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Mathematical Programming Decoding of Binary
Linear Codes: Theory and Algorithms

Michael Helmling, Stefan Ruzika, Akin Tanatmis

Abstract—Mathematical programming is a branch of applied polyhedral properties of MLD are discussed in Section Ill.
mathematics and has recently been used to derive new de-|n Section IV a general description of LPD is given. Several
coding approaches, challenging established but often hestic  |inear programming (LP) formulations dedicated to codett wi
algorithms based on iterative message passing. Conceptiin low-d it itv-check tri d ith high-d .
mathematical programming used in the context of decoding OW_ ensity par y.c eck ma r|ces,- codes wi 9 Eyng
include linear, integer, and nonlinear programming, netwak Parity-check matrices, and turbo-like codes are categdriz
flows, notions of duality as well as matroid and polyhedral treory. and their commonalities and differences are emphasized in
This survey article reviews and categorizes decoding metds Section V. Based on these LP formulations, different steam
based on mathematical programming approaches for binary ot research on LPD have evolved. Methods focusing on
linear codes over binary-input memoryless symmetric chanals. efficient realization of LPD are summarized in Section VI
~ Index Terms—Integer programming, LP decoding, Mathema- while approaches improving the error-correcting perfaroea
tical programming, ML decoding, Polyhedral theory. of LPD at the cost of increased complexity are reviewed

in Section VII. Some concluding comments are made in

I. INTRODUCTION Section VIII.

Based on an integer programming ({Pformulation of
the maximum likelihood decoding (MLD) problem for bi- Il. BASICS AND NOTATION

nary linear codes, linear programming decoding (LPD) was __ | ) . } —
introduced by Feldmat al. [1], [2]. Since then, LPD has This section briefly introduces a number of definitions and

been intensively studied in a variety of articles espe;«cialfesuItS from linear coding theory and polyhedral theoryafihi

dealing with low-density parity-check (LDPC) codes. LDP€ most fundamental for the subsequent _teth;

codes are generally decoded by heuristic approaches calle@ Pinary linear block cod&’ with cardinality2™ and block

iterative message passing decoding (IMPD) subsuming sul§?9th 7 is & k-dimensional subspace of the vector space

product algorithm decoding (SPAD) [3], [4] and min-sum(; 1}" defined over the binary fielfl,. C' C {0,1}" is given

algorithm decoding (MSAD) [5]. In these algorithms, probbY ¥ basis vectors of length which are arranged in & x n

abilistic information is iteratively exchanged and updateMatrix G, called the generator matrix of the code?

between component decoders. Initial messages are derivedn€ orthogonal subspace - of C'is defined as

from the channel output. IMPD exploits the sparse struatfire .

parity-check matrices of LDPC and turbo codes very well and,; n. s =

achieves good performance. However, IMPD approaches agfve = v et Zx]y] =0(mod2)forallz € ¢

neither guaranteed to converge nor do they have the maximum

likelihood (ML) certificate property, i.e., if the output 8 and has dimension—k. It can also be interpreted as a binary

codeword, it is not necessarily the ML codeword. Furtheenorinear code of dimension — k& which is referred to as the dual

performance of IMPD is poor for arbitrary linear block codesode ofC. A matrix H € {0,1}™*™ whosem > n — k rows

with a dense parity-check matrix. In contrast, LPD offerform a spanning set o’ is called a parity-check matrix

some advantages and thus has become an important alternaifvC. It follows from this definition thatC is the null space

decoding technique. First, this approach is derived from tof H and thus a vector € {0,1}" is contained inC' if

discipline of mathematical programming which provides-anand only if Hz = 0 (mod 2). Normally, m = n — k and

lytical statements on convergence, complexity, and caress the rows of H € {0,1}(»~%)*" constitute a basis of'*. It

of decoding algorithms. Second, LPD is not limited to sparsgould be pointed out, however, that most LPD approaches

matrices. (see Section VII) benefit from parity-check matrices being
This article is organized as follows. In Section I, notatio extended by redundant rows. Moreover, additional rowsfof

is fixed and well-known but relevant results from codingever degrade the error-correcting performance of LPDs Thi

theory and polyhedral theory are recalled. Complexity aril a major difference to IMPD which is generally weakened

by redundant parity checks, since they introduce cyclehéo t

Tanner graph.

j=1

This work was supported in part by the Center of Mathematimadi
Computational Modeling of the University of Kaiserslauter

M. Helmling, S. Ruzika and A. Tanatmis are with DepartmentMzth-
ematics, University of Kaiserslautern, Erwin-Schroedin§trasse, 67663 2Note that single vectors in this paper are generally coluneotors;
Kaiserslautern, Germany. Ema{lhelmling, ruzikg @mathematik.uni-kl.de  however, in coding theory they are often used as rows of oestri The

1See the table on page 16 for a list of the acronyms used. transposition of column vectar makes it a row vector, denoted /.


http://arxiv.org/abs/1107.3715v4

Let z, 2/ € {0,1}". The Hamming distance between primarily in the context of describing and analyzing IMPD
and z’ is the number of entries (bits) with different val-algorithms. See [6] for a more elaborate introduction.
ues, i.e.d(z,2') = \{1 <j<n:x;# x;}\ The minimum Let C be a binary linear code with parity-check matrik
(Hamming) distance of a codeC), is given byd(C) = andz € C C {0,1}". The index setupp(z) = {j € J : z; =
min{d(x,2’) : x,2’ € C,z # «’'}. The Hamming weight of 1} is called the support of the codeword A codeword0 #
a codewordr € C is defined asw(z) = d(z,0), i.e., the z € C is called a minimal codeword if there is no codeword
number of ones irc. The minimum Hamming weight of' is 0 # y € C such thatupp(y) C supp(z). Finally, D is called
w(C) = min{w(x) : x € C,z # 0}. For binary linear codes it a minor code ofC if D can be obtained fronD by a series
holds thatd(C) = w(C). The error-correcting performance ofof shortening and puncturing operations.
a code is, at least at high signal-to-noise ratio (SNR),etfos  The relationship between binary linear codes and polyhedra

related to its minimum distance. theory follows from the observation that a binary linear €od
Let A € R™>™ denote ann xn matrixand/ = {1,...,m}, can be considered a set of pointshft, i.e.,C C {0,1}" C
J = {1,...,n} be the row and column index sets af, R". In the following, some relevant results from polyhedral

respectively. The entry in row € I and column; € J of theory are recalled. For a comprehensive review on polyiedr
A is given by A; ;. The i™ row and j™ column of A are theory the reader is referred to [7].
denoted byA; and A _;, respectively. A vectoe € R™ is
called thei™ unit column vector ife; = 1,7 € I, ande, = 0 Definition 11.1 A subsetP(A,b) C R™ such thatP(A,b) =
forall h e I\ {i}. {v e R" : Av < b} whereA € R"™*"™ andb € R™ is called

A parity-check matrixf can be represented by a bipartitéx polyhedron.
graphG = (V, E), called its Tanner graph (Fig. 1). The vertex , ,
setV of G consists of the two disjoint node setand.J. The N this article, polyhedra are assumed to'tl;])e rational, the.,
nodes inl are referred to as check nodes and correspond to fiffies ofA andb are taken fromQ. The i row vector of
rows of H whereas the nodes ifi are referred to as variable”s and thei entry of b together define a closed halfspace

nodes and correspond to columnsiéf An edgeli,j] € E {r e R": A; v < bi}. In other words, a polyhedron is the
connects node and j if and only if H;; = 1. Let N; = intersection of a finite set of closed halfspaces. A bounded

{j € J : H; = 1} denote the index set of variables incidenpolyhedron is called a polytope. It is known from polyhedral
to check node, and analogously; = {i € I : H;; = 1} theory that a polytope can equivalently be defined as the
’ J . )

for j € J. The degree of a check nodeis the number of CONVeX hull of a finite set of points. In this work, the convex
hull of a binary linear code” is denoted byconv(C) and

referred to as the codeword polytope.

11101000
Some characteristics of a polyhedron are its dimension,
1101 0100 ) . :
H = 10110010 faces, and facets. To define them, the notion of a valid
0111000 1 inequality is needed.

Definition 1.2 An inequalityr”v < t, wherer € R" and
t € R, is valid for a setP(A,b) € R" if P(A,b) C {v :
rTv < t}.

The following definition of an active inequality is used in
Fig. 1. Parity-check matrix and Tanner graph of an (8,4) code several LPD algorlthms'
Definition 11.3 An inequalityr”v < t, wherer, v € R” and

edges incident to nodein the Tanner graph or, equivalently, ) ; P
t € R, is active atv* € R™ if r' v* =t.

d.(i) = |N;|. The maximum check node degré@g®* is the
degree of the check nodec I with the largest number of \jjig inequalities which contain points oP(A,b) are of
incident edges. The degree of a variable npdé,(j), and the special interest.

maximum variable node degré&** are defined analogously.

Tanner graphs are an example of factor graphs, a gengigkinition 11.4 Let P(A,b) C R" be a polyhedron, let”v <

concept of graphical models which is prevalently used {0pe 5 valid inequality forP(A,b) and defineF = {v €
describe probabilistic systems and related algorithmse Th 4 b) : vTv = t}. ThenF is called a face ofP(4,b). F is

term stems from viewing the graph as the representation 0 roper face ifF # 0 and F # P(A, b)
some global function in several variables that factors ato

product of subfunctions, each depending only on a subsetTdfe dimensionlim(P(A, b)) of P(A,b) C R™ is given by the
the variables. In case of Tanner graphs, the global funésionmaximum number of affinely independent pointsTt{A4, b)
the indicator function of the code, and the subfunctions ameinus one. Recall that a set of vectars ..., v* is affinely
the parity-checks according to single rows it A different independent if the systerﬁZf:l Aok =0, Zle A = 0}
type of factor graphs will appear later in order to describgas no solution other than; = 0 for i = 1,... k. If
turbo codes. Far beyond these purely descriptive purpodan(P(A4,b)) = n, then the polyhedron is full-dimensional. It
factor graphs have proven successful in modern codingyheds a well-known result that ifP(A4, b) is not full-dimensional,



then there exists at least one inequality » < b, such that a linear cost function, namely
A; v = b; holds for allv € P(A,b) (see e.g. [7]). Also, "
we havedim(F') < dim(P(A4,b)) — 1 for any proper face of 2" = argmax P(y|z) = arg minz Az, 1)
P(A,b). AfaceF # () of P(A,b) is called a facet oP(A4,d) z€C zeC
if dim(F) =dim(P(A4,b)) — 1.

