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Distributed Source Coding of Correlated Gaussian
Remote Sources

Yasutada Oohama

Abstract—We consider the distributed source coding system for source coding system was studied by Flynn and R. M. Gray
L correlated Gaussian remote sources{;,i = 1,2,---, L, where

X;,i=1,2,---, L are L correlated Gaussian random variables. o ; fatr ;
We deal with the case where each of. distributed encoders can In this paper we consider the distributed source coding

not directly observe X; but its noisy versionY; = X; -+ N;. Here system for L correlated Gaussian remote sourcks i =

Ni,i = 1,2,---, L are independent additive L Gaussian noises 1,2,,L, whereX;,i =1,2,---, L are L correlated Gaus-
also independent of X;,i = 1,2,---, L. On this coding system sian random variables. We deal with the case where each of
the determination problem of the rate distortion region remains 1, distributed encoders can not directly obset¥g but its
open. In this paper, we derive explicit outer and inner bound of noisy versionY; = X, + N;. Here Ni,i = 1,2,---, L are

the rate distortion region. We further find an explicit sufficient . o . . .
condition for those two bounds to match. We also study the sum independent additivd, Gaussian noises also independent of

rate part of the rate distortion region when the correlation has  Xi# = 1,2,---, L. In the above setuy;,i = 1,2,---, L can
some symmetrical property and derive a new lower bound of the be regarded as correlated Gaussian observations, of =

sum rate part. We derive a sufficient condition for this lower 1 2 ... [, respectively. This coding system can also be

o e S, e G sffert oo Sepees B consdre a vt versinof e Gaussian GEO prolm
" investigated by[[13],114], and [15], whet¥;,i = 1,2,---, L

are identical.

The above distributed source coding system was first posed
and investigated by Pandga al. [16]. They derived upper and
lower bounds of the sum rate part of the rate distortion megio

|. INTRODUCTION Oohamal[17],[[18] derived explicit outer and inner bounds of

In multi-user source networks distributed coding of corréhe rate distortion region. Wagnet al. [10] determined the
lated information sources is a form of communication systefate distortion region in the case &f= 2.
which is significant from both theoretical and practicalroi  In [18], Oohama also derived a sufficient condition for his
of view. The first fundamental theory in those coding systengiter bound to coincide with the inner bound. Subsequently,
was established by Slepian and WAdlf [1]. They considered@phama([1B] derived a matching condition which is simple
distributed source coding system of two correlated infdioma and stronger than that of Oohamal[18].
sources. Those two sources are separately encoded and sentln this paper, we derive a new sufficient condition with
a single destination, where the decoder reconstruct tiginati respect to the source correlation and the distortion under
sources. In this system, Slepian and Wdlf [1] determinadhich the inner and outer bounds match. We show that if the
the admissible rate region, the set that consists of a pairdstortion is smaller than a threshold value which is a fiomct
transmission rates for which two sources can be decoded withthe source correlation, the inner and outer bounds match
an arbitrary small error probability. and find an explicit form of this threshold value. This suéii

In the above distributed source coding system we can cdi@ndition is a significant improvement of the condition ded
sider the case where the source outputs should be recaestruby Oohamal[19]. We also investigate the sum rate part of rate
with average distortions smaller than prescribed levelehS distortion region. The optimal sum rate part of the outerrizbu
a situation suggests the multiterminal rate-distortiogotly. ~ derived by Oohamé [18] serves as a lower bound of the sum

The rate distortion theory for the distributed source cgdirfate part of the rate distortion region. When the covariance
system formulated by Slepian and Wolf has been studied Batrix Xx. of the remote sourc&(” = (X1, Xo,---, X1)
[2]-[0]. Recently, Wagnetet al. [10] have given a complete have a certain symmetrical property and the noise varianices
solution in the case of Gaussian information sources anchmei.¢ = 1,2, ---, L have an identical variance denoted &3,
squared distortion. we derive a new lower bound of the sum rate part. We further

As a practical situation of the distributed source codingerive a sufficient condition for this lower bound to be tight
system, we can consider a case where the separate encoblegsderived sufficient condition depends only®g: ando?.
can not directly observe the original source outputs but c&fiom this matching condition we can see that an explicit form
observe their noisy versions. This situation was first stdiof the sum rate part of the rate distortion region can be found
by Yamamoto and Itd [11]. Subsequently, a similar disteéiout Wwhen the noise variancg® is relatively high compared with

the eigen values of y .

