arXiv:1103.3641v2 [cs.IT] 6 Mar 2012

SUBMITTED TO IEEE TRANSACTIONS ON INFORMATION THEORY

On the Pseudocodeword Redundancy
of Binary Linear Codes

Jens ZumbrageMember, IEEE Vitaly Skachek,Member, IEEEand Mark F. Flanagar§enior Member, IEEE

Abstract—The AWGNC, BSC, and max-fractional pseudocode-
word redundancies of a binary linear code are defined to be the
smallest number of rows in a parity-check matrix such that the
corresponding minimum pseudoweight is equal to the minimum
Hamming distance of the code. It is shown that most codes
do not have a finite pseudocodeword redundancy. Also, upper
bounds on the pseudocodeword redundancy for some families
of codes, including codes based on designs, are provided. &h
pseudocodeword redundancies for all codes of small lengthai
most 9) are computed. Furthermore, comprehensive results are
provided on the cases of cyclic codes of length at mog60 for
which the eigenvalue bound of Vontobel and Koetter is sharp.

which maximizes the minimum pseudoweight of the code
for the given channel. Adding redundant rows to the parity-
check matrix introduces additional constraints on theated
fundamental coneand thus may improve the performance
of LP decoding and increase the minimum pseudowdght.
However, such additions increase the decoding complexity
under MP decoding, especially since linear combinations of
low-density rows may not yield a low-density result. On the
other hand, there exist classes of codes for which spargg-par
check matrices exist with many redundant rows, €.g., [5].

For the AWGNC, BEC (binary erasure channel), BSC,
and max-fractional pseudoweights, defingenc(C), Peec(C),
Pesc(C), @nd praad C), respectively, to be the minimum num-
ber of rows in any parity-check matri¥{ such that the
minimum pseudoweight of with respect to this matrix is

SEUDOCODEWORDS represent the intrinsic mech&qual to the code’s minimum Hamming distan¢eFor the
nism of failure of binary linear codes under linearsake of simplicity, we sometimes use the notatigf) when
programming (LP) or message-passing (MP) decoding (s&€ type of channel is clear from the context. The value

e.g., [1], [2]). The concept ogfseudoweighof a pseudocode- p(C) is called the (AWGNC, BEC, BSC, or max-fractional)
word was introduced iri [3] and[4] (see al$o [2]) as an analdgeudocodeword redundangyr pseudoredundancy) af. If

to the pertinent parameter in the maximum likelihood (MLfor the codeC there exists no such matrid, we say that the
decoding scenario, i.e., the signal Euclidean distancéhén toseudoredundancy is infinite.

case of the additive white Gaussian noise channel (AWGNC),The BEC pseudocodeword redundancy, which is equivalent
or the Hamming distance in the case of the binary symmettizthestopping redundangys studied in[[6], where it is shown
channel (BSC). Accordingly, for a binary linear codeand a that for any linear code the BEC pseudoredundancy is finite;
parity-check matrixe of C, the (AWGNC or BSC) minimum the paper also contains bounds ap.(C) for general binary
pseudoweightw,,;, () may be considered as a first-ordelinear codes, and for some specific families of codes. These
measure of decoder error-correcting performance for LP bounds were subsequently improved, for instance lin [7]. The
MP decoding. Another closely related measure is the mastudy of BSC pseudoredundancy was initiated[in [8], where

Index Terms—LDPC codes; Fundamental cone; Pseudocode-
words; Pseudoweight; Pseudocodeword redundancy.

I. INTRODUCTION

fractional weight, which we sometimes also call pseudoteigthe authors presented bounds @a.(C) for various families
in order to simplify statements; it serves as a lower bound of codes.

both AWGNC and BSC pseudoweights.

In this work, we further investigate pseudoredundancy for

In order to minimize the decoding error probability undethe AWGNC, BSC, and max-fractional pseudoweight. We

LP (or MP) decoding, one might want to select a matkix
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show that for most codes there exists kb such that the
minimum pseudoweight (with respect tH) is equal tod,

and therefore the AWGNC, BSC, and max-fractional pseu-
docodeword redundancy (as defined above) is infinite for most
codes. For some code families for which the pseudoredun-
dancy is finite, we provide upper bounds on its value. We
consider in particular constructions of new codes from old
land codes based on designs. Furthermore, we compute the
pseudocodeword redundancies for all codes of small length
(at most9), and we investigate cyclic codes for which the
eigenvalue bound of Vontobel and Koettef [9] is sharp.

1We note that for message-passing iterative decoding, &pantthe case
of decoding over the binary erasure channel there is no gesetement that
additional parity-checks are beneficial.
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The outline of the paper is as follows. In Sectioh Il we proa subset of 0, 1} C R™, one can then express ML decoding
vide detailed definitions and some background information @s the minimization problem
LP decoding, pseudocodewords, the minimum pseudoweight, .
and the pseudocodeword redundancy; we also discuss related 5‘3
notions appearing in the literature. Subsequently, we simow
Section[ll that the pseudocodeword redundancy for randobRis is equivalent to the linear programming problem
codes is infinite with high probability. The next four seaiso
are concerned with upper bounds on the pseudoredundancy
for some particular classes of codes; we investigate puedtu
codes and codes of dimension 2 in Secfioh IV, constructiowfiereconv(C) denotes the convex hull @f in R™. However,
of codes from other codes in Sectioh V, parity-check magricgince the number of defining hyperplanescofiv(C) usually
of row-weight 2 in Sectiofi VI, and codes based on desig@§0ws exponentially with the block length, this minimizati
in SectionVIl. The final two sections are devoted to expeRroblem becomes impractical.
imental results; Section VIl examines the pseudocodewordinstead one might consider a relaxation of the above mini-
redundancy for all codes of small length, and Secfioh IXization problem (see [10]. [11].1[2]), where the convexlhul
deals with cyclic codes that meet the eigenvalue bound on gwv(C) is replaced by the so-called fundamental polytope

minimum AWGNC pseudoweight by Vontobel and Koetter. P(H) to be defined next. Fof € J, let h; denote thej-th
row of the parity-check matridf, and consider the local code

AN .
= argmin {x, ) .
xeC

[I>

& = argmin (x,7),

xzeconv(C)

Il. GENERAL SETTINGS Cj={ceFy|hjc" =0}

Let F» be the binary field and leR be the field of real consisting of all binary vectors satisfying thieh parity-check,

numbers. Addition and multiplication (including matriestor gg that¢ = N,c7Cj- Then thefundamental polytope® =
and matrix-matrix multiplication) are carried out By when p(H) is defined as

the operands are defined oWy, and inR when the operands
are defined over the reals. Occasionally, we will explicitly P = () conv(C;),
convert elements irF, into real numbers; in this case we JjeT

identify 0 € F, with 0 € R and1 € Fy with 1 € R.

here agairC, is viewed as a subset &". Now LP decodin
Let C be a code of lengtih € N over the binary fieldFs, W Qallt; IS view ! W 'ng

of a binary linear cod€ with parity-check matrixH can be

defined by expressed as the minimization problem
C=kerH ={cecFy | Hc" =0"} & 2 argmin (z,7) , (1)
xcP

where H is anm x n parity-check matrixover F, of the
codeC. Obviously, the cod€ may admit more than one parity-Where? = P(H) denotes the fundamental polytope.
check matrix, and all the codewords form a linear vector spac We note thatonv(C) € P, where the inclusion is usually
of dimensionk > n—m. We say that is thedimensiorof the Proper. However, the number of defining hyperplanesPof
codeC. We denote byi(C) (or justd) the minimum Hamming IS typically much smaller than foronv(C), in particular for
distance (also called the minimum distancelofThe codec LDPC codes, so that the corresponding linear programming
may then be referred to as &n, k, d] linear code ovef,. ~ Problem becomes tractable.
Denote the set of column indices and the set of row indices!f 7 is strictly larger tharconv(C) then it may happen that
of the parity-check matrixtl by Z = {1,...,n} andJ = the decoding ruIe_[[l) outputs a vetferf P that is not a
{1,...,m}, respectively. For any row index € J we let Vertex of conv(C), i.e., not a codeword. Such vertices, called
I, 2 {i e T | H;; # 0} denote the set of the column indicngseudpcode_zwords, are the reason f_or the suboptimality of LP
where the parity-check matrix is nonzero; similarly for anflécoding with respect to ML decoding.
column indexi € T we let J; 2 {j € J | H,; # 0} denote Note _that the funda_mental polytof¥ H) is dependent on
the corresponding set of row indices. the parity-check matrixtd rather than the cod€ itself, but
The matrix H is said to be(w., w,)-regular if |7;| = w, W€ aways have?(H)n{0,1}" =C, cf. [10], [11].
forall i € Z and|Z;| = w, for all j € J; a (w,w)-regular

matrix is also called simplyv-regular. B. The fundamental cone and pseudoweights
When analyzing LP decoding, we may assume without loss
A. LP decoding of generality that the zero codewofdhas been sent; then,

