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Feedback-Based Collaborative Secrecy Encoding
over Binary Symmetric Channels
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Abstract—In this paper we propose a feedback scheme for
transmitting secret messages between two legitimate parties, over
an eavesdropped communication link. Relative to Wyner’s tradi-
tional encoding scheme [1], our feedback-based encoding often
yields larger rate-equivocation regions and achievable secrecy
rates. More importantly, by exploiting the channel randomness
inherent in the feedback channels, our scheme achieves a strictly
positive secrecy rate even when the eavesdropper’s channelis
less noisy than the legitimate receiver’s channel. All channels are
modeled as binary and symmetric (BSC). We demonstrate the
versatility of our feedback-based encoding method by usingit in
three different configurations: the stand-alone configuration, the
mixed configuration (when it combines with Wyner’s scheme [1]),
and the reversed configuration. Depending on the channel con-
ditions, significant improvements over Wyner’s secrecy capacity
can be observed in all configurations.

Index Terms—Eavesdropper Channel, Secrecy Capacity, Bi-
nary Symmetric Channels, Feedback.

I. I NTRODUCTION

In the context of a broadcast channel with confidential
messages, it was shown in [2] that a strictly positive se-
crecy capacity cannot be achieved for any arbitrary pair of
receiver/eavesdropper channels. In particular, [3] proves that
whenever the eavesdropper’s channel isless noisythan the
receiver’s channel, no secret messages can be exchanged
between the legitimate transmitter and receiver by the con-
ventional method of [1].

This motivated several works [4], [5], [6], [7], [8] to focus
on alternative methods of achieving positive secrecy rateseven
when the legitimate receiver has a worse channel than the
eavesdropper. All these works exploit the idea of feedback
channels.

The simple and interesting method of [4] is based on making
the receiver jam the eavesdropper. The receiver can subtract
its own jamming signal from the received signal, while the
wiretapper is kept totally ignorant of the confidential infor-
mation flowing between the legitimate users. The drawback
of this approach is that the receiver has to function in full
duplex mode. Although an extension to half-duplex mode is
presented in [4] for binary symmetric channels, it relies onthe
assumption that the transmission of symbol0 is equivalent to
the absence of a physical signal. We believe that under this
assumption, the binary symmetric channel is no longer valid
as a simplified model for a physical wireless channel.
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More recently, [7], [8] both use a secret key to enhance
the secrecy throughput of Wyner’s scheme. In [7] the secret
key is communicated through an error-free secure channel,
while in [8] it is transmitted using Wyner’s scheme on the
feedback channels (and thus its secrecy is subject to Alice’s
feedback channel being better than Eve’s). An interesting idea
of [8] is to use time-sharing on the feedback link. Part of
the feedback transmission is used to generate the secret key,
while the remaining part is used to transmit random symbols
with the purpose of providing the “common randomness”
necessary for our secrecy encoding scheme described in this
paper. A mixed secrecy encoding strategy inspired by [9] is
proposed in [8]. The main idea behind this strategy is to
simultaneously transmit a combination of secret messages,
encoded by different methods. However, while a message
encrypted by a secret key can be transmitted at the same time
as a secret message encoded by Wyner’s scheme, the additional
secret message encrypted with the use of a random feedback
sequence does not maintain secrecy. The exact reasons why
both Section IV.B. of [9] and the proposed schemes of [8]
are incorrect will be revealed in Section IV. None of the
previously mentioned works considers the impact of feedback
transmission on the overall bandwidth use. This drawback
becomes critical in [8], where it results in the “secrecy rates”
bearing no physical meaning, as will be shown in Appendix
A.

The concept ofcommon randomnessis introduced in [5],
[6]. Such randomness can be acquired if all terminals attempt
to decode (note that a necessary condition is that the eaves-
dropper cannot decode perfectly) a sequence of random bits,as
for example a data stream transmitted by a satellite at very low
signal to noise ratio (SNR) [5]. Both [5] and [6] study the case
when the legitimate users agree on a secret key by employing
repetitive protocols, which are not efficient for regular data
transmission.

The idea developed in this paper is inspired by a particular
case in [5]. As an example and motivation for the feedback
approach to secrecy in the classical Alice (transmitter) -
Bob (receiver) - Eve (eavesdropper) scenario, [5] developsa
scheme where the common randomness is not received from
some external source (like a satellite), but introduced by Alice
herself, and functions as a secret key which allows Bob to
share a secret message with Alice over a public, error free
channel. Our model changes the roles of Alice and Bob.
Although at some point we make use of the same concept
of public error free channel, we provide techniques that create
such a channel, and show how these techniques impact the
overall secrecy rate. Our results explicitly count the lossin
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the total rate due to the transmission of feedback.
While sharing functional similarities with the well-known

one-time pad[10] encryption scheme, our approach is radi-
cally different in that it requires no secret key to be sharedby
the legitimate parties before the initiation of the transmission
protocol (except maybe a small secret key that guarantees au-
thenticity as in [5]). Instead it exploits the channel randomness
as means of confusing the eavesdropper.

Our contributions can be summarized as follows:

• We show how an adaptation of Maurer’s scheme [5]
can be used to achieve a non-empty rate-equivocation
region and hence a strictly positive secrecy rate over bi-
nary symmetric channels (BSCs) even when the forward
channel between Alice and Eve isless noisythan the
forward channel between Alice and Bob, regardless of
the feedback channel quality between Bob and Alice or
Bob and Eve.

• Our results also indicate how the forward channel capac-
ities scale the overall secrecy rate and what penalties are
incurred by the transmission of feedback sequences.

• We show that even if the forward channel from Alice to
Bob is less noisy than the channel from Alice to Eve,
feedback can sometimes further improve the achievable
rate-equivocation region obtained using Wyner’s classical
method [1]. This is done by dividing the transmission
over the forward channel into two parts, as in [2]. Thus,
we transmit a secret message at a rate less than the
secrecy capacity [1], and allow room for an additional
common message, which carries information “encrypted”
with the help of the feedback sequence. The optimal way
of splitting the forward message rate is found numerically.

• We prove that, for a two-user broadcast channel with both
channels binary and symmetric, the optimal auxiliary
random variable of [2] needed to encode both a secret
and a common message into the transmitted sequence
has an alphabet of size not more than three. Moreover,
we conjecture that the optimal alphabet is binary. If
the auxiliary random variable is considered to be binary
(whether or not this results in loss of optimality), we
prove that the optimal auxiliary channel [2] that links it to
the input of the physical channel is binary and symmetric.

• Finally, we take our scheme a step further and implement
it on the reverse channel (from Bob to Alice, rather than
from Alice to Bob), in order to generate a secret key.
Alice uses this key as a one-time pad for the transmission
of a secret message.

The sequel is organized into seven sections. Sections II-A
and II-B describe the kernel of our scheme. Our adaptation
of Maurer’s idea [5], including the channel model and the
transmission protocol are presented in Section II-A under
the assumption that the forward channels are error free. The
public error free channel and the overall rate-equivocation
region are discussed in Section II-B for a general value of
the forwarding rate. Section III deals with the special case
when the eavesdropper’s forward channel is less noisy than
the legitimate receiver’s forward channel, while section IV
extends the model to the case when the eavesdropper’s forward

channel is worse than the legitimate receiver’s. An alternative
scheme, which reverses our protocol to generate a secret key,
is provided in Section V. Finally, conclusions are drawn in
Section VI.

II. T HE KERNEL

A. The Unscaled Rates

Consider the classical Alice (transmitter) - Bob (receiver) -
Eve (eavesdropper) scenario with binary symmetric channels
(BSCs) between any pair of users. We assume that Eve’s only
form of interfering with the transmission is eavesdropping. Al-
though our present treatment is restrictive to binary channels,
the principles and results therein can be easily extended to
more complex models.

The proposed model is depicted in Figure 1. The transmitter
(Alice) wants to communicate the outputs of a sourceS of
entropyHs to the legitimate receiver (Bob), and maintain some
level of secrecy towards the wiretapper (Eve). The channel
A → B from Alice to Bob is a BSC characterized by its
crossover probabilityǫf , while the binary symmetric channel
A → E from Alice to Eve is characterized by the crossover
probability δf . Similarly, the feedback BSCsB → A (Bob to
Alice) andB → E (Bob to Eve) are characterized by their
crossover probabilitiesǫb andδb, respectively.

The transmission protocol associated with the channel
model in Figure 1 is an adaptation of Maurer’s scheme [5]
and is described as follows. Bob feeds back a sequencex of
n bits representing the independent realizations of a Bernoulli
random variableX with expectationE[X ] = 0.5. Since
the bits are independent and identically distributed (i.i.d),
Alice’s and Eve’s estimate of each bit should be based solely
on the corresponding received bit. Therefore, the bit error
probabilities that affect Alice’s and Eve’s decoding areǫb and
δb respectively. Denote the feedback sequences received by
Alice and Eve asy andz, respectively.

At this point, our feedback-based protocol assumes that
Alice can share information with both Bob and Eve through an
error free public channel, just like in [5]. The implications of
achieving such an error free channel are discussed in Section
II-B.

