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Abstract—Noncontrollable finite-state channels (FSCs) are
FSCs in which the channel inputs have no influence on the
channel states, i.e., the channel states evolve freely. Since single-
letter formulae for the channel capacities are rarely available for
general noncontrollable FSCs, computable bounds are usually
utilized to numerically bound the capacities. In this paper, we
take the delayed channel state as part of the channel input and
then define thedirected information rate from the new channel in-
put (including the source and the delayed channel state) sequence
to the channel output sequence. With this technique, we derive a
series of upper bounds on the capacities of noncontrollableFSCs
with/without feedback. These upper bounds can be achieved by
conditional Markov sources and computed by solving an average
reward per stage stochastic control problem (ARSCP) with a
compact state space and a compact action space. By showing
that the ARSCP has a uniformly continuous reward function, we
transform the original ARSCP into a finite-state and finite-action
ARSCP that can be solved by a value iteration method. Under a
mild assumption, the value iteration algorithm is convergent and
delivers a near-optimal stationary policy and a numerical upper
bound.

Index Terms—Average reward per stage stochastic control
problem (ARSCP), channel capacity, delayed feedback, directed
information, dynamic programming, feedback capacity, noncon-
trollable finite-state channel (FSC), upper bound.

I. I NTRODUCTION

T HE channel capacity is usually defined as an operational
quantity, calledoperational capacity, that is the supre-

mum of all achievable rates. For a stationary memoryless
channel without feedback, it is well-known that the operational
capacity equals the maximum mutual information between
the channel input and the channel output, calledinformation
capacity [1, 2]. It is also well-known that feedback does not
increase capacities of memoryless channels [2, 3]. That is,
the feedback capacityof a memoryless channel also equals
the maximum mutual information. However, for a channel
with memory, Massey [4] proved that the feedback capacity

This work was supported by International Program of Project985, Sun
Yat-sen University, and by the National Basic Research Program of China
(973 Program, No. 2012CB316100), and by the NSFC (No. 61172082) and
the NSFC and Guangdong Province (No. U0635003). This work was also
supported by the NSF, grant CCF10-18984. This work was performed while
X. Huang was visiting University of Hawaii.

X. Huang and X. Ma are with the Department of Electronic and Com-
munication Engineering, Sun Yat-sen University, Guangzhou, GD 510006
China (email: huangxj5@mail2.sysu.edu.cn, maxiao@mail.sysu.edu.cn).
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is upper-bounded by the normalizeddirected information1,
which can be strictly less than the mutual information. Since
the mutual information can be reduced to the directed infor-
mation when the channel is used without feedback [4], both
the feedforward capacity forinformation stablechannels [7]
and the feedback capacity fordirected information stable
channels [8] can definitely be characterized by a unified
quantity, i.e., the limit of the normalized directed information.
This fact will be employed in this paper to upper-bound the
feedforward/feedback capacities. Although the capacities for
general channels can be characterized either by the supremum
of the spectral inf-mutual information rates[9, 10] or by the
supremum of thespectral inf-directed information rates[8],
they are usually difficult to compute numerically.

In this paper, we are concerned with stationary finite-state
channels (FSCs) as defined in [11, p. 97], a class of (di-
rected) information stable channels with memory. Finite-state
channels model a class of channels with memory which have
finite channel states, such as finite-length intersymbol inter-
ference (ISI) channels and Gilbert-Elliott (GE) channels [12].
Gallager [11] defined thelower capacityand theupper capac-
ity to characterize the dependence of the feedforward capacity
on the initial channel state and showed that they coincide
for indecomposableFSCs. Permuteret al. [13] extended
Gallager’s method to characterize the feedback capacity of
FSCs. For a class of stationary FSCs with feedback [14], Kim
proved a coding theorem using an encoding scheme based on
block ergodic decomposition and a decoding scheme based on
strong typicality. For other special FSCs with/without feedback
such as GE channels, GE-like channels and unifilar FSCs,
see, for example, [12, 15, 16] and the references therein. Ifthe
channel state information (CSI) is known to either one of the
transmitter and the receiver or both, the capacity usually has a
simplified form. For an example, considering the special class
of FSCs without ISI defined in [17], if the receiver has perfect
CSI and both the output and the channel state are fed back to
the transmitter, the feedback capacity can be characterized by
a single letter formula.

In addition to the derivation of the capacity formula, the
computation of the channel capacity is also an important prob-
lem. For general channels, this could be a very complicated
optimization problem due to the following two issues. Firstly,
the capacity usually takes the form of a limit, whose analytical
properties are rarely known. Secondly, it might be required
to consider almost all possible input processes to conduct the

1Directed information was introduced by Massey [4] who attributes it to
Marko [5]. Recently, Venkataramanan and Pradhan [6] gave a new interpre-
tation of the directed information.
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optimization. A brief review of the computation of the channel
capacity or its bounds is summarized as follows.

For the discrete memoryless channel, the capacity can be
computed by the Blahut-Arimoto algorithm [18, 19]. For the
ISI channel with additive white Gaussian noise, if continuous
channel inputs are allowed, the capacity can be computed by
using the water-filling theorem [2, 11]. If only finite chan-
nel inputs are allowed in the ISI channel, bounds on the
i.u.d. capacityCi.u.d., which is defined as the information
rate when the channel inputs are independent and uniformly
distributed (i.u.d.), can be evaluated numerically by a Monte
Carlo method [20]. A more refined Monte Carlo method
that utilizes the BCJR algorithm can be used to numerically
evaluate theCi.u.d. and the information rates of stationary
FSCs with Markov inputs [21–24]. For an FSC with a given-
order Markov input processe, the information rate can be
further optimized by a generalization of the Blahut-Arimoto al-
gorithm [25, 26]. These methods, coupled with the proofs [27]
that Markov processes asymptotically achieve feedforward
capacities of ISI channels, can be utilized to very closely
lower-bound the feedforward capacities of ISI channels. For
upper bounds on the feedforward capacities of the stationary
FSCs, see [28, 29] and the references therein.

To compute the feedback capacity of the Markov chan-
nel, Tatikonda and Mitter [8, 30, 31] introduced a dynamic
programming framework based on certain sufficient statistics.
However, for general FSCs, the sufficient statistics could be
very complicated and the corresponding dynamic program-
ming problem can not be solved efficiently. Nonetheless, for
some special FSCs, efficient dynamic programming algorithms
have been implemented to evaluate the feedback capacities
numerically [16, 28, 32, 33].

In this paper, we focus on the stationarynoncontrollable
FSC [26, Definition 22], which is also known as Markov
channel without ISI [8, Definition 6.1]2. By uncontrollability,
we mean that the input has no influence on the channel
state and the channel state evolves freely. As mentioned
previously, for some special noncontrollable FSCs such as
the GE channel [12] and GE-like channels [15], the capacity-
achieving distributions are known, and the feedforward ca-
pacities can be evaluated using the methods in [21–24]. For
general noncontrollable FSCs, however, closely bounding the
feedforward capacity and the feedback capacity seems to be
the only practical approach. While good lower bounds on
the capacities of noncontrollable channels are known [26, 34],
computable upper bounds are loose. Here, the main practical
result of this paper is the development of a numerical technique
to closely upper bound the capacity, which combined with the
previously mentioned lower bounds [26, 34] delivers a good
numerical approximation of the capacity.

The main objective of this paper is to find computable
upper bounds on the feedforward and feedback capacities.
Firstly and most importantly, we develop upper bounds on
the capacities by two techniques. One is inserting the delayed
channel state into the channel input and then defining the

2The results in this paper can also be applied tohybrid channels that have
both an ISI component and a noncontrollable component.

directed information ratefrom the new channel input (in-
cluding the source and the delayed channel state) sequence
to the channel output sequence. The other is majorizing the
set of the considered channel input processes. In this way, we
develop two nested sequences of upper bounds for feedforward
and feedback capacities, respectively. Secondly, throughthree
theorems, we show that the upper bounds can be achieved by
finite-order conditional Markov sources, conditioned on the
delayed feedback (FB), on the delayed state information (SI)
and on the statistic of channel outputs (called thea posteriori
probability vector). Thirdly, similar to [28], we formulate the
computation of the upper bound as an average reward per stage
stochastic control problem (ARSCP) with a continuous state
space and a continuous action space [35, 36]. This ARSCP
is shown to have a uniformly continuous reward function and
can be transformed into a finite-state and finite-action ARSCP,
which can be solved by a value iteration method. Under a mild
assumption, the value iteration algorithm is convergent and
delivers a near-optimal stationary policy as well as a numerical
upper bound.

Structure: The rest of this paper is structured as follows.
The channel model is given in the next section. In Section III,
the channel capacities of noncontrollable FSCs with/without
feedback are introduced and the upper bounds on the capacities
are developed. To facilitate the computation of these bounds,
three theorems are presented in Section IV. In Subsection V-A,
the computation of upper bounds is formulated as an ARSCP
with a compact state space and a compact action space (Prob-
lem A) which can be further transformed into a finite-state and
finite-action ARSCP (Problem B). In Subsection V-B, a value
iteration method is introduced to solveProblem B to obtain
a near-optimal policy. Section VI presents some numerical
results, followed by the conclusion in Section VII.

