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Abstract

Unlike point-to-point cognitive radio, where the constraint imposed by the primary rigidly curbs

the secondary throughput, multiple secondary users have the potential to more efficiently harvest the

spectrum and share it among themselves. This paper analyzesthe sum throughput of a multiuser cognitive

radio system with multi-antenna base stations, either in the uplink or downlink mode. The primary and

secondary haveN andn users, respectively, and their base stations haveM andm antennas, respectively.

We show that anuplink secondary throughput grows with m

N+1
logn if the primary is a downlink system,

and grows with m

M+1
logn if the primary is an uplink system. These growth rates are shown to be optimal

and can be obtained with a simple threshold-based user selection rule. Furthermore, we show that the

secondary throughput can grow proportional tologn while simultaneously pushing the interference on

the primary down to zero, asymptotically. Furthermore, we show that adownlink secondary throughput

grows withm log logn in the presence of either an uplink or downlink primary system. In addition, the

interference on the primary can be made to go to zero asymptotically while the secondary throughput

increases proportionally tolog logn. Thus, unlike the point-to-point case, multiuser cognitive radios can

achieve non-trivial sum throughput despite stringent primary interference constraints.

I. INTRODUCTION

Currently, the spectrum assigned to licensed (primary) users is heavily under-utilized [1]. Cognitive

radio aims to improve the utilization of spectrum by allowing cognitive (secondary) users to access the

same spectrum as primary users, as long as any performance degradation of the primary users is tolerable.

In general, secondary users can access the spectrum via methods known as overlay, interweave, and

underlay [2]. In the overlay technique the secondary user not only transmits its own signal, but also

acts as a relay to compensate for its interference on the primary user. The overlay method depends on
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the secondary transmitter having access to primary’s message [3].1 In the interweave technique [4], the

secondary user first senses spectrum holes and then transmits in the detected holes. Reliable sensing in the

presence of fading and shadowing has proved to be challenging [5]. Finally, in the underlay technique [6],

the secondary can transmit as long as the interference caused on the primary is less than a pre-defined

threshold. The secondary user in this case is neither required to know the primary user’s message nor

restricted to transmit in spectrum holes.

This paper studies performance limits of an underlay cognitive network consisting of multi-user and

multi-antenna primary and secondary systems. The primary and secondary systems are subject to mutual

interference, where the secondary has to comply with a set ofinterference constraints imposed by the

primary. We are interested in the average sum rate (throughput) of the secondary system as the number

of secondary users grows. Moreover, we study how the secondary throughput is affected by the size of

primary network as well as the severity of the interference constraints, which is one of the key issues in

the design of an underlay cognitive network.

A summary of the results of this paper is as follows. We assumethat the primary and secondary have

N andn users, respectively, and their base stations haveM andm antennas, respectively.

• Secondary uplink (MAC): the secondary average throughput is shown to grow asΘ(log n), which

is achieved by a threshold-based user selection rule. More precisely, the average throughput of the

secondary MAC channel grows asmN+1 log n + O(1) when it coexists with the primary broadcast

channel, and grows asm
M+1 log n + O(1) when it coexists with the primary MAC channel. By

developing asymptotically tight upper bounds, these growth rates are further proven to be optimal.

Moreover, the interference on the primary system can be asymptotically forced tozero, while the

secondary throughput still grows asΘ(log n). Specifically, for some non-negative exponentq, the

interference on the primary can be made to decline asΘ(n−q), while the throughput of a secondary

MAC grows asm−qN
N+1 log n+O(1) andm−qM

M+1 log n+O(1), respectively in cases of primary broadcast

and MAC channel. The above results imply that asymptotically the secondary system can attain a

non-trivial throughputwithout degrading the performance of the primary system.

• Secondary downlink (broadcast): the secondary average throughput is shown to scale withm log log n+

O(1) in the presence of either the primary broadcast or MAC channel. Hence, the growth rate of

throughput is unaffected (thus optimal) by the presence of the primary system. In addition, the

interference on the primary can be asymptotically forced tozero, while maintaining the secondary

1Sometimes, this is referred to as an interference channel with degraded message sets.
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throughput asΘ(log log n). Specifically, for an arbitrary exponent0 < q < 1, the interference

can be made to decline asΘ
(

(log n)−q
)

, while the secondary average throughput grows asm(1−

q) log log n+O(1).

Some of the related earlier work is as follows. Much of the past work in the underlay cognitive radio

involves point-to-point primary and secondary systems. Ghasemi et al [6] studies the ergodic capacity of a

point-to-point secondary link under various fading channels. Multiple antennas at the secondary transmitter

are exploited by [7] to manage the tradeoff between the secondary throughput and the interference on

the primary. In the context of multi-user cognitive radios,Zhang et al [8] studies the power allocation

of a single-antenna secondary system under various transmit power constraints as well as interference

constraints. Gastpar [9] studies the secondary capacity via translating a receive power constraint into a

transmit power constraint.

Recently, ideas from opportunistic communication [10] were used in underlay cognitive radios by

selectively activating one or more secondary users to maximize the secondary throughput while satisfying

interference constraints. The user selection in cognitiveradio is complicated because the secondary system

must be mindful of two criteria: the interference on the primary and the rate provided to the secondary.

Karama et al [11] selects secondary users with channels almost orthogonal to a single primary user, so

that the interference on the primary is reduced. Jamal et al [12], [13] obtains interesting scaling results

for the sum rate by selecting users causing the least interference. Some distinctions of our work and [12],

[13] are worth noting. First, Jamal et al [12], [13] studies the hardening of sum rate via convergence in

probability, while we analyze the average throughput, which requires a very different approach.2 Second,

we study a multi-antenna cognitive network whereas [12], [13] considers a single antenna network. Third,

we study the effect of the primary network size (number of constraints) on the secondary throughput,

while [12], [13] considers a single primary constraint.

2In general, convergence in probability does not imply convergence in any moment (thus average throughput) [14]. For

example, consider a sequence of ratesRn = log(1 +Xn), where

Xn =







1 with probability 1− 1

n

exp(n2) with probability 1

n

Then,limn↑∞ Rn = log 2 in probability, however,limn↑∞ E[Rn] = ∞ in probability. Therefore, the average rateE[Rn] cannot

be predicted based on the hardening (in probability) ofRn.
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Fig. 1. Coexistence of the secondary MAC channel and the primary system

We use the following notation:[ · ]i,j refers to the(i, j) element in a matrix,| · | refers to the cardinality

of a set or the Euclidean norm of a vector, diag(·) refers to a diagonal matrix, tr(·) refers to the trace

of a matrix, andIk×k refers to thek× k identity matrix. All log(·) is natural base. For anyǫ > 0, some

positivec1 andc2, and sufficiently largen:

f(n) = O
(

g(n)
)

: |f(n)| < c1 |g(n)|

f(n) = Θ
(

g(n)
)

: c2 |g(n)| < |f(n)| < c1 |g(n)|

f(n) = o
(

g(n)
)

: |f(n)| < ǫ |g(n)|

We let Ropt
mac,w/o andRopt

bc,w/o be themaximum average throughput achieved by the secondary MAC

and broadcast channelin the absence of the primary, respectively. In this case, we have regular MAC

and broadcast channels, and it is well known thatRopt
mac,w/o scales asm log n, andRopt

bc,w/o scales as

m log log n.

The remainder of this paper is organized as follows. SectionII describes the system model. The average

throughput of the secondary MAC channel is studied in Section III, where in Section III-C we prove

the achieved throughout is asymptotically optimal. The average throughput of the secondary broadcast

channel is investigated in Section IV. Numerical results are shown in Section V. Finally, Section VI

concludes this paper.