Manuscript received xxx, 20XX; revised xcx, 20XX. In Oohamal[17],[[1B], details of derivations of the inner and
Y. Oochama is with the Department of Information Science artdlligent

Systems, University of Tokushima, 2-1 Minami JosanjimaCHhokushima OUIer bound \_Ner.e omitted. In this paper we also present the
770-8506, Japan. details of derivation of those two bounds.

Index Terms—Multiterminal source coding, Gaussian, rate-
distortion region, CEO problem.
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The rest of this paper is organized as follows. In Section Ny

II, we present problem formulations and state the previo X1 4Y, ¢1(Y1)

works on those problems. In Section lll, we give our maiE = o1

result. We first derive explicit inner and outer bounds of the N,

rate Q|_stort|on region. Next we pre;epted an exp!|C|t sidgffit X, )\YQ 02 (Y 3) o
condition for the outer bound to coincide with the inner bd)unn@ o @ Y (X1, Xo,

In Section 1V, we explicitly compute the matching conditio ..7XL)

for two examples of Gaussian sources. In Sections V and VI,
we give the proofs of the results. Finally, in Section VII, we * Ny,

conclude the paper. X, |Y; enL(Yr)
ARy

L
el
Il. PROBLEM STATEMENT AND PREVIOUS RESULTS Fig. 1. Separate coding system fbrcorrelated Gaussian
A. Formal Statement of Problem observations

In this subsection we present a formal statement of problem.

Throughout this paper all logarithms are taken to the bage _ S
natural. LetA = {1,2,---, L} and letX;,i € A be correlated decoder functiongpy, ¢z, -+, ¢r,¢) satisfying [2){(#). For

L fr— e I 1 I
zero mean Gaussian random variables taking values in e = (X1, X2, .-+, X;) and its estimation
real linesX". We write aL dimensional random vector as ¢ _ (X1, Xa,+,X1)

Xt = (X1,Xs, ---,Xr) and use similar notation of other A

random variables. We denote the covariance matrixXdf (V1(p1(Y1)), ¥2(p2(Y2)), -+, ¢r(en(YL)),

by ¥xr. Let {(X14, Xoy,---, X))}, be a stationary ggt

memoryless multiple Gaussian source. For eaehl1,2, - - -, A oo

(X1, X24,---, X1.+) obeys the same distribution &S, dii = E||X; — X7,

Xo,---,X1). Letarandom vector consisting ofindependent di; i E(X,— X, X;-X,),1<i#j<L.

copies of the random variabl¥; be denoted byX; = X, ; ) ) )
X, --- X; .. Furthermore, letX~ denote the random vectorWhere||a|| stands for the Euclid norm of dimensional vector

(X1, X2, -, X1). a and(a, b) stands for the inner product betweerandb. Let

We consider the separate coding system focorrelated >x:_x* D€ @ covariance matrix with;; in its (i, j) element.
sources, wherd, encoders can only access noisy version In this communication system we can consider two dis-

of X; fori=1,2,---, L, that is, tortion _crite_zrions. For each distorti(_)n cri_terion we defihe
determination problem of the rate distortion region. Thivee
Y,=X;+N;,i €A (1) problems are shown below.

Problem 1. Vector Distortion Criterion:Fix positive vector
whereN;, i € A are zero mean independent Gaussian randopt — (D, D,,---, D;). For a givenDE, the rate vector
variables with variancery,. We assume thak” and N* (Rr, R,..... R;) is admissibleif for any positives > 0 and
are independent. The separate coding systendfoorrelated any », with n > no(6), there exists(¢1, s, -, @1, ¥) €
Gaussian remote sources is shown in Fig. 1. For ¢agh\, fén) (R1, Ry -, Ry) such that
the noisy versiorY’; of X, is separately encoded to(Y;).

