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A Factor Graph Approach to Clock Offset
Estimation in Wireless Sensor Networks

Aitzaz Ahmad, Davide Zennaro, Erchin Serpedin, and Lorenzo Vangelista

Abstract—The problem of clock offset estimation in a two
way timing message exchange regime is considered when the
likelihood function of the observation time stamps is Gaussian,
exponential or log-normally distributed. A parametrized solution
to the maximum likelihood (ML) estimation of clock offset, based
on convex optimization, is presented, which differs from the
earlier approaches where the likelihood function is maximized
graphically. In order to capture the imperfections in node
oscillators, which may render a time-varying nature to the clock
offset, a novel Bayesian approach to the clock offset estimation is
proposed by using a factor graph representation of the posterior
density. Message passing using the max-product algorithm yields
a closed form expression for the Bayesian inference problem.
Several lower bounds on the variance of an estimator are
derived for arbitrary exponential family distributed likelihood
functions which, while serving as stepping stones to benchmark
the performance of the proposed clock offset estimators, can be
useful in their own right in classical as well Bayesian param-
eter estimation theory. To corroborate the theoretical findings,
extensive simulation results are discussed for classical as well
as Bayesian estimators in various scenarios. It is observed that
the performance of the proposed estimators is fairly close to the
fundamental limits established by the lower bounds.

Index Terms—Clock synchronization, factor graphs, message
passing, estimation bounds, wireless sensor networks.

I. INTRODUCTION

W IRELESS sensor networks (WSNs) typically consist
of a large number of geographically distributed sensor

nodes, deployed to observe some phenomenon of interest. The
nodes constituting such a network are low cost sensors that
have limited abilities of data processing and communication.
WSNs envisage tremendous applications in such diverse areas
as industrial process control, battlefield surveillance, health
monitoring, target localization and tracking, etc., [1]. With
the recent advances in digital circuit technology, WSNs are
expected to play a pivotal role in future wireless communica-
tions.

Clock synchronization in sensor networks is a critical
component in data fusion and duty cycling operations, and
has gained widespread interest in the past few years. Most
of the current methods consider sensor networks exchanging
time stamps based on the time at their respective clocks.
A survey of the popular approaches employed in practice
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for timing synchronization is presented in [2] and [3]. The
one-way message exchange mechanism involves a reference
node broadcasting its timing information to other nodes in
a network. The receiver nodes record the arrival of these
messages with respect to their own clock. After several such
time stamps have been exchanged, the nodes estimate their
offsets based on these observations. A particular case of this
approach is the flooding time synchronization protocol (FTSP)
[4] which uses regression to estimate the clock offset. On
the other hand, through a two-way timing exchange process,
adjacent nodes aim to achieve pairwise synchronization by
communicating their timing information with each other. After
a round of N messages, each nodes tries to estimate its
own clock parameters. The timing-sync protocol for sensor
networks (TPSNs) [5] uses this strategy in two phases to
synchronize clocks in a network. The level discovery phase
involves a spanning tree based representation of a WSN
while nodes attempt to synchronize with their immediate
parents using a two-way message exchange process in the
synchronization phase. In receiver-receiver synchronization,
nodes collect time stamps sent from a common broadcasting
node and utilize them to adjust their clocks. The reference
broadcast synchronization (RBS) protocol [6] uses reference
beacons sent from a master node to establish a common
notion of time across a network. An alternative framework
for network-wide distributed clock synchronization consists
of recasting the problem of agreement on oscillation phases
and/or frequencies as a consensus based recursive model in
which only local message passing is required among nodes.
By assuming a connected network, it is possible to design ef-
ficient distributed algorithms by carefully choosing the update
function. Under this framework, [9] proposed a Laplacian-
based algorithm for establishing agreement on oscillation
frequencies all over the network based on standard consensus.
A combined agreement over both clock phases and frequencies
has been studied in [10], by making use of state-of-the-art fast
consensus techniques. Scalable synchronization algorithms for
large sensor networks are developed in [11] and [12] inspired
by mathematical biology models justifying synchrony in the
biological agents.

The clock synchronization problem in a WSN offers a
natural statistical signal processing framework whereby, the
clock parameters are to be estimated using timing information
from various sensors [22]. A model based synchronization
approach to arrest the clock drifts is explored in [8]. The
impairments in message transmission arise from the various
delays experienced by the messages as they travel through
the transmission medium. Therefore, a crucial component of
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efficient clock parameter estimation is accurate modeling of
the network delay distributions. Several distributions have been
proposed that aim to capture the random queuing delays in
a network [7]. Some of these candidate distributions include
exponential, Weibull, Gamma and log-normal distributions.
Assuming an exponential delay distribution, several estimators
were proposed in [13]. It was argued that when the propagation
delay d is unknown, the maximum likelihood (ML) estimator
for the clock offset θ is not unique. However, it was later
shown in [14] that the ML estimator of θ does exist uniquely
for the case of unknown d. The performance of these estima-
tors was compared with benchmark estimation bounds in [15].
Considering an offset and skew model, Chaudhari et.al. pre-
sented algorithms for the joint ML estimation of clock offset
and skew in [16] when the network delays are exponentially
distributed. Clock offset and skew estimators were determined
in [17] based on the assumption that the network delays
arise from the contribution of several independent processes
and as such, were modeled as Gaussian. The convergence
of distributed consensus time synchronization algorithms is
investigated in [18] and [19], assuming a Gaussian delay
between sensor nodes. More recently, the minimum variance
unbiased estimator (MVUE) for the clock offset under an
exponential delay model was proposed in [20]. The timing
synchronization problem for the offset-only case was also
recast as an instance of convex optimization in [21] for Weibull
distributed network delays. A recent contribution [23] has
investigated the feasibility of determining the clock parameters
by studying the fundamental limits on clock synchronization
for wireline and wireless networks.

In this work, considering the classic two-way message
exchange mechanism, a unified framework for the clock offset
estimation problem is presented when the likelihood function
of the observations is Gaussian, exponential or log-normally
distributed. A parameterized solution is proposed for the
ML estimation of clock offset by recasting the likelihood
maximization as an instance of convex optimization. In order
to incorporate the effect of time variations in the clock
offset between sensor nodes, a Bayesian inference approach
is also studied based on a factor graph representation of the
posterior density. The major contributions of this work can be
summarized as follows.

1) A unified framework for ML estimation of clock offset,
based on convex optimization, is presented when the
likelihood function of the observations is Gaussian,
exponential and log-normally distributed. The proposed
framework recovers the already known results for Gaus-
sian and exponentially distributed likelihood functions
and determines the ML estimate in case of log-normal
distribution. Hence, the proposed convex optimization
based approach represents a simpler alternative, and a
more general derivation of ML estimator, which by-
passes the graphical analysis used in [14] to maximize
the likelihood function.

2) In order to capture the time variations in clock offsets
due to imperfect oscillators, a Bayesian framework is
presented by considering the clock offset as a random

Gauss-Markov process. Bayesian inference is performed
using factor graphs and the max-product algorithm. The
message passing strategy yields a closed form solution
for Gaussian, exponential and log-normally distributed
likelihood functions. This extends the current literature
to cases where the clock offset may not be deterministic,
but is in fact a random process.

3) In order to evaluate the performance of the proposed
estimators, classical as well as Bayesian bounds are
derived for arbitrary exponential family distributed like-
lihood functions, which is a wide class and contains
almost all distributions of interest. While these results
aid in comparing various estimators in this work, they
can be useful in their own right in classical and Bayesian
estimation theory.

This paper is organized as follows. The system model is
outlined in Section II. The ML estimation of clock offset
based on convex optimization is proposed in Section III. The
factor graph based inference algorithm for the synchronization
problem in a Bayesian paradigm is detailed in Section IV and
a closed form solution is obtained. Section V presents several
theoretical lower bounds on the variance of an estimator eval-
uated in the classical as well as Bayesian regime. Simulation
studies are discussed in Section VI which corroborate the
earlier results. Finally, the paper is concluded in Section VII
along with some directions for future research.

II. SYSTEM MODEL

The process of pairwise synchronization between two nodes
S and R is illustrated in Fig. 1. At the jth message exchange,
node S sends the information about its current time through
a message including time stamp T 1

j . Upon receipt of this
message, Node R records the reception time T 2

j according to
its own time scale. The two-way timing message exchange pro-
cess is completed when node R replies with a synchronization
packet containing time stamps T 2

j and T 3
j which is received

at time T 4
j by node S with respect to its own clock. After N

such messages have been exchanged between nodes S and R,
node S is equipped with time stamps {T 1

j , T
2
j , T

3
j , T

4
j }Nj=1.

