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Jens Zumbrägel,Member, IEEE,Vitaly Skachek,Member, IEEE,and Mark F. Flanagan,Senior Member, IEEE

Abstract—The AWGNC, BSC, and max-fractional pseudocode-
word redundancies of a binary linear code are defined to be the
smallest number of rows in a parity-check matrix such that the
corresponding minimum pseudoweight is equal to the minimum
Hamming distance of the code. It is shown that most codes
do not have a finite pseudocodeword redundancy. Also, upper
bounds on the pseudocodeword redundancy for some families
of codes, including codes based on designs, are provided. The
pseudocodeword redundancies for all codes of small length (at
most 9) are computed. Furthermore, comprehensive results are
provided on the cases of cyclic codes of length at most250 for
which the eigenvalue bound of Vontobel and Koetter is sharp.

Index Terms—LDPC codes; Fundamental cone; Pseudocode-
words; Pseudoweight; Pseudocodeword redundancy.

I. I NTRODUCTION

PSEUDOCODEWORDS represent the intrinsic mecha-
nism of failure of binary linear codes under linear-

programming (LP) or message-passing (MP) decoding (see,
e.g., [1], [2]). The concept ofpseudoweightof a pseudocode-
word was introduced in [3] and [4] (see also [2]) as an analog
to the pertinent parameter in the maximum likelihood (ML)
decoding scenario, i.e., the signal Euclidean distance in the
case of the additive white Gaussian noise channel (AWGNC),
or the Hamming distance in the case of the binary symmetric
channel (BSC). Accordingly, for a binary linear codeC and a
parity-check matrixH of C, the (AWGNC or BSC) minimum
pseudoweightwmin(H) may be considered as a first-order
measure of decoder error-correcting performance for LP or
MP decoding. Another closely related measure is the max-
fractional weight, which we sometimes also call pseudoweight
in order to simplify statements; it serves as a lower bound on
both AWGNC and BSC pseudoweights.

In order to minimize the decoding error probability under
LP (or MP) decoding, one might want to select a matrixH
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which maximizes the minimum pseudoweight of the code
for the given channel. Adding redundant rows to the parity-
check matrix introduces additional constraints on the so-called
fundamental cone, and thus may improve the performance
of LP decoding and increase the minimum pseudoweight.1

However, such additions increase the decoding complexity
under MP decoding, especially since linear combinations of
low-density rows may not yield a low-density result. On the
other hand, there exist classes of codes for which sparse parity-
check matrices exist with many redundant rows, e.g., [5].

For the AWGNC, BEC (binary erasure channel), BSC,
and max-fractional pseudoweights, defineρAWGNC(C), ρBEC(C),
ρBSC(C), andρmax-frac(C), respectively, to be the minimum num-
ber of rows in any parity-check matrixH such that the
minimum pseudoweight ofC with respect to this matrix is
equal to the code’s minimum Hamming distanced. For the
sake of simplicity, we sometimes use the notationρ(C) when
the type of channel is clear from the context. The value
ρ(C) is called the (AWGNC, BEC, BSC, or max-fractional)
pseudocodeword redundancy(or pseudoredundancy) ofC. If
for the codeC there exists no such matrixH, we say that the
pseudoredundancy is infinite.

The BEC pseudocodeword redundancy, which is equivalent
to thestopping redundancy, is studied in [6], where it is shown
that for any linear code the BEC pseudoredundancy is finite;
the paper also contains bounds onρBEC(C) for general binary
linear codes, and for some specific families of codes. These
bounds were subsequently improved, for instance in [7]. The
study of BSC pseudoredundancy was initiated in [8], where
the authors presented bounds onρBSC(C) for various families
of codes.

In this work, we further investigate pseudoredundancy for
the AWGNC, BSC, and max-fractional pseudoweight. We
show that for most codes there exists noH such that the
minimum pseudoweight (with respect toH) is equal tod,
and therefore the AWGNC, BSC, and max-fractional pseu-
docodeword redundancy (as defined above) is infinite for most
codes. For some code families for which the pseudoredun-
dancy is finite, we provide upper bounds on its value. We
consider in particular constructions of new codes from old
and codes based on designs. Furthermore, we compute the
pseudocodeword redundancies for all codes of small length
(at most9), and we investigate cyclic codes for which the
eigenvalue bound of Vontobel and Koetter [9] is sharp.

1We note that for message-passing iterative decoding, apartfrom the case
of decoding over the binary erasure channel there is no general statement that
additional parity-checks are beneficial.

http://arxiv.org/abs/1103.3641v2
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The outline of the paper is as follows. In Section II we pro-
vide detailed definitions and some background information on
LP decoding, pseudocodewords, the minimum pseudoweight,
and the pseudocodeword redundancy; we also discuss related
notions appearing in the literature. Subsequently, we showin
Section III that the pseudocodeword redundancy for random
codes is infinite with high probability. The next four sections
are concerned with upper bounds on the pseudoredundancy
for some particular classes of codes; we investigate punctured
codes and codes of dimension 2 in Section IV, constructions
of codes from other codes in Section V, parity-check matrices
of row-weight 2 in Section VI, and codes based on designs
in Section VII. The final two sections are devoted to exper-
imental results; Section VIII examines the pseudocodeword
redundancy for all codes of small length, and Section IX
deals with cyclic codes that meet the eigenvalue bound on the
minimum AWGNC pseudoweight by Vontobel and Koetter.

II. GENERAL SETTINGS

Let F2 be the binary field and letR be the field of real
numbers. Addition and multiplication (including matrix-vector
and matrix-matrix multiplication) are carried out inF2 when
the operands are defined overF2, and inR when the operands
are defined over the reals. Occasionally, we will explicitly
convert elements inF2 into real numbers; in this case we
identify 0 ∈ F2 with 0 ∈ R and1 ∈ F2 with 1 ∈ R.

Let C be a code of lengthn ∈ N over the binary fieldF2,
defined by

C = kerH = {c ∈ F
n
2 | HcT = 0

T }

whereH is an m × n parity-check matrixover F2 of the
codeC. Obviously, the codeC may admit more than one parity-
check matrix, and all the codewords form a linear vector space
of dimensionk ≥ n−m. We say thatk is thedimensionof the
codeC. We denote byd(C) (or justd) the minimum Hamming
distance (also called the minimum distance) ofC. The codeC
may then be referred to as an[n, k, d] linear code overF2.

Denote the set of column indices and the set of row indices
of the parity-check matrixH by I = {1, . . . , n} andJ =
{1, . . . ,m}, respectively. For any row indexj ∈ J we let
Ij

△

= {i ∈ I | Hj,i 6= 0} denote the set of the column indices
where the parity-check matrix is nonzero; similarly for any
column indexi ∈ I we let Ji

△

= {j ∈ J | Hj,i 6= 0} denote
the corresponding set of row indices.

The matrixH is said to be(wc, wr)-regular if |Ji| = wc

for all i ∈ I and |Ij | = wr for all j ∈ J ; a (w,w)-regular
matrix is also called simplyw-regular.

A. LP decoding

We give a brief review of LP decoding. Consider data trans-
mission over a memoryless binary-input output-symmetric
channel with channel lawpY |X(y|x). Based on the received
vectory = (y1, . . . , yn) we can define the log-likelihood-ratio
vector γ = (γ1, . . . , γn) ∈ R

n by γi
△

= log(pY |X(yi|0)) −
log(pY |X(yi|1)) for i ∈ I. Viewing the codeC canonically as

a subset of{0, 1}n ⊂ R
n, one can then express ML decoding

as the minimization problem

x̂
△

= argmin
x∈C

〈x,γ〉 .

This is equivalent to the linear programming problem

x̂
△

= argmin
x∈conv(C)

〈x,γ〉 ,

whereconv(C) denotes the convex hull ofC in R
n. However,

since the number of defining hyperplanes ofconv(C) usually
grows exponentially with the block length, this minimization
problem becomes impractical.

Instead one might consider a relaxation of the above mini-
mization problem (see [10], [11], [2]), where the convex hull
conv(C) is replaced by the so-called fundamental polytope
P(H) to be defined next. Forj ∈ J , let hj denote thej-th
row of the parity-check matrixH, and consider the local code

Cj = {c ∈ F
n
2 | hjc

T = 0}

consisting of all binary vectors satisfying thej-th parity-check,
so thatC =

⋂
j∈J Cj . Then thefundamental polytopeP

△

=
P(H) is defined as

P
△

=
⋂

j∈J

conv(Cj) ,

where againCj is viewed as a subset ofRn. Now LP decoding
of a binary linear codeC with parity-check matrixH can be
expressed as the minimization problem

x̂
△

= argmin
x∈P

〈x,γ〉 , (1)

whereP = P(H) denotes the fundamental polytope.
We note thatconv(C) ⊆ P , where the inclusion is usually

proper. However, the number of defining hyperplanes ofP
is typically much smaller than forconv(C), in particular for
LDPC codes, so that the corresponding linear programming
problem becomes tractable.

If P is strictly larger thanconv(C) then it may happen that
the decoding rule (1) outputs a vertex2 of P that is not a
vertex ofconv(C), i.e., not a codeword. Such vertices, called
pseudocodewords, are the reason for the suboptimality of LP
decoding with respect to ML decoding.

