
ar
X

iv
:1

10
7.

37
15

v4
 [

cs
.IT

]
28

 A
pr

 2
01

4
1

Mathematical Programming Decoding of Binary
Linear Codes: Theory and Algorithms

Michael Helmling, Stefan Ruzika, Akın Tanatmis

Abstract—Mathematical programming is a branch of applied
mathematics and has recently been used to derive new de-
coding approaches, challenging established but often heuristic
algorithms based on iterative message passing. Concepts from
mathematical programming used in the context of decoding
include linear, integer, and nonlinear programming, network
flows, notions of duality as well as matroid and polyhedral theory.
This survey article reviews and categorizes decoding methods
based on mathematical programming approaches for binary
linear codes over binary-input memoryless symmetric channels.

Index Terms—Integer programming, LP decoding, Mathema-
tical programming, ML decoding, Polyhedral theory.

I. I NTRODUCTION

Based on an integer programming (IP)1 formulation of
the maximum likelihood decoding (MLD) problem for bi-
nary linear codes, linear programming decoding (LPD) was
introduced by Feldmanet al. [1], [2]. Since then, LPD has
been intensively studied in a variety of articles especially
dealing with low-density parity-check (LDPC) codes. LDPC
codes are generally decoded by heuristic approaches called
iterative message passing decoding (IMPD) subsuming sum-
product algorithm decoding (SPAD) [3], [4] and min-sum
algorithm decoding (MSAD) [5]. In these algorithms, prob-
abilistic information is iteratively exchanged and updated
between component decoders. Initial messages are derived
from the channel output. IMPD exploits the sparse structureof
parity-check matrices of LDPC and turbo codes very well and
achieves good performance. However, IMPD approaches are
neither guaranteed to converge nor do they have the maximum
likelihood (ML) certificate property, i. e., if the output isa
codeword, it is not necessarily the ML codeword. Furthermore,
performance of IMPD is poor for arbitrary linear block codes
with a dense parity-check matrix. In contrast, LPD offers
some advantages and thus has become an important alternative
decoding technique. First, this approach is derived from the
discipline of mathematical programming which provides ana-
lytical statements on convergence, complexity, and correctness
of decoding algorithms. Second, LPD is not limited to sparse
matrices.

This article is organized as follows. In Section II, notation
is fixed and well-known but relevant results from coding
theory and polyhedral theory are recalled. Complexity and

This work was supported in part by the Center of Mathematicaland
Computational Modeling of the University of Kaiserslautern.

M. Helmling, S. Ruzika and A. Tanatmis are with Department ofMath-
ematics, University of Kaiserslautern, Erwin-Schroedinger-Strasse, 67663
Kaiserslautern, Germany. Email:{helmling, ruzika}@mathematik.uni-kl.de

1See the table on page 16 for a list of the acronyms used.

polyhedral properties of MLD are discussed in Section III.
In Section IV a general description of LPD is given. Several
linear programming (LP) formulations dedicated to codes with
low-density parity-check matrices, codes with high-density
parity-check matrices, and turbo-like codes are categorized
and their commonalities and differences are emphasized in
Section V. Based on these LP formulations, different streams
of research on LPD have evolved. Methods focusing on
efficient realization of LPD are summarized in Section VI,
while approaches improving the error-correcting performance
of LPD at the cost of increased complexity are reviewed
in Section VII. Some concluding comments are made in
Section VIII.

II. BASICS AND NOTATION

This section briefly introduces a number of definitions and
results from linear coding theory and polyhedral theory which
are most fundamental for the subsequent text.

A binary linear block codeC with cardinality2k and block
length n is a k-dimensional subspace of the vector space
{0, 1}n defined over the binary fieldF2. C ⊆ {0, 1}n is given
by k basis vectors of lengthn which are arranged in ak × n
matrix G, called the generator matrix of the codeC.2

The orthogonal subspaceC⊥ of C is defined as

C⊥ =







y ∈ {0, 1}n :

n
∑

j=1

xjyj ≡ 0 (mod2) for all x ∈ C







and has dimensionn−k. It can also be interpreted as a binary
linear code of dimensionn−k which is referred to as the dual
code ofC. A matrix H ∈ {0, 1}m×n whosem ≥ n− k rows
form a spanning set ofC⊥ is called a parity-check matrix
of C. It follows from this definition thatC is the null space
of H and thus a vectorx ∈ {0, 1}n is contained inC if
and only if Hx ≡ 0 (mod 2). Normally, m = n − k and
the rows ofH ∈ {0, 1}(n−k)×n constitute a basis ofC⊥. It
should be pointed out, however, that most LPD approaches
(see Section VII) benefit from parity-check matrices being
extended by redundant rows. Moreover, additional rows ofH
never degrade the error-correcting performance of LPD. This
is a major difference to IMPD which is generally weakened
by redundant parity checks, since they introduce cycles to the
Tanner graph.

2Note that single vectors in this paper are generally column vectors;
however, in coding theory they are often used as rows of matrices. The
transposition of column vectora makes it a row vector, denoted byaT .

http://arxiv.org/abs/1107.3715v4

2

Let x, x′ ∈ {0, 1}n. The Hamming distance betweenx
and x′ is the number of entries (bits) with different val-
ues, i. e.,d(x, x′) =

∣

∣{1 ≤ j ≤ n : xj 6= x′
j}
∣

∣. The minimum
(Hamming) distance of a code,d(C), is given byd(C) =
min{d(x, x′) : x, x′ ∈ C, x 6= x′}. The Hamming weight of
a codewordx ∈ C is defined asw(x) = d(x, 0), i.e., the
number of ones inx. The minimum Hamming weight ofC is
w(C) = min{w(x) : x ∈ C, x 6= 0}. For binary linear codes it
holds thatd(C) = w(C). The error-correcting performance of
a code is, at least at high signal-to-noise ratio (SNR), closely
related to its minimum distance.

LetA ∈ Rm×n denote anm×n matrix andI = {1, . . . ,m},
J = {1, . . . , n} be the row and column index sets ofA,
respectively. The entry in rowi ∈ I and columnj ∈ J of
A is given by Ai,j . The ith row and j th column of A are
denoted byAi,. and A.,j, respectively. A vectore ∈ Rm is
called theith unit column vector ifei = 1, i ∈ I, andeh = 0
for all h ∈ I \ {i}.

A parity-check matrixH can be represented by a bipartite
graphG = (V,E), called its Tanner graph (Fig. 1). The vertex
setV of G consists of the two disjoint node setsI andJ . The
nodes inI are referred to as check nodes and correspond to the
rows ofH whereas the nodes inJ are referred to as variable
nodes and correspond to columns ofH . An edge[i, j] ∈ E
connects nodei and j if and only if Hi,j = 1. Let Ni =
{j ∈ J : Hij = 1} denote the index set of variables incident
to check nodei, and analogouslyNj = {i ∈ I : Hij = 1}
for j ∈ J . The degree of a check nodei is the number of

H =









1 1 1 0 1 0 0 0
1 1 0 1 0 1 0 0
1 0 1 1 0 0 1 0
0 1 1 1 0 0 0 1









I

J

Fig. 1. Parity-check matrix and Tanner graph of an (8,4) code.

edges incident to nodei in the Tanner graph or, equivalently,
dc(i) = |Ni|. The maximum check node degreedmax

c is the
degree of the check nodei ∈ I with the largest number of
incident edges. The degree of a variable nodej, dv(j), and the
maximum variable node degreedmax

v are defined analogously.
Tanner graphs are an example of factor graphs, a general

concept of graphical models which is prevalently used to
describe probabilistic systems and related algorithms. The
term stems from viewing the graph as the representation of
some global function in several variables that factors intoa
product of subfunctions, each depending only on a subset of
the variables. In case of Tanner graphs, the global functionis
the indicator function of the code, and the subfunctions are
the parity-checks according to single rows ofH . A different
type of factor graphs will appear later in order to describe
turbo codes. Far beyond these purely descriptive purpose,
factor graphs have proven successful in modern coding theory

primarily in the context of describing and analyzing IMPD
algorithms. See [6] for a more elaborate introduction.

Let C be a binary linear code with parity-check matrixH
andx ∈ C ⊆ {0, 1}n. The index setsupp(x) = {j ∈ J : xj =
1} is called the support of the codewordx. A codeword0 6=
x ∈ C is called a minimal codeword if there is no codeword
0 6= y ∈ C such thatsupp(y) ⊆ supp(x). Finally,D is called
a minor code ofC if D can be obtained fromD by a series
of shortening and puncturing operations.

The relationship between binary linear codes and polyhedral
theory follows from the observation that a binary linear code
can be considered a set of points inRn, i. e.,C ⊆ {0, 1}n ⊆
Rn. In the following, some relevant results from polyhedral
theory are recalled. For a comprehensive review on polyhedral
theory the reader is referred to [7].

Definition II.1 A subsetP(A, b) ⊆ Rn such thatP(A, b) =
{ν ∈ Rn : Aν ≤ b} whereA ∈ Rm×n and b ∈ Rm is called
a polyhedron.

In this article, polyhedra are assumed to be rational, i. e.,the
entries ofA and b are taken fromQ. The ith row vector of
A and theith entry of b together define a closed halfspace
{ν ∈ Rn : Ai,.ν ≤ bi}. In other words, a polyhedron is the
intersection of a finite set of closed halfspaces. A bounded
polyhedron is called a polytope. It is known from polyhedral
theory that a polytope can equivalently be defined as the
convex hull of a finite set of points. In this work, the convex
hull of a binary linear codeC is denoted byconv(C) and
referred to as the codeword polytope.

Some characteristics of a polyhedron are its dimension,
faces, and facets. To define them, the notion of a valid
inequality is needed.

Definition II.2 An inequalityrT ν ≤ t, where r ∈ Rn and
t ∈ R, is valid for a setP(A, b) ⊆ Rn if P(A, b) ⊆ {ν :
rT ν ≤ t}.

The following definition of an active inequality is used in
several LPD algorithms.

Definition II.3 An inequalityrT ν ≤ t, wherer, ν ∈ Rn and
t ∈ R, is active atν∗ ∈ Rn if rT ν∗ = t.

Valid inequalities which contain points ofP(A, b) are of
special interest.

Definition II.4 LetP(A, b) ⊆ Rn be a polyhedron, letrT ν ≤
t be a valid inequality forP(A, b) and defineF = {ν ∈
P(A, b) : rT ν = t}. ThenF is called a face ofP(A, b). F is
a proper face ifF 6= ∅ andF 6= P(A, b).

The dimensiondim(P(A, b)) of P(A, b) ⊆ Rn is given by the
maximum number of affinely independent points inP(A, b)
minus one. Recall that a set of vectorsv1, . . . , vk is affinely
independent if the system{

∑k
i=1 λkv

k = 0,
∑k

i=1 λk = 0}
has no solution other thanλi = 0 for i = 1, . . . , k. If
dim(P(A, b)) = n, then the polyhedron is full-dimensional. It
is a well-known result that ifP(A, b) is not full-dimensional,

3

then there exists at least one inequalityAi,.ν ≤ bi such that
Ai,.ν = bi holds for all ν ∈ P(A, b) (see e. g. [7]). Also,
we havedim(F) ≤ dim(P(A, b))− 1 for any proper face of
P(A, b). A faceF 6= ∅ of P(A, b) is called a facet ofP(A, b)
if dim(F) = dim(P(A, b))− 1.

In the set of inequalities defined by(A, b), some inequalities
Ai,.ν ≤ bi may be redundant, i. e., dropping these inequalities
does not change the solution set defined byAν ≤ b. A standard
result states that the facet-defining inequalities give a complete
non-redundant description of a polyhedronP(A, b) [7].

A point ν ∈ P(A, b) is called a vertex ofP(A, b) if there
exist no two other pointsν1, ν2 ∈ P(A, b) such thatν =
µ1ν

1 +µ2ν
2 with 0 ≤ µ1 ≤ 1, 0 ≤ µ2 ≤ 1, andµ1 +µ2 = 1.

Alternatively, vertices are zero dimensional faces ofP(A, b).
In an LP problem, a linear cost function is minimized on a
polyhedron, i. e.,min{cTx : x ∈ P(A, b)}, c ∈ Rn. Unless
the LP is infeasible or unbounded, the minimum is attained
on one of the vertices.

The number of constraints of an LP problem may be
very large, e. g. Section V contains LPD formulations whose
description complexity grows exponentially with the block
length for general codes. In such a case it would be desirableto
only include the constraints which are necessary to determine
the optimal solution of the LP with respect to a given objective
function. This can be accomplished by iteratively solving the
associated separation problem, defined as follows.