Notation: A random variable is denoted by an upper-
case letter (e.g.X) and its realization is denoted by the
corresponding lower-case letter (e.g.x). A vector of random
variables[Xi, Xi+1, . . . , Xj] is shortly denoted byXj

i and its

realization is denoted byxj
i . By default, we setXj ∆

= X
j
1

andxj ∆
= x

j
1. The cardinality of a setX is denoted by|X |.

The expectation of a functiong(·) of a random variableX is
denoted byE[g(X)], while the expectation of a functiong(·)
of a random variableX conditioned on a realizationy of a
random variableY is denoted byEX|y[g(X)].

II. CHANNEL MODEL

LetSt, Xt andYt denote the channel state, the channel input
and the channel output at timet ∈ Z, whose realizations arest,
xt andyt, respectively. Each statest, each input letterxt and
each output letteryt are drawn from finite alphabetsS, X and
Y, respectively. More specifically, an FSC has a state sequence
s = s0, s1, s2, . . . , sN , an input sequencex = x1, x2, . . . , xN

and an output sequencey = y1, y2, . . . , yN . As in [11], an
FSC can be characterized by

Pr
(

yt, st
∣

∣xt, st−1
0 , yt−1

)

=Pr(yt, st|xt,st−1) . (1)

An FSC is said to be noncontrollable if the channel inputs
have no influence on the channel states and the channel states
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Fig. 1. A trellis section of the RLL(1,∞) sequence.
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Fig. 2. A Gilbert-Elliott channel.

evolve freely. Hence, a noncontrollable FSC can further be
characterized by

Pr
(

yt, st
∣

∣xt, st−1
0 , yt−1

)

=Pr(yt|xt,st−1) Pr(st|st−1) . (2)

Moreover, we assume that the noncontrollable FSC is station-
ary and indecomposable [11], that is, the right-hand side of(2)
is independent of timet and the effect of the initial states0
on the characteristic of the channel dies away with time. For
this reason, without loss of generality, we make an assumption
that the distribution of the initial stateS0 equals the stationary
distribution of the stateSt wheret ≥ 1.

Remark: Under the above assumptions, it is easy to verify
that if there is no feedback, then given the channel state
st−1 and channel inputxt, the channel outputyt and state
st are statistically independent of other channel inputs and
prior channel states and outputs, i.e., fort ≤ N ,

Pr
(

yt, st
∣

∣xN , st−1
0 , yt−1

)

=Pr(yt|xt,st−1) Pr(st|st−1) . (3)

However, if feedback is allowed (precisely speaking, the
output sequenceyt−1 is available at the transmitter before
emitting symbolXt), then equality (3) may not hold.

The noncontrollable FSC will be illustrated by the following
example related to the Gilbert-Elliott (GE) channel.

Example 1 (The RLL(1,∞)-GE Channel):The channel in-
put is required to be a binary run-length-limited (RLL) se-
quence satisfying the RLL(1,∞) constraint, i.e., there are no
consecutive ones in the sequence (see Fig. 1). The channel
is a GE channel with two states (see Fig. 2), a “good”
state and a “bad” state. Denote the channel state alphabet
by S

∆
= {g, b}. The transition probabilities between channel

states arep(b|g)
∆
= Pr (St = b |St−1 = g ) and p(g|b)

∆
=

Pr (St = g |St−1 = b ). When the channel state is “good”, i.e.,
St−1 = g, the channel acts as a binary symmetric chan-
nel (BSC) with cross-over probabilityεg. When the channel
is “bad”, i.e.,St−1 = b, the channel is a BSC with cross-over
probability εb. ❑

III. C HANNEL CAPACITIES AND UPPER BOUNDS

A. Channel Capacities

In order to unify the presentations of both channel capaci-
ties (the feedforward capacity and the feedback capacity),we
use the notion of directed information, which was introduced
by Massey in [4]. For any given joint probability distribution
Pr
(

xN , yN
)

, the directed information from the channel input
sequenceXN to channel output sequenceY N is defined as

I
(

XN → Y N
) ∆
=

N
∑

t=1

I
(

Xt;Yt

∣

∣Y t−1
)

.

It has been shown thatI
(

XN → Y N
)

≤ I
(

XN ;Y N
)

with
equality if the channel is used without feedback [4]. For
simplicity, we denoteI (X → Y ) as the directed information
rate from the channel input to the channel output, that is,

I (X → Y )
∆
= lim inf

N→∞

1

N
I
(

XN → Y N
)

. (4)

We now prove that the capacities can be characterized by
the suprema of the directed information rates.

Theorem 1:The feedforward capacity of a stationary inde-
composable noncontrollable FSC is given by

C = sup
{Pr(xt|xt−1)}∞

t=1

I (X → Y ) (5)

where the supremum is taken over all possible channel input
processes. The feedback capacity of a stationary indecompos-
able noncontrollable FSC is given by

Cfb = sup
{Pr(xt|xt−1,yt−1)}∞

t=1

I(X → Y ) (6)

where the supremum is taken over all possible channel input
processes that are causally dependent on the past channel
outputs. This means that all past channel outputsY t−1 must
be fed back to the source before emitting the symbolXt.

Proof: See Appendix A.
For the general FSC, based on certain sufficient statistics,

a dynamic programming framework to evaluate the capacity
was presented [8]. However, as mentioned in Section VIII
of [8], the sufficient statistic for a general FSC is often
too complicated to be employed in dynamic programming
methods. For somespecialFSCs, efficient dynamic program-
ming algorithms have been proposed to evaluate the feedback
capacity numerically [16, 28, 32, 33]. The main objective of
this paper is to develop numerically computable upper bounds
on the capacities ofgeneral indecomposable noncontrollable
FSCs (2) with/without feedback.

B. Upper Bounds on Capacities

To upper-bound the capacities, a technique of inserting the
delayed channel state into the channel input is employed. Then
the directed information from the channel input and delayed
channel state sequence to the channel output sequence can be
well defined as follows.
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Fig. 3. A noncontrollable FSC model withu-delayed FB andv-delayed SI.

Definition 1: For a stationary indecomposable noncontrol-
lable FSC (2), thedirected information rateIv(X,S → Y ) is
defined as

Iv (X,S → Y )
∆
= lim inf

N→∞

1

N

N
∑

t=1

I
(

Xt, St−v−1
0 ;Yt

∣

∣Y t−1
)

.

(7)
❑

In this definition, thev-delayed channel state is considered
as a part of the channel input. Obviously, for a given channel
input process, there is a nested sequence of upper bounds on
I (X → Y ) as

I (X → Y ) ≤ · · · ≤ Iv+1 (X,S → Y )

≤ Iv (X,S → Y ) ≤ · · · ≤ I0 (X,S → Y ).(8)

Furthermore, the capacities in Theorem 1 can be bounded as

C ≤ sup
{Pr(xt|xt−1)}∞

t=1

Iv (X,S → Y )

Cfb ≤ sup
{Pr(xt|xt−1,yt−1)}∞

t=1

Iv (X,S → Y ) .
(9)

These upper bounds, however, can not be easily evaluated
because the source sets are too general to be specified with
a few parameters. To develop simpler expressions for upper
bounds, we need to define the following sources in a similar
way to those in [29].

Definition 2: Assume that theu-delayed output feed-
back (FB) Y t−u−1, and thev-delayed state information (SI)
St−v−1
0 are available at the source just before the emission

of Xt (see Fig. 3). Then the channel inputXt could be
selected according to a preset conditional probability law
Pr
(

xt

∣

∣xt−1, st−v−1
0 , yt−u−1

)

. All such input processes{Xt}
are described by a setP(u, v), i.e.,

P(u, v)
∆
=
{

Pr
(

xt

∣

∣xt−1, st−v−1
0 , yt−u−1

)}∞

t=1
.

In other words,P(u, v) represents the set of all sources (chan-
nel inputs) withu-delayed FB andv-delayed SI. ❑

Note that the delaysu and v are both non-negative. An
important subclass of sources fromP(u, v), called conditional
Markov source, is defined as follows.

Definition 3: Forv ≤ m, a source sequence{Xt} used with
u-delayed FB andv-delayed SI is said to bean m-th order
conditional Markov source if the conditional probability
mass function satisfies

Pr
(

xt

∣

∣xt−1, st−v−1
0 , yt−u−1

)

=Pr
(

xt

∣

∣xt−1
t−m, st−v−1

t−m−1, y
t−u−1

)

.

Let Pm(u, v) represent the set of all such sources, that is,

Pm(u, v)
∆
=
{

Pr
(

xt

∣

∣xt−1
t−m, st−v−1

t−m−1, y
t−u−1

)}∞

t=1
.

❑

From the definitions of sourcesP(u, v) andPm(u, v), we
have the following facts for non-negativeu, v andm.

• The sets of channel input processes
{

Pr
(

xt

∣

∣xt−1
)}∞

t=1

and
{

Pr
(

xt

∣

∣xt−1, yt−1
)}∞

t=1
are subsets of the condi-

tional source setsP(u, v) andP(0, v), respectively.
• P(u+ 1, v + 1) ⊆ P(u+ 1, v) ⊆ P(u, v) and

P(u+ 1, v + 1) ⊆ P(u, v + 1) ⊆ P(u, v).
• If v + 1 ≤ m, then

Pm(u + 1, v + 1) ⊆ Pm(u+ 1, v) ⊆ Pm(u, v) and
Pm(u + 1, v + 1) ⊆ Pm(u, v + 1) ⊆ Pm(u, v).