Note that the fundamental polytopeP(H) is dependent on
the parity-check matrixH rather than the codeC itself, but
we always haveP(H) ∩ {0, 1}n = C, cf. [10], [11].

B. The fundamental cone and pseudoweights

When analyzing LP decoding, we may assume without loss
of generality that the zero codeword0 has been sent; then,
given this assumption, the probability of correct LP decoding
depends only on the conic hull of the fundamental polytope
rather than on the fundamental polytope itself (see [10], [11],
[2]). The conic hull of the fundamental coneP(H) is called

2The set of optimal solutions contains a vertex, and one may assume that
the output is a vertex.
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the fundamental coneK(H). More concretely,K(H) is given
as the set of vectorsx ∈ R

n that satisfy

∀j ∈ J , ∀ℓ ∈ Ij : xℓ ≤
∑

i∈Ij\{ℓ}

xi , (2)

∀i ∈ I : xi ≥ 0 . (3)

The vectorsx ∈ K(H) are calledpseudocodewords3 of C
with respect to the parity-check matrixH . Note again that
the fundamental coneK(H) depends on the parity-check
matrix H rather than on the codeC itself. At the same
time, the fundamental cone is independent of the underlying
communication channel.

Example 2.1:Let C be the [7, 4, 3] Hamming code with
parity-check matrix

H =




1 1 1 0 1 0 0

0 1 1 1 0 1 0

0 0 1 1 1 0 1


 .

Then the fundamental cone inequalities read:

x1 ≤ x2 + x3 + x5 x2 ≤ x3 + x4 + x6 x3 ≤ x4 + x5 + x7

x2 ≤ x1 + x3 + x5 x3 ≤ x2 + x4 + x6 x4 ≤ x3 + x5 + x7

x3 ≤ x1 + x2 + x5 x4 ≤ x2 + x3 + x6 x5 ≤ x3 + x4 + x7

x5 ≤ x1 + x2 + x3 x6 ≤ x2 + x3 + x4 x7 ≤ x3 + x4 + x5

0 ≤ x1 0 ≤ x2 0 ≤ x3 0 ≤ x4 0 ≤ x5 0 ≤ x6 0 ≤ x7

The influence of a nonzero pseudocodeword on the de-
coding performance will be measured by itspseudoweight,
which depends on the channel at hand. The BEC, AWGNC,
BSC pseudoweights, and max-fractional weight of a nonzero
pseudocodewordx ∈ K(H) were defined in [4] and [2] as
follows:

wBEC(x)
△

= |supp(x)| ,

wAWGNC(x)
△

=

(∑
i∈I xi

)2
∑

i∈I x
2
i

.

Let x′ be a vector inRn with the same components asx but
in non-increasing order. Fori− 1 < ξ ≤ i, where1 ≤ i ≤ n,

let φ(ξ)
△
= x′

i. DefineΦ(ξ)
△

=
∫ ξ

0
φ(ξ′) dξ′ and

wBSC(x)
△

= 2Φ−1(Φ(n)/2) .

Finally, the max-fractional weight ofx is defined as

wmax-frac(x)
△

=

∑
i∈I xi

maxi∈I xi

.

Additionally, the pseudoweight of the all-zero vector is
usually defined to be zero, i.e.,w(0) = 0, for all four
pseudoweightsw, but this is inessential for this paper.

Note that for binary vectorsx ∈ {0, 1}n \ {0} we have

wBSC(x) = wAWGNC(x) = wBSC(x) = wmax-frac(x) = wH(x) ,

wherewH(x) denotes the Hamming weight ofx.
Example 2.2:Let C and H be as in Example 2.1.

The vector x = (0, 0, 1, 0, 1, 1, 2) is a pseudocodeword

3Some authors consider only the vertices of the fundamental polytope
P(H) as pseudocodewords, but we will use this more general definition
which includes all vectors of the fundamental coneK(H).

in K(H) with weights wBEC(x) = |supp(x)| = 4 and
wAWGNC(x) =

(∑
i∈I xi

)2
/
∑

i∈I x2
i = 25/7. Furthermore,

wBSC(x) = 2Φ−1
(
(
∑

i∈I xi)/2
)

= 2Φ−1(5/2) = 3,
where x′ = (2, 1, 1, 1, 0, 0, 0), and finally, wmax-frac(x) =∑

i∈I xi/maxi∈I xi = 5/2.
We define the BECminimum pseudoweightof the codeC

with respect to the parity-check matrixH as

w
BEC
min(H)

△

= min
x∈K(H)\{0}

wBEC(x) .

The quantitieswAWGNC
min (H), wBSC

min(H) andw
max-frac
min (H) are de-

fined similarly. We note that the considered pseudoweights
are invariant under scaling by a positive scalar, and that a
minimum is indeed attained onK(H) \ {0} (see [2, Sect. 6]).
When the type of pseudoweight is clear from the context,
we sometimes use the notationwmin(H). Note that all four
minimum pseudoweights are upper bounded byd, the code’s
minimum distance.

C. Pseudocodeword redundancy

Given a codeC we will define the pseudocodeword re-
dundancy as the minimum number of rows in a parity-
check matrixH for C such that the corresponding minimum
pseudoweight equals the minimum distance.

So for a binary linear[n, k, d] codeC we define the BEC
pseudocodeword redundancyof the codeC as

ρBEC(C)
△

= inf{#rows(H) | kerH = C , wBEC
min(H) = d} ,

where inf ∅
△

= ∞, and similarly we define the pseudocode-
word redundanciesρAWGNC(C), ρBSC(C), and ρmax-frac(C) for the
AWGNC and BSC pseudoweights, and the max-fractional
weight. When the type of pseudocodeword redundancy is clear
from the context, we sometimes use the notationρ(C).

We remark that all pseudocodeword redundancies satisfy
ρ(C) ≥ r

△

= n− k.
Example 2.3:Let C be the[7, 4, 3] Hamming code. Then:

ρmax-frac(C) = 7 ≥ ρAWGNC(C) = 3 ≥ ρBEC(C) = 3

ρmax-frac(C) = 7 ≥ ρBSC(C) = 4 ≥ ρBEC(C) = 3

The following matricesH3, H4, andH7 are examples for
parity-check matrices with a minimum number of rows such
that wBEC

min(H3) = w
AWGNC
min (H3) = 3, w

BSC
min(H4) = 3, and

w
max-frac
min (H7) = 3 holds.

H3 =




1 1 1 0 1 0 0

0 1 1 1 0 1 0

0 0 1 1 1 0 1




H4 =




1 1 0 1 0 0 1

1 0 1 0 1 0 1

0 1 1 0 0 1 1

0 0 0 1 1 1 1




H7 =




1 1 1 0 1 0 0

0 1 1 1 0 1 0

0 0 1 1 1 0 1

1 0 0 1 1 1 0

0 1 0 0 1 1 1

1 0 1 0 0 1 1

1 1 0 1 0 0 1



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These matrices were found by computer search, see Sec-
tion VIII.

We describe the behavior of the pseudocodeword redun-
dancy and the minimum pseudoweight for a given binary linear
[n, k, d] codeC by introducing four classes of codes:

(class 0) ρ(C) is infinite, i.e., there is no parity-check
matrix H with d = wmin(H),

(class 1) ρ(C) is finite, butρ(C) > r,
(class 2) ρ(C) = r, but C is not in class 3,
(class 3) d = wmin(H) for everyparity-check matrixH

of C.
Note that if a code has infinite pseudocodeword redundancy,

then LP decoding for this code can never achieve the ML
decoding performance; on the other hand, if a code’s pseu-
docodeword redundancy is finite, its value gives a (very ap-
proximate) indication of the LP decoding complexity required
to achieve this bound. Note that this is a fundamental com-
plexity associated with the code, and not tied to a particular
parity-check matrix. We leave it as a direction for further
research to provide more general definitions which capture
the average complexity-performance tradeoff of LP decoding
as more redundant rows are added to the parity-check matrix.

D. Basic Connections

The different minimum pseudoweights are related as fol-
lows. This result is taken from [2].

Lemma 2.4:Let C be a binary linear code with the parity-
check matrixH . Then,

w
max-frac
min (H) ≤ w

AWGNC
min (H) ≤ w

BEC
min(H) ,

w
max-frac
min (H) ≤ w

BSC
min(H) ≤ w

BEC
min(H) .

As a straightforward corollary we obtain the following
theorem, which relates the different pseudoredundancies.

Theorem 2.5:Let C be a binary linear code. Then,

ρmax-frac(C) ≥ ρAWGNC(C) ≥ ρBEC(C) ,

ρmax-frac(C) ≥ ρBSC(C) ≥ ρBEC(C) .

E. Related Notions

As mentioned in the introduction, Schwartz and Vardy
consider in [6] the so-called stopping distance of a binary
linear code given by a parity-check matrix, and the stopping
redundancy of a binary linear code. With [2, Proposition 51]
it is easy to see that the stopping distance equals the minimum
BEC pseudoweight, and thus the stopping redundancy is
equivalent to the BEC pseudocodeword redundancy.

Besides pseudocodewords, the notion oftrapping set[12] is
another concept for analyzing the performance of binary linear
codes under MP decoding. In [13] thetrapping redundancy
for binary linear codes is introduced as a generalization ofthe
stopping redundancy, and several upper bounds are presented.