: . . . . iven this assumption, the probability of correct LP deogdi
.W(-a give a brief review of LP dgcodmg. Consider data trang’epends only on the conic hull of the fundamental polytope
mission over a memoryless binary-input output-symmetr

. . Sther than on the fundamental polytope itself (seé [1d],[1
channel with channel 'aV”wa(W.)- Based on th_e recelve_d [2]). The conic hull of the fundamental core(H) is called
vectory = (y1, ..., y,) we can define the log-likelihood-ratio

VaN
vectory = (v1,...,7) € R”.by Vi = 10g(pY\X(y.i|O)) - 2The set of optimal solutions contains a vertex, and one mayras that
log(pyx (y:|1)) for i € Z. Viewing the code canonically as the output is a vertex.
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thefundamental con&(H'). More concretelylC(H ) is given in K(H) with weights wegec(x) = |supdz)] = 4 and
as the set of vectors € R" that satisfy Waene(T) = (Xier xi)Q/ZiGI z? = 25/7. Furthermore,
, B . Wesc(@) = 207 1((X,czm)/2) = 2071(5/2) = 3,
VieJ, Vel x < _ Z Tis @ where &' = (2,1,1,1,0,0,0), and finally, wpauad®) =
i€Z;\{¢} Ziez i/ maxier v = 5/2.
VieZ: z;>0. 3) We define the BEGninimum pseudoweigldf the codeC

The vectorse € K(H) are calledpseudocodeworff C with respect to the parity—check matrb{ as
BEC

with respect to the parity-check matrid. Note again that wie (H) = GKI(nI_iII)l 0 Weee() -

the fundamental condC(H) depends on the parity-check e * e \ f

matrix H rather than on the cod€ itself. At the same The quantitieswiisi(H), witt, (H) andwizi=(H) are de-
time, the fundamental cone is independent of the underlyifiged Similarly. We note that the considered pseudoweights

communication channel. are invariant under scaling by a positive scalar, and that a
Example 2.1:Let C be the|[7,4,3] Hamming code with minimum is indeed attained od(H ) \ {0} (see[2, Sect. 6]).
parity-check matrix When the type of pseudoweight is clear from the context,

we sometimes use the notation,:, (H). Note that all four

1110100 minimum pseudoweights are upper boundeddbyhe code’s
H=jp0111010 minimum distance.
001110 1

C. Pseudocodeword redundancy

Given a codeC we will define the pseudocodeword re-
dundancy as the minimum number of rows in a parity-
TaSaT1itastas T3S Tatrat e TaS A3+ +7 check matrixH for C such that the corresponding minimum
T3 < T1+ T2+ 25 T4 S T2+ T3+ T6 s S w3+ T4t 7 pseudoweight equals the minimum distance.
rs <T1+ T2+ w3 Te T2+ T3+ Ta T7 < T3+ T4+ T5 So for a binary lineafn, k, d] codeC we define the BEC
0<z1 0<zo 0<x3 0<z4 0<z5 0<z6 0<m¢ pseudocodeword redundanoy the codeC as

The influence of a nonzero pseudocodeword on the depesc(C) = inf{#rows(H) | ker H = C, W% (H) = d}
coding performance will be measured by fiseudoweight \hereinf o 2 o, and similarly we define the pseudocode-
which depends_on the channel at h_and. Thg BEC, AWGNg“?ord redundanciepaenc(C), pesc(C), and praalC) for the
BSC pseudoweights, and max—fractlc_mal v_ve|ght of a NonzefyGNC and BSC pseudoweights, and the max-fractional
pseudocodeword: < K(H) were defined in[[4] and_[2] &s \eight. when the type of pseudocodeword redundancy is clear

Then the fundamental cone inequalities read:

r1<x2+x3+T5 T2<x3+T4+T6 X3 x4+ T5+T7

follows: from the context, we sometimes use the notapéf).
Weec(z) = [sUpga)| We remark that all pseudocodeword redundancies satisfy
2 p(C)>r=n—k.
Wawenc () 2 M ) Example 2.3:Let C be the[7, 4, 3] Hamming code. Then:
. xrs
L , b i ) h thEI ! b pmax—frac(c) - 7 Z pAWGNC(C) - 3 Z pBEC(C) - 3
et ' be a vector inR™ with the same components asbut o) =7 > ) =4 > o) =3
in non-increasing order. Far— 1 < ¢ < i, wherel <i < n, e £ ”pmax'_"“( ) _ _sI;BSC(H) d_HpBEC( ) o 1
JaN : & € e following matricesH 3, H,, and H, are examples for
let = 1. Define®(¢) = ") d¢' and . ) . -
9(8) =i © fo o) de parity-check matrices with a minimum number of rows such
Wose(z) = 287 (D(n)/2) . that wits, (Hs) = wpi“(Hs) = 3, wixt,(H4) = 3, and

i ) , i , wreas( 7)) = 3 holds.
Finally, the max-fractional weight aof is defined as _

111010 0|
2 Dicz Ti Hs;=|0 111010
Wmax-frac(w) - .
maxiez Tj i 0 110 1 |
Additionally, the pseudoweight of the all-zero vector is 110100 1]
usually defined to be zero, i.ew(0) = 0, for all four L 01010 1
pseudoweightsy, but this is inessential for this paper. H, = 01100 11
Note that for binary vectorg € {0,1}"™\ {0} we have
| 000 0 1 1 1 1 |
xr) = r) = ) —= xr) = € - -
WBSC( ) WAWGNC( ) WBSC( ) Wmax—frac( ) WH( ), 111010 0
wherewy () denotes the Hamming weight of. 0111010
Example 2.2:Let ¢ and H be as in Example2.1. 0011101
The vectorz = (0,0,1,0,1,1,2) is a pseudocodeword H;=|1 001110
0100111
3Some authors consider only the vertices of the fundamerdbjtgpe 10100 1 1
P(H) as pseudocodewords, but we will use this more general definit
which includes all vectors of the fundamental cdGéH). 1 10100 1 ]
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These matrices were found by computer search, see Sacharacterization of all geometrically perfect codes:reabji

tion [VIIT] linear codeC is geometrically perfect if and only i€ does
We describe the behavior of the pseudocodeword reduret contain as a minrany code equivalent to certain codes

dancy and the minimum pseudoweight for a given binary lineéi, C,, C; with parameterd7, 3, 4], [10,5,4], and [10, 4, 4],

[n, k, d] codeC by introducing four classes of codes: respectively.

(class 0) p(C) is infinite, i.e., there is no parity-check It is easy to see that for geometrically perfect codes alf fou

matrix H with d = o, (H) pseudocodeword redundancies are finite.
(class 1) p(C) is finite, butp(C) > r, Smarandache and Vontobél [15] define theeudoweight
(class 2) p(C) = r, butC is not in class 3, spectrum gapfor a binary linear cod& given by a parity-
(class 3) d = wmin(H) for every parity-check matrixEl check matrixH as follows. The set\(H) of all minimal
of C. pseudocodewords defined as the set of all vectarse R”

Note that if a code has infinite pseudocodeword redundangwt lie on an edge of the fundamental cdeH ). Now let
then LP decoding for this code can never achieve the mi'(H) denote the set of all minimal pseudocodewords that
decoding performance; on the other hand, if a code’s pséj€ Not scalar multiples of codewords= C, and letw be any
docodeword redundancy is finite, its value gives a (very aff the BEC, AWGNC, BSC, or max-fractional pseudoweight.
proximate) indication of the LP decoding complexity regair ' "€n the pseudoweight spectrum gap is the quantity
to achieve this bound. Note that this is a fundamental com- g(H) 2 hin w(z) — d(C).
plexity associated with the code, and not tied to a particula zeM'(H)
parity-check matrix. We leave it as a direction for furtheg s apparent thay(H) > wui(H) — d(C), and we have
research to provide more general definitions which captuge . (H) = d(C) if and only if g(H) > 0.
the average complexity-performance tradeoff of LP deagdin |f the pseudoweight spectrum gapH)) is strictly positive
as more redundant rows are added to the parity-check matghen the LP decoding performance approaches ML decoding

performance as the signal-to-noise ratio goes to infinity. T

D. Basic Connections date, only few examples of interesting codes with positive
The different minimum pseudoweights are related as tdpseudoweight spectrum gap are known; these include thescode
lows. This result is taken from [2]. based on the Euclidean plane or the projective plané [15,