The impairments in the signaling mechanism occur due to a
fixed propagation delay, which accounts for the time required
by the message to travel through the transmission medium,
and a variable network delay, that arises due to queuing
delay experienced by the messages during transmission and
reception. By assuming that the respective clocks of nodes S
and R are related by CR(t) = θ+CS(t), the two-way timing
message exchange model at the jth instant can be represented
as

T 2
j = T 1

j + d+ θ +Xj

T 4
j = T 3

j + d− θ + Yj (1)

where d represents the propagation delay, assumed symmetric
in both directions, and θ is offset of the clock at node R
relative to the clock at node S. Xj and Yj are the indepen-
dent and identically distributed variable network delays. By



3

R

S T 1
j

T 2
j

T 4
j

T 3
j

d+ θ +Xj d− θ + Yj

Fig. 1. A two-way timing message exchange mechanism

defining [13]

Uj
∆
= T 2

j − T 1
j

Vj
∆
= T 4

j − T 3
j ,

the system in (1) can be equivalently expressed as

Uj = d+ θ +Xj

Vj = d− θ + Yj . (2)

By further defining

ξ
∆
= d+ θ ψ

∆
= d− θ , (3)

the model in (2) can be written as

Uj = ξ +Xj

Vj = ψ + Yj

for j = 1, . . . , N . The goal is to determine precise estimates
of ξ and ψ using observations {Uj , Vj}Nj=1. An estimate of θ
can, in turn, be obtained using (3) as follows

θ =
ξ − ψ

2
. (4)

Accurate modeling of the variable delays, Xj and Yj , has
been a topic of interest in recent years. Several distributions
have been proposed that aim to capture the random effects
caused by the queuing delays [7]. These distributions include
exponential, gamma, log-normal and Weibull. In addition, the
authors in [17] argued that Xj and Yj result from contributions
of numerous independent random processes and can, therefore,
be assumed to be Gaussian. The ML estimate of d and θ for
the case of exponential distribution was determined in [14].
Recently, the minimum variance unbiased estimate (MVUE)
of the clock offset under an exponentially distributed network
delay was proposed in [20]. In this work, instead of working
with a specific distribution, a general framework of the clock
synchronization problem is proposed that yields a parameter-
ized solution of the clock offset estimation problem in the
classical as well Bayesian regime when the likelihood function
of the observations, Uj and Vj , is Gaussian, exponential or
log-normally distributed.

In particular, the general notation used when the likelihood
function of the observations U

∆
= [U1, . . . , UN ]

T and

V
∆
= [V1, . . . , VN ]

T is Gaussian or log-normally distributed
is given below.

Unconstrained Likelihood:

f(U; ξ) ∝ exp

ξ N∑
j=1

ηξ(Uj)−Nφξ(ξ)

 (5)

f(V;ψ) ∝ exp

ψ N∑
j=1

ηψ(Vj)−Nφψ(ψ)

 (6)

where ηξ(Uj) and ηψ(Vj) are sufficient statistics for estimating
ξ and ψ, respectively. The log-partition functions φξ(.) and
φψ(.) serve as normalization factors so that f(U; ξ) and
f(V;ψ) are valid probability distributions. The likelihood
function is called ‘unconstrained’ since its domain is inde-
pendent of the parameters ξ and ψ.

Similarly, the general notation used for an exponentially
distributed likelihood function is given below.

Constrained Likelihood:

f(U; ξ) ∝ exp

ξ N∑
j=1

ηξ(Uj)−Nφξ(ξ)

 N∏
j=1

I(Uj − ξ)

(7)

f(V;ψ) ∝ exp

ψ N∑
j=1

ηψ(Vj)−Nφψ(ψ)

 N∏
j=1

I(Vj − ψ)

(8)

where the indicator function I(.) is defined as

I(x) =

{
1 x ≥ 0
0 x < 0

.

and the roles of ηξ(Uj), ηψ(Vj), φξ(.) and φψ(.) are similar to
(5) and (6). The likelihood function is called constrained since
its domain depends on the parameters ξ and ψ. It must be noted
that the likelihood functions (5)-(8) are expressed in terms of
general exponential family distributions. This approach helps
to keep the exposition sufficiently general and also allows us
to recover the known results for the ML estimation of clock
offset for Gaussian and exponentially distributed likelihood
functions [14] [15], and determine the ML estimator of the
clock offset in case of log-normally distributed likelihood
function, as shown in Section III. The proposed approach will
also prove useful in investigating a unified novel framework for
clock offset estimation in the Bayesian setting for Gaussian,
exponential or log-normally distributed likelihood functions,
as will be shown in Section IV.

Some key ingredients of the proposed solution for the
clock offset estimation problem, based on the properties of
exponential family, can be summarized as follows [25].

1) The mean and variance of the sufficient statistic ηξ(Uj)
are expressed as

E [ηξ(Uj)] =
∂φξ(ξ)

∂ξ
(9)

σ2
ηξ

∆
= Var [ηξ(Uj)] =

∂2φξ(ξ)

∂ξ2
. (10)
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2) The moment generating function (MGF) of the statistic
ηξ(Uj) is given by

Mηξ(h) = exp (φξ(ξ + h)− φξ(ξ)) . (11)

3) The non-negativity of the variance σ2
ηξ

in (10) implies
that the log-partition function φξ(.) is convex.

4) For Gaussian, exponential and log-normally distributed
likelihood functions, the log-partition function φξ(ξ) can
be expressed as a second degree polynomial given by

φξ(ξ) = aξξ
2 . (12)

The coefficient aξ in this approximation can be obtained
using the variance of the statistic ηξ(Uj), which is
assumed known. Using (10), aξ is given by

aξ =
σ2
ηξ

2
.

If the statistical moment in (10) is not available, the
empirical moment can be substituted since it readily
follows from the weak law of large numbers that∑N

j=1 ηξ(Uj)

N

p→ E [ηξ(U)] , N →∞∑N
j=1 η

2
ξ (Uj)

N

p→ E
[
η2
ξ (U)

]
, N →∞ .

Similar expressions can also be written for ηψ(Vj), Mηψ (h)
and φψ(ψ), respectively. Using the aforementioned properties
of the exponential family, the ML as well as Bayesian esti-
mates of ξ and ψ are to be determined utilizing the data set
{Uj , Vj}Nj=1, based on (12).

III. MAXIMUM LIKELIHOOD ESTIMATION

In this section, the ML estimates of θ are obtained by
recasting the likelihood maximization as an instance of convex
optimization. This approach differs from the graphical argu-
ments used to maximize the likelihood in [14]. The specific
cases of unconstrained and constrained likelihood functions
are considered separately.

A. Unconstrained Likelihood

Using (5), (6) and (12), the unconstrained likelihood func-
tions are given by

f(U; ξ) ∝ exp

ξ N∑
j=1

ηξ(Uj)−N
σ2
ηξ

2
ξ2

 (13)

f(V;ψ) ∝ exp

ψ N∑
j=1

ηψ(Vj)−N
σ2
ηψ

2
ψ2

 . (14)

The ML estimates of ξ and ψ can now be expressed as

ξ̂ML = arg max
ξ

exp

ξ N∑
j=1

ηξ(Uj)−N
σ2
ηξ

2
ξ2

 (15)

ψ̂ML = arg max
ψ

exp

ψ N∑
j=1

ηψ(Vj)−N
σ2
ηψ

2
ψ2

 . (16)

Theorem 1: The likelihood maximization problems (15)
and (16) are strictly concave and the ML estimates are given
by

ξ̂ML =

∑N
j=1 ηξ(Uj)

Nσ2
ηξ

(17a)

ψ̂ML =

∑N
j=1 ηψ(Vj)

Nσ2
ηψ

. (17b)

Hence, the ML estimator θ̂ML for the clock offset can be
written as

θ̂ML =
ξ̂ML − ψ̂ML

2
. (18)

Proof: The ML estimate of ξ in (15) can be equivalently
determined by maximizing the exponent in the likelihood
function. It can be easily verified that the exponent in (15),
which is a quadratic function of ξ, is strictly concave [29].
A similar explanation applies to the ML estimate of ψ. The
ML estimates in (17) can be obtained by setting the first
derivative of the exponent with respect to ξ (resp. ψ) to zero.
The estimate θ̂ML in (18) can be obtained by invoking the
invariance principle [28]. Hence, the proof readily follows.

1) Gaussian Distributed Likelihood Function: A particular
application of Theorem 1 is the case when the likelihood
functions f(Uj ; ξ) and f(Vj ;ψ) have a Gaussian distribution
i.e., f(Uj ; ξ) ∼ N (ξ, σ2

ξ ) and f(Vj ;ψ) ∼ N (ψ, σ2
ψ) [15].

Hence, it follows that

f(U; ξ) =
1

(2πσ2
ξ )

N
2

exp

(
−
∑N
j=1(Uj − ξ)2

2σ2
ξ

)
(19)

which can be rearranged as

f(U; ξ) ∝ exp

(
ξ

∑N
j=1 Uj

σ2
ξ

− N

2σ2
ξ

ξ2

)
.