In the set of inequalities defined Ifyl, b), some inequalities where the values\; = Iog% are the so-called log-
A; v < b; may be redundant, i. e., dropping these inequalitidi&elihood ratios (LLR). Consequently the IP formulatioh o
does not change the solution set defineddloy< b. A standard MLD is implicitly given as
result states that the facet-defining inequalities giverapete o
non-redundant description of a polyhedrBqA, b) [7]. min{\" z : z € C}. (2)

A point v € P(A,b) is called a vertex ofP(A, b) if there
exist no two other points'!,? € P(A,b) such thatv =
vt v wWith 0 < g < 1,0 < pp <1, andpy + pp = 1.
Alternatively, vertices are zero dimensional facesRdf4, b).
In an LP problem, a linear cost function is minimized on
polyhedron, i.e.min{c’z : x € P(A4,b)}, ¢ € R™. Unless

j=1

Berlekampet al. have shown that MLD is NP-hard in [10] by a
polynomial-time reduction of the three-dimensional matgh
problem to the decision version of MLD. An alternative
%oof is via matroid theory: as shall be exposed shortly,
ere is a one-to-one correspondence between binary msitroi
L . L ) >_and binary linear codes. In virtue of this analogy, MLD is
the LP is infeasible or unbounded, the minimum is attameéguivalent to the minimum-weight cycle problem on binary

on one of the vertices. matroids. Since the latter contains the max-cut problenighvh

The number of constraints of an LP problem may b \own to be NP-hard [11], as a special case, the NP-
very large, e.g. Section V contains LPD formulations Who%rdness of MLD follows.

description complexity grows exponentially with the block Another problem of interest in the framework of coding

Iength for general codes: In such a case itwould be deSItabI(?theory is the computation of the minimum distance of a given
only include the constraints which are necessary to demm'code. Berlekampet al. [10] conjectured that computing the
the optimal solution of the LP with respect to a given objeEll 4o nce of 5 binary linear code is NP-hard as well, which was
functi(_)n. This can pe accomplished_ by iteratively solvihg t proved by Vardy [12] about two decades later. Th,e minimum
associated separation problem, defined as follows. distance problem can again be reformulated in a matroid
theoretic setting. In 1969 Welsh [13] formulated it as the
Definition 1.5 Let P(A,b) C R™ be a rational polyhedron problem of finding a minimum cardinality circuit in linear
andv* € R™ a rational vector. The separation problem is tamatroids.
either conclude that* € P(A,b) or, if not, find a rational In the following, we assumé' C {0,1}" to be canonically
vector (r, ) € R" x R such thatr”v < ¢ for all v € P(4,b) embedded inR"™ when referring toconv(C) (see Fig. 2 for
andr’v* > ¢t. In the latter case(r, ) is called a valid cut. an example). Replacing by conv(C) in (2) leads to a linear
programming problem over a polytope with integer vertices.
We will see applications of this approach in Sections VI angh general, computing an explicit representationcofiv(C)

VII. _ _ ~_is intractable. Nevertheless, some propertieg@fv(C) are
_ There is a fam_ous result about the equivalence of optimizgnown from matroid theory due to the equivalence of binary
tion and separation by Grotschet al. [8]. linear codes and binary matroids. In the following, some

definitions and results from matroid theory are presented. A

Theorem 11.6 Let P be a proper class of po|yhedra (Seéxtensive inVeStigation Of matI‘OidS can be found in [14] or
e.g. [7] for a definition). The optimization problem f@t is [15]. The definition of a matroid in general is rather teclahic
polynomial time solvable if and only if the separation pexhl

is polynomial time solvable. Definition 1.1 A matroid M is an ordered paitM = (J,U)
whereJ is a finite ground set anlf is a collection of subsets
of J, called the independent sets, such that (a) — (c) hold.

(@ beu.
In this section, after referencing important NP-hardnegg) If 4 € ¢/ andv C u, thenv € .

results for the decoding probler_n, we state usefgl Propertigs) If uy,uy € U and |uy| < |us| then there existg € us \ uy
of tr_le codeword p_olytope, exploiting a close relation betwe  gych thatu; U {5} € U.
coding and matroid theory.

Integer programming provides powerful means for modeling In this work, the class off,-representable (i.e., binary)
several real-world problems. MLD for binary linear codes imatroids is of interest. A binaryn x n matrix H defines an
modeled as an IP problem in [2], [9]. Let € R™ be the TFs-representable matroid [H] as follows. The ground set
channel output. In MLD the probability (or, in case of aJ = {1,...,n} is defined to be the index set of the columns
continuous-output channel, the probability densiB(y|x) is of H. A subsetU C J is independent if and only if the
maximized over all codewords € C'. Let z* denote the ML column vectorsH_,,, v € U are linearly independent in the
codeword. It is shown in [1] that for a symmetric memorylesgector space defined over the fidid. A minimal dependent
channel the calculation af* amounts to the minimization of set, i.e., a seV € 27 \ U such that all proper subsets bf

IIl. COMPLEXITY AND POLYHEDRAL PROPERTIES



(0,1, 1) . (0,1,1)

R ’ and the cocircuit inequalities

z3

(1,1,0) ,1,0) ij_ Z zj < |Fl=1
oo Sl jeF j€supp(g)\F 4)
v 0,1 AT (1,0,1) for all 7 C supp(q) with |F| odd
, . [ o wheresupp(q) is the support of a dual minimal codeword
(0,0,0) (0,0,0) q, are valid for the codeword polytope.
. (c) The box inequalitiess; > 0, z; < 1 define facets of
Fig. 2. The codewords of the single parity-check cade= {z € F; : the codeword polytope W(C’L)'> 3andi ¢ J is not
=0 (mod 2)} and the pol ) in R3. e = J < .
n e (mod 2)} and the polytopezonv(C) In contained in the support of a codeworddh- with weight
three.

If d(C+) > 3 andC does not contairf+ ((7,3,4) simplex
code) as a minor, and if there exists a dual minimal
codewordq of weight3, then the cocircuit inequalities

are inl, is called a circuit ofM [H]. If a subset ofJ is a (d)
disjoint union of circuits then it is called a cycle.
The incidence vector® € R™ corresponding to a cycle

C C J is defined by derived fromsupp(q) are facets okonv(C').
e Part (b) of Theorem I11l.2 implies that the set of cocircuit
c 1 if jeC, : . . -
T = 0 ifidC inequalities derived from the supports of all dual minimal
if j¢C. codewords provide a relaxation of the codeword polytope.

The cycle polytope is the convex hull of the incidence vestotn the polyhedral analysis of the codeword polytope the

corresponding to all cycles of a binary matroid. symmetry property stated below plays an important role.
Some more relationships between coding theory and ma- )

troid theory (see also [16]) can be listed: a binary lineateco Theorem II1.3 [17] If a’z < o defines a face afonv(C) of

corresponds to a binary matroid, the support of a codewdiiinensiont, andy is a codeword, then the inequality = < &

corresponds to a cycle (therefore, each codeword correspofls0 defines a face @bnv(C) of dimensiond, where

to the incidence vector of a <_:yc|_e), the support of a minimal o a; if j ¢ supp(y),

codeword corresponds to a circuit, and the codeword poéytop a; = —a; if j €supp(y),

conv(C') corresponds to the cycle polytope. Liétbe a binary ~ .

matrix, M [H] be the binary matroid defined bif (H is a anda=a—a’y.

representation matrix aM [H]) and C' be the binary linear

code defined byH (H is a parity-check matrix o€). It can

easily be shown that the dudl* of C is the same object

as the dual of the binary matroit [1]. We denote the dual ¢ cjrcyit inequalities derived fromupp(q) are facet-defining
matroid by M [G], where G is the generator matrix of’. i shoyid be checked iupp(q) has a chord. For the formal

Usually the matroid related terms are dualized by the prefigfinition of chord, the symmetric differengewhich operates

co”. For example, the circuits and cycles of a dual matro®@l a , nvo finite sets is used. defined HWAB = (A\B)U(B\A).
called cocircuits and cocycles, respectively. The suppoft e that if 4 — Supp(ql') B = supp(gs) andsupp(qo) =
minimal codewords and the supports of codeword€'in are AAB, thengy = q1 + ¢2 (£110d 2).

associated with cocircuits and cocycleshaf[H], respectively.

A minor of a parent matroid\l = (J,U) is the sub- pefinition 1.4 Let go, g1, g2 € C- be dual minimal code-
matroid obtained from\ after any combination of contractionyoqs. If supp(qo) = supp(q1)2 supp(ge) and supp(gr) N
and restriction operations (see e.g. [14]). In the contdxt Qupp(gz) = {4}, thenj is called a chord ofupp(qo).
coding theory, contraction corresponds to puncturing, the
deletion of one or more columns from the generator matrix §feorem 111.5 [17] Let C be a binary linear code without
a parent code, and restriction corresponds to shortenieg, ithe (7, 3, 4) simplex code as a minor and letipp(q) be the
the deletion of one or more columns from the parity-chedpport of a dual minimal codeword with Hamming weight at

matrix of a parent code. _least3 and without chord. Then for alF C supp(q) with | F|
Next, some results from Barahona and Grotschel [17] whigyq, the inequality

are related to the structure of the cycle polytope are reamrit
in terms of coding theory. Kashyap provides a similar transf Z Tj — Z zj < |Fl -1
in [18]. Several results are collected in Theorem 111.2. JeF Jj€supp()\F

defines a facet afonv(C).

Using this theorem, a complete descriptioncofiv(C) can
be derived from all facets containing a single codeword.[17]
Let ¢ be a dual minimal codeword. To identify if the

Theorem IIl.2 Let C be a binary linear code.