Lemma 2.4:Let C be a binary linear code with the parity-1"€orem 8].
check matrixH. Then,
Wi “(H) < winin“(H)

1

Wmax-frac(H) < WBSC (H)

min — min

Ill. PSEUDOREDUNDANCY OFRANDOM CODES

. In this section we show that for most binary linear codes the
Wonin (H) - AWGNC and BSC pseudoredundancies are infinite. We begin

As a straightforward corollary we obtain the followingVith the following lemma. N
theorem, which relates the different pseudoredundancies. ~-emma 3.1:For a binary linear codé of lengthn, let d

Winin (H)

<
<

Theorem 2.5:Let C be a binary linear code. Then be the minimum distance of the dual code. Then, the minimum
' AWGNC pseudoweight of (with respect to any parity-check
PraciiaC) = pawenc(C) > paec(C) matrix H) satisfies
pmax—rac(c) Z pB (C) Z pBE (C) . L — 2
f s¢ ¢ WAWGNC (n + d 2) (4)

min =gl 124 (n—1)°

E. Related.Notlon.s . _ Proof: Consider the pseudocodewordz =
As mentioned in the introduction, Schwartz and Vardy,, », .. z.) £ (¢t—1,1,...,1). Since d* is the

consider in [[6] the so-called stopping distance of a binagfinimum distance of the dual code, every row F has
linear code given by a parity-check matrix, and the stoppiRgeignht at leasti*. Therefore, all inequalities)2) anfl(3) are
redundancy of a binary linear code. Withi [2, Proposition 5Yatisfied for thisz, and so it is indeed a legal pseudocodeword.
itis easy to see that the stopping distance equals the minimgtinaly, observe that the AWGNC pseudoweightaofs given
BEC pseudoweight, and thus the stopping redundancy yg the right-hand side of{4). u
equivalent to the BEC pseudocodeword redundancy. In the sequel, we use the terrandom codefor a binary
Besides pseudocodewords, the notiorapping sefl12] is  |inear codeC whosek x n generator matrix contains indepen-
another concept for analyzing the performance of binagalin gently and uniformly distributed random entries frén The
codes under MP decoding. In[13] theapping redundancy fojlowing result is known as the Gilbert-Varshamov bourfd. |
for binary linear codes is introduced as a generalizatiothef e pick a code by selecting the generator matrix entries at
stopping redundancy, and several upper bounds are prdser{gndom, the resulting code has rateR = k/n and relative
In [14] a binary linear cod€ is calledgeometrically perfect minimum distancej, such that
if it admits a parity-check matri such that the fundamental 5> Hy ' (1— R)—e
polytope equals the convex hull of the code, iB(H) = =2 ’
conv(C). In this case ML decoding can be exactly described asip minor of a codec is any code obtained frord by a (possibly empty)
an instance of LP decoding. Kashyapl[14, Theorem VI1.2] ga¥equence of shortening and puncturing operations.
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with probability approaching asn — oo, for any fixed small is bounded from above by a constant, whilein [2] this qugntit
e > 0, where H;'(-) is the inverse of the binary entropyis shown to be bounded by a sublinear function.

function Hy(p) = —plogyp — (1 — p)logy(1 — p) for p € The following lemma is a counterpart of Lemmal3.1 for the
[0, 1/2]. A similar result also holds when the codés defined BsC.

by selecting the parity-check matrix entries (indepenigertd | emma 3.4:Let C be a binary linear code of length and
uniformly) at random. let d- be the minimum distance of the dual code. Then, the

Let R = k/n be fixed. Then, if we select at random aninimum BSC pseudoweight @f (with respect to any parity-
k x n matrix overF, which corresponds to a cod& the check matrixH) satisfies

relative minimum distance of is at leastH; (1 — R) — e
(with probability approaching asn — oo) and the relative
minimum distance of the dual code @fis at leasH, ' (R) —¢ Proof: Consider the pseudocodeword
(again, with probability approachingasn — oo). By taking N n
the intersection of these two events, both the code and tale du £ = (#1:22, -+, Zn) = (M, L/;l,) ’
code have relative minimum distances which aose to the T n—r
Gilbert-Varshamov bound with probability approachihgas for some positive integer. This vectorz is then a legal
n — oo. (The reader can refer to [16, Theorems 4.4, 4.5, apdeudocodeword; sincé- is the minimum distance of the
4.10] and to[[1l7, Theorem 8 and Exercise 3].) dual code, every row it has a weight of at least-, and
To this end, we take a random binary linear cadeof so, all inequalities[{2) and[(3) are satisfied by this
arbitrary lengthn (for n — oo) with R = k/n. The dual code I 7(d* — 1) > n — 7 then by the definition of the BSC
C* of C, with probability close to one, has rafe- =1— R  pseudoweightwss(z) < 27. This condition is equivalent

Wi < 2[n/dt] .

min

and relative minimum distancé- = d*/n that attains the to 7d- > n. Therefore, we setr = [n/d']. For the
Gilbert-Varshamov bound corresponding vectog, the pseudoweight is less or equal to
27 = 2[n/d*+]. [ |

1 L2yl _ply_ .yt _
07 Zp=Hy (1= R7) —e=Hy (R) —c, Similarly to the AWGNC case, lef be a random binary

Note that [#) may be written in terms of the relativdinear code of lengttn with R = k/n. The parameter®*
minimum distancel- of the dual code as follows: and 0+ of its dual codeC* attain with high probability the
(14 64— 2/n)? Gilbert-Varshamov bound' > 1.

(5) From Lemmd_3}4, for alk, the pseudoweight of the code
is bounded from above by

WAW.GNC .
T (6= 1/n)? 4+ (1/n = 1/n?)
Hence, for largen, the minimum pseudoweight of the code n n
is bounded from above bt +1/6+)2 +¢' < (1+1/p)? +¢ 2[n/d"] <2/6-+2<2/u+2,
for some smalk’ > 0, and this bound does not depend@n which is a constant. On the other hand,is a random
On the other hand? is a random code and so its minimuntode and its minimum distance also satisfies the Gilbert-
distance satisfies the Gilbert-Varshamov bound, namely  varshamov bound, so it increases linearly withThis proves
1 the following theorem.
dz (H2 (1-F) _6) e Theoremg3.5:Let 0 < R < 1 be fixed. For a random
which increases linearly with for a fixed R. This immedi- binary linear codeC of lengthn and rateR, there is, with
ately establishes the following theorem. probability approaching asn tends to infinity, a gap between
Theorem 3.2.Let 0 < R < 1 be fixed. For a random the minimum BSC pseudoweight (with respect to any parity-
binary linear codeC of lengthn and rateR, there is, with check matrix) and the minimum distance. Therefore, the BSC
probability approaching asn tends to infinity, a gap betweenpseudoredundancy is infinite for most codes.
the minimum AWGNC pseudoweight (with respect to any The last theorem disproves the conjecturelih [8] that the
parity-check matrix) and the minimum distance. Therefor8SC pseudoredundancy is finite for all binary linear cdtles.
the AWGNC pseudoredundancy is infinite for most codes. Example 3.6:Consider the [23,12] Golay code having min-
Remark 3.3:The result in Theorerh 3.2 is different from,imum distanced = 7. The minimum distance of its dual
but related to, the results in Propositions 49 and Corolfdyy code isdt = 8. We can take a pseudocodewardas in
in [2], where it was shown that the minimum AWGN pseuthe proof of Lemmd_3l4 withr = [n/d*+] = 3. We have
doweight of ensembles of regular LDPC codes grows sublinesc(x) < 27 = 6, thus obtaining that the minimum distance
early in the code length. Indeed, there are three fundarhensanot equal to the minimum pseudoweight.
differences between our results and [2]: (i) We do not assumeSimilarly, for the [24,12] extended Golay code we have
anything about the density of the parity-check matfx We d* = 8, and by takingr = [n/d*] = 3 we obtainwess(z) <
also use the fact that the dual code of the random code2is= 6.
asymptotically good; for a regular LDPC code this is not true Note however that the presented techniques do not answer
(i) We consider the fundamental cone, which is formed by dihe question of whether these Golay codes have finite AWGNC
possible linear combinations of the rows BF; by contrast, pseudoredundancy.