Since an error free public channel cannot protect Alice’s
information from the eavesdropper Eve, the protocol has to
artificially create a pair of channels that are adequate for the
transmission of secret messages.

For this purpose, if Alice needs to send an n-dimensional
sequencev to Bob, she first computesv⊕y, where⊕ denotes
addition mod 2, and feeds this signal through the error free
channel. Sincex is a sequence of i.i.d. symbols with a uniform
distribution over{0, 1}, the same property holds for the BSC
outputy and, by theCrypto lemma1 [11], [4], for v ⊕ y.

Both Bob and Eve receivev⊕y with no errors. In order to
obtain the original messagev, the optimal strategy for Bob is

1Special care should be applied when using the Crypto lemma [11]. For
instance, ifC is a compact Abelian group andX andE are random variables
over C such thatX is independent ofE and uniformly distributed overC,
thenX+E is uniform andindependent ofE. However,E is not independent
of (X,X + E).
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Fig. 1. System model.

to computev⊕y⊕x, while Eve’s best strategy is to compute
v ⊕ y ⊕ z [5].

As a consequence, a bit error probability ofǫB = ǫb will
affect Bob’s estimate ofv, while a bit error probability of
ǫE = ǫb + δb− 2ǫbδb will affect Eve’s estimate [5]. The result
is an equivalent system in which Eve’s channel is a degraded
version of Bob’s channel, and which is therefore adequate
for the transmission of secret messages from Alice to Bob.
In other words, standard secrecy encoding can be performed
for this equivalent system so that then-sequencev carries a
secret messagesk1 (which will hence forth be represented as
a sequence ofk1 source symbols). A total transmission rate
arbitrarily close to

Rt,u = 1− h(ǫb) (1)

can be achieved asn → ∞, whereh(·) represents the binary
entropy functionh(x) = −x log2(x)− (1− x) log2(1 − x).

We shall now restate some of the definitions in [1] and then
show how Theorem 2 of [1] can be readily applied to our
scenario.

Definition 1: The equivocation of the sourceS of entropy
Hs at Eve is defined as:

∆ =
1

k
H(sk|wM

E
), (2)

where the sequencesk of k source symbols are encoded into
a codewordwM

A
of lengthM which is transmitted over the

broadcast channel, and received by Eve aswM

E
.

Definition 2: The rate-equivocation pair(R, d) is achiev-
able if for anyν > 0 there exists an(M,k,∆, Pe) code as
defined in [1] such that:

kHs

M
≥ R− ν, ∆ ≥ d− ν, Pe ≤ ν (3)

wherePe is the average error probability in decoding forsk

at Bob.
Theorem 3:(Theorem 2 from [1]) A rate-equivocation pair

(R, d) is achievable for Wyner’s scheme withdiscrete memo-
ryless symmetric channelsif and only if

0 ≤ R ≤ CM , 0 ≤ d ≤ Hs, Rd ≤ HsCs, (4)

whereCs = CM −CMW is the secrecy capacity (representing
the maximum rate at which the outputs of the sourceS can be
conveyed from Alice to Bob, while remaining perfectly secret
to Eve) achievable by Wyner’s scheme in this case,CM is the
capacity of Bob’s channel, andCMW is the capacity of Eve’s
channel.

The following corollary, which will prove useful in the
sequel, follows directly from Theorem 3 and Definition 2.

Corollary 4: If (R, d) is an achievable rate-equivocation
pair, then asM → ∞ the number of secret source symbolsk
that can be encoded into theM -sequencewM

A
can approach

the upper-bound

ku =
MCs

d
. (5)

Proof: By Theorem 3 and Definition 2 we havekHs

M
≥

R − ν, which implies kd
M

≥ 1
Hs

(Rd − νd), and taking the
limit Rd = HsCs we get kd

M
≥ Cs −

νd
Hs

. But according to
Theorem 3, we haved ≤ Hs, hence, asν → 0, if we pick
a large enoughM we can obtainkd

M
→ Cs, or equivalently

k → MCs

d
.

If we apply Theorem 3 to the pair of equivalent chan-
nels derived above, we can conclude that there exists a
(n, k1,∆1, Pe,1) code satisfyingk1Hs

n
≥ R− ν, ∆1 ≥ d− ν,

andPe,1 ≤ ν if and only if 0 ≤ R ≤ Rt,u, 0 ≤ d ≤ Hs,
Rd ≤ HsRs,u, whereRs,u is the maximum achievablesecrecy
rate of [1], [2]:

Rs,u = h(ǫb + δb − 2ǫbδb)− h(ǫb). (6)

Several comments are in order. First, note thatRs,u > 0 –
and therefore the rate-equivocation region as defined in [1]is
non-empty – unlessδb ∈ {0, 1} (the assumption that feedback
channels exist impliesǫb 6= 0.5)

Second, the ratesRt,u andRs,u do not represent theoverall
transmission and secrecy rates of our model, since a pair of
binary symmetric channels such as the forwardA → B and
A → E channels cannot provide error free transmission at
infinite rates. The information encoded in the sequencev

mentioned above has to pass through one of these channels
in order to be available at the other two terminals. While
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this “correction” will be considered in Section II-B, we shall
denote the ratesRt,u andRs,u as the unscaled transmission
and secrecy rates, respectively.

Third, note that under the above protocol, an independent
feedback sequencex is transmitted every time for each
new information-carrying sequencev. Eve’s resulting error
sequence is always different and independent, and acts likea
one-time pad[10]. As is the case with a one-time pad, the
feedback sequence cannot be recycled. If only one feedback
sequence is transmitted and used for a set of several messages,
Eve’s equivocation about the whole set will be the same as her
equivocation about any one message in the set.

Therefore, an additional rate penalty has to be introduced
to address the channel uses required for the feedback ofx, as
will be shown in Section II-B.

B. The Overall Rate-Equivocation Region and Secrecy Rate

This section shows how the overall transmission rates of our
model depend on theunscaledrates of the equivalent system
presented in Section II-A and on the transmission rates used
over the forward binary symmetric channels.

In Section II-A we showed that, if feedback is allowed, we
can artificially form an equivalent system that allows encoding
by Wyner’s scheme [1]. All that is needed is an error free
public channel to support the transmission of then-sequence
v⊕y. By the channel coding theorem, this channel is readily
available ifv⊕y is transmitted at a rateRAB,fb (the notation
stands for the rate at which the feedback processed signal is
transmitted from Alice to Bob) less than the capacity of the
A→ B channelCAB = 1− h(ǫf ).

Proposition 5: There exists a channel code(M,n, Pe,c)
(wheren is the size of the message,M is the size of the
codeword andPe,c is the code’s average error probability) that
can transport the sequencev⊕y over the forward channel in
such a manner that the secret messagesk1 is recovered with
asymptotically no errors by Bob.

Proof: Denote the error sequences introduced by the
feedback channels byebA – for Alice – andebE – for Eve.
According to [1] if the rate of the secret message is less than
Rs,u, then there exists an encoding/decoding technique such
that for anyν > 0 there existsN0 > 0 such that the average
probability of correctly decoding for the secret messagesk1 is

∑

s

Pr{sk1}
∑

v,ebA

Pr{ebA}Pr{v|sk1} ·

·Pr{ψ(v ⊕ ebA) = sk1} ≥ 1− ν (7)

for n > N0, whereψ(·) is Bob’s secrecy decoder.
Moreover, according to Gallager’s second corollary of The-

orem 5.6.2. [12], there exists a(M,n, Pe,c) code for Bob’s
forward channel with the property that if the transmission rate
is n

M
= RAB,fb < CAB, then for anyν > 0 there exists

N1 > 0 such that the average probability of correctly decoding
a given transmitted messaget is

1− Pe,c =
∑

wB,t

Pr{t}Pr{wB|t}Pr{φ(wB) = t} ≥ 1− ν (8)

for n > N1, whereφ(·) is Bob’s channel decoder andwB

is Bob’s received sequence over the forward channel (when

wA is transmitted by Alice). Note that our decoding method
consists of separate channel and secrecy decoding. That is,
Bob estimates the secret messages, as ŝ = ψ(φ(wB) ⊕ x).
There is no guarantee that this separate decoding method is
optimal. We define Bob’s optimal (joint) decoderξ(·), yielding
the optimal estimatẽs = ξ(wB). Given the feedback sequence
x, we can lower bound

Pr{ξ(wB) = sk1} ≥

≥
∑

t

Pr{φ(wB) = t}Pr{ψ(t⊕ x) = sk1}. (9)

Thus given the feedback sequencex, Bob’s average proba-
bility of correctly decoding for the secret messagesk1 can be
lower bounded as

∑

sk1

Pr{sk1}
∑

v,ebA

Pr{ebA}Pr{v|sk1}
∑

x

Pr{x} ·

·
∑

wB

Pr{wB|v ⊕ ebA ⊕ x}Pr{ξ(wB) = sk1}
(a)