(@) If d(Ct) > 3 then the codeword polytope is full- Optimizing a linear cost function over the cycle polytope,
dimensional. known as the cycle problem in terms of matroid theory, is

(b) The box inequalities investigated by Grotschel and Truemper [19]. The work of
Feldmanet al. [2] enables to use the matroid theoretic results
0<z; <1 forall jeJ (3) in the coding theory context. As shown above, solving the



MLD problem for a binary linear code is equivalent to solvinghat consists of the bit sequences which satisfyithgarity-
the cycle problem on a binary matroid. In [19], binary madeoi check constraint; these are called local codewords. Aqatrti
for which the cycle problem can be solved in polynomidarly interesting relaxation ofonv(C) is

time are classified, based on Seymour’s matroid decompositi

theory [20]. Kashyap [16] shows that results from [19] are P = conv(C1)N---Neconv(Cyp) € [0,1]",

directly applicable to binary linear codes. The MLD prOblerQnown as the fundamental polytope [24]. The vertices of the

as well as the minimum distance _p_roblem can be solved fhdamental polytope, the so-called pseudocodewordsaare
polynomial time for the code families for which the cycle

bl th iated bi troid b | dsuperset ofC, where the difference consists only of non-
problem on the associaled binary matrold can be solve imegral vertices. Consequently, optimizing of@implies the
polynomial time. This code family is called polynomially

almost-graphic codes [16]. ML certificate property. These observations are formabyest

An interesting subclass of polynomially almost-graphit. the following result (note that” = Cy 1--- N Crn).

codes are geometrically perfect codes. Kashyap transtages
sum of circuits property (see [19]) to the realm of binaryémma IV.1 [24] Let P = conv(C1) N --- N COHV(Cm)-le
linear codes. If the binary matroid associated with c6tleas ¢ = C11---NCr, thenconv(C) C P andC =Pn{0,1}".

the sum of circuits property themnv(C’) can be described g’he description complexity of the convex hull of any local

completely and non-redundantly by the box inequalities odeconv(C;) and thusP is usually much smaller than the

and the cocircuit inequalities (4). These codes are refeioe S .
: ' . - description complexity of the codeword polytopenv(C').
as geometrically perfect codes in [16]. The associatedrpina . o . S
PD can be written as optimizing the linear objective

matroids of geometrically perfect codes can be decompoie " the fund tal Dolvt .

in polynomial time into its minors which are either graphi unction on the fundamental polytope, 1. e.,

(see [14]) or contained in a finite list of matroids. min{\"z : 2 € P}. %)
From a coding theoretic point of view, a family of error-

correcting codes is asymptotically bad if either dimension Based on (5), the LPD algorithm which we refer to as bare

or minimum distance grows only sublinearly with the codinear programming decoding (BLPD) is derived.

length. Kashyap proves that the family of geometricallyf@er

codes unfortunately fuffills this property. We refer to [¥6f Bare LP decoding (BLPD)

the generalizations of this result. Input: A € R™, P C [0,1]".

IV. BAsICS OFLPD Output: ML codeword orERROR

1: solve the LP given in (5)
2: if LP solutionz* is integralthen
3. outputx*

LPD was first introduced in [2]. This decoding method is,
in principle, applicable to any binary linear code over any
binary input memoryless channkln this section, we review

the basics of the LPD approach based on [1]. 4: else
Although several structural properties @bnv(C) are > ?ju_tprtERROR
6: end i

known, it is in general infeasible to compute a concise de:
scription ofconv(C') by means of linear inequalities. In LPD,
the linear cost function of the IP formulation is minimizen & Because of the ML certificate property, if BLPD outputs a
relaxed polytopé& whereconv(C') C P C R™. Such a relaxed codeword, then it is the ML codeword. BLPD succeeds if the
polytope® should have the following desirable properties: transmitted codeword is the unique optimum of the LP givenin

o P should be easy to describe, and (5). BLPD fails if the optimal solution is non-integral oreth

« integral vertices ofP should correspond to codewords. ML codeword is not the same as the transmitted codeword.
Together with the linear representation (1) of the liketilo Note that the difference between the performance of BLPD
function, this leads to one of the major benefits of LPD, th@nd MLD is caused by the decoding failures for which BLPD
so-called ML certificate property: If the LP decoder outputénds a non-integral optimal solution. It should be emphediz
an integral optimal solution, it is guaranteed to be the Mthat in case of multiple optima it is assumed that BLPD fails.
codeword. This is a remarkable difference to IMPD: If no In some special cases, the fundamental polyt@pes
general optimality condition applies (see e.g. [23, Sec3]}0 equivalent toconv(C), e.g., if the underlying Tanner graph
there is no method to provably decide the optimality of & a tree or forest [24]. In these cases MLD can be achieved

solution obtained by IMPD. by BLPD. Note that in those cases also MSAD achieves MLD
Each row (check node) € I of a parity-check matrixd  performance [5].
defines the local code Observe that the minimum distance of a code can be
n understood as the minimurfy distance between any two
C; = {x € {0,1}" : Z Hiz; =0 (mod 2)} different codewords of’. Likewise the fractional distance of
J=1 the fundamental polytop® can be defined as follows.

3In fact, Flanagaret al.[21] have recently generalized a substantial portio L .
of the LPD theory to the nonbinary case. Similarly, work haerbdone to Definition 1V.2 [2] Let V(P) be the set of vertices (pseu-

include channels with memory; see e.g. [22]. docodewords) ofP. The fractional distanceiac(P) is the



minimum¢; distance between a codeword and any other vertéxthere exists a neighboring vertex for which the objective
of V(P), i.e. function can be improved in the current step, the simplex
method moves to this vertex. Otherwise it stops. The proeedu
of moving from one vertex to an other is called a simplex
iteration. Details on the simplex algorithm can be found in
classical books about linear programming (see e.g. [27]).

It follows that the fractional distance is a lower bound The efficiency of the simplex method depends on the com-
for the minimum distance of a codel(C) > drac(P). plexity of the constraint set describing the underlyingpape.
Moreover, both definitions are related as follows. Recat thSeveral such explicit descriptions of the fundamental {oplg
on the binary symmetric channel (BSC), MLD corrects at leagt have been proposed in the LPD literature. Some can be
[d(C)/2] — 1 bit flips. As shown in [1], LPD succeeds if atused for any binary linear code whereas others are speaaliz
most [diac(P)/2] — 1 errors occur on the BSC. for a specific code class. Using alternative description® of

Analogously to the minimum distance, the fractional disalternative LP decoders are obtained. In the following, vee a
tance is equivalent to the minimu weight of a non-zero going to present different LP formulations.
vertex of P. This property is used by the fractional distance
a_llgonthm (FDA) to compute the fracuqnal d|s.tr?1nce ofa Ipma A LP formulations for LDPC codes
linear code [1]. If M is the set of inequalities describing
P, let M; be the subset of those inequa"ties which are not The solution algorithm referred to as BLPD in Section IV
active at the all-zero codeword. Note that these are exacfs introduced by Feldmaet al. [2]. In order to describe?
the inequalities with a non-zero right hand side. In FDA thexplicitly, three alternative constraint sets are suggeby the
weight functionzje, ; is subsequently minimized oA N f authors b_y the formulatlons_ BLPDl, BLPD2, and BLPD3. In
for all f € M; in order to find the minimum-weight non-zerothe following, some abbreviations are used to denote beth th

dirac(P) = min Z|IJ —vilizeC,veV(P), z#v

Jj=1

vertex of P. formulation and the associated solution (decoding) allgorj
e.g., solving an LP, subgradient optimization, neighborho
Fractional distance algorithm (FDA) search. The meaning will be clear from the context.
Input: P C [0,1]". The first LP formulation, BLPD1, of [2] is applicable to
Output: Minimum-weight non-zero vertex dP. LDPC codes.
1: for a” f, (S MI dO min )\Tl' (BLPDl)
22 SetP'=Pnf. ’
3: SO|Vemin{2jeJ z;iwE «P/}_ S.t. Z w;s =1 i=1,....m (6)
4: end for SeL:
5: Choose the minimum value obtained overAll T =Y wis VjeN;,i=1,....m (7)
wﬁhG,%S
A more siginfi_cant distaqce measure thén is the_ so- 0<az; <1 j=1,...,n
called pseudo-distance which quantifies the probabiligt th 0<wis<l VSEE,i=1,.. . .m

the optimal solution under LPD changes from one vertex
of P to another [25], [24]. Likewise, the minimum pseudo- Here, F; = {S C N; : |S| even} is the set of valid bit
weight is defined as the minimum pseudo-distance fi®m configurations withinN;. The auxiliary variablesy; s used
to any other vertex ofP and therefor identifies the vertexin this formulation indicate which bit configuratiofi € E;
(pseudocodeword) which is most likely to cause a decodifgtaken at parity check In case of an integral solution, (6)
failure. Note that the pseudo-distance takes the channeligsures that exactly one such configuration is attainedeay ev
probability measure into account and thus depends on #tgecknode, while (7) connects the actual code bits, modeled
chosen channel model. by the variables:;, to the auxiliary variablest; = 1 if and
Albeit no efficient algorithms are known to compute thenly if the setS € E; contains;j for every check nodé. Note
exact minimum pseudo-weight of the fundamental polytopRat here we consider the LP relaxation, so it is not guaeahte
of a code, promising heuristics as well as analytical bounglgat a solution of the above program is indeed integral.
have been proposed [24], [25], [26]. A second linear programming formulation for LDPC codes,
BLPD2, is obtained by employing the so-called forbidden
V. LPD FORMULATIONS FORVARIOUS CODE CLASSES  set (FS) inequalities [28]. The FS inequalities are mogigat
This section reviews various formulations of the polytgpe by the observation that one can explicitly forbid those ealu
from (5), leading to optimized versions of the general BLP@SSignments to variables whet§| is odd. For all local
algorithm for different classes of codes. codewords inC; it holds that
In Step 1 of BLPD the LP problem is solved by a general
purpose LP solver. These solvers usually employ the simplex ij B Z 3 <181 -1
method since it performs well in practice. The simplex mdtho
iteratively examines vertices of the underlying polytopeilu whereX; = {S C N; : |S| odd}. Feldmanet al. show in [2]
the vertex corresponding to the optimal solution is reachetiat for each single parity-check codg, the FS inequalities

VS e X
jes JENAS



together with the box inequalities < z; < 1, j € J to one in the neighborhood of check node
completely and non-redundantly describenv(C;) (the case

