pad
e» < 0y (see Figur¢ 12). We have shown that Theorem 4 in [5], which provides an

VI. CONCLUSIONS
TABLE |

We presented a scheme that achieves a strictly positive possisLe IMPLEMENTATION OF OUR FEEDBACK-BASED SECRECY
secrecy rate even if the eavesdropper’s channel is beter th SCHEME.
the legitimate receiver’s channel, and improves the aelbiev _ — i

. , . [ Channel conditions| Possible implementation |
secrecy rate if the eavesdropper’s channel is worse.
. . Cpa <Cgg Pure feedback scheme

We proposed several collaborative secrecy encoding meth- Cap < Cun
ods, all of which use our feedback scheme. Depending on the Cpa > CiE Pure feedback scheme OR
channel conditions, the possible ways in which the feedback Cap < Can Reversed mixed feedback scheme

. . Cpa <Cgg Mixed feedback scheme OR

based scheme can be us_ed are summarized in Mlable I. The | o~ < o - Reversed pure feedback schenle
term pure feedback schenia Table[] denotes the feedback Cpa > CgE Mixed feedback scheme OR
scheme as implemented in Secfian 111, i.e. without beingadix Cap > Cap Reversed mixed feedback scheme
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upper bound on the achievable secrecy rate when the publi@he key to Wyner's secrecy scheme is to employ an
channel is error free, does not hold if this condition is na&ncoding scheme that guarantees tHétv @ y) is arbitrarily
satisfied. The derivation of such an upper bound for the mar®se to, but less than,(w); wil) [1]. Indeed, this is how
realistic scenario with imperfect public channels is siilider the encoding in [8] is performed.
our investigation. However, recall that due to the feedback scheme, Eve also
The main advantage of our scheme is that it makes physibals access to a distorted versioof Bob’s feedback sequence
layer security protocols implementable with only minor rex. In order for Wyner's scheme to still work, we would need
strictions imposed on the eavesdropper’s channel, réetti to have H (v & y|z) arbitrarily close tol(w}!; whi, z). But
which can be easily ensured by perimeter defense (transmig can write
sion power is low enough to guarantee a minimum error
probability for any terminal situated outside a safe petarje H(v@ylz) <H(v®y) =

~ I(whh wih) < I(wih wi, 2), (46)

APPENDIXA _ . . .
WHY THE APPROACH OF[8] | s WRONG where the first inequality holdg in a strict sense and follows
) ) from the fact that, because is the output of a Wyner-
Since the ideas of [8] are closely related to our feedba%e channel encoder (for the artifficially created equnal

secrecy encoding scheme, and since [8] suffers from sevelghnnels — see Sectiball-A), it cannot be uniformly distré
subtle flaws, we dedicate this appendix to pointing out threg., {0,1}", and thusv @ y is not independent o&. The

of these. ) _.second inequality follows from the fact that— x — y —
First, all the rates of [8] are expressed without considgrin,m _, wM form a Markov chain.