Definition II.5 Let P(A, b) ⊂ Rn be a rational polyhedron
and ν∗ ∈ Rn a rational vector. The separation problem is to
either conclude thatν∗ ∈ P(A, b) or, if not, find a rational
vector(r, t) ∈ Rn ×R such thatrT ν ≤ t for all ν ∈ P(A, b)
and rT ν∗ > t. In the latter case,(r, t) is called a valid cut.

We will see applications of this approach in Sections VI and
VII.

There is a famous result about the equivalence of optimiza-
tion and separation by Grötschelet al. [8].

Theorem II.6 Let P be a proper class of polyhedra (see
e. g. [7] for a definition). The optimization problem forP is
polynomial time solvable if and only if the separation problem
is polynomial time solvable.

III. C OMPLEXITY AND POLYHEDRAL PROPERTIES

In this section, after referencing important NP-hardness
results for the decoding problem, we state useful properties
of the codeword polytope, exploiting a close relation between
coding and matroid theory.

Integer programming provides powerful means for modeling
several real-world problems. MLD for binary linear codes is
modeled as an IP problem in [2], [9]. Lety ∈ Rn be the
channel output. In MLD the probability (or, in case of a
continuous-output channel, the probability density)P (y|x) is
maximized over all codewordsx ∈ C. Let x∗ denote the ML
codeword. It is shown in [1] that for a symmetric memoryless
channel the calculation ofx∗ amounts to the minimization of

a linear cost function, namely

x∗ = argmax
x∈C

P (y|x) = argmin
x∈C

n
∑

j=1

λjxj , (1)

where the valuesλj = logP (yj |xj=0)
P (yj |xj=1) are the so-called log-

likelihood ratios (LLR). Consequently the IP formulation of
MLD is implicitly given as

min{λTx : x ∈ C}. (2)

Berlekampet al.have shown that MLD is NP-hard in [10] by a
polynomial-time reduction of the three-dimensional matching
problem to the decision version of MLD. An alternative
proof is via matroid theory: as shall be exposed shortly,
there is a one-to-one correspondence between binary matroids
and binary linear codes. In virtue of this analogy, MLD is
equivalent to the minimum-weight cycle problem on binary
matroids. Since the latter contains the max-cut problem, which
is known to be NP-hard [11], as a special case, the NP-
hardness of MLD follows.

Another problem of interest in the framework of coding
theory is the computation of the minimum distance of a given
code. Berlekampet al. [10] conjectured that computing the
distance of a binary linear code is NP-hard as well, which was
proved by Vardy [12] about two decades later. The minimum
distance problem can again be reformulated in a matroid
theoretic setting. In 1969 Welsh [13] formulated it as the
problem of finding a minimum cardinality circuit in linear
matroids.

In the following, we assumeC ⊆ {0, 1}n to be canonically
embedded inRn when referring toconv(C) (see Fig. 2 for
an example). ReplacingC by conv(C) in (2) leads to a linear
programming problem over a polytope with integer vertices.
In general, computing an explicit representation ofconv(C)
is intractable. Nevertheless, some properties ofconv(C) are
known from matroid theory due to the equivalence of binary
linear codes and binary matroids. In the following, some
definitions and results from matroid theory are presented. An
extensive investigation of matroids can be found in [14] or
[15]. The definition of a matroid in general is rather technical.

Definition III.1 A matroidM is an ordered pairM = (J,U)
whereJ is a finite ground set andU is a collection of subsets
of J , called the independent sets, such that (a) – (c) hold.

(a) ∅ ∈ U .
(b) If u ∈ U and v ⊂ u, thenv ∈ U .
(c) If u1, u2 ∈ U and |u1| < |u2| then there existsj ∈ u2 \u1

such thatu1 ∪ {j} ∈ U .

In this work, the class ofF2-representable (i. e., binary)
matroids is of interest. A binarym × n matrix H defines an
F2-representable matroidM [H] as follows. The ground set
J = {1, . . . , n} is defined to be the index set of the columns
of H . A subsetU ⊆ J is independent if and only if the
column vectorsH.,u, u ∈ U are linearly independent in the
vector space defined over the fieldF2. A minimal dependent
set, i. e., a setV ∈ 2J \ U such that all proper subsets ofV

4

x1

x2

x3

(0, 0, 0)

(1, 1, 0)

(1, 0, 1)

(0, 1, 1)

x1

x2

x3

(0, 0, 0)

(1, 1, 0)

(1, 0, 1)

(0, 1, 1)

Fig. 2. The codewords of the single parity-check codeC = {x ∈ F3

2
:

x1 + x2 + x3 ≡ 0 (mod 2)} and the polytopeconv(C) in R3.

are inU , is called a circuit ofM [H]. If a subset ofJ is a
disjoint union of circuits then it is called a cycle.

The incidence vectorxC ∈ Rn corresponding to a cycle
C ⊆ J is defined by

xC
j =

{

1 if j ∈ C,

0 if j /∈ C.

The cycle polytope is the convex hull of the incidence vectors
corresponding to all cycles of a binary matroid.

Some more relationships between coding theory and ma-
troid theory (see also [16]) can be listed: a binary linear code
corresponds to a binary matroid, the support of a codeword
corresponds to a cycle (therefore, each codeword corresponds
to the incidence vector of a cycle), the support of a minimal
codeword corresponds to a circuit, and the codeword polytope
conv(C) corresponds to the cycle polytope. LetH be a binary
matrix, M [H] be the binary matroid defined byH (H is a
representation matrix ofM [H]) andC be the binary linear
code defined byH (H is a parity-check matrix ofC). It can
easily be shown that the dualC⊥ of C is the same object
as the dual of the binary matroidM [H]. We denote the dual
matroid byM [G], whereG is the generator matrix ofC.
Usually the matroid related terms are dualized by the prefix
“co”. For example, the circuits and cycles of a dual matroid are
called cocircuits and cocycles, respectively. The supports of
minimal codewords and the supports of codewords inC⊥ are
associated with cocircuits and cocycles ofM [H], respectively.

A minor of a parent matroidM = (J,U) is the sub-
matroid obtained fromM after any combination of contraction
and restriction operations (see e. g. [14]). In the context of
coding theory, contraction corresponds to puncturing, i. e., the
deletion of one or more columns from the generator matrix of
a parent code, and restriction corresponds to shortening, i. e.,
the deletion of one or more columns from the parity-check
matrix of a parent code.

Next, some results from Barahona and Grötschel [17] which
are related to the structure of the cycle polytope are rewritten
in terms of coding theory. Kashyap provides a similar transfer
in [18]. Several results are collected in Theorem III.2.

Theorem III.2 Let C be a binary linear code.

(a) If d(C⊥) ≥ 3 then the codeword polytope is full-
dimensional.

(b) The box inequalities

0 ≤ xj ≤ 1 for all j ∈ J (3)

and the cocircuit inequalities
∑

j∈F

xj −
∑

j∈supp(q)\F

xj ≤ |F| − 1

for all F ⊆ supp(q) with |F| odd,

(4)

wheresupp(q) is the support of a dual minimal codeword
q, are valid for the codeword polytope.

(c) The box inequalitiesxj ≥ 0, xj ≤ 1 define facets of
the codeword polytope ifd(C⊥) ≥ 3 and j ∈ J is not
contained in the support of a codeword inC⊥ with weight
three.

(d) If d(C⊥) ≥ 3 andC does not containH⊥
7 ((7,3,4) simplex

code) as a minor, and if there exists a dual minimal
codewordq of weight 3, then the cocircuit inequalities
derived fromsupp(q) are facets ofconv(C).

Part (b) of Theorem III.2 implies that the set of cocircuit
inequalities derived from the supports of all dual minimal
codewords provide a relaxation of the codeword polytope.
In the polyhedral analysis of the codeword polytope the
symmetry property stated below plays an important role.

Theorem III.3 [17] If aTx ≤ α defines a face ofconv(C) of
dimensiond, andy is a codeword, then the inequalityāTx ≤ ᾱ
also defines a face ofconv(C) of dimensiond, where

āj =

{

aj if j /∈ supp(y),
−aj if j ∈ supp(y),

and ᾱ = α− aT y.

Using this theorem, a complete description ofconv(C) can
be derived from all facets containing a single codeword [17].

Let q be a dual minimal codeword. To identify if the
cocircuit inequalities derived fromsupp(q) are facet-defining
it should be checked ifsupp(q) has a chord. For the formal
definition of chord, the symmetric difference△ which operates
on two finite sets is used, defined byA△B = (A\B)∪(B\A).
Note that ifA = supp(q1), B = supp(q2) and supp(q0) =
A△B, thenq0 ≡ q1 + q2 (mod 2).

Definition III.4 Let q0, q1, q2 ∈ C⊥ be dual minimal code-
words. If supp(q0) = supp(q1)△ supp(q2) and supp(q1) ∩
supp(q2) = {j}, thenj is called a chord ofsupp(q0).

Theorem III.5 [17] Let C be a binary linear code without
the (7, 3, 4) simplex code as a minor and letsupp(q) be the
support of a dual minimal codeword with Hamming weight at
least3 and without chord. Then for allF ⊆ supp(q) with |F|
odd, the inequality

∑

j∈F

xj −
∑

j∈supp(q)\F

xj ≤ |F| − 1

defines a facet ofconv(C).

Optimizing a linear cost function over the cycle polytope,
known as the cycle problem in terms of matroid theory, is
investigated by Grötschel and Truemper [19]. The work of
Feldmanet al. [2] enables to use the matroid theoretic results
in the coding theory context. As shown above, solving the

5

MLD problem for a binary linear code is equivalent to solving
the cycle problem on a binary matroid. In [19], binary matroids
for which the cycle problem can be solved in polynomial
time are classified, based on Seymour’s matroid decomposition
theory [20]. Kashyap [16] shows that results from [19] are
directly applicable to binary linear codes. The MLD problem
as well as the minimum distance problem can be solved in
polynomial time for the code families for which the cycle
problem on the associated binary matroid can be solved in
polynomial time. This code family is called polynomially
almost-graphic codes [16].

An interesting subclass of polynomially almost-graphic
codes are geometrically perfect codes. Kashyap translatesthe
sum of circuits property (see [19]) to the realm of binary
linear codes. If the binary matroid associated with codeC has
the sum of circuits property thenconv(C) can be described
completely and non-redundantly by the box inequalities (3)
and the cocircuit inequalities (4). These codes are referred to
as geometrically perfect codes in [16]. The associated binary
matroids of geometrically perfect codes can be decomposed
in polynomial time into its minors which are either graphic
(see [14]) or contained in a finite list of matroids.

From a coding theoretic point of view, a family of error-
correcting codes is asymptotically bad if either dimension
or minimum distance grows only sublinearly with the code
length. Kashyap proves that the family of geometrically perfect
codes unfortunately fulfills this property. We refer to [16]for
the generalizations of this result.

IV. BASICS OFLPD

LPD was first introduced in [2]. This decoding method is,
in principle, applicable to any binary linear code over any
binary input memoryless channel.3 In this section, we review
the basics of the LPD approach based on [1].

Although several structural properties ofconv(C) are
known, it is in general infeasible to compute a concise de-
scription ofconv(C) by means of linear inequalities. In LPD,
the linear cost function of the IP formulation is minimized on a
relaxed polytopeP whereconv(C) ⊆ P ⊆ Rn. Such a relaxed
polytopeP should have the following desirable properties:

• P should be easy to describe, and
• integral vertices ofP should correspond to codewords.

Together with the linear representation (1) of the likelihood
function, this leads to one of the major benefits of LPD, the
so-called ML certificate property: If the LP decoder outputs
an integral optimal solution, it is guaranteed to be the ML
codeword. This is a remarkable difference to IMPD: If no
general optimality condition applies (see e. g. [23, Sec. 10.3]),
there is no method to provably decide the optimality of a
solution obtained by IMPD.

Each row (check node)i ∈ I of a parity-check matrixH
defines the local code

Ci =







x ∈ {0, 1}n :

n
∑

j=1

Hijxj ≡ 0 (mod 2)







3In fact, Flanaganet al. [21] have recently generalized a substantial portion
of the LPD theory to the nonbinary case. Similarly, work has been done to
include channels with memory; see e. g. [22].

that consists of the bit sequences which satisfy theith parity-
check constraint; these are called local codewords. A particu-
larly interesting relaxation ofconv(C) is

P = conv(C1) ∩ · · · ∩ conv(Cm) ⊆ [0, 1]n,

known as the fundamental polytope [24]. The vertices of the
fundamental polytope, the so-called pseudocodewords, area
superset ofC, where the difference consists only of non-
integral vertices. Consequently, optimizing overP implies the
ML certificate property. These observations are formally stated
in the following result (note thatC = C1 ∩ · · · ∩Cm).