< T
|N;| = 3 as depicted in Fig. 2 is the only exception where the ~ Min A"z (BLPD3)

box inequalities are not needed). In a more general setting.t. »; = Z 4j,i,k i€Nj,j=1,...,n
Grotschel proved this result for the cardinality homogmre kEK,;
set systems [29]. . Z pip=1 i=1,...m
If the rows of H are considered as dual codewords, the /7%
set of FS inequalities is a reinvention of cocircuit inedfies g ek i1
explained in Section IIl. BLPD2 is given below. 2}\; Uik = FPik €fpr=15...m
JEN;
min ATz (BLPD2) O<z<l J=hemn
0<pir <1 /{GKi,’L'Zl,...,m
st Yo=Y 2 <IS -1 ¥SeS,i=1,...,m o O oy
jes  jeNas < @ik < Dik ceng,)=1,...,n1€ N
0<z; <1 ji=1,...,n Feldmanet al. [2] show that BLPD1, BLPD2, and BLPD3

are equivalent in the sense that theariables of the optimal

Feldmanet al. [2] apply BLPD using formulations BLPD1 Solutions in all three formulations take the same values.
or BLPD2 to LDPC codes. Under the BSC, the error- The number of variables and constraints in BLPD3 increases

correcting performance of BLPD is compared with the MSA®S O(n°). By applying a decomposition approach, Yaeg

on an random raté- LDPC code withn = 200, d, = 3, al. [34] show that an alternative LP formulation which has
d. = 6: with the MSAD, SPAD on the random ra%LDPC size linear in the length and check node degrees can be
code withn = 200, d, = 3, d. = 4; with the MSAD, SPAD, obtained (it should be noted that independently from [34] a
MLD on the random raté- LDPC code withn = 60, d, = 3, similar decomposition approach was also proposed in [35]).
d. = 4. On these codes, BLPD performs better than MSAR the LP formulation of [34] a high degree check node is
but worse than SPAD. Using BLPD2, the FDA is appliedecomposed into several low degree check nodes. Thus, the
to random rate: LDPC codes withn = 100, 200, 300, 400, resulting Tanner graph contains auxiliary check and végiab
d, = 3 andd, = 4 from an ensemble of Gallager [30]. Forhodes. Fig. 3 illustrates this decomposition techniqueneck

(n — 1,n) Reed-Muller codes [31] witht < n < 512 they node with degred is decomposed inta@ parity checks each
compare the classical distance with the fractional distaibe With degree at moss. The parity-check nodes are illustrated
numerical results suggest that the gap between both deganc

grows with increasing block length. @ @

Another formulation for LDPC codes is given in Sec- »
tion VI-B in the context of efficient implementations.

In a remarkable work, Feldman and Stein [32] have show @ @

that the Shannon capacity of a channel can be achieved V\E'tgh
LP decoding, which implies a polynomial-time decoder and”
thel_a\r/;llabnné/.fpfdan M.L Ce;“gﬁ?gi To tth.'st %n:i, they uds%y squares. In the example, original variables are denoged b
a Sc’j'g yhm?] e verstl)oln 0 f LDPCreS r('jC € SO exg;nf & ...,v4 while the auxiliary variable node is namedq. In
codes, which areé a subclass o codes. See [32] fof eral, this decomposition technique is iteratively ggapl

formal def|n|t|0r_1 of expander codes as well as the details &ntil every check node has degree less tHaThe authors
the corresponding decoder.

show that the total number of variables in the formulation is
less than doubled by the decomposition. For the detailseof th
decomposition [34] is referred.
B. LP formulations for codes with high-density parity-ckec For the ease of notation, suppo#e is the set of parity-
matrices check nodes after decomposition.df(k) = 3, k € K, then
_ o the parity-check constrairit is of the formvf + vk +v5 =0

The number of variables and constraints in BLPD1 &$,04 2). Note that with our notation some of these variables
well as the number of constraints in BLPD2 increase €¥* might represent the same variable nage e.g.vs from
ponentially in the check node degree. Thus, for codes Wiﬁpg_ 3 would appear in two constraints of the above form, as
high-density parity-check matrices, BLPD1 and BLPD2 arg1 and,2, respectively. Yangt al.show that the parity-check
computationally inefficient. A polynomial-sized formuita, constraint® + v 4+ vk = 0 (mod 2) can be replaced by the

3. Check node decomposition.

BLPD3, is based on the parity polytope of Yannakakis [33}inear constraintst + vk +uk < 2 vk — vk —yk <0, 0k — k-
There are two types of auxiliary variables in BLPD3. Thek < ( 1k k% <0 (for a single check node of degrée

variablep; . is set to one ifk: variable nodes are set to on&ne pox inequalities are not needed)dlf(k) = 2 then vk =
in the neighborhood of parity-cheak for k in the index set .k ajong with the box constraints models the parity-check. The

K; = {0, 2,...,2 L%J } Furthermore, the variablg ; » is constraint set of the resulting LP formulation, which wel cal
set to one if variable nodgis one of thek variable nodes set cascaded linear programming decoding (CLPD), is the union



of all constraints modeling thgg| parity checks.
min ATy (CLPD)

sty =N k<8 —1 VSeES k=1,... |K]|
JES JENK\S
0<y; <1 if d.(i)<2Vi:jeN;

In the objective function only the variables corresponding to
the_ or!glnalx V?‘”ables have .non-zero coefficients. Thus, tl’\g . 4. Excerpt from a trellis graph with four states andiahistate0. The
objective function of CLPD is the same as of BLPD1. Thetyle of an edge indicates the according information bitiavtne labels refer
constraints in CLPD are the FS inequalities used in BLPD the single parity bit.

with the property that the degree of the check node is less

than4.

Yang et al. prove that the formulations introduced in [2] Convolutional codes are the building blocks of turbo codes,

and CLPD are equivalent. Again, equivalence is used in t@'&ﬁiCh revz_)lu_tionized coding theory because of their near
sense that in an optimal solution, thevariables of BLPD1, annon limit error-correctlng perfo_rmance [37]. An, k)
BLPD2, BLPD3, and the variables of the CLPD formulatioﬁurbo codg consists of two.convolutllonal codes and C,
which correspond to original-variables take the same valuesfaach of input Iengthk, Whlc.h are I|.nked. by a so-called
Moreover, it is shown that CLPD can be used in FDA. As terleaver that requires the information bits @f to_match
result, the computation of the fractional distance for cogtith those ofC, after being scrambled by some permutatiod Sy,

high-density parity-check matrices is also facilitatedt&that which is fixed for a given codelt is this coupling of rather

using BLPDZ2, the FDA algorithm has polynomial running timéfveak individual cogles and the increase of cqmplexity ayisin
only for LDPC codes. IfP is described by the constraint Se{herefromthatentalls the vast performance gain of turlateso

of CLPD, then in the first step of the FDA, it is sufficient toA typical turbo code (and only this case is covered here;

choose the seF from the facets formed by cutting planes of.t is straightforward to generalize) consists of two ideali

type v¥ + vk + v = 2 wherevk, vk, and V¥ are variables systematic encoders of rage_each. iny one of t_he encoders
of the CLPD formulation. Additionally, an adaptive branch &C‘l allnd C’b,dhowe\éer,. clgntnbutes its ”system?.nc par_t t(]l the
bound method is suggested in [36] to find better bounds f sulting codeword, yielding an overall rate %?) .e.n =3 .

the minimum distance of a code. On a random r—};aIEDPC (since their systematlg: parts differ only by a p_grmutat|on,
code withn = 60, d, = 3. d, — 4, it is demonstrated that thiS|nclud|ng both would imply an embedded repetition code).

" . . .
yields a better lower bound than the fractional distancesdoéNe thus pa_rt|t|on a COdeWO”?) into the systematic pa i
and the parity outputs® andz® of C, and C;, respectively.

A turbo code can be compactly represented by a so-called
Forney-style factor graph (FFG) as shown in Fig. 5. As

Thehvariﬁus LP fgrmulzti;)ns outline.d sohfarkhave.in Cﬁ. ypposed to Tanner graphs, in an FFG all nodes are functional
mon that they are derived from a parity-check matrix whic odes, whereas the (half-)edges correspond to variablesir|

defines a specific code. A different approach is to describe %Fe, there are variables of two types, namely state vasabl

encoder by means of a finite state machine, which is the usya (v € {a,b}), reflecting the state of, at time stepj,

way to define so-called convolutional codes. The bits of tr}jﬁ]d a variable for each bit of the codewardEach noder™”
information word are subsequently fed i_nto the machiney e‘F"lce?resents the indicator function for a valid state trairmitjn
causing a state change that emits a fixed number of OUt@',', at time j and is thus incident to one systematic and one

bits depe_nding on both the current state_ and the inqu. lnpﬁrity variable as well as the “before” and “after” stat ,
systematic code, the output always contains the input big¢. TandsV respectively. Note that such a noig corresponds to
7] ) .

codeword, c_o_nsstmg of the concate_natlon of f"‘" (_)utme;v, Ca vertical “slice” (often called a segment) of the trellisagh
thus be partitioned into the systematic part which is a cdpy 8 C,,, and each valid configuration dF” is represented by
the input and the remaining bits, being refered to as thetyparéxacﬂy one edge in the respective segjment

output. . . . Turbo codes are typically decoded by IMPD techniques op-
A con\_/olutlonal _cod_e IS “"?““ra"y represc_anted by a trel_l'érating on the factor graph. Feldman [1] in contrast intistl

graph_(Flg. 4.)’ which IS obtained by unfolding the state d'ae{n LP formulation, turbo code linear programming decoding

gram in the time domain. Each vertex of the trellis represerﬁt.;gLPD), for this purpose. This serves as an example that ma-

the state at a specific point in time, while edges correspo matical programming is a promising approach in decoding

o valid transitions b(_atW(_een two subsequgnt states and 8lfen beyond formulations based on parity-check matrices.
labelled by the according input and output bits. Each patinfr In TCLPD, the trellis graph of each constituent encodr

the starting node to the end node corresponds to a COdé’\’\logmodeled by flow conservation and capacity constraintk [39
|

C. LP formulations for turbo-like codes

The cost of a codeword is derived from the rgcelved_LL long with side constraints appropriately connecting tbe fl
values and the edge labels on the path associated with this
codeword. See [23] for an in-depth survey of these conceptsiusing exactly two constituent convolutional encoders sasstation and
is the most common case, albeit not being essential for tmeepd—in
4We intentionally do not discuss trellis termination herel assume that fact, recent development suggest that the error-corgegimformance benefits
the encoder always ends in a fixed terminal state; cf. [23Pfdails. from adding a third encoder [38].