the expense of channel uses due to feedback. While this maﬁ}
seem like a minor inconvenience as far as the forward channel A
. . PPENDIX B
rates are involved, |t.becom.es a problem when the forwardirHE OPTIMAL TRADEOFF BETWEEN THESECRET RATE
channel rates are mixed with orthogonal feedback channe
: . o AND THE COMMON RATE
rates, as in sections 3 and 4 of [8]. More specifically, the ]
secrecy rate achievable by Wyner's scheme on the forwardn SectionllV we have already shown that for an eaves-
channel cannot be added to the rate at which the secret KEgPPer channel with input (at Alice)Y’ and outputsY’
is generated over the orthogonal feedback channel unless B the legitimate receiver (Bob) and at the eavesdropper
channels use the exact same codeword length. (Eve), for which the Bob’s channel is less noisy than Eve'’s
Second, even if both the feedback and forward chann&@nnel, a pair of one secret and one common messages can be
used the same codeword length, the time sharing idea.t@nsmitted .with asymptotically zero average error prdkgb
[8] is questionable. It is claimed in [8] that time sharing i&f and only if the rateR. of the secret message and the rate
performed between two modes of operation on the feedbalk Of the common message satisfy
channel: V\/yner’s regul_ar scheme, and our feedback secrecy R. < I(X;Y|U) - I(X; Z|U) (47)
scheme. With the notation of [8], the two modes of operation
would normally yield secrecy rateS? = [h(6,) — h(e)]t and
(Wyner’'s scheme) an® s = h(ep +_§b — 2_eb6b) — h(f?b) (our R. < I(U; 2), 48)
feedback scheme). Thus, the optimal time sharing between
these schemes is to always use our feedback secrecy schetmerel is an auxiliary random variable such tHat— X —
(i.e. « = 0 always in [8]) sinceR,s > C? regardless of the YZ form a Markov chain. This result is a straightforward
channel parameters. particularization of Theorem 1 in [2], for the case when Bob’
Third, our secrecy feedback scheme cannot be mixed withannel is less noisy and we are only concerned with common
Wyner’s secrecy scheme the way that was claimed in sectiomdd secret messages. From an application point of view, an
of [8]. The mixed strategy of [8] was inspired by some of ouefficient communications system that uses the framework in
results in [9], which are incorrect, and for which we assunf@] to transmit two such messages should operate on the
full responsability. boundary of the(R., R..) rate region. For example, onde.
Whenever this type of mixing is desired, special care shouklset to a fixed valug??, the system should aim to use the
be taken to ensure that Eve’s information about the randanaximum secrecy rat®. available under these circumstances.
feedback sequence, obtained on the feedback channel, db@s is equivalent to finding the optimal auxiliary random
not compromise the secrecy of Wyner's scheme. We havariable U, and the optimal relation (we shall henceforth
already mentioned this in SectiénllV. In the following, welenote this relation by the term “channel”) betwe€nand
give a more detailed explanation of this account. With th&, that maximizeR, for a given value ofR..
notation on Sectioh 1V, consider the secret message encodetio the best of our knowledge, at present there exist no
by Wyner’s schema*, the auxiliary message — the one usestudies that solve the above problem, even for the simplest
for picking the exact bin representative [1], and which aim& of cases. In this appendix, we prove that the alphabet size of
another secret message, encoded with the use of the feedldaatan be reduced frorh letters to just3 letters without any
scheme v @y, Alice’s transmitted sequenoe}! (which is loss of optimality (Proposition]9), and then provide argatse
a deterministic function o§*> andv @ y), and Eve’s received to back our Conjecture10 that the boundary of tii&, R,)
sequencavyl. rate region is achieved by a binary auxiliary random vagabl
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U. Finally, we prove Proposition 11 which states that/ifis we can find ap’ € [0,0.5] that yields the same values for

considered binary, then the optimal auxiliary channel,olhi I(U; Z), I(X;Y|U) andI(X; Z|U).

connectdJ to the channel input random variablg is a BSC. By Caratheodory’s theorem, singé C R3, any point in the
Our model consists of a main channel and an eavesdroppenvex hull of¢” can be expressed as a convex combination of

channel modeled as BSCs with crossover probabilitiesd only four points belonging t&'. Using the same strengthened

J, respectively, such that< § ande, 6 € [0,0.5]. version of Caratheodory’s theorem, due to Eggleston, as in

[2], we can state that, Sinc€ is aconnecteﬂ subset ofR3,

any point in its convex hull can be expressed as a convex

A. Proof of Propositiori 19

combination of only three points belonging #@ (Theorem

Following the proof of the admissibility of the size con+g (jiy on page 35 of [14]). This implies that it is enough to

straints in [2], we make the following denotations:

fz(p) = Pr(X =0[p) = p(0) = p, (49)
fy(P) = H(Y|p) = h(e +p — 2ep), (50)
f:(p) = H(Z|p) = h(d +p — 20p), (51)

wherep denotes the probability mass function (p.m.f.)6f
while f,(p) and f.(p) are the respective entropies Bfand

consider only three values pfto be able to produce any triple

of feasible values for the quantities in_{54)[={55). But sinc

p is controlled by the value of the auxiliary random variable
U, we can therefore eV be ternary