Lemma IV.1 [24] Let P = conv(C1) ∩ · · · ∩ conv(Cm). If
C = C1 ∩ · · · ∩Cm thenconv(C) ⊆ P andC = P ∩{0, 1}n.

The description complexity of the convex hull of any local
codeconv(Ci) and thusP is usually much smaller than the
description complexity of the codeword polytopeconv(C).

LPD can be written as optimizing the linear objective
function on the fundamental polytopeP , i. e.,

min{λTx : x ∈ P}. (5)

Based on (5), the LPD algorithm which we refer to as bare
linear programming decoding (BLPD) is derived.

Bare LP decoding (BLPD)
Input: λ ∈ Rn, P ⊆ [0, 1]n.
Output: ML codeword orERROR.

1: solve the LP given in (5)
2: if LP solutionx∗ is integralthen
3: outputx∗

4: else
5: outputERROR

6: end if

Because of the ML certificate property, if BLPD outputs a
codeword, then it is the ML codeword. BLPD succeeds if the
transmitted codeword is the unique optimum of the LP given in
(5). BLPD fails if the optimal solution is non-integral or the
ML codeword is not the same as the transmitted codeword.
Note that the difference between the performance of BLPD
and MLD is caused by the decoding failures for which BLPD
finds a non-integral optimal solution. It should be emphasized
that in case of multiple optima it is assumed that BLPD fails.

In some special cases, the fundamental polytopeP is
equivalent toconv(C), e. g., if the underlying Tanner graph
is a tree or forest [24]. In these cases MLD can be achieved
by BLPD. Note that in those cases also MSAD achieves MLD
performance [5].

Observe that the minimum distance of a code can be
understood as the minimumℓ1 distance between any two
different codewords ofC. Likewise the fractional distance of
the fundamental polytopeP can be defined as follows.

Definition IV.2 [2] Let V (P) be the set of vertices (pseu-
docodewords) ofP . The fractional distancedfrac(P) is the

6

minimumℓ1 distance between a codeword and any other vertex
of V (P), i. e.

dfrac(P) = min







n
∑

j=1

|xj − vj | : x ∈ C, v ∈ V (P), x 6= v







.

It follows that the fractional distance is a lower bound
for the minimum distance of a code:d(C) ≥ dfrac(P).
Moreover, both definitions are related as follows. Recall that
on the binary symmetric channel (BSC), MLD corrects at least
⌈d(C)/2⌉ − 1 bit flips. As shown in [1], LPD succeeds if at
most⌈dfrac(P)/2⌉ − 1 errors occur on the BSC.

Analogously to the minimum distance, the fractional dis-
tance is equivalent to the minimumℓ1 weight of a non-zero
vertex ofP . This property is used by the fractional distance
algorithm (FDA) to compute the fractional distance of a binary
linear code [1]. If M is the set of inequalities describing
P , let MI be the subset of those inequalities which are not
active at the all-zero codeword. Note that these are exactly
the inequalities with a non-zero right hand side. In FDA the
weight function

∑

j∈J xj is subsequently minimized onP∩f
for all f ∈ MI in order to find the minimum-weight non-zero
vertex ofP .

Fractional distance algorithm (FDA)
Input: P ⊆ [0, 1]

n.
Output: Minimum-weight non-zero vertex ofP .

1: for all f ∈ MI do
2: SetP ′ = P ∩ f .
3: Solvemin

{

∑

j∈J xj : x ∈ P ′
}

.
4: end for
5: Choose the minimum value obtained over allP ′.

A more siginficant distance measure thandfrac is the so-
called pseudo-distance which quantifies the probability that
the optimal solution under LPD changes from one vertex
of P to another [25], [24]. Likewise, the minimum pseudo-
weight is defined as the minimum pseudo-distance from0
to any other vertex ofP and therefor identifies the vertex
(pseudocodeword) which is most likely to cause a decoding
failure. Note that the pseudo-distance takes the channel’s
probability measure into account and thus depends on the
chosen channel model.

Albeit no efficient algorithms are known to compute the
exact minimum pseudo-weight of the fundamental polytope
of a code, promising heuristics as well as analytical bounds
have been proposed [24], [25], [26].

V. LPD FORMULATIONS FORVARIOUS CODE CLASSES

This section reviews various formulations of the polytopeP
from (5), leading to optimized versions of the general BLPD
algorithm for different classes of codes.

In Step 1 of BLPD the LP problem is solved by a general
purpose LP solver. These solvers usually employ the simplex
method since it performs well in practice. The simplex method
iteratively examines vertices of the underlying polytope until
the vertex corresponding to the optimal solution is reached.

If there exists a neighboring vertex for which the objective
function can be improved in the current step, the simplex
method moves to this vertex. Otherwise it stops. The procedure
of moving from one vertex to an other is called a simplex
iteration. Details on the simplex algorithm can be found in
classical books about linear programming (see e. g. [27]).

The efficiency of the simplex method depends on the com-
plexity of the constraint set describing the underlying polytope.
Several such explicit descriptions of the fundamental polytope
P have been proposed in the LPD literature. Some can be
used for any binary linear code whereas others are specialized
for a specific code class. Using alternative descriptions ofP ,
alternative LP decoders are obtained. In the following, we are
going to present different LP formulations.

A. LP formulations for LDPC codes

The solution algorithm referred to as BLPD in Section IV
was introduced by Feldmanet al. [2]. In order to describeP
explicitly, three alternative constraint sets are suggested by the
authors by the formulations BLPD1, BLPD2, and BLPD3. In
the following, some abbreviations are used to denote both the
formulation and the associated solution (decoding) algorithm,
e. g., solving an LP, subgradient optimization, neighborhood
search. The meaning will be clear from the context.

The first LP formulation, BLPD1, of [2] is applicable to
LDPC codes.

min λTx (BLPD1)

s.t.
∑

S∈Ei

wi,S = 1 i = 1, . . . ,m (6)

xj =
∑

S∈Ei

with j∈S

wi,S ∀j ∈ Ni, i = 1, . . . ,m (7)

0 ≤ xj ≤ 1 j = 1, . . . , n

0 ≤ wi,S ≤ 1 ∀S ∈ Ei, i = 1, . . . ,m

Here, Ei = {S ⊆ Ni : |S| even} is the set of valid bit
configurations withinNi. The auxiliary variableswi,S used
in this formulation indicate which bit configurationS ∈ Ei

is taken at parity checki. In case of an integral solution, (6)
ensures that exactly one such configuration is attained at every
checknode, while (7) connects the actual code bits, modeled
by the variablesxj , to the auxiliary variables:xj = 1 if and
only if the setS ∈ Ei containsj for every check nodei. Note
that here we consider the LP relaxation, so it is not guaranteed
that a solution of the above program is indeed integral.

A second linear programming formulation for LDPC codes,
BLPD2, is obtained by employing the so-called forbidden
set (FS) inequalities [28]. The FS inequalities are motivated
by the observation that one can explicitly forbid those value
assignments to variables where|S| is odd. For all local
codewords inCi it holds that

∑

j∈S

xj −
∑

j∈Ni\S

xj ≤ |S| − 1 ∀S ∈ Σi

whereΣi = {S ⊆ Ni : |S| odd}. Feldmanet al. show in [2]
that for each single parity-check codeCi, the FS inequalities

7

together with the box inequalities0 ≤ xj ≤ 1, j ∈ J
completely and non-redundantly describeconv(Ci) (the case
|Ni| = 3 as depicted in Fig. 2 is the only exception where the
box inequalities are not needed). In a more general setting,
Grötschel proved this result for the cardinality homogeneous
set systems [29].

If the rows of H are considered as dual codewords, the
set of FS inequalities is a reinvention of cocircuit inequalities
explained in Section III. BLPD2 is given below.

minλTx (BLPD2)

s.t.
∑

j∈S

xj −
∑

j∈Ni\S

xj ≤ |S| − 1 ∀S ∈ Σi, i = 1, . . . ,m

0 ≤ xj ≤ 1 j = 1, . . . , n

Feldmanet al. [2] apply BLPD using formulations BLPD1
or BLPD2 to LDPC codes. Under the BSC, the error-
correcting performance of BLPD is compared with the MSAD
on an random rate-12 LDPC code withn = 200, dv = 3,
dc = 6; with the MSAD, SPAD on the random rate-1

4 LDPC
code withn = 200, dv = 3, dc = 4; with the MSAD, SPAD,
MLD on the random rate-14 LDPC code withn = 60, dv = 3,
dc = 4. On these codes, BLPD performs better than MSAD
but worse than SPAD. Using BLPD2, the FDA is applied
to random rate-14 LDPC codes withn = 100, 200, 300, 400,
dv = 3 and dc = 4 from an ensemble of Gallager [30]. For
(n − 1, n) Reed-Muller codes [31] with4 ≤ n ≤ 512 they
compare the classical distance with the fractional distance. The
numerical results suggest that the gap between both distances
grows with increasing block length.

Another formulation for LDPC codes is given in Sec-
tion VI-B in the context of efficient implementations.

In a remarkable work, Feldman and Stein [32] have shown
that the Shannon capacity of a channel can be achieved with
LP decoding, which implies a polynomial-time decoder and
the availability of an ML certificate. To this end, they use
a slightly modified version of BLPD1 restricted to expander
codes, which are a subclass of LDPC codes. See [32] for a
formal definition of expander codes as well as the details of
the corresponding decoder.

B. LP formulations for codes with high-density parity-check
matrices

The number of variables and constraints in BLPD1 as
well as the number of constraints in BLPD2 increase ex-
ponentially in the check node degree. Thus, for codes with
high-density parity-check matrices, BLPD1 and BLPD2 are
computationally inefficient. A polynomial-sized formulation,
BLPD3, is based on the parity polytope of Yannakakis [33].
There are two types of auxiliary variables in BLPD3. The
variablepi,k is set to one ifk variable nodes are set to one
in the neighborhood of parity-checki, for k in the index set
Ki =

{

0, 2, . . . , 2
⌊

|Ni|
2

⌋}

. Furthermore, the variableqj,i,k is
set to one if variable nodej is one of thek variable nodes set

to one in the neighborhood of check nodei.

min λTx (BLPD3)

s.t. xj =
∑

k∈Ki

qj,i,k i ∈ Nj , j = 1, . . . , n

∑

k∈Ki

pi,k = 1 i = 1, . . .m

∑

j∈Ni

qj,i,k = kpi,k k ∈ Ki, i = 1, . . .m

0 ≤ xj ≤ 1 j = 1, . . . , n

0 ≤ pi,k ≤ 1 k ∈ Ki, i = 1, . . . ,m

0 ≤ qj,i,k ≤ pi,k k ∈ Ki, j = 1, . . . , n, i ∈ Nj

Feldmanet al. [2] show that BLPD1, BLPD2, and BLPD3
are equivalent in the sense that thex-variables of the optimal
solutions in all three formulations take the same values.

The number of variables and constraints in BLPD3 increases
as O(n3). By applying a decomposition approach, Yanget
al. [34] show that an alternative LP formulation which has
size linear in the length and check node degrees can be
obtained (it should be noted that independently from [34] a
similar decomposition approach was also proposed in [35]).
In the LP formulation of [34] a high degree check node is
decomposed into several low degree check nodes. Thus, the
resulting Tanner graph contains auxiliary check and variable
nodes. Fig. 3 illustrates this decomposition technique: a check
node with degree4 is decomposed into2 parity checks each
with degree at most3. The parity-check nodes are illustrated

+

ν1 ν3

ν2 ν4

ν5+ +

ν1

ν2

ν3

ν4

Fig. 3. Check node decomposition.

by squares. In the example, original variables are denoted by
ν1, . . . , ν4 while the auxiliary variable node is namedν5. In
general, this decomposition technique is iteratively applied
until every check node has degree less than4. The authors
show that the total number of variables in the formulation is
less than doubled by the decomposition. For the details of the
decomposition [34] is referred.