In [14] a binary linear codeC is calledgeometrically perfect
if it admits a parity-check matrixH such that the fundamental
polytope equals the convex hull of the code, i.e.,P(H) =
conv(C). In this case ML decoding can be exactly described as
an instance of LP decoding. Kashyap [14, Theorem VI.2] gave

a characterization of all geometrically perfect codes: a binary
linear codeC is geometrically perfect if and only ifC does
not contain as a minor4 any code equivalent to certain codes
C1, C2, C3 with parameters[7, 3, 4], [10, 5, 4], and [10, 4, 4],
respectively.

It is easy to see that for geometrically perfect codes all four
pseudocodeword redundancies are finite.

Smarandache and Vontobel [15] define thepseudoweight
spectrum gapfor a binary linear codeC given by a parity-
check matrixH as follows. The setM(H) of all minimal
pseudocodewordsis defined as the set of all vectorsx ∈ R

n

that lie on an edge of the fundamental coneK(H). Now let
M′(H) denote the set of all minimal pseudocodewords that
are not scalar multiples of codewordsc ∈ C, and letw be any
of the BEC, AWGNC, BSC, or max-fractional pseudoweight.
Then the pseudoweight spectrum gap is the quantity

g(H)
△

= min
x∈M′(H)

w(x)− d(C) .

It is apparent thatg(H) ≥ wmin(H) − d(C), and we have
wmin(H) = d(C) if and only if g(H) ≥ 0.

If the pseudoweight spectrum gapg(H) is strictly positive
then the LP decoding performance approaches ML decoding
performance as the signal-to-noise ratio goes to infinity. To
date, only few examples of interesting codes with positive
pseudoweight spectrum gap are known; these include the codes
based on the Euclidean plane or the projective plane [15,
Theorem 8].

III. PSEUDOREDUNDANCY OFRANDOM CODES

In this section we show that for most binary linear codes the
AWGNC and BSC pseudoredundancies are infinite. We begin
with the following lemma.

Lemma 3.1:For a binary linear codeC of lengthn, let d⊥

be the minimum distance of the dual code. Then, the minimum
AWGNC pseudoweight ofC (with respect to any parity-check
matrix H) satisfies

w
AWGNC
min ≤

(n+ d⊥ − 2)2

(d⊥ − 1)2 + (n− 1)
. (4)

Proof: Consider the pseudocodewordx =
(x1, x2, . . . , xn)

△

= (d⊥− 1 , 1 , . . . , 1). Since d⊥ is the
minimum distance of the dual code, every row inH has
weight at leastd⊥. Therefore, all inequalities (2) and (3) are
satisfied for thisx, and so it is indeed a legal pseudocodeword.
Finally, observe that the AWGNC pseudoweight ofx is given
by the right-hand side of (4).

In the sequel, we use the termrandom codefor a binary
linear codeC whosek×n generator matrix contains indepen-
dently and uniformly distributed random entries fromF2. The
following result is known as the Gilbert-Varshamov bound. If
we pick a code by selecting the generator matrix entries at
random, the resulting codeC has rateR = k/n and relative
minimum distanceδ, such that

δ ≥ H
−1
2 (1−R)− ǫ ,

4A minor of a codeC is any code obtained fromC by a (possibly empty)
sequence of shortening and puncturing operations.



ZUMBRÄGEL, SKACHEK, AND FLANAGAN: ON THE PSEUDOCODEWORD REDUNDANCY 5

with probability approaching1 asn → ∞, for any fixed small
ǫ > 0, whereH

−1
2 (·) is the inverse of the binary entropy

function H2(p) = −p log2 p − (1 − p) log2(1 − p) for p ∈
[0 , 1/2]. A similar result also holds when the codeC is defined
by selecting the parity-check matrix entries (independently and
uniformly) at random.

Let R = k/n be fixed. Then, if we select at random a
k × n matrix overF2, which corresponds to a codeC, the
relative minimum distance ofC is at leastH−1

2 (1 − R) − ǫ
(with probability approaching1 asn → ∞) and the relative
minimum distance of the dual code ofC is at leastH−1

2 (R)−ǫ
(again, with probability approaching1 asn → ∞). By taking
the intersection of these two events, both the code and the dual
code have relative minimum distances which areǫ-close to the
Gilbert-Varshamov bound with probability approaching1 as
n → ∞. (The reader can refer to [16, Theorems 4.4, 4.5, and
4.10] and to [17, Theorem 8 and Exercise 3].)

To this end, we take a random binary linear codeC of
arbitrary lengthn (for n → ∞) with R = k/n. The dual code
C⊥ of C, with probability close to one, has rateR⊥ = 1−R
and relative minimum distanceδ⊥ = d⊥/n that attains the
Gilbert-Varshamov bound

δ⊥ ≥ µ
△

= H
−1
2 (1 −R⊥)− ǫ = H

−1
2 (R)− ǫ ,

Note that (4) may be written in terms of the relative
minimum distanceδ⊥ of the dual code as follows:

w
AWGNC
min ≤

(1 + δ⊥− 2/n)2

(δ⊥− 1/n)2 + (1/n− 1/n2)
. (5)

Hence, for largen, the minimum pseudoweight of the codeC
is bounded from above by(1+1/δ⊥)2+ ǫ′ ≤ (1+1/µ)2+ ǫ′

for some smallǫ′ > 0, and this bound does not depend onn.
On the other hand,C is a random code and so its minimum
distance satisfies the Gilbert-Varshamov bound, namely

d ≥
(
H

−1
2 (1−R)− ǫ

)
· n ,

which increases linearly withn for a fixedR. This immedi-
ately establishes the following theorem.

Theorem 3.2:Let 0 < R < 1 be fixed. For a random
binary linear codeC of length n and rateR, there is, with
probability approaching1 asn tends to infinity, a gap between
the minimum AWGNC pseudoweight (with respect to any
parity-check matrix) and the minimum distance. Therefore,
the AWGNC pseudoredundancy is infinite for most codes.

Remark 3.3:The result in Theorem 3.2 is different from,
but related to, the results in Propositions 49 and Corollary50
in [2], where it was shown that the minimum AWGN pseu-
doweight of ensembles of regular LDPC codes grows sublin-
early in the code length. Indeed, there are three fundamental
differences between our results and [2]: (i) We do not assume
anything about the density of the parity-check matrixH. We
also use the fact that the dual code of the random code is
asymptotically good; for a regular LDPC code this is not true.
(ii) We consider the fundamental cone, which is formed by all
possible linear combinations of the rows ofH; by contrast,
the authors of [2] consider only the case when the column
weight of H is smaller than its row weight. (iii) We show
that the minimum pseudoweight of the considered ensemble

is bounded from above by a constant, while in [2] this quantity
is shown to be bounded by a sublinear function.

The following lemma is a counterpart of Lemma 3.1 for the
BSC.

Lemma 3.4:Let C be a binary linear code of lengthn, and
let d⊥ be the minimum distance of the dual code. Then, the
minimum BSC pseudoweight ofC (with respect to any parity-
check matrixH) satisfies

w
BSC
min ≤ 2⌈n/d⊥⌉ .

Proof: Consider the pseudocodeword

x = (x1, x2, . . . , xn)
△

= (d⊥−1, . . . , d⊥−1︸ ︷︷ ︸
τ

, 1, . . . , 1︸ ︷︷ ︸
n−τ

) ,

for some positive integerτ . This vectorx is then a legal
pseudocodeword; sinced⊥ is the minimum distance of the
dual code, every row inH has a weight of at leastd⊥, and
so, all inequalities (2) and (3) are satisfied by thisx.

If τ(d⊥− 1) ≥ n − τ then by the definition of the BSC
pseudoweightwBSC(x) ≤ 2τ . This condition is equivalent
to τd⊥ ≥ n. Therefore, we setτ = ⌈n/d⊥⌉. For the
corresponding vectorx, the pseudoweight is less or equal to
2τ = 2⌈n/d⊥⌉.

Similarly to the AWGNC case, letC be a random binary
linear code of lengthn with R = k/n. The parametersR⊥

and δ⊥ of its dual codeC⊥ attain with high probability the
Gilbert-Varshamov boundδ⊥ ≥ µ.

From Lemma 3.4, for alln, the pseudoweight of the codeC
is bounded from above by

2⌈n/d⊥⌉ < 2/δ⊥ + 2 ≤ 2/µ+ 2 ,

which is a constant. On the other hand,C is a random
code and its minimum distance also satisfies the Gilbert-
Varshamov bound, so it increases linearly withn. This proves
the following theorem.

Theorem 3.5:Let 0 < R < 1 be fixed. For a random
binary linear codeC of length n and rateR, there is, with
probability approaching1 asn tends to infinity, a gap between
the minimum BSC pseudoweight (with respect to any parity-
check matrix) and the minimum distance. Therefore, the BSC
pseudoredundancy is infinite for most codes.

The last theorem disproves the conjecture in [8] that the
BSC pseudoredundancy is finite for all binary linear codes.5

Example 3.6:Consider the [23,12] Golay code having min-
imum distanced = 7. The minimum distance of its dual
code is d⊥ = 8. We can take a pseudocodewordx as in
the proof of Lemma 3.4 withτ = ⌈n/d⊥⌉ = 3. We have
wBSC(x) ≤ 2τ = 6, thus obtaining that the minimum distance
is not equal to the minimum pseudoweight.