Note that allx variables in TCLPD are auxiliary: we could
replace each occurence by the sum of flow variables defining
it. In doing so, (12) and (13) break down to the condition

Soofe=>"pt forj=1,... .k (14)

e€liy) ecl}

Because the rest of the constraints defines a standard hetwor

flow, TCLPD models a minimum cost flow problem plus the

k additional side constraints (14). Using a general purpose

LP solver does not exploit this combinatorial substructée

Fig. 5. The factor graph of a turbo code. The interleaversiitiie systematic Was suggested already in [1], in [43] Lagrangian relaxation

bits 2% of both encoder<’, (upper part) and’, (lower part). is applied to (14) in order to recover the underlying shartes
path problem. Additionally, the authors of [43] use a hdigis
based on computing thé( shortest paths in a trellis to

variables f* to auxiliary variablesz® and z”, respectively, improve the decoding performance. Via the paraméfethe

which embody the codeword bits. trade-off between algorithmic complexity and error-cotireg

Forv € {a,b}, let G, = (5,, E,) be the trellis according performance can be controlled.

to C,, where S, is the index set of nodes (states) ahg

is the set of edges (state transitiomsih G,. Let s and VI. EFFICIENT LP SOLVERS FORBLPD

s®"d denote the unique start and end node, respectively, o

G,. We can now define a feasible flof in the trellis G,

by the system

fA successful realization of BLPD requires an efficient LP
solver. To this end, several ideas have been suggested in the
literature. CLPD (cf. Section V) can be considered an efficie
Z fr=1, Z =1, (8) LPD approach since the number of variables and constraints
are significantly reduced. We review several others in this

ecout(sStat) e€in(sendr)

section.
Moo= VseS\{s, sV, (9)
ecout(s) e€in(s) . .
A. Solving the separation problem
fr>0 VeekE,. (10) ¢ P P

The approach of Taghavi and Siegel [44] tackles the large
Let I and O} denote the set of edges @, whose corre- number of constraints in BLPD2. In their separation appioac
sponding input and output bit, respectively, ig &oth being called adaptive linear programming decoding (ALPD), not
subsets of the-th segment of7,), the following constraints all FS inequalities are included in the LP formulation as in
relate the codeword bits to the flow variables: BLPD2. Instead, they are iteratively added when needed. As
. . , in Definition 11.5, the general idea is to start with a crude
Tj = Z f¢ forj=1,....kandv e {a,b}, (11) |p formulation and then improve it. Note that this idea can

e€0y also be used to improve the error-correcting performance
zd = Z 1o forj=1,...,k (12) (see Section VII). In the initialization step, the trivialPL
cere min{\Tx : x € [0,1]"} is solved. Let(z*)* be the optimal
. b ) solution in iterationk. Taghavi and Siegel show that it can
Tr(i) = Z fe forj=1,....k (13) pe checked ifO(md™> + nlogn) time if (z*)* violates any
e€l; FS inequality derived fronf{; « = 0 (mod 2) for all i € T

(recall thatm x n is the dimension ofH and d2** is the
maximum maximum check-node degree). This check can be
min Z M)z 4+ (A T2® (TCLPD) considered as a special case of the greedy separationthigori

We can now state TCLPD as

ve{a,b) (GSA) introduced in [29]. If some of the FS inequalities are
s.t. (8)=(13) hold. violated then these inequalities are added to the fornmuati
and the modified LP is solved again with the new inequalities.
where\ is split in the same way as. ALPD stops if the current optimal solutiofz*)* satisfies

The formulation straightforwardly generalizes to all sortall FS inequalities. If(x*)* is integral then it is the ML
of “turbo-like” codes, i. e., codes built by convolutionaldes codeword, otherwise an error is output. ALPD does not yield
plus interleaver conditions. In particular, Feldman andgea an improvement in terms of frame error rate since the same
have applied TCLPD to repeat-accumulate (BA(codes solutions are found as in the formulations in the previous
[40]. The encoder of an RA) repeats the information bits section. However, the computational complexity is reduced
[ times, and then sends them to an interleaver followed by anAn important algorithmic result of [44] is that ALPD
accumulator, which is a two-state convolutional encodée T converges to the same optimal solution as BLPD2 with sig-
authors derive bounds on the error rate of TCLPD for RAificantly fewer constraints. It is shown empirically thatthe
codes which were later improved and extended by Halabi aladt iteration of ALPD, less constraints than in the forntiolas
Even [41] as well as by Goldenberg and Burshtein [42]. BLPD2, BLPD3, and CLPD are used. Taghavi and Siegel [44]
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prove that their algorithm converges to the optimal solutioFFG representation of an LDPC code, they derive an LP, called
on the fundamental polytope after at masiterations with at primal linear programming decoding (PLPD), which is based
mostn(m + 2) constraints. on BLPD1. The FFG, shown in Fig. 6, and the Tanner graph
Under the binary-input additive white Gaussian noise chaare related as follows.
nel (BIAWGNC), [44] uses various randotfa,, d.)-regular
codes to test the effect of changing the check node degree,
the block length, and the code rate on the number of FS
inequalities generated and the convergence of their algori
Settingn = 360 and rateR = % the authors vary the check
node degree in the range dfto 40 in their computational
testing. It is observed that the average and the maximum
number of FS inequalities remain bel®v0. The effect of
changing block lengthh between30 and 1920 underR = %
is demonstrated on #3,6)-regular LDPC code. For theseFig. 6. A Forney-style factor graph for PLPD.
codes, it is demonstrated that the number of FS inequalities

used in the final iteration is generally betweefin and0.7n. For each parity check, the FFG exhibits a négewhich is
Moreover, it is reported that the number of iterations remajncident to a variable-edge, ; for each;j € N; and demands
below 16. The authors also investigate the effect of the ratgose adjacent variables to form a configuration that isdvali
on the number of FS inequalities created. Simulations &g the local codeC;, i.e., their sum must be even. This
performed on codes with = 120 andd, = 3 where the corresponds to a check node in the Tanner graph and thus
number of parity checksn vary betweenl5 and 90. For o (6) and (7) except that now there are, for the moment,
most values ofn it is observed that the average number qhgependent local variables ; for eachC;. Additionally, the
FS inequalities ranges betweénim and1.2m. For ALPD, FEG generalizes the concept of row-wise local codgto the
BLPD2, and SPAD {0 iterations), the average decoding timeojymns ofH, in such a way that thg column is considered
is testet for(3, 6)-regular and(4, 8)-regular LDPC codes with 3 |ocal repetition codel; that requires the auxiliary variables
various block lengths. It is shown that ALPD outperformgj_’i for eachi € N;U{0} to be either alll or all 0. By this, the
BLPD with respect to computation time, whil still being slewv yariable nodes of the Tanner graph are replaced by checlsnode
than SPAD. Furthermore, increasing the check node degrge recall that in an FFG all nodes have to be check nodes.
does not increase the computation time of ALPD as musthere is a third type of factor nodes, labelled by’ which
as the computation time of BLPD. The behavior of ALPDgimply require all incident variables to take on the sameeal
in terms of the number of iterations and the FS inequalitig$,ese are used to establish consistency between the raw-wis
used, under increasing SNR is tested dB,@)-regular LDPC yariablesy; ; and the column-wise variables;; as well as
code withn = 240. Itis concluded that ALPD performs moreconnecting the codeword variables to the configurations of
iterations and uses more FS inequalities for the instaricegpe Aj.
fails. Thus, decoding time decreases with increasing SNR.  £rom this discussion it is easily seen that the FFG indeed
In [45] ALPD is improved further in terms of complexity. epsyres that any configuration of the is a valid codeword.
The authors use some structural properties of the fundahert,e gutcome of writing down the constraints for each node

polytope. Let(z")" be an optimal solution in iteratioh. In  gnq relaxing integrality conditions on all variables is tfe
[44] it is shown that, if(z*)* does not satisfy an FS inequality

derived from check nod¢ then (z*)* satisfies all other FS min ATz (PLPD)

inequalities derived from with strict inequality. Based on g 2 = ;0 j=1,....n,
this result, Taghaviet al. [45] modify ALPD and propose ’ .

K ipe . . Uji = Vi j V(Z,j) clxJ: H@j =1,
the decoding approach we refer to as modified adaptive linear
programming decoding (MALPD). In thék + 1) iteration Uj; = Z aj s YieN;j=1,...,n,
of MALPD, it is checked inO(md™*) time if (x*)* violates S€A;,83j
any FS inequality derived froni/; = = 0 (mod 2) for some Z ajs=1 forall j=1,...,n,
1 € I. This check is performed only for those parity checks dea,
i € I which do not induce any active FS inequality(at)". ’ _ )
Moreover, it is proved that inactive FS inequalities atatem Vij = Z wi,s  VjEN;i=1,...,m,
k can be dropped. In any iteration of MALPD, there are at S€E:;53]
most m FS inequalities. However, the dropped inequalities Z wis =1 foralli=1,...,m,
might be inserted again in a later iteration; therefore the SEE;
number of iterations for MALPD can be higher than for ajs >0 VS e A;i=1,...,n,
ALPD. wi_rszO VSEEi,Z.Zl,...,m,
B. Message passing-like algorithms where the setd?; are defined as in (BLPD1).