For the ease of notation, supposeK is the set of parity-
check nodes after decomposition. Ifdc(k) = 3, k ∈ K, then
the parity-check constraintk is of the formνk1 + νk2 + νk3 ≡ 0
(mod 2). Note that with our notation some of these variables
νks might represent the same variable nodeνj , e.g. ν5 from
Fig. 3 would appear in two constraints of the above form, as
ν1s andν2s′ , respectively. Yanget al.show that the parity-check
constraintνk1 + νk2 + νk3 ≡ 0 (mod 2) can be replaced by the
linear constraintsνk1+νk2+νk3 ≤ 2, νk1−νk2−νk3 ≤ 0, νk2−νk1−
νk3 ≤ 0, νk3 −νk1 −νk2 ≤ 0 (for a single check node of degree3
the box inequalities are not needed). Ifdc(k) = 2 thenνk1 =
νk2 along with the box constraints models the parity-check. The
constraint set of the resulting LP formulation, which we call
cascaded linear programming decoding (CLPD), is the union

8

of all constraints modeling the|K| parity checks.

min λ̄T ν (CLPD)

s.t.
∑

j∈S

νkj −
∑

j∈Nk\S

νkj ≤ |S| − 1 ∀S ∈ Σk, k = 1, . . . , |K|

0 ≤ νj ≤ 1 if dc(i) ≤ 2 ∀ i : j ∈ Ni

In the objective function only theν variables corresponding to
the originalx variables have non-zero coefficients. Thus, the
objective function of CLPD is the same as of BLPD1. The
constraints in CLPD are the FS inequalities used in BLPD2
with the property that the degree of the check node is less
than4.

Yang et al. prove that the formulations introduced in [2]
and CLPD are equivalent. Again, equivalence is used in the
sense that in an optimal solution, thex-variables of BLPD1,
BLPD2, BLPD3, and the variables of the CLPD formulation
which correspond to originalx-variables take the same values.
Moreover, it is shown that CLPD can be used in FDA. As a
result, the computation of the fractional distance for codes with
high-density parity-check matrices is also facilitated. Note that
using BLPD2, the FDA algorithm has polynomial running time
only for LDPC codes. IfP is described by the constraint set
of CLPD, then in the first step of the FDA, it is sufficient to
choose the setF from the facets formed by cutting planes of
type νk1 + νk2 + νk3 = 2 whereνk1 , νk2 , and νk3 are variables
of the CLPD formulation. Additionally, an adaptive branch &
bound method is suggested in [36] to find better bounds for
the minimum distance of a code. On a random rate-1

4 LDPC
code withn = 60, dv = 3, dc = 4, it is demonstrated that this
yields a better lower bound than the fractional distance does.

C. LP formulations for turbo-like codes

The various LP formulations outlined so far have in com-
mon that they are derived from a parity-check matrix which
defines a specific code. A different approach is to describe the
encoder by means of a finite state machine, which is the usual
way to define so-called convolutional codes. The bits of the
information word are subsequently fed into the machine, each
causing a state change that emits a fixed number of output
bits depending on both the current state and the input. In a
systematic code, the output always contains the input bit. The
codeword, consisting of the concatenation of all outputs, can
thus be partitioned into the systematic part which is a copy of
the input and the remaining bits, being refered to as the parity
output.

A convolutional code is naturally represented by a trellis
graph (Fig. 4), which is obtained by unfolding the state dia-
gram in the time domain. Each vertex of the trellis represents
the state at a specific point in time, while edges correspond
to valid transitions between two subsequent states and are
labelled by the according input and output bits. Each path from
the starting node to the end node corresponds to a codeword.4

The cost of a codeword is derived from the received LLR
values and the edge labels on the path associated with this
codeword. See [23] for an in-depth survey of these concepts.

4We intentionally do not discuss trellis termination here and assume that
the encoder always ends in a fixed terminal state; cf. [23] fordetails.

0 0

2

0

1

0

1

2

3

0

1

2

3

0

1

2

3

0

1

2

3

0

1

0

1

1

2

3

1

3

Fig. 4. Excerpt from a trellis graph with four states and initial state0. The
style of an edge indicates the according information bit, while the labels refer
to the single parity bit.

Convolutional codes are the building blocks of turbo codes,
which revolutionized coding theory because of their near
Shannon limit error-correcting performance [37]. An(n, k)
turbo code consists of two convolutional codesCa and Cb,
each of input lengthk, which are linked by a so-called
interleaver that requires the information bits ofCa to match
those ofCb after being scrambled by some permutationπ ∈ Sk
which is fixed for a given code.5 It is this coupling of rather
weak individual codes and the increase of complexity arising
therefrom that entails the vast performance gain of turbo codes.
A typical turbo code (and only this case is covered here;
it is straightforward to generalize) consists of two identical
systematic encoders of rate12 each. Only one of the encoders
Ca and Cb, however, contributes its systematic part to the
resulting codeword, yielding an overall rate of2

3 , i. e. n = 3k
(since their systematic parts differ only by a permutation,
including both would imply an embedded repetition code).
We thus partition a codewordx into the systematic partxs

and the parity outputsxa andxb of Ca andCb, respectively.
A turbo code can be compactly represented by a so-called

Forney-style factor graph (FFG) as shown in Fig. 5. As
opposed to Tanner graphs, in an FFG all nodes are functional
nodes, whereas the (half-)edges correspond to variables. In our
case, there are variables of two types, namely state variables
sνj (ν ∈ {a, b}), reflecting the state ofCν at time stepj,
and a variable for each bit of the codewordx. Each nodeT ν

j

represents the indicator function for a valid state transition in
Cν at time j and is thus incident to one systematic and one
parity variable as well as the “before” and “after” statesνj−1

andsνj , respectively. Note that such a nodeT ν
j corresponds to

a vertical “slice” (often called a segment) of the trellis graph
of Cν , and each valid configuration ofT ν

j is represented by
exactly one edge in the respective segment.

Turbo codes are typically decoded by IMPD techniques op-
erating on the factor graph. Feldman [1] in contrast introduced
an LP formulation, turbo code linear programming decoding
(TCLPD), for this purpose. This serves as an example that ma-
thematical programming is a promising approach in decoding
even beyond formulations based on parity-check matrices.

In TCLPD, the trellis graph of each constituent encoderCν

is modeled by flow conservation and capacity constraints [39],
along with side constraints appropriately connecting the flow

5Using exactly two constituent convolutional encoders eases notation and
is the most common case, albeit not being essential for the concept—in
fact, recent development suggest that the error-correcting performance benefits
from adding a third encoder [38].

9

Ta
1

sa0

xa
1

Ta
2

sa1

xa
2

Ta
3

sa2

xa
3

Ta
j

sajsaj−1

xa
j

T b
1

sb0
xb
1

T b
2

sb1
xb
2

T b
3

sb2
xb
3

T b
j

sbjsbj−1
xb
j

xs
1

xs
π(1)

xs
2

xs
π(2)

xs
3

xs
π(3)

xs
j

xs
π(j)

interleaverπ

Fig. 5. The factor graph of a turbo code. The interleaver links the systematic
bits xs of both encodersCa (upper part) andCb (lower part).

variablesfν to auxiliary variablesxs and xν , respectively,
which embody the codeword bits.

For ν ∈ {a, b}, let Gν = (Sν , Eν) be the trellis according
to Cν , whereSν is the index set of nodes (states) andEν

is the set of edges (state transitions)e in Gν . Let sstart,ν and
send,ν denote the unique start and end node, respectively, of
Gν . We can now define a feasible flowfν in the trellisGν

by the system
∑

e∈out(sstart,ν)

fν
e = 1,

∑

e∈in(send,ν)

fν
e = 1, (8)

∑

e∈out(s)

fν
e =

∑

e∈in(s)

fν
e ∀ s ∈ Sν \ {sstart,ν , send,ν}, (9)

fν
e ≥ 0 ∀ e ∈ Eν . (10)

Let Iνj andOν
j denote the set of edges inGν whose corre-

sponding input and output bit, respectively, is a1 (both being
subsets of thej-th segment ofGν), the following constraints
relate the codeword bits to the flow variables:

xν
j =

∑

e∈Oν
j

fν
e for j = 1, . . . , k andν ∈ {a, b}, (11)

xs
j =

∑

e∈Ia
j

fa
e for j = 1, . . . , k, (12)

xs
π(j) =

∑

e∈Ib
j

f b
e for j = 1, . . . , k. (13)

We can now state TCLPD as

min
∑

ν∈{a,b}

(λν)Txν + (λs)Txs (TCLPD)

s. t. (8)–(13) hold.

whereλ is split in the same way asx.
The formulation straightforwardly generalizes to all sorts

of “turbo-like” codes, i. e., codes built by convolutional codes
plus interleaver conditions. In particular, Feldman and Karger
have applied TCLPD to repeat-accumulate (RA(l)) codes
[40]. The encoder of an RA(l) repeats the information bits
l times, and then sends them to an interleaver followed by an
accumulator, which is a two-state convolutional encoder. The
authors derive bounds on the error rate of TCLPD for RA
codes which were later improved and extended by Halabi and
Even [41] as well as by Goldenberg and Burshtein [42].

Note that allx variables in TCLPD are auxiliary: we could
replace each occurence by the sum of flow variables defining
it. In doing so, (12) and (13) break down to the condition

∑

e∈Ia
π(j)

fa
e =

∑

e∈Ib
j

f b
e for j = 1, . . . , k. (14)

Because the rest of the constraints defines a standard network
flow, TCLPD models a minimum cost flow problem plus the
k additional side constraints (14). Using a general purpose
LP solver does not exploit this combinatorial substructure. As
was suggested already in [1], in [43] Lagrangian relaxation
is applied to (14) in order to recover the underlying shortest-
path problem. Additionally, the authors of [43] use a heuristic
based on computing theK shortest paths in a trellis to
improve the decoding performance. Via the parameterK the
trade-off between algorithmic complexity and error-correcting
performance can be controlled.

VI. EFFICIENT LP SOLVERS FORBLPD

A successful realization of BLPD requires an efficient LP
solver. To this end, several ideas have been suggested in the
literature. CLPD (cf. Section V) can be considered an efficient
LPD approach since the number of variables and constraints
are significantly reduced. We review several others in this
section.

A. Solving the separation problem

The approach of Taghavi and Siegel [44] tackles the large
number of constraints in BLPD2. In their separation approach
called adaptive linear programming decoding (ALPD), not
all FS inequalities are included in the LP formulation as in
BLPD2. Instead, they are iteratively added when needed. As
in Definition II.5, the general idea is to start with a crude
LP formulation and then improve it. Note that this idea can
also be used to improve the error-correcting performance
(see Section VII). In the initialization step, the trivial LP
min{λTx : x ∈ [0, 1]n} is solved. Let(x∗)k be the optimal
solution in iterationk. Taghavi and Siegel show that it can
be checked inO(mdmax

c +n logn) time if (x∗)k violates any
FS inequality derived fromHi,.x = 0 (mod 2) for all i ∈ I
(recall thatm × n is the dimension ofH and dmax

c is the
maximum maximum check-node degree). This check can be
considered as a special case of the greedy separation algorithm
(GSA) introduced in [29]. If some of the FS inequalities are
violated then these inequalities are added to the formulation
and the modified LP is solved again with the new inequalities.
ALPD stops if the current optimal solution(x∗)k satisfies
all FS inequalities. If(x∗)k is integral then it is the ML
codeword, otherwise an error is output. ALPD does not yield
an improvement in terms of frame error rate since the same
solutions are found as in the formulations in the previous
section. However, the computational complexity is reduced.

An important algorithmic result of [44] is that ALPD
converges to the same optimal solution as BLPD2 with sig-
nificantly fewer constraints. It is shown empirically that in the
last iteration of ALPD, less constraints than in the formulations
BLPD2, BLPD3, and CLPD are used. Taghavi and Siegel [44]

10

prove that their algorithm converges to the optimal solution
on the fundamental polytope after at mostn iterations with at
mostn(m+ 2) constraints.

Under the binary-input additive white Gaussian noise chan-
nel (BIAWGNC), [44] uses various random(dv, dc)-regular
codes to test the effect of changing the check node degree,
the block length, and the code rate on the number of FS
inequalities generated and the convergence of their algorithm.
Settingn = 360 and rateR = 1

2 , the authors vary the check
node degree in the range of4 to 40 in their computational
testing. It is observed that the average and the maximum
number of FS inequalities remain below270. The effect of
changing block lengthn between30 and1920 underR = 1

2
is demonstrated on a(3, 6)-regular LDPC code. For these
codes, it is demonstrated that the number of FS inequalities
used in the final iteration is generally between0.6n and0.7n.
Moreover, it is reported that the number of iterations remain
below 16. The authors also investigate the effect of the rate
on the number of FS inequalities created. Simulations are
performed on codes withn = 120 and dv = 3 where the
number of parity checksm vary between15 and 90. For
most values ofm it is observed that the average number of
FS inequalities ranges between1.1m and 1.2m. For ALPD,
BLPD2, and SPAD (50 iterations), the average decoding time
is testet for(3, 6)-regular and(4, 8)-regular LDPC codes with
various block lengths. It is shown that ALPD outperforms
BLPD with respect to computation time, whil still being slower
than SPAD. Furthermore, increasing the check node degree
does not increase the computation time of ALPD as much
as the computation time of BLPD. The behavior of ALPD,
in terms of the number of iterations and the FS inequalities
used, under increasing SNR is tested on a(3, 6)-regular LDPC
code withn = 240. It is concluded that ALPD performs more
iterations and uses more FS inequalities for the instances it
fails. Thus, decoding time decreases with increasing SNR.