The L encoded datg;(Y';), i € A are sent to the information [lg L. L] <D;+96,
processing center, where the decoder observes them and out- no XU XO T
puts the estimatiofX;, X, ---, X1) of (X1, X, .-+, X 1) where[A];; stands for the(i, j) entry of the matrixA. Let
by using the decoder function = (¢1, 4, -, ¢z). R1(D*) denote the set of all the admissible rate vector. On
The encoder functiong; ,i € A are defined by a form of R (D¥), we have a particular interest in its sum
rate part. To examine this quantity, define
prt X o My ={1,2,--+, M;} @) P quanity ;
N
and satisfy rate constraints Reum.1.(DF) = min R; 3 .
fy ,L( ) (R17R27_..7RL)€RL(DL){; }
1
- logM; < R; +6 (3) To determineRy,m (D) in an explicit form is also of our
interest.
where § is an arbitrary prescribed positive number. The prohlem 2. Sum Distortion Criterion: Fix positive D.
decoder function) = (1, ¥z, ---,vr) is defined by For a given positiveD, the rate vecto(Ry, Ry, ---, Ry) is

admissibléf for any positived > 0 and anyn with n > ng(4),
there existg¢1, 2, -, ¢r, V) e}‘én)(Rl,Rg .-+, Rp) such
where X; is the real line in which a reconstructed randorthat

variable of X; takes values. Denote bﬁé") (R1,R2, -+, RL) o {1

Q/Ji:MlX"'XML%‘)E‘inai:1127"'7L7 (4)

the set that consists of all thg. + 1) tuple of encoder and EEXLXL] <D+9,



Let R (D) denote the set of all the admissible rate vector. Twhere conyA} denotes a convex hull of the set. We

examine the sum rate part & (D), define can easily show that we have the following relation between
R\ (D) and R{™ (DF):
A
Reum, (D) = R; 5 (in 5 (in
7L( ) (Ri,Ra,-- RL yeRL(D) {Z } R(L )(D) — U R(L )(DL). (6)
. . _ SF Di<D
We can easily show that we have the following relation =
betweenR (D) andR(L‘“) (DL): Then, we have the following result.
Theorem 1 (Berger [4] and Tund[5]):
RuD)= |J Ru(D). (5) _ .
SI, DisD REV(D) € R (D), RE™ (DY) € Ri (D).

In this paper our argument is concentrated on the study oftpe inner boundR(m)(DL) is well known as the inner

Problem 2. It is well known that whe® > tr[Xx.], Ry = bound of Berger[4] and Tun@J[5]. The inner boumﬁ“)
Ry = =R, =01s admissible. In this case, we have can be regarded as a variant of their inner bound.
Rp(D)={(Ry,--,Ry): R; >0,i € A}. ~ The source coding problem considered in this paper was
first posed and investigated by Pandstaal [16]. They dealt
In the subsequent arguments we focus on our argumentsiith the case that’ = XA + NL where A is L x L
the case ofD < tr[¥Xyc]. a positive definite attenuation matrix. Whehis an identity
matrix, the problem studied by Pandga al. is the same as

. the problem considered here. They derived upper and lower
B. Previous Results bounds ofReum.1(D).

In this subsection we state previous results on the deterRecently, Wagneet al. [10] have determine®s (D1, D2).
mination problem ofR (D). We first state a previous resultTheir result is as follows.
on an inner bound oR (D) and R (D%). LetU;,i € A be Theorem 2 (Wagner et al_[10])For any positiveD; and
random variables taking values in real liiés For any subset D2, we have
S C A, we introduce the notatiob’sé(Ui)ieg. In particular,
Up= U* =(Uy,Usy, ---,Ur). Similar notations are used for
other random variables. Define

Ra(D1, Dy) = RS™(Dy, Ds) .

From the above theorent] (5) arid (6), we immediatly obtain
G(DY) 2 {UL : UL is a Gaussian the following corollary. N
random vector that satisfies Corollary 1 (Wagner et al.[[10]):For any positiveD, we

L have
Us —>Ys - X" — Yse = Uge, - (in)
UL 5 yvL _y xL RQ(D):RQ (D)
forany S C A an2d According to Wagneet al. [10], the results of Oohamal[9],
E [Xi —(UM| < D; [14], and [15] play an essential role in deriving the above
i ) result. The determination problems &f.(D%) and R (D)
f?r some IlnAear mapping for L > 3 still remains to be solved. Their method for the
v UP = X i €N} proof depends heavily on the specific propertylof 2. It is
hard to generalize it to the case bf> 3.
and set
R{™ (DY) = conv {R* : There existd/* € G(D*) . MAIN RESULTS
such that ) )
In this section we state our results &y, (D) and Rgym, 1. (
> Ri > I1(Us; Ys|Use) D).
=
foranyS CA.},
73(2“)(D) o) conv { R" : There existD” and A. Definition of Functions and their Properties
UL € G(D*) such that In this subsection we define several functions which are nec-

essary to describe our results and present their propefies
r; > 0,1 € A, let N;(r;), i € A be L independent Gaussian
random variables with mean 0 and variancg /(1 — e ™).
Let X yr(,2y be a covariance matrix for the random vector