≥

≥
∑

sk1

Pr{sk1}
∑

v,ebA

Pr{ebA}Pr{v|sk1}
∑

x

Pr{x} ·

·
∑

wB

Pr{wB|v ⊕ ebA ⊕ x}
∑

t

Pr{φ(wB) = t} ·

· Pr{ψ(t⊕ x) = sk1}
(b)

≥

≥
∑

sk1

Pr{sk1}
∑

v,ebA

Pr{ebA}Pr{v|sk1}
∑

x

Pr{x} ·

·
∑

wB

Pr{wB|v ⊕ ebA ⊕ x} ·

· Pr{φ(wB) = v ⊕ ebA ⊕ x} ·

· Pr{ψ(v ⊕ ebA)} = sk1}
(c)
=

=
∑

sk1

Pr{sk1}
∑

v,ebA

Pr{ebA}Pr{v|sk1} ·

· Pr{ψ(v ⊕ ebA)} = sk1}
∑

x

Pr{x}
∑

wB

Pr{wB|v ⊕ ebA ⊕ x} ·

· Pr{φ(wB) = v ⊕ ebA ⊕ x}
(d)

≥

≥ (1 − ν)
∑

sk1

Pr{sk1}
∑

v,ebA

Pr{ebA}Pr{v|sk1} ·

· Pr{ψ(v ⊕ ebA)} = sk1}
(e)

≥ (1− ν)2. (10)

Inequality (a) follows from (9), inequality(b) from the fact
that

∑
t F (t) ≥ F (t)|t=v⊕ebA⊕x for any positive functionF ,

while the equality(c) from simply re-arranging the terms. In
inequality(d) we used (8) and the fact thatPr{v⊕ebA⊕x} =
Pr{x} (due to the Crypto lemma [11]), while inequality
(e) follows directly from (7). The resulting average error
probability at Bob is thus

Pe < 2ν − ν2, (11)

which goes to zero asν → 0.
DenoteCAE = 1 − h(δf ) the capacity of Eve’s forward

channel. Note that ifCAE ≥ CAB , Eve will also be able
to decode the sequencev ⊕ y with no errors asymptotically.
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However, Eve’s equivocation about the secret messagesk1 is
maintained due to the feedback processing. On the other hand,
if CAE < CAB , Eve cannot decode for the messagev ⊕
y. Under this scenario, a secret message can be transmitted
from Alice to Bob by Wyner’s scheme, without using any
feedback. The optimal tradeoff between the rate of encoding
a secret message directly through Wyner’s scheme and the rate
RAB,fb at which a feedback-processed secret message should
be forwarded to Bob will be discussed in Section IV. In what
follows, we prove that Eve’s equivocation about the feedback-
processed secret messagesk1 is maintained regardless of the
forwarding rateRAB,fb.

Proposition 6: Eve’s equivocation about the secret message
does not decrease because of channel coding for the forward
channel.

Proof: Let wE denote Eve’s received signal over the
forward channel andsk1 denote the secret message. Also,
recall the error sequences corresponding to the feedback
channels were denoted byebA (for Alice’s feedback channel)
andebE (for Eve’s feedback channel).

Eve’s equivocation about the secret message is

H(sk1 |wE,x⊕ ebE) ≥ H(sk1 |v ⊕ y,x ⊕ ebE) =

= H(sk1 |v ⊕ ebE ⊕ ebA,x⊕ ebE) =

= H(sk1 |v ⊕ ebE ⊕ ebA), (12)

where the inequality follows sincesk1 → v ⊕ y → wE form
a Markov chain, and the last equality is due to the Crypto
lemma [11] and the fact that the probability distribution ofx

is uniform over{0, 1}n (implying thatx⊕ebE is independent
of (sk1 , v⊕ebE⊕ebA)). Hence Eve’s equivocation can only
increase because of the imperfect forward channels.

The impact of the forward channel finite transmission rate
on the overall achievable rates is reflected in a scaling of the
unscaledrates by the rate used over the forward linkRAB,fb.
That is, a sequence ofm1 bits carryingk1 = nRs,u/Hs secret
symbols is mapped to ann-sequencev by Alice’s secrecy
encoder, such thatm1

n
≈ Rt,u. Next, Alice computesv ⊕ y,

and feeds this signal to the channel encoder. Sincev ⊕ y is
a sequence of i.i.d. uniform bits (as shown in Section II-A),
its error free transmission requires an approximate numberof
M = n

RAB,fb
channel uses. Hence, them1 source bits are

transmitted inM channel uses.
An additional number ofn channel uses have to be consid-

ered for the transmission of the required feedback sequence
x. Noting that n

M+n
=

RAB,fb

RAB,fb+1 , we can state the following
result.

Theorem 7:For any ν0, by choosingν such thatν0 >
max{ν, 2ν−ν2}, we can find a code – comprising the original
(n, k1, d, Pe,1) secrecy code, the forward(M,n, Pe,c) channel
code and the feedback – which encodes thek1-sequencesk1

into theM -sequencewM

A
, such that if Bob receiveswM

B
and

Eve receiveswM

E
, we havek1Hs

M+n
≥ n

M+n
R−ν0, ∆1 ≥ d−ν0,

andPe,1 ≤ ν0, as long as

0 ≤
n

M + n
R ≤

RAB,fb

RAB,fb + 1
Rt,u, (13)

0 ≤ d ≤ Hs, (14)

n

M + n
Rd ≤ Hs

RAB,fb

RAB,fb + 1
Rs,u. (15)

This yields an overall secrecy rate of

Rs,0 = Rs,u

RAB,fb

RAB,fb + 1
. (16)

Proof: The proof follows from Propositions 5 and 6.

III. T HE FIRST APPROACH: EAVESDROPPER’ S FORWARD

CHANNEL LESSNOISY THAN LEGITIMATE RECEIVER’ S

CHANNEL

In this section we show a first approach to increasing the
secrecy rate by using our feedback-based scheme. We prove
that it can achieve a strictly positive secrecy rate and a non-
empty rate-equivocation region even if the eavesdropper’s
forward channelA → E is less noisy than the legitimate
receiver’s channelA → B. The case whenA → B is less
noisy thanA→ E is studied in Section IV.

If Eve’s forward channel is less noisy than Bob’s forward
channel, or equivalentlyδf ≤ ǫf , then no messages can
be transmitted at any level of secrecy over theA → B
channel by Wyner’s method [1]. If we take the forwarding rate
RAB,fb arbitrarily close to Bob’s forward channel capacity
CAB, we obtain the following result which is a straightforward
adaptation of Theorem 7.

Corollary 8: For any ν0 > 0 there exists a code which
encodes thek-sequencesk1 into theM -sequencewM

A
, such

that if Bob receiveswM

B
and Eve receiveswM

E
, we have

k1Hs

M+n
≥ n

M+n
R − ν0, ∆1 ≥ d− ν0, andPe ≤ ν0, as long as

0 ≤
n

M + n
R ≤

CAB

CAB + 1
Rt,u, (17)

0 ≤ d ≤ Hs, (18)

n

M + n
Rd ≤ Hs

CAB

CAB + 1
Rs,u. (19)

This yields an overall secrecy rate of

Rs,0 = Rs,u

CAB

CAB + 1
. (20)

The following remark is in order. Maurer’s “secrecy capac-
ity with public discussion” [5] is upper-bounded as follows:

Ĉs(PY Z|X) ≤ max
PX

I(X ;Y |Z) (21)

whereX , Y andZ denote the input and the outputs of the
non-perfect channel (in our case the input to feedback channel
at Bob and the outputs at Alice and Eve, respectively), andPX

denotes the probability distribution ofX input. It is also noted
in [5] that in the case of binary symmetric channels, the upper-
bound is achieved. For our case, this means that theunscaled
secrecy rateRs,u = h(ǫb+δb−2ǫbδb)−h(ǫb) can be increased
no further.

However, for a practical system with imperfect forward
channels, the objective should be to maximize theoverall
secrecy rate rather than theunscaledsecrecy rate. In the
remainder of this section we provide a simple example to
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Fig. 2. The operator corresponding to the repetition codingpreprocessing.

prove that by altering the feedback sequence we can increase
the overall secrecy rate of the system over the value

Rs,0 = [h(ǫb + δb − 2ǫbδb)− h(ǫb)]
CAB

CAB + 1
(22)

provided by the maximization of the unscaled secrecy rate.

Processing the feedback sequence improves performance

So far we assumed that the feedback i.i.d. uniform sequence
of bits x is transmitted by Bob with no further processing.

Further processing of the feedback sequence results in
equivalent feedback channels with altered error probabilities.
Although the overall achievable secrecy rate depends on the
rate at which the feedback is transmitted, an error and rate
reducing encoding/decoding scheme for the feedback sequence
implemented among the three parties can improve the system’s
performance. One such simple scheme, which preserves the
independence between the symbols ofy after decoding, is
obtained if Bob encodes the feedback sequencex using
repetition coding of rate1/N , and Alice and Eve employ the
optimal decoding scheme, which is majority decoding. The
scheme results in equivalent BSCs with crossover probabilities

ǫ′b =
2K+1∑

i=K+1

(
2K + 1

i

)
ǫib(1− ǫb)

2K+1−i (23)

and

δ′b =

2K+1∑

i=k+1

(
2K + 1

i

)
δib(1− δb)

2K+1−i, (24)

whereN = 2K + 1 if N is odd andN = 2K + 2 if N is
even, andK ≥ 0.