By comparing with (13), we have

ηξ(Uj) =
Uj
σ2
ξ

, σ2
ηξ

=
1

σ2
ξ

(20)

and the ML estimate using (17a) is given by

ξ̂ML =

∑N
j=1 Uj

N
. (21)

By a similar reasoning, the ML estimate for ψ (17b) is given
by

ψ̂ML =

∑N
j=1 Vj

N
.

Using (18), the ML estimate for the offset θ can be expressed
as

θ̂ML =

∑N
j=1(Uj − Vj)

2N
. (22)

The above estimate coincides exactly with the one reported in
[15].
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2) Log-Normally Distributed Likelihood Function: Another
application of Theorem 1 is when the samples Uj and Vj are
log-normally distributed. In this case, we have

f (U; ξ) =
1√

2πσ2
ξ

N∏
j=1

U−1
j exp

(
−
∑N
j=1(logUj − ξ)

2σ2
ξ

)

∝ exp

(
ξ

∑N
j=1 logUj

σ2
ξ

− N

2σ2
ξ

ξ2

)
. (23)

A comparison with (13) yields

ηξ(Uj) =
logUj
σ2
ξ

, σ2
ηξ

=
1

σ2
ξ

.

Following a similar line of reasoning,

ηψ(Vj) =
log Vj
σ2
ψ

, σ2
ηψ

=
1

σ2
ψ

.

The ML estimator for θ can obtained from (18) using (17a)
and (17b), and is given by

θ̂ML =

∑N
j=1 (logUj − log Vj)

N
. (24)

B. Constrained Likelihood

Using (7), (8) and (12), the constrained likelihood functions
are given by

f(U; ξ) ∝ exp

ξ N∑
j=1

ηξ(Uj)−N
σ2
ηξ

2
ξ2

 N∏
j=1

I(Uj − ξ)

(25)

f(V;ψ) ∝ exp

ψ N∑
j=1

ηψ(Vj)−N
σ2
ηψ

2
ψ2

 N∏
j=1

I(Vj − ψ) .

(26)

The resulting ML estimates of ξ and ψ can be obtained as

ξ̂ML = arg max
ξ

exp

ξ N∑
j=1

ηξ(Uj)−N
σ2
ηξ

2
ξ2


such that Uj ≥ ξ (27)

ψ̂ML = arg max
ψ

exp

ψ N∑
j=1

ηψ(Vj)−N
σ2
ηψ

2
ψ2


such that Vj ≥ ψ . (28)

Theorem 2: The likelihood maximization problems (27)
and (28) are strictly concave and the ML estimates can be
expressed as

ξ̂ML = min

(∑N
j=1 ηξ(Uj)

Nσ2
ηξ

, U(1)

)
(29a)

ψ̂ML = min

(∑N
j=1 ηψ(Vj)

Nσ2
ηψ

, V(1)

)
(29b)

where U(1) and V(1) denote the first order statistics of the
samples Uj and Vj , respectively. The ML estimator θ̂ML for
the clock offset is given by

θ̂ML =
ξ̂ML − ψ̂ML

2
. (30)

Proof: By using arguments similar to Theorem 1 and
noting that the N constrains Uj ≥ ξ (resp. Vj ≥ ψ) are linear
functions of ξ (resp. ψ), the proof of concavity readily follows.
Also, the likelihood maximization problems (27) and (28) can
be equivalently expressed as

ξ̂ML = arg max
ξ

exp

ξ N∑
j=1

ηξ(Uj)−N
σ2
ηξ

2
ξ2


such that U(1) ≥ ξ

ψ̂ML = arg max
ψ

exp

ψ N∑
j=1

ηψ(Vj)−N
σ2
ηψ

2
ψ2


such that V(1) ≥ ψ .

The unconstrained maximizer ξ̄ of the objective function in
(27) is given by (17a). If ξ̄ ≤ U(1), then ξ̂ML = ξ̄. On the other
hand, if U(1) ≤ ξ̄, then the ML estimate is given by ξ̂ML =
U(1) using concavity of the objective function. Combining the
two cases, the ML estimate in (29a) is obtained. A similar
explanation applies to the ML estimate ψ̂ML in (29b) and θ̂ML
follows from the invariance principle.

1) Exponentially Distributed Likelihood Function: For the
case when the likelihood functions are exponentially dis-
tributed, the density function of the samples Uj can be written
as [14]

f(U; ξ) = λNξ exp

−λξ N∑
j=1

(Uj − ξ)

 I(U(1) − ξ) (31)

where λ−1
ξ is the mean of the delays Xj . The density function

can be rearranged as

f(U; ξ) ∝ exp (Nλξξ) .

Comparing the above formulation with (25),

ηξ(Uj) = λξ, σ2
η = 0 . (32)

Using (29a), the ML estimate is given by

ξ̂ML = U(1) . (33)

Employing a similar reasoning,

ψ̂ML = V(1) .

Using (30), the ML estimate of θ is given by

θ̂ML =
U(1) − V(1)

2
, (34)

which coincides exactly with the one reported in [14], where
it is derived using graphical arguments.

Remark 1: The ML estimation method outlined above dif-
fers from the previous work [14] in that it is based on convex
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optimization, while [14] maximized the likelihood graphically.
Hence, this approach presents an alternative view of the ML
estimation of the clock offset. It also allows us the determine
the ML estimator of θ when the likelihood function is log-
normally distributed. In addition, Theorem 2 will also be
useful in Section IV where estimation of θ in the Bayesian
regime is discussed .

IV. A FACTOR GRAPH APPROACH

The imperfections introduced by environmental conditions
in the quartz oscillator in sensor nodes results in a time-varying
clock offset between nodes in a WSN. To cater for such a
temporal variation, in this section, a Bayesian approach to
the clock synchronization problem is adopted by representing
the a-posteriori density as a factor graph. The inference is
performed on the resulting factor graph by message passing
using max-product algorithm. To ensure completeness, a brief
description of factor graphs and the max-product algorithm is
provided below.

A factor graph is a bipartite graph that represents a factor-
ization of a global function as a product of local functions
called factors, each factor being dependent on a subset of
variables. Factor graphs are often used to produce a graphical
model depicting the various inter-dependencies between a
collection of interacting variables. Each factor is represented
by a factor node and each variable has an edge or a half-edge.
An edge connects a particular variable to a factor node if and
only if it is an argument of the factor expressed by the factor
node [24].

Inference can be performed by passing messages
(sometimes called beliefs) along the edges of a factor
graph. In particular, max-product algorithm is used to
compute the messages exchanged between variables and
factor nodes. These messages can be summarized as follows

variable to factor node :

mx→f (x) =
∏

h∈n(x)\f
mh→x (x) (35)

factor node to variable :

mf→x (x) = max
\{x}

f (Z)
∏

z∈n(f)\{x}
mz→f (z)

 (36)

where Z = n (f) is the set of arguments of the local function
f . The marginal distributions associated with each variable can
be obtained by the product of all incoming messages on the
variable.

In order to sufficiently capture the temporal variations, the
parameters ξ and ψ are assumed to evolve through a Gauss-
Markov process given by

ξk = ξk−1 + wk

ψk = ψk−1 + vk for k = 1, . . . , N

where wk and vk are i.i.d such that wk, vk ∼ N (0, σ2). The
posterior pdf can be expressed as

f(ξ,ψ|U ,V ) ∝ f(ξ,ψ)f(U ,V |ξ,ψ)

= f(ξ0)

N∏
k=1

f(ξk|ξk−1)f(ψ0)

N∏
k=1

f(ψk|ψk−1)

·
N∏
k=1

f(Uk|ξk)f(Vk|ψk) (37)

where uniform priors f(ξ0) and f(ψ0) are assumed. Define
δkk−1

∆
= f(ξk|ξk−1) ∼ N (ξk−1, σ

2), νkk−1
∆
= f(ψk|ψk−1) ∼

N (ψk−1, σ
2), fk

∆
= f(Uk|ξk), hk

∆
= f(Vk|ψk), where the

likelihood functions are given by

f(Uk|ξk) ∝ exp

(
ξkηξ(Uk)− σ2

ηk

2
ξ2
k

)

f(Vk|ψk) ∝ exp

(
ψkηψ(Vk)− σ2

ηk

2
ψ2
k

)
, (38)

based on (12). The resulting factor graph representation of the
posterior pdf is shown in Fig. 2.

Remark 2: A few important observations of this represen-
tation can be summarized below.
• Notice that the substitution in (3) renders a cycle-free na-

ture to the factor graph. Therefore, inference by message
passing on such a factor graph is indeed optimal [24].

• The two factor graphs shown in Fig. 2 have a similar
structure and hence, message computations will only be
shown for the estimate ξ̂N . Clearly, similar expressions
will apply to ψ̂N .

In addition, only the case of constrained likelihood will be
considered, since the case of an unconstrained likelihood is
subsumed, as will be shown shortly. The clock offset estimator
θ̂N can be obtained from ξ̂N and ψ̂N using (4).