• If v ≤ m, thenPm(u, v)⊆Pm+1(u, v)⊆· · ·⊆P(u, v).

Moreover, we can prove the following proposition.
Proposition 1: For a noncontrollable FSC with sources in

the setP(u, u),

Pr
(

yt, st
∣

∣xt+u,st−1
0 , yt−1

)

=Pr(yt|xt,st−1) Pr(st|st−1) .
(10)

Proof: In the case ofu = 0, equality (10) holds from the
characteristics of the noncontrollable FSC in (2). In the case
of u ≥ 1, we have

Pr
(

yt, st
∣

∣xt+u, st−1
0 , yt−1

)

=
Pr(xt+u, st0, y

t)

Pr
(

xt+u, st−1
0 , yt−1

)

=
Pr(xt, st0, y

t) Pr
(

xt+u
t+1 |x

t, st0, y
t
)

Pr
(

xt, st−1
0 , yt−1

)

Pr
(

xt+u
t+1

∣

∣xt, st−1
0 , yt−1

)

(a)
= Pr

(

yt, st
∣

∣xt, st−1
0 , yt−1

)

= Pr(yt|xt, st−1) Pr(st |st−1) (11)

where equality (a) results from the equality

Pr
(

xt+u
t+1

∣

∣xt, st0, y
t
)

= Pr
(

xt+u
t+1

∣

∣xt, st−1
0 , yt−1

)

since channel input processes are in the setP(u, u) =
{

Pr(xt|x
t−1, st−u−1

0 , yt−u−1)
}∞

t=1
(see Definition 2).

Proposition 1 implies that the probabilities
Pr
(

yt, st
∣

∣xt+u, st−1
0 , yt−1

)

are unaffected by the
source selection fromP(u, u) and that the probabilities
Pr
(

yt, st
∣

∣xt+u, st−1
0 , yt−1

)

can be characterized by the
channel only. From the definition of the setP(u, u), we
directly introduce a supremum as follows, which will
be shown to be an upper bound on the capacity of the
noncontrollable FSC.

Definition 4: DefineI∗
FB,SI(u, v) as the supremum of the

information ratesIv (X,S → Y ) over all sources withu-
delayed FB andu-delayed SI inP(u, u), that is,

I∗
FB,SI(u, v)

∆
= sup

P(u,u)

Iv (X,S → Y ) . (12)

❑

Combining the inequalities in (8) and (9) with the discussion
after Definitions 2 and 3, we conclude this section with the
following proposition.
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Proposition 2: 1) For anyu ≥ 0 andv ≥ 0, we have

I∗
FB,SI (u+ 1, v + 1) ≤ I∗

FB,SI (u+ 1, v)

≤ I∗
FB,SI (u, v)

and

I∗
FB,SI (u+ 1, v + 1) ≤ I∗

FB,SI (u, v + 1)

≤ I∗
FB,SI (u, v) .

2) For anyv ≥ 1, we have a nested sequence of upper
bounds on the feedforward capacity

C ≤ · · · ≤ I∗
FB,SI (v, v) ≤ · · ·

≤ I∗
FB,SI (1, 1) ≤ I∗

FB,SI (0, 0) .

3) For anyv ≥ 1, we have a nested sequence of upper
bounds on the feedback capacity

Cfb ≤ · · · ≤ I∗
FB,SI (0, v) ≤ · · ·

≤ I∗
FB,SI (0, 1) ≤ I∗

FB,SI (0, 0) .

Proof: It is straightforward and omitted here.

IV. T HREE THEOREMS FORUPPERBOUNDS

In this section, we introduce three main theorems that
simplify the expressions for the upper bounds presented in
Proposition 2 on the capacities of noncontrollable FSCs.

Theorem 2:Let v ≥ 0. For noncontrollable FSCs,

I(Xt, St−v−1
0 ;Yt|Y

t−1) = I(Xt
t−v, St−v−1;Yt|Y

t−1) (13)

and the directed information rateIv (X,S → Y ) in (7) can
be simplified as

Iv (X,S → Y ) = lim inf
N→∞

1

N

N
∑

t=1

I(Xt
t−v, St−v−1;Yt|Y

t−1).

(14)
Proof: For anyv ≥ 0, by using the chain rule for mutual

information, we have

I(Xt, St−v−1
0 ;Yt|Y

t−1)

= I(Xt
t−v, St−v−1;Yt|Y

t−1)

+ I(Xt−v−1, St−v−2
0 ;Yt|Y

t−1, Xt
t−v, St−v−1).(15)

The last term equals zero since the current channel outputYt

is independent of the distantly past statesSt−v−2
0 and inputs

Xt−v−1 if the recent stateSt−v−1 and inputsXt
t−v and the

whole history of outputsY t−1 are given.
Theorem 3:Let 0 ≤ u ≤ v. The supremumI∗

FB,SI(u, v)
is achieved by av-th order conditional Markov source with
u-delayed FB andu-delayed SI, that is,

I∗
FB,SI(u, v) = sup

Pv(u,u)

Iv(X,S → Y )

wherePv(u, u) =
{

Pr
(

xt

∣

∣xt−1
t−v, s

t−u−1
t−v−1 , y

t−u−1
)}∞

t=1
.

Proof: See Appendix B.
By Theorem 3, to evaluate the supremumI∗

FB,SI(u, v), it is
necessary to search the whole set of conditional probabilities
{

Pr
(

xt

∣

∣xt−1
t−v, s

t−u−1
t−v−1 , y

t−u−1
)

, t = 1, 2, . . . ,
}

. As time t in-
creases, the space of sequencesyt−u−1 expands exponentially,
which makes it complicated to keep track of the dependence of

the processXt on Y t−u−1. In the sequel, we find some finite-
size sufficient statistics to represent the sequenceyt−u−1.

Let M be the Cartesian productX v × Sv−u+1 whose
elements are indexed simply byℓ ∈ {0, 1, · · · ,M − 1} with
M = |M|. A random vectorAt is specified as thea posteriori
probability vector with realization

αt

∆
= [αt(0), αt(1), · · · , αt(M − 1)] (16)

where

αt(ℓ)
∆
=Pr

((

Xt
t−v+1,S

t−u
t−v

)

=ℓ |yt−u
)

(17)

for ℓ ∈ {0, 1, · · · ,M − 1}. The sample space of the ran-
dom vectorAt is denoted byA, which is a simplex in
R

M . That is, A = {α = [α(0), . . . , α(M − 1)] : α(i) ≥
0,
∑M−1

i=0 α(i) = 1}. Given the probability vectorαt−1, the
channel outputyt−u and the set of transition probabilities
Pr
(

xt

∣

∣xt−1
t−v, s

t−u−1
t−v−1 , y

t−u−1
)

, we can use the forward recur-
sion of the BCJR algorithm [37] to compute all values ofαt(ℓ)
as

αt

(

xt
t−v+1,s

t−u
t−v

)

=

∑

xt−v,st−v−1

Pr
(

xt
t−v,s

t−u
t−v−1,yt−u

∣

∣yt−u−1
)

∑

xt

t−v
,s

t−u

t−v−1

Pr
(

xt
t−v,s

t−u
t−v−1,yt−u|yt−u−1

)

(18)
where

Pr
(

xt
t−v,s

t−u
t−v−1,yt−u

∣

∣yt−u−1
)

(a)
= αt−1

(

xt−1
t−v, s

t−u−1
t−v−1

)

Pr
(

xt

∣

∣xt−1
t−v,s

t−u−1
t−v−1 ,y

t−u−1
)

×Pr(yt−u|xt−u, st−u−1)Pr(st−u|st−u−1) . (19)

The equality (a) results from Proposition 1 and the assumption
u ≤ v. From (19), we know that, once the prior conditional
probability vectorαt−1 is given, the current conditional prob-
ability vectorαt dependsonly on the current transition prob-
ability Pr

(

xt

∣

∣xt−1
t−v,s

t−u−1
t−v−1 ,y

t−u−1
)

and the channel transition
law. To shorten the notation, we abbreviate (18) and (19) as

αt=FBCJR

(

αt−1,
{

Pr
(

xt

∣

∣xt−1
t−v,s

t−u−1
t−v−1 ,y

t−u−1
)}

, yt−u

)

. (20)

Evidently, the vectorαt−1 depends on the sequenceyt−u−1,
and two different sequencesyt−u−1 andỹt−u−1 may result in
the same vectorsαt−1. For an arbitrarily selected source from
Pv(u, u), two different sequencesyt−u−1 and ỹt−u−1 may
induce different probabilities

Pr
(

xt

∣

∣xt−1
t−v, s

t−u−1
t−v−1 , y

t−u−1
)

6=Pr
(

xt

∣

∣xt−1
t−v, s

t−u−1
t−v−1 , ỹ

t−u−1
)

.

However, there do exist sources such that different sequences
yt−u−1 andỹt−u−1 resulting in the same vectorsαt−1 = α̃t−1

induce the same probabilities

Pr
(

xt

∣

∣xt−1
t−v, s

t−u−1
t−v−1 , y

t−u−1
)

=Pr
(

xt

∣

∣xt−1
t−v, s

t−u−1
t−v−1 , ỹ

t−u−1
)

.