The optimumN that maximizes the overall secrecy rate
can be obtained numerically. The improvement in the overall
secrecy rate due to repetition coding, as well as the optimal
choice ofN will be shown in Figure 4 and 5 of Section IV.
However at this point we note that a processing method that
decreases equivalent crossover probabilities is better when ǫb
is decreased more thanδb, i.e. when the strength of Bob’s
channel is increased relative to that of Eve’s. By inspecting
(23) and (24), we notice that the operator corresponding to our
preprocessing method is exponential. It is therefore expected
that the method gives better results whenǫb < δb, as can be
seen from Figure 2 (this phenomenon is indeed observed in
our numerical results of Section IV) .
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Fig. 3. Overall secrecy rate achievable by our feedback scheme forǫf = 0.02
andδf = 0.01.

Although the above result may seem counter-intuitive (in
light of Maurer’s Theorem 4 [5]), the improvement in our case
results exactly from the imperfection of the forward channels,
which translates to scaling coefficients for all achievablerates,
as shown in Section II-B.

Note that if a rate1/N repetition coding is used for the
transmission of the feedback sequence, the total number of
channel uses needed for feedback isNn, leading to the overall
secrecy rate

Rs,c =
nRs,u

n/RAB,fb + nN
= Rs,u

RAB,fb

NRAB,fb + 1
. (25)

The unscaled secrecy rateRs,u increases withN , while the
correction factor CAB

NCAB+1 decreases withN , hence the need
to find the optimal value ofN that maximizesRs,c.

Some numerical results
Since the secrecy rate is simpler to represent than the

rate-equivocation region, throughout this paper we focus on
illustrating the improvements in the achievable secrecy rate
due to feedback. We first consider a model in which the
forward channels have crossover probabilitiesǫf = 0.02 and
δf = 0.01, respectively. In this scenario, Wyner’s scheme
cannot deliver a secret message from Alice to Bob at any
positive rate. However, the secrecy rates achievable by our
feedback based scheme (in Figure 3) are strictly positive
(except in the pathological cases whenδb = 0 or ǫb = 0.5).

In Figures 4 and 5 we show the additional improvement in
the overall achievable secrecy rate obtained if we use repetition
coding for the transmission of the feedback sequence, and
the optimal repetition orderN . Although the improvement is
marginal, it proves that Maurer’s upper bound on the secrecy
capacity with public discussion [5] does not hold if the forward
channels are imperfect.

IV. T HE SECOND APPROACH: LEGITIMATE RECEIVER’ S

FORWARD CHANNEL LESSNOISY THAN EAVESDROPPER’ S

CHANNEL

If ǫf < δf , a non-empty rate-equivocation region and a
strictly positive secrecy rate less thanCs = CAB − CAE are
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Fig. 5. The optimal value ofN for feedback repetition coding.

asymptotically achievable without feedback [1]. In this section
we show that even under this scenario, sometimes feedback
can improve the achievable secrecy rate. For example, when
Cs is small compared toCAB ,and the unscaled secrecy rate
achievable with feedbackRs,u is relatively large (i.e. when
the channelB → A is significantly better than the channel
B → E, while the channelA→ B is only slightly better than
the channelA→ E) , we can haveCs < Rs,u

CAB

CAB+1 .
However, in general, neither Wyner’s original scheme, nor

our feedback based scheme is optimal. Instead, as we shall
see shortly, encoding a combination of a secret message and a
feedback-processed message into the forwarded sequencewA

can achieve a higher overall secrecy rate.
The method behind the direct part of Wyner’s Theorem 2 [1]

assumes the transmission ofm2 bits, containingk2 = n2Cs

secret bits, by mapping thek2-bit secret messagesk2 to a
specific coset. The rest ofm2 − k2 bits correspond to the
index of the randomly picked coset representative which is
transmitted. Since Bob can decode the transmitted codeword
perfectly, he has access to allm2 bits. Them2 − k2 non-
secret bits are neither secret to, nor can they be decoded
by Eve without errors [2]. It was assumed in [1] that these
bits are picked randomly (according to a uniform distribution)
and carry no information. In their extension of Wyner’s work,
Csiszar and Korner [2] observe that these bits can actually be

picked according to the output message of a uniform source
of entropyHx = m2−k2, which can carry useful information
for Bob [2].

At a first glance, it would appear that by encoding the mes-
sagev⊕y into them2−k2 non-secret bits, we could transmit
it asymptotically error free to Bob, at a rate arbitrarily close to
CAB −Cs = CAE , in addition to the original secret message
sk2 . In this case, even if Eve had perfect access to these bits
(which she has not), the equivocation of both secret messages
would be preserved. This argument is the starting point of the
proposed mixed secrecy scheme of [8] (see Appendix A for
more remarks on [8]). Unfortunately, the argument above is
false. By using the sequencev⊕y = v⊕x⊕ebA to pick the
coset representative to be transmitted over the forward channel,
the equivocation of the secret messagesk2 encoded into the
otherk2 bits is compromised. As shown in Appendix A, this
happens because Eve has access to a distorted version of the
feedback sequencex⊕ ebE, which is correlated withv ⊕ y.

Therefore we need an encoding technique in which Eve’s
information about the messagev ⊕ y, obtained throughx ⊕
ebE, does not influence the secrecy ofsk2 . Such a technique is
readily provided by [2]. The encoding technique of [2] aims at
transmitting not only a secret message from Alice to Bob, but
also a common message from Alice to both Bob and Eve. The
code is designed following a 2-cycle maximal construction
idea. First, a sub-code which can carry information reliably
over both channels, at a sub-optimal rate is picked for the
common message. Other codewords are then added to the sub-
code (in two cycles) – such that Bob can distinguish between
any two codewords, while Eve can only distinguish between
any two codewords corresponding to the same secret message
– until no more such codewords exist.

Adapting this strategy to our case, we can treat the sequence
v⊕y as a common message, intended for both Bob and Eve. In
addition to the common message, we can also transmit a secret
messagesk2 to Bob. Since the common message is designed
to be perfectly decoded by Eve, the additional information
contained inx ⊕ ebE cannot compromise the secrecy of
sk2 . The drawback is that the transmission of a common
message decreases the rate at which the secret messagesk2

can be conveyed to Bob [2]. However, the transmission of
an additional secret messagesk1 , encoded in the sequencev,
can make up for this loss and, in many circumstances, bring
noticeable improvements over Wyner’s scheme [1].

In order to pursue this path, we first need to establish what
is the optimal tradeoff between the common message rate and
the secret message rate. Denote byWA, WB and WE the
input to the forward channel and the outputs at Bob and Eve,
respectively. According to Theorem 1 of [2], the two rates
have to satisfy:

Re ≤ I(V ;WB |U)− I(V ;WE |U), (26)

Rc ≤ min[I(U ;WB), I(U ;WE)], (27)

where Re is the secret message rate,Rc is the common
message rate, andU andV are two auxiliary random variables
such thatU → V → WA →WB ,WE form a Markov chain.
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For our special BSC case, and under the scenario where
ǫf < δf , we can further simplify (27):

Rc ≤ I(U ;WE). (28)

Following the proof of Corollary 3 in [2], we can write (26)
as:

Re ≤ I(V ;WB|U)− I(V ;WE |U) =

= I(V ;WB)− I(V ;WE)− [I(U ;WB)− I(U ;WE)] =

= [I(WA;WB)− I(WA;WE)]−

−[I(WA;WB|V )− I(WA;WE |V )]−

−[I(U ;WB)− I(U ;WE)], (29)

where the equalities follow from the fact that ifX → Y → Z
form a Markov chain, thenI(Y ;Z) = I(X ;Z) + I(Y ;Z|X)
(Lemma 1 in [2]). Note that the term[I(WA;WB |V ) −
I(WA;WE |V )] is always positive [2], and is minimized for
V =WA. The condition in (29) is thus reduced to

Re ≤ [I(WA;WB)− I(WA;WE)]−

−[I(U ;WB)− I(U ;WE)], (30)

or equivalently

Re ≤ I(WA;WB |U)− I(WA;WE |U). (31)

At this point we are looking for the auxiliary random
variableU , and its relationship with the channel input random
variableWA, that achieve the points on the boundary of the
(Re, Rc) region described above. The only information about
U that is provided in [2], is that its alphabet size may, without
loss of generality, be assumed to be at most three letters larger
than the alphabet ofWA (in our binary case, the alphabet of
U would have at most five letters).

The following three results(two propositions and one con-
jecture) greatly simplify the search for the optimal auxiliary
random variable and channel. The two propositions are proved,
and the arguments behind the conjecture are presented, in
Appendix B.