By defining αξ,k
∆
= −

σ2
ηξ,k

2 and βξ,k
∆
= ηξ(Uk), the

constrained likelihood function for the samples Uk can be
written as

fk ∝ exp
(
αξ,kξ

2
k + βξ,kξk

)
I(Uk − ξk) . (39)

The message passing strategy starts by sending a message
from the factor node fN to the variable ξN . The variable
ξN relays this message to the factor node δNN−1. The factor
node computes the product of this message with the factor
δNN−1 and sends the resulting message to the variable ξN−1

after ‘summarizing’ over the variable ξN . In the max-product
algorithm, a ‘max’ function is used as a summary propagation
operator (cf. (36)). These messages are computed as

mfN→ξN = fN

mξN→δNN−1
= fN

mδNN−1→ξN−1
∝ max

ξN
δNN−1 ·mξN→δNN−1

= max
ξN

1√
2πσ2

exp

(−(ξN − ξN−1)2

2σ2

)
· exp

(
αξ,Nξ

2
N + βξ,NξN

)
I(UN − ξN )
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Fig. 2. Factor graph representation of the posterior density (37)

which can be rearranged as

mδNN−1→ξN−1
∝ max
ξN≤UN

exp
(
Aξ,Nξ

2
N +Bξ,Nξ

2
N−1+

Cξ,NξNξN−1 +Dξ,NξN
) (40)

where

Aξ,N
∆
= − 1

2σ2
+ αξ,N , Bξ,N

∆
= − 1

2σ2

Cξ,N
∆
=

1

σ2
, Dξ,N

∆
= βξ,N . (41)

Let ξ̄N be the unconstrained maximizer of the exponent in the
objective function above, i.e.,

ξ̄N = arg max
ξN

(
Aξ,Nξ

2
N +Bξ,Nξ

2
N−1 + Cξ,NξNξN−1+

Dξ,NξN
)
.

This implies that

ξ̄N = −Cξ,NξN−1 +Dξ,N

2Aξ,N
. (42)

Following a line of reasoning similar to Theorem 2, it follows
that

ξ̂N = min
(
ξ̄N , UN

)
.

However, ξ̄N depends on ξN−1, which is undetermined at this
stage. Hence, we need to further traverse the chain backwards.
Assuming that ξ̄N ≤ UN , ξ̄N from (42) can be plugged back
in (40) which after some simplification yields

mδNN−1→ξN−1
∝ exp

{(
Bξ,N −

C2
ξ,N

4Aξ,N

)
ξ2
N−1−

Cξ,NDξ,N

2Aξ,N
ξN−1

}
.

(43)

The message passed from the variable ξN−1 to the factor node
δN−1
N−2 is the product of the message (43) and the message

received from the factor node fN−1, i.e.,

mξN−1→δN−1
N−2

= mδNN−1→ξN−1
·mfN−1→ξN−1

.

Upon receipt of this message, the factor node δN−1
N−2 delivers

a product of this message and the factor δN−1
N−2 to the variable

node ξN−2 after summarizing over ξN−1. This message can
be expressed as

mδN−1
N−2→ξN−2

∝ max
ξN−1≤UN−1

δN−1
N−2 ·mξN−1→δN−1

N−2

=max
ξN−1

1√
2πσ2

exp

(
− (ξN−1 − ξN−2)2

2σ2

)
· exp

{(
Bξ,N −

C2
ξ,N

4Aξ,N

)
ξ2
N−1 −

Cξ,NDξ,N

2Aξ,N
ξN−1

}
· exp

(
αξ,N−1ξ

2
N−1 + βξ,N−1ξN−1

)
I(UN−1 − ξN−1) .

After some algebraic steps, the message above can be com-
pactly represented as

mδN−1
N−2→ξN−2

∝ max
ξN−1≤UN−1

exp(Aξ,N−1ξ
2
N−1+

Bξ,N−1ξ
2
N−2 + Cξ,N−1ξN−1ξN−2 +Dξ,N−1ξN−1) (44)

where

Aξ,N−1
∆
= − 1

2σ2
+ αξ,N−1 +Bξ,N −

C2
ξ,N

4Aξ,N
,

Bξ,N−1
∆
= − 1

2σ2
, Cξ,N−1

∆
=

1

σ2

Dξ,N−1
∆
= βξ,N−1 −

Cξ,NDξ,N

2Aξ,N
.

Proceeding as before, the unconstrained maximizer ξ̄N−1 of
the objective function above is given by

ξ̄N−1 = −Cξ,N−1ξN−2 +Dξ,N−1

2Aξ,N−1

and the solution to the maximization problem (44) is expressed
as

ξ̂N−1 = min
(
ξ̄N−1, UN−1

)
.

Again, ξ̄N−1 depends on ξN−2 and therefore, the solution
demands another traversal backwards on the factor graph
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representation in Fig. 2. By plugging ξ̄N−1 back in (44), it
follows that

mδN−1
N−2→ξN−2

∝

exp

{(
Bξ,N−1 −

C2
ξ,N−1

4Aξ,N−1

)
ξ2
N−2 −

Cξ,N−1Dξ,N−1

2Aξ,N−1
ξN−2

}
(45)

which has a form similar to (43). It is clear that one can keep
traversing back in the graph yielding messages similar to (43)
and (45). In general, for i = 1, . . . , N − 1 we can write

Aξ,N−i
∆
= − 1

2σ2
+ αξ,N−i +Bξ,N−i+1 −

C2
ξ,N−i+1

4Aξ,N−i+1

Bξ,N−i
∆
= − 1

2σ2
, Cξ,N−i

∆
=

1

σ2

Dξ,N−i
∆
= βξ,N−i −

Cξ,N−i+1Dξ,N−i+1

2Aξ,N−i+1

(46)

and

ξ̄N−i = −Cξ,N−iξN−i−1 +Dξ,N−i
2Aξ,N−i

(47)

ξ̂N−i = min
(
ξ̄N−i, UN−i

)
. (48)

Using (47) and (48) with i = N − 1, it follows that

ξ̄1 = −Cξ,1ξ0 +Dξ,1

2Aξ,1
(49)

ξ̂1 = min
(
ξ̄1, U1

)
. (50)

Similarly, by observing the form of (43) and (45), it follows
that

mδ10→ξ0 ∝ exp

{(
Bξ,1 −

C2
ξ,1

4Aξ,1

)
ξ2
0 −

Cξ,1Dξ,1

2Aξ,1
ξ0

}
.

(51)
The estimate ξ̂0 can be obtained by maximizing the received
message in (51). It can be noticed from the structure of the
factor graph that this maximization is inherently unconstrained
i.e.,

ξ̂0 = ξ̄0 = max
ξ0

mδ10→ξ0

⇒ ξ̂0 =
Cξ,1Dξ,1

4Aξ,1Bξ,1 − C2
ξ,1

. (52)

The estimate in (52) can now be substituted in (49) to yield
ξ̄1, which can then be used to solve for ξ̂1 in (50). Clearly,
this chain of calculations can be continued using recursions
(47) and (48).
Define

gξ,k(x)
∆
= −Cξ,kx+Dξ,k

2Aξ,k
. (53)

A key property of the function gξ,k(.), which proves useful
in the quest for a closed form solution, can be summarized in
the following lemma.

Lemma 1: For real numbers a and b, the function gξ,k(.)
defined in (53) satisfies

gξ,k (min(a, b)) = min (gξ,k(a), gξ,k(b)) .

Proof: The constants Aξ,k, Cξ,k and Dξ,k are defined in
(41) and (46). The proof follows by noting that −Cξ,k2Aξ,k

> 0

which implies that gξ,k(.) is a monotonically increasing func-
tion.
With the notation gξ,k(.), the following chain of equalities can
be conveniently written as

ξ̄1 = gξ,1

(
ξ̂0

)
ξ̂1 = min

(
U1, gξ,1

(
ξ̂0

))
ξ̄2 = gξ,2

(
ξ̂1

)
ξ̂2 = min

(
U2, gξ,2

(
ξ̂1

))
where

gξ,2

(
ξ̂1

)
= gξ,2

(
min

(
U1, gξ,1

(
ξ̂0

)))
= min

(
gξ,2 (U1) , gξ,2

(
gξ,1

(
ξ̂0

)))
(54)

where (54) follows from Lemma 1. The estimate ξ̂2 can be
expressed as

ξ̂2 = min
(
U2,min

(
gξ,2 (U1) , gξ,2

(
gξ,1

(
ξ̂0

))))
= min

(
U2, gξ,2 (U1) , gξ,2

(
gξ,1

(
ξ̂0

)))
.

By following the same procedure, one can write

ξ̂3 = min
(
U3, gξ,3 (U2) , gξ,3 (gξ,2 (U1)) ,

gξ,3

(
gξ,2

(
gξ,1

(
ξ̂0

))))
.