Such a subclass ofPv(u, u) is defined as follows.
Definition 5: The setP ′

v(u, u) collects all thev-th order
conditional Markov sources withu-delayed FB andu-delayed
SI such that

Pr
(

xt

∣

∣xt−1
t−v, s

t−u−1
t−v−1 , y

t−u−1
)

=Pr
(

xt

∣

∣xt−1
t−v, s

t−u−1
t−v−1 , ỹ

t−u−1
)
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Fig. 4. A noncontrollable FSC whose source is in the setP ′

v(u, u).

wheneverαt−1 = α̃t−1. Hence, the source setP ′
v(u, u) can

be shortly denoted by

P ′
v(u, u)

∆
=
{

Pr
(

xt

∣

∣xt−1
t−v, s

t−u−1
t−v−1 , αt−1

)}∞

t=1
.

❑
Fig. 4 depicts the noncontrollable FSC model, whose source

belongs to the setP ′
v(u, u).

Theorem 4:Let u≤v. The supremumI∗
FB,SI(u,v) can be

achieved by a source in the setP ′
v(u,u), that is,

I∗
FB,SI(u, v) = sup

P′

v
(u,u)

Iv (X,S → Y ) (21)

whereP ′
v(u, u) =

{

Pr
(

xt

∣

∣xt−1
t−v, s

t−u−1
t−v−1 , αt−1

)}∞

t=1
.

Proof: See Appendix C.

V. DYNAMIC PROGRAMMING FOR SOURCE
OPTIMIZATION

A. Stochastic Control Formulations

From Theorem 4, we only need to consider the sources in
the setP ′

v(u, u). In this setting, for any givenyt−u−1,

Pr
(

xt
t−v, st−v−1, y

t
t−u

∣

∣yt−u−1
)

=
∑

s
t−u

t−v

Pr
(

xt
t−v, s

t−u
t−v−1, y

t
t−u

∣

∣yt−u−1
)

(a)
=

∑

s
t−u

t−v

Pr
(

xt−1
t−v,s

t−u−1
t−v−1

∣

∣yt−u−1
)

Pr
(

xt

∣

∣xt−1
t−v,s

t−u−1
t−v−1 ,y

t−u−1
)

× Pr(yt−u |xt−u,st−u−1) Pr (st−u|st−u−1)

× Pr
(

ytt−u+1

∣

∣xt
t−v,s

t−u
t−v−1

)

(b)
=

∑

st−u

t−v

αt−1

(

xt−1
t−v,s

t−u−1
t−v−1

)

Pr
(

xt

∣

∣xt−1
t−v,s

t−u−1
t−v−1 ,αt−1

)

× Pr(yt−u |xt−u,st−u−1) Pr (st−u|st−u−1)

× Pr
(

ytt−u+1

∣

∣xt
t−v,s

t−u
t−v−1

)

(22)

where equality (a) results from Proposition 1 and the assump-
tion u ≤ v, and equality (b) results directly from the definition
of the source setP ′

v(u, u). Similar to equation (57) as shown
in Appendix B, we can prove that the conditional probability
Pr
(

ytt−u+1

∣

∣xt
t−v, s

t−u
t−v−1

)

is completely determined by the
channel law. Therefore, equalities in (22) indicate that the
joint conditional probability mass function on the left-hand
side of (22) is not sensitive to the vectoryt−u−1 (that appears
in the conditioning clause) but to its induced variableαt−1.
This implies that

I
(

Xt
t−v, St−v−1;Yt

∣

∣Y t−1
t−u+1, yt−u, y

t−u−1
)

= I
(

Xt
t−v, St−v−1;Yt

∣

∣Y t−1
t−u+1, yt−u, αt−1

)

(23)

of which the right-hand side is a function ofαt−1,
{

Pr
(

xt

∣

∣xt−1
t−v, s

t−u−1
t−v−1 , αt−1

)}

and yt−u. For simplicity, we
introduce the following notations

pt(αt−1)
∆
=

{

Pr
(

xt

∣

∣xt−1
t−v, s

t−u−1
t−v−1 , αt−1

)}

pt
∆
=

{

pt(αt−1) : αt−1 ∈ A
}

.

Obviously, forαt−1 ∈ A, the quantitypt(αt−1) is a transition
probability matrix of sizeM×|X |. Let P be the collection of
all possible transition probability matrices. Both of the setsA
andP are bounded and closed, and hence compact. Moreover,
{{pt}

∞
t=1} = {(p1, p2, · · · )} = P ′

v(u, u). Then the right-hand
side of (23) is a function that can be denoted by

g
(

αt−1, pt(αt−1), yt−u

)

∆
= I
(

Xt
t−v, St−v−1;Yt

∣

∣Y t−1
t−u+1, yt−u, αt−1

)

. (24)

Therefore, we can rewrite the directed information rate
Iv(X,S → Y ) in (14) as

Iv(X,S → Y )

= lim inf
N→∞

1

N

N
∑

t=1

I
(

Xt
t−v, St−v−1;Yt

∣

∣Y t−1
t−u+1, Y

t−u
)

= lim inf
N→∞

1

N
E

[

N
∑

t=1

g
(

αt−1, pt(αt−1), Yt−u

)

]

. (25)

Substituting (25) into (21), we can see that the problem
to find the upper boundI∗

FB,SI(u, v) is equivalent to the
following discrete-timeinfinite-horizon average reward per
stage stochastic control problem(ARSCP) [35, 36, 38], which
is referred to asProblem A for convenience.

Problem A. The ARSCP is specified as follows.

1) Thestochastic control systemof the problem is charac-
terized by

αt=FBCJR

(

αt−1, pt(αt−1), yt−u

)

(26)

where

a) αt−1 is the state and A is the state space, i.e.,
αt−1 ∈ A andαt ∈ A;

b) pt is the function (orpolicy) that maps the state
spaceA to theactionspaceP, andpt(αt−1) ∈ P

is thepolicy (or control) when the state isαt−1;
c) yt−u is thedisturbance.

2) The reward function at stage t is
g
(

αt−1, pt(αt−1), yt−u

)

. For convenience, we define
the expected reward functionat staget as

g
(

αt−1, pt(αt−1)
)

= E
[

g
(

αt−1, pt(αt−1), Yt−u

)]

= I
(

Xt
t−v, St−v−1;Yt

∣

∣Y t−1
t−u , αt−1

)

. (27)

3) The objective of this problem is to find themaximum
average reward per stage, i.e.,

I(α0) = sup
{pt}∈P′

v
(u,u)

I(α0, {pt}) for all α0∈A (28)
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whereI(α0, {pt}) is the average reward associated with
the initial stateα0 and the sequence of policies{pt}

I(α0, {pt})=lim inf
N→∞

1

N
E

[

N
∑

t=1

g
(

αt−1, pt(αt−1), Yt−u

)

]

.

(29)

For the stochastic dynamic system (26) ofProblem A, we
have following two propositions.

Proposition 3: The system disturbance variableYt−u is
characterized by a conditional probability distribution that
depends explicitly on the system stateαt−1 and the policy
{

Pr
(

xt

∣

∣xt−1
t−v, s

t−u−1
t−v−1 , αt−1

)} (

i.e., pt(αt−1)
)

.
Proof: Given the system stateαt−1 and the policy

{

Pr
(

xt

∣

∣xt−1
t−v, s

t−u−1
t−v−1 , αt−1

)}

, the probability mass function
of the system disturbance can be explicitly determined as

Pr
(

yt−u
∣

∣αt−1,
{

Pr
(

xt

∣

∣xt−1
t−v, s

t−u−1
t−v−1 , αt−1

)})

=
∑

xt

t−v
,s

t−u

t−v−1

Pr
(

xt
t−v, s

t−u
t−v−1, yt−u

∣

∣αt−1,
{

Pr
(

xt

∣

∣xt−1
t−v, s

t−u−1
t−v−1, αt−1

)})

(a)
=
∑

xt

t−v
,s

t−u

t−v−1

αt−1

(

xt−1
t−v,s

t−u−1
t−v−1

)

Pr
(

xt

∣

∣xt−1
t−v,s

t−u−1
t−v−1 ,αt−1

)

× Pr(yt−u |xt−u,st−u−1) Pr(st−u|st−u−1) (30)

where equality (a) follows from Proposition 1 and the assump-
tion u≤v.

Proposition 4: The state processAt with realizationαt is
a Markov process.

Proof: Equation (26) and Proposition 3 imply that, given
the prior stateAt−1, the current stateAt is independent of the
early statesAt−2

0 . Hence,At is a Markov process.
Proposition 5: The reward functiong

(

αt−1, pt(αt−1), yt−u
)

is uniformly continuous overA× P.
Proof: This proposition can be proved by the compactness

of the setA × P and the continuity of the reward function.

In the average reward problem, i.e.,Problem A, both the
stateα and the policypt(α) are continuous, which causes
difficulties in theoretical analysis as well as computation.
Fortunately, the uniform continuity of the reward function
make it reasonable to restrict the reward function on dis-
cretized (finite) state space and action space. This approach
causes a loss at mostε as long as the quantization is fine
enough [35, Sec. 6.6]3. That is, Problem A can be solved
approximately (resulting in anε-optimal value) by solving its
discretized version,Problem B.