Proposition 9: The optimal auxiliary random variableU
can be defined, without loss of optimality, over a three-
dimensional alphabet.

Conjecture 10:The optimal auxiliary random variableU
can be defined, without loss of optimality, over a binary
alphabet.

Proposition 11: If U is considered binary, then its optimal
distribution over its two-dimensional alphabet (pick it as{0, 1}
for convenience) is a uniform one. Moreover, the optimal
auxiliary channel that linksU to the physical channel input
WA is a simple binary symmetric channel.

In the remainder of this paper we shall assume thatU is
a binary, uniform random variable, linked toWA through a
BSC of crossover probabilityγ. Note that even if Conjecture
10 were false, this assumption would not interfere with the
achievability of our secrecy rates. Instead, our rates would
lower-bound the secrecy rates achievable under the optimal
distribution of a ternaryU and the corresponding optimal
auxiliary channel betweenU andWA.

Once we pick the auxiliary channel crossover probabilityγ
we can compute

R∗
c = 1− h(γ + δf − 2γδf) (32)

and

R∗
e = [h(δf )− h(ǫf )]−

−[h(γ + δf − 2γδf)− h(γ + ǫf − 2γǫf)]. (33)

Similar arguments to those in the previous section apply to
show that the messagesv⊕ y, containing the secret message
sk1 , can now be transmitted to Bob asymptotically error free
at a rate arbitrarily close toR∗

c , in the form of a common
message. In addition, another secret messagesk2 can be
transmitted simultaneously to Bob at rate close toR∗

e . In the
remainder of this section we calculate the resulting overall
secrecy rate.

Proposition 12: If the legitimate receiver’s channel is less
noisy than the eavesdropper’s channel, the secrecy rate

Rs,0 = max

[
max
γ

(R∗
e +R∗

cRs,u)

R∗
c + 1

,
CABRs,u

CAB + 1

]
(34)

is achievable by our feedback-based scheme, whereR∗
e and

R∗
c are given by (32) and (33), respectively.

Proof: Define the equivocations ∆1 =
1
k1

H(sk1 |wM

E
,xn + ebE

n) and ∆2 = 1
k2

H(sk2 |wM

E
),

where sk2 is the k2-sequence of secret source symbols that
are encoded in the codewordwM

A
as a secret message, and

sk1 is a distinctk1-sequence of secret source symbols that are
encoded in the sequencev⊕ y by our feedback scheme. The
sequencev ⊕ y is in turn mapped into the same codeword
wM

A
as a common message. The transmitted codewordwM

A

is received by Eve aswM

E
. We know that for anyν > 0 there

exists such an encoding technique which satisfies

k2Hs

M
≥ R2 − ν, ∆2 ≥ d2 − ν, Pe,2 ≤ ν, (35)

as long as

0 ≤ R2 ≤ CAB, 0 ≤ d2 ≤ Hs, R2d2 ≤ HsR
∗
e , (36)

and

k1Hs

M+n
≥ R1 − ν, ∆1 ≥ d1 − ν, Pe,1 ≤ ν, (37)

as long as

0 ≤ R1 ≤ Rt,u
R∗

c

R∗

c+1 , 0 ≤ d1 ≤ Hs,

R1d1 ≤ HsRs,u
R∗

c

R∗

c+1 .
(38)

The equivocation of the secret message at Eve is now
defined as:

∆ =
1

k1 + k2
H(sk1 , sk2 |wM

E
,xn + ebe

n). (39)

Sincesk1 andsk2 are independent, we can write

∆ =
k1

k1 + k2
∆1 +

k2
k1 + k2

∆2. (40)

Note that the overall rate at which the secret source is trans-
mitted is now(k1+k2)Hs

M+n
. Therefore, a correction ofM

M+n
has

to be applied to the rateR2. As a result, the rate-equivocation
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pair (R, d) is achievable ifR = min{ M
M+n

R2 + R1, CAB}

andd = k1

k1+k2

d1+
k2

k1+k2

d2. Note that this impliesR < CAB

andd < Hs.
Also, due to Corollary 4, ifM is large enough, we have

k2d2 → MR∗
e andk1d1 → (M + n)

R∗

c

R∗

c+1Rs,u. Due to (35)

and (37) we also havek1 + k2 → M+n
Hs

( M
M+n

R2 + R1), so
we can write

d =
k1d1 + k2d2
k1 + k2

→ Hs

1

R

[
M

M + n
R∗

e +
R∗

cRs,u

R∗
c + 1

]
. (41)

Recall that for this case, then-sequencev ⊕ y is encoded
in the M -sequencewM

A
at rateR∗

c . Thus, n
M

= R∗
c , which

implies M
M+n

= 1
R∗

c+1 , leading to

d→ Hs

1

R

R∗
e +R∗

cRs,u

R∗
c + 1

(42)

and

Rd→ Hs

(R∗
e +R∗

cRs,u)

R∗
c + 1

. (43)

Note that the condition for achieving equality asymptotically
(as M → ∞) in (43) above is that the two levels of
secrecy operate atR2d2 = HsC

∗
e andR1d1 = Hs

R∗

c

R∗

c+1Rs,u

respectively.
Several comments are in order. Ifγ = 0, we obtain

R∗
c = CAE , andR∗

e = 0. However in this case, since no
secret message is transmitted directly by Wyner’s scheme, we
can safely transmit the feedback-processed message at a rate
RAB,fb = CAB just like in (Subsection III). This discontinuity
in γ = 0 is why in (34) we have to compare the result of
the maximization overγ (corresponding to the mixed scheme)
with the rate achieved by the pure feedback scheme. Ifγ =
0.5, we haveR∗

c = 0, andR∗
e = CAB −CAE = Cs, resulting

in Wyner’s original scheme [1] – hence no discontinuity in
γ = 0.5. Any value ofγ in the open interval(0, 0.5) results
in a combination of the two schemes.

Some more numerical results
To illustrate the performance of our second approach to

implementing the feedback-based secrecy scheme, we consider
a model in which the forward channels have crossover prob-
abilities ǫf = 0.01 and δf = 0.02, respectively. The secrecy
rate achievable by Wyner’s original scheme isCs = 0.06.

In Figure 6 we show the overall achievable secrecy rate
when we use our feedback scheme, for different values of the
crossover probabilities characterizing the feedback channels.
The corresponding optimal value of the parameterγ is given in
Figure 7. Recall that wheneverγ = 0.5, our feedback scheme
reduces to Wyner’s scheme, and hence the achievable secrecy
rate isCs. Also, whenγ = 0, our scheme uses the whole
capacityCAB of Bob’s forward channel to convey a secret
message encoded with the help of the feedback sequence (no
additional directly encoded secret message is present). The
improvements are significant.

V. THE THIRD APPROACH: THE REVERSEDFEEDBACK

SCHEME

The feedback-based scheme discussed in the previous sec-
tion encodes two secret messages into the sequence transmitted
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andδf = 0.02.

over the forward channel. The main idea behind this construc-
tion is based on the capability of the legitimate transmitter
(Alice) to transmit two types of messages simultaneously [2]:
a first secret message to Bob, and a common message to both
Bob and Eve. In our case, the common message carries a
second secret message, the encoding of which is based on
artificially degrading Eve’s equivalent channel by the use of
a feedback sequence. But on a deeper level, the encoding of
both secret messages uses the same principle developed in [1],
and none of them uses an explicit secret key.

In this section, we discuss another approach to increasing
the secrecy rate, namely when the feedback-based scheme is
used on the reversed channel (in the sense that the secret
message encoded with the help of our feedback-based scheme
is now transmitted from Bob to Alice instead of from Alice
to Bob) to send a secret key from Bob to Alice, much like in
[7] and [8] (in fact the scenarios of [7] and the correct part of
[8] can be considered as special cases of our reversed mixed
feedback scheme.). Alice can subsequently use this secret key
as a one-time pad, for transmitting a secret message of the
same entropy [10] to Bob.

Although this new protocol requires more bandwidth than
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the previous one, it can sometimes achieve better overall
performance in terms of rate-equivocation region and secrecy
rate. However, this can only happen under the (necessary but
not sufficient) condition that the rate at which the secret key
is transmitted from Bob to Alice exceeds the secrecy rates
achievable by the original feedback scheme.

Denote byRs,p the supremum of the rates at which Bob can
transmit a secret key (or a one-time pad) to Alice by using
the feedback scheme developed in the previous section on the
reversed channel. Note thatRs,p can be obtained from the
expression ofRs,0 in (34) by replacingǫf by ǫb, δf by δb,
and vice versa.

To acquire this secret key, Alice and Bob engage in a
protocol which is the reversed version of the one described
in the previous sections. Alice broadcasts a random feedback
sequence ofn bits. Bob can then encodek1 secret bits into
an n-sequence, which is addedmod 2 to Bob’s received
feedback sequence, and then the result is further encoded into
anM -sequence for asymptotically error free transmission over
theB → A andB → E channels.