II. SYSTEM MODEL

We consider a cognitive network consisting of a primary and asecondary, each being either a MAC

or broadcast channel (Figure 1 and Figure 2). The primary system has one base station withM antennas
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Fig. 2. Coexistence of the secondary broadcast channel and the primary system

and N users, while the secondary system consists of one base station with m antennas andn users.

The primary and secondary are subject to mutual interference, which is treated as noise. The secondary

system must comply with a set of interference power constraints imposed by the primary. For simplicity

of exposition, at the beginning primary and secondary users(except base stations) are assumed to have

one antenna, however, as shown in the sequel, most of the results can be directly extended to a scenario

where each user has multiple antennas.

A block-fading channel model is assumed. All channel coefficients are fixed throughout each trans-

mission block, and are independent, identically distributed (i.i.d.) circularly-symmetric-complex-Gaussian

with zero mean and unit variance, denoted byCN (0, 1). The secondary base station acts as a scheduler:

For each transmission block, a subset of the secondary usersis selected to transmit to (or receive from)

the secondary base station. We denote the collection of selected (active) secondary users asS.

We begin by introducing a system model that applies to all four scenarios in Figures 1 and 2, thus

simplifying notation in the remainder of the paper. The secondary received signal is given by:

y = H(S)xs +Gs xp +w (1)

wherey represents the received signal vector, either signals at a multi-antenna base station (uplink) or at

different users (downlink).H(S) is the channel coefficient matrix between the active secondary users and

their base station.Gs represents the cross channel coefficient matrix from the primary transmitter(s) to

the secondary receiver(s). The primary and secondary transmit signal vectors arexp andxx. The variable

w is the received noise vector, where each entry ofw is i.i.d. CN (0, 1).

We assume both primary and secondary systems use Gaussian signaling, subject to short-term power
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constraints. The transmit covariance matrices of the primary and secondary systems are

Qp = E
[

xpx
†
p

]

(2)

and

Qs = E
[

xsx
†
s

]

(3)

When the secondary is a MAC channel, each secondary user is subject to an individual short term

power constraintρs. The users do not cooperate, thereforeQs is diagonal:

Qs = diag
(

ρ1, · · · , ρ|S|
)

(4)

whereρℓ ≤ ρs, for ℓ = 1, · · · , |S|. In this case,H(S) has dimensionm× |S|.

When the secondary is a broadcast channel, we assume the secondary base station is subject to a short

term power constraintPs:

tr(Qs) ≤ Ps (5)

In this case,H(S) has dimension|S| ×m.

When the primary is a MAC channel, each primary user transmits with power ρp without user

cooperation:

Qp = ρp IN×N (6)

Furthermore, each receive antenna at the primary base station can tolerate interference with powerΓ

from the secondary system,3 that is
[

GpQsG
†
p

]

ℓ,ℓ
≤ Γ (7)

for ℓ = 1, · · · ,M , whereGp represents the cross channel coefficient matrix from the secondary base

station (or active users) to the primary base station.

When the primary is a broadcast channel, the power constraint at the primary base station is tr(Qp) ≤

Pp. For simplicity, we assume4

Qp =
Pp

M
IM×M (8)

Furthermore, each primary user tolerates interference with powerΓ:

[

GpQsG
†
p

]

ℓ,ℓ
≤ Γ (9)

for ℓ = 1, · · · , N , whereGp is the cross channel coefficient matrix from the secondary base station (or

active users) to the primary users.

3If each primary antenna or user tolerates a different interference power, the results of this paper still hold, as seen later.

4The asymptotic results remain the same, even if we allowQp to be an arbitrary covariance matrix.
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III. C OGNITIVE MAC CHANNEL

Consider a MAC secondary in the presence of either a broadcast or MAC primary. We wish to find how

much throughput is available to the secondary subject to rigid constraints on the secondary-on-primary

interference. We first construct a transmission strategy and find the corresponding (achievable) average

throughput. Then, we develop upper bounds that are tight with respect to the throughput achieved.

The framework for the transmission strategy is as follows: For each transmission block, the secondary

base station determines an active user setS as well as transmit power for all active usersQs. For each

transmission, from (1), the sum rate (throughput) of the secondary system is:

Rmac = log det

(

I +H(S)QsH
†(S) +GsQpG

†
s

)

− log det

(

I +GsQpG
†
s

)

(10)

subject to the interference constraints (9) and (7) for the primary broadcast and MAC channel respectively.

The secondary average throughput is given by

Rmac = E[Rmac] (11)

For the development of upper bounds, we assume the secondarybase station knows all the channels.

This is a genie-like argument that is used solely for development of upper bounds. For the achievable

scheme, the requirement is more modest and is outlined afterthe description of the achievable scheme

(see Remark 1).

A. Achievable Scheme

The objective is to chooseS andQs, i.e., the secondary active transmitters and their power, such that

secondary throughput is maximized subject to interferenceconstraints on the primary.

The choice ofS andQs is coupled through the interference constraints: either more secondary users

can transmit with smaller power, or fewer of them with higherpower. We focus on a simple power policy:

All active secondary users transmit with the maximum allowed powerρs. Hence, given an active user

setS, we have

Qs = ρsI|S|×|S| (12)

It will be shown that the on-off transmission (without any further power adaptation) suffices to (asymp-

totically) achieve the maximum average throughput. Furthermore, its simplicity facilitates analysis.

Recall that each primary user can tolerate interference with powerΓ. The interference on a primary user

is guaranteed to be below this level ifks secondary users are active, each causing interference no more

thanα = Γ
ks

. This bound allows us to honor the interference constraintson the primary while decoupling
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the action of different secondary users. Based on this observation, we construct a user selection rule

as follows. First, we define an eligible secondary user set that disqualifies users that cause too much

interference on the primary:

A =







{

i : ρs
∣

∣[Gp]ji
∣

∣

2
< α, for j = 1, · · · , N

}

primary broadcast
{

i : ρs
∣

∣[Gp]ji
∣

∣

2
< α, for j = 1, · · · ,M

}

primary MAC
(13)

where [Gp]ji is the channel coefficient from the secondary useri to the primary user (antenna)j, and

α is a pre-designed interference quota. A secondary user is eligible if its interference on each primary

user (antenna) is less thanα. Now, to satisfy the interference bound, we limit the numberof secondary

transmitters to no more thanks, where

ks =
Γ

α
(14)

If |A| ≤ ks, then all eligible users can transmit. If|A| > ks, then ks users will be chosenrandomly

from among the eligible users to transmit.5 The number of eligible users,|A|, is a random variable; the

number of active users is

|S| = min
(

ks, |A|
)

(15)

The transmission of|S| eligible users induces interference no more thanΓ on any primary user or

antenna. Notice that the manner of user selection guarantees that the channel coefficients inH(S) remain

independent and distributed asCN (0, 1).

Now we want to design an interference quotaα to maximize the secondary average throughput. Neither

very small nor very large values ofα are useful within our framework: Ifα is very small, for most

transmissions few (if any) secondary users will be eligible, thus the secondary throughput will be small.

If α > Γ, any transmitting user might violate the interference constraint, so the secondary must shut

down (equivalently, we haveks < 1). The value of individual interference constraintα, or equivalently

ks, must be set somewhere between these extremes.

Clearly, a desirable outcome would be to allow exactly the number of users that are indeed eligible for

transmission, i.e.,ks ≈ |A|. But one cannot guarantee this in advance, because|A| is a random variable.