An approach towards low complexity LPD of LDPC codes While bloating BLPD1 in this manner seems inefficient
was proposed by Vontobel and Kotter in [46]. Based on at first glance, the reason behind is that the LP dual of
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PLPD, leads to an FFG which is topologically equivalent tpenalized. Setting) = 2aA”A andr = ¢ — 2aA”b the
the one of the primal LP, which allows to use the graphic®CQPD problem

structure for solving the dual. After manipulating constts .7 T

of the dual problem to obtain a closely related, “softened” miny” Qy+2r'y  (BCQPD)
dual linear programming decoding (SDLPD) formulation, the st0<yp <1 fork=1,.... K

authors propose a coordinate-ascent-type algorithm tielgegn is obtained. Sincé) is a positive semi-definite matrix, i. e., the

the min-sum algorithm and show convergence under Cert@ipie (e function is convex, and since the set of consisain
aszum%tlons. I(;‘. this algorlthm,hag }he eqlgesh of FFr? Anstitutes a box, eaa). can be minimized separately. This
updated according to some schedule. It IS shown that e ys 1o efficient serial and parallel decoding algorithireo
up_d:_:\te calculations required during each iteration can thods are proposed in [36] to solve the BCQPD problem,
efflcu_ently performed by the SPAD. The coordlna_te—ascypet the projected successive overrelaxation method (PSORHI) an
algorithm for SDLPD is guaranteed to converge if all the &dgg, g parallel gradient projection method (PGPM). These meth
of the FFG are updated cyclically. ods are generalizations of Gauss-Seidel and Jacobi methods
Under the BIAWGNC, the authors compare the €riofug) \ith the benefit of faster convergence if proper weight

cprrecting perfo_rmance of the co_ordinate-ascent-typ@-alq:actors are chosen. PSORM and PGPM benefit from the low-
rithm (max iterations: 64, 256) against the performancéef tdensity structure of the underlying parity-check matrix.

MSAD (max iterations: 64, 256) on th@, 6)-regular LDPC One of the disadvantages of IMPD is the difficulty of

kbt > ,
code withn = 1000 and rate? = 5. MSAD performs slightly - 551 7ing the convergence behavior of such algorithmsgYan
better than the coordinate-ascent-type algorithm. In SBmM ot 4 showed both theoretically and empirically that BCQPD
Vontobel and Kotter [46] show that it is possible to develop, erges under some assumptions if PSORM or PGPM is
LP based algorithms with complexities similar to IMPD. | <ad to solve the quadratic programming problem. Moreover,

The convergence and the complexity of the (?oordinatfh—e complexity of BCQPD is smaller than the complexity of
ascent-type algorithm proposed in [46] are studied furth@bap For numerical tests, the authors use a product code

in [47] by Burshtein. His algorithm has a new scheduling/ith block length4® = 1024 and rate(2)® = 0.237. The
/ = 2)° = 0.237.

scheme and its convergence rate and computational Com’pleﬁlAWGNC is used. It is observed that the PSORM method

are analyzed under_ this schgduling. With thi§ new Sc_hegu,"Eonverges faster than PGPM. The error-correcting perfoocma
scheme, the decoding algorithm from [46] yields an itemtivye gpap s poor for product codes due to their regular

approximate LPD algorithm for LDPC codes with complexity ctyre. For the chosen product code, Yahgl.demonstrate
in O(n). The main difference between the two algorithms i%at PSORM outperforms SPAD in computational complexity

the selection and update of edges of the FFG. In [46] ao{g well as in error-correcting performance.
edges are updated cyclically during one iteration, wheieas

[47], only few selected edges are updated during one péaticu .
iteration. The edges are chosen according to the variahlesa P Efficient LPD of SPC product codes
obtained during previous iterations. The class of single parity-check (SPC) product codes is
of special interest in [34]. The authors prove that for SPC
C. Nonlinear programming approach product codes the fractional distance is equal to the mimmu
) ) Hamming distance. Due to this observation, the minimum
As an approximation of BLPD for LDPC codes, Yaagal. istance of SPC product codes can be computed in polynomial
[36] introduce the box constraint quadratic programming dgme using FDA. Furthermore, they propose a low complexity
coding (BCQPD) whose time complexity is linear in the codgyqrithm which approximately computes the CLPD optimum
length. BCQPD is a nonlinear programming approach derivedt gpc product codes. This approach is based on the ob-
from the Lagrangian relaxation (see [7] for an introductioeryation that the parity-check matrix of an SPC producecod
to Lagrangian relaxation) of BLPD1. To achieve BCQPD, @3 e decomposed into component SPC codes. A Lagrangian
subset of the set of the constraints are incorporated irgo thyaxation of CLPD is obtained by keeping the constraints
objectiv_e function. To simplify notation, Yargt al.rewrite the ¢ only one component code in the formulation and moving
constraint blocks (6) and (7) in the genTeraI fomK: b DYy 4l other constraints to the objective function with a pepal
defining a single variable vectgr= (x,w)" € {0,1}" (SOK  yector. The resulting Lagrangian dual problem is solved by
is the total number of variables in BLPD1) and choosihand - g hgradient algorithms (see [7]). Two alternatives, sabignt
b approp_rlately. Likewise, tht_—? objective function coeffitie decoding (SD) and joint subgradient decoding (JSD) are
are rewritten in a vector, wich equals) followed by the ,rqn6sed. It can be proved that subgradient decoders aenver
appropriate number of zeros. The resulting formulation |$,qer certain assumptions.

: T, . _ K H inli
min{cy : Ay = b,y € {0,1}7}. Using a multipliera > 0, 1he number of iterations performed against the convergence

the Lagrangian of this problem is behavior of SD is tested on the (4,4) SPC product code, which
min Ly + a(Ay — b)T (Ay — b) has lengthn = 256, rate R = (%)4 ~ 0.32 and is defined as
StO<ys <1 fork=1,... K. the product of four SPC codes of length 4 each. All variants

tested (obtained by keeping the constraints from component
If Ay = b is violated then a positive value is added t@odej = 1,2, 3,4 in the formulation) converge in less than 20
the original objective functiorc”y, i.e., the solutiony is iterations. For demonstrating the error-correcting pennce
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of SD if the number of iterations are set 010, 20, 100, the improvement techniques can be grouped into cutting plane
(5,2) SPC product coden(= 25, rate R = (%)2 = 0.64) or branch & bound approaches. In this section, we review
is used. The error-correcting performance is improved Hige improved LPD approaches mainly with respect to this
increasing the number of iterations. Under the BIAWGNG;ategorization.

this code and the (4,4) SPC product code are used to compare

the error-correcting performance of SD and JSD with th,E
performance of BLPD and MLD. It should be noted that for™”
increasing SNR values, the error-correcting performarfce o The fundamental polytop® can be tightened by cutting
BLPD converges to that of MLD for SPC codes. JSD and Splane approaches. In the following, we refer to valid in-
approach the BLPD curve for the code with= 25. For the equalities as inequalities satisfied by all pointsconv(C).
SPC product code witlh = 256 the subgradient algorithms Valid cuts are valid inequalities which are violated by some
perform worse than BLPD. For both codes, the error-comgctinon-integral vertex of the LP relaxation. Feldmanal. [2]
performance of JSD is superior to SD. Finally, 6, 3) SPC already address this concept; besides applying the “Lift an
product code withn = 1000 and rateR = (%)3 ~ (0.729 project” technique which is a generic tightening method for
is used to compare the error-correcting performance of Smeger programs [52], they also strengthen the relaxatipn
and JSD with the SPAD. Again the BIAWGNC is used. lintroducing redundant rows into the parity-check matrix, (o
is observed that SD performs slightly better than the SPA@Huivalently, redundant parity-checks into the Tanneplya
with a similar computational complexity. JSD improves thef the given code (cf. Section Il). When using the BLPD2

error-correcting performance of the SD at the cost of ineeda formulation, we derive additional FS inequalities from the
complexity. redundant parity-checks without increasing the numbeaaf v
ables. We refer to such inequalities as redundant pariggich
; ; . RPC) inequalities. RPC inequalities may include validscut
E. Interior point algorithms ( L e
o P 9 ) ) ) . which increase the possibility that LPD outputs a codeword.
Eff|C|ent LPD approaches based on interior point algorlth% interesting question relates to the types of inequalitie
are studied by Vontobel [49], Wadayama [50], and Taghayiqyired to describe the codeword polytaperv(C) exactly.
et al. [45]. The use of interior point algorithms to solve LRy ;s out thatconv(C)) cannot be described completely by
problems as an alternative to the simplex method was 'ed'atusing only FS and box inequalities; e, 3,4) simplex code
by Karm_arkar [51]. In _these al_gorithms, a s’Farting _point i_'@dual of the(7,4,3) Hamming code) is given as a counter-
Fhe_ mte.rlor qf the feasible set_ is chosen. Th|§ sta_rtmgwpmexamme in [2]. More generally, it can be concluded from [53]
is iteratively improved by moving through the interior ofeth 1,4t these types of inequalities do not suffice to describe al
polyhedron in some descent direction until the optimalBotu 5.0t of a simplex code.
or an approximation is found. The_re are various interionpoi  rpcs can also be interpreted as dual codewords. As such,
algorithms and for some, polynomial time convergence can R interesting codes there are exponentially many RPC in-
proved. This is an advantage over the simplex method whigh 5jities. The RPC inequalities cutting off the non-ingg
has exponential worst case complexity. , _ optimal solutions are called RPC cuts [44]. An analyticatist
The proposed interior point algorithms aim at using thg,qer which circumstances RPCs can induce cuts is carried
special structure of the LP problem. The resulting runnimgt  + in [24]. Most notably, it is shown that RPCs obtained by
is a low-degree polynomial function on the block Iength.§',hu(,w|ding no more thar=2 dual codewords, where is the
fast decoding algorithms based on interior point algorﬁhn?ength of a shortest cyzcle in the Tanner graph, never change
may be developed for codes with large block lengths. In Pafe fundamental polytope.
ticulgr affine scaling algorithlms [49], primal—sjual. inkm_r'pqint There are several heuristic approaches in the LPD litezatur
algor!thms [45], [49] and_pnmal path following interior pm: to find cut inducing RPCs [2], [54], [44], [55]. In [2], RPCs
?"QOT'thm .[50] are cor_15|dered. The bottlenec_k operation {fiich result from adding any two rows di are appended
interior !oomt methods is to_ SON? a system of I|r_1ear eqm?st_loto the original parity-check matrix. The authors of [44] find
depending on the curre_nt iteration of the .algorlthm. Effitie RPCs by randomly choosing cycles in the fractional subgraph
approaches to solve this system of equations are p_ro.pose%'mthe Tanner graph, which is obtained by choosing only
.[49]’ [.45]’. the latter con_tamlng an ext_enswe study, intthg the fractional variable nodes and the check nodes directly
|nves_t|_gat|0n of apprOpnate preconditioners for the wfii: connected to them. They give a theorem which states thaj ever
cor!dmoned equation system. The_ speed of convergenceto i inje RPC cut must be generated by such a cycle. Their
optimal vertex of the algorithms in [S0] and [45] under th pproach is a heuristic one since the converse of that threore
Blg‘WG.NhC are demonstr?tedé)n a n((aja(B/,l6)—reguIar IéDPC does not hold. In [54] the column index set correspondingnto a
co eIW|t n= 100(;3’ R':hf and a random y—gleneraté ,6)- optimal LP solution is sorted. By re-arrangiffiand bringing
regular LDPC code with = 2000, respectively. it to row echelon form, RPC cuts are searched. In [55], the
parity-check matrix is reformulated such that unit vectars
VII. I MPROVING THE ERROR-CORRECTING obtained in the columns of the parity-check matrix which
PERFORMANCE OFBLPD correspond to fractional valued bits in the optimal soltio
The error-correcting performance of BLPD can be imef the current LP. RPC cuts are derived from the rows of the
proved by techniques from integer programming. Most of thaodified parity-check matrix.