the authors of[[2] consider only the case when the colum
3 ] y r]5We note that a slightly different definition of BSC pseudayt®iwas given

weight of H is smaller than .itS row weight. .(iii) We show, [8], but the statement of Lemnfa_B.4 and thus Thedrerh 3.8 tith the
that the minimum pseudoweight of the considered ensembtene proof also with respect to this definition.
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In the context of the extended Golay code we mention th@tis in class3 (for BEC, AWGNC, BSC, and max-fractional

there other interesting graphical representations of Sdloken
by Tanner graphs; in particular, a minimilil-biting trellis

pseudoweight).
Proof: By LemmalZ.4 it suffices to prove this lemma

has been constructed for the extended Golay code In [18]. Tioe the max-fractional weightv = wpauee Sincew(xz) > 1
pseudoweights of its pseudocodewords are investigatédl,in [holds for all nonzero pseudocodewords, we always have
where it is shown that there are pseudocodewords with a B8, (H) > 1, which proves the result in the cage= 1.
pseudoweight of5; on the other hand, as far as we know, it Let d = 2 and H be a parity-check matrix fof. Let x €

is still unknown whether there are nonzero pseudocodeword§H ) and letx, be the largest coordinate. Sinde= 2 there

of the tail-biting trellis with an AWGNC pseudoweight of s is no zero column inH and thus there exists a royvwith

than8.

¢ e Z; Thenz, < Ziez\{g} z;, hence2z, < 3, x;, and

We have seen in this section that the AWGNC pseudordrus w(xz) > 2. It follows wy,i,(H) > 2 and the lemma is

dundancy and the BSC pseudoredundancy of a random binargved.

linear code is infinite. From Theorem P.5 it follows that this
holds also for the pseudoredundancy with respect to the max- V. CONSTRUCTIONS OF CODES FROM OTHER CODES

fractional weight.

IV. BASIC UPPERBOUNDS

The following results consider the pseudoredundancy of
codes obtained from other codes by the direct sum ofdhe)
construction. They are analogs of Theorems 7 and 8lin [6],

Whereas a random code has infinite pseudoredundancyefafj _The:)renjsh4.1 g‘nﬁ 4.2 inl [8], for t:e C"_"Sﬁ of the ma}x-
the AWGNC and the BSC, there are several families of codHé‘C“O“a weight and the AWGNC pseudoweight. Our proofs

for which the pseudoredundancy is finite. Sections[IV[ M, VI
and[VTl deal with upper bounds on the pseudoredunancy for

some particular classes of codes.

We start with this section considering two basic situatjon

namely the puncturing of zero coordinates and codes

minimum distance2. The following results hold with respect
to the BEC, AWGNC, and BSC pseudoweights, and the max-

fractional weight.

Lemma 4.1:Let C be an|n, k,d] code havingt zero co-
ordinates, and let’ be the[n — ¢,k,d] code obtained by
puncturingC at these coordinates. Then

p(C) < p(C) < p(C') +1t.

Proof: For notational purposes, we identil®” with RZ,
and forz € RZ and some subsét’ C 7 we let 2|z, € RZ’
be the projection ofc onto the coordinates ifi’.

Let Z' C 7 be the set of nonzero coordinates of the c6de
To prove the first inequality, leH be ap x n parity-check
matrix for C. Consider itsp x (n —t) submatrixH’ consisting
of the columns corresponding . ThenH' is a parity-check
matrix for C’, and

K(H') = {elz | @ € K(H), alp =0},

Therefore,win(H') > wmin(H), and this proves(C’) <
p(C).

For the second inequality, I/’ be ap’ x (n — t) parity-
check matrix forC’. Now we consider dp’ + t) x n matrix
H with the following properties: The uppef x n submatrix
of H consists of the columns of’ at positionsZ’ and of
zero-columns at positioris\ Z’, and the lowet x n submatrix
consists of rows of weight that havels at the positiong\Z’.
ThenC = ker H and

K(H) = {z e R? | x|z, € K(H'), |7\ = 0} .

Consequentlyw,,in (H) = wnin(H'), and this proves(C) <
p(C") +t.

Lemma 4.2:Let C be a code of minimum distaneg< 2.
Thend = wp;, (H) for any parity-check matrixd of C, i.e.,

n each case follow the exposition of these earlier proofs.
' Theorem 5.1:Let C; andCs be [n1, k1, d1] and[ng, ks, d]
binary linear codes, respectively. Then the direct <iym=
é(u 'U) | (TS Cl, v E CQ} is an [711 +na, k1+k2,min{d1, dQ}]
%qde with

pmax-frac(C?)) S pmax-frac(cl) + pmax-frac(CQ) )
PanGNec (CS) < Pawene (Cl ) + Pawonc (C2) .

Proof: Without loss of generality, we may assume that
both p(Cy) and p(C>) are finite, for otherwise the statement
to be proved is trivial. Foi = 1,2, let H; be a parity-check
matrix for C; having p(C;) rows and such thaw(x) > d, for
all z € K(H;) \ {0}. Then

H, 0
0,

is a parity-check matrix fo€; with p(C1) + p(C2) rows. Let
p=(gr) e K(Hj3)\ {0}, where the vectorg andr in the
concatenation have lengths andn, respectively. Then, we
may assumey € K(H1) \ {0} andr € K(H>) \ {0}, and
thereforew(q) > d; andw(r) > d,. (Note that in the case
where eitherqg or r is equal to0, the result is trivial since
for any ¢ # 0, w(g 0) = w(q) for both the max-fractional
weight and the AWGNC pseudoweight.)

We consider the two cases of max-fractional weight and
AWGNC pseudoweight separately.

Max-fractional weight:Assume without loss of generality
thatmax{q;} > max{r;}. Then

|

e max{p; } max{g; }
>4 .
— > >
> max{qi} >dy > mln{dl,dg}

which proves the result.
AWGNC pseudoweighfAssume without loss of generality
that wawenc(g) > Wanenc(7); this condition may be written as

(S )

ni

>

i=1

T2

>t) = (2

=1

T2

>

=1

(6)
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To establish the result, we need only to prove that..(p) > (8) There is an equivalence relation on theZetf column

waenc(T). NOW, since the entries af and» are nonnegative, indices of H such that for a vectoz € R™ with non-

we have negative coordinates we hawec C(H) if and only if
n1 na na x has equal coordinates within each equivalence class.

2(2%) (Z“) (er) >0. (7)  (b) The minimum distance of is equal to its minimum

i=1 i=1 i=1 BEC, AWGNC, BSC, and max-fractional pseudoweights
with respect toH, i.e., d(C) = wmyin(H).
Proof: For (a), define the required relatidd as follows:

Fori,i' € T let (4,4') € R if and only if i = ¢’ or there exists

n1 n2 2 s N2 n2 2 "2 an integer! > 1, column indices = ig,i1,...,4¢_1,7¢ =1’ €
2 2 2 .
(ZQH-ZW) (Zﬁ) z (Zn) (Zqi +Z7"i) 7 and row indicegjy, ..., j; € J such that
i=1 i=1 i=1 i=1

Adding (372, ri)Q(Zm r?) to both sides of{7) and adding

i=1"1

the resulting inequality to inequalit{/](6) yields

=1 i=1

which may be rearranged a8ucnc(P) > Wanenc(T), as lioin} =Ty, Ainsia} =Ty o {iesie} = I, -
desired. B This is an equivalence relation, and it defines equivalence
Theorem 5.2:LetC; be an[n, k, d] binary linear code. Then classes ovef. It is easy to check that inequalitids (2) imply
Co={(uu)|ueC}isal2n,k, 2d] code with thatx € K(H) if and only if x; = z;» for any (i,7') € R.
In order to prove (b), we note that the minimum (BEC,
Praxiad C2) < PraciaeC1) + 10, AWGNC, BSC or max-fractional) pseudoweight is always
pawenc(C2) < pawenc(C1) + 1. bounded above by the minimum distanc&p$o we only have

) . to show that the minimum pseudoweight is bounded below by
Proof: As before, without loss of generality, we May,a minimum distance.