Motivated by this general insight, we chooseα such that

ks = E[|A|] (16)

5Naturally the number of active users must be an integer, i.e., ⌊ks⌋. We do not carry the floor operation in the following

developments for simplicity, noting that due to the asymptotic nature of the analysis, the floor operation has no effect on the

final results.
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In Section III-C, we will verify that this choice ofα is enough to asymptotically achieve the maximum

throughput.

Remark 1: The above scheme does not require the secondary users to havefull channel knowledge.

Each secondary user can compare its own cross channel gains with a pre-defined interference quotaα,

and then decide its eligibility. After this, each eligible user can inform the secondary base station via

1-bit, so that the secondary base station can determineA without knowing the cross channels from the

secondary users to the primary system. The secondary channels H(S) and the cross channelsGs can be

estimated at the secondary base station. Therefore, this scheme can be implemented with little exchange

of channel knowledge.

B. Throughput Calculation

1) Secondary MAC with Primary Broadcast: The primary base station transmits toN primary users,

where each user tolerates interference with powerΓ. Notice that in (13),[Gp]ji is the channel coefficient

from the secondary useri to the primary userj which is i.i.d. CN (0, 1). Thus,
∣

∣[Gp]ji
∣

∣

2
is i.i.d.

exponential. Therefore,|A| is binomially distributed with parameter(n, p), where

p =
(

1− e−
α

ρs

)N
(17)

For small α
ρs

, we have

p ≈

(

α

ρs

)N

(18)

From (16), the interference quotaα is chosen such that

ks = np ≈ n

(

α

ρs

)N

(19)

Substituteα = Γ
ks

into the above equation, and denote the associated solutionfor ks as k̄s:

k̄s =

(

Γ

ρs

)
N

N+1

(n)
1

N+1 (20)

Thus, we can seeΘ(n
1

N+1 ) secondary users are allowed to transmit, and the interference quota is on

the order ofΘ(n− 1

N+1 ). With the above choice of interference quota, or the number of allowable active

users, we state one of the main results of this paper as follows.

Theorem 1: Consider a secondary MAC with am-antenna base station andn users each with power

constraintρs. The secondary MAC operates in the presence of a primary broadcast channel transmitting

with powerPp to N users each with interference toleranceΓ. The secondary average throughput satisfies:
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Rmac ≥
m

N + 1
log n+

1

N + 1
log

(

ρsΓ
N
)

−m log(1 + Pp) +O
(

n− 1

N+1 log n
)

(21)

Rmac ≤
m

N + 1
log n+

1

N + 1
log

(

ρsΓ
N
)

−RI +O
(

n− 1

N+1

)

(22)

with

RI = mmin log

(

1 +
Pp

M
exp

(

1

mmin

mmin
∑

j=1

mmax−j
∑

i=1

1

i
− γ

))

(23)

wheremmin = min(m,M) andmmax = max(m,M). This throughput is achieved under the threshold-

based user selection with the choice ofk̄s given by (20).

Proof: See Appendix A. �

Remark 2: The essence of the above result is that the secondary averagethroughput grows asmN+1 log n+

O(1), i.e., inversely proportional to the number of primary users. A noteworthy special case is when the

primary base station chooses to transmit to a number of usersequal to the number of its transmit antennas

(N = M ), a strategy which is known to be near-optimum in terms of sum-rate [15]. Under this condition:

Rmac =
m

M + 1
log n+O(1)

Therefore, we have

lim
n→∞

Rmac

Ropt
mac,w/o

=
1

M + 1
(24)

whereRopt
mac,w/o is the maximum average throughput of the secondary MACin the absence of the primary

system. This ratio shows that thecompliance penalty of the secondary MAC system and its relationship

with the characteristics of the primary network.

Remark 3: The results in Theorem 1 can be directly extended to a scenario where each primary user

tolerates a different level of interference. As long as all primary users allow non-zero interference (no

matter how small), we can letΓ be the minimum allowable interference, and the theorem still holds.

So far we have analyzed the effect of small but constant primary interference constraints, and shown that

the secondary throughput improves with increasing the number of secondary users. However, the flexibility

provided by the increasing number of secondary users can be exploited not only to increase secondary

throughput, but also to reduce the primary interference. Infact, it is possible to simultaneously suppress

the interference on the primary down tozero while increasing the secondary throughput proportional to

log n. The following corollary makes this idea precise:
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Corollary 1: Assuming the interference on each primary user is bounded asΘ(n−q), the average

secondary throughput satisfies

Rmac =
m− qN

N + 1
log n+O(1) (25)

where0 < q < m
N .

Proof: Because the proof of Theorem 1 holds forΓ = Θ(n−q), the corollary follows by substituting

Γ = Θ(n−q) into the lower and upper bounds given by Theorem 1. �

Remark 4: The corollary above explores a tradeoff where primary interference is made to decrease

polynomially, i.e., proportional ton−q. We saw that this leads to a secondary sum rate that decreaseslin-

early inq. If we reduce the primary interference more slowly, i.e., decreasing asΘ( 1
logn), the growth rate

of secondary sum-rate will behave as though the primary interference constraint is fixed. Conversely, if we

try to suppress the primary interference faster thanΘ(n−q), the secondary throughput will asymptotically

remain stagnant or will go to zero.

2) Secondary MAC with a Primary MAC: Recall that each antenna at the primary base station allows

interference with powerΓ. By regarding each antenna of the primary base station as a virtual user, we

can re-use most of the analysis that was developed in the previous section. Thus, the steps leading to

Eq. (20) can be repeated to obtain the number of allowable active secondary users:

k̄s =

(

Γ

ρs

)
M

M+1

(n)
1

M+1 (26)

With this allowable active users̄ks and slight modifications, we obtain a result that parallels Theorem 1.

Theorem 2: Consider a secondary MAC with am-antenna base station andn users each with power

constraintρs. The secondary MAC operates in the presence of a primary MAC channel where each user

transmits with powerρp to aM -antenna base station with interference toleranceΓ on each antenna. The

secondary average throughput satisfies:

Rmac ≥
m

M + 1
log n+

1

M + 1
log

(

ρsΓ
M
)

−m log(1 + ρpN) +O
(

n− 1

M+1 log n
)

(27)

Rmac ≤
m

M + 1
log n+

1

M + 1
log

(

ρsΓ
M
)

−RI +O
(

n− 1

M+1

)

(28)

with

RI = mmin log

(

1 + ρp exp

(

1

mmin

mmin
∑

j=1

mmax−j
∑

i=1

1

i
− γ

))

(29)

wheremmin = min(m,N) andmmax = max(m,N). This throughput is achieved under the threshold-

based user selection with the choice ofk̄s given by (26).
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A tradeoff exists between the primary interference reduction and the secondary throughput enhance-

ment, which is stated by the following corollary. All the remarks made after Corollary 1 are applicable

here.

Corollary 2: Assuming the interference on each antenna of the primary base station is bounded as

Θ(n−q), the average secondary throughput satisfies

Rmac =
m− qM

M + 1
log n+O(1) (30)

where0 < q < m
M .

C. Upper Bounds for Secondary Throughput

So far we have seen achievable rates of a cognitive MAC channel in the presence of either a primary

broadcast or MAC. We now develop corresponding upper bounds.

Theorem 3: Consider a secondary MAC with am-antenna base station andn users. Themaximum

average throughput of the secondary,Ropt
mac, satisfies

Ropt
mac ≤

m

N + 1
log n+O(log log n) (31)

in the presence of a primary broadcast channel transmittingto N users. Similarly,Ropt
mac satisfies

Ropt
mac ≤

m

M + 1
log n+O(log log n) (32)

in the presence of a primary MAC, where each user transmits toa M -antenna base station.