ZRi > I(Us; Ys|Use)
=5
for any S C A and

ZDi <D.} NL(rL). For any subseS C A, we setrs = (ri)ics. In
B particular,-y = r* = (rq, 72, - -, 7). Fix nonnegative vector



rL. Let ozl = ay(r”
E_L +Xy ( Ly For S C A, and# > 0, define

1 A -1
ENL(TSC = 2NL(TL)

)
rs=0

[

€S

al
’EXL + ENL

is(&,TSh’Sc) §10g+

(rse)

)

NL(rse)

2XL +ENL L)

1>

1
Js (rs|rse) 3 log

’2 4l

whereS¢ = A — S andlog™ z 2 max{logz,0} . Let BL(D)
be the set of all nonnegative vectors that satisfy
—1
—1 -1
r [(EXL + k) } <D. (7)

Let 9B (D) be the boundary 0B (D), that is, the set of all
nonnegative vectors” that satisfy

-1
tr [(zxi + Syt ] -D.

Let ¢ be nonnegative number that satisfy

Z{

—i—al} D.

Define

+a_1}

H{

We can show that forS C A, Jg(0(D,r"), rg|rse) and
Js(rg|rse) satisfy the following two properties.
Property 1:
a) If r* € Br(D), then, for anyS C A,
lS(e(Der)7TS|TSC) < JS(TS|7'SC) .

The equality holds whenl € 9B, (D).
b) Suppose that” € Br(D). If rL\TS
Br(D), then,

JLs(0(D,7"), rsrse) s
=0.
Property 2: Fix r € B (D). For S C A, set

fs = fs(rs|rse)

_o Still belongs to

_o = Js(rslrse)l . —o

A
= JS(H(D,TL),TSVSC).

By definition it is obvious thatfs, S € A are nonnegative.

We can show thaf = {fs}sca satisfies the followings:

a) fy =0.

b) fa < fpfor ACBCA.

C) fa+fB < fanp + faus-
In general(A, f) is called aco-polymatroidif the nonnegative
function f on 24
we set

fs = Fs(rslrse) 2 Js(rslrse), f= {fs}SCA .

satisfies the above three properties. Similarly,

),i € A be L eigen values of the matrix Then, (A, f) also has the same three properties as those of

(A, f) and becomes a co-polymatroid.

B. Results

In this subsection we present our results Bn (D). To
describe our result on inner and outer bound®Rgf( D), set

R(out)( ZR > ']S DaTL)7TS|TSC)
€S
foranyS C A.},
REWDI= | RO,

rleBr (D)

in A
R @E) 2 {RY Y R > Js (rslrse)
i€s
foranySCA.},

REV(D) Econv! ) RMEE) S
rleBL (D)

Our main result is as follows.
Theorem 3:

R (D) € RU™(D) € R(D) € RY(D).

Proof of this theorem will be given in Section V.

An essential gap betweeﬁ(‘)ut)( D) and RS“) (D) is the
difference betweew ¢ (6(D, r%),rs|rs) in the definition of
R\*™(D) and Js (rg| rse) in the definition of R{™ (D).
By Propertyl:l part a) and the definitions @f((’“t)(D rb)
andR™ (rF), if rL € 9B,(D), then,

R (D) =RV (1),

which suggests a possibility that in some nontrivial cases
R\ (D) and R{™ (D) match. ForL > 3, we present a
sufficient condition forR'™™" (D) < R{™ (D). We consider
the following condition ord(D, r%).

Condition: For anyi € A, e~2"0(D,rL) is a monotone
decreasing function of; > 0.

We call this condition the MD condition. The following is
a key lemma to derive the matching condition.

Lemma 1:1f 6(D,r’) satisfies the MD condition o8,

D), then,
=Ry (D) = R;"(D).

RI™M(D) — R.(D)

Proof of this lemma will be given in Section VI. Based on
Lemmall, we derive a sufficient condition fé(D,rL) to
satisfy the MD condition.

Let a“,z = 1,2,---, L be (i,i)-element ofExL and set
A
c = ;NQ— Let amin = amm( LY and amax = amax(r?) be
the minimum and maximum eigen valuesEj}L—i— ENL( Ly

respectively. The following is a key lemma to derive a suffi-
cient condition for the MD condition to hold.