Similarly, for the [24,12] extended Golay code we haved =
d⊥ = 8, and by takingτ = ⌈n/d⊥⌉ = 3 we obtainwBSC(x) ≤
2τ = 6.

Note however that the presented techniques do not answer
the question of whether these Golay codes have finite AWGNC
pseudoredundancy.

5We note that a slightly different definition of BSC pseudoweight was given
in [8], but the statement of Lemma 3.4 and thus Theorem 3.5 hold with the
same proof also with respect to this definition.
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In the context of the extended Golay code we mention that
there other interesting graphical representations of codes than
by Tanner graphs; in particular, a minimaltail-biting trellis
has been constructed for the extended Golay code in [18]. The
pseudoweights of its pseudocodewords are investigated in [4],
where it is shown that there are pseudocodewords with a BSC
pseudoweight of6; on the other hand, as far as we know, it
is still unknown whether there are nonzero pseudocodewords
of the tail-biting trellis with an AWGNC pseudoweight of less
than8.

We have seen in this section that the AWGNC pseudore-
dundancy and the BSC pseudoredundancy of a random binary
linear code is infinite. From Theorem 2.5 it follows that this
holds also for the pseudoredundancy with respect to the max-
fractional weight.

IV. BASIC UPPERBOUNDS

Whereas a random code has infinite pseudoredundancy for
the AWGNC and the BSC, there are several families of codes
for which the pseudoredundancy is finite. Sections IV, V, VI,
and VII deal with upper bounds on the pseudoredunancy for
some particular classes of codes.

We start with this section considering two basic situations,
namely the puncturing of zero coordinates and codes of
minimum distance2. The following results hold with respect
to the BEC, AWGNC, and BSC pseudoweights, and the max-
fractional weight.

Lemma 4.1:Let C be an [n, k, d] code havingt zero co-
ordinates, and letC′ be the [n − t, k, d] code obtained by
puncturingC at these coordinates. Then

ρ(C′) ≤ ρ(C) ≤ ρ(C′) + t .

Proof: For notational purposes, we identifyRn with R
I ,

and forx ∈ R
I and some subsetI ′ ⊆ I we let x|I′ ∈ R

I′

be the projection ofx onto the coordinates inI ′.
Let I ′ ⊆ I be the set of nonzero coordinates of the codeC.

To prove the first inequality, letH be aρ × n parity-check
matrix for C. Consider itsρ× (n− t) submatrixH ′ consisting
of the columns corresponding toI ′. ThenH ′ is a parity-check
matrix for C′, and

K(H ′) = {x|I′ | x ∈ K(H), x|I\I′ = 0} .

Therefore,wmin(H
′) ≥ wmin(H), and this provesρ(C′) ≤

ρ(C).
For the second inequality, letH ′ be aρ′ × (n− t) parity-

check matrix forC′. Now we consider a(ρ′ + t) × n matrix
H with the following properties: The upperρ′ × n submatrix
of H consists of the columns ofH ′ at positionsI ′ and of
zero-columns at positionsI\I ′, and the lowert×n submatrix
consists of rows of weight1 that have1s at the positionsI\I ′.
ThenC = kerH and

K(H) = {x ∈ R
I | x|I′ ∈ K(H ′), x|I\I′ = 0} .

Consequently,wmin(H) = wmin(H
′), and this provesρ(C) ≤

ρ(C′) + t.
Lemma 4.2:Let C be a code of minimum distanced ≤ 2.

Thend = wmin(H) for any parity-check matrixH of C, i.e.,

C is in class3 (for BEC, AWGNC, BSC, and max-fractional
pseudoweight).

Proof: By Lemma 2.4 it suffices to prove this lemma
for the max-fractional weightw = wmax-frac. Sincew(x) ≥ 1
holds for all nonzero pseudocodewords, we always have
wmin(H) ≥ 1, which proves the result in the cased = 1.

Let d = 2 andH be a parity-check matrix forC. Let x ∈
K(H) and letxℓ be the largest coordinate. Sinced = 2 there
is no zero column inH and thus there exists a rowj with
ℓ ∈ Ij . Thenxℓ ≤

∑
i∈I\{ℓ} xi, hence2xℓ ≤

∑
i∈I xi, and

thusw(x) ≥ 2. It follows wmin(H) ≥ 2 and the lemma is
proved.

V. CONSTRUCTIONS OF CODES FROM OTHER CODES

The following results consider the pseudoredundancy of
codes obtained from other codes by the direct sum or the(uu)
construction. They are analogs of Theorems 7 and 8 in [6],
and Theorems 4.1 and 4.2 in [8], for the case of the max-
fractional weight and the AWGNC pseudoweight. Our proofs
in each case follow the exposition of these earlier proofs.

Theorem 5.1:Let C1 andC2 be [n1, k1, d1] and [n2, k2, d2]
binary linear codes, respectively. Then the direct sumC3 =
{(u v) | u ∈ C1,v ∈ C2} is an[n1+n2, k1+k2,min{d1, d2}]
code with

ρmax-frac(C3) ≤ ρmax-frac(C1) + ρmax-frac(C2) ,

ρAWGNC(C3) ≤ ρAWGNC(C1) + ρAWGNC(C2) .

Proof: Without loss of generality, we may assume that
both ρ(C1) andρ(C2) are finite, for otherwise the statement
to be proved is trivial. Fori = 1, 2, let H i be a parity-check
matrix for Ci havingρ(Ci) rows and such thatw(x) ≥ di for
all x ∈ K(H i) \ {0}. Then

H3 =

[
H1 0

0 H2

]

is a parity-check matrix forC3 with ρ(C1) + ρ(C2) rows. Let
p = (q r) ∈ K(H3) \ {0}, where the vectorsq andr in the
concatenation have lengthsn1 andn2 respectively. Then, we
may assumeq ∈ K(H1) \ {0} and r ∈ K(H2) \ {0}, and
thereforew(q) ≥ d1 andw(r) ≥ d2. (Note that in the case
where eitherq or r is equal to0, the result is trivial since
for any q 6= 0, w(q 0) = w(q) for both the max-fractional
weight and the AWGNC pseudoweight.)

We consider the two cases of max-fractional weight and
AWGNC pseudoweight separately.

Max-fractional weight:Assume without loss of generality
thatmax{qi} ≥ max{ri}. Then

wmax-frac(p) =

∑
pi

max{pi}
=

∑
qi +

∑
ri

max{qi}

>

∑
qi

max{qi}
≥ d1 ≥ min{d1, d2}

which proves the result.
AWGNC pseudoweight:Assume without loss of generality

thatwAWGNC(q) ≥ wAWGNC(r); this condition may be written as
( n1∑

i=1

qi

)2( n2∑

i=1

r2i

)
≥

( n1∑

i=1

q2i

)( n2∑

i=1

ri

)2

. (6)
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To establish the result, we need only to prove thatwAWGNC(p) ≥
wAWGNC(r). Now, since the entries ofq andr are nonnegative,
we have

2

( n1∑

i=1

qi

)( n2∑

i=1

ri

)( n2∑

i=1

r2i

)
≥ 0 . (7)

Adding
(∑n2

i=1 ri
)2(∑n2

i=1 r
2
i

)
to both sides of (7) and adding

the resulting inequality to inequality (6) yields
( n1∑

i=1

qi+

n2∑

i=1

ri

)2( n2∑

i=1

r2i

)
≥

( n2∑

i=1

ri

)2( n1∑

i=1

q2i +

n2∑

i=1

r2i

)

which may be rearranged aswAWGNC(p) ≥ wAWGNC(r), as
desired.

Theorem 5.2:Let C1 be an[n, k, d] binary linear code. Then
C2 = {(u u) | u ∈ C1} is a [2n, k, 2d] code with

ρmax-frac(C2) ≤ ρmax-frac(C1) + n ,

ρAWGNC(C2) ≤ ρAWGNC(C1) + n .

Proof: As before, without loss of generality, we may
assume thatρ(C1) is finite. LetH1 be a parity-check matrix
for C1 with ρ(C1) rows and such thatw(x) ≥ d1 for all
x ∈ K(H1) \ {0}. Then

H2 =

[
H1 0

In In

]

is a parity-check matrix forC2 with ρ(C1) + n rows (here
In denotes then × n identity matrix). Letp = (q r) ∈
K(H2) \ {0}, where the vectorsq ∈ K(H1) and r in the
concatenation both have lengthn. Then, for i = 1, 2, . . . , n,
from the fundamental cone inequalities for rown+ i we get
qi ≤ ri ≤ qi, so we havep = (q q). Now, sinceq ∈ K(H1)\
{0}, we havew(q) ≥ d1. Sincew((q q)) = 2w(q) for both
the max-fractional weight and the AWGNC pseudoweight, we
havew(p) ≥ 2d, and the result follows.

Remark 5.3:Theorem 9 in [6] and Theorem 4.3 in [8] state
that if C is an [n, k, 3] binary linear code then the extended
[n+1, k, 4] codeC′ satisfiesρ(C′) ≤ 2ρ(C), for the BEC pseu-
doweight and the BSC pseudoweight, respectively. Regarding
the corresponding results for the case of the max-fractional
weight and the AWGNC pseudoweight, we mention here only
that the analogous result in fact does not hold for the case of
the max-fractional weight. As a counterexample, consider the
[7, 4, 3] Hamming codeC1 which satisfiesρ(C1) ≤ 23− 1 = 7
(cf. Proposition 7.7). On the other hand, the[8, 4, 4] extended
Hamming codeC2 satisfiesρmax-frac(C2) = ∞ (cf. Section
VIII-B).