Proof: See Appendix B. �

Remark 5: By comparing the upper bounds with the achievable rates obtained by the thresholding

strategy, we see that the achievable rates are at mostO(log log n) away from the upper bounds, a difference

which is negligible relative to the dominant termΘ(log n). Thus, the growth of themaximum average

throughput of a cognitive MAC is m
N+1 log n in the presence of the primary broadcast channel, and

m
M+1 log n in the presence of the primary MAC channel. Both the achievable rates and the upper bounds

show that the average cognitive sum-rate is inversely proportional to the number of primary-imposed

constraints, asymptotically.

D. Discussion

Recall that our method determines eligible cognitive MAC users based on their cross channel gains.

To satisfy the interference constraints, our selection rule then allowsΘ(n
1

N+1 ), or Θ(n
1

M+1 ), of these
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users to be active simultaneously, in the presence of eitherthe primary broadcast or MAC. If there

are more eligible users than the allowed number, we choose from among the eligible users randomly.

In this process, the forward channel gain of the cognitive users does not come into play, and still an

optimal growth rate is achieved. This can be intuitively explained as follows. The total received signal

power at the cognitive base station grows linearly with the number of active users, and the total received

signal power determines the sum rate. On the other hand, selecting good cognitive users according to

their secondary channel strengths can only offer logarithmic power gains (with respect ton) [10], which

is negligible compared to the linear gains due to increasingthe number of active users. Therefore the

cross channel gains are more important in this case.6 Note that we do not imply that knowledge of the

cognitive forward channel is useless; our conclusion only says that once the cross channels are taken

into account, theasymptotic growth of the secondary throughput cannot be improved by any use of the

cognitive forward channel.

Although we have allowed the base stations to have multiple antennas, so far the users have been

assumed to have only one antenna. We now consider a generalization to the case where all users have

multiple antennas. Consider a secondary MAC in the presenceof a primary broadcast, where each primary

and secondary user havetp andts antennas respectively. We apply a separate interference constraint on

each antenna of each primary user, which guarantees the satisfaction of the overall interference constraint

on any primary user. On each of thets-antenna secondary users, we shall allocatets−1 degrees of freedom

for zero-forcing and only one degree of freedom for cognitive transmission. Using this strategy, we can

ensure thatts − 1 of the receive antennas on the primary are exempt from interference. Thus, the total

number of interference constraints will reduce fromtpN to tpN + 1 − ts. By using an analysis similar

to the development of Theorem 1, one can show that the growth rate m logn
max(1, tpN+2−ts)

is achievable.

For the converse, the situation is more complicated, because here the correlation among the antennas of

the secondary users must be accounted for. Nevertheless, insome cases it is possible to show without

much difficulty that the above achieved throughput is indeedasymptotically optimal. For example, in the

presence of the primary MAC, ifts > M , the secondary MAC channel can have a throughput that grows

asm log n by letting each active secondary user completely eliminatethe interference on the primary.

Similarly, in the presence of a primary broadcast channel, if ts > tpN , the secondary MAC channel can

also have a throughput that grows asm log n. The achieved growth rate is optimal because it coincides

6In a somewhat different context, the work of Jamal et al. [13]also indicates that cross channels can be more important than

the forward channels.
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with the the growth rate ofRopt
mac,w/o, which is always an upper bound.

IV. COGNITIVE BROADCAST CHANNEL

A. Achievable Scheme

We consider a random beam-forming technique where the secondary base station opportunistically

transmits tom secondary users simultaneously [16]. Specifically, the secondary base station constructs

m orthonormal beams, denoted by{φj}
m
j=1, and assigns each beam to a secondary user. Then, the

secondary base station broadcasts tom selected users. The selection of users and beam assignment will

be addressed shortly.

Considering an equal power allocation amongm users, the transmitted signal from the secondary base

station is given by:

xs =

m
∑

j=1

√

P

m
φj xj (33)

whereφj is the beam-forming vectorj with dimensionm × 1, xj is the signal transmitted along the

beamj, andP is the total transmit power. In this case, we have

Qs =
P

m
Im×m (34)

Notice thatP is subject to the power constraintPs as well as a set of interference constraints imposed

by the primary. Thus, the value ofP depends on the cross channels from the secondary base station to

the primary system.

Assuming the beamj is assigned to useri. From (1) and (33), the received signal at the secondary

useri is given by

yi = h
†
iφjxj +

∑

k 6=j

h
†
iφkxk + g

†
s,ixp + wi (35)

whereh†
i is the1×m vector of channel coefficient from the secondary base station to the secondary user

i, andg†
s,i is the1×M (or 1×N ) vector of channel coefficients from the primary base station (or users)

to the secondary useri. The received signal-to-noise-plus-interference-ratio(SINR) at the secondary user

i (with respect to beamj) is

SINRi,j =
P
m |h†

iφj |
2

1 + P
m

∑

k 6=j |h
†
iφk|2 + g

†
s,iQp gs,i

(36)

The random beam technique assigns each beam to the secondaryuser that results in the highest SINR.

Because the probability of more than two beams being assigned to the same secondary user is negligible,

November 14, 2021 DRAFT



15

we have [16]

Rbc ≈ E

[ m
∑

j=1

log
(

1 + max
1≤i≤n

SINRi,j

)

]

(37)

= mE

[

log
(

1 + max
1≤i≤n

SINRi,j

)

]

(38)

The above analysis holds in the presence of either the primary broadcast or MAC channel; the only

difference is the constraints onP andQp. Since the SINR is symmetric across all beams, the subscript

j will be omitted in the following analysis.

Remark 6: We briefly address the issue of channel state information. All users are assumed to have

receiver side channel state information. On the transmit side, the secondary base station does not need

to have full channel knowledge; only the SINR is needed. Eachsecondary user can estimate its own

SINR with respect to each beam, and feed it back to the secondary base station [16]. Based on collected

SINR, the secondary base station performs user selection. The secondary base station needs to knowGp

to adjustP such that the interference constraints on the primary are satisfied.

B. Throughput Calculation

1) Secondary Broadcast with Primary Broadcast: The secondary system has to comply with the

constraints onN primary users. To maximize the throughput, the secondary base station transmits at the

maximum allowable power. From (9) and (34), we have

P = min
( mΓ

|g†
p,1|

2
, · · · ,

mΓ

|g†
p,N |2

, Ps

)

(39)

whereg†
p,ℓ is the rowℓ of Gp. Then, we substituteQp given by (8) into (36), and obtain the SINR at

the secondary useri with respect to the beamj:

SINRi =
|h†

iφj |
2

m
P +

∑

k 6=j |h
†
iφk|2 +

mPp

MP |gs,i|2
(40)

Our analysis ofmaxi SINRi, which is required to evaluate the throughput in Eq. (38), does not

follow [16] because the denominator involves a sum of two Gamma distributions with different scale

parameters:
∑

k 6=j |h
†
iφk|

2 has Gamma(m−1, 1) andmPp

MP |gs,i|
2 has Gamma(M, mPp

MP ). Fortunately, lower

and upper bounds can be leveraged to simplify the analysis. We define:

θ =
mPp

MP
(41)

We consider the case whenmPp

MPs
≥ 1. The techniques can then be generalized to the case ofmPp

MPs
< 1.7

7When mPp

MPs
< 1, one can defineθ = max(

mPp

MP
, 1). Then, we can use Bayesian expansion via conditioning on{P <

mPp

M
}

and its complement, where both conditional terms can be shown to have the same growth rate.
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When mPp

MPs
≥ 1, we haveθ ≥ 1 for all P . We define:

Li =
|h†

iφj |
2

m
P + θ

(
∑

k 6=j |h
†
iφk|2 + |gs,i|2

)
(42)

and

Ui =
|h†

iφj |
2

m
P + θ|gs,i|2

(43)

where Li and Ui are random variables that depend on channel realizations. Conditioned onP , the

denominators ofLi andUi have Gamma distributions, which simplifies the analysis.