Lemma 2:1f aupin () and apmayx(r?) satisfy
1 1 1
— < fori e A
amin(TL) amax(TL) a6 ’ orve



on BL(D), then, §(D,r") satisfies the MD condition on distributed (i.i.d.) Gaussian random variables with meam@

B(D).
Set

CE{(D,Sxe,Sne): 7L € Bi(D)

for some nonnegative”.}.
WhenrL > sL we have

-1 —
IS +2NL( b = T+ 5y

L( L) 9
—1
< (Zh +3n) - ®

where B = A stands for that3 — A is positive semi-definite.

-1
The equation[{§8) implies that {(E; + EZ_VlL(TL)) } is a

monotone decreasing function of. Hence, we have

varianceo?. Then, the observatioh” = X + N% also
satisfies the cyclic shift invariant property.

Fix » > 0, let N;(r), i € A be L i.i.d. Gaussian random
variables with mean 0 and variane&/(1—e~2"). Let Xy,
be a covariance matrix for the random vectdi(r). Let
Xi,i € A be L eigen values of the matriXy: and let
B; = Pi(r),i € A be L eigen values of the matri>E;(1L

+ENL(T) Using the eigen values At x ., 3;(r),7 € A can
be written as
Bir) = 1+ (=)
! /\z 0'2 '

Let ¢ be a nonnegative number that satisfieg , {[¢ — 5, !]*
+B; 1} = D. Define

_ _ —1
From Lemmagli[]2 and an elementary computation we obtain =1 oL
the following. ol e le [ Exe]
g J(O(D,r),r) = =log oD )
Theorem 4:Let o}, . be the maximum eigen value of 2 (D,7)
S+ S If and set
1 1 L41 1
< LAl
UE +E5L) }<l)_a&x, ¢()_trﬁzxL+2Nqﬂ) }ZZEIB(ﬂ
then, =1
(in) + (in) (out) Sinceg(r) is a monotone decreasing functiomgthere exists

Ry (D) =Ry (D) =Re(D) =Ry (D). a uniguer such thatp(r) = D, we denote it by-*(D). Note
In particular, that

Reum.1.(D) (ryr,---,r) € BL(D) < ¢(r) < D < r>r"(D),

L ‘E 43 L
. XL NL(rL 1
= 7 1 9 1
Lo min ;T Fyls o 9) 0(D. ) = S5k + Sy o)
. . . Set
Proofs of Lemm&l2 and Theordth 4 will be stated in Section Régm,L(D) 2 min JOD,r),r).

VI. From Theoreni ¥, we can see that we have several nontriv-
(D) and R\™"" (D) match. In Oohama
[19], the author derived the sufficient matching condition

ial cases wherézg

+L1

D <

on upper bound ofD. Thus the matching yersiony % =

r>r*(D)

Then, we have the following.
Theorem 5:Assume that the sourc&” and its noisy
X% 4+ NI are cyclic shift invariant. Then, we

condition presented here provides a significant improvemeizye

of that of Oohama[19] for largé..
We further examine an explicit characterization/f,m . (

Rsum.L( ) > RSl)m L( )

D) when the source has a certain symmetrical property. Let Proof of this theorem will be stated in Section V.

7'<1 21L>

A\ 7(2) -7 (@) - (L)

be a cyclic shift onA, that is,
T(1)=2,7(2)=3,---,7(L—-1)

Let DX (,TA) = PX1X5--X1 (,Tl,wg, ce ,.TL) be a probability
density function ofX”. The sourceX” is said to be cyclic
shift invariant if we have

=L,7(L)=1.

L, Il)

folaxL)

Pxa (xT(A)) =PX1 Xy Xy, (IQ, L3,y
= PX; X9 X, (Il,@, )

for any (x1,x2, - - -

,xr)€ XL, In the following argument we
assume thatX” satisfies the cyclic shift invariant property.
We further assume thaY¥;,i € A are independent identically

Next, we examine a sufficient condition f(ﬁtsu)m (D) to

coincide with Reum,, (D). It is obvious from the definition

of J(O(D,r),r) that whene=2:79(D,r) is a monotone de-
creasing function of- € [r*(D), 4+00), we haveRiL)m (D)

- Rsum,L(D)-

Lemma 3:Let a be an identical diagonal element ﬁi;lL.
Sete £ L. Let Anin and Apax be the minimum and
maximum eigen values a&f i =, respectively. Let the minimum
and maximum eigen values (Zf;(lL—l— EZ_VlL(T) be denoted by