VI. PARITY-CHECK MATRICES WITH ROWS OF WEIGHT2

In this section we consider the pseudoredundancy of codes
with a parity-check matrix consisting of rows of weight2 and
at most one additional row. The results are then applied to
upper-bound the pseudoredundancy for codes of dimension2.
The basic case is dealt with in the following lemma.

Lemma 6.1:Let H be a parity-check matrix ofC such that
every row inH has weight2. Then:

(a) There is an equivalence relation on the setI of column
indices ofH such that for a vectorx ∈ R

n with non-
negative coordinates we havex ∈ K(H) if and only if
x has equal coordinates within each equivalence class.

(b) The minimum distance ofC is equal to its minimum
BEC, AWGNC, BSC, and max-fractional pseudoweights
with respect toH , i.e., d(C) = wmin(H).

Proof: For (a), define the required relationR as follows:
For i, i′ ∈ I let (i, i′) ∈ R if and only if i = i′ or there exists
an integerℓ ≥ 1, column indicesi = i0, i1, . . . , iℓ−1, iℓ = i′ ∈
I and row indicesj1, . . . , jl ∈ J such that

{i0, i1} = Ij1 , {i1, i2} = Ij2 , . . . , {iℓ−1, iℓ} = Ijℓ .

This is an equivalence relation, and it defines equivalence
classes overI. It is easy to check that inequalities (2) imply
thatx ∈ K(H) if and only if xi = xi′ for any (i, i′) ∈ R.

In order to prove (b), we note that the minimum (BEC,
AWGNC, BSC or max-fractional) pseudoweight is always
bounded above by the minimum distance ofC, so we only have
to show that the minimum pseudoweight is bounded below by
the minimum distance.

Let S = {S1, S2, . . . , St} be the set of equivalence classes
of R, and let dS = |S| for S ∈ S. It is easy to see that
the minimum distance ofC is d = minS∈S dS (since the
minimum weight nonzero codeword ofC has non-zeros in the
coordinates corresponding to a setS ∈ S of minimal size and
zeros everywhere else).

Now letx ∈ K(H). Since the coordinatesxi, i ∈ I, depend
only on the equivalence classes, we may use the notationxS ,
S ∈ S. Let xT , T ∈ S, be the largest coordinate. Then:

wmax-frac(x) =

∑
i∈I xi

xT

≥

∑
i∈T xi

xT

= |T | = dT ≥ d .

Therefore,wmax-frac
min (H) ≥ d, and by using Lemma 2.4, we get

w
BEC
min(H) ≥ d, wAWGNC

min (H) ≥ d, andwBSC
min(H) ≥ d.

The following proposition is a stronger version of
Lemma 6.1.

Proposition 6.2:Let H be anm × n parity-check matrix
of C, and assume that them − 1 first rows in H have
weight 2. Denote byĤ the (m−1) × n matrix consisting
of these rows, consider the equivalence relation of Lemma 6.1
(a) with respect tôH, and assume thatIm intersects each
equivalence class in at most one element. Then, the minimum
distance ofC is equal to its minimum BEC, AWGNC, BSC,
and max-fractional pseudoweights with respect toH, i.e.,
d(C) = wmin(H).

Proof: Let S be the set of classes of the aforementioned
equivalence relation onI, and letdS = |S| for S ∈ S. Let

S ′ = {S ∈ S | |S ∩ Im| = 1} .

Also let S ′′ = S \ S ′, so thatS ∩ Im = ∅ for all S ∈ S ′′.
Let x ∈ K(H) \ {0}. As before, since the coordinatesxi,

i ∈ I, depend only on the equivalence classes, we may use
the notationxS , S ∈ S. The fundamental cone constraints (2)
and (3) may then be written asxS ≥ 0 for all S ∈ S and

∀R ∈ S ′ : xR ≤
∑

S∈S′\{R}

xS , (8)
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respectively, and the max-fractional weight ofx ∈ K(H)\{0}
is given by

wmax-frac(x) =

∑
S∈S dSxS

maxS∈S xS

. (9)

Supposex ∈ K(H) \ {0} has minimal max-fractional
weight. Let xT be its largest coordinate. First note that if
there existsR ∈ S ′′ \ {T } with xR > 0, settingxR to zero
results in a new pseudocodeword with lower max-fractional
weight, which contradicts the assumption thatx achieves the
minimum. ThereforexR = 0 for all R ∈ S ′′ \ {T }. We next
consider two cases.

Case 1:T ∈ S ′′. If there existsR ∈ S ′ with xR > 0, setting
all such xR to zero results in a new pseudocodeword with
lower max-fractional weight, which contradicts the minimality
of the max-fractional weight ofx. ThereforexT is the only
positive coordinate ofx, and by (9) the max-fractional weight
of x is dT .

Case 2:T ∈ S ′. In this casexR = 0 for all R ∈ S ′′. From
inequality (8) forR = T we obtain

xT ≤
∑

S∈S′\{T}

xS .

With d0
△

= minS∈S′\{T} dS it follows that

d0xT ≤
∑

S∈S′\{T}

d0xS ≤
∑

S∈S′\{T}

dSxS .

Consequently,

(dT + d0)xT ≤
∑

S∈S

dSxS ,

and thuswmax-frac(x) ≥ dT +d0. We conclude that the minimum
max-fractional weight is given by

w
max-frac
min (H) = min

{
min

S,T∈S′,S 6=T
{dS + dT } , min

S∈S′′
{dS}

}
.

But this is easily seen to be equal to the minimum distanced
of the code.

Finally, by using Lemma 2.4, we obtain thatw
BEC
min(H) = d,

w
AWGNC
min (H) = d andwBSC

min(H) = d.
Remark 6.3:The requirement that alli ∈ Im belong

to different equivalence classes of̂H in Proposition 6.2 is
necessary. Indeed, consider the matrix

H =




1 1 0 0

0 1 1 0

1 0 1 0

1 1 1 1


 .

One can see that there are two equivalence classes forĤ:
S1 = {1, 2, 3}, S2 = {4}. The minimum distance of the
corresponding codeC is 4 (since (1, 1, 1, 1) is the only
nonzero codeword). However,x = (1, 1, 1, 3) ∈ K(H) is a
pseudocodeword of max-fractional weight2.

Corollary 6.4: Let C be a code of lengthn and dimension2.
Then ρ(C) = n − 2, i.e., C is of class at least2 (for BEC,
AWGNC, BSC, and max-fractional pseudoweight).

Proof: We consider two cases.
Case 1:C has no zero coordinates.
Let c1 andc2 be two linearly independent codewords ofC.

Define the following subsets ofI:

S1
△

= {i ∈ I | i ∈ supp(c1) and i /∈ supp(c2)}

S2
△

= {i ∈ I | i /∈ supp(c1) and i ∈ supp(c2)}

S3
△

= {i ∈ I | i ∈ supp(c1) and i ∈ supp(c2)}.

The setsS1, S2, and S3 are pairwise disjoint. SinceC has
no zero coordinates,I = S1 ∪ S2 ∪ S3. The ordering of the
elements inI implies an ordering on the elements in each
of S1, S2, andS3. Assume thatS1 = {i1, i2, · · · , i|S1|} and
i1 < i2 < · · · < i|S1|. If S1 6= ∅, let m1 = i1 be the minimal
element inS1, and define an(|S1|−1)×n matrixH1 = (H1

j,ℓ)
as follows:

H1
j,ℓ =





1 if ij = ℓ or ij+1 = ℓ ,
j = 1, 2, · · · , |S1| − 1 ,

0 otherwise .

Similarly, define(|S2| − 1) × n and (|S3| − 1) × n matrices
H2 and H3, with respect toS2 and S3. (Some of theSis
might be equal to∅, in which case the correspondingH i is
not defined.) Letm2 andm3 be minimal elements ofS2 and
S3, respectively (ifS2 6= ∅ andS3 6= ∅).

Subcase 1-a: One ofS1, S2, S3 is empty.Without loss of
generality we may assume thatS3 = ∅, i.e., thatc1 and c2
have disjoint support; indeed, if for exampleS1 = ∅, then
supp(c1) ⊆ supp(c2) and we can replacec2 by c1+c2. Define
an (n − 2) × n matrix H by HT △

= [HT
1 | HT

2 ]. It is easy
to see that all rows ofH are linearly independent, and so its
rank is n − 2. It is also straightforward that for allc ∈ C
we havec ∈ ker(H). Therefore,H is a parity-check matrix
of C. The matrixH has a form as in Lemma 6.1, and thus
ρ(C) = n− 2.

Subcase 1-b: Neither ofS1, S2, S3 is empty.Define a1×n
matrix H4 = (H4

j,ℓ), where

H4
1,ℓ =





1 if Sj 6= ∅ andmj = ℓ
for j = 1, 2, 3 ,

0 otherwise .

Additionally, define an(n − 2) × n matrix H by HT △

=
[HT

1 | HT
2 | HT

3 | HT
4 ]. Similarly to the previous case, all

rows ofH are linearly independent, its rank isn− 2. For all
c ∈ C we havec ∈ ker(H). Therefore,H is a parity-check
matrix of C.