For 1 ≤ i ≤ n, we have

Li ≤ SINRi ≤ Ui (44)

Hence,

Lmax ≤ max
1≤i≤n

SINRi ≤ Umax (45)

whereLmax = maxi Li andUmax = maxi Ui. Therefore for anyx, we have

P(Lmax > x) ≤ P( max
1≤i≤n

SINRi > x) ≤ P(Umax > x) (46)

which implies [17] thatmaxi SINRi is stochastically greater thanLmax, but stochastically smaller than

Umax. We now use the following fact about stochastic ordering:

Lemma 1 ([17]): If random variableX is stochastically smaller thanY and h(·) is an increasing

function, assumingh(X) andh(Y ) are measurable according to their distributions:

E[h(X)] ≤ E[h(Y )] (47)

Based on the above lemma, the secondary average throughput is bounded as follows:

mE
[

log(1 + Lmax)
]

≤ Rbc ≤ mE
[

log(1 + Umax)
]

(48)

We study the lower and upper bounds given by (48), instead of directly analyzingRbc. Some useful

properties ofLmax andUmax are as follows.

Lemma 2: Conditioned onP = ρ,

P

(

Lmax ≥ bn −
ρ

m
log log n

∣

∣

∣

∣

P = ρ

)

= 1−Θ

(

1

n

)

(49)

P

(

Umax < dn +
ρ

m
log log n

∣

∣

∣

∣

P = ρ

)

= 1−Θ

(

1

log n

)

(50)

E

[

Umax

∣

∣

∣

∣

Umax > dn +
ρ

m
log log n, P = ρ

]

< O(n log n) (51)
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where bn = ρ
m log n − ρ(m+M−1)

m log log n + O
(

log log log n
)

and dn = ρ
m log n − ρM

m log log n +

O
(

log log log n
)

.

Proof: See Appendix C. �

Based on the above two lemmas, we obtain the following results for the secondary throughput:

Theorem 4: Consider a secondary broadcast channel withn users and am-antenna base station with

power constraintPs. The secondary broadcast operates in the presence of a primary broadcast channel

transmitting with powerPp to N users each with interference toleranceΓ. The secondary average

throughput satisfies:

Rbc > m log
(

Γ log n
)

−m log
(

µ̃1 +
mΓ

Ps

)

+O
( log log n

log n

)

Rbc < m log(Γ log n)−m log µ̃2 +O(1)

whereµ̃1 = E[max1≤i≤N |g†
p,i|

2] and µ̃2 =
(

E
[

1/max1≤i≤N |g†
p,i|

2
])−1

.

Proof: See Appendix D. �

Remark 7: The result above states thatRbc = m log log n+O(1), thus

lim
n→∞

Rbc

Ropt
bc,w/o

= 1 (52)

whereRopt
bc,w/o is the maximum average throughput of the secondary broadcast channelin the absence of

the primary system. Therefore, the achieved average throughput is asymptotically optimal, because we

always haveRbc ≤ Ropt
bc,w/o. Thus, we have a positive result: The growth rate of the secondary average

throughput is unaffected by the constraints and interference imposed by the primary, as long as each

primary user tolerates some small but fixed interference.

The above results naturally lead to the question: How small can we make the interference on the

primary, while still having a secondary average throughputthat grows asΘ(log log n). We find thatΓ,

the interference on each primary user, can asymptotically go to zero, as shown by the next corollary.

Corollary 3: Assuming the interference on each primary user is bounded asΘ
(

(log n)−q
)

, the average

secondary throughput satisfies:

Rbc = (1− q)m log log n+O(1) (53)

where0 < q < 1.

Remark 8: Reducing the interference on the order ofΘ
(

(log n)−q
)

sheds lights on how fast the

interference can be reduced on the primary, while having a non-trivial secondary throughout. Forq > 1,
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it does not implyRbc is zero or negative; it only means thatRbc is on the order ofo(log log n). Slower

interference reduction, e.g. proportional toΘ
(

(log log n)−1
)

, will give maximal asymptotic growth of

secondary throughput, i.e.,m log log n.

2) Secondary Broadcast with Primary MAC: The analysis of this case closely parallels the analysis

of the primary broadcast. The secondary transmit power is given by

P = min
( mΓ

|g†
p,1|

2
, · · · ,

mΓ

|g†
p,M |2

, Ps

)

(54)

whereg†
p,ℓ is the rowℓ of Gp. The MAC primary system produces powerNρp and hasM interference

constraints. From the viewpoint of the secondary, this is all the information that is needed. Therefore the

analysis of Theorem 4 can be essentially repeated to obtain the following result.

Theorem 5: Consider a secondary broadcast channel withn users and am-antenna base station with

power constraintPs. The secondary broadcast operates in the presence of a primary MAC where each

user transmits with powerρp to aM -antenna base station with interference toleranceΓ on each antenna.

The secondary average throughput satisfies:

Rbc > m log
(

Γ log n
)

−m log
(

µ̃3 +
mΓ

Ps

)

+O
( log log n

log n

)

Rbc < m log(Γ log n)−m log µ̃4 +O(1)

whereµ̃3 = E[max1≤i≤M |g†
p,i|

2] and µ̃4 =
(

E
[

1/max1≤i≤M |g†
p,i|

2
])−1

.

Remark 9: Theorem 4 and Theorem 5 can be extended to a scenario where each primary and secondary

user has multiple antennas. A straightforward way is to regard each primary and secondary antenna as

a virtual user. Using an analysis similar to the single-antenna case, the secondary broadcast channel can

be shown to achieve a throughput scaling asm log log n (thus optimal). The details are straight forward

and are therefore omitted for brevity.

Similar to Corollary 3, we can also obtain the tradeoff between the primary interference reduction and

the secondary throughput enhancement as follows. All the remarks following Corollary 3 apply to the

present case as well.

Corollary 4: Assuming the interference on each antenna of the primary base station is bounded as

Θ
(

(log n)−q
)

, the average secondary throughput satisfies:

Rbc = (1− q)m log log n+O(1) (55)

where0 < q < 1.
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Fig. 3. Secondary MAC: Throughput versus user number (Γ = 2)

V. NUMERICAL RESULTS

In this section, we concentrate on numerical results in the presence of the primary broadcast channel;

the results in the presence of the primary MAC channel are similar thus omitted. For all simulations,

we consider:Pp = Ps = ρs = 5, the secondary base station hasm = 4 antennas, and the primary base

station hasM = 2 antennas and the number of primary users isN = 2.

Figure 3 illustrates the secondary average throughput given by Theorem 1. The allowable interference

power on each primary user isΓ = 2. The slope of the throughput curve is discontinuous at some points,

because the allowable number of active secondary users mustbe an integer⌊ks⌋ (also see Eq.(19)). As

mentioned earlier, the floor operation does not affect the asymptotic results. Figure 4 presents the tradeoff

between the tightness of the primary constraints and the secondary throughput, as shown by Corollary 1.

The interference power constraintΓ is 2n−q for q = 0.1 and0.2 respectively. As expected, forq = 0.2

the interference on primary decreases faster thanq = 0.1 and the secondary throughput increases more

slowly.