In [45] ALPD is improved further in terms of complexity.
The authors use some structural properties of the fundamental
polytope. Let(x∗)k be an optimal solution in iterationk. In
[44] it is shown that, if(x∗)k does not satisfy an FS inequality
derived from check nodei, then (x∗)k satisfies all other FS
inequalities derived fromi with strict inequality. Based on
this result, Taghaviet al. [45] modify ALPD and propose
the decoding approach we refer to as modified adaptive linear
programming decoding (MALPD). In the(k + 1)th iteration
of MALPD, it is checked inO(mdmax

c) time if (x∗)k violates
any FS inequality derived fromHi,.x = 0 (mod 2) for some
i ∈ I. This check is performed only for those parity checks
i ∈ I which do not induce any active FS inequality at(x∗)k.
Moreover, it is proved that inactive FS inequalities at iteration
k can be dropped. In any iteration of MALPD, there are at
most m FS inequalities. However, the dropped inequalities
might be inserted again in a later iteration; therefore the
number of iterations for MALPD can be higher than for
ALPD.

B. Message passing-like algorithms

An approach towards low complexity LPD of LDPC codes
was proposed by Vontobel and Kötter in [46]. Based on an

FFG representation of an LDPC code, they derive an LP, called
primal linear programming decoding (PLPD), which is based
on BLPD1. The FFG, shown in Fig. 6, and the Tanner graph
are related as follows.

Ei

=

vi,j

=

vi,j′

=

xj′

Aj

uj,i

=

uj,i′

=

=
uj,0xj

Fig. 6. A Forney-style factor graph for PLPD.

For each parity check, the FFG exhibits a nodeCi which is
incident to a variable-edgevi,j for eachj ∈ Ni and demands
those adjacent variables to form a configuration that is valid
for the local codeCi, i. e., their sum must be even. This
corresponds to a check node in the Tanner graph and thus
to (6) and (7) except that now there are, for the moment,
independent local variablesvi,j for eachCi. Additionally, the
FFG generalizes the concept of row-wise local codesCi to the
columns ofH , in such a way that thej th column is considered
a local repetition codeAj that requires the auxiliary variables
uj,i for eachi ∈ Nj∪{0} to be either all1 or all 0. By this, the
variable nodes of the Tanner graph are replaced by check nodes
Aj—recall that in an FFG all nodes have to be check nodes.
There is a third type of factor nodes, labelled by “=”, which
simply require all incident variables to take on the same value.
These are used to establish consistency between the row-wise
variablesvi,j and the column-wise variablesuj,i as well as
connecting the codeword variablesxj to the configurations of
theAj .

From this discussion it is easily seen that the FFG indeed
ensures that any configuration of thexj is a valid codeword.
The outcome of writing down the constraints for each node
and relaxing integrality conditions on all variables is theLP

minλTx (PLPD)

s.t. xj = uj,0 j = 1, . . . , n,

uj,i = vi,j ∀(i, j) ∈ I × J : Hi,j = 1,

uj,i =
∑

S∈Aj ,S∋j

αj,S ∀i ∈ Nj , j = 1, . . . , n,

∑

S∈Aj

αj,S = 1 for all j = 1, . . . , n,

vi,j =
∑

S∈Ei,S∋j

wi,S ∀j ∈ Ni, i = 1, . . . ,m,

∑

S∈Ei

wi,S = 1 for all i = 1, . . . ,m,

αj,S ≥ 0 ∀S ∈ Aj , j = 1, . . . , n,

wi,S ≥ 0 ∀S ∈ Ei, i = 1, . . . ,m,

where the setsEi are defined as in (BLPD1).
While bloating BLPD1 in this manner seems inefficient

at first glance, the reason behind is that the LP dual of

11

PLPD, leads to an FFG which is topologically equivalent to
the one of the primal LP, which allows to use the graphical
structure for solving the dual. After manipulating constraints
of the dual problem to obtain a closely related, “softened”
dual linear programming decoding (SDLPD) formulation, the
authors propose a coordinate-ascent-type algorithm resembling
the min-sum algorithm and show convergence under certain
assumptions. In this algorithm, all the edges of FFG are
updated according to some schedule. It is shown that the
update calculations required during each iteration can be
efficiently performed by the SPAD. The coordinate-ascent-type
algorithm for SDLPD is guaranteed to converge if all the edges
of the FFG are updated cyclically.

Under the BIAWGNC, the authors compare the error-
correcting performance of the coordinate-ascent-type algo-
rithm (max iterations: 64, 256) against the performance of the
MSAD (max iterations: 64, 256) on the(3, 6)-regular LDPC
code withn = 1000 and rateR = 1

2 . MSAD performs slightly
better than the coordinate-ascent-type algorithm. In summary,
Vontobel and Kötter [46] show that it is possible to develop
LP based algorithms with complexities similar to IMPD.

The convergence and the complexity of the coordinate-
ascent-type algorithm proposed in [46] are studied further
in [47] by Burshtein. His algorithm has a new scheduling
scheme and its convergence rate and computational complexity
are analyzed under this scheduling. With this new scheduling
scheme, the decoding algorithm from [46] yields an iterative
approximate LPD algorithm for LDPC codes with complexity
in O(n). The main difference between the two algorithms is
the selection and update of edges of the FFG. In [46] all
edges are updated cyclically during one iteration, whereasin
[47], only few selected edges are updated during one particular
iteration. The edges are chosen according to the variable values
obtained during previous iterations.

C. Nonlinear programming approach

As an approximation of BLPD for LDPC codes, Yanget al.
[36] introduce the box constraint quadratic programming de-
coding (BCQPD) whose time complexity is linear in the code
length. BCQPD is a nonlinear programming approach derived
from the Lagrangian relaxation (see [7] for an introduction
to Lagrangian relaxation) of BLPD1. To achieve BCQPD, a
subset of the set of the constraints are incorporated into the
objective function. To simplify notation, Yanget al. rewrite the
constraint blocks (6) and (7) in the general formAy = b by
defining a single variable vectory = (x,w)T ∈ {0, 1}K (soK
is the total number of variables in BLPD1) and choosingA and
b appropriately. Likewise, the objective function coefficients
are rewritten in a vectorc, wich equalsλ followed by the
appropriate number of zeros. The resulting formulation is
min{cT y : Ay = b, y ∈ {0, 1}K}. Using a multiplierα > 0,
the Lagrangian of this problem is

min cT y + α(Ay − b)T (Ay − b)

s.t.0 ≤ yk ≤ 1 for k = 1, . . . ,K.

If Ay = b is violated then a positive value is added to
the original objective functioncT y, i. e., the solutiony is

penalized. SettingQ = 2αATA and r = c − 2αAT b the
BCQPD problem

min yTQy + 2rT y (BCQPD)

s.t.0 ≤ yk ≤ 1 for k = 1, . . . ,K

is obtained. SinceQ is a positive semi-definite matrix, i. e., the
objective function is convex, and since the set of constraints
constitutes a box, eachyk can be minimized separately. This
leads to efficient serial and parallel decoding algorithms.Two
methods are proposed in [36] to solve the BCQPD problem,
the projected successive overrelaxation method (PSORM) and
the parallel gradient projection method (PGPM). These meth-
ods are generalizations of Gauss-Seidel and Jacobi methods
[48] with the benefit of faster convergence if proper weight
factors are chosen. PSORM and PGPM benefit from the low-
density structure of the underlying parity-check matrix.

One of the disadvantages of IMPD is the difficulty of
analyzing the convergence behavior of such algorithms. Yang
et al. showed both theoretically and empirically that BCQPD
converges under some assumptions if PSORM or PGPM is
used to solve the quadratic programming problem. Moreover,
the complexity of BCQPD is smaller than the complexity of
SPAD. For numerical tests, the authors use a product code
with block length45 = 1024 and rate(34)

5 = 0.237. The
BIAWGNC is used. It is observed that the PSORM method
converges faster than PGPM. The error-correcting performance
of SPAD is poor for product codes due to their regular
structure. For the chosen product code, Yanget al.demonstrate
that PSORM outperforms SPAD in computational complexity
as well as in error-correcting performance.

D. Efficient LPD of SPC product codes

The class of single parity-check (SPC) product codes is
of special interest in [34]. The authors prove that for SPC
product codes the fractional distance is equal to the minimum
Hamming distance. Due to this observation, the minimum
distance of SPC product codes can be computed in polynomial
time using FDA. Furthermore, they propose a low complexity
algorithm which approximately computes the CLPD optimum
for SPC product codes. This approach is based on the ob-
servation that the parity-check matrix of an SPC product code
can be decomposed into component SPC codes. A Lagrangian
relaxation of CLPD is obtained by keeping the constraints
from only one component code in the formulation and moving
all other constraints to the objective function with a penalty
vector. The resulting Lagrangian dual problem is solved by
subgradient algorithms (see [7]). Two alternatives, subgradient
decoding (SD) and joint subgradient decoding (JSD) are
proposed. It can be proved that subgradient decoders converge
under certain assumptions.

The number of iterations performed against the convergence
behavior of SD is tested on the (4,4) SPC product code, which
has lengthn = 256, rateR =

(

3
4

)4
≈ 0.32 and is defined as

the product of four SPC codes of length 4 each. All variants
tested (obtained by keeping the constraints from component
codej = 1, 2, 3, 4 in the formulation) converge in less than 20
iterations. For demonstrating the error-correcting performance

12

of SD if the number of iterations are set to5, 10, 20, 100, the
(5,2) SPC product code (n = 25, rate R =

(

4
5

)2
= 0.64)

is used. The error-correcting performance is improved by
increasing the number of iterations. Under the BIAWGNC,
this code and the (4,4) SPC product code are used to compare
the error-correcting performance of SD and JSD with the
performance of BLPD and MLD. It should be noted that for
increasing SNR values, the error-correcting performance of
BLPD converges to that of MLD for SPC codes. JSD and SD
approach the BLPD curve for the code withn = 25. For the
SPC product code withn = 256 the subgradient algorithms
perform worse than BLPD. For both codes, the error-correcting
performance of JSD is superior to SD. Finally, the(10, 3) SPC
product code withn = 1000 and rateR = (9

10)
3 ≈ 0.729

is used to compare the error-correcting performance of SD
and JSD with the SPAD. Again the BIAWGNC is used. It
is observed that SD performs slightly better than the SPAD
with a similar computational complexity. JSD improves the
error-correcting performance of the SD at the cost of increased
complexity.

E. Interior point algorithms

Efficient LPD approaches based on interior point algorithms
are studied by Vontobel [49], Wadayama [50], and Taghavi
et al. [45]. The use of interior point algorithms to solve LP
problems as an alternative to the simplex method was initiated
by Karmarkar [51]. In these algorithms, a starting point in
the interior of the feasible set is chosen. This starting point
is iteratively improved by moving through the interior of the
polyhedron in some descent direction until the optimal solution
or an approximation is found. There are various interior point
algorithms and for some, polynomial time convergence can be
proved. This is an advantage over the simplex method which
has exponential worst case complexity.

The proposed interior point algorithms aim at using the
special structure of the LP problem. The resulting running time
is a low-degree polynomial function on the block length. Thus,
fast decoding algorithms based on interior point algorithms
may be developed for codes with large block lengths. In par-
ticular affine scaling algorithms [49], primal-dual interior point
algorithms [45], [49] and primal path following interior point
algorithm [50] are considered. The bottleneck operation in
interior point methods is to solve a system of linear equations
depending on the current iteration of the algorithm. Efficient
approaches to solve this system of equations are proposed in
[49], [45], the latter containing an extensive study, including
investigation of appropriate preconditioners for the often ill-
conditioned equation system. The speed of convergence to the
optimal vertex of the algorithms in [50] and [45] under the
BIAWGNC are demonstrated on a nearly(3, 6)-regular LDPC
code withn = 1008, R = 1

2 and a randomly-generated(3, 6)-
regular LDPC code withn = 2000, respectively.