The matrixH has a form as in Proposition 6.2 (whereS1,
S2, andS3 are corresponding equivalence classes overI), and
thereforeρ(C) = n− 2.

Case 2:C has t > 0 zero coordinates.
Consider a codeC′ of lengthn−t obtained by puncturingC

in theset zero coordinates. From Case 1 (with respect toC′),
ρ(C′) = n − t − 2. By applying the rightmost inequality in
Lemma 4.1, we haveρ(C) ≤ n−2. Sincek = 2, we conclude
that ρ(C) = n− 2.
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VII. C ODESBASED ON DESIGNS

Among the codes with finite pseudoredundancy an inter-
esting class of codes is based on designs. In this section we
considerpartial designs, which include the common BIBDs
(also called2-designs). We present a principal lower bound on
the minimum pseudoweight for codes, when the parity-check
matrix is the block-point incidence matrix of a partial design.
We apply this bound to the Hamming codes and the simplex
codes and deduce that their pseudoredundancy is finite.

Definition 7.1: A partial (wc, λ) design is a block design
consisting of ann-element setV (whose elements are called
points) and a collection ofm subsets ofV (calledblocks) such
that every point is contained in exactlywc blocks and every
2-element subset ofV is contained in at mostλ blocks. The
incidence matrixof a design is anm × n matrix H whose
rows correspond to the blocks and whose columns correspond
to the points, and that satisfiesHj,i = 1 if block j contains
point i, andHj,i = 0 otherwise.

If each block contains the same numberwr of points and
every2-element subset ofV is contained in exactlyλ blocks,
the design is said to be an(n,wr, λ) balanced incomplete
block design(BIBD), or 2-design.

In the following we avoid the trivial casesn ≤ 1 andλ = 0.
For a BIBD we havenwc = mwr and also

wc (wr − 1) = λ (n− 1)

(see, e.g., [19, p. 60]), so(n,wr, λ) determines the other
parameterswc andm by

wc =
n− 1

wr − 1
λ and m =

n (n− 1)

wr (wr − 1)
λ . (10)

Note that [20] and [21] consider parity-check matrices based
on BIBDs; these matrices are the transpose of the incidence
matrices defined here.

We have the following general result for codes based on
partial (wc, λ) designs.

Theorem 7.2:Let C be a code with parity-check matrixH,
such that a subset of the rows ofH forms the incidence matrix
for a partial(wc, λ) design. Then the minimum max-fractional
weight of C with respect toH is lower bounded by

w
max-frac
min ≥ 1 +

wc

λ
. (11)

For the case of an(n,wr , λ) BIBD, the lower bound in (11)
may also be written as

w
max-frac
min ≥ 1 +

n− 1

wr − 1
;

the alternative form follows directly from (10).
Proof: Consider the subset of the rows ofH which forms

the incidence matrix for a partial(wc, λ) design. Letx be a
nonzero pseudocodeword and letxℓ be a maximal coordinate
of x (ℓ ∈ I). For all j ∈ Jℓ, sum inequalities (2). We have

wcxℓ ≤ λ
∑

i∈I\{ℓ}

xi ,

and thus (
1 +

wc

λ

)
xℓ ≤

∑

i∈I

xi . (12)

The result now easily follows from the definition ofwmax-frac
min .

Theorem 7.3:Let C be a code with parity-check matrixH,
such that a subset of the rows ofH forms the incidence matrix
for a partial(wc, λ) design. Then,

w
AWGNC
min ≥ 1 +

wc

λ
,

w
BSC
min ≥ 1 +

wc

λ
.

Proof: Apply Lemma 2.4 and Theorem 7.2.
Results similar to Theorem 7.2 and Theorem 7.3 were also

presented and proven by Xia and Fu [22] in the AWGNC case.
Remark 7.4:Under the conditions of Theorem 7.3, ifx ∈

K(H) is a nonzero pseudocodeword such thatwAWGNC(x) =
1 + wc

λ
holds then it follows thatx is a scalar multiple of a

binary vector. This can be easily seen by considering the proof
of the inequalitywAWGNC(x) ≥ wmax-frac(x) (see [2, Lemma 44])
and examining when equalitywAWGNC(x) = wmax-frac(x) holds.

Furthermore it can be shown that in this casex is actually a
scalar multiple of a codeword (see [22, Theorem 3]). It follows
that the AWGNC pseudocodeword spectrum gap is positive,
provided thatd(C) = 1 + wc

λ
holds.

Another tool for proving lower bounds on the mini-
mum AWGNC pseudoweight is provided by the following
eigenvalue-based lower bound by Vontobel and Koetter [9].

Proposition 7.5 (cf. [9]): The minimum AWGNC pseu-
doweight for a(wc, wr)-regular parity-check matrixH whose
corresponding Tanner graph is connected is bounded below by

w
AWGNC
min ≥ n ·

2wc − µ2

µ1 − µ2
, (13)

whereµ1 andµ2 denote the largest and second largest eigen-
value (respectively) of the matrixL

△

= HTH ; here,L and
the matrix multiplication are to be considered over the reals.

In the case whereH is equal to the incidence matrix for
an (n,wr, λ) BIBD, the bound of Proposition 7.5 becomes

w
AWGNC
min ≥ 1 +

wc

λ
, (14)

so that in this case the bound of Proposition 7.5 coincides with
that of Theorem 7.3 (for the case of the AWGNC only).

To see why (13) becomes (14), denote the columni ∈ I
of H by hi and denote the matrixL = (Li,ℓ)i,ℓ∈I = HTH.
From the properties of a BIBD we get

Li,ℓ = hT
i hℓ =

{
wc if i = ℓ ,

λ if i 6= ℓ .

Now, L has largest eigenvalueµ1 = wrwc and only one other
eigenvalueµ2 = wc − λ, whose multiplicity isn − 1, since
one can writeL = λ1+(wc−λ)I , where1 andI denote the
all-ones and the identity matrices, respectively. Now we have
2wc − µ2 = wc + λ andµ1 − µ2 = wrwc −wc + λ = nλ, so
thatn · 2wc−µ2

µ1−µ2

= 1 + wc

λ
.

Remark 7.6:Prominent examples for codes based on de-
signs are codes based on Euclidean or projective ge-
ometries, in particular the[4s − 1 , 4s − 3s , 2s + 1] code
based on the Euclidean planeEG(2, 2s) as well as the
[4s + 2s + 1 , 4s − 3s + 2s , 2s + 2] code based on the pro-
jective planePG(2, 2s) (see [5], [15]). Theorem 7.3 and
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Remark 7.4 apply to these codes, as their standard parity-
check matrices form the incidence matrix for a partial design
with parameters(wc, λ) = (2s, 1) and (wc, λ) = (2s + 1 , 1),
respectively6; in particular these codes have finite pseudore-
dundancy.

We next apply the bounds of Theorems 7.2 and 7.3 to some
other examples of codes derived from designs.

Proposition 7.7:For m ≥ 2, the [2m − 1 , 2m − 1−m, 3]
Hamming code has BEC, AWGNC, BSC, and max-fractional
pseudocodeword redundancies

ρ(C) ≤ 2m − 1 .

Proof: For m ≥ 2, consider the binary parity-check
matrix H whose rows are exactly the nonzero codewords
of the dual codeC⊥, in this case the[2m − 1 ,m , 2m−1 ]
simplex code. ThisH is the incidence matrix for a BIBD with
parameters(n,wr , λ) = (2m − 1 , 2m−1 , 2m−2). Theorem 7.2
giveswmax-frac(x) ≥ 3, leading toρmax-frac(C) ≤ 2m − 1.

The result for BEC, AWGNC, and BSC follows by applying
Theorem 2.5.

In the next example, we consider simplex codes. Straight-
forward application of the previous reasoning does not lead
to the desired result. However, more careful selection of the
matrix H, as described below, leads to a new bound on the
pseudoredundancy.

Proposition 7.8:For m ≥ 2, the [2m − 1 ,m , 2m−1] sim-
plex code has BEC, AWGNC, BSC, and max-fractional pseu-
docodeword redundancies

ρ(C) ≤
(2m − 1) (2m−1 − 1)

3
.

Proof: For m ≥ 2, consider the binary parity-check
matrix H whose rows are exactly the codewords of the dual
codeC⊥ (in this case the[2m − 1 , 2m − 1−m, 3] Hamming
code) with Hamming weight equal to3. This H is the
incidence matrix for a BIBD with parameters(n,wr, λ) =
(2m − 1 , 3 , 1). Theorem 7.2 giveswmax-frac

min ≥ 2m−1.
Note that the number of codewords of weight3

in the [2m − 1 , 2m − 1−m, 3] Hamming code equals
(2m − 1)(2m−1 − 1)/3. One can show this, e.g., by consider-
ing the full sphere-packing of the perfect Hamming code and
observing that each codeword of weight3 covers exactly3
vectors of weight2, of which there are(2m − 1)(2m − 2)/2
in total.

Next, we justify the claim thatH is a parity-check matrix
of C. A theorem of Simonis [23] states that if there exists a
linear [n, k, d] code then there also exists a linear[n, k, d]
code whose codewords are spanned by the codewords of
weightd. Since the Hamming code is unique for the parame-
ters [2m − 1 , 2m − 1−m, 3], this implies that the Hamming
code itself is spanned by the codewords of weight3, so the
rowspace ofH equalsC.