Problem B. Let Qδ(·) be a quantizer of the state setA
which results in a finite-state spacêA ⊂ A. Specifically, for
any stateα ∈ A, there exists a quantized stateα̂ ∈ Â such
that the Euclidean distance satisfies‖α − α̂‖ ≤ δ whereδ is
the designated quantization parameter. Similarly, letQξ(·) be
the quantizer of the action spaceP and the resulting finite set

3This holds for any continuous functionf(x) defined on a compact setΩ.
Specifically, from the uniform continuity, for anyε > 0, there existsδ > 0
such that‖f(x1)− f(x2)‖ ≤ ε as long as‖x1 − x2‖ ≤ δ, see [39]. Now,
we may take a quantizerQδ(·) such that‖x − Qδ(x)‖ ≤ δ. Let x∗ and
x̂ be the solutions of the original problemmaxΩ f(x) and the discretized
versionmaxQδ(Ω) f(x), respectively. Then we havef(x̂) ≥ f(Qδ(x

∗)) ≥
f(x∗)− ε.

be denoted byP̂. The finite-state and finite-action ARSCP is
specified as follows.

1) The stochastic control system of this problem is

α̂t = Qδ

(

FBCJR(α̂t−1, p̂t(α̂t−1), yt−u)
)

(31)

where

a) α̂t−1 is the state and̂A is the state space;
b) p̂t is the function (or policy) that maps the state

spaceÂ to the action spacêP, andp̂t(α̂t−1) ∈ P̂

is the policy when the state iŝαt−1;
c) yt−u is the disturbance.

2) The reward function at stage t is
g
(

α̂t−1, p̂t(α̂t−1), yt−u

)

.
3) The objective of this problem is to find the maximum

average reward per stage, i.e.,

I(α̂0)= sup
P̂′

v
(u,u)

I(α̂0, {p̂t}) for all α̂0 ∈ Â (32)

where

• P̂ ′
v(u, u) is the collection of all policy sequences

{p̂t}
∞
t=1 and is regarded as a discretized version of

the source setP ′
v(u, u);

• I(α̂0, {p̂t}) is the average reward associated with
the initial statêα0 and the sequence of policies{p̂t}

I(α̂0,{p̂t})=lim inf
N→∞

1

N
E

[

N
∑

t=1

g
(

α̂t−1, p̂t(α̂t−1),Yt−u

)

]

.

(33)

The pair of coupled optimality equations[35, 40] of Prob-
lem B are

G∗(α) = max
p(α)∈P̂

EA′|α

[

G∗(A′)
]

, for any α ∈ Â (34)

and

G∗(α) + J∗(α)

= max
p(α)∈P̄(α)

{

g(α, p(α))+EA′|α

[

J∗(A′)
]}

, for any α∈Â (35)

whereP̄(α) =
{

p(α) : p(α) ∈ argmax
P̂

EA′|α

[

G∗(A′)
]}

is the set of policies attaining the maximum in equation (34).
The pair of coupled optimality equations can also be repre-
sented by vectors as

G∗ = max
p∈D

LpG
∗ (36)

and
G∗ + J∗ = max

p∈D̄
{g + LpJ

∗} (37)

where D is the set of all possible policies, i.e.,D =
{

p =
{

p(α) : α ∈ Â
}}

, andD̄ is the set of policies attaining

the maximum in (36), i.e.,̄D = {p ∈ D : p ∈ argmaxLpG
∗},

and Lp = [Pr(α′|α, p(α))]|Â|×|Â| is a transition matrix
between states under the policyp. The solution(G∗, J∗) to the
pair of coupled optimality equations is usually called thegain-
bias pair [36, 40] with G∗ being the optimal average reward
vector. The policy that achieves the maxima in the pair of
coupled optimality equations is called the optimal policy.
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Remark: Depending on the choice of stationary policy, the
Markov chain{At ∈ Â} of Problem B may have different
recurrent classes. Hence,Problem B is in general amulti-
chain model [36]. The pair of coupled optimality equations
of Problem B can be viewed as an analog to the Bellman
equation for theuni-chainmodel [35, 36].

Theorem 5:For Problem B, there exists a stationary policy
that satisfies the pair of coupled optimality equations (34)
and (35).

Proof: See Appendix D.
From Theorem 5, it suffices to investigate only stationary

policies. For convenience, we denote

Pr(j|i, α)
∆
=Pr

(

Xt = j
∣

∣

(

Xt−1
t−v , S

t−u−1
t−v−1

)

= i, At−1 = α
)

.

Then the stationary policy in the discretized version of the
source setP ′

v(u, u) can be denoted by

p =
{

p(α) = {Pr(j|i, α)} : α ∈ Â
}

.

We note that with a stationary sourcep, the directed informa-
tion rateIv(X,S → Y ) in (25) can be computed using Monte
Carlo methods similar to those in [21–24].

B. A Value Iteration Method to SolveProblem B

For a finite-state and finite-action ARSCP, there exist several
dynamic programming algorithms (such as value iteration,
policy iteration and linear programming) [36] to solve the
pair of coupled optimality equations. To obtainε-optimal
value with smallε, fine quantization is required, but then the
discretized state spacêA and action spaceP̂ usually have
large sizes. In this setting, the value iteration method is a
better choice. In this subsection, a value iteration algorithm is
introduced to solveProblem B. Under a mild assumption, the
presented value iteration algorithm is shown to be convergent
and delivers the near-optimal stationary policy and the optimal
average reward value numerically.

The value iteration method is, for allα ∈ Â,

Jk(α) = max
P̂

{

g(α, p(α)) +EA′|α

[

Jk−1(A
′)
]}

(38)

starting from an arbitrary initial functionJ0. In the following,
we show that this value iteration method can deliver a solution
(G∗, J∗) to the pair of coupled optimality equations (34)
and (35). On one hand, from Proposition 4.3.1 in [36], the
optimal average reward vectorG∗ can be obtained as

G∗ = lim
k→∞

Jk

k
. (39)

Note that in general, for a multi-chain average reward problem,
G∗(α) may be different for differentα. But by performing the
iteration method for Example 1, we find that the valuesJk(α)

k

are always numerically approaching a constant ask → ∞.
On the other hand, we need to findJ∗. To this end, we

make an additional assumption as follows.
Assumption 1:Every optimal stationary policyp has an

aperiodic transition probability matrixLp. ❑
Remark: Recall that

αt = [αt(0), αt(1), · · · , αt(M − 1)] (40)

and
αt(ℓ) = Pr

((

Xt
t−v+1,S

t−u
t−v

)

=ℓ |yt−u
)

. (41)

Intuitively, the optimal stationary policy should not depend
heavily on the early channel outputs. In other words, the
influence ofyt−w−1 on the optimal policy should die away
with sufficiently largew. Specifically, for two different channel
output sequences(yt−w−1, yt−u

t−w) and (ỹt−w−1, yt−u
t−w), the

resulting probability vectorsαt and α̃t should be almost the
same (i.e., their Euclidean distance should be very small).As a
result, the quantized versions ofαt andα̃t will be equal. This
implies that, for a given optimal stationary policy, the states
At ∈ A can be restricted to the subset of states (called it the
subset ofeffectivestates) that correspond to the most recent
channel outputsY t−u

t−w . Such a subset iscommunicative. In
particular, the stateα corresponding to the vectorY t−u

t−w = 0
can be reached from itself whenever the next channel output
Yt−u+1 equals 0. Hence, the Markov chain is essentially
aperiodic. This intuition has also been verified numerically
in our example.

Under Assumption 1, according to Propositions 4.3.5
and 4.3.6 in [36], we have the following facts.

1) The optimal average reward vectorG∗ satisfying (39)
can also be obtained by

G∗ = lim
k→∞

(Jk − Jk−1). (42)

2) The biasJ∗ can be obtained by

J∗ = lim
k→∞

(Jk − kG∗). (43)

3) There exists a sufficiently largeK such that for any
k ≥ K,

max
p(α)∈P̂

{

g(α, p(α)) +EA′|α

[

Jk−1(A
′)
]}

= max
p(α)∈P̄(α)

{

g(α, p(α)) +EA′|α

[

Jk−1(A
′)
]}

(44)

whereP̄(α) has been defined in the previous subsec-
tion, see equation (35).

Therefore, the pair(G∗, J∗) induced by the value iteration
method (38) is a solution to the pair of coupled optimality
equations (34) and (35). Moreover, letp be the policy obtained
by the value iteration method (38) for the sufficiently largeK.
Then{p}∞ can achieve numerically optimal average reward
value ofProblem B. A practical value iteration algorithm for
Problem B is described as follows.

Algorithm 1 (A Value Iteration Algorithm):

1) Initialization:
• Choose a large positive integern.
• Initialize the terminal reward functionor starting

vectorasJ0(α) = 0 for all α ∈ Â.