VII. I MPROVING THE ERROR-CORRECTING

PERFORMANCE OFBLPD

The error-correcting performance of BLPD can be im-
proved by techniques from integer programming. Most of the

improvement techniques can be grouped into cutting plane
or branch & bound approaches. In this section, we review
the improved LPD approaches mainly with respect to this
categorization.

A. Cutting plane approaches

The fundamental polytopeP can be tightened by cutting
plane approaches. In the following, we refer to valid in-
equalities as inequalities satisfied by all points inconv(C).
Valid cuts are valid inequalities which are violated by some
non-integral vertex of the LP relaxation. Feldmanet al. [2]
already address this concept; besides applying the “Lift and
project” technique which is a generic tightening method for
integer programs [52], they also strengthen the relaxationby
introducing redundant rows into the parity-check matrix (or,
equivalently, redundant parity-checks into the Tanner graph)
of the given code (cf. Section II). When using the BLPD2
formulation, we derive additional FS inequalities from the
redundant parity-checks without increasing the number of vari-
ables. We refer to such inequalities as redundant parity-check
(RPC) inequalities. RPC inequalities may include valid cuts
which increase the possibility that LPD outputs a codeword.
An interesting question relates to the types of inequalities
required to describe the codeword polytopeconv(C) exactly.
It turns out thatconv(C) cannot be described completely by
using only FS and box inequalities; the(7, 3, 4) simplex code
(dual of the(7, 4, 3) Hamming code) is given as a counter-
example in [2]. More generally, it can be concluded from [53]
that these types of inequalities do not suffice to describe all
facets of a simplex code.

RPCs can also be interpreted as dual codewords. As such,
for interesting codes there are exponentially many RPC in-
equalities. The RPC inequalities cutting off the non-integral
optimal solutions are called RPC cuts [44]. An analytical study
under which circumstances RPCs can induce cuts is carried
out in [24]. Most notably, it is shown that RPCs obtained by
adding no more thang−2

2 dual codewords, whereg is the
length of a shortest cycle in the Tanner graph, never change
the fundamental polytope.

There are several heuristic approaches in the LPD literature
to find cut inducing RPCs [2], [54], [44], [55]. In [2], RPCs
which result from adding any two rows ofH are appended
to the original parity-check matrix. The authors of [44] find
RPCs by randomly choosing cycles in the fractional subgraph
of the Tanner graph, which is obtained by choosing only
the fractional variable nodes and the check nodes directly
connected to them. They give a theorem which states that every
possible RPC cut must be generated by such a cycle. Their
approach is a heuristic one since the converse of that theorem
does not hold. In [54] the column index set corresponding to an
optimal LP solution is sorted. By re-arrangingH and bringing
it to row echelon form, RPC cuts are searched. In [55], the
parity-check matrix is reformulated such that unit vectorsare
obtained in the columns of the parity-check matrix which
correspond to fractional valued bits in the optimal solution
of the current LP. RPC cuts are derived from the rows of the
modified parity-check matrix.

13

The approaches in [28], [44], and [55] rely on a noteworthy
structural property of the fundamental ploytope. Namely, it
can be shown that no check node of the associated Tanner
graph (regardless of the existence of redundant parity-checks)
can be adjacent to only one non-integral valued variable node.

Feldmanet al. [2] test the lift and project technique on a
random rate-14 LDPC code withn = 36, dv = 3 anddv = 4
under the BIAWGNC. Moreover, a random rate-1

4 LDPC code
with n = 40, dv = 3, and dc = 4 is used to demonstrate
the error-correcting performance of BLPD when the original
parity-check matrix is extended by all those RPCs obtained by
adding any two rows of the original matrix. Both tightening
techniques improve the error-correcting performance of BLPD,
though the benefit of the latter is rather poor, due to the
abovementioned condition on cycle lengths.

The idea of tightening the fundamental polytope is usually
implemented as a cutting plane algorithm, i. e., the separation
problem is solved (see Definition II.5 and Section VI-A). In
cutting plane algorithms, an LP is solved which contains only
a subset of the constraints of the corresponding optimization
problem. If the optimal LP solution is a codeword then
the cutting plane algorithm terminates and outputs the ML
codeword. Otherwise, valid cuts from a predetermined family
of valid inequalities are searched. If some valid cuts are found,
they are added to the LP formulation and the LP is resolved.
In [44], [54], [55] the family of valid cuts is FS inequalities
derived from RPCs.

In [54] the main motivation for the greedy cutting plane
algorithm is to improve the fractional distance. This is demon-
strated for the(7, 4, 3) Hamming code, the(24, 12, 8) Golay
code and a(204, 102) LDPC code. As a byproduct under the
BSC it is shown on the(24, 12, 8) Golay code and a(204, 102)
LDPC code that the RPC based approach of [54] improves the
error-correcting performance of BLPD.

In the improved LPD approach of [44], first ALPD (see
Section VI) is applied. If the solution is non-integral, an RPC
cut search algorithm is employed. This algorithm can be briefly
outlined as follows:

1) Given a non-integral optimal LP solutionx∗, remove all
variable nodesj for which x∗

j is integral from the Tanner
graph.

2) Find a cycle by randomly walking through the pruned
Tanner graph.

3) Sum up (inF2) the rowsH which correspond to the
check nodes in the cycle.

4) Check if the resulting RPC introduces a cut.

The improved decoder of [44] performs noticeably better than
BLPD and SPAD. This is shown under the BIAWGNC on
(3, 4)-regular LDPC codes withn = 32, 100, 240.

The cutting plane approach of [55] is based on an IP
formulation of MLD, which is referred to as IPD. (Note
that this formulation was already mentioned in [9].) Auxiliary
variablesz ∈ Zm model the binary constraintsHx = 0 over

F2 in the real number fieldRn.

minλTx (IPD)

s.t.Hx− 2z = 0

x ∈ {0, 1}n , z ∈ Zm

In [55], the LP relaxation of IPD is the initial LP problem
which is solved by a cutting plane algorithm. Note that the
LP relaxation of IPD is not equivalent to the LP relaxations
given in Section V. In almost all improved (in the error-
correcting performance sense) LPD approaches reviewed in
this article first the BLPD is run. If BLPD fails, some
technique to improve BLPD is used with the goal of find-
ing the ML codeword at the cost of increased complexity.
In contrast, the approach by Tanatmiset al. in [55] does
not elaborate on the solution of BLPD, but immediately
searches for cuts which can be derived from arbitrary dual
codewords. To this end, the parity-check matrix is modified
and the conditions under which certain RPCs define cuts
are checked. The average number of iterations performed
and the average number of cuts generated in the separation
algorithm decoding (SAD) of [55] are presented for the(3, 6)
random regular codes withn = 40, 80, 160, 200, 400 and for
the (31, 10), (63, 39), (127, 99), (255, 223) BCH codes. Both
performance measures seem to be directly proportional to the
block length. The error-correcting performance of SAD is
measured on the random regular(3, 4) LDPC codes with block
length100 and 200, and Tanner’s(155, 64) group structured
LDPC code [56]. It is demonstrated that the improved LPD
approach of [55] performs better than BLPD applied in the
adaptive setting [44] and better than SPAD. One significant
numerical result is that SAD proposed in [55] performs
much better than BLPD for the(63, 39) and (127, 99) BCH
codes, which have high-density parity check matrices. In all
numerical simulations the BIAWGNC is used.

Yufit et al. [57] improve SAD [55] and ALPD [44] by
employing several techniques. The authors propose to improve
the error-correcting performance of these decoding methods by
using RPC cuts derived from alternative parity-check matrices
selected from the automorphism group ofC, Aut(C). In the
alternative parity-check matrices, the columns of the original
parity-check matrix are permuted according to some scheme.
At the first stage of Algorithm 1 of [57], SAD is used to
solve the MLD problem. If the ML codeword is found then
Algorithm 1 terminates, otherwise an alternative parity-check
matrix from Aut(C) is randomly chosen and the SAD is
applied again. In the worst case this procedure is repeatedN
times whereN denotes a predetermined constant. A similar
approach is also used to improve ALPD in Algorithm 2 of
[57]. Yufit et al. enhance Algorithm 1 with two techniques
to improve the error-correcting performance and complexity.
The first technique, called parity-check matrix adaptation, is
to alter the parity-check matrix prior to decoding such that
at the columns of the parity-check matrix which correspond
to least reliable bits, i. e., bits with the smallest absolute LLR
values, unit vectors are obtained. The second technique, which
is motivated by MALPD of [45], is to drop the inactive
inequalities at each iteration of SAD, in order to avoid thatthe

14

problem size increases from iteration to iteration. Under the
BIAWGNC, it is demonstrated on the(63, 36, 11) BCH code
and the(63, 39, 9) BCH code that SAD can be improved both
in terms of error-correcting performance and computational
complexity.

B. Facet guessing approaches

Based on BLPD2, Dimakiset al. [28] improve the error-
correcting performance of BLPD with an approach similar
to FDA (see Section IV). They introduce facet guessing
algorithms which iteratively solve a sequence of related LP
problems. Letx∗ be a non-integral optimal solution of BLPD,
xML be the ML codeword, andF be a set of faces ofP which
do not containx∗. This setF is given by the set of inequalities
which are not active atx∗.

The set of active inequalities of a pseudocodewordv is
denoted byA(v). In facet guessing algorithms, the objective
function λTx is minimized overf ∩ P for all f ∈ K ⊆ F
whereK is an arbitrary subset ofF . The optimal solutions are
stored in a list. In random facet guessing decoding (RFGD),
|K| of the facesf ∈ F are chosen randomly. IfK = F
then exhaustive facet guessing decoding (EFGD) is obtained.
From the list of optimal solutions, the facet guessing algo-
rithms output the integer solution with minimum objective
function value. It is shown that EFGD fails if there exists
a pseudocodewordv ∈ f such thatλT v < λTxML for
all f ∈ A(xML). For suitable expander codes this result is
combined with the following structural property of expander-
based codes also proven by the authors. The number of
active inequalities at some codeword is much higher than
at a non-integral pseudocodeword. Consequently, theoretical
bounds on the decoding success conditions of the polynomial
time algorithms EFGD and RFGD for expander codes are
derived. The numerical experiments are performed under the
BIAWGNC, on Tanner’s(155, 64) group-structured LDPC
code and on a random LDPC code withn = 200, dv = 3,
dc = 4. For these codes the RFG algorithm performs better
than the SPAD.

C. Branch & bound approaches

Linear programming based branch & bound is an implicit
enumeration technique in which a difficult optimization prob-
lem is divided into multiple, but easier subproblems by fixing
the values of certain discrete variables. We refer to [7] fora
detailed description. Several authors improved LPD using the
branch & bound approach.

Breitbach et al. [9] solved IPD by a branch & bound
approach. Depth-first and breadth-first search techniques are
suggested for exploring the search tree. The authors point
out the necessity of finding good bounds in the branch &
bound algorithm and suggest a neighborhood search heuristic
as a means of computing upper bounds. In the heuristic, a
formulation is used which is slightly different to IPD. We
refer to this formulation as alternative integer programming
decoding (AIPD). AIPD can be obtained by using error
vectors. Let ȳ = 1

2 (1− sign(λ)) be the hard decision for
the LLR vectorλ obtained from the BIAWGNC. Comparing

ȳ ∈ {0, 1}n with a codewordx ∈ C results in an error vector
e ∈ {0, 1}n, i.e.,e = ȳ+x (mod 2). Let s = Hȳ, and define
λ̄ by λ̄i = |λi|. IPD can be reformulated as

min λ̄T e (AIPD)

s.t.He− 2z = s

e ∈ {0, 1}n , z ∈ Zm.

In the neighborhood search heuristic of [9], first a feasible
starting solutione0 is calculated by setting the coordinates of
e0 corresponding to then−m most reliable bits (i. e., those
j ∈ J such that|yj| are largest) to0. These are the non-basic
variables while them basic variables are found from the vector
s ∈ {0, 1}m. Starting from this solution a neighborhood search
is performed by exchanging basic and non-basic variables. The
tuple of variables yielding a locally best improvement in the
objective function is selected for iterating to the next feasible
solution.