For m ≥ j, define

Gmξ,j(.)
∆
= gξ,m (gξ,m−1 . . . gξ,j (.)) . (55)

The estimate ξ̂3 can, therefore, be compactly represented as

ξ̂3 = min
(
U3, G

3
ξ,3 (U2) , G3

ξ,2 (U1) , G3
ξ,1

(
ξ̂0

))
.

Hence, one can keep estimating ξ̂k at each stage using this
strategy. Note that the estimator only depends on functions of
data and can be readily evaluated.

In order to derive analogous expressions for ψ, a similar line
of reasoning should be followed. In particular, the constants
Aξ,N−i, Bξ,N−i, Cξ,N−i and Dξ,N−i for i = 0, . . . , N − 1,
can be obtained straightforwardly from (41) and (46) by
substituting αξ,N−i and βξ,N−i with αψ,N−i and βψ,N−i,
respectively. Using these constants, ψ̂0, gψ,k and Gmψ,j can
be defined analogously to (52), (53) and (55).

Generalizing this framework, the closed form expression for
the clock offset estimate θ̂N is given by the following theorem.

Theorem 3: The state estimates ξ̂N and ψ̂N for the posterior
pdf in (37) can be expressed as

ξ̂N = min
(
UN , G

N
ξ,N (UN−1) , . . . , GNξ,2 (U1) , GNξ,1

(
ξ̂0

))
ψ̂N = min

(
VN , G

N
ψ,N (VN−1) , . . . , GNξ,2 (V1) , GNξ,1

(
ψ̂0

))
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and the factor graph based clock offset estimate (FGE) θ̂N is
given by

θ̂N =
ξ̂N − ψ̂N

2
. (56)

Proof: The proof follows from the discussion above and
using (4).

Remark 3: The closed form expressions in Theorem 3
enable the estimation of the clock offset, when it may be time-
varying and the likelihood functions, f(Uk|ξk) and f(Vk|ψk),
have a Gaussian, exponential or log-normal distribution.

A. Gaussian Distributed Likelihood Function

A particular case of the Bayesian framework described
above occurs when likelihood functions f(Uk|ξk) and
f(Vk|ψk) have a Gaussian distribution, i.e., f(Uk|ξk) ∼
N (ξk, σ

2
ξ,k) and f(Vk|ψk) ∼ N (ψk, σ

2
ψ,k), i.e.,

f (Uk|ξk) =
1√

2πσ2
ξ,k

exp

{
− (Uk − ξk)

2

2σ2
ξ,k

}

∝ exp

(
ξkUk
2σ2

ξ,k

− ξ2
k

2σ2
ξ,k

)
. (57)

The aforementioned Gaussian distribution constitutes an un-
constrained likelihood function, i.e., the domain of the pdf is
independent of the unknown parameter ξk. It is clear from the
message passing approach that at each stage k of the factor
graph, the unconstrained maximizer ξ̄k is the actual solution
to the likelihood maximization problem

max
ξk

exp
(
Aξ,kξ

2
k +Bξ,kξ

2
k−1 + Cξ,kξkξk−1 +Dξ,kξk

)
i.e., ξ̂k = ξ̄k ∀k = 1, . . . , N . Hence, the unconstrained
likelihood maximization problem is subsumed in the message
passing framework for constrained likelihood maximization.
It follows from Theorem 3 that ξ̂N for Gaussian distributed
observations Uk in (57) is given by

ξ̂N = GNξ,1

(
ξ̂0

)
where ξ̂0 and GNξ,1(.) are defined in (52) and (55), respectively.
Evaluating ξ̂N requires to determine the constants in (41) and
(46). By comparing (57) with (39), we have

αξ,k = − 1

2σ2
ξ,k

, βξ,k =
Uk
σ2
ξ,k

. (58)

Using these values for αξ,k and βξ,k, (41) and (46) can be
written as

Aξ,N = − 1

2σ2
− 1

2σ2
ξ,N

, Bξ,N = − 1

2σ2

Cξ,N =
1

σ2
, Dξ,N =

UN
σ2
ξ,N

(59)

Aξ,N−i = − 1

2σ2
− 1

2σ2
ξ,N−i

+Bξ,N−i+1 −
C2
ξ,N−i+1

4Aξ,N−i+1

Bξ,N−i = − 1

2σ2
, Cξ,N−i =

1

σ2

Dξ,N−i =
UN−i
σ2
ξ,N−i

− Cξ,N−i+1Dξ,N−i+1

2Aξ,N−i+1

for i = 1, . . . , N−1. Using similar arguments, it can be shown
that the estimate ψ̂N is given by

ψ̂N = GNψ,1

(
ψ̂0

)
.

It follows from (4) that the FGE, θ̂N , can be expressed as

θ̂N =
GNξ,1

(
ξ̂0

)
−GNψ,1

(
ψ̂0

)
2

. (60)

The behavior of θ̂N can be further investigated for the case
when the noise variance σ2 in the Gauss-Markov model goes
to zero. Consider

gξ,N (ξ) = −Cξ,Nξ +Dξ,N

2Aξ,N

where the constants Aξ,N , Bξ,N , Cξ,N and Dξ,N are given by
(59). After some algebraic steps, we have

gξ,N (ξ) =
σ2
ξξ + σ2UN

σ2
ξ + σ2

.

As σ2 → 0, gξ,N (ξ) → ξ. Similarly, it can be shown that
gξ,N−1(ξ) → ξ as σ2 → 0. Hence, it follows that in the low
system noise regime, as σ2 → 0

ξ̂N → ξ̂0 =
Cξ,1Dξ,1

4Aξ,1Bξ,1 − C2
ξ,1

.

Similarly, it can be shown that

ψ̂N → ψ̂0 =
Cψ,1Dψ,1

4Aψ,1Bψ,1 − C2
ψ,1

.

Therefore

θ̂N →
ξ̂0 − ψ̂0

2
,

which can be proven to be equal to the ML estimator (22).

B. Log-Normally Distributed Likelihood Function

The log-normally distributed likelihood function in the
Bayesian regime can be expressed as

f(Uk|ξk) =
1

Ukσξ,k
√

2π
exp

(
− (logUk − ξk)

2

2σ2
ξ,k

)

∝ exp

(
ξk log(Uk)

2σ2
ξ,k

− ξ2
k

2σ2
ξ,k

)
. (61)
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By comparing (61) and (39), we have

αξ,k = − 1

2σ2
ξ,k

βξ,k =
logUk
σ2
ξ,k

.

Clearly, the only difference here with the Gaussian distribution
is a redefinition of βξ,k. The expression of ξ̂N in this case is
again

ξ̂N = GNξ,1

(
ξ̂0

)
where GNξ,1(.) and ξ̂0 are given by (55) and (52), respectively.
The recursively evaluated constants in (41) and (46) can be
written as

Aξ,N = − 1

2σ2
− 1

2σ2
ξ,N

, Bξ,N = − 1

2σ2

Cξ,N =
1

σ2
, Dξ,N =

logUN
σ2
ξ,N

Aξ,N−i = − 1

2σ2
− 1

2σ2
ξ,N−i

+Bξ,N−i+1 −
C2
ξ,N−i+1

4Aξ,N−i+1

Bξ,N−i = − 1

2σ2
, Cξ,N−i =

1

σ2

Dξ,N−i =
logUN−i
σ2
ξ,N−i

− Cξ,N−i+1Dξ,N−i+1

2Aξ,N−i+1

for i = 1, . . . , N − 1. Similar arguments apply to ψ. Hence,
the FGE θ̂N can be expressed as

θ̂N =
GNξ,1

(
ξ̂0

)
−GNψ,1

(
ψ̂0

)
2

. (62)

Again, as the Gauss-Markov system noise σ2 → 0, the above
estimator approaches its ML counterpart (24).

C. Exponential Distribution

Theorem 3 can also be used to derive a Bayesian estimator
ξ̂N for the exponentially distributed likelihood case considered
in [14]. In this case, we have

f(Uk|ξk) = λξ exp (−λξ(Uk − ξk)) I(Uk − ξk)

∝ exp(λξξk)I(Uk − ξk) (63)

where λ−1
ξ is the mean network delay of Xk. A comparison

of (63) with (39) reveals that

αξ,k = 0, βξ,k = λξ .

For these values of αξ,k and βξ,k, the constants Aξ,k, Bξ,k,
Cξ,k and Dξ,k are given by

Aξ,k = − 1

2σ2
, Bξ,k = − 1

2σ2

Cξ,k =
1

σ2
, Dξ,k = λξ

for all k = 1, . . . , N . Using Theorem 3, we have

GNξ,N (UN−1) = −Cξ,NUN−1 +Dξ,N

2Aξ,N

= UN−1 + λξσ
2 .

Similarly it can be shown that

GNξ,N−1(UN−2) = UN−2 + 2λξσ
2

and so on. The estimator ξ̂0 at the last step can be evaluated
as

ξ̂0 =
Cξ,1Dξ,1

4Aξ,1Bξ,1 − C2
ξ,1

= +∞ .