assume Fhap(Cl) is finite. Let H, be a parity-check matrix | o S =1{51,5,...,5:} be the set of equivalence classes
for C; with p(C;) rows and such thaw(z) > d; for all R, and letds = |S| for S € S. It is easy to see that

x € K(H1)\ {0}. Then the minimum distance of is d = mingesds (Since the
H, 0 minimum weight nonzero codeword 6fhas non-zeros in the
H, = [ I, I, } coordinates corresponding to a $e€ S of minimal size and
zeros everywhere else).
is a parity-check matrix foC, with p(C1) + n rows (here  Now leta: € K(H). Since the coordinates, i € Z, depend
I,, denotes then x n identity matrix). Letp = (¢ r) € only on the equivalence classes, we may use the notation

K(H?2) \ {0}, where the vectorg € K(H1) andr in the §eS. Letzy, T €S, be the largest coordinate. Then:

concatenation both have length Then, fori = 1,2,...,n,

from the fundamental cone inequalities for rew4- i we get Winacrao ) = 2ier Ti > Yier i =|T|=dr>d.

q; < r;i < q;, S0 we havep = (q q). Now, sinceq € K(H 1)\ T T

{0}, we havew(q) > d;. Sincew((q q)) = 2w(q) for both Thereforew™"™(H) > d, and by using Lemm@& 2.4, we get

the max-fractional weight and the AWGNC pseudoweight, wes=c (H) > d, w'e"(H) > d, andw®S (H) > d. ]

havew(p) > 2d, and the result follows. u The following proposition is a stronger version of
Remark 5.3:Theorem 9 in[[6] and Theorem 4.3 in| [8] statd_emma[6.1.

that if C is an[n, k, 3] binary linear code then the extended Proposition 6.2:Let H be anm x n parity-check matrix

[n+1, k, 4] codeC’ satisfiesp(C’) < 2p(C), for the BEC pseu- of C, and assume that the: — 1 first rows in H have

doweight and the BSC pseudoweight, respectively. Regardiweight 2. Denote by H the (m—1) x n matrix consisting

the corresponding results for the case of the max-fractioruf these rows, consider the equivalence relation of Leintia 6.

weight and the AWGNC pseudoweight, we mention here on{g) with respect tol, and assume thdf,, intersects each

that the analogous result in fact does not hold for the caseegfuivalence class in at most one element. Then, the minimum

the max-fractional weight. As a counterexample, consiber tdistance ofC is equal to its minimum BEC, AWGNC, BSC,

[7,4, 3] Hamming code’; which satisfiep(C1) <2°—1=7 and max-fractional pseudoweights with respectFh i.e.,

(cf. Propositiori 7J7). On the other hand, tise4, 4] extended d(C) = wy,in (H).

Hamming codeCs satisfies ppaadC2) = oo (cf. Section Proof: Let S be the set of classes of the aforementioned

VITI-B). equivalence relation off, and letds = |S| for S € S. Let

S ={SeS||SNT,| =1}.
Iso letS”" =S\ &', so thatSNZ,, =2 forall S eS8”.

In this section we consider the pseudoredundancy of codAe?_et x € K(H)\ {0}. As before, since the coordinates

with a parity-check matrix consisting of rows of weighand . :
. .~ 1 € T, depend only on the equivalence classes, we may use
at most one additional row. The results are then applied ttr%)

. ~~ the notationrg, S € S. The fundamental cone constrairts (2)
upper-bound the pseudoredundancy for codes of d|meﬂs|0nand [3) may then be written as; > 0 for all S € S and
The basic case is dealt with in the following lemma. =
Lemma 6.1:Let H be a parity-check matrix af such that VReS : zp < Z s , (8)
every row in H has weight2. Then: SeS\{R}

VI. PARITY-CHECK MATRICES WITH ROWS OF WEIGHT2



8 SUBMITTED TO IEEE TRANSACTIONS ON INFORMATION THEORY

respectively, and the max-fractional weightot IC(H)\{0} Proof: We consider two cases.
is given by Case 1:C has no zero coordinates.
. Zses dsts Let ¢; andes be two linearly independent codewords(f
Wmax-frac(w) - - ( ) . H .
maxges Ts Define the following subsets &f:

Supposex € K(H) \ {0} has minimal max-fractional g
weight. Let xp be its largest coordinate. First note that if !
there existsk € §” \ {T'} with zg > 0, settingzr to zero 52
results in a new pseudocodeword with lower max-fractional Sy
weight, which contradicts the assumption thatchieves the
minimum. Thereforezp = 0 for all R € §” \ {T'}. We next The setsS;, S2, and S; are pairwise disjoint. Sinc€ has
consider two cases. no zero coordinates, = S; U Sy U S3. The ordering of the

Case 1.T € §”. If there existsk € &’ with zr > 0, setting elements inZ implies an ordering on the elements in each
all suchzp to zero results in a new pseudocodeword witbf Sy, Sz, and Sz. Assume thatS; = {iy,i2,--- ,i|s,|} and
lower max-fractional weight, which contradicts the minlitya iy <iy <--- <ig,). If S1 # &, letm; = i; be the minimal
of the max-fractional weight of. Thereforezr is the only elementinS,, and define af|S:|—1)xn matrix H, = (H; ,)
positive coordinate of, and by [9) the max-fractional weightas follows:

{i €T |iesupfc1) andi ¢ supfica)}
{i€Z|i¢supfder) andi € supges)}
{i € T |i € supfei) andi € supgcz)}.

> I e

of  is dr. L ,
Case 2:T € S'. In this casery = 0 for all R € S”. From ) 1oifiy=Corij., =4¢,
inequality [8) forR = T we obtain Hj,= =12 S =1,
0 otherwise .
< .
e SGSZ\:{T} s Similarly, define(]|Sz| — 1) x n and (|S3| — 1) x n matrices
H, and H 3, with respect toS, and S;. (Some of theS;s
With do = mingegsn 7} ds it follows that might be equal taz, in which case the correspondidd; is
not defined.) Letn, andmgs be minimal elements of, and
doxr < Z dors < Z dsxzs . S3, respectively (ifS; # @ and Sz # ).
SeS\{T} SeS\{T} Subcase 1-a: One d¥;, So, S3 is empty.Without loss of
generality we may assume th8f = o, i.e., thatc; and ¢y
Consequently, have disjoint support; indeed, if for exampts = @, then
(dr + do)zr < Z dszs , supp(c1) C supp(cz) and we can replace by ¢ +c,. Define
Scs an(n—2) x n matrix H by HT = [HT | HY]. It is easy

to see that all rows oH are linearly independent, and so its
rank isn — 2. It is also straightforward that for alt € C
we havec € ker(H). Therefore,H is a parity-check matrix
of C. The matrix H has a form as in Lemma 6.1, and thus
i) = win { | min (ds-+ i) win{as) o pe)—n >

S,T€S’,S£T
Subcase 1-b: Neither oy, S2, S3 is emptyDefine al x n

and thuswaed@) > dr+do. We conclude that the minimum
max-fractional weight is given by

But this is easily seen to be equal to the minimum distancematrix /7, — (H%,), where
of the code. ”
Finally, by using Lemm&a2]4, we obtain thaf:. (H) = d, 1 if S;#@andm, =¢
Wi “(H) = d andwiyy (H) = d. u HY, = for j=1,2,3,
Remark 6.3:The requirement that ali € Z,, belong " 0 otherwise .

to different equivalence classes & in Proposition[6.R is

necessary. Indeed, consider the matrix Additionally, define an(n — 2) x n matrix H by HY 2

110 0 [H{ | HY | H | H] ]. Similarly to the previous case, all
011 0 rows of H are linearly independent, its ranksis— 2. For all

H = 101 0 c € C we havec € ker(H). Therefore,H is a parity-check
11 1 1 matrix of C.