Cutting plane approaches
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The approaches in [28], [44], and [55] rely on a noteworthi, in the real number fieldR™.
structural property of the fundamental ploytope. Namdly, i

can be shown that no check node of the associated Tanner min A"z (IPD)
graph (regardless of the existence of redundant paritgks)e StHxr—22=0
can be adjacent to only one non-integral valued variablenod ze{0,1}", zeZ™

Feldmanet al. [2] test the lift and project technique on a . : N
. 55], the LP relaxat f IPD is th tial LP bl
random rate}I LDPC code withn = 36, d, = 3 andd, = 4 n [59], the relaxation o 'S the initia probiem

under the BIAWGNC. Moreover, a random ra}fd;DPC code which is s_olved by a_cuttlng plf_;lne algorithm. Note that_ the
: . LP relaxation of IPD is not equivalent to the LP relaxations
with n = 40, d, = 3, andd. = 4 is used to demonstrate

the error-correcting performance of BLPD when the origin ven in Section V. In almost all improved (in the error-
parity-check matrix is extended by all those RPCs obtair;ed??rrecung performance sense) LPD approaches reviewed in

adding any two rows of the original matrix. Both tightenin is article first the BLPD is run. If BLPD fails, some

> . . Qechnique to improve BLPD is used with the goal of find-
techniques improve the error-correcting performance G?B|. ing the ML codeword at the cost of increased complexity.

tthUQh the_ ber:jeflt O(I. fche latter IIS Irathehr poor, due 1o tl]ﬁ contrast, the approach by Tanatmés al. in [55] does
abovementioned condition on cycle lengths. not elaborate on the solution of BLPD, but immediately
The idea of tightening the fundamental polytope is usualgearches for cuts which can be derived from arbitrary dual
implemented as a cutting plane algorithm, i. e., the sejparatcodewords. To this end, the parity-check matrix is modified
problem is solved (see Definition 1.5 and Section VI-A). Irand the conditions under which certain RPCs define cuts
cutting plane algorithms, an LP is solved which containgonhre checked. The average number of iterations performed
a subset of the constraints of the corresponding optinoimatiand the average number of cuts generated in the separation
problem. If the optimal LP solution is a codeword themlgorithm decoding (SAD) of [55] are presented for tl3e6)
the cutting plane algorithm terminates and outputs the Miandom regular codes with = 40, 80, 160, 200, 400 and for
codeword. Otherwise, valid cuts from a predetermined famithe (31, 10), (63, 39), (127, 99), (255, 223) BCH codes. Both
of valid inequalities are searched. If some valid cuts avméy performance measures seem to be directly proportionalketo th
they are added to the LP formulation and the LP is resolvealock length. The error-correcting performance of SAD is
In [44], [54], [55] the family of valid cuts is FS inequalitie measured on the random regular4) LDPC codes with block
derived from RPCs. length 100 and 200, and Tanner'g155, 64) group structured
DPC code [56]. It is demonstrated that the improved LPD
pproach of [55] performs better than BLPD applied in the

gtl?:tggh:%:Sﬂt;(';nzrg;’?::\;;?:g%gzled'f:]aégze'l;hg g(ﬂ’:‘;] adaptive setting [44] and better than SPAD. One significant
code and 4204, 102) LDPC code. As a byproduct under thenumencal result is that SAD proposed in [55] performs

BSC it is shown on thé24, 12, 8) Golay code and é04, 102) much better than BLPD for th¢53, 39) and (127, 99) BCH

) des, which h high-densit ity check matrices. In al
LDPC code that the RPC based approach of [54] improves %n?esrigl Iscimug\':i?)nslgthe %TZI\/szNagt}i/scusgd matrices. 1n a
error-correcting performance of BLPD. )

Yufit et al. [57] improve SAD [55] and ALPD [44] by
In the improved LPD approach of [44], first ALPD (seeemploying several techniques. The authors propose to wepro
Section VI) is applied. If the solution is non-integral, aR® the error-correcting performance of these decoding mathgd
cut search algorithm is employed. This algorithm can béflgrie using RPC cuts derived from alternative parity-check roa#ri
outlined as follows: selected from the automorphism group®@f Aut(C). In the
alternative parity-check matrices, the columns of theinah
1) Given a non-integral optimal LP solutiast, remove all parity—check matrix are per_muted according to some scheme.
variable nodeg for which 7 is integral from the Tanner At the first stage of Algorithm 1 of [57], SAD s used to

In [54] the main motivation for the greedy cutting plane;

graph. solve the MLD problem. If the ML codeword is found then
2) Find a cycle by randomly walking through the Iorune@\Igorithm 1 terminates, otherwise an alternative paritgck

Tanner graph. matrix from Aut(C) is randomly chosen and the SAD is
3) Sum up (inF») the rows H which correspond to the a@Pplied again. In the worst case this procedure is repessited

check nodes in the cycle. times whereN denotes a predetermined constant. A similar
4) Check if the resulting RPC introduces a cut. approach is also used to improve ALPD in Algorithm 2 of

[57]. Yufit et al. enhance Algorithm 1 with two techniques

. . to improve the error-correcting performance and compjexit
The improved decoder of [44] performs noticeably bettenthal_he fliarst technique, called pa?it)e—check matrix adapta?:n

BLPD and SPAD. This is shown under the BIAWGNC Mo alter the parity-check matrix prior to decoding such that

(3,4)-regular LDPC codes with = 32, 100, 240. at the columns of the parity-check matrix which correspond
The cutting plane approach of [55] is based on an I® least reliable bits, i. e., bits with the smallest absslut R
formulation of MLD, which is referred to as IPD. (Notevalues, unit vectors are obtained. The second techniquehwh
that this formulation was already mentioned in [9].) Auxilf is motivated by MALPD of [45], is to drop the inactive
variablesz € Z™ model the binary constraintdz = 0 over inequalities at each iteration of SAD, in order to avoid titnet
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problem size increases from iteration to iteration. Under ty € {0, 1}™ with a codewordr € C' results in an error vector
BIAWGNC, it is demonstrated on th@3,36,11) BCH code e € {0,1}", i.e.,e =g+ =z (mod 2). Lets = Hy, and define
and the(63,39,9) BCH code that SAD can be improved bott\ by \; = |\;|. IPD can be reformulated as

in terms of error-correcting performance and computationa

complexity. minA\’e  (AIPD)
St.He—2z=s
B. Facet guessing approaches ce{0,1}", ze 2™

Based on BLPD2, Dimakigt al. [28] improve the error-
correcting performance of BLPD with an approach similan the neighborhood search heuristic of [9], first a feasible
to FDA (see Section IV). They introduce facet guessingtarting solutiore® is calculated by setting the coordinates of
algorithms which iteratively solve a sequence of related L& corresponding to the — m most reliable bits (i. e., those
problems. Letr* be a non-integral optimal solution of BLPD, j € .J such thaty;| are largest) td). These are the non-basic
M- be the ML codeword, an& be a set of faces @ which variables while then basic variables are found from the vector
do not containc*. This setF is given by the set of inequalities s € {0, 1}™. Starting from this solution a neighborhood search
which are not active at*. is performed by exchanging basic and non-basic variables. T

The set of active inequalities of a pseudocodeworés tuple of variables yielding a locally best improvement ir th
denoted byA(v). In facet guessing algorithms, the objectivgbjective function is selected for iterating to the nextsibe
function ATz is minimized overf NP for all f € K C F solution.
wherekC is an arbitrary subset of. The optimal solutions are |n [9], numerical experiments are performed under the
stored in a list. In random facet guessing decoding (RFGIBIAWGNC, on the (31,21,5) BCH code, the(64,42,8)
K| of the facesf € F are chosen randomly. IK = F Reed-Muller code, the(127,85,13) BCH code and the
then exhaustive facet guessing decoding (EFGD) is obtainegls 173, 23) BCH code. The neighborhood search with sin-
From the list of optimal solutions, the facet guessing alggje position exchanges performs very similar to MLD for
rithms output the integer solution with minimum objectivghe (31,21,5) BCH code. As the block length increases the
function value. It is shown that EFGD fails if there eXiSt%rror—correcting performance of the neighborhood searith w
a pseudocodeword € f such thatA”v < AT2M- for gingle position exchanges gets worse. An extension of this
all f € A(zM"). For suitable expander codes this result igeuristic allowing two position exchanges is applied to the
combined with the following structural property of expande(64, 42,8) Reed-Muller code, thg127,85,13) BCH code,
based codes also proven by the authors. The numbera@ld the(255,173,23) BCH code. The extended neighborhood
active inequalities at some codeword is much higher th@garch heuristic improves the error-correcting perforceaat
at a non-integral pseudocodeword. Consequently, theatetithe cost of increased complexity. A branch & bound algorithm
bounds on the decoding success conditions of the polynomigkimulated on thé31, 21, 5) BCH code and different search
time algorithms EFGD and RFGD for expander codes afee exploration schemes are investigated. The authogestig
derived. The numerical experiments are performed under th&ombination of depth-first and breadth-first search.
BIAWGNC, on Tanner's(155,64) group-structured LDPC |, [58], Draper et al. improve the ALPD approach of

code and on a random LDPC code with= 200, d, = 3, [44] with a branch & bound technique. Branching is done
d. = 4. For these codes the RFG algorithm performs bettgy, the |east certain variable, i.e; such that|z: —0.5] is

than the SPAD. smallest forj € .J. Under the BSC, it is observed on Tanner’s
(155,64,20) code that the ML codeword is found after few
C. Branch & bound approaches iterations in many cases.