In [9], numerical experiments are performed under the
BIAWGNC, on the (31, 21, 5) BCH code, the(64, 42, 8)
Reed-Muller code, the(127, 85, 13) BCH code and the
(255, 173, 23) BCH code. The neighborhood search with sin-
gle position exchanges performs very similar to MLD for
the (31, 21, 5) BCH code. As the block length increases the
error-correcting performance of the neighborhood search with
single position exchanges gets worse. An extension of this
heuristic allowing two position exchanges is applied to the
(64, 42, 8) Reed-Muller code, the(127, 85, 13) BCH code,
and the(255, 173, 23) BCH code. The extended neighborhood
search heuristic improves the error-correcting performance at
the cost of increased complexity. A branch & bound algorithm
is simulated on the(31, 21, 5) BCH code and different search
tree exploration schemes are investigated. The authors suggest
a combination of depth-first and breadth-first search.

In [58], Draper et al. improve the ALPD approach of
[44] with a branch & bound technique. Branching is done
on the least certain variable, i.e.,xj such that

∣

∣x∗
j − 0.5

∣

∣ is
smallest forj ∈ J . Under the BSC, it is observed on Tanner’s
(155, 64, 20) code that the ML codeword is found after few
iterations in many cases.

In [36] two branch & bound approaches for LDPC codes
are introduced. In ordered constant depth decoding (OCDD)
and ordered variable depth decoding (OVDD), first BLPD1
is solved. If the optimal solutionx∗ is non-integral, a subset
T ⊆ E of the set of all non-integral bitsE is chosen. Let
g = |T |. The subsetT is constituted from the least certain
bits. The term “ordered” in OCDD and OVDD is motivated
by this construction. It is experimentally shown in [36] that
choosing the least certain bits is advantageous in comparison
to a random choice of bits. OVDD is a breadth first branch &
bound algorithm where the depth of the search tree is restricted
to g. Since this approach is common in integer programming,
we do not give the details of OVDD and refer to [7] instead.
For OVDD, the number of LPs solved in the worst case is
2g+1 − 1.

In OCDD, m-element subsetsM of T , i.e., M ⊆ T and
m = |M|, are chosen. Letb ∈ {0, 1}m. For anyM ⊆ T , 2m

15

LPs are solved, each time adding a constraint block

xk = bk for all k ∈ M

to BLPD1, thus fixingm bits. Let x̂ be the solution with the
minimum objective function value among the2m LPs solved.
If x̂ is integral, OCDD outputŝx; otherwise another subset
M ⊆ T is chosen. Since OCDD exhausts allm-element
subsets ofT , in the worst case(gm) 2m + 1 LPs are solved.

The branch & bound based improved LPD of Yanget al.
[36] can be applied to LDPC codes with short block length.
For the following numerical tests, the BIAWGNC is used. Un-
der various settings ofm andg it is shown on a random LDPC
code withn = 60, R = 1

4 , dc = 4, anddv = 3 that OCDD has
a better error-correcting performance than BLPD and SPAD.
Several simulations are done to analyze the trade-off between
complexity and error-correcting performance of OCDD and
OVDD. For the test instances and parameter settings6 used in
[36] it has been observed on the above-mentioned code that
OVDD outperforms OCDD. This behavior is explained by the
observation that OVDD applies the branch & bound approach
on the most unreliable bits. On a longer random LDPC code
with n = 1024, R = 1

4 , dc = 4, anddv = 3, it is demonstrated
that the OVDD performs better than BLPD and SPAD.

Another improved LPD technique which can be interpreted
as a branch & bound approach is randomized bit guessing
decoding (RBGD) of Dimakiset al. [28]. RBGD is inspired
from the special case that all facets chosen by RFGD (see
Section VII-B) correspond to constraints of typexj ≥ 0 or
xj ≤ 1. In RBGD, k = c logn variables, wherec > 0 is a
constant, are chosen randomly. Because there are2k different
possibile configurations of thesek variables, BLPD2 is run
2k times with associated constraints for each assignment. The
best integer valued solution in terms of the objective function
λ is the output of RBGD. Note that by settingk to c logn, a
polynomial complexity inn is ensured. Under the assumption
that there exists a unique ML codeword, exactly one of
the 2k bit settings matches the bit configuration in the ML
codeword. Thus, RBGD fails if a non-integral pseudocodeword
with a better objective function value coincides with the ML
codeword in allk components. For some expander codes, the
probablilty that the RBGD finds the ML codeword is given
in [28]. To find this probability expression, the authors first
prove that, for some expander-based codes, the number of non-
integral components in any pseudocodeword scales linearlyin
block length.

Chertkov and Chernyak [59] apply the loop calculus ap-
proach [60], [61] to improve BLPD. Loop calculus is an
approach from statistical physics and related to cycles in
the Tanner graph representation of a code. In the context of
improved LPD, it is used to either modify objective function
coefficients [59] or to find branching rules for branch and
bound [62]. Given a parity-check matrix and a channel output,
linear programming erasure decoding (LPED) [59] first solves
BLPD. If a codeword is found then the algorithm terminates. If
a non-integral pseudocodeword is found then a so-called crit-
ical loop is searched by employing loop calculus. The indices

6The parametersm and g are chosen such that OVDD and OCDD have
similar worst case complexity.

of the variable nodes along the critical loop form an index set
M ⊆ J . LPED lowers the objective function coefficientsλj

of the variablesxj , j ∈ M, by multiplying λj with ǫ, where
0 ≤ ǫ < 1. After updating the objective function coefficients,
BLPD is solved again. If BLPD does not find a codeword
then the selection criterion for the critical loop is improved.
LPED is tested on the list of pseudocodewords found in [35]
for Tanner’s(155, 64, 20) code. It is demonstrated that LPED
corrects the decoding errors of BLPD for this code.

In [62], Chertkov combines the loop calculus approach used
in LPED [59] with RFGD [28]. We refer to the combined
algorithm as loop guided guessing decoding (LGGD). LGGD
differs from RFGD in the sense that the constraints chosen are
of typexj ≥ 0 or xj ≤ 1 wherej is in the index setM , the
index set of the variable nodes in the critical loop. LGGD
starts with solving BLPD. If the optimal solution is non-
integral then the critical loop is found with the loop calculus
approach. Next, a variablexj , j ∈ M , is selected randomly
and two partial LPD problems are deduced. These differ
from the original problem by only one equality constraint
xj = 0 or xj = 1. LGGD chooses the minimum of the
objective values of the two subproblems. If the corresponding
pseudocodeword is integral then the algorithm terminates.
Otherwise the equality constraints are dropped, a newj ∈ M
along the critical loop is chosen, and two new subproblems are
constructed. If the setM is exhausted, the selection criterion of
the critical loop is improved. LGGD is very similar to OCDD
of [36] for the case thatg = |M | and m = 1. In LGGD
branching is done on the bits in the critical loop whereas in
OCDD branching is done on the least reliable bits. As in [59],
LGGD is tested on the list of pseudocodewords generated in
[35] for Tanner’s(155, 64, 20) code. It is shown that LGGD
improves BLPD under the BIAWGNC.

SAD of [55] is improved in terms of error-correcting
performance by a branch & bound approach in [57]. In
Algorithm 3 of [57], first SAD is employed. If the solution
is non-integral then a depth-first branch & bound is applied.
The non-integral valued variable with smallest LLR value is
chosen as the branching variable. Algorithm 3 terminates as
soon as the search tree reaches the maximally allowed depth
Dp. Under the BIAWGNC, on the(63, 36, 11) BCH code and
the(63, 39, 9) BCH code Yufitet al. [57] demonstrate that the
decoding performance of Algorithm 3 (enhanced with parity-
check matrix adaptation) approaches MLD.

VIII. C ONCLUSION

In this survey we have shown how the decoding of binary
linear block codes benefits from a wide range of concepts
which originate from mathematical optimization—mostly li-
near programming, but also quadratic (nonlinear) and inte-
ger programming, duality theory, branch & bound methods,
Lagrangian relaxation, network flows, and matroid theory.
Bringing together both fields of research does lead to promis-
ing new algorithmic decoding approaches as well as deeper
structural understanding of linear block codes in general and
special classes of codes—like LDPC and turbo-like codes—in
particular. The most important reason for the success of this

16

connection is the formulation of MLD as the minimization of
a linear function over the codeword polytopeconv(C). We
have reviewed a variety of techniques of how to approximate
this polytope, whose description complexity in general is too
large to be computed efficiently.

For further research on LPD of binary linear codes, two
general directions can be distinguished. One is to decrease
the algorithmic complexity of LPD towards reducing the gap
between LPD and IMPD, the latter of which still outperforms
LPD in practice. The other direction aims at increasing error-
correcting performance, tightening up to MLD performance.
This includes a continued study of RPCs as well as the
characterization of other, non-RPC facet-defining inequalities
of the codeword polytope.

There are other lines of research related to LPD and IMPD
which are not covered in this article. Flanaganet al. [21] have
generalized LP decoding, along with several related concepts,
to nonbinary linear codes. Another possible generalization
is to extend to different channel models [22]. Connecting
two seemingly different decoding approaches, structural re-
lationship between LPD and IMPD has been discussed in
[63]. Moreover, the discovery that both decoding methods are
closely related to the Bethe free energy approximation, a tool
from statistical physics, has initiated vital research [64]. Also,
of course, research on IMPD itself, independent of LPD, is still
ongoing with high activity. A promising direction of research
is certainly the application of message passing techniquesto
mathematical programming problems beyond LPD [65].

ACKNOWLEDGMENT

We would like to thank Pascal O. Vontobel and Frank
Kienle for their comments and suggestions. We also thank
the anonymous referees for the helpful reviews.

REFERENCES

[1] J. Feldman, “Decoding Error-Correcting Codes via Linear Program-
ming,” Ph.D. dissertation, Massachusetts Institute of Technology, 2003.

[2] J. Feldman, M. J. Wainwright, and D. R. Karger, “Using linear program-
ming to decode binary linear codes,”IEEE Trans. Inf. Theory, vol. 51,
pp. 954–972, 2005.

[3] F. R. Kschischang, B. J. Frey, and H. A. Loeliger, “Factorgraphs and the
sum-product algorithm,”IEEE Trans. Inf. Theory, vol. 47, pp. 498–519,
2001.

[4] S. M. Aji and R. J. McEliece, “The generalized distributive law,” IEEE
Trans. Inf. Theory, vol. 46, pp. 325–343, 2000.

[5] N. Wiberg, “Codes and decoding on general graphs,” Ph.D.dissertation,
Linköping University, 1996.

[6] H.-A. Loeliger, “An introduction to factor graphs,”IEEE Signal Process.
Mag., vol. 21, no. 1, pp. 28–41, Jan. 2004.

[7] G. L. Nemhauser and L. A. Wolsey,Integer and Combinatorial Op-
timization. Wiley-Interscience series in discrete mathematics and
optimization, John Wiley & Sons, 1988.

[8] M. Grötschel, L. Lovász, and A. Schrijver,Geometric algorithms and
combinatorial optimization. Berlin Heidelberg: Springer-Verlag, 1988.

[9] M. Breitbach, M. Bossert, R. Lucas, and C. Kempter, “Soft-decision
decoding of linear block codes as optimization problem,”Eur. Trans.
Telecommun., vol. 9, pp. 289–293, 1998.

[10] E. Berlekamp, R. McEliece, and H. van Tilborg, “On the inherent
intractability of certain coding problems,”IEEE Trans. Inf. Theory, pp.
954–972, 1978.

[11] R. M. Karp, “Reducibility among combinatorial problems,” in Complex-
ity of Computer Computations, R. E. Miller and J. W. Thatcher, Eds.
Plenum Press, 1972, pp. 85–103.

[12] A. Vardy, “The intractability of computing the minimumdistance of a
code,” IEEE Trans. Inf. Theory, vol. 43, pp. 1757–1766, 1997.

TABLE I
L IST OF ABBREVIATIONS

AIPD alternative integer programming decoding
ALPD adaptive linear programming decoding
BCQPD box constrained quadratic programming decoding
BIAWGNC binary input additive white Gaussian noise channel
BLPD bare linear programming decoding
BSC binary symmetric channel
CLPD cascaded linear programming decoding
EFGD exhaustive facet guessing decoding
FDA fractional distance algorithm
FFG Forney style factor graph
FS forbidden set
GSA greedy separation algorithm
IMPD iterative message passing decoding
IP integer programming
IPD integer programming decoding
JSD joint subgradient decoding
LLR log likelihood ratio
LDPC low-density parity-check
LGGD loop guided guessing decoding
LP linear programming
LPD linear programming decoding
LPED linear programming erasure decoding
MALPD modified adaptive linear programming decoding
ML maximum likelihood
MLD maximum likelihood decoding
MSAD min-sum algorithm decoding
OCDD ordered constant depth decoding
OVDD ordered variable depth decoding
PGPM parallel gradient projection method
PLPD primal linear programming decoding
PSORM projected successive overrelaxation method
RA repeat accumulate
RBGD randomized bit guessing decoding
RFGD randomized facet guessing decoding
RPC redundant parity-check
SAD separation algorithm decoding
SD subgradient decoding
SDLPD softened dual linear programming decoding
SNR signal-to-noise ratio
SPAD sum-product algorithm decoding
SPC single parity-check
TCLPD turbo code linear programming decoding

[13] D. J. A. Welsh, “Combinatorial problems in matroid theory,” in Combi-
natorial Mathematics and its Applications, D. J. A. Welsh, Ed. London,
U.K.: Academic Press, 1971, pp. 291–307.