B. Arguments Supporting Conjectlire] 10

In Conjectured 1B below we state that, due to the special
form of the set%” defined in the previous subsection, we can
actually express any point in its convex hull as the convex

Z, whenX has the p.m.f. given bp. In the remainder of this combination of only two of its points.

appendix we shall denote— b = a+b— 2ab, as the formula

This would imply that it is enough to consider only two

is the same as the crossover probability of a concatenafionvalues ofp to be able to produce any triple of feasible values

two BSCs with respective crossover probabilitieand b.

for the quantities in[(34) [(35) and hence we canlebe

Think of p as a function under the control of the randorbinary.

variableU. Thus, for anyu in the alphabet o/, if U = u,

then the p.m.f. ofX becomesp,,. We can now write, as in {(p, h(e + p — 2ep),

(2],

ZPT = u) fz(Pu), (52)
I(U-Z)—H(Z) H(Z|U) =

ZPT =u)f:(Pu)s (53)

I(X;Y|U) =H(Y|U) - HY|X) =
= Z Pr(U = u) [fy(pu) — h(€)], (54)

and

I(X;2|U) = (ZIU) H(Z|X) =

=2 PrlU =) [F:(p) = A0, (55)

Conjecture 13:Consider the 3D space curve given By=
h(6 +p —2dp))|p € [0,0.5]}. Any point
in the convex hull of¢ can be expressed as the convex
combination of only two points belonging .
Supporting arguments

Recall the denotation: — p = = + p — 2xp. The space
curve ¢, along with its projections onto thé, h(e — p))
and (p, h(d — p)) planes, is represented in Figdrel 13. We
shall henceforth call the axis the “abscissa” axis, because
it is the common abscissa axis of both, (e — p)) and
(p,h(6 — p)) planes. Also represented in the figure is a
random pointM in the convex hull of¢’, which was obtained
as the convex combination of three poimMsB and C be-
longing to%’. Due to Eggleston’s extension of Caratheodory’s
theorem [14], we know that any point in the convex hull of
% can be obtained in this manner. In the remainder of this
argument we shall denote b¥,; the projection of the point
P onto the(p,h(d — p)) plane, and byP. the projection
of the point P onto the(p,h(e — p)) plane, for any point

where we used the fact that — X — Y Z form a Markov P € {A,B,C,D,E,F,G, M, X,Y}. Moreover, we denote
chain and thatd(Z|X) and H(Y | X) are independent of the by 43 and%. the projections of the space curvéon the two
actual probability distribution of{ (the variables are relatedplanes, respectively.

through BSCs). Note thatf (Z) is completely determined by ~The present conjecture shows that in fact the paihtan

the channel coefficients and o and by Pr(X
in (62).

Consider the triple(f,(p), f,(p), f-(p)) = (p
2¢ep),
G2 -

Jhie+p—

h(6 + p — 26p)) and note that all of the quantities inandp, of p, such that if we denote the point§. =
{5B) above are expressed in terms of the same convex), Xa = (pz,h(0 — pz)), Ye = (py, h(e — py)) and

= 0) defined be obtained as the convex combination of only two points of

¢ - in Figure[I3 these points were denoted X¥yandY .
This is equivalent to showing that there exist two valpgs
(pz, h(e —

combination of one of the members of our triple. In othe¥a = (py, h(0 — py)), then M, belongs to the line segment
words, any set of feasible values for the quantitiesid (52)connectingX. andY,, and simultaneously/; belongs to the

(58) is uniquely determined by a point in the convex hull of

the set€ = {(p, h(e+p—2ep), h(6+p—2dp))|p € [0,0.5]},
which is a 3D space curve. Note here that for any [0.5, 1]

2See definitions in [13]. A separation of a topological sp&cés a pair
of nonempty, disjoint, opesubsets ofS, whose union isS. The spaceS is
connectedf there does not exist a separation ®f
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Fig. 13. The space curve and its projections onto (ihgh(e — p)) and  Fig. 15. Projections of the space curve: existence of aisolut
(p,h(6 — p)) planes.