Figure 5 shows the secondary throughput versus the number ofsecondary users in the presence of

the primary broadcast channel (Theorem 4), where the interference power isΓ = 2. In Figure 6, we

show the tradeoff between the secondary throughput and the interference on the primary, as described

in Corollary 3. We setΓ to decline as2(log n)−q, for q = 0.5 and q = 0.8, respectively. Clearly, for

q = 0.5, the interference power decreases faster thanq = 0.8, while the secondary throughput increases

more slowly.
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Fig. 5. Secondary broadcast: Throughput versus user number(Γ = 2)

VI. CONCLUSION

In this paper, we study the performance limits of an underlaycognitive network consisting of a multi-

user and multi-antenna primary and secondary systems. We find the average throughput limits of the

secondary system as well as the tradeoff between this throughput and the tightness of constraints imposed

by the primary system. Given a set of interference power constraints on the primary, the maximum

average throughput of the secondary MAC grows asm
N+1 log n (primary MAC), and m

M+1 log n (primary

broadcast). These growth rates are attained by the simple threshold-based user selection rule. Interestingly,
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Fig. 6. Secondary broadcast: Throughput versus user number( Γ = 2(log n)−q)

the secondary system can force its interference on the primary to zero while maintaining a growth rate of

Θ(log n). For the secondary broadcast channel, the secondary average throughput can grow asm log log n

in the presence of either the primary broadcast or MAC channel. Hence, the growth rate of the throughput

is unaffected by the presence of the primary (thus optimal).Furthermore, the interference on the primary

can also be made to decline to zero, while maintaining the secondary average throughput to grow as

Θ(log log n).

APPENDIX A

PROOF OFTHEOREM 1

Proof: We rewrite (10) as

Rmac = log det

(

I +H(S)QsH
†(S)

(

I +GsQpG
†
s

)−1
)

(56)

Because for any positive definite matrixA andB, the functionlog det(I + AB−1) is convex inB [18,

Lemma II.3], we have

Rmac = EH

[

EGs
[Rmac |H]

]

(57)

> EH

[

log det

(

I +H(S)QsH
†(S)

(

I + E[GsQpG
†
s]
)−1

)]

(58)

= EH

[

log det

(

I +
ρs

1 + Pp
H(S)H†(S)

)]

(59)
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where (58) uses the Jensen inequality and the fact thatH(S) andGs are independent. SubstitutingQp

from (8) and noting thatE[GsG
†
s] = MIm×m, we have (59).

Now we bound the right hand side of (59). Recall that|A| and |S| are the random number of eligible

users and active users, respectively. By the Chebychev inequality, for anyǫ > 0, we have

P

(

|A| > (1− ǫ)k̄s

)

> 1−
1− p

ǫ2np
(60)

= 1−O
(

k̄−1
s

)

(61)

where in the above we use the factk̄s = np. Then, we expand (59) based the event{|A| > (1 − ǫ)k̄s}

and its complement, and discard the non-negative term associated with its complement:

Rmac > E

[

log det

(

I +
ρs

1 + Pp
H(S)H†(S)

) ∣

∣

∣

∣

|A| > (1− ǫ)k̄s

]

P

(

|A| > (1− ǫ)k̄s

)

(62)

≥ E

[

log det

(

I +
ρs

1 + Pp
H(S)H†(S)

) ∣

∣

∣

∣

|A| = (1− ǫ)k̄s

](

1−O
(

k̄−1
s

)

)

(63)

= E

[

log det

(

I +
ρs

1 + Pp
H(S)H†(S)

) ∣

∣

∣

∣

|S| = (1− ǫ)k̄s

](

1−O
(

k̄−1
s

)

)

(64)

where in the inequality (63), we apply the result in (61) and the fact that the conditional expectation of

the right hand side of (62) is non-decreasing in|A|. Since|S| = (1 − ǫ)k̄s in case of|A| = (1 − ǫ)k̄s,

then we obtain (64) due to the average throughput depending on |A| via the size ofS.

Recall that each entry ofH(S) is i.i.d. CN (0, 1). Conditioned on|S| = (1 − ǫ)k̄s, H(S)H†(S) is a

Wishart Matrix with degrees of freedom(1− ǫ)k̄s, we have [19, Theorem 1]

Rmac >

(

m log
(

1 +
(1− ǫ)ρsk̄s
1 + Pp

)

+O
(

k̄−1
s

)

)(

1−O
(

k̄−1
s

)

)

(65)

= m log
(

1 +
(1− ǫ)ρsk̄s
1 + Pp

)

+O
( log k̄s

k̄s

)

(66)

= m log ρsk̄s +m log(1− ǫ)−m log(1 + Pp) +O
( log k̄s

k̄s

)

(67)

Since the above inequality holds for anyǫ > 0, we have

Rmac ≥ m log ρsk̄s −m log(1 + Pp) +O
( log k̄s

k̄s

)

(68)

Now we find an upper bound forRmac. For convenience, we denote

Rmac,0 = log det

(

I + ρsH(S)H†(S) +GsQpG
†
s

)

(69)

and

RI = log det

(

I +Gs QpG
†
s

)

(70)
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So the average throughput can be written as

Rmac = E
[

Rmac,0

]

− E
[

RI

]

(71)

Using the inequality det(A) ≤
(

tr(A)/k)
)k

[20], whereA is a k × k positive definite matrix,Rmac,0

is bounded by

Rmac,0 ≤ m log

(

1 +
1

m
tr

(

ρsH(S)H†(S) +Gs QpG
†
s

))

(72)

Therefore,

E[Rmac,0] ≤ mE

[

log

(

1 +
1

m
tr

(

ρsH(S)H†(S) +GsQpG
†
s

))]

(73)

≤ m log

(

1 +
ρs
m

E
[

tr
(

H(S)H†(S)
)]

+
1

m
E
[

tr
(

GsQpG
†
s

)]

)

(74)

≤ m log
(

1 + ρsk̄s + Pp

)

(75)

where (74) uses the Jensen inequality. To obtain the inequality (75), we use the facts thatE
[

tr
(

GsQpG
†
s

)]

=

Pp by substitutingQp given by (8) as well asE
[

tr
(

H(S)H†(S)
)]

≤ mk̄s due to|S| ≤ k̄s.

Now we lower bound the second term in (71). From [21, Theorem 1], we have

E[RI ] ≥ mmin log

(

1 +
Pp

M
exp

(

1

mmin

mmin
∑

j=1

mmax−j
∑

i=1

1

i
− γ

))

(76)

∆
= RI (77)

wheremmin = min(m,M), mmax = max(m,M) andγ is the Euler’s constant. Notice thatRI is a finite

constant independent ofn andΓ.

Combining (75) and (77), we have

Rmac ≤ m log(1 + ρsk̄s + Pp)−RI (78)

Finally, substitutinḡks given by (20) and noting that̄ks = Θ(n
1

N+1 ), we have

Rmac ≥
m

N + 1
log n+

1

N + 1
log

(

ρsΓ
N
)

−m log(1 + Pp) +O
(

n− 1

N+1 log n
)

(79)

Rmac ≤
m

N + 1
log n+

1

N + 1
log

(

ρsΓ
N
)

−RI +O
(

n− 1

N+1

)

(80)

where we use the identitylog(x + y) = log x + log(1 + x/y) in the above inequalities. This completes

the proof. �
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APPENDIX B

PROOF OFTHEOREM 3

Proof: We develop an upper bound for the secondary throughput in thepresence of the primary broadcast

only; the development is similar in the presence of the primary MAC and thus is omitted. We consider

an arbitrary active user setS and transmit covariance matrix given by (4), such that the interference

constraints on the primary are satisfied.

By removing the interference from the primary to the secondary, the secondary throughput is enlarged.