2) Recursions:
For k=1, 2, . . . , n, and anyα ∈ Â, compute

Jk(α)= max
p(α)∈P̂

{

g(α,p(α))+EA′|α

[

Jk−1(A
′)
]}

. (45)

whereA′ ∈ Â is the random variable that depends on
the system disturbance variableYt−u, and where the
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Fig. 5. Bounds on the capacities of the RLL(1,∞)-GE channel.

realizationα′ of A′ can be computed by

α′= Qδ(FBCJR(α, p(α), yt−u)) . (46)

3) Optimized source:
For any α ∈ Â, the optimized source distribution is
delivered as

p∗(α) = arg max
p(α)∈P̂

{

g(α,p(α))+EA′|α

[

Jn(A
′)
]}

.

(47)
4) End.
Remark: By implementing Algorithm 1, we can obtain sta-

tionary Markov source probabilitiesp∗ =
{

p∗(α) : α ∈ Â
}

,
which can be utilized to evaluate numerically the optimal
average reward ofProblem B, i.e., the ε-optimal value of
Problem A. Strictly speaking, the optimal stationary policy
p∗ obtained in (47) forProblem B is an approximation of the
optimal stationary policy ofProblem A, and the information
rateIv (X,S → Y ) induced by the “optimal” stationary policy
p∗ is only a lower bound on the upper boundI∗

FB,SI(u, v).
Obviously, finer quantization ofA and P should cause
less loss of optimality. The numerical values resulting from
different quantizations are discussed in the following section.

VI. N UMERICAL RESULTS

In this section, we present numerical results by taking
the RLL(1,∞)-GE channel4 shown in Fig. 1 and Fig. 2 as
an example. We chose this channel because it was already
used in a prior publication [26]. In this example, we set
the transition probabilities between the channel states as
p(b|g )=p(g|b )=0.3, the cross-over probability in the “good”
state asεg=0.001 and the cross-over probability in the “bad”
state as a variableεb ∈ [0, 1]. Firstly, we quantize the state
spaceA and the action spaceP using parametersδ and ξ,
respectively. Secondly, we apply Algorithm 1 introduced in

4Note that restricting the input as RLL(1,∞) sequence is equivalent to
restricting certain transition probabilities to be zeros.Since the action space
is still compact, the results in Sections IV and V can be applied here.
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Fig. 6. Information ratesI1(X, S → Y ) for “optimal” quantized sources
in P ′

1(1, 1) delivered by Algorithm 1 with different quantizers, where the
quantization parameters of the state space and the action space areδ and
ξ = 0.0125, respectively.

Section V to obtain an “optimal” stationary policy. Finally,
we use Monte Carlo methods [21–24] to numerically evaluate
the upper boundsI∗

FB,SI(u, v). The results are shown in
Fig. 5, whereI∗

FB,SI(1, 1) and I∗
FB,SI(2, 2) are two upper

bounds on the feedforward capacity, andI∗
FB,SI(0, 0) and

I∗
FB,SI(0, 1) are two upper bounds on the feedback capacity.

As expected,I∗
FB,SI(2, 2) ≤ I∗

FB,SI(1, 1) ≤ I∗
FB,SI(0, 1) ≤

I∗
FB,SI(0, 0). It is worth pointing out that, due to the RLL

constraints, the source must have memory of order at least one
and the optimization is implemented by taking into account the
RLL constraint. In particular, the upper boundI∗

FB,SI(0, 0)
is obtained by optimizing the sourcesP ′

1(0, 0). Also shown
in Fig. 5 is a lower bound onC computed using techniques
presented in [25, 26]. By comparingI∗

FB,SI(2, 2) with the
lower bound, we observe that the boundsI∗

FB,SI(v, v) are
numerically tight upper bounds on the feedforward capacity.
We are unable to evaluate the tightness of the upper bounds
I∗
FB,SI(0, v) on the feedback capacity since no good lower

bounds onCfb are available in the literature for noncontrol-
lable FSCs.

Fig. 6 illustrates the loss of the optimality caused by
quantization. We focus on the computation ofI∗

FB,SI(1, 1).
Let the quantization parameter of the action spaceP be fixed,
i.e., ξ = 0.0125, and the quantization parameterδ of the state
spaceA be varying. From Fig. 6, we can see that a smaller
δ (equivalently, a finer quantizer) induces a larger information
rateI1(X,S → Y ) and causes less loss of optimality. It can
also be seen that the gap between the different quantizers is
negligible for small quantization parametersδ.

VII. C ONCLUSION

By the technique of inserting the delayed channel state
into the channel input, the directed information rate from
the new channel input (including the channel input and the
delayed channel state) to the channel output is defined, and
then a universal form of upper bounds on the capacities of
the noncontrollable FSC has been developed. In particular,
two respective nested sequences of upper bounds on the
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feedforward capacity and the feedback capacity are obtained.
It has been shown that these upper bounds can be achieved by
finite order conditional Markov sources with delayed output
feedback (FB) and delayed state information (SI). Moreover,
the computation of the upper bounds was formulated as an
average reward per stage stochastic control problem (ARSCP)
with a continuous state space and a continuous action space.
By the compactness of the state space and the action space
and the unform continuity of the reward function, the original
ARSCP was transformed into an ARSCP with a finite state set
and a finite action set, which can be solved by a value iteration
algorithm. Under a mild assumption, the value iteration algo-
rithm is shown to be convergent and delivers a near-optimal
stationary policy as well as numerically tight upper bounds.

APPENDIX A
PROOF OFTHEOREM 1

Proof: The feedforward capacity in (5) and the feedback
capacity in (6) are rewritten as

C = sup
{Pr(xt|xt−1)}∞

t=1

lim inf
N→∞

1

N
I(XN → Y N ) (48)

and

Cfb = sup
{Pr(xt|xt−1,yt−1)}∞

t=1

lim inf
N→∞

1

N
I(XN → Y N ), (49)

respectively. We now prove that they are equal to the capacities

CG = lim
N→∞

sup
{Pr(xt|xt−1)}N

t=1

1

N
I(XN → Y N ) (50)

defined by Gallager in [11, Theorems 4.6.4 and 5.9.1] and

C
fb
P = lim

N→∞
sup

{Pr(xt|xt−1,yt−1)}N

t=1

1

N
I(XN → Y N ) (51)

defined by Permuteret al. in [13, Theorem 18], respectively.
Here, we only proveC = CG. A similar method (omitted
here) can be used to proveCfb = C

fb
P .

On one hand, we haveC ≤ CG. Let
{

Pr∗
(

xt

∣

∣xt−1
)}∞

t=1
be a sequence of sources that achieves the capacityC. Then,
for eachN and the fixed sequence

{

Pr∗
(

xt

∣

∣xt−1
)}N

t=1
, the

corresponding directed informationI∗(XN → Y N ) is less
than sup I(XN → Y N ), which implies thatC ≤ CG.

On the other hand, we proveCG ≤ C. To this end, we
introduce a new capacity expression

CM = sup
{{Pr(xt|xt−1)}T

t=1}
∞

T=1

lim inf
N→∞

1

N
I(XN → Y N ) (52)

where the supremum is taken over all possible se-
quences of sources without the consistency requirement, i.e.,
{

{

Pr(xt|x
t−1)

}T

t=1

}∞

T=1
. Firstly, we prove thatCG ≤ CM .

For eachN , denote the optimal source achievingsup I(XN →

Y N ) as
{

Pr∗(xt|x
t−1)

}N

t=1
. For the fixed sequence of sources

{

{

Pr∗(xt|x
t−1)

}T

t=1

}∞

T=1
, lim inf 1

N
I(XN → Y N ) = CG

trivially holds. Thus we haveCG ≤ CM . Secondly, we
prove thatCM = C. It is obvious thatC ≤ CM since
{

Pr(xt|x
t−1)

}∞

t=1
⊂

{

{

Pr(xt|x
t−1)

}T

t=1

}∞

T=1
. Now we

need to prove thatC < CM does not hold. Otherwise, there

must exist a sequence of sources

{

{

P̃r(xt|x
t−1)

}T

t=1

}∞

T=1
such thatlim infN→∞

1
N
I(XN → Y N ) ≥ C + ǫ0 where

ǫ0 > 0. It implies that there exists aK such that for all
N ≥ K, 1

N
I(XN → Y N ) ≥ C + ǫ where 0 < ǫ < ǫ0.

Let
{

P̃r(xt|x
t−1)

}N

t=1
be the source for a fixedN ≥ K.

Construct a process byX∞ = XN×XN×· · · with probability
assignmentPr(x∞) =

(

Pr(xN )
)∞

. Consider the directed
information rate 1

NL
I(XNL → Y NL).