interestM, that isM = a A+ bB + ¢C, wherea, b, c € [0, 1]
anda 4+ b+ ¢ = 1. This implies that the intersection between
the segmentsl,. B, and C. M., and the intersection between
A4B4 and C; M, have the same abscissa, namé@%.
Due to Remark 14 above, this means that the segiight,
intersects the curv&, at a pointE, which has an abscissa
p1,. Which is less than the abscissa, of the intersectiorDy
betweenCy; M, and %), as illustrated in Figure_15.

Denote byD. the point of ¢, with the same abscissa 4
3 as Dy. It is clear that the segmer?.C. passes above the
8 point M., while D,C,; passes through/,,.
' By a similar rationale, the intersection between the segsnen
A.M,. and B.C., and the intersection betweefy,;\,; and

B S0 B;Cq4 have the same abscissa, nam@%{:iﬂ. Due to Remark
A\ /,’ [I3, this means that the segmeht)/, intersects the curvé,

B oo at a pointG. which has an abscissa . which is less than

F(,/ ¢, the abscissa. 4 of the intersectionty; betweenA,M,; and

******************************************************* %. (see Figuré_15). Denote b, the point of 4. with the
same abscissp, 4 as Fy. It is clear that the segmemt. F.
Fig. 14. Projections of the space curve: simplified problem. passes below the poit., while A;F,; passes through/,.
This implies that there exists a valyg € [p1,p1.4] Of
p such that, if we denoteX., = (p.,h(e — p.)) and
line segment connectiny, andY;. At this point, assume that x; = (p,., h(6 — p.)), then the segment&, M, and X M,
the following remark is true. intersect the curve®, and %, respectively, at point¥, and
Remark 14:(This remark has been checked numerically;; with the same abscisga, € [ps.4, p3]. HenceX. and X,
However, we currently do not have a theoretical proofgre the projections of a poink € %, andY, and Y, are
Consider four random pointd, D, B, C on the space curve the projections of a point” € %, and the segmenXY” goes
%, such that their respective abscissaepa,p2,ps satisfy throughM.O
p1 < ps < p2 < ps, and construct their projections
Ae, De, B.,C, and Ay, Dy, Bq, Cy on the planegp, h(e — -
p)) and (p, h(6 — p)), respectively. Then the abscissa of th&: Proof of Propositior_T1
intersection of the segment$. B. and D.C, is greater than  Let U belong to{0,1} (whether that is optimal or not
the abscissa of the intersection of the segmeti$}; and is still an open problem), and denote = Pr(U = 0).
DyCy. The result is illustrated in Figufe114 for two tuples oSSince X is also binary, the channel betweéhand X can
points, namely(4, D, B,C) and (A, B, F, C). be completely characterized by two transition probakditi
Recall that the pointsi, B and C' determine our point of Denotea = Pr(X = 1|U = 0) (this impliesPr(X = 0|U =
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1—¢q 1

) = ) )

e(T—2) +uB)  z(l—2)+uly)
B)

_ 21— 2)p(y) —gpula) — (1 = q)u(B)] + p(y)(qu(B) + (1 — g)u(a)) — pla)pu( (66)
(@(1 =) + p(e) (@1 —2) + pu(B))(@(1 - z) + u(y))
0) =1-—a),andp = Pr(X = 0|U = 1) (this implies We can now write
PrX=1U=1)=1-f).
Note that [4Y) and{48) can be rewritten as: Reu(0.5,7,7) = Reulq, @, B) =
=h(y =€) —qhla—¢e)+ (1 —q)h(B = ¢). (65)

Re < [H(Z]X) - H(Y|X)] -

~[g(H(Z|U = 0) — H(Y|U = 0)) +

+1-q)(H(Z|U=1)-H(Y|U =1))] (57)
and

Re < H(Z) = [qH(Z|U = 0) + (1 - )H(Z|U = 1)], (58)