. The matrix H has a form as in Propositidn 6.2 (wheSe,
One can see that there are two equivalence classedffor S,, andSs are corresponding equivalence classes @eand
S1 = {1,2,3}, So = {4}. The minimum distance of the thereforep(C) =n — 2.
corresponding code& is 4 (since (1,1,1,1) is the only  Case 2:C hast > 0 zero coordinates.
nonzero codeword). However, = (1,1,1,3) € K(H) is a  Consider a codé€’ of lengthn —t obtained by puncturing
pseudocodeword of max-fractional weight in theset zero coordinates. From Case 1 (with respeatio
Corollary 6.4: LetC be a code of length and dimensior2. p(C'") = n —t — 2. By applying the rightmost inequality in

Thenp(C) = n—2, i.e, C is of class at least (for BEC, |emmd4.l, we have(C) < n—2. Sincek = 2, we conclude
AWGNC, BSC, and max-fractional pseudoweight). that p(C') = n — 2. n
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VIl. CODESBASED ONDESIGNS The result now easily follows from the definition @f>". m

Among the codes with finite pseudoredundancy an inter- Theorem 7.3:LetC be a code with parity-check matrid,
esting class of codes is based on designs. In this section $#&h that a subset of the rows Hf forms the incidence matrix
considerpartial designs which include the common BIBDs for a partial(w., A) design. Then,

(also callec2-designs). We present a principal lower bound on WAVSNS > | We

the minimum pseudoweight for codes, when the parity-check min = A7

matrix is the block-point incidence matrix of a partial dgsi wBse > 1 1 We

We apply this bound to the Hamming codes and the simplex e A

codes and deduce that their pseudoredundancy is finite. Proof: Apply Lemma[2.4 and Theorem 7.2. [

Definition 7.1: A partial (w., \) designis a block design ~ Results similar to Theorem 7.2 and Theorem 7.3 were also
consisting of am-element sel (whose elements are calledpresented and proven by Xia and Ful[22] in the AWGNC case.
pointg and a collection ofn subsets ol (calledblockg such ~ Remark 7.4:Under the conditions of Theoreln ¥.3,4f ¢
that every point is contained in exactly. blocks and every K(H) is a nonzero pseudocodeword such thafewc(z) =
2-element subset of is contained in at mosk blocks. The 1+ == holds then it follows thate is a scalar multiple of a
incidence matrixof a design is ann x n matrix H whose binary vector. This can be easily seen by considering thefpro
rows correspond to the blocks and whose columns corresp@idhe inequalitywaenc (%) > Wiarad @) (Se€ [2, Lemma 44])
to the points, and that satisfi¢g; ; = 1 if block j contains and examining when equalitywexc(T) = Wiacrax) holds.
points, and H; ; = 0 otherwise. Furthermore it can be shown that in this casis actually a

If each block contains the same numher of points and scalar multiple of a codeword (see [22, Theorem 3]). It folo
every2-element subset of is contained in exactiy blocks, that the AWGNC pseudocodeword spectrum gap is positive,
the design is said to be afn,w,,\) balanced incomplete provided thatd(C) = 1 + %< holds.

block design(BIBD), or 2-design Another tool for proving lower bounds on the mini-
In the following we avoid the trivial cases< 1 andA = 0. mum AWGNC pseudoweight is provided by the following
For a BIBD we haver w. = mw, and also eigenvalue-based lower bound by Vontobel and Koetter [9].

Proposition 7.5 (cf.[[9]): The minimum AWGNC pseu-
we (wr —1) = A(n —1) doweight for a(w.., w,)-regular parity-check matri¥f whose
(see, e.g.,[T19, p. 60]), s6n,w,,)\) determines the other corresponding Tanner graph is connected is bounded below by

arametersy, andm b —
P ’1” y 1 whene >, | 2We = Bz (13)
we=""L1 % and m=-_"=D (g g .
wy — 1 wy (w, — 1) wherepu; and s denote the largest and second largest eigen-

. . A i
Note that [20] and[[21] consider parity-check matrices Has¥alue (respectively) of the matrit, = H_TH' here, L and
on BIBDs; these matrices are the transpose of the incidertB& matrix multiplication are to be considered over theseal

matrices defined here. In the case wherdd is equal to the incidence matrix for
We have the following general result for codes based @ (7, wr,A) BIBD, the bound of Proposition 7.5 becomes
partial (w., A) designs. wAeNe > | We ’ (14)

Theorem 7.2:Let C be a code with parity-check matrid, min A
such that a subset of the rows Hf forms the incidence matrix so that in this case the bound of Proposifion 7.5 coincidés wi
for a partial(w., A) design. Then the minimum max-fractionakhat of Theoreni 713 (for the case of the AWGNC only).
weight of C with respect toH is lower bounded by To see why[(IB) becomeE {14), denote the colunm Z

X 2 X _ T
e | | We (11) of H by h; and d_enote the matrik = (leg)i,lel' =H H.
A From the properties of a BIBD we get
For the case of afin, w,, ) BIBD, the lower bound in[(11) ——
. T we ifi=41,
may also be written as Liy=h; h;= .
) A ifiA£L.
max-frac n— .
Wi > 1+ w, —1° Now, L has largest eigenvalyge = w,w. and only one other

eigenvalueus = w. — A, whose multiplicity isn — 1, since
one can writeL = A1+ (w. — A)I, wherel andI denote the
all-ones and the identity matrices, respectively. Now weeha
We — i = We + A and g — o = wpwe — we + A = nA, SO
thatn - 22e=t2 — ] 4 e,

the alternative form follows directly froni_(10).

Proof: Consider the subset of the rows Hf which forms
the incidence matrix for a partiglv., \) design. Letz be a
nonzero pseudocodeword and igtbe a maximal coordinate

of x (¢ € 7). For all j € J;, sum inequalities (2). We have p1— 2
Remark 7.6:Prominent examples for codes based on de-
WeTg <A Z T, signs are codes based on Euclidean or projective ge-
i€\ {¢} ometries, in particular the[4® —1,4° — 3% 2% 4+ 1] code
and thus based on the Euclidean plareG(2,2°) as well as the
(14_%) re <y w. (12) [4°+2°+1,4°—3°+2°,2°+ 2] code based on the pro-

e jective planePG(2,2%) (see [5], [15]). Theoreni 7.3 and
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Remark[Z.4 apply to these codes, as their standard parityWe remark that the bounds of Propositiéns 7.7 flanél 7.8 are
check matrices form the incidence matrix for a partial desigsharp at least for the case = 3 and the max-fractional
with parameter§w., A) = (2%,1) and (w.,\) = (2°+1,1), weight, see Section VII-B.

respectivel@; in particular these codes have finite pseudore- The following proposition proves that the AWGNC, BSC,

dundancy. and max-fractional pseudocodeword redundancies are fimite
We next apply the bounds of Theorems| 7.2 7.3 to sorakk codesC with minimum distance at most
other examples of codes derived from designs. Proposition 7.9:Let C be a|n, k, d] code withd < 3. Then

Proposition 7.7:Form > 2, the [2" —1,2™ — 1 —m,3] PraradC) IS finite. Moreover, we have,...{C) = n — k in
Hamming code has BEC, AWGNC, BSC, and max-fractionéte cased < 2.

pseudocodeword redundancies Proof: By using Lemmd4]2 we may assume= 3.
Denote byH the parity-check matrix whose rows consist of
p(C)<2m—1. all codewords of the dual code 6f Note that for a code of

minimum distancel, a parity-check matrixft{ consisting of
Proof: For m > 2, consider the binary parity-checka|l rows of the dual codé€~ is an orthogonal array of strength
matrix H whose rows are exactly the nonzero codewords_ 1. |n the present casé = 3, and this implies that in any
of the dual codeC*, in this case the2™ —1,m,2™ '] pair of columns ofH, all length2 binary vectors occur with
simplex code. ThidH is the incidence matrix for a BIBD with equal multiplicities (cf.[[19, p. 139]). Thus the matr#{ is
parametergn, w,, \) = (2™ —1,2™~",2™~2). TheorenL.Z2 an incidence matrix for a partial block design with paramete
OIVeS Wi @) > 3, l€ading t0paiaC) < 2™ — 1. (we, A) = (2771,2772), wherer = n — k. Therefore for this
The result for BEC, AWGNC, and BSC follows by applyingmatrix H the code has minimum (AWGNC, BSC, or max-
Theoren{ 2.b. B fractional) pseudoweight at least- w./\ = 3, and it follows
In the next example, we consider simplex codes. Straighitat the pseudocodeword redundancy is finite for any code
forward application of the previous reasoning does not leagth d = 3. []
to the desired result. However, more careful selection ef th We remark that Propositidn_71.9 implies the results for the
matrix H, as described below, leads to a new bound on thkdamming codes (Propositidn_7.7). However, we present the

pseudoredundancy. two proofs, since they use different methods.