This implies that
GNξ,1(ξ̂0) = +∞ . (64)

Using (64) and Theorem 3, it readily follows that

ξ̂N = min(UN , UN−1 + λξσ
2, UN−2 + 2λξσ

2,

. . . , U1 + (N − 1)λξσ
2) . (65)

Similarly, for the pdf [14]

f(Vk|ψk) = λψ exp (−λψ(Vk − ψk)) I(Vk − ψk)

∝ exp(λψψk)I(Vk − ψk) ,

the estimate ψ̂N is given by

ψ̂N = min(VN , VN−1 + λψσ
2, VN−2 + 2λψσ

2,

. . . , V1 + (N − 1)λψσ
2) (66)

and the estimate θ̂N can be obtained using (56), (65) and (66)
as

θ̂N =
1

2
min(UN , UN−1 + λξσ

2, UN−2 + 2λξσ
2,

. . . , U1 + (N − 1)λξσ
2)−

1

2
min(VN , VN−1 + λψσ

2, VN−2 + 2λψσ
2,

. . . , V1 + (N − 1)λψσ
2) . (67)

As the Gauss-Markov system noise σ2 → 0, (67) yields

θ̂N → θ̂ML =
min (UN , . . . , U1)−min (VN , . . . , V1)

2
,

which is the ML estimator given by (34).

V. CLASSICAL AND BAYESIAN BOUNDS

To evaluate the performance of the estimators derived in the
preceding sections, classical as well as Bayesian lower bounds
on the variance of the estimators are discussed. The placement
of a lower bound allows one to compare estimators by plotting
their performance against the bound. It must be emphasized
here that the results in this section assume no specific form of
the log-partition function and are therefore, valid for arbitrary
distributions from the exponential family, which is a wide class
and contains almost all distributions of interest. Hence, these
results are fairly general and can be useful in their own right
in classical as well as Bayesian parameter estimation theory,
and at the same time will be used as a stepping stone towards
comparing the estimators developed thus far.

The likelihood function of the data is considered an
arbitrary member of the exponential family of distributions.
In addition, depending on whether the domain of the
likelihood depends on the parameter to be estimated, both
cases of unconstrained as well as constrained likelihood
functions are discussed to maintain full generality. The
general expressions for the unconstrained and constrained
likelihood functions for observations Z

∆
= [Z1, . . . , ZN ]

T are
given by
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Unconstrained Likelihood:

f(Z; ρ) ∝ exp

ρ N∑
j=1

η(Zj)−Nφ(ρ)

 (68)

Constrained Likelihood:

f(Z; ρ) ∝ exp

ρ N∑
j=1

η(Zj)−Nφ(ρ)

 N∏
j=1

I(Zj − ρ) (69)

where ρ is the scalar parameter to be estimated. The goal
is to derive lower bounds on the variance of estimators of
ρ. For the case of classical estimation, the Cramer-Rao and
Chapman-Robbins bounds are considered, while the Bayesian
Cramer-Rao bound and a Bayesian version of the Chapman-
Robbins bound are derived for the Bayesian paradigm.

A. Cramer-Rao Lower Bound

The Cramer-Rao lower bound (CRB) is a lower bound on
the variance of an unbiased estimator of a deterministic pa-
rameter. It is useful primarily because it is relatively simple to
compute. However, it relies on certain ‘regularity conditions’
which are not satisfied by constrained likelihood functions
when the domain of the likelihood depends on the unknown
parameter (cf. (69)). Hence, CRB is determined for the case
of unconstrained likelihood functions only.

In particular, CRB states that the variance of an unbiased
estimator of ρ is lower bounded by

Var(ρ̂) ≥ −1

E
[
∂2 ln f(Z;ρ)

∂ρ2

] . (70)

Theorem 4: The CRB for ρ in the unconstrained likelihood
function in (68) is given by

Var(ρ̂) ≥ 1

Nσ2
η

(71)

where

σ2
η =

∂2φ (ρ)

∂ρ2
.

Proof: The Fisher information for the likelihood function
is given by

I(ρ)
∆
= E

[
∂2 ln f (Z; ρ)

∂ρ2

]
= −N ∂2φ (ρ)

∂ρ2
= −Nσ2

η

and the proof readily follows.

B. Chapman-Robbins Bound

Chapman-Robbins bound (CHRB), proposed in [26], sets a
lower bound on the variance of an estimator of a deterministic
parameter. The CHRB does not make any assumptions on the
differentiability of the likelihood function and the regularity
conditions that often constrain the use of CRB, and is substan-
tially tighter than the CRB in many situations. Hence, CHRB

is employed to determine a lower bound on the variance of an
unbiased estimator of ρ for constrained likelihood functions.

In general for a parameter ρ, the CHRB is given by

Var(ρ̂) ≥
[

inf
h

1

h2

{
E
(
f(Z; ρ+ h)

f(Z; ρ)

)2

− 1

}]−1

, (72)

which can be evaluated as shown below.
Theorem 5: The CHRB for the parameter ρ given the

likelihood function (69) can be expressed as

Var(ρ̂) ≥

inf
h

{
(Mη(h))

−2N · ζN (h)− 1
}

h2

−1

(73)

where Mη(h) is the MGF of the statistic η(Zj) and

ζ(h)
∆
= E [exp (2hη(Zj)) I (Zj − ρ− h)] (74)

with the expectation taken with respect to any Zj .
Proof: The details of the proof are relegated to Appendix

A.

C. Bayesian Cramer-Rao Lower Bound

The Bayesian Cramer-Rao bound (BCRB) is a lower bound
on the variance of an unbiased estimator when the parameter
assumes a prior density. It requires the same regularity condi-
tions to be satisfied as its classical counterpart.

For an estimator ρ̂k of ρk, the BCRB states that the variance
of the estimator is bounded below by the lower-right sub-
matrix of the inverse of the Bayesian information matrix,
J−1

CR(k) [30], i.e.,

Var (ρ̂k) ≥ J−1
CR(k) = [J−1

CR(k)]kk (75)

where the Bayesian information matrix is given by

[JCR(k)]ij
∆
= E

[
∂ log f(Zk,ρk)

∂ρi

∂ log f(Zk,ρk)

∂ρj

]
= −E

[
∂2 log f(Zk,ρk)

∂ρi∂ρj

]
where the expectation is taken with respect to the joint pdf
and

Zk
∆
= [Z1, . . . , Zk]T

ρk
∆
= [ρ0, ρ1, . . . , ρk]T

f(Zk|ρk) ∝ exp (η(Zk)ρk − φk(ρk)) . (76)

It is assumed that the parameter ρk evolves through a Gauss-
Markov model given by

f(ρk|ρk−1) =
1√

2πσ2
exp

(
− (ρk − ρk−1)2

2σ2

)
. (77)

A recursive formula to evaluate the Bayesian sub-matrix,
derived in [27], is given by

JCR(k + 1) =− E(2)
CR(k)

(
JCR(k) + E

(1)
CR(k)

)−1

E
(2)
CR(k)

+ E
(3A)
CR (k) + E

(3B)
CR (k)

(78)
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where

E
(1)
CR(k)

∆
= E

[
− ∂2

∂ρ2
k

log f(ρk+1|ρk)

]
E

(2)
CR(k)

∆
= E

[
− ∂2

∂ρk∂ρk+1
log f(ρk+1|ρk)

]
E

(3A)
CR (k)

∆
= E

[
− ∂2

∂ρ2
k+1

log f(ρk+1|ρk)

]
E

(3B)
CR (k)

∆
= E

[
− ∂2

∂ρ2
k+1

log f(Zk+1|ρk+1)

]
and the expectation is again with respect to the joint pdf.

Theorem 6: For the Bayesian framework in (76) and (77),
the recursive Bayesian information matrix in (78) is given by

JCR(k + 1) =
(
σ2 + J−1

CR(k)
)−1

+ σ2
ηk

(79)

with JCR(0) = 0.
Proof: For the density functions, f(ρk|ρk−1) and

f(Zk|ρk) in (76), it can be verified that

E
(1)
CR(k) =

1

σ2
, E

(2)
CR(k) = − 1

σ2
, E

(3A)
CR (k) =

1

σ2

and

E
(3B)
CR (k) =

∫ ∫
∂2φk(ρk+1)

∂ρ2
k+1

f(ρk+1, Zk+1)dρk+1dZk+1

=
∂2φk(ρk+1)

∂ρ2
k+1

= σ2
ηk
.

The proof follows by plugging these quantities in (78).

D. Bayesian Chapman-Robbins Bound

A Bayesian version of the Chapman-Robbins bound
(BCHRB) can be used to provide a lower bound on the
variance of an estimator of ρk when there are no regularity
assumptions on the likelihood. In fact, unlike the BCRB, the
BCHRB can be evaluated for constrained likelihood functions
where the domain of the likelihood is dependent on the
unknown parameter.