With the notation above, the upper bounds can be written asDenoteg’(x)

Re,u(Qa «, ﬂ) S [h(a) - h(E)] -
—lg(h(a = 8) — h(aw — €)) +

+(1 = q)(h(B = 0) = h(B — ¢€))] (59)
and
—[gh(a = ) + (1 — q)h(B —9)],  (60)

wherea — b stands fora(1 — b) + b(1 —a) = a + b — 2ab

as before, and we emphasized the dependence of the uppgj,, suppose thay(z)

bounds upon the triplég, «, 3).

any triple(q, «, 5) and denote
Re(g, 0, 8) =1 —[gh(a = 6) + (1 — q)h(8 — §)].  (61)

We show that if we replace this triple by the triple.5, v, ~)
(corresponding to a uniform distribution 6f over{0,1} and
a BSC betweer/ and X), such that

Ra(q, 0, 8) = R2(0.5,7,7) (62)

Defineg(z) = h(y = x) — qgh(a — z) + (1 —q)h(8 — z).
From [62) we have thag(d) = 0, and it is straightforward
to see thay(0.5) = 0. Since we only discuss the case when
d < 0.5, we now know thay(x) has two different zeros over
the interval[0,0.5]. We need to show that for any< ¢ we
haveg(e) > 0.

492) andg”(x) = LL2) the first and sec-
ond order derivatives of. With the notatioru(z) = (ﬁ(f;zm))z
we can writeg” as in [66).

Since the denominator gf’ is always positive, the equation
¢"(x) = 0 reduces to a second degree equation.iThusg”
has at most two real zeros, which are symmetric with respect
to the point).5, and hence at most one zero (denote it#yin
the interval[0, 0.5]. Moreover, sinceu(x) is a strictly convex
function of z, the coefficient-[u(y) — qu(a) — (1 — ¢)u(B)]
of 22 in the numerator ofy” is strictly positive. This implies
thatg” (z) > 0 for = € [0, 2"].
had more than two zeros on the

) _interval [0,0.5]. Theng’(xz) would have at least two zeros on
In what follows we take a contradictory approach. Consid

e open interval0, 0.5), and hence a total of three zeros in
[0,0.5] (it is straightforward to check that (0.5) = 0). Thus
¢"” would need to have at least two zeros(in0.5). But we
have already shown that this is impossible. Therefg(e,
has only two zeros in the intervdl), 0.5] (these arej and
0.5).

As a consequencey has at least one zero if¥,0.5) —
denote this zero by’. Sinceg’ has a zero ind.5, this implies
that the zera:” of ¢” is in the interval(z’, 0.5). We can now

(we also prove that such & exists always), we have e § < 2/ < 2. We already know thay”(z) > 0 on

Re,u(q,a,ﬂ) S R€7U(0'55777) and Rc,u(q,a,ﬂ) S
R..(0.5,7,7). Therefore, a tripleq, a, §) for which either

[0,2"), thus ¢'(x) is strictly increasing or0, z’], and since
g'(#') = 0, this means thay'(z) < 0 on [0,4]. But since

q # 0.5 or e # 5 holds cannot be optimal, and hence the lagf5) = 0, this means that for any < § we haveg(e) > 0.

part of our theorem is proved.
Note thatR.(q, ., 8) = R.(0.5,~,~) translates to

gh(er = 6) + (1 = g)h(B8 — 6) = h(y — 9), (63)
Since gh(a — 0) + (1 — Q)h(B — d) € [0,1], the binary
entropy function is a bijection ovgd, 0.5] and f(v) =~v — ¢
with § € (0,0.5) is also a bijection oveld, 0.5], we can always
find ay that satisfies[{83). Sinck([ga + (1 — ¢)(1 — B)] —
6) <1 andh([0.57 4+ 0.5(1 — )] = 6) = h(0.5 — 6) =0 it
is straightforward to see that

Rewu(q, o, B) < Re(q, 0, ) =

= R;(0.5,7,7) = Rc.u(0.5,7,7). (64)

Our argument is now complete.
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