The result for BEC, AWGNC, and BSC follows again by
applying Theorem 2.5.

6In the latter case the partial design is even a BIBD with parameters
(4s+2s+1 , 2s+1 , 1).

We remark that the bounds of Propositions 7.7 and 7.8 are
sharp at least for the casem = 3 and the max-fractional
weight, see Section VIII-B.

The following proposition proves that the AWGNC, BSC,
and max-fractional pseudocodeword redundancies are finitefor
all codesC with minimum distance at most3.

Proposition 7.9:Let C be a[n, k, d] code withd ≤ 3. Then
ρmax-frac(C) is finite. Moreover, we haveρmax-frac(C) = n − k in
the cased ≤ 2.

Proof: By using Lemma 4.2 we may assumed = 3.
Denote byH the parity-check matrix whose rows consist of
all codewords of the dual code ofC. Note that for a code of
minimum distanced, a parity-check matrixH consisting of
all rows of the dual codeC⊥ is an orthogonal array of strength
d− 1. In the present cased = 3, and this implies that in any
pair of columns ofH , all length-2 binary vectors occur with
equal multiplicities (cf. [19, p. 139]). Thus the matrixH is
an incidence matrix for a partial block design with parameters
(wc, λ) = (2r−1, 2r−2), wherer = n − k. Therefore for this
matrix H the code has minimum (AWGNC, BSC, or max-
fractional) pseudoweight at least1+wc/λ = 3, and it follows
that the pseudocodeword redundancy is finite for any code
with d = 3.

We remark that Proposition 7.9 implies the results for the
Hamming codes (Proposition 7.7). However, we present the
two proofs, since they use different methods.

We have considered in this section several families of
codes based on designs, which have finite pseudocodeword
redundancy. As noted in Section II-E, finiteness of pseu-
doredundancy would also follow if one can show that the
codes are geometrically perfect. However, this is not the
case for the examined codes in general. For example, the
[2m − 1 , 2m − 1−m, 3] Hamming code is not geometrically
perfect form ≥ 4; this follows from the characterization of
geometrically perfect codes, as the[7, 3, 4] simplex code can
be obtained from the Hamming code by repeated shortening,
whenm ≥ 4.

VIII. T HE PSEUDOCODEWORDREDUNDANCY FOR CODES

OF SMALL LENGTH

In this section we compute the AWGNC, BSC, and max-
fractional pseudocodeword redundancies for all codes of small
length. By Lemma 4.2 it is sufficient to examine only codes
with minimum distance at least3. Furthermore, in light of
Lemma 4.1 we will consider only codes without zero coor-
dinates, i.e., codes that have a dual minimum distance of at
least 2. Finally, we point out to Corollary 6.4 for codes of
dimension2, by which we may focus on codes with dimension
at least3.

A. The Algorithm

To compute the pseudocodeword redundancy of a codeC
we have to examine all possible parity-check matrices for the
codeC, up to equivalence. Here, we say that two parity-check
matricesH andH ′ for the codeC are equivalentif H can
be transformed intoH ′ by a sequence of row and column
permutations. In this case,wmin(H) = wmin(H

′) holds for
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TABLE I
THE NUMBER OF BINARY [n, k, d] CODES

WITH d ≥ 3 AND WITHOUT ZERO COORDINATES

k = 1 2 3 4 5

n = 5 1 1
6 1 3 1
7 1 4 4 1
8 1 6 10 5
9 1 8 23 23 5

the BEC, AWGNC, BSC, and max-fractional pseudoweights.
The enumeration of codes and parity-check matrices can be
described by the following algorithm.

Algorithm 8.1:

Input: Parametersn (code length),k (code dimension),
ρ (number of rows of the output parity-check matrices), where
ρ ≥ r

△

= n− k.
Output: For all codes of lengthn, dimensionk, minimum

distanced ≥ 3, and without zero coordinates, up to code
equivalence: a list of allρ × n parity-check matrices, up to
parity-check matrix equivalence.

1) Collect the setX of all r × n matrices such that
• they have different nonzero columns, ordered lexi-

cographically,
• there is no non-emptyF2-sum of rows which has

weight 0 or 1 (this way, the matrices are of full
rank and the minimum distance of the row space is at
least2).

2) Determine the orbits inX under the action of the
groupGLr(2) of invertibler× r matrices overF2 (this
enumerates all codes with the required properties, up to
equivalence; the codes are represented by parity-check
matrices).

3) For each orbitXC , representing a codeC:
a) Determine the suborbits inXC under the action

of the symmetric groupSr (this enumerates all
parity-check matrices without redundant rows, up
to equivalence).

b) For each representativeH of the suborbits, collect
all matrices enlarged by addingρ − r different
redundant rows that areF2-sums of at least two
rows ofH . LetXC,ρ be the union of all suchρ×n
matrices.

c) Determine the orbits inXC,ρ under the action of the
symmetric groupSρ, and output a representative
for each orbit.

This algorithm was implemented in the C programming
language. The minimum pseudoweights for the various parity-
check matrices were computed by using Maple 12 and the
Convex package [24].

B. Results

We considered all binary linear codes up to lengthn with
minimum distanced ≥ 3 and without zero coordinates, up
to code equivalence. The number of those codes for given
lengthn and dimensionk is shown in Table I.

1) AWGNC pseudoweight:The following results were
found to hold for all codes of lengthn ≤ 9.

• There are only two codesC with ρAWGNC(C) > r, i.e., in
class0 or 1 for the AWGNC.

– The [8, 4, 4] extended Hamming code is the shortest
codeC in class 1. We haveρAWGNC(C) = 5 > 4 = r
and out of12 possible parity-check matrices (up to
equivalence) with one redundant row there is exactly
one matrixH with w

AWGNC
min (H) = 4, namely

H =




1 0 0 1 1 0 0 1

0 1 0 1 0 1 0 1

0 0 1 1 0 0 1 1

1 1 1 1 0 0 0 0

0 0 0 0 1 1 1 1




.

There is exactly one matrixH with w
AWGNC
min (H) =

25/7, and for the remaining matricesH we have
w

AWGNC
min (H) = 3.

For this code, alsoρBEC(C) = 5 > 4, and it is the
only code of lengthn ≤ 9 with ρBEC(C) > r.

– Out of the four[9, 4, 4] codes there is one codeC
in class 1. We haveρAWGNC(C) = 6 > 5 = r and
out of 2526 possible parity-check matrices (up to
equivalence) with one redundant row there are13
matricesH with w

AWGNC
min (H) = 4.

• For all codesC of minimum distanced ≥ 3 and for all
parity-check matricesH of C we havewAWGNC

min (H) ≥ 3; in
particular, ifd = 3, thenC is in class3 for the AWGNC.

• For the[7, 3, 4] simplex code there is (up to equivalence)
only one parity-check matrixH without redundant rows
such thatwAWGNC

min (H) = 4, namely

H =




1 1 0 1 0 0 0

0 1 1 0 1 0 0

0 0 1 1 0 1 0

0 0 0 1 1 0 1


 .

It is the only parity-check matrix with constant row
weight 3.

2) BSC pseudoweight:We computed the pseudocodeword
redundancy for the BSC for all codes of lengthn ≤ 8.

• The shortest codes withρBSC(C) > r, i.e., in class0 or 1
for the BSC, are the[7, 4, 3] Hamming codeC and its dual
codeC⊥, the [7, 3, 4] simplex code. We haveρBSC(C) =
4 > 3 andρBSC(C

⊥) = 5 > 4.

• There are two codes of length8 with ρBSC(C) > r.
These are the[8, 4, 4] extended Hamming code, for which
ρBSC(C) = 6 > 4 holds, and one of the three[8, 3, 4]
codes, which satisfiesρBSC(C) = 6 > 5.

3) Max-fractional weight: We computed the pseudocode-
word redundancy with respect to the max-fractional weight
for all codes of lengthn ≤ 8.

• The shortest code withρmax-frac(C) > r is the unique
[6, 3, 3] codeC. We haveρmax-frac(C) = 4 > 3.

• There are two codes of length7 with ρmax-frac(C) > r. These
are the[7, 4, 3] Hamming code and the[7, 3, 4] simplex
code, which have both pseudocodeword redundancy7. In
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both cases, there is, up to equivalence, a unique parity-
check matrixH with seven rows that satisfiesd(C) =
wmax-frac

min (H).
This demonstrates that Propositions 7.7 and 7.8 are sharp
for the max-fractional weight, and that the parity-check
matrices constructed in the proofs are unique in this case.

• For the [8, 4, 4] extended Hamming codeC we have
ρmax-frac(C) = ∞, and thus the code is in class0 for the
max-fractional weight. It is the shortest code with infinite
max-fractional pseudoredundancy.
(It can be checked thatx = [1, 1, 1, 1, 1, 1, 1, 3] is a
pseudocodeword inK(H), where the rows ofH consist
of all dual codewords; sincewmax-frac(x) = 10

3 < 4, we
havewmax-frac

min (H) < 4.)

• There are two other codes of length8 with ρmax-frac(C) > r,
namely two of the three[8, 3, 4] codes, having pseu-
docodeword redundancy6 and8, respectively.