Then, using the inequality det(A) ≤
(

tr(A)/k
)k

[20], whereAk×k is a positive definite matrix, we have

Rmac ≤ m log

(

1 +
1

m
tr
(

H(S)QsH
†(S)

)

)

(81)

Let hi be them × 1 vector of channel coefficients from the secondary useri (i ∈ S) to the secondary

base station, corresponding to a certain column ofH(S). SinceQs is diagonal, we have

tr
(

H(S)QsH
†(S)

)

=
∑

i∈S

ρi tr
(

hih
†
i

)

(82)

=
∑

i∈S

ρi |hi|
2 (83)

≤ max
i∈S

|hi|
2
∑

i∈S

ρi (84)

≤ max
1≤i≤n

|hi|
2
∑

i∈S

ρi (85)

whereρi is the transmit power of the secondary useri. Let

Psum =
∑

i∈S

ρi (86)

and

hmax = max
1≤i≤n

|hi|
2 (87)

We can rewrite the right hand side of (81) as

Rmac ≤ m log
(

1 +
1

m
hmaxPsum

)

(88)

We first boundPsum and formulate an optimization as:

max
S, {ρi}

Psum

s.t. : ρi ≤ ρs for i ∈ S,

[

GpQsG
†
p

]

ℓ,ℓ
≤ Γ for 1 ≤ ℓ ≤ N (89)

November 14, 2021 DRAFT



25

which is a standard linear programming, and the solution is denoted byP ∗
sum. Then,P ∗

sum is the maximum

total transmit power, depending on the channel realizations for each transmission.

Subject to the interference constraints on the primary, theuser selection and power allocation are

coupled, and a direct analysis is difficult. Instead, we willfind an upper bound forP ∗
sum. Notice that

the total interference (on all primary users) caused by the secondary useri is ρi|gp,i|
2, wheregp,i is the

vector of channel coefficients from the secondaryi to all N primary users. We relax the set of individual

interference constraints in (89) with a single sum interference constraint:

∑

i∈S

ρi|gp,i|
2 ≤ NΓ (90)

Notice thatgp,i corresponds to a certain column inGp.

Order the cross channel gains{|gp,i|2}ni=1 of all the secondary users and denote the ordered cross

channel gains by

|g̃p,1|
2 ≤ |g̃p,2|

2 ≤ · · · ≤ |g̃p,n|
2 (91)

Then, we further relax the sum interference constraint (90)by replacing{|gp,i|2}i∈S with the first |S|

smallest cross channel gains{|g̃p,i|2}
|S|
i=1. Thus, we have:

max
S, {ρi}

Psum

s.t.:
|S|
∑

i=1

ρi|g̃p,i|
2 ≤ NΓ

ρi ≤ ρs for 1 ≤ i ≤ |S| (92)

For any channel realizations, the solution for the above problem, denoted byP ∗
sum,1, is always greater

than, or equal toP ∗
sum. Notice thatP ∗

sum,1 is also a random variable. Since{|g̃p,i|2} is in non-decreasing

in i, the set of{ρi} that achievesP ∗
sum,1 satisfiesρi ≥ ρj , for i ≤ j. In other words, we haveρi = ρs,

for i = 1 to |S| − 1, andρi ≤ ρs, for i = |S|.

Let Smax be the maximum value of|S| that satisfies the constraint

ρs

|S|−1
∑

i=1

|g̃p,i|
2 ≤ NΓ (93)

We have

P ∗
sum,1 ≤ ρsSmax (94)

where in (94) we have an inequality, because the constraint (93) is relaxed by discardingρ|S| compared

to the interference constraint in (92) .
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Now, we focus on boundingρsSmax. For any positive integerk, we have

P
(

Smax < k
)

≥ P
(

k−1
∑

i=1

|g̃p,i|
2 >

NΓ

ρs

)

(95)

which comes from the fact that the event of the right hand sideimplies the event of the left hand side.

Notice that
∑k−1

i=1 |g̃p,i|
2 is a sum of least order statistics out of{|gp,i|

2}ni=1 with i.i.d. Gamma(N, 1)

distributions. We apply some results in the development of [13, Proposition 12], and obtain8

P
(

f(n)−1
∑

i=1

|g̃p,i|
2 >

NΓ

ρs

)

> 1−O
( 1

f(n)

)

(96)

wheref(n) = c0 n
1

N+1 , andc0 =
(Γ(N+1)
(1−ǫ)ρs

N− 1

N

)
N

N+1 . For largeN and smallǫ, c0 ≈ Γ
ρs
(N + 1).

Let k = f(n) in (95) and combine with (96):

P

(

ρsSmax < ρs f(n)

)

> 1−O
(

n− 1

N+1

)

(97)

After characterizingρsSmax, now we return toP ∗
sum. To simplify notation, we denote

p̄sum = ρs f(n) (98)

BecauseP ∗
sum ≤ P ∗

sum,1 ≤ ρsSmax for any channel realizations, from (97), we have

P

(

P ∗
sum ≥ p̄sum

)

= 1− P

(

P ∗
sum < p̄sum

)

< 1− P

(

ρsSmax < p̄sum

)

< O
(

n− 1

N+1

)

(99)

Now, we complete the analysis ofP ∗
sum, and move tohmax. Because{|hi|

2}ni=1 have i.i.d. Gamma(m, 1)

distributions, using the similar arguments developed in Lemma 2, we obtain

P

(

hmax > ζn

)

= O
( 1

log n

)

(100)

E
[

hmax

∣

∣hmax > ζn
]

< O(n log n) (101)

whereζn is a deterministic sequence satisfying

ζn = log n+m log log n+O(log log log n) (102)

8For our case,1
λ
= γ = N .

November 14, 2021 DRAFT



27

Now we are ready to develop the upper bound for the secondary throughput. SincePsum ≤ P ∗
sum,

from (88), we have

Rmac ≤ mEH,P

[

log

(

1 +
1

m
hmaxP

∗
sum

)]

(103)

≤ mEH,P

[

log

(

1 +
1

m
hmaxP

∗
sum

) ∣

∣

∣

∣

P ∗
sum < p̄sum

]

P
(

P ∗
sum < p̄sum

)

+mEH,P

[

log

(

1 +
1

m
hmaxP

∗
sum

) ∣

∣

∣

∣

P ∗
sum ≥ p̄sum

]

P
(

P ∗
sum ≥ p̄sum

)

(104)

≤ mEH

[

log

(

1 +
1

m
hmaxp̄sum

)]

· 1

+mEH

[

log

(

1 +
1

m
hmaxρsn

)]

· O
(

n− 1

N+1

)

(105)

≤ mEH

[

log

(

1 +
1

m
hmaxp̄sum

)
∣

∣

∣

∣

hmax ≤ ζn

]

P
(

hmax ≤ ζn
)

+mEH

[

log

(

1 +
1

m
hmaxp̄sum

)
∣

∣

∣

∣

hmax > ζn

]

P
(

hmax > ζn
)

+mEH

[

log

(

1 +
1

m
hmaxρsn

) ∣

∣

∣

∣

hmax ≤ ζn

]

P
(

hmax ≤ ζn
)

O
(

n− 1

N+1

)

+mEH

[

log

(

1 +
1

m
hmaxρsn

) ∣

∣

∣

∣

hmax > ζn

]

P
(

hmax > ζn
)

O
(

n− 1

N+1

)

(106)

≤ m log

(

1 +
1

m
ζn p̄sum

)

· 1

+m log

(

1 +
p̄sum
m

E
[

hmax

∣

∣hmax > ζn
]

)

P
(

hmax > ζn
)

+m log

(

1 +
1

m
ζn ρsn

)

· 1 · O
(

n− 1

N+1

)

+m log

(

1 +
ρsn

m
E
[

hmax

∣

∣hmax > ζn
]

)

P
(

hmax > ζn
)

O
(

n− 1

N+1

)