1

NL
I(XNL → Y NL)

=
1

NL

NL
∑

i=1

I(X i;Yi|Y
i−1)

=
1

NL

L−1
∑

ℓ=0

N
∑

i=1

I(XℓN+i;YℓN+i|Y
ℓN+i−1)

≥
1

NL

L−1
∑

ℓ=0

N
∑

i=1

I(XℓN+i
ℓN+1;YℓN+i|Y

ℓN+i−1)

=
1

NL

L−1
∑

ℓ=0

N
∑

i=1

I(XℓN+i
ℓN+1;YℓN+i|Y

ℓN+i−1
ℓN+1 , Y ℓN )

(a)

≥
1

NL

L−1
∑

ℓ=0





− log |S|

+
N
∑

i=1

I(XℓN+i
ℓN+1;YℓN+i|Y

ℓN+i−1
ℓN+1 , Y ℓN , SℓN )





(b)
=

1

NL

L−1
∑

ℓ=0

(

− log |S|+

N
∑

i=1

I(XℓN+i
ℓN+1;YℓN+i|Y

ℓN+i−1
ℓN+1 ,SℓN )

)

(c)

≥
1

NL

L−1
∑

ℓ=0

(

−2 log |S|+

N
∑

i=1

I(XℓN+i
ℓN+1;YℓN+i|Y

ℓN+i−1
ℓN+1 )

)

=
1

NL

L−1
∑

ℓ=0

(

−2 log |S|+ I(XℓN+N
ℓN+1 → Y ℓN+N

ℓN+1 )
)

(d)
=

1

N

(

−2 log |S|+ I(XN → Y N )
)

≥C + ǫ−
2

N
log |S| (53)

where inequalities (a) and (c) result from Lemma 4 in [13],
equality (b) results from the Markovianity of the chain
(XℓN , Y ℓN) → SℓN → (X

(ℓ+1)N
ℓN+1 , Y

(ℓ+1)N
ℓN+1 ), and equality

(d) results from the assumptions of channel model and the
construction of the process which imply thatI(XℓN+N

ℓN+1 →

Y ℓN+N
ℓN+1 ) = I(XN → Y N ) for all ℓ. By the choice ofǫ0

and ǫ, for any L, 1
NL

I(XNL → Y NL) > C + δ where
δ > 0. Then lim inf 1

N
I(XN → Y N ) > C, which raises a

contradiction, regarding the expression ofC in (48). Therefore,
CG ≤ CM = C.

APPENDIX B
PROOF OFTHEOREM 3

Proof: Let P1 ∈ P(u, u) be an arbitrary source withu-
delayed FB andu-delayed SI. Denote the corresponding infor-
mation asI

(

Xt
t−v, St−v−1;Yt

∣

∣Y t−1
)

. To prove Theorem 3,
it is sufficient to show that there exists a conditional Markov
sourceP2 in Pv(u, u) ⊆ P(u, u) with the same information
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I
(

Xt
t−v, St−v−1;Yt

∣

∣Y t−1
)

as that achieved byP1. To do
this, for any givenP1 ∈P(u, u), we construct a new source
P2 ∈ Pv(u, u) as

Pr(P2)
(

xt

∣

∣xt−1, st−u−1
0 , yt−u−1

)

∆
= Pr(P1)

(

xt

∣

∣xt−1
t−v, s

t−u−1
t−v−1 , y

t−u−1
)

(54)

with the initial probability as

Pr(P2)
(

xv, sv−u
0 , yv−u

)∆
=Pr(P1)

(

xv, sv−u
0 , yv−u

)

.

In the following, we will prove that bothP1 andP2 induce
the same joint probability distributionPr

(

xt
t−v,st−v−1,y

t
)

,
which, together with the result of Theorem 2, completes the
proof of Theorem 3.

Actually, for any source withu-delayed FB andu-delayed
SI, we have

Pr
(

xt
t−v,st−v−1,y

t
)

=
∑

xt−v−1,s
t−v−2

0
,s

t−u

t−v

Pr
(

xt, st−u
0 , yt

)

=
∑

xt−v−1,s
t−v−2

0
,s

t−u

t−v

Pr
(

xt, st−u
0 , yt−u

)

Pr
(

ytt−u+1

∣

∣ xt, st−u
0 , yt−u

)

=
∑

xt−v−1,st−v−2

0
,st−u

t−v

Pr
(

xv, sv−u
0 , yv−u

)

Pr
(

ytt−u+1

∣

∣xt, st−u
0 , yt−u

)

×
t
∏

τ=v+1

Pr
(

xτ

∣

∣xτ−1, sτ−u−1
0 , yτ−u−1

)

×Pr
(

yτ−u, sτ−u

∣

∣xτ , sτ−u−1
0 , yτ−u−1

)

(55)

The channel lawsPr
(

yτ−u, sτ−u

∣

∣xτ , sτ−u−1
0 , yτ−u−1

)

and
Pr
(

ytt−u+1

∣

∣ xt, st−u
0 , yt−u

)

in the above equation are both
independent of the source distributionP1 (or P2) since

Pr
(

yτ−u, sτ−u

∣

∣xτ , sτ−u−1
0 , yτ−u−1

)

(a)
= Pr (yτ−u |xτ−u, sτ−u−1 ) Pr (sτ−u |sτ−u−1 )
(b)
= Pr

(

yτ−u, sτ−u

∣

∣xτ
τ−v, s

τ−u−1
τ−v−1 , y

τ−u−1
)

(56)

and

Pr
(

ytt−u+1

∣

∣ xt, st−u
0 , yt−u

)

=
∑

st
t−u+1

Pr
(

ytt−u+1, s
t
t−u+1

∣

∣xt, st−u
0 , yt−u

)

=
∑

st
t−u+1

t
∏

τ=t−u+1

Pr
(

yτ , sτ |x
t, sτ−1

0 , yτ−1
)

(c)
=

∑

st
t−u+1

t
∏

τ=t−u+1

Pr (yτ |xτ , sτ−1) Pr (sτ | sτ−1)

(d)
=

∑

st
t−u+1

t
∏

τ=t−u+1

Pr
(

yτ , sτ |x
t
t−v, s

τ−1
t−v−1, y

τ−1
)

= Pr
(

ytt−u+1

∣

∣xt
t−v, s

t−u
t−v−1, y

t−u
)

(57)

where equalities (a), (b), (c) and (d) result from Proposition 1
and the assumptionu ≤ v. Equalities (a) and (c) also state that
the conditional probabilitiesPr

(

yτ−u, sτ−u
∣

∣xτ,sτ−u−10 ,yτ−u−1
)

andPr
(

ytt−u+1

∣

∣ xt,st−u0 ,yt−u
)

are completely determined by the
channel transition law.

Therefore, using (56) and (57), the given sourceP1 ∈
P(u, u) induces the joint probability

Pr(P1)
(

xt
t−v, st−v−1, y

t
)

=
∑

xt−v−1,s
t−v−2

0
,s

t−u

t−v

Pr(P1)
(

xv, sv−u
0 , yv−u

)

Pr
(

ytt−u+1

∣

∣xt
t−v, s

t−u
t−v−1, y

t−u
)

×

t
∏

τ=v+1

Pr(P1)
(

xτ

∣

∣xτ−1, sτ−u−1
0 , yτ−u−1

)

× Pr
(

yτ−u, sτ−u

∣

∣xτ
τ−v, s

τ−u−1
τ−v−1 , y

τ−u−1
)

(58)

and the conditional probability

Pr(P1)
(

xt

∣

∣xt−1
t−v, s

t−u−1
t−v−1 , y

t−u−1
)

=
Pr(P1)

(

xt
t−v, s

t−u−1
t−v−1 , y

t−u−1
)

Pr(P1)
(

xt−1
t−v, s

t−u−1
t−v−1 , y

t−u−1
) (59)

=

∑

xt−v−1,s
t−v−2

0

Pr(P1)
(

xt, st−u−1
0 , yt−u−1

)

∑

xt−v−1,s
t−v−2

0

Pr(P1)
(

xt−1, st−u−1
0 , yt−u−1

) (60)

where

Pr(P1)
(

xt, st−u−10 , yt−u−1
)

= Pr(P1)
(

xt−1,st−u−10 ,yt−u−1
)

Pr(P1)
(

xt

∣

∣xt−1,st−u−10 ,yt−u−1
)

and

Pr(P1)
(

xt−1, st−u−1
0 , yt−u−1

)

= Pr(P1)
(

xv, sv−u
0 , yv−u

)

×

t−1
∏

τ=v+1

Pr(P1)
(

xτ

∣

∣xτ−1, sτ−u−1
0 , yτ−u−1

)

×Pr(yτ−u|xτ−u, sτ−u−1) Pr(sτ−u|sτ−u−1) .

On the other hand, the sourceP2 ∈ Pv(u, u) constructed
as (54) induces the joint probability shown in (61) (see the
top of the following page), where equality (e) follows from
the construction of the sourceP2, equality (f) results from the
conditional probability in (59), and equality (g) is obtained by
summing and canceling the numerators and the denominators
in successive fractions starting atτ = v + 1 and considering
Pr(P1)

(

xv, sv−u
0 , yv−u

)

.
The equality in (61) implies that the source

P2 ∈ Pv(u, u) ⊆ P(u, u) induces the same information
I
(

Xt
t−v,St−v−1;Yt

∣

∣Y t−1
)

as the sourceP1 ∈ P(u, u) does.
SinceP1 is chosen fromP(u, u) arbitrarily, the supremum
I∗
FB,SI(u, v) can be taken over the set of conditional Markov

sourcesPv(u, u) instead of over the setP(u, u).