Proposition 7.8:For m > 2, the [2™ — 1, m, 2™~ ] sim- We have considered in this section several families of
plex code has BEC, AWGNC, BSC, and max-fractional psegedes based on designs, which have finite pseudocodeword
docodeword redundancies redundancy. As noted in Sectidn_1-E, finiteness of pseu-

m m—1 doredundancy would also follow if one can show that the

(2m—-1)(2 -1) : -

p(C) < . codes are geometrically perfect. However, this is not the

3 case for the examined codes in general. For example, the

Proof: For m > 2, consider the binary parity-check[2™ —1,2™ — 1 —m 3] Hamming code is not geometrically

matrix H whose rows are exactly the codewords of the dugkrfect form > 4; this follows from the characterization of

codeC+ (in this case thé2™ — 1,2™ — 1 —m, 3] Hamming geometrically perfect codes, as tfi 3, 4] simplex code can

code) with Hamming weight equal t8. This H is the be obtained from the Hamming code by repeated shortening,

incidence matrix for a BIBD with parametefs, w,,\) = whenm > 4.

(2™ —1,3,1). Theoren[ 7P gives/m > 2m—1,

Note that the number of codewords of weigl® VIII. THE PSEUDOCODEWORDREDUNDANCY FORCODES
in the [2™—1,2" —-1-m,3] Hamming code equals OF SMALL LENGTH

(2m - nEm™t—1)/3. One can show this, e.g., by consider- | this section we compute the AWGNC, BSC, and max-

ing the full sphere-packing of the perfect Hamming code afghctional pseudocodeword redundancies for all codes aflsm

observing that each codeword of weightcovers exactly3  |ength. By Lemm4 412 it is sufficient to examine only codes

vectors of weight2, of which there arg2™ —1)(2™ —2)/2  wjth minimum distance at least. Furthermore, in light of

in total. LemmalZ.1 we will consider only codes without zero coor-
Next, we justify the claim thafd is a parity-check matrix dinates, i.e., codes that have a dual minimum distance of at

of C. A theorem of Simonis'[23] states that if there exists gast2. Finally, we point out to Corollary 64 for codes of

linear [n, k, d] code then there also exists a lindar k,d] dimensior2, by which we may focus on codes with dimension
code whose codewords are spanned by the codewordsgpfeasts.

weightd. Since the Hamming code is unique for the parame-
ters[2™ — 1,2™ — 1 — m, 3], this implies that the Hamming :
code itself is spanned by the codewords of weighso the A. The Algorithm

rowspace ofH equalsC. To compute the pseudocodeword redundancy of a ¢bde
The result for BEC, ANGNC, and BSC follows again byVe have to examine all possible parity-check matrices fer th
applying Theorer 2J5. m codeC, up to equivalence. Here, we say that two parity-check

matricesH and H' for the codeC are equivalentif H can
H !
6In the latter case the partial design is even a BIBD with patens be transfprmed 'nt(_fI by a sequence of I’OV\/I and column
(4542541,25+1,1). permutations. In this caseymin(H) = wmin(H") holds for
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TABLE |
THE NUMBER OF BINARY [n, k, d] CODES
WITH d > 3 AND WITHOUT ZERO COORDINATES

| k=1 2 3 4 5
n=>5 1 1
6 1 3 1
7 1 4 4 1
8 1 6 10 5
9 1 8 23 23 5

the BEC, AWGNC, BSC, and max-fractional pseudoweights.
The enumeration of codes and parity-check matrices can be
described by the following algorithm.

Algorithm 8.1:

Input: Parameters: (code length),k (code dimension),
p (number of rows of the output parity-check matrices), where
p>r Zn—k

Output: For all codes of lengtiu, dimensionk, minimum
distanced > 3, and without zero coordinates, up to code
equivalence: a list of alp x n parity-check matrices, up to
parity-check matrix equivalence.

1) Collect the setX of all » x n matrices such that

« they have different nonzero columns, ordered lexi-
cographically,

« there is no non-empt¥,-sum of rows which has
weight 0 or 1 (this way, the matrices are of full
rank and the minimum distance of the row space is at *®
least2).

2) Determine the orbits inX under the action of the
groupGL,.(2) of invertibler x » matrices oveify (this .
enumerates all codes with the required properties, up to
equivalence; the codes are represented by parity-check
matrices)

3) For each orbitX¢, representing a codé:

a) Determine the suborbits iX: under the action

of the symmetric groupS, (this enumerates all

parity-check matrices without redundant rows, up

to equivalence)

For each representatild of the suborbits, collect

all matrices enlarged by adding — r different

redundant rows that arB;-sums of at least two

rows of H. Let X¢ , be the union of all sucp xn .

matrices.

Determine the orbits iX ¢, , under the action of the

symmetric groupS,, and output a representative

for each orbit. .

b)

This algorithm was implemented in the C programming
language. The minimum pseudoweights for the various parity

11

1) AWGNC pseudoweightThe following results were
found to hold for all codes of length < 9.

There are only two code8 with pyenc(C) > 7, i.€., in
class0 or 1 for the AWGNC.

— The|[8,4,4] extended Hamming code is the shortest
codeC in class 1. We haveec(C) =5 >4 =71
and out of12 possible parity-check matrices (up to
equivalence) with one redundant row there is exactly
one matrix H with wA*Ne(FT) = 4, namely

min
10011 0 0 1
01010 10 1
H=]001 10 01 1
111100 00
00001 1 1 1

There is exactly one matrifH with wi¥eh(H) =
25/7, and for the remaining matriceBl we have
wAeNS(H) = 3.

For this code, als@(C) = 5 > 4, and it is the
only code of lengthm < 9 with pgec(C) > .

— Out of the four[9,4, 4] codes there is one code
in class 1. We havee(C) = 6 > 5 = r and
out of 2526 possible parity-check matrices (up to
equivalence) with one redundant row there ase

matricesH with wi¥oN"°(H') = 4.
For all codesC of minimum distancel > 3 and for all

parity-check matrice$f of C we havew's'“(H) > 3;in
particular, ifd = 3, thenC is in class3 for the AWGNC.
For the[7, 3, 4] simplex code there is (up to equivalence)

only one parity-check matrixt{ without redundant rows
such thatw?e"(H) = 4, namely

min
11 0 1 0 0 O
01 1 0 1 0 O
H =
0 0 1 1 0 1 0
00 0 1 1 0 1

It is the only parity-check matrix with constant row
weight 3.

2) BSC pseudoweightVe computed the pseudocodeword
redundancy for the BSC for all codes of length< 8.

The shortest codes withssc(C) > 7, i.e., in class) or 1

for the BSC, are th&, 4, 3] Hamming cod& and its dual
codeC+, the [7,3,4] simplex code. We havgss(C) =

4> 3 and pgsc(Ct) =5 > 4.

There are two codes of lengt® with pgsc(C) > 7.
These are th&, 4, 4] extended Hamming code, for which
pesc(C) = 6 > 4 holds, and one of the threg, 3, 4]
codes, which satisfiegs.(C) = 6 > 5.

check matrices were computed by using Maple 12 and the3) Max-fractional weight: We computed the pseudocode-

Convex package [24].

word redundancy with respect to the max-fractional weight

for all codes of lengtm < 8.

B. Results .

We considered all binary linear codes up to lengtlvith
minimum distanced > 3 and without zero coordinates, up
to code equivalence. The number of those codes for given
lengthn and dimensiork is shown in Tablé]l.

The shortest code Withy,.«(C) > 7 is the unique
[6,3,3] codeC. We havep, ... {C) =4 > 3.