BCHRB states that the variance of an estimator ρ̂k of ρk
is lower bounded as

Var(ρ̂k)− [Tk(hk)− 1]
−1

hkh
T
k � 0

with � in the positive semi-definite sense, where

Tk(hk)
∆
= E

[(
f(Zk,ρk + hk)

f(Zk,ρk)

)2
]
,

and hk
∆
= [0, h1, . . . , hk]T .

Theorem 7: The BCHRB for the parameter ρk can be
expressed as

Var(ρ̂k) ≥ 1

JCH,k

where
JCH,k = inf

hk

Tk(hk)− 1

h2
k

and

Tk(hk) =

 k∏
j=1

M−2
η (hj)Mη(2hj)

×
exp

 1

σ2

k∑
j=1

(hj − hj−1)
2

 .

(80)

Proof: See Appendix B for details.

Remark 4: Since the performance bounds are derived for
arbitrary exponential family distributions, they can also prove
useful in a broad sense in classical as well as Bayesian
parameter estimation.

E. Relation to Clock Offset Estimation

The performance bounds derived in the preceding subsec-
tions can be used to lower bound the mean square error
(MSE) of the clock offset θ. Notice the similarity between
the unconstrained and constrained likelihood functions for ξ
and ψ in (5)-(8) and the general exponential family likelihood
function considered in (68) and (69). Therefore, the bounds
derived above for ρ are also applicable to the parameter ξ
(and also ψ). The MSE of the clock offset θ can, in turn, be
lower bounded using the bounds on ξ and ψ.

Using (4), the following result is immediate.
Proposition 1: The MSE of any estimator of θ can be

expressed as

MSE
(
θ̂
)

=
1

4

(
Var
(
ξ̂
)

+ Var
(
ψ̂
))

+
1

4
(bξ − bψ)

2

where bξ and bψ are the biases of the estimators ξ̂ and ψ̂,
respectively.
The explicit lower bounds on the MSE of any estimator
θ̂ for classical as well as Bayesian framework in case of
Gaussian and exponentially distributed likelihood functions
can be evaluated as shown below.

1) Gaussian Distribution - CRB: If the likelihood function
for ξ is Gaussian distributed (19), then using (20) and (71),
it is straightforward to see that the CRB for any unbiased
estimator ξ̂ is given by

Var
(
ξ̂
)
≥
σ2
ξ

N
,

and a similar expression is applicable to ψ̂ as well. Using
Proposition 1, it can be concluded that

MSE
(
θ̂
)
≥
σ2
ξ + σ2

ψ

4N
. (81)

As a remark, it is evident in this case that θ̂ML (22) is efficient
in the sense that its MSE achieves (81) with equality (cf.
Appendix C-A).
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2) Exponential Distribution - CHRB: If the likelihood for
ξ is exponentially distributed (31), using (11) and (32), it can
be easily verified that

Mηξ(U)(h) = 1

and (74) becomes

ζ(h) = exp (λξh) ,

so that the statement of the CHRB (73) can be rewritten as

Var
(
ξ̂
)
≥
[
inf
h

exp (λξhN)− 1

h2

]−1

=
0.6476

λ2
ξN

2

and similarly for ψ̂. Using Proposition 1, it follows that

MSE
(
θ̂
)

=
1

4

(
Var
(
ξ̂
)

+ Var
(
ψ̂
))

+
1

4
(bξ − bψ)

2

≥ 0.162

N2

(
1

λ2
ξ

+
1

λ2
ψ

)
+

1

4
(bξ − bψ)

2
.

(82)

3) Gaussian Distribution - BCRB: In the Bayesian regime,
if the likelihood function for ξ is Gaussian distributed (57),
by using (58) and (79), it can be seen that

JCR,ξ (k + 1) =
(
σ2 + J−1

CR,ξ (k)
)−1

+
1

σ2
ξ,k

,

with JCR,ξ (0) = 0. A similar line of reasoning can be followed
to derive an analogous recursion for JCR,ψ (k). The MSE of
θ can be now be lower bounded as

Var(θ̂k) ≥ 1

4

(
1

JCR,ξ (k)
+

1

JCR,ψ (k)

)
. (83)

4) Exponential Distribution - BCHRB: If the likelihood for
ξk is exponentially distributed (63), (80) turns out to be

Tk(hk) = exp

λξ N∑
j=1

hj

 exp

 1

σ2

k∑
j=1

(hj − hj−1)
2

 .

In fact, we just have to notice that φξ (ξk) is a constant
function over ξk and ηξ(Uj) = λξ, so that (85) becomes

E [exp (2hjηξ(Uj))] = exp (λξhj)

therefore S(hk) = exp
(
λξ
∑N
j=1 hj

)
.

VI. SIMULATION RESULTS

This section aims to corroborate the theoretical results in
preceding sections by conducting simulation studies in various
scenarios. The performance of both the classical as well as
Bayesian estimators is to be investigated. The measure of
fidelity used to rate this performance is the MSE of the esti-
mators for θ and θN . The parameter choice is σξ = σψ = 0.1
for both Gaussian and log-normally distributed likelihoods,
while λξ = λψ = 10 for exponentially distributed likelihood
functions.
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Fig. 3. MSE and bounds for estimating θ by using the MLE with log-normal
likelihood.

A. Log-normal Distribution

No solution is reported thus far in literature in case the like-
lihood is log-normally distributed. The proposed estimators,
θ̂ML (24) and θ̂N (62), can be used to determine an estimate
for the clock offset in classical and Bayesian framework,
respectively, as shown below.

1) Classical Estimation Framework: The existing ap-
proaches in literature only consider the Gaussian and the
exponential cases, therefore (24) is a new result in the state-
of-the-art about clock offset estimation. Fig. 3 shows a com-
parison between the proposed ML estimator (MLE) (24) in
case of a log-normally distributed likelihood (23) with MLEs
which (wrongly) assume that the likelihood is Gaussian and
exponentially distributed, respectively. The plot shows that the
latter approaches are not robust with respect to the likelihood
distribution, and their performance is extremely poor if their
assumptions do not hold. In addition, Fig. 3 also shows that
the proposed MLE (24) is efficient since it attains the CRB
(as well as the CHRB).

2) Bayesian Estimation Framework: Fig. 4 plots the MSE
performance of the FGE (62) as well as the BCRB and
BCHRB when the likelihoods are log-normally distributed
(61), and σ = 10−4. Firstly, it can be seen that the MSE
of the proposed FGE coincides with the estimation bounds.
Secondly, as in the classical estimation case, if we were to
(wrongly) assume a Gaussian or exponential distribution for
the likelihoods (38), the resulting FGEs would perform poorly,
a fact is evident in Fig. 4 by observing the unboundedness and
unpredictability of the dashed curve (Gaussian assumption for
the likelihoods) and the dotted curve (likelihoods assumed ex-
ponentially distributed). This clearly establishes that the FGE
(62), obtained assuming log-normally distributed likelihoods,
allows a strong performance improvement with respect to
existing estimators if the likelihood functions (38) are actually
log-normally distributed.
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B. Estimator Performance vs Estimation Bounds

It will also be useful to asses the performance of the
MLEs in Gaussian and exponential cases derived in Section
III against the various benchmark estimation bounds derived in
Section V. Similarly, the FGEs for Gaussian and exponential
distributions, proposed in Section IV, can also be compared
with the Bayesian bounds to study their MSE performance.

1) Classical Estimation Framework: Fig. 5 shows the per-
formance comparison between the MSE of the MLEs (22)
and (34) for Gaussian and exponentially distributed likelihood
functions against the CRB and the CHRB, respectively. Firstly,
it is evident that in the case of Gaussian distribution, the
CRB and the CHRB coincide. Moreover, the MSE of θ̂ML
also coincides with the aforementioned bounds. On the other
hand, for an exponentially distributed likelihood function, due
to its lack of regularity, the CRB cannot be derived, thus only
the CHRB is shown. It can be observed that the MSE of θ̂ML
is fairly close to CHRB, even though it does not coincide
with it. From Fig. 5 the MSE of the MLEs for the Gaussian
and exponential distribution case can be also compared. In
order to ensure a fair comparison, parameters are chosen in
a way to have the same variance of the observations for
both distributions. From the MSE curves, one can infer that
the MSE in case of an exponentially distributed likelihood
is lower than the one for a Gaussian distribution as the
number of observations N increases. This behavior is expected
since it can be verified by the MSE expressions (86) and
(87), reported in Appendix C, that in case of a Gaussian
distribution, the MSE decreases proportionally to 1/N , while
in the exponential distribution case it decreases proportionally
to 1/N2.

2) Bayesian Estimation Framework: In Fig. 6, the MSE
performance of the FGEs θ̂N (60) and (67) is compared
with BCRB and BCHRB for σ = 10−4. As in the classical
estimation scenario, it is evident that for Gaussian distributed
likelihoods, the MSE using (60) for θ̂N coincides with the
reported bounds. The MSE of the FGE derived assuming
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Fig. 5. MSE and bounds for estimating θ by using the MLE with Gaussian
and exponentially distributed likelihood.