(107)

≤ m log

(

1 +
1

m
ζn p̄sum

)

+m log

(

1 +
p̄sum
m

O(n log n)

)

O(
1

log n
)

+m log

(

1 +
1

m
ζnρsn

)

O
(

n− 1

N+1

)

+m log

(

1 +
ρsn

m
O(n log n)

)

O(
1

log n
)O

(

n− 1

N+1

)

(108)

where the second term in (105) comes from using (99) as well asthe fact thatP ∗
sum is upper bounded

by ρsn. In (107), we apply the Jensen inequality to obtain the second and fourth terms. Using (100)
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and (101), we have the second and fourth terms in (108). Finally, by substitutingp̄sum andζn, we obtain

Rmac ≤
m

N + 1
log n+O(log log n) (109)

This concludes the proof of this theorem. �

APPENDIX C

PROOF OFLEMMA 2

Proof: First, we prove (49). LetZ = |h†
iφj|

2 and Y = θ
(
∑

k 6=j |h
†
iφj |

2 + |gs,i|
2
)

. Then,Z has the

exponential distribution, andY has the Gamma
(

(m+M − 1), θ
)

distribution. We can write

Li =
Z

c+ Y
(110)

wherec = m
ρ . Conditioned onY , the pdf ofLi is given by

fL(x) =

∫ ∞

0
fL|Y (x|y)fY (y)dy (111)

=

∫ ∞

0
(c+ y)e−(c+y)x ×

ym+M−1e−y/θ

(m+M − 1)! θm+M
dy (112)

=
e−cx

(1 + θx)m+M

(

c(1 + θx) + θ(m+M − 1)
)

(113)

So the cdf ofLi is

FL(x) = 1−

∫ ∞

x
fL(t)dt (114)

= 1−
e−cx

(1 + θx)m+M−1
(115)

We define a grow function as

gL(x) =
1− FL(x)

fL(x)
(116)

=
1 + θx

c(1 + θx) + θ(m+M − 1)
(117)

Sincelimx→∞ g′L(x) = 0, the limiting distribution ofLmax = max1≤i≤n Li exists [22]:

lim
n→∞

(

FL(bn + anx)
)n

= e−e−x

(118)

wherebn = F−1
L (1 − 1/n) and an = gL(bn). In general, an exact closed-form solution foran and bn

is intractable, but an approximation can be obtained, whichis sufficient for asymptotic analysis. After

manipulating (115), we have

bn =
1

c
log n−

m+M − 1

c
log log n+O

(

log log log n
)

(119)
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and thus

an =
1

c
+O

( 1

log n

)

(120)

It is straightforward to verifylimn→∞

(

ng′L(bn)
)

= ∞, so we apply the expansion developed in [23, Eq.

(22)]
(

FL(bn + anx)
)n

= exp

(

− exp(−x+Θ(
x2

log2 n
)
)

)

(121)

Let x1 = − log log n and substitutex1 into (121), we obtain (49).

Now, we prove (50) and (51). SinceUi is similar to Li, except that the denominator now has the

Gamma
(

M,θ
)

distribution. Following the same steps of obtaining (121),we have the expansion of the

cdf of Umax:
(

FU (dn + cnx)
)n

= exp

(

− exp(−x+Θ(
x2

log2 n
)
)

)

(122)

where

dn =
1

c
log n−

M

c
log log n+O

(

log log log n
)

(123)

and

cn =
1

c
+O

( 1

log n

)

(124)

(50) follows by substitutingx2 = log log n into (122).

Finally, becauseE[Umax] < nE[Ui] [22], we have

E

[

Umax

∣

∣

∣

∣

Umax > dn +
1

c
log log n

]

≤
nE[Ui]

P
(

Umax > dn + 1
c log log n

) (125)

= Θ(n log n) (126)

where we use (50) in the last equality. �

APPENDIX D

PROOF OFTHEOREM 4

Proof: We first find a lower bound for the secondary average throughput Rbc. We condition onP = ρ

and letln = bn−
ρ
m log log n, wherebn is given by Lemma 2. Using (48) and Lemma 1, the conditional

throughputRbc|P (ρ) can be bounded as

Rbc|P (ρ) ≥ mE

[

log
(

1 + Lmax

)

∣

∣

∣

∣

P = ρ

]

(127)

≥ mE

[

log
(

1 + Lmax

)

∣

∣

∣

∣

Lmax ≥ ln, P = ρ

]

P
(

Lmax ≥ ln
∣

∣P = ρ
)

(128)
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> m

(

log
( ρ

m
log n

)

+O
( log log n

log n

)

)(

1−Θ
(

n−1
)

)

(129)

= m log
( ρ

m
log n

)

+O
( log log n

log n

)

(130)

From (127) to (128), we discard the non-negative term associated with the event{Lmax < ln}. Using

(49) from Lemma 2 and the identitylog(x+ y) = log x+ log(1 + y/x), we have (129).

Now we take the expectation with respect toP . From (39), we have

P >
mΓ

max1≤i≤N |g†
p,i|

2 +mΓ/Ps

(131)

whereg†
p,i is the 1 × m vector of channel coefficients from the secondary base station to the primary

useri. Let the pdf ofmax1≤i≤N |gp(i)|
2 be fgp(x). Because the random variableP is (stochastically)

greater than the right hand side of (131), from Lemma 1 and (130), we have

Rbc >

∫ ∞

0
m log

(

Γ log n

x+mΓ/Ps

)

fgp(x) dx+O

(

log log n

log n

)

(132)

≥ m log

(

Γ log n

µ̃1 +mΓ/Ps

)

+O

(

log log n

log n

)

(133)

= m log
(

Γ log n
)

−m log
(

µ̃1 +mΓ/Ps

)

+O

(

log log n

log n

)

(134)

where (133) comes from the convexity oflog(a+ b
x+c) and

µ̃1 = E[ max
1≤i≤N

|gp(i)|
2] (135)

To find an upper bound, we still begin with the conditional throughputRbc|P (ρ). Let un = dn +

ρ
m log log n, wheredn is given by Lemma 2. Then

Rbc|P (ρ) ≤ mE

[

log
(

1 + Umax

)

∣

∣

∣

∣

P = ρ

]

(136)

≤ mE

[

log
(

1 + Umax

)

∣

∣

∣

∣

Umax < un, P = ρ

]

P
(

Umax < un
∣

∣P = ρ
)

(137)

+mE

[

log
(

1 + Umax

)

∣

∣

∣

∣

Umax ≥ un, P = ρ

]

P
(

Umax ≥ un
∣

∣P = ρ
)

(138)

< m log(1 + un)
(

1−Θ
( 1

log n

))

+m log
(

1 + E[Umax |Umax ≥ un, P = ρ
])

Θ
( 1

log n

)

(139)

< m log(1 +
ρ

m
log n) +O(1) (140)

where (136) comes from (48). We apply (50) in Lemma 2 and the Jensen inequality to obtain (139).

Using (51) in Lemma 2 and substitutingun, we obtain (140).
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After calculating an upper bound for the conditional throughput, we average overP . From (39), we

have

P ≤
mΓ

max1≤i≤N |g†
p,i|

2
(141)

We denote
1

µ̃2
= E

[

1/ max
1≤i≤N

|g†
p,i|

2
]

(142)

Then, by the Jensen inequality, we have

Rbc < m log
(

1 +
log n

m
E[P ]

)

+O(1) (143)

< m log
(

1 +
Γ

µ̃2
log n

)

+O(1) (144)

= m log(Γ log n)−m log µ̃2 +O(1) (145)

where (144) holds sinceE[P ] ≤ mΓ
µ̃2

. The theorem follows. �
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