If CBA > CBE , the sameM -sequence can carry an
additional secret message ofk2 bits. A number ofM + n
channel uses are thus required for the transmission of a
kr = k1 + k2-bit secret keyrkr , and are accounted for in
the expression ofRs,p (that is,Rs,p = kr

M+n
).

After adding the secret keyrkr to a secret messagesrkr of
her own (also akr-bit sequence), Alice encodes the result
into an M ′-sequence for the forward channel. Note here
that because Alice uses a secret key, the secrecy ofsr

kr is
preserved (by the Crypto lemma [11]) even if Eve has perfect
access to the resultingkr-bit sum sequencerkr ⊕ sr

kr .
At this point, Alice could choose to encrypt everything she

transmits to Bob. However, that strategy would require the
generation of a long secret key, and hence cause a large rate
loss due to feedback – recall that in our results we count
the bandwidth expenditure due to feedback. Instead, a mixed
secrecy encoding strategy on the forward link may be optimal.
For example, a special adaptation of our reversed feedback
scheme is possible whenCAB > CAE . Recall that in Section
IV we made a comment about the possibility to transmit a
secret message, encoded in the cosets of a code, at a rate
arbitrarily close to the secrecy capacityCs = max{CAB −
CAE , 0}, while using the feedback-processed sequencev⊕y

(that was carrying a separate secret message) for selectingthe
exact coset representative to be transmitted. In Section IVthis
was not possible due to the fact that Eve had some information
aboutv⊕y, from its received feedback sequencex⊕ebE. In
the present scenario, however, the messagerkr ⊕skr is totally
unknown to Eve, and can be safely used for selecting the coset
representative.

Thus, a firstk0-bit secret message – denote it bys0k0 –
can be transmitted from Alice to Bob using Wyner’s original
scheme [1], at a ratek0

M ′
≃ Cs. A second secret message

sr
kr can be transmitted at a ratekr

M ′
≃ CF (we denoted

CF = min{CAB, CAE}) by using the secret keyrkr generated
through a reversed feedback scheme.

With this notation, and taking into account alln+M +M ′

channel uses involved in the protocol (i.e.n for the reversed
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Fig. 8. Overall secrecy rate achievable by the reversed feedback scheme for
ǫf = 0.02 andδf = 0.01.

feedback sequence from Alice to Bob,M for the transmission
of the secret key from Bob to Alice, andM ′ for the transmis-
sion of the secret message from Alice to Bob), we can write
the overall achievable secrecy rate as

Rs,rf =
k0 + kr

n+M +M ′
=

=
M ′

n+M +M ′
(Cs + CF ) = CAB

Rs,p

CF +Rs,p

, (44)

where in the second equality we used the fact thatCF +Cs =
CAB and that

M ′

n+M +M ′
=

kr/(n+M)

kr/M ′ + kr/(n+M)
=

Rs,p

CF +Rs,p

. (45)

An observation is now in order. Although a secret key of
length equal to that of the transmitted message may be gen-
erated by our reversed feedback scheme, employing Wyner’s
original scheme, when possible, in addition to the encryption
by the secret key is always optimal. Indeed, Wyner’s scheme
guarantees the transmission of a secret message without wast-
ing any resources other than theM ′ bits of the forward
channel sequence, while encrypting a message by a secret
key generated as above requires additional resources that grow
linearly with the size of the secret key. For example, generating
a secret key long enough to encrypt the whole secret message
(of sizeM ′CAB bits) yields an achievable secrecy rate equal
to CAB

Rs,p

CAB+Rs,p
, which is always less than the secrecy rate

CAB
Rs,p

CF+Rs,p
above, achieved by the mixed scheme.

Numerical Results
For the first data set, of Section III, (ǫf = 0.02 and δf =

0.01), the achievable secrecy rate and the optimalγ for the
reversed feedback scheme are given in Figures 8 and 9.

The improvement in the overall secrecy rate when using
the reversed feedback scheme instead of the regular feedback
scheme, i.e. the functionmax{0, Rs,rf − R0}, is shown in
Figure 12. Note that the reversed mixed feedback scheme is
usually a better choice when Eve’s feedback channel is worse
than Alice’s (i.e.δb > ǫb).

For the second data set, of Section IV, (ǫf = 0.01 and
δf = 0.02), the secrecy rateRs,f achievable by the re-



11

0

0.1

0.2

0.3

0.4

0.5

0
0.1

0.2
0.3

0.4
0.5

0

0.1

0.2

0.3

0.4

0.5

δ
b

Optimum value of γ for the reversed feedback scheme: ε
f
=0.02, δ

f
=0.01

ε
b

O
pt

im
um

 γ

Fig. 9. The optimal value ofγ for the reversed feedback scheme when
ǫf = 0.02 andδf = 0.01.

0

0.1

0.2

0.3

0.4

0.5

0
0.1

0.2
0.3

0.4
0.5

0

0.05

0.1

0.15

δ
b

Improvement in secrecy rate with reversed feedback scheme, relative to feedback scheme: ε
f
=0.02, δ

f
=0.01

ε
b

S
ec

re
cy

 r
at

e 
im

pr
ov

em
en

t
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δf = 0.01. Represented is the functionmax{0, Rs,rf −Rs,0}.

versed mixed feedback scheme is given in Figure 11, and
the improvement over the regular mixed feedback scheme
is depicted in Figure 9. Once again, the reversed feedback
scheme performs better whenδb > ǫb. It is also interesting to
note the existence of a region in the(ǫb, δb) plane (around the
diagonalǫb = δb), where our regular mixed feedback scheme
beats Wyner’s scheme even whenǫb > δb (see Figure 6), and
it also beats the reversed mixed feedback scheme even when
ǫb < δb (see Figure 12).

VI. CONCLUSIONS

We presented a scheme that achieves a strictly positive
secrecy rate even if the eavesdropper’s channel is better than
the legitimate receiver’s channel, and improves the achievable
secrecy rate if the eavesdropper’s channel is worse.

We proposed several collaborative secrecy encoding meth-
ods, all of which use our feedback scheme. Depending on the
channel conditions, the possible ways in which the feedback-
based scheme can be used are summarized in Table I. The
term pure feedback schemein Table I denotes the feedback
scheme as implemented in Section III, i.e. without being mixed
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with Wyner’s scheme, whilemixed feedback schemerefers to
the implementation of Section IV, under the optimal mixture
between the pure feedback scheme and Wyner’s scheme. Sim-
ilar considerations hold for thereversed pure/mixed feedback
scheme(see Section V).

Our scheme requires a new random sequence to be fed back
from Bob, for each codeword that Alice wants to send over
the forward channel, in a manner similar to the one-time pad.
We have shown that Theorem 4 in [5], which provides an

TABLE I
POSSIBLE IMPLEMENTATION OF OUR FEEDBACK-BASED SECRECY

SCHEME.

Channel conditions Possible implementation

CBA ≤ CBE Pure feedback scheme
CAB ≤ CAE

CBA > CBE Pure feedback scheme OR
CAB ≤ CAE Reversed mixed feedback scheme
CBA ≤ CBE Mixed feedback scheme OR
CAB > CAE Reversed pure feedback scheme
CBA > CBE Mixed feedback scheme OR
CAB > CAE Reversed mixed feedback scheme
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upper bound on the achievable secrecy rate when the public
channel is error free, does not hold if this condition is not
satisfied. The derivation of such an upper bound for the more
realistic scenario with imperfect public channels is stillunder
our investigation.

The main advantage of our scheme is that it makes physical
layer security protocols implementable with only minor re-
strictions imposed on the eavesdropper’s channel, restrictions
which can be easily ensured by perimeter defense (transmis-
sion power is low enough to guarantee a minimum error
probability for any terminal situated outside a safe perimeter).

APPENDIX A
WHY THE APPROACH OF[8] I S WRONG

Since the ideas of [8] are closely related to our feedback
secrecy encoding scheme, and since [8] suffers from several
subtle flaws, we dedicate this appendix to pointing out three
of these.

First, all the rates of [8] are expressed without considering
the expense of channel uses due to feedback. While this may
seem like a minor inconvenience as far as the forward channel
rates are involved, it becomes a problem when the forward
channel rates are mixed with orthogonal feedback channel
rates, as in sections 3 and 4 of [8]. More specifically, the
secrecy rate achievable by Wyner’s scheme on the forward
channel cannot be added to the rate at which the secret key
is generated over the orthogonal feedback channel unless both
channels use the exact same codeword length.

Second, even if both the feedback and forward channels
used the same codeword length, the time sharing idea of
[8] is questionable. It is claimed in [8] that time sharing is
performed between two modes of operation on the feedback
channel: Wyner’s regular scheme, and our feedback secrecy
scheme. With the notation of [8], the two modes of operation
would normally yield secrecy ratesCb

s = [h(δb) − h(ǫb)]
+

(Wyner’s scheme) andRfbs = h(ǫb+ δb− 2ǫbδb)−h(ǫb) (our
feedback scheme). Thus, the optimal time sharing between
these schemes is to always use our feedback secrecy scheme
(i.e. α = 0 always in [8]) sinceRfbs > Cb

s regardless of the
channel parameters.