4) Comparison: Comparing the results for the AWGNC
and BSC pseudoweights, and the max-fractional weight, we
can summarize the results as follows.

• For the [7, 4, 3] Hamming codeC we haveρAWGNC(C) =
r = 3 , ρBSC(C) = 4 , andρmax-frac(C) = 7.

• For the [7, 3, 4] simplex codeC we haveρAWGNC(C) =
r = 4 , ρBSC(C) = 5 , andρmax-frac(C) = 7.

• For the [8, 4, 4] extended Hamming codeC we have
ρAWGNC(C) = 5 , ρBSC(C) = 6 , and ρmax-frac(C) = ∞. This
codeC is the shortest one such thatρAWGNC(C) > r, and
also the shortest one such thatρmax-frac(C) = ∞.

• If d ≥ 3 then for everyparity-check matrixH we have
w

AWGNC
min (H) ≥ 3. This is not true for the BSC and the

max-fractional weight.

These observations show that there is some significant
difference between the various types of pseudocodeword re-
dundancies.

It is also interesting to note that the[7, 4, 3] Hamming code
is geometrically perfect, while the[7, 3, 4] code and the[8, 4, 4]
code are not (cf. Section II-E).

IX. CYCLIC CODESMEETING THE EIGENVALUE BOUND

In this last section we apply the eigenvalue-based lower
bound on the minimum AWGNC pseudoweight by Vontobel
and Koetter [9], see Proposition 7.5. We investigate for which
cyclic codes of short length this bound is sharp with respect
to the minimum Hamming distance, for in this case, the codes
have finite AWGNC pseudoredundancy.

We consider binary cyclic codes with full circulant parity-
check matrices, defined as follows: LetC be a binary cyclic
code of lengthn with check polynomialh(x) =

∑
i∈I hix

i

(cf. [19], p. 194). Then thefull circulant parity-check matrix
for C is the n × n matrix H = (Hj,i)i,j∈I with entries
Hj,i = hj−i. Here, all the indices are modulon, so that
I = {0, 1, . . . , n− 1}.

Since such a matrix isw-regular, wherew =
∑

i∈I hi, we
may use the eigenvalue-based lower bound of Proposition 7.5
to examine the AWGNC pseudocodeword redundancy: If the

right hand side equals the minimum distanced of the codeC,
thenρAWGNC(C) ≤ n.

Note that the largest eigenvalue of the matrixL = HTH is
µ1 = w2, since every row weight ofL equals

∑
i,j∈I hihj =

w2. Consequently, the eigenvalue bound is

w
AWGNC
min ≥ n ·

2w − µ2

w2 − µ2
,

whereµ2 is the second largest eigenvalue ofL. We remark
further thatL = (Lj,i)i,j∈I is a symmetric circulant matrix,
with Lj,i = ℓj−i and ℓi =

∑
k∈I hkhk+i. The eigenvalues of

L are thus given by

λj =
∑

i∈I

ℓiζ
ij
n = Re

∑

i∈I

ℓiζ
ij
n =

∑

i∈I

ℓi cos(2πij/n)

for j ∈ I, whereζn = exp(2πi/n) is then-th primitive root
of unity andi2 = −1 (see, e.g., [25], Theorem 3.2.2).

We also consider quasi-cyclic codes of the form given in the
following remark. This code construction is only introduced
for completeness towards classifying the results; the resulting
codes are not interesting for applications, as the minimum
Hamming distance is at most2 for m ≥ 2.

Remark 9.1:Denote by1m the m × m matrix with all
entries equal to1. If H is aw-regular circulantn× n matrix
then the Kronecker product̃H

△

= H⊗1m will be aw-regular
circulantmn×mn-matrix and defines a quasi-cyclic code. We
have

L̃ = H̃
T
H̃ = HTH ⊗ 1

T
m1m = L⊗ (m1m) ,

and the eigenvalues ofm1m arem2 and0. Thus, the largest
eigenvalues of̃L are µ̃1 = m2µ1 = m2w2 and µ̃2 = m2µ2,
and the eigenvalue bound of Proposition 7.5 becomes

w
AWGNC
min ≥ mn ·

2mw −m2µ2

m2w2 −m2µ2
= n ·

2w −mµ2

w2 − µ2
.

We carried out an exhaustive search on all cyclic codesC up
to lengthn ≤ 250 and computed the eigenvalue bound in all
cases where the Tanner graph of the full circulant parity-check
matrix is connected, by using the following algorithm.

Algorithm 9.2:

Input: Parametern (code length).
Output: For all divisors ofxn − 1, corresponding to cyclic

codesC with full circulant parity-check matrix, such that the
Tanner graph is connected: the value of the eigenvalue bound.

1) Factorxn − 1 over F2 into irreducibles, using Cantor
and Zassenhaus’ algorithm (cf. [26], Section 14.3).

2) For each divisorf(x) of xn − 1:

a) Let f(x) =
∑

i hix
i andH = (hj−i)i,j∈I .

b) Check that the corresponding Tanner graph is con-
nected (i.e., that the greatest common divisor of
the indicesi with hi = 1 together withn is 1).

c) Compute the eigenvalues ofL = HTH: Let
ℓi =

∑
k∈I hkhk+i and for j ∈ I compute∑

i ℓi cos(2πij/n).
d) Determine the second largest eigenvalueµ2 and

outputn · (2ℓ0 − µ2)/(ℓ
2
0 − µ2).
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TABLE II
BINARY CYCLIC CODES UP TOLENGTH 250WITH d = 2

MEETING THE EIGENVALUE BOUND

parameters w-regular constituent code

[2n, 2n−m, 2] 2m Hamming c.,n = 2m−1, m = 2 . . . 6
[2n, 2n−m−1, 2] 2m−2 Hamming c. with overall parity-check

[42, 32, 2] 10 projective geometry codePG(2, 4)
[146, 118, 2] 18 projective geometry codePG(2, 8)
[170, 153, 2] 42 a certain[85, 68, 6] 21-regular code

(the eigenvalue bound is 5.2)

TABLE III
BINARY CYCLIC CODES UP TOLENGTH 250WITH d ≥ 3

MEETING THE EIGENVALUE BOUND

parameters w-regular comments

[n, 1, n] 2 repetition code,n = 3 . . . 250
[n, n−m, 3] 2m−1 Hamming c.,n = 2m−1, m = 3 . . . 7

[7, 3, 4] 3 dual of the[7, 4, 3] Hamming code
[15, 7, 5] 4 Euclidean geometry code EG(2,4)
[21, 11, 6] 5 projective geometry code PG(2,4)
[63, 37, 9] 8 Euclidean geometry code EG(2,8)
[73, 45, 10] 9 projective geometry code PG(2,8)

This algorithm was implemented in the C programming
language. Tables II and III give a complete list of all cases
in which the eigenvalue bound equals the minimum Hamming
distanced, for the casesd = 2 and d ≥ 3, respectively. In
particular, the AWGNC pseudoweight equals the minimum
Hamming distance in these cases and thus we have for the
pseudocodeword redundancyρAWGNC(C) ≤ n. All examples
of minimum distance2 are actually quasi-cyclic codes as in
Remark 9.1 with parity-check matrix̃H = H ⊗ 12. We list
here the constituent code given by the parity-check matrixH.

We conclude this section by proving a result which was
observed by the experiments.

Lemma 9.3:Let m ≥ 3 and letC be the intersection of a
Hamming code of lengthn = 2m − 1 with a simple parity-
check code of lengthn, which is a cyclic[n , n−m− 1 , 4]
code. Consider its full circulant parity-check matrixH. Then

w
AWGNC
min (H) ≥ 3 +

1

2m−2 − 1
> 3 .

In particular, ifm = 3 thenC is the [7, 3, 4] code and the
result implieswAWGNC

min (H) = 4 andρAWGNC(C) ≤ 7.
Proof: Let H be thew-regular full circulant parity-check

matrix for C. We claim thatw = 2m−1− 1. Indeed, each
row h of H is a codeword of the dual codeC⊥, and since
C⊥ consists of the codewords of the simplex code and their
complements, the weight ofh and thusw must be2m−1−1,
2m−1, or 2m− 1. But w cannot be even, for otherwise all
codewords ofC⊥ would be of even weight. Asw = 2m−1 is
clearly impossible, it must holdw = 2m−1−1.

Next, we show that the second largest eigenvalue ofL =
HTH = (Lj,i)i,j∈I equalsµ2 = 2m−2. Indeed, leth1 and
h2 be different rows ofH, representing codewords ofC⊥.
As their weight is equal, their Hamming distance is even, and
thus it must be2m−1. Hence, the size of the intersection of the
supports ofh1 andh2 is 2m−2−1. This implies thatLi,i = w
and Lj,i = 2m−2− 1, for i 6= j. Consequently,L has an
eigenvalue of multiplicityn − 1, namelyw − (2m−2−1) =
2m−2, and thusµ2 must be2m−2.

Finally, we apply Proposition 7.5 to get

w
AWGNC
min ≥ (2m−1)

2 (2m−1−1)− 2m−2

(2m−1−1)2 − 2m−2

=
(2m−1)

(
2 (2m−1−1)− 2m−2)

(2m−1
)
(2m−2−1)

=
3 (2m−2−1) + 1

2m−2 − 1
,

which proves the result.
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