[14] J. G. Oxley,Matroid Theory. Oxford University Press, 1992.
[15] D. J. A. Welsh,Matroid Theory. L. M. S. Monographs. Academic

Press, 1976.
[16] N. Kashyap, “A decomposition theory for binary linear codes,” IEEE

Trans. Inf. Theory, vol. 54, pp. 3035–3058, 2008.
[17] F. Barahona and M. Grötschel, “On the cycle polytope ofa binary

matroid,” J. Comb. Theory Ser. B, vol. 40, pp. 40–62, 1986.
[18] N. Kashyap, “On the convex geometry of binary linear codes,” in Proc.

Inaugural UC San Diego Workshop Inf. Theory Appl., La Jolla, CA,
Feb. 2006. [Online]. Available: http://ita.ucsd.edu/workshop/06/talks

[19] M. Grötschel and K. Truemper, “Decomposition and optimization over
cycles in binary matroids,”J. Comb. Theory Ser. B, vol. 46, pp. 306–337,
1989.

[20] P. D. Seymour, “Decomposition of regular matroids,”J. Comb. Theory
Ser. B, vol. 28, pp. 305–359, 1980.

[21] M. Flanagan, V. Skachek, E. Byrne, and M. Greferath, “Linear-
programming decoding of nonbinary linear codes,”IEEE Trans. Inf.
Theory, vol. 55, no. 9, pp. 4134–4154, Sep. 2009.

[22] A. Cohen, F. Alajaji, N. Kashyap, and G. Takahara, “LP decoding for
joint source-channel codes and for the non-ergodic Polya channel,”IEEE
Commun. Lett., vol. 12, no. 9, pp. 678–680, 2008.

[23] S. Lin and D. Costello, Jr.,Error Control Coding, 2nd ed. Upper Saddle
River, NJ: Prentice-Hall, Inc., 2004.

[24] P. O. Vontobel and R. Koetter, “Graph-cover decoding and finite-

17

length analysis of message-passing iterative decoding of LDPC codes,”
arXiv:cs/0512078v1 [cs.IT], 2005.

[25] G. D. Forney, Jr., R. Koetter, F. R. Kschischang, and A. Reznik, “On the
effective weights of pseudocodewords for codes defined on graphs with
cycles,” in Codes, systems, and graphical models, ser. IMA Vol. Math.
Appl., B. Marcus and J. Rosenthal, Eds., vol. 123. Springer Verlag,
New York, Inc., 2001, pp. 101–112.

[26] M. Chertkov and M. Stepanov, “Polytope of correct (linear program-
ming) decoding and low-weight pseudo-codewords,” inProc. IEEE Int.
Symp. Inform. Theory, St. Petersburg, Russia, Jul. / Aug. 2011, pp. 1648–
1652.

[27] A. Schrijver, Theory of linear and integer programming. John Wiley
& Sons, 1986.

[28] A. G. Dimakis, A. A. Gohari, and M. J. Wainwright, “Guessing facets:
Polytope structure and improved LP decoding,”IEEE Trans. Inf. Theory,
vol. 55, pp. 4134–4154, 2009.

[29] M. Grötschel, “Cardinality homogeneous set systems,cycles in matroids,
and associated polytopes,”in The Sharpest Cut: The Impact of Manfred
Padberg and His Work, MPS-SIAM, pp. 99–120, 2004.

[30] R. G. Gallager, “Low-density parity-check codes,”IRE Trans. Inf.
Theory, vol. 8, no. 1, pp. 21–28, 1962.

[31] G. D. Forney Jr., “Codes on graphs: Normal realizations,” IEEE Trans.
Inf. Theory, vol. 47, pp. 529–548, 2001.

[32] J. Feldman and C. Stein, “LP decoding achieves capacity,” in Proc.
16th annual ACM-SIAM symp. on discrete algorithms. Philadelphia,
PA, USA: Society for Industrial and Applied Mathematics, Jan. 2005,
pp. 460–469.

[33] M. Yannakakis, “Expressing combinatorial optimization problems by
linear programs,”J. Comput. Syst. Sci., vol. 43, pp. 441–466, 1991.

[34] K. Yang, X. Wang, and J. Feldman, “A new linear programming
approach to decoding linear block codes,”IEEE Trans. Inf. Theory,
vol. 54, pp. 1061–1072, 2008.

[35] M. Chertkov and M. Stepanov, “Pseudo-codeword landscape,” in Proc.
IEEE Int. Symp. Inform. Theory, Nice, France, Jun. 2007, pp. 1546–
1550.

[36] K. Yang, J. Feldman, and X. Wang, “Nonlinear programming approaches
to decoding low-density parity-check codes,”IEEE J. Sel. Areas Com-
mun., vol. 24, pp. 1603–1613, 2006.

[37] C. Berrou and A. Glavieux, “Near optimum error correcting coding
and decoding: turbo-codes,”IEEE Trans. Commun., vol. 44, no. 10, pp.
1261–1271, Oct. 1996.

[38] C. Berrou, A. Graell i Amat, Y. Ould-Cheikh-Mouhamedou, and
Y. Saouter, “Improving the distance properties of turbo codes using a
third component code: 3D turbo codes,”IEEE Trans. Commun., vol. 57,
no. 9, pp. 2505–2509, Sep. 2009.

[39] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin,Network Flows. Prentice-
Hall, 1993.

[40] J. Feldman and D. R. Karger, “Decoding turbo-like codesvia linear
programming,”J. Comput. Syst. Sci., vol. 68, pp. 733–752, Jun. 2004.

[41] N. Halabi and G. Even, “Improved bounds on the word errorprobability
of RA(2) codes with linear-programming-based decoding,”IEEE Trans.
Inf. Theory, vol. 51, no. 1, pp. 265–280, Jan. 2005.

[42] I. Goldenberg and D. Burshtein, “Error bounds for repeat-accumulate
codes decoded via linear programming,” inProc. 6th Int. Symp. Turbo
Codes and Iterative Inf.. Proc., Brest, France, Sep. 2010, pp. 487–491.

[43] A. Tanatmis, S. Ruzika, and F. Kienle, “A Lagrangian relaxation based
decoding algorithm for LTE turbo codes,” inProc. 6th Int. Symp. Turbo
Codes and Iterative Inf.. Proc., Brest, France, Sep. 2010, pp. 369–373.

[44] M. H. Taghavi and P. H. Siegel, “Adaptive methods for linear program-
ming decoding,”IEEE Trans. Inf. Theory, vol. 54, pp. 5396–5410, 2008.

[45] M. H. Taghavi, A. Shokrollahi, and P. H. Siegel, “Efficient implementa-
tion of linear programming decoding,”IEEE Trans. Inf. Theory, vol. 57,
no. 9, pp. 5960–5982, 2011.

[46] P. O. Vontobel and R. Kötter, “On low-complexity linear-programming
decoding of LDPC codes,”Eur. Trans. Telecommun., vol. 18, pp. 509–
517, 2007.

[47] D. Burshtein, “Iterative approximate linear programming decoding of
LDPC codes with linear complexity,”IEEE Trans. Inf. Theory, vol. 55,
no. 11, pp. 4835–4859, Nov. 2009.

[48] D. Bertsimas and D. J. Tsitsiklis,Parallel and Distributed Computation:
Numerical Methods. Athena Scientific, 1997.

[49] P. O. Vontobel, “Interior-point algorithms for linear-programming de-
coding,” in Proc. Inf. Theory and Applications Workshop. La Jolla,
CA: UC San Diego, Jan. 2008, pp. 433–437.

[50] T. Wadayama, “An LP decoding algorithm based on primal path-
following interior point method,” inProc. IEEE Int. Symp. Inform.
Theory, Seoul, Korea, Jun./Jul. 2009, pp. 389–393.

[51] N. Karmarkar, “A new polynomial-time algorithm for linear program-
ming,” Combinatorica, vol. 4, pp. 373–395, 1984.

[52] L. Lovasz and A. Schrijver, “Cones of matrices and set-functions and
0-1 optimization,”SIAM Journal on Optimization, vol. 1, pp. 166–190,
1991.

[53] M. Grötschel and K. Truemper, “Master polytopes for cycles in binary
matroids,”Linear Algebra and its Applications, vol. 114/115, pp. 523–
540, 1989.

[54] M. Miwa, T. Wadayama, and I. Takumi, “A cutting-plane method based
on redundant rows for improving fractional distance,”IEEE J. Sel. Areas
Commun., vol. 27, no. 6, pp. 1005–1012, Aug. 2009.

[55] A. Tanatmis, S. Ruzika, H. W. Hamacher, M. Punekar, F. Kienle, and
N. Wehn, “A separation algorithm for improved LP-decoding of linear
block codes,”IEEE Trans. Inf. Theory, vol. 56, no. 7, pp. 3277–3289,
2010.

[56] R. M. Tanner, D. Sridhara, A. Sridharan, T. E. Fuja, and D. Costello,
Jr., “LDPC block and convolutional codes based on circulantmatrices,”
IEEE Trans. Inf. Theory, vol. 50, no. 12, pp. 2966–2984, 2004.

[57] A. Yufit, A. Lifshitz, and Y. Be’ery, “Efficient linear programming
decoding of HDPC codes,”IEEE Trans. Commun., vol. 59, no. 3, pp.
758–766, Mar. 2011.

[58] S. C. Draper, J. S. Yedidia, and Y. Wang, “ML decoding viamixed-
integer adaptive linear programming,” inProc. IEEE Int. Symp. Inform.
Theory, Nice, France, Jun. 2007, pp. 1656–1660.

[59] M. Chertkov and V. Y. Chernyak, “Loop calculus helps to improve
belief propagation and linear programming decodings of low-density-
parity-check codes,” inProc. 44th Allerton Conf. Commun., Control,
Computing, Monticello, IL, Sep. 2006.

[60] ——, “Loop calculus in statistical physics and information science,”
Phys. Rev. E, vol. 73, no. 6, p. 065102, Jun. 2006. [Online]. Available:
arXiv.org:cond-mat/0601487

[61] ——, “Loop series for discrete statistical models on graphs,” J. Stat.
Mech. Theor. Exp., vol. 2006, p. P06009, 2006. [Online]. Available:
arXiv.org:cond-mat/0603189

[62] M. Chertkov, “Reducing the error floor,” inIEEE Information Theory
Workshop, Sep. 2007, pp. 230–235.

[63] P. O. Vontobel and R. Koetter, “On the relationship between linear
programming decoding and min-sum algorithm decoding,” inProc. Int.
Symp. Inform. Theory, Parma, Italy, Oct. 2004, pp. 991–996.

[64] J. S. Yedidia, W. T. Freeman, and Y. Weiss, “Constructing free-energy
approximations and generalized belief propagation algorithms,” IEEE
Trans. Inf. Theory, vol. 51, no. 7, pp. 2282–2312, 2005.

[65] M. Bayati, D. Shah, and M. Sharma, “Max-product for maximum weight
matching: Convergence, correctness, and LP duality,”IEEE Trans. Inf.
Theory, vol. 54, no. 3, pp. 1241–1251, 2008.

Michael Helmling Michael Helmling received the Diploma in Mathematics
from the University of Kaiserslautern, Germany, in 2011.

Since 2011, he has been a Ph. D. student with the OptimizationResearch
Group, Department of Mathematics, University of Kaiserslautern.

Stefan Ruzika Stefan Ruzika received a M. S. degree in mathematics from
Clemson University, SC, in 2002 and the M. S. and Ph. D. degrees in mathe-
matics from the University of Kaiserslautern in 2003 and 2007, respectively.

Since 2008 he is assistant professor at the University of Kaiserslautern.
His research interests include coding theory, combinatorial optimization and
multiple objective programming.

Akin Tanatmis Akin Tanatmis received the B. Sc. degree in Industrial
Engineering from Bilkent University, Turkey, in 2002 and the Diploma in
Mathematics and Ph. D. degrees from the University of Kaiserslautern in 2006
and 2011, respectively.