Third, our secrecy feedback scheme cannot be mixed with
Wyner’s secrecy scheme the way that was claimed in section 4
of [8]. The mixed strategy of [8] was inspired by some of our
results in [9], which are incorrect, and for which we assume
full responsability.

Whenever this type of mixing is desired, special care should
be taken to ensure that Eve’s information about the random
feedback sequence, obtained on the feedback channel, does
not compromise the secrecy of Wyner’s scheme. We have
already mentioned this in Section IV. In the following, we
give a more detailed explanation of this account. With the
notation on Section IV, consider the secret message encoded
by Wyner’s schemesk2 , the auxiliary message – the one used
for picking the exact bin representative [1], and which contains
another secret message, encoded with the use of the feedback
scheme –v ⊕ y, Alice’s transmitted sequencewM

A
(which is

a deterministic function ofsk2 andv⊕y), and Eve’s received
sequencewM

E
.

The key to Wyner’s secrecy scheme is to employ an
encoding scheme that guarantees thatH(v ⊕ y) is arbitrarily
close to, but less than,I(wM

A
;wM

E
) [1]. Indeed, this is how

the encoding in [8] is performed.
However, recall that due to the feedback scheme, Eve also

has access to a distorted versionz of Bob’s feedback sequence
x. In order for Wyner’s scheme to still work, we would need
to haveH(v ⊕ y|z) arbitrarily close toI(wM

A
;wM

E
, z). But

we can write

H(v ⊕ y|z) < H(v ⊕ y) ≃

≃ I(wM

A ;wM

E ) ≤ I(wM

A ;wM

E , z), (46)

where the first inequality holds in a strict sense and follows
from the fact that, becausev is the output of a Wyner-
type channel encoder (for the artifficially created equivalent
channels – see Section II-A), it cannot be uniformly distributed
over {0, 1}n, and thusv ⊕ y is not independent ofz. The
second inequality follows from the fact thatz → x → y →
wM

A
→ wM

E
form a Markov chain.

APPENDIX B
THE OPTIMAL TRADEOFF BETWEEN THESECRET RATE

AND THE COMMON RATE

In Section IV we have already shown that for an eaves-
dropper channel with input (at Alice)X and outputsY
at the legitimate receiver (Bob) andZ at the eavesdropper
(Eve), for which the Bob’s channel is less noisy than Eve’s
channel, a pair of one secret and one common messages can be
transmitted with asymptotically zero average error probability
if and only if the rateRe of the secret message and the rate
Rc of the common message satisfy

Re ≤ I(X ;Y |U)− I(X ;Z|U) (47)

and

Rc ≤ I(U ;Z), (48)

whereU is an auxiliary random variable such thatU → X →
Y Z form a Markov chain. This result is a straightforward
particularization of Theorem 1 in [2], for the case when Bob’s
channel is less noisy and we are only concerned with common
and secret messages. From an application point of view, an
efficient communications system that uses the framework in
[2] to transmit two such messages should operate on the
boundary of the(Re, Rc) rate region. For example, onceRc

is set to a fixed valueR∗
c , the system should aim to use the

maximum secrecy rateRe available under these circumstances.
This is equivalent to finding the optimal auxiliary random
variable U , and the optimal relation (we shall henceforth
denote this relation by the term “channel”) betweenU and
X , that maximizeRe for a given value ofRc.

To the best of our knowledge, at present there exist no
studies that solve the above problem, even for the simplest
of cases. In this appendix, we prove that the alphabet size of
U can be reduced from5 letters to just3 letters without any
loss of optimality (Proposition 9), and then provide arguments
to back our Conjecture 10 that the boundary of the(Re, Rc)
rate region is achieved by a binary auxiliary random variable
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U . Finally, we prove Proposition 11 which states that ifU is
considered binary, then the optimal auxiliary channel, which
connectsU to the channel input random variableX , is a BSC.

Our model consists of a main channel and an eavesdropper
channel modeled as BSCs with crossover probabilitiesǫ and
δ, respectively, such thatǫ < δ andǫ, δ ∈ [0, 0.5].

A. Proof of Proposition 9

Following the proof of the admissibility of the size con-
straints in [2], we make the following denotations:

fx(p) = Pr(X = 0|p) = p(0) = p, (49)

fy(p) = H(Y |p) = h(ǫ+ p− 2ǫp), (50)

fz(p) = H(Z|p) = h(δ + p− 2δp), (51)

wherep denotes the probability mass function (p.m.f.) ofX ,
while fy(p) andfz(p) are the respective entropies ofY and
Z, whenX has the p.m.f. given byp. In the remainder of this
appendix we shall denotea→ b = a+b−2ab, as the formula
is the same as the crossover probability of a concatenation of
two BSCs with respective crossover probabilitiesa andb.

Think of p as a function under the control of the random
variableU . Thus, for anyu in the alphabet ofU , if U = u,
then the p.m.f. ofX becomespu. We can now write, as in
[2],

Pr(X = 0) =
∑

u

Pr(U = u)fx(pu), (52)

I(U ;Z) = H(Z)−H(Z|U) =

= H(Z)−
∑

u

Pr(U = u)fz(pu), (53)

I(X ;Y |U) = H(Y |U)−H(Y |X) =

=
∑

u

Pr(U = u) [fy(pu)− h(ǫ)] , (54)

and

I(X ;Z|U) = H(Z|U)−H(Z|X) =

=
∑

u

Pr(U = u) [fz(pu)− h(δ)] , (55)

where we used the fact thatU → X → Y Z form a Markov
chain and thatH(Z|X) andH(Y |X) are independent of the
actual probability distribution ofX (the variables are related
through BSCs). Note thatH(Z) is completely determined by
the channel coefficientsǫ and δ and byPr(X = 0) defined
in (52).

Consider the triple(fx(p), fy(p), fz(p)) = (p, h(ǫ + p −
2ǫp), h(δ + p − 2δp)) and note that all of the quantities in
(52) - (55) above are expressed in terms of the same convex
combination of one of the members of our triple. In other
words, any set of feasible values for the quantities in (52) -
(55) is uniquely determined by a point in the convex hull of
the setC = {(p, h(ǫ+ p− 2ǫp), h(δ+ p− 2δp))|p ∈ [0, 0.5]},
which is a 3D space curve. Note here that for anyp ∈ [0.5, 1]

we can find ap′ ∈ [0, 0.5] that yields the same values for
I(U ;Z), I(X ;Y |U) andI(X ;Z|U).

By Caratheodory’s theorem, sinceC ⊂ R
3, any point in the

convex hull ofC can be expressed as a convex combination of
only four points belonging toC . Using the same strengthened
version of Caratheodory’s theorem, due to Eggleston, as in
[2], we can state that, sinceC is a connected2 subset ofR3,
any point in its convex hull can be expressed as a convex
combination of only three points belonging toC (Theorem
18 (ii) on page 35 of [14]). This implies that it is enough to
consider only three values ofp to be able to produce any triple
of feasible values for the quantities in (54) - (55). But since
p is controlled by the value of the auxiliary random variable
U , we can therefore letU be ternary.✷

B. Arguments Supporting Conjecture 10

In Conjecture 13 below we state that, due to the special
form of the setC defined in the previous subsection, we can
actually express any point in its convex hull as the convex
combination of only two of its points.

This would imply that it is enough to consider only two
values ofp to be able to produce any triple of feasible values
for the quantities in (54) - (55) and hence we can letU be
binary.

Conjecture 13:Consider the 3D space curve given byC =
{(p, h(ǫ+ p− 2ǫp), h(δ + p− 2δp))|p ∈ [0, 0.5]}. Any point
in the convex hull ofC can be expressed as the convex
combination of only two points belonging toC .

Supporting arguments

Recall the denotationx → p = x + p − 2xp. The space
curve C , along with its projections onto the(p, h(ǫ → p))
and (p, h(δ → p)) planes, is represented in Figure 13. We
shall henceforth call thep axis the “abscissa” axis, because
it is the common abscissa axis of both(p, h(ǫ → p)) and
(p, h(δ → p)) planes. Also represented in the figure is a
random pointM in the convex hull ofC , which was obtained
as the convex combination of three pointsA,B and C be-
longing toC . Due to Eggleston’s extension of Caratheodory’s
theorem [14], we know that any point in the convex hull of
C can be obtained in this manner. In the remainder of this
argument we shall denote byPd the projection of the point
P onto the (p, h(δ → p)) plane, and byPe the projection
of the pointP onto the(p, h(ǫ → p)) plane, for any point
P ∈ {A,B,C,D,E, F,G,M,X, Y }. Moreover, we denote
by Cd andCe the projections of the space curveC on the two
planes, respectively.

The present conjecture shows that in fact the pointM can
be obtained as the convex combination of only two points of
C - in Figure 13 these points were denoted byX andY .