There are two codes of lengftwith p.uadC) > 7. These
are the[7,4,3] Hamming code and th§, 3,4] simplex
code, which have both pseudocodeword redundanby
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both cases, there is, up to equivalence, a unique paritight hand side equals the minimum distantef the codeC,

check matrix H with seven rows that satisfieC) = then pyenc(C) < n.
wreiee( H). Note that the largest eigenvalue of the matix= H” H is

This demonstrates that Propositions 7.7 7.8 are shafp= w?, since every row weight oL equalsy, oz hihj =
for the max-fractional weight, and that the parity-check?. Consequently, the eigenvalue bound is
matrices constructed in the proofs are unique in this case. M — pi

AWGNC X
« For the [8,4,4] extended Hamming cod€ we have b =n

min
Prociad C) =9 apd thus_ the code is in claﬁsfor _th(_e . where s is the second largest eigenvalue bf We remark
max-fractional weight. It is the shortest code with infinitg | o that, — (Lj.:)ijez IS @ symmetric circulant matrix,

max-fractional pseudoredundancy. - - )
: with Lj; = £;_; and{; = >, .7 hxhryi. The eigenvalues of
(It can be checked that = [1,1,1,1,1,1,1,3] is a L are thus given by

pseudocodeword ifC(H), where the rows off consist N N
of all dual codewords; SiNC@uml(z) = & < 4, we A= ngg = ReZ&Cﬁf = Zéi cos(2mij/n)
havewpa=(H) < 4.) i€T i€l i€l

« There are two other codes of lengthvith p,....(C) > r, for j € Z, where(, = exp(2wi/n) is then-th primitive root
namely two of the threds,3,4] codes, having pseu- of unity andi? = —1 (see, e.g.[[25], Theorem 3.2.2).
docodeword redundandyand 8, respectively. We also consider quasi-cyclic codes of the form given in the

4) Comparison: Comparing the results for the AWGNcfollowing remark. This code construction is only introddce

and BSC pseudoweights, and the max-fractional weight, W& completeness towards classifying the results; theltragu
can summarize the results as follows. codes are not interesting for applications, as the minimum

. _ Hamming distance is at mo8&tfor m > 2.
» For the[7,4, 3] Hamming codeC we havepuenc(C) = Remark 9.1:Denote by1,, the m x m matrix with all
r= 31 pBSC(C) = 41 andpmax—frac(c) = 7

entries equal td. If H is aw-regular circulant: x n matrix

)
w2 — g

« For the[7,3,4] simplex codeC we havepuec(C) =  then the Kronecker produd 2 H ©1,, will be aw-regular
r=4, pesc(C) =5, aNnd ppacsad C) = 7. circulantmn x mn-matrix and defines a quasi-cyclic code. We
« For the [8,4,4] extended Hamming cod€ we have have
pAWGNC(C) = 51 pBSC(C) = 61 and pmax-frac(c) = oo. This i—/ _ ﬁTﬂ' _ HTH 1T1 - L 1
code( is the shortest one such that,ew.(C) > r, and - - DLplm = L& (mln),
also the shortest one such that,..{C) = occ. and the eigenvalues of1,, arem? and0. Thus, the largest

i T ~ 2 _ 2,,,2 ~ 2
« If d > 3 then foreveryparity-check matrixil we have €igenvalues ot arej; = m*u = m w” and iy = m-ps,
wASNe(FT) > 3. This is not true for the BSC and the@nd the eigenvalue bound of Proposition] 7.5 becomes

min

max-fractional weight. 2mw — m? 2w —m
wWASNe >, ST TV B2 20 T T2

These observations show that there is some significant R m2w? — m2pg w2 — o

differenc_e between the various types of pseudocodeword reye carried out an exhaustive search on all cyclic catiep
dundancies. _ . to lengthn < 250 and computed the eigenvalue bound in all
Itis also interesting to note that tife, 4, 3] Hamming code ¢ases where the Tanner graph of the full circulant parityekh

is geometrically perfect, while the, 3, 4] code and thé8, 4,4]  marix is connected, by using the following algorithm.
code are not (cf. Sectidn II}E). Algorithm 9.2:

Input: Parametern (code length).
Output: For all divisors ofz™ — 1, corresponding to cyclic

In this last section we apply the eigenvalue-based lowesdesC with full circulant parity-check matrix, such that the
bound on the minimum AWGNC pseudoweight by Vontobefanner graph is connected: the value of the eigenvalue bound
and Koetter[[®], see Propositibn ¥.5. We investigate forolhi o ] ]
cyclic codes of short length this bound is sharp with respectl) Factorz™ — 1 over F; into irreducibles, using Cantor
to the minimum Hamming distance, for in this case, the codes  and Zassenhaus’ algorithm (cf. [26], Section 14.3).
have finite AWGNC pseudoredundancy. 2) For each divisorf(z) of z" —1:

IX. CycLic CODESMEETING THE EIGENVALUE BOUND

We consider binary cyclic codes with full circulant parity- a) Letf(z) =>_, hiz' and H = (h;—i)i jez.
check matrices, defined as follows: Létbe a binary cyclic b) Check that the corresponding Tanner graph is con-
code of lengthn with check polynomiah(z) = 3, ; hiz! nected (i.e., that the greatest common divisor of
(cf. [19], p. 194). Then thdull circulant parity-check matrix the indicesi with h; = 1 together withn is 1).
for C is the n x n matrix H = (H;;); jer With entries c) Compute the eigenvalues df = H'H: Let
H;; = h;—;. Here, all the indices are module, so that ti = ) ez hwhiyi and forj € I compute
7={0,1,...,n—1}. > bicos(2mij/n).

Since such a matrix i@-regular, wherew = 3, _; h;, we d) Determine the second largest eigenvajueand
may use the eigenvalue-based lower bound of Proposifidn 7.5 outputn - (20y — pi2)/ (€3 — p2).

to examine the AWGNC pseudocodeword redundancy: If the
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TABLE Il
BINARY CycCLIC CODES UP TOLENGTH250WITH d = 2
MEETING THE EIGENVALUE BOUND

parameters w-regular  constituent code

[2n,2n—m, 2] 2m Hamming c.,n =2 —1,m =2...6
2n,2n—m—1,2] 2m™ -2 Hamming c. with overall parity-check

[42, 32, 2] 10 projective geometry cod®G(2,4)

(146,118, 2] 18 projective geometry cod®G(2, 8)

(170,153, 2] 42 a certain[85, 68, 6] 21-regular code
(the eigenvalue bound is 5.2)
TABLE Il

BINARY CycLIC CODES UP TOLENGTH250WITHd > 3
MEETING THE EIGENVALUE BOUND

13
Finally, we apply Propositioh 7.5 to get
2 (2m—1 _1) _ 2m—2
AWGNC > 2777,_1
Whin = ( ) (2m71_1)2 _ 2m72
_(2m=1) (2(2m~t—1)—2m~2)
B (2m—1) (2m—2-1)
C3(2m2-1) 41
oomm21
which proves the result. ]
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parameters w-regular comments
[n,1,n] 2 repetition coden = 3...250
[n,n—m, 3] gm—1 Hamming c.n =2m—1, m =3...7
(7,3,4] 3 dual of the[7, 4, 3] Hamming code
[15,7,5] 4 Euclidean geometry code EG(2,4)
[21,11, 6] 5 projective geometry code PG(2,4)
[63,37,9] 8 Euclidean geometry code EG(2,8)
(73,45, 10] 9 projective geometry code PG(2,8)

This algorithm was implemented in the C programmingm
language. TableS1Il and Il give a complete list of all cases
in which the eigenvalue bound equals the minimum Hammintlg2
distanced, for the casesl = 2 andd > 3, respectively. In ]
particular, the AWGNC pseudoweight equals the minimum
Hamming distance in these cases and thus we have for tf#&
pseudocodeword redundan@yenc(C) < n. All examples
of minimum distance are actually quasi-cyclic codes as in
Remark 9.1l with parity-check matrifl = H ® 1,. We list
here the constituent code given by the parity-check maiFix

We conclude this section by proving a result which wags)
observed by the experiments.

Lemma 9.3:Let m > 3 and letC be the intersection of a
Hamming code of lengtm = 2™ — 1 with a simple parity-
check code of lengtle, which is a cyclicjn,n — m —1,4]
code. Consider its full circulant parity-check mat#X. Then

(6]

(7]

1
Wﬁv&NC(H)Z3+m>3. [8]

In particular, ifm = 3 thenC is the[7, 3,4] code and the
result impliesw2°"(H') = 4 and pawenc(C) < 7.

Proof: Let H be thew-regular full circulant parity-check
matrix for C. We claim thatw = 2™~! —1. Indeed, each [10]
row h of H is a codeword of the dual codg", and since
C* consists of the codewords of the simplex code and th&rl]
complements, the weight df and thusw must be2m 1 —1,
2m=1 or 2m —1. But w cannot be even, for otherwise alll'2]
codewords o+ would be of even weight. As) = 2™ —1 is
clearly impossible, it must hold) = 2m~1 1.

Next, we show that the second largest eigenvalud of
H"H = (L;,)i jer equalsu; = 2™~2. Indeed, leth, and [14]
h, be different rows ofH, representing codewords of-.

As their weight is equal, their Hamming distance is even, aftb!
thus it must be™~!. Hence, the size of the intersection of the
supports ofh; andhs is 2 ~2—1. This implies thatl; ; = w  [16]
and L;;, = 2m=2—1, for i # j. ConsequentlyL has an
eigenvalue of multiplicityn — 1, namelyw — (2™ 2—1) =
2m=2 and thusu, must be2™ 2,

El

[13]

[17]
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