APPENDIX C
PROOF OFTHEOREM 4

Proof: For convenience, the conditional probabilities
Pr
(

xt

∣

∣xt−1
t−v, s

t−u−1
t−v−1 , y

t−u−1
)

andPr
(

xt

∣

∣xt−1
t−v, s

t−u−1
t−v−1 , αt−1

)

are both referred to aspoliciesat timet. To prove Theorem 4,
we shall show that the vector of thea posterioriprobabilities
αt−1 can be used to replace the delayed feedbackyt−u−1 for
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Pr(P2)
(

xt
t−v, st−v−1, y

t
)

=
∑

xt−v−1,s
t−v−2

0
,s

t−u

t−v

Pr(P2)
(

xv, sv−u0 , yv−u
)

Pr
(

ytt−u+1
∣

∣xt
t−v, s

t−u
t−v−1, y

t−u
)

t
∏

τ=v+1

Pr(P2)
(

xτ

∣

∣xτ−1, sτ−u−10 , yτ−u−1
)

Pr
(

yτ−u, sτ−u
∣

∣xτ
τ−v, s

τ−u−1
τ−v−1 , y

τ−u−1
)

(e)
=

∑

xt−v−1,s
t−v−2

0
,s

t−u

t−v

Pr(P1)
(

xv, sv−u0 , yv−u
)

Pr
(

ytt−u+1
∣

∣xt
t−v, s

t−u
t−v−1, y

t−u
)

t
∏

τ=v+1

Pr(P1)
(

xτ

∣

∣xτ−1
τ−v, s

τ−u−1
τ−v−1, y

τ−u−1
)

Pr
(

yτ−u, sτ−u
∣

∣xτ
τ−v, s

τ−u−1
τ−v−1 , y

τ−u−1
)

(f)
=

∑

xt−v−1,s
t−v−2

0
,s

t−u

t−v

Pr(P1)
(

xv, sv−u0 , yv−u
)

Pr
(

ytt−u+1
∣

∣xt
t−v, s

t−u
t−v−1, y

t−u
)

t
∏

τ=v+1

Pr(P1)
(

xτ
τ−v, s

τ−u
τ−v−1, y

τ−u
)

Pr(P1)
(

xτ−1
τ−v, s

τ−u−1
τ−v−1 , y

τ−u−1
)

(g)
=

∑

s
t−u

t−v

Pr(P1)
(

xt
t−v, s

t−u
t−v−1, y

t−u
)

Pr
(

ytt−u+1

∣

∣xt
t−v, s

t−u
t−v−1, y

t−u
)

= Pr(P1)
(

xt
t−v, st−v−1, y

t
)

(61)

the purpose of determining the optimal policies that achieve
the supremumI∗

FB,SI(u, v). First, we show that Bellman’s
principle of optimality [35, 36] holds. For any time instantT

in the interval[1, N ], we decompose the information rate as

N
∑

t=1

I
(

Xt
t−v, St−v−1;Yt

∣

∣Y t−1
)

=

T−1
∑

t=1

I
(

Xt
t−v, St−v−1;Yt

∣

∣Y t−1
)

+
∑

yT−u−1

Pr
(

yT−u−1
)

[

N
∑

t=T

I
(

Xt
t−v,St−v−1;Yt

∣

∣yT−u−1, Y t−1
T−u

)

]

. (62)

Similar to (55) in the proof of Theorem 3, we have

Pr
(

xT−1, sT−v−2, yT−1
)

=
∑

s
T−u−1

T−v−1

Pr
(

xT−1, sT−u−1, yT−1
)

=
∑

s
T−u−1

T−v−1

Pr
(

yT−1
T−u

∣

∣xT−1
T−u, sT−u−1

)

×

T−1
∏

τ=1

Pr
(

xτ

∣

∣xτ−1
τ−v, s

τ−u−1
τ−v−1 , y

τ−u−1
)

×Pr(yτ−u|xτ−u, sτ−u−1) Pr(sτ−u|sτ−u−1) (63)

which is independent of policies after time
T , i.e., independent of the policies in the set
{

Pr
(

xt

∣

∣xt−1
t−v, s

t−u−1
t−v−1 , y

t−u−1
)∣

∣T ≤ t≤N
}

. Therefore,
if optimal policies from time1 to N are given, then the
corresponding policies after timeT must be optimal in the
sense that they maximize the last term of (62). Thus we have
proved Bellman’s principle of optimality [35, 36].

Next, we show that if after timeT we utilize policies
{

Pr
(

xt

∣

∣xt−1
t−v, s

t−u−1
t−v−1 , αT−1, y

t−u−1
T−u

)∣

∣T ≤ t≤N
}

instead of the general policies
{

Pr
(

xt

∣

∣xt−1
t−v, s

t−u−1
t−v−1 , y

T−u−1, yt−u−1
T−u

)∣

∣T ≤ t≤N
}

we can still maximize the last term in (62). To show this,
suppose that two different sequencesyT−u−1 and ỹT−u−1

induce the same a posteriori probability vectorsαT−1 and
α̃T−1, that is, for all

(

xT−1
T−v, s

t−u−1
T−v−1

)

, we have

αT−1

(

xT−1
T−v, s

T−u−1
T−v−1

)

= α̃T−1

(

xT−1
T−v, s

T−u−1
T−v−1

)

.

For the different sequencesyT−u−1 and ỹT−u−1, if we use
the same policies after timeT , i.e., for all t in the interval
T ≤ t≤N ,

Pr
(

xt

∣

∣xt−1
t−v, s

t−u−1
t−v−1 , y

T−u−1, yt−u−1
T−u

)

= Pr
(

xt

∣

∣xt−1
t−v, s

t−u−1
t−v−1 , ỹ

T−u−1, yt−u−1
T−u

)

then we have

Pr
(

xN
T−v, s

N−v−1
T−v−1 , y

N
T−u

∣

∣yT−u−1
)

=
∑

s
N−u

N−v

Pr
(

xN
T−v, s

N−u
T−v−1, y

N
T−u

∣

∣yT−u−1
)

=
∑

s
N−u

N−v

Pr
(

xT−1
T−v, s

T−u−1
T−v−1

∣

∣yT−u−1
)

×Pr
(

xN
T , sN−u

T−u , y
N−u
T−u

∣

∣xT−1
T−v, s

T−u−1
T−v−1 , y

T−u−1
)

×Pr
(

yNN−u+1

∣

∣xN
T−v, s

N−u
T−v−1, y

N−u
)

(h)
=
∑

s
N−u

N−v

αT−1

(

xT−1
T−v, s

T−u−1
T−v−1

)

Pr
(

yNN−u+1

∣

∣xN
N−u+1, sN−u

)

×

N
∏

τ=T

Pr
(

xτ

∣

∣xτ−1
τ−v, s

τ−u−1
τ−v−1 , y

T−u−1, yτ−u−1
T−u

)

×Pr (yτ−u|xτ−u, sτ−u−1) Pr (sτ−u|sτ−u−1)

=
∑

s
N−u

N−v

α̃T−1

(

xT−1
T−v, s

T−u−1
T−v−1

)

Pr
(

yNN−u+1

∣

∣xN
N−u+1, sN−u

)

×

N
∏

τ=T

Pr
(

xτ

∣

∣xτ−1
τ−v, s

τ−u−1
τ−v−1 , ỹ

T−u−1, yτ−u−1
T−u

)

×Pr (yτ−u|xτ−u, sτ−u−1) Pr (sτ−u|sτ−u−1)
(i)
= Pr

(

xN
T−v, s

N−v−1
T−v−1 , y

N
T−u

∣

∣ỹT−u−1
)

(64)
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where equalities (h) and (i) result from Proposition 1 and the
assumptionu ≤ v. The equality in (64) implies

N
∑

t=T

I
(

Xt
t−v, St−v−1;Yt

∣

∣yT−u−1, Y t−1
T−u

)

=

N
∑

t=T

I
(

Xt
t−v, St−v−1;Yt

∣

∣ỹT−u−1, Y t−1
T−u

)

. (65)

Therefore, the optimal policies after timeT for yT−u−1 must
also be optimal for̃yT−u−1, and vice versa. SinceyT−u−1

and ỹT−u−1 induce the same vectorαT−1= α̃T−1, the vector
αT−1 can be used instead ofyT−u−1, and the optimal policies
after timeT can be replaced by

{

Pr
(

xt

∣

∣xt−1
t−v, s

t−u−1
t−v−1 , αT−1, y

t−u−1
T−u

)∣

∣T ≤ t≤N
}

.

Since T is chosen arbitrarily, the optimal source in the
setP ′

v(u, u) =
{

Pr
(

xt

∣

∣xt−1
t−v, s

t−u−1
t−v−1 , αt−1

)}∞

t=1
achieves the

same supremumI∗
FB,SI(u, v) as the optimal source in the set

Pv(u, u) does.

APPENDIX D
PROOF OFTHEOREM 5

Proof: Let β ∈ (0, 1). We introduce theβ-discounted
version ofProblem B, for all α0 ∈ Â,

Iβ(α0)=sup lim inf
N→∞

E

[

N
∑

t=1

βt−1g
(

αt−1, p(αt−1), Yt−u

)

]

(66)
where only stationary policy sequences{pt}∞t=1 with pt =

p
∆
= {p(α) : α ∈ Â} are considered. By Proposition 4.1.3

in [36], there exists aBlackwell optimal policyp∗ = {p∗(α) :
α ∈ Â} that is stationary and simultaneously optimal for
all β-discounted problems (66) whereβ is sufficiently close
to 1. From Proposition 4.1.7 in [36], we know that the
Blackwell optimal policyp∗ is optimal over all policies for
Problem B. (These results can also be obtained according to
Theorem 4.3 in [38]).
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