Linear programming based branch & bound is an implicit In [36] two branch & bound approaches for LDPC codes
enumeration technique in which a difficult optimization lpro are introduced. In ordered constant depth decoding (OCDD)
lem is divided into multiple, but easier subproblems by fixinand ordered variable depth decoding (OVDD), first BLPD1
the values of certain discrete variables. We refer to [7]doris solved. If the optimal solution™ is non-integral, a subset
detailed description. Several authors improved LPD udieg t7 € & of the set of all non-integral bit§ is chosen. Let
branch & bound approach. g = |T|. The subset is constituted from the least certain

Breitbach et al. [9] solved IPD by a branch & bound bits. The term “ordered” in OCDD and OVDD is motivated
approach. Depth-first and breadth-first search techniquees By this construction. It is experimentally shown in [36] tha
suggested for exploring the search tree. The authors po#hoosing the least certain bits is advantageous in congparis
out the necessity of finding good bounds in the branch ® a random choice of bits. OVDD is a breadth first branch &
bound algorithm and suggest a neighborhood search heuri®und algorithm where the depth of the search tree is restric
as a means of computing upper bounds. In the heuristicidag. Since this approach is common in integer programming,
formulation is used which is slightly different to IPD. Wewe do not give the details of OVDD and refer to [7] instead.
refer to this formulation as alternative integer programgni For OVDD, the number of LPs solved in the worst case is
decoding (AIPD). AIPD can be obtained by using erro??** — 1.
vectors. Lety = 3 (1—sign\)) be the hard decision for In OCDD, m-element subsetdt of T, i.e., M C T and
the LLR vector)\ obtained from the BIAWGNC. Comparingm = | M|, are chosen. Let € {0,1}™. For anyM C T, 2™
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LPs are solved, each time adding a constraint block of the variable nodes along the critical loop form an indetx se
_ M C J. LPED lowers the objective function coefficient

ok = by forall k € M of the variablesz;, j € M, by multiplying \; with e, Wher§e
to BLPD1, thus fixingm bits. LetZ be the solution with the ( < € < 1. After updating the objective function coefficients,
minimum objective function value among tB& LPs solved. BLPD is solved again. If BLPD does not find a codeword
If  is integral, OCDD outputs;; otherwise another subsetthen the selection criterion for the critical loop is impeav
M C T is chosen. Since OCDD exhausts all-element |PED is tested on the list of pseudocodewords found in [35]
subsets off, in the worst casg;},) 2™ + 1 LPs are solved.  for Tanners(155, 64,20) code. It is demonstrated that LPED

The branch & bound based improved LPD of Yaegal. corrects the decoding errors of BLPD for this code.
[36] can be applied to LDPC codes with short block length. | [62], Chertkov combines the loop calculus approach used
For the following numerical tests, the BIAWGNC is used. Unpy | PED [59] with RFGD [28]. We refer to the combined
der various settings ofi andg it is shown on a random LDPC algorithm as loop guided guessing decoding (LGGD). LGGD
code withn = 60, R = 1, d. = 4, andd, = 3 that OCDD has gjffers from RFGD in the sense that the constraints chosen ar
a better error-correcting performance than BLPD and SPAB type z; > 0 or z; < 1 wherej is in the index set\/, the
Several simulations are done to analyze the trade-off Etwengex set of the variable nodes in the critical loop. LGGD
complexity and error-correcting performance of OCDD angtarts with solving BLPD. If the optimal solution is non-
OVDD. For the test instances and parameter seftinged in  integral then the critical loop is found with the loop calasil
[36] it has been observed on the above-mentioned code thghroach. Next, a variable;, j € M, is selected randomly
OVDD outperforms OCDD. This behavior is explained by thgng two partial LPD problems are deduced. These differ
observation that OVDD applies the branch & bound approagiym the original problem by only one equality constraint
on the most unreliable bits. On a longer random LDPC coqﬂe7 — 0 orz; = 1. LGGD chooses the minimum of the
with n = 1024, R = }, d. = 4, andd, = 3, itis demonstrated gbjective values of the two subproblems. If the correspagdi
that the OVDD performs better than BLPD and SPAD.  pseudocodeword is integral then the algorithm terminates.
Another improved LPD techniqu_e which can be i!"terprete_@therwise the equality constraints are dropped, a fiew/

as a branch & bound approach is randomized bit guessiggng the critical loop is chosen, and two new subprobleras ar
decoding (RBGD) of Dimakigt al. [28]. RBGD is inspired constructed. If the set/ is exhausted, the selection criterion of
from the special case that all facets chosen by RFGD (s@@ critical loop is improved. LGGD is very similar to OCDD
Section VII-B) correspond to con_straints of type > 0 Or  of [36] for the case thay = |[M| andm = 1. In LGGD
zj < 1. In RBGD, k = clogn variables, where > 0 is @ pranching is done on the bits in the critical loop whereas in
constant, are chosen randomly. Because there'adifferent  5cpD branching is done on the least reliable bits. As in [59],
possibile configurations of these variables, BLPD2 is run | gD is tested on the list of pseudocodewords generated in
2% times with associated constraints for each assignment. T[@g] for Tanner's(155, 64, 20) code. It is shown that LGGD
best integer valued solution in terms of the objective figmct improves BLPD under the BIAWGNC.
Ais the output of RBGD. Note that by settidgto clogn, @ gaD of [55] is improved in terms of error-correcting
polynomial complexny i is ensured. Under the assumpt'o'berformance by a branch & bound approach in [57]. In
that there exists a unique ML codeword, exactly one jgorithm 3 of [57], first SAD is employed. If the solution
the 2" bit settings matches the bit configuration in the Mig non-integral then a depth-first branch & bound is applied.
codeword. Thus, RBGD fails if a non-integral pseudocod@Wwofrne non-integral valued variable with smallest LLR value is
with a better objective function value coincides with the Mlehosen as the branching variable. Algorithm 3 terminates as
codeword in allk components. For some expander codes, 1gon as the search tree reaches the maximally allowed depth
probablilty that the RBGD finds the ML codeword is glveer_ Under the BIAWGNC, on thé63, 36, 11) BCH code and
in [28]. To find this probability expression, the authorstfirsthe(63739’9) BCH code VYufitet al. [57] demonstrate that the

prove that, for some expander-based codes, the number of n@t-oging performance of Algorithm 3 (enhanced with parity-
integral components in any pseudocodeword scales linéarly.peck matrix adaptation) approaches MLD.
block length.

Chertkov and Chernyak [59] apply the loop calculus ap-
proach [60], [61] to improve BLPD. Loop calculus is an VIII. CONCLUSION
approach from statistical physics and related to cycles in| this survey we have shown how the decoding of binary
the Tanner graph representation of a code. In the contextjigkar block codes benefits from a wide range of concepts
improved LPD, it is used to either modify objective functioRynich originate from mathematical optimization—mostly i
coefficients [59] or to find branching rules for branch anggg, programming, but also quadratic (nonlinear) and inte-
bound [62]. Given a parity-check matrix and a channel Outplgter programming, duality theory, branch & bound methods,
linear programming erasure decoding (LPED) [59] first s8Iv§ agrangian relaxation, network flows, and matroid theory.
BLPD._If a codeword is found the_n the algorithm terminatés. Bringing together both fields of research does lead to promis
a non-integral pseudocodeword is found then a so-calléd cthg new algorithmic decoding approaches as well as deeper
ical loop is searched by employing loop calculus. The inslicgtryctural understanding of linear block codes in genemal a

6The parametersn and g are chosen such that OVDD and OCDD havespeci‘glI classes of codes—like LDPC and turbo-like codes—in
similar worst case complexity. particular. The most important reason for the success sf thi



connection is the formulation of MLD as the minimization of
a linear function over the codeword polytopenv(C). We
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have reviewed a variety of techniques of how to approximatel 2:_';% age";_aﬁv‘? integer Pfogfammigg dZ‘?Oding
. - L . adaptive linear programming decoding
this polytope, whose deS_Cl.‘IptIOI’I complexity in generalos t BCQPD box constrained quadratic programming decodinp
large to be computed efficiently. BIAWGNC | binary input additive white Gaussian noise chanhel
For further research on LPD of binary linear codes, two [ BLPD bare linear programming decoding
general directions can be distinguished. One is to decreasgBSC binary symmetric channel .
he algorithmic complexity of LPD towards reducing the ga e cascaded finear programming decoding
the algori p Yy - . g 9ap "ercp exhaustive facet guessing decoding
between LPD and IMPD, the latter of which still outperforms | FDA fractional distance algorithm
LPD in practice. The other direction aims at increasingrerro | FFG Forney style factor graph
correcting performance, tightening up to MLD performance. E;Ss " ;Or:)éggesne;gaﬁon TgorT
characterization of other, non-RPC facet-defining ineitjeal IP integer_programming _
of the codeword polytope. IPD !n_teger programming de;codlng
There are other lines of research related to LPD and IMPD ifg {gg“lilfgl?r?gﬁg'?g;gecocj'ng
which are not covered in this article. Flanagdral.[21] have LDPC low-density parity-check
generalized LP decoding, along with several related cascep | LGGD loop guided guessing decoding
to nonbinary linear codes. Another possible generalipatio | =P linear programming :
[ d to diff t channel models [22]. Connectin LPD linear programming decoding -
IS to eXten 0 _' eren ; . INg TPED linear programming erasure decoding
two seemingly different decoding approaches, structueal r [MALPD modified adaptive linear programming decoding
lationship between LPD and IMPD has been discussed in_ML maximum likelihood ,
[63]. Moreover, the discovery that both decoding methogs ar |-M=L maximum likelihood decoding
- . MSAD min-sum algorithm decoding
closely related to the Bethe free energy approximationph to [ocpp ordered constant depth decoding
from statistical physics, has initiated vital research|[@4so, OVDD ordered variable depth decoding
of course, research on IMPD itself, independent of LPD,jils st | PGPM parallel gradient projection method
i ith high activity. A promising direction of resehr ) primal inear programming decoding
_0”90'”9 wi 9 ; _y' p 9 . ) PSORM projected successive overrelaxation method
is certainly the application of message passing technitpes [RA repeat accumulate
mathematical programming problems beyond LPD [65]. RBGD randomized bit guessing decoding
RFGD randomized facet guessing decoding
A RPC redundant parity-check
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