This is equivalent to showing that there exist two valuespx
andpy of p, such that if we denote the pointsXe = (px, h(ǫ→
px)), Xd = (px, h(δ → px)), Ye = (py, h(ǫ → py)) and
Yd = (py, h(δ → py)), thenMe belongs to the line segment
connectingXe andYe, and simultaneouslyMd belongs to the

2See definitions in [13]. A separation of a topological spaceS is a pair
of nonempty, disjoint, opensubsets ofS, whose union isS. The spaceS is
connectedif there does not exist a separation ofS.
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Fig. 13. The space curve and its projections onto the(p, h(ǫ → p)) and
(p, h(δ → p)) planes.
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Fig. 14. Projections of the space curve: simplified problem.

line segment connectingXd andYd. At this point, assume that
the following remark is true.

Remark 14:(This remark has been checked numerically.
However, we currently do not have a theoretical proof.)
Consider four random pointsA,D,B,C on the space curve
C , such that their respective abscissaep1, p4, p2, p3 satisfy
p1 < p4 < p2 < p3, and construct their projections
Ae, De, Be, Ce andAd, Dd, Bd, Cd on the planes(p, h(ǫ →
p)) and (p, h(δ → p)), respectively. Then the abscissa of the
intersection of the segmentsAeBe andDeCe is greater than
the abscissa of the intersection of the segmentsAdBd and
DdCd. The result is illustrated in Figure 14 for two tuples of
points, namely(A,D,B,C) and (A,B, F,C).

Recall that the pointsA,B andC determine our point of
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Fig. 15. Projections of the space curve: existence of a solution.

interestM , that isM = aA+ bB + cC, wherea, b, c ∈ [0, 1]
anda+ b+ c = 1. This implies that the intersection between
the segmentsAeBe andCeMe, and the intersection between
AdBd and CdMd have the same abscissa, namelyap1+bp2

a+b
.

Due to Remark 14 above, this means that the segmentCeMe

intersects the curveCe at a pointEe which has an abscissa
p1,e which is less than the abscissap1,d of the intersectionDd

betweenCdMd andCd, as illustrated in Figure 15.
Denote byDe the point ofCe with the same abscissap1,d

asDd. It is clear that the segmentDeCe passes above the
pointMe, while DdCd passes throughMd.

By a similar rationale, the intersection between the segments
AeMe and BeCe, and the intersection betweenAdMd and
BdCd have the same abscissa, namelybp2+cp3

b+c
. Due to Remark

14, this means that the segmentAeMe intersects the curveCe

at a pointGe which has an abscissap2,e which is less than
the abscissap2,d of the intersectionFd betweenAdMd and
Cd (see Figure 15). Denote byFe the point ofCe with the
same abscissap2,d asFd. It is clear that the segmentAeFe

passes below the pointMe, while AdFd passes throughMd.
This implies that there exists a valuepx ∈ [p1, p1,d] of

p such that, if we denoteXe = (px, h(ǫ → px)) and
Xd = (px, h(δ → px)), then the segmentsXeMe andXdMd

intersect the curvesCe andCd, respectively, at pointsYe and
Yd with the same abscissapy ∈ [p2,d, p3]. HenceXe andXd

are the projections of a pointX ∈ C , and Ye and Yd are
the projections of a pointY ∈ C , and the segmentXY goes
throughM .✷

C. Proof of Proposition 11

Let U belong to {0, 1} (whether that is optimal or not
is still an open problem), and denoteq = Pr(U = 0).
SinceX is also binary, the channel betweenU andX can
be completely characterized by two transition probabilities.
Denoteα = Pr(X = 1|U = 0) (this impliesPr(X = 0|U =
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g′′(x) =
q

x(1 − x) + µ(α)
+

1− q

x(1− x) + µ(β)
−

1

x(1 − x) + µ(γ)
=

=
x(1− x)[µ(γ) − qµ(α)− (1 − q)µ(β)] + µ(γ)(qµ(β) + (1 − q)µ(α)) − µ(α)µ(β)

(x(1 − x) + µ(α))(x(1 − x) + µ(β))(x(1 − x) + µ(γ))
(66)

0) = 1 − α), and β = Pr(X = 0|U = 1) (this implies
Pr(X = 1|U = 1) = 1− β).

Note that (47) and (48) can be rewritten as:

Re ≤ [H(Z|X)−H(Y |X)]−

−[q(H(Z|U = 0)−H(Y |U = 0)) +

+(1− q)(H(Z|U = 1)−H(Y |U = 1))] (57)

and

Rc ≤ H(Z)− [qH(Z|U = 0) + (1 − q)H(Z|U = 1)], (58)

With the notation above, the upper bounds can be written as

Re,u(q, α, β) ≤ [h(δ)− h(ǫ)]−

−[q(h(α→ δ)− h(α → ǫ)) +

+(1− q)(h(β → δ)− h(β → ǫ))] (59)

and

Rc,u(q, α, β) ≤ h(qα+ (1− q)(1 − β) → δ)−

−[qh(α → δ) + (1 − q)h(β → δ)], (60)

wherea → b stands fora(1 − b) + b(1 − a) = a + b − 2ab
as before, and we emphasized the dependence of the upper
bounds upon the triple(q, α, β).

In what follows we take a contradictory approach. Consider
any triple(q, α, β) and denote

Rx(q, α, β) = 1− [qh(α→ δ) + (1 − q)h(β → δ)]. (61)

We show that if we replace this triple by the triple(0.5, γ, γ)
(corresponding to a uniform distribution ofU over{0, 1} and
a BSC betweenU andX), such that

Rx(q, α, β) = Rx(0.5, γ, γ) (62)

(we also prove that such aγ exists always), we have
Re,u(q, α, β) ≤ Re,u(0.5, γ, γ) and Rc,u(q, α, β) ≤
Rc,u(0.5, γ, γ). Therefore, a triple(q, α, β) for which either
q 6= 0.5 or α 6= β holds cannot be optimal, and hence the last
part of our theorem is proved.

Note thatRx(q, α, β) = Rx(0.5, γ, γ) translates to

qh(α → δ) + (1− q)h(β → δ) = h(γ → δ), (63)

Since qh(α → δ) + (1 − q)h(β → δ) ∈ [0, 1], the binary
entropy function is a bijection over[0, 0.5] andf(γ) = γ → δ
with δ ∈ (0, 0.5) is also a bijection over[0, 0.5], we can always
find a γ that satisfies (63). Sinceh([qα + (1 − q)(1 − β)] →
δ) ≤ 1 andh([0.5γ + 0.5(1− γ)] → δ) = h(0.5 → δ) = 0 it
is straightforward to see that

Rc,u(q, α, β) ≤ Rx(q, α, β) =

= Rx(0.5, γ, γ) = Rc,u(0.5, γ, γ). (64)

We can now write

Re,u(0.5, γ, γ)−Re,u(q, α, β) =

= h(γ → ǫ)− qh(α → ǫ) + (1 − q)h(β → ǫ). (65)

Defineg(x) = h(γ → x)− qh(α → x)+ (1− q)h(β → x).
From (62) we have thatg(δ) = 0, and it is straightforward
to see thatg(0.5) = 0. Since we only discuss the case when
δ < 0.5, we now know thatg(x) has two different zeros over
the interval[0, 0.5]. We need to show that for anyǫ < δ we
haveg(ǫ) > 0.

Denoteg′(x) = dg(x)
dx

andg′′(x) = d2g(x)
dx2 the first and sec-

ond order derivatives ofg. With the notationµ(x) = x(1−x)
(1−2x)2 ,

we can writeg′′ as in (66).
Since the denominator ofg′′ is always positive, the equation

g′′(x) = 0 reduces to a second degree equation inx. Thusg′′

has at most two real zeros, which are symmetric with respect
to the point0.5, and hence at most one zero (denote it byz′′) in
the interval[0, 0.5]. Moreover, sinceµ(x) is a strictly convex
function ofx, the coefficient−[µ(γ)− qµ(α)− (1− q)µ(β)]
of x2 in the numerator ofg′′ is strictly positive. This implies
that g′′(x) > 0 for x ∈ [0, z′′].

Now suppose thatg(x) had more than two zeros on the
interval [0, 0.5]. Theng′(x) would have at least two zeros on
the open interval(0, 0.5), and hence a total of three zeros in
[0, 0.5] (it is straightforward to check thatg′(0.5) = 0). Thus
g′′ would need to have at least two zeros in(0, 0.5). But we
have already shown that this is impossible. Therefore,g(x)
has only two zeros in the interval[0, 0.5] (these areδ and
0.5).

As a consequence,g′ has at least one zero in(δ, 0.5) –
denote this zero byz′. Sinceg′ has a zero in0.5, this implies
that the zeroz′′ of g′′ is in the interval(z′, 0.5). We can now
write δ < z′ < z′′. We already know thatg′′(x) > 0 on
[0, z′′), thus g′(x) is strictly increasing on[0, z′], and since
g′(z′) = 0, this means thatg′(x) < 0 on [0, δ]. But since
g(δ) = 0, this means that for anyǫ < δ we haveg(ǫ) > 0.
Our argument is now complete.✷
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