0 5 10 15 20 25
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

N

M
S

E
(θ

)

 

 

FGE − Gaussian

BCRB − Gaussian

BCHRB − Gaussian

FGE − Exp. Distr.

BCHRB − Exp. Distr.

Fig. 6. MSE and bounds for estimating θN by using FGE with Gaussian
and exponentially distributed likelihood.

exponentially distributed likelihoods (67) is plotted against the
BCHRB as well in Fig. 6. It is clear that the MSE is quite
close to BCHRB, although not coinciding with it, as exactly
was the case in the classical estimation framework.

C. Comparing Classical and Bayesian frameworks

The estimators proposed in the classical and the Bayesian
framework can also be compared with each other based on
their MSE performance as the system noise decreases. The
aim here is to show that the latter approaches the former as
σ → 0.

Fig. 7 depicts the MSE for the cases of Gaussian, expo-
nential and log-normal distribution for the likelihoods with
N = 25. In the plot, the horizontal lines represent the MSEs
in the classical framework, obtained with the MLEs, as shown
in (86) and (87) in Appendix C. It can be observed that, for all
the three considered distributions, the MSE obtained by using
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the FGE for estimating θ approaches the MSE of the MLEs
as σ < 10−3.

VII. CONCLUSIONS AND FUTURE WORK

The clock synchronization problem in sensor networks has
received keen attention recently owing to its central role in crit-
ical network operations as duty cycling, data fusion, and node
localization. Based on a two-way timing message exchange
scenario, this work proposes a unified framework for the
clock offset estimation problem when the likelihood function
of the observation time stamps is Gaussian, exponential and
log-normally distributed. A convex optimization based ML
estimation approach is presented for clock offsets. The results
known thus far for Gaussian and exponentially distributed
network delays are subsumed in the general approach while the
ML estimator is derived when the likelihood function is log-
normally distributed. In order to study the case of a possibly
time-varying clock offset, a Bayesian approach is also studied
using factor graphs. The novel message passing strategy results
in a closed form solution of the time-varying clock offset
estimation problem. In order to compare various estimators,
several lower bounds on the variance of an estimator have
been derived in the classical as well as the Bayesian regime
for likelihood functions which are arbitrary members of the
exponential family, a wide class containing several distribu-
tions of interest. The theoretical findings are corroborated by
simulation studies conducted in various scenarios.

In future, it will be useful to incorporate the effect of
clock skew in the clock offset estimation model. This can
result in further reduction of the re-synchronization periods.
In addition, the results about pairwise synchronization can be
used to build a framework for network-wide synchronization
across a sensor network.

APPENDIX A
PROOF OF THEOREM 5

The ratio of the likelihood functions can be expressed as

f(Z; ρ+ h)

f(Z; ρ)

=
e((ρ+h)

∑N
j=1 η(Zj)−Nφ(ρ+h))∏N

j=1 I(Zj − ρ− h)

e(ρ
∑N
j=1 η(Zj)−Nφ(ρ))

∏N
j=1 I(Zj−ρ)

=e(h
∑N
j=1 η(Zj)−Nφ(ρ+h)+Nφ(ρ))

N∏
j=1

I(Zj − ρ− h)

=e(h
∑N
j=1 η(Zj))e(−N(φ(ρ+h)+φ(ρ)))

N∏
j=1

I(Zj − ρ− h) .

The expectation of the ratio of the likelihood functions can
now be calculated as

E
(
f(Z; ρ+ h)

f(Z; ρ)

)2

= E

e(2h
∑N
j=1 η(Zj))e(−2N(φ(ρ+h)+φ(ρ)))

N∏
j=1

I(Zj − ρ− h)


= e(−2N(φ(ρ+h)+φ(ρ)))E

e(2h
∑N
j=1 η(Zj))

N∏
j=1

I(Zj − ρ− h)


=
(
Mη(Z)(h)

)−2N E

e(2h
∑N
j=1 η(Zj))

N∏
j=1

I(Zj − ρ− h)


where it follows from (11) that(

Mη(Z)(h)
)−2N

= e−2N(φ(ρ+h)−φ(ρ)) .

Since the samples Zj are i.i.d,

E

e(2h
∑N
j=1 η(Zj))

N∏
j=1

I(Zj − ρ− h)


=
(
E
[
e(2hη(Zj))I(Zj − ρ− h)

])N
.

With ζ(.) defined in the theorem, the proof is complete.

APPENDIX B
PROOF OF THEOREM 7

We have

Tk(hk)
∆
=E

[(
f(Zk,ρk + hk)

f(Zk,ρk)

)2
]

=

∫ +∞

−∞

∫ +∞

−∞

(
f(Zk,ρk + hk)

f(Zk,ρk)

)2

f(Zk,ρk)dZkdρk

= S(hk)

∫ +∞

−∞

f(ρk + hk)2

f(ρk)
dρk

where

S(hk)
∆
=

∫ +∞

−∞

(
f(Zk|ρk + hk)

f(Zk|ρk)

)2

f(Zk|ρk)dZk . (84)
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Continuing with the calculations

Th(hk) =S(hk)

∫ +∞

−∞

f(ρk + hk)2

f(ρk)
dρk

=S(hk)

∫ +∞

−∞

f2(ρ0 + h0)

f(ρ0)
×

k∏
j=1

f2(ρj + hj |ρj−1 + hj−1)

f(ρj |ρj−1)
dρk

=S(hk)

∫ +∞

−∞

k∏
j=1

f2(ρj + hj |ρj−1 + hj−1)

f(ρj |ρj−1)
dρk .

Since f2(ρj+hj |ρj−1+hj−1)
f(ρj |ρj−1) can be verified to be equal to (j =

1, . . . , k)

1

σ
√

2π
exp

[
−
ρ2
j−1

2σ2
+
ρj + 2(hj − hj−1)

σ2
ρj−1

]
×

exp

[
− (hj − hj−1)2

σ2

]
exp

[
−
ρ2
j

2σ2
− 2ρj(hj − hj−1)

σ2

]
it turns out that∫ +∞

−∞

f2(ρj + hj |ρj−1 + hj−1)

f(ρj |ρj−1)
dρj−1 = exp

[
(hj − hj−1)2

σ2

]
that brings to

Tk(hk) = S(hk) exp

 1

σ2

k∑
j=1

(hj − hj−1)
2

 .

It can be easily verified that (84) can be written as

S(hk) =

k∏
j=1

∫ +∞

−∞

(
f(Zj |ρj + hj)

f(Zj |ρj)

)2

f(Zj |ρj)dZj .

Moreover, it can be noted that(
f(Zj |ρj + hj)

f(Zj |ρj)

)2

= exp [−2 (φρ(ρj + hj)− φρ(ρj))]×

exp (2hjηρ(Zj))

and therefore∫ +∞

−∞

(
f(Zj |ρj + hj)

f(Zj |ρj)

)2

f(Zj |ρj)dZj = M−2
ηρ (hj)×

E [exp (2hjηρ(Zj))] .

Then, since

E [exp (2hjηρ(Zj))] = exp (φρ(ρj + 2hj)− φρ(ρj)) (85)

it can be easily seen that∫ +∞

−∞

(
f(Zj |ρj + hj)

f(Zj |ρj)

)2

f(Zj |ρj)dZj =M−2
ηρ (hj)Mηρ(2hj) ,

thus getting

S(hk) =

k∏
j=1

M−2
ηρ (hj)Mηρ(2hj) .

APPENDIX C
MSE EXPRESSIONS FOR ML ESTIMATORS

A. Gaussian Distribution

If the likelihood for ξ is Gaussian distributed (19), the MLE
is given by (21). Since the variance of the readings Uj is σ2

ξ

and the MLE (21) is unbiased, it is straightforward to see that

MSE
(
ξ̂ML

)
=
σ2
ξ

N
,

and similarly for ψ̂ML. Given (18) and Proposition 1, it can be
concluded that

MSE
(
θ̂ML

)
=
σ2
ξ + σ2

ψ

4N
. (86)

B. Exponential Distribution

If the likelihood for ξ is exponential distributed (31), the
MLE is given by (33). Through simple algebra it can be seen
that U(1) is exponentially distributed with parameter λ

′

ξ =

λξN , so that Var
(
ξ̂ML

)
= 1

λ2
ξN

2 . It can be noticed that ξ̂ML

is a biased estimator for ξ, with bias bξ,ML
∆
= 1

λξN
. Similarly,

Var
(
ψ̂ML

)
= 1

λ2
ψN

2 and bψ,ML
∆
= 1

λψN
. Therefore, given (18)

and Proposition 1, it can be concluded that

MSE
(
θ̂ML

)
=

0.25

N2

(
1

λ2
ξ

+
1

λ2
ψ

)
+

0.25

N2

(
1

λξ
− 1

λψ

)2

.

(87)
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