Buin = Bmin (1) @Nd Bax = Bmax (), respectively. Those are
given by
1 1 Y,
ﬁmin(r) - )\max + ;(1 2 )a
1 1
Bmax(r) = + _(1 _2T)



If Bmin(r) and Bmax(r) satisfy For simplicity of notations we set = ag;, b = —ai;. We first
derive an explicit form of the sd8 (D). To this end we use

1 1 Lo?e™ . Pmin(r) the following formula
Bmin("’) ﬂmax(r) - L-1 Bmax(r)
for r > r*(D), then,e=2L79(D, r) is a monotone decreasing | & z2... § L R |
function of r € [r*(D), 00). SRR H(Zi —0) it 62 2i— 0 (12)
From Lemmé&B and an elementary computation we obtain| s ¢ ' h =1 =1
the following. _ ok N
Theorem 6:Assume thatX” and YZ = XL + NI are Using [12), the condition
cyclic shift invariant. If . . _
L tr {(E;L + ) } <D (13)
02 > — s (Amax - )\min) ) (10) . .. . .
L Auin is explicitly given by the following:
then,RiBmL(D) = Rsum,r(D). Furthermore, the curv® = Z b?
Reum, (D) has the following parametric form: vy (u; +b)(u; +b)
L Loy
1 . _
R =3 log l|EXL|62L Hﬂi(r)] ’ (1+Db);m+b +Db>0. (14)
1=1 -
Loy Set
D=% —. Al 14Db Ao L )
i:lﬂz(r) ,‘<51—§- -1 752—m(1+Db) —Db.
Proofs of Lemma[]3 and Theorel 6 will be stated iThen, the above condition is rewritten as
Section VI. Note that the conditiof (L0) depends only on the , ,
correlation property o and N*. From Theorerlé we can Z (“1 - u—+b) (“1 - m) = K2 (15)

see that for(X", NV) satisfying the cyclic shift invariant i#j
property the determination problem &, 1.(D) is solved From [I5), we can see that the regiBris given by the set of
if the identical varaincer® of N;,i € A is relatively high g]| (a,b,c", D) satisfying

compared with the eigen values Bfy . , ,
) (”1 - W) (’fl - W) 2 k2. (16)
i#j
The above condition is equivalent to
In this section we explicitly compute the matching conditio

IV. COMPUTATION OF MATCHING CONDITIONS

2
for some class of Gaussian information sources. Define Z b
A it (a—i—b—i—cz)(a—i-b—i—cj)
i = a; +ci(1—e ") i€ A. (12) I )
— S >0.
From [11), we have (1+ Db) Z a+b+c + Db =0 (47)

i=1
Ci

2r; = log ————— . Solving [I7) with respect td, we obtain
@i + € — U I
By the above transformation we regattD,r’) and Xy}, + Z a+bl+ci - Z (a+b+ci)b(a+b+cj-)
EEQ(TL) as functions of.*, that is,d(D, ") = 6(D,u") and D> = i;Léj . (18)
_ _ _ _ b
EXIL +EN1L(TL) :EXIL +2N1L(UL) 1_Za+b+ci
i=1
We c_onsider the case Whefkj_-XL have identical diagonal and From Theorenil4, we obtain the following corollary.
nondiagonal elements, that is, Corollary 2: If D satisfy
] 2 ; L
Var[X;] = 0%, =1, fori €A, Z L Z .
COV[X’Lv Xj] = POX;0x; =P for 1,7 € Avl # .] : atbte . (atbte:)(atbte;)
i=1 i#J <D< Ll
In this identical variance caséi, j) elementsa;; of ¥} is o, T e
given by 1= Z atbte;

i=1

=) (LF(L-1)7)

T, 1177

B S ) N | then .
B3 = REM(D) = R (D) = RY*(D).



Next we derive a more explicit sufficient condition. Set Proof of this theorem is given in Appendix A.

A A Next, we consider another example where the source and
Cmin = T € Cmax = THEX Ci- its noisy observation are cyclic shift invariant. Let= 4 and
Then, the condition
( ) b 2 1p0p 1000
LI =1) (k1 = st ) > 2 (19) 100 0100
ot emin Yixa = gpfp |p|< , N4 = 0010 (26)
is a sufficient condition for(a,b,ct, D) € C. The above 0
o . p0pl 0001
condition is equivalent to
I b In this case, we have
D= a+bFcmin (1 + a+b+cmin_Lb) ) (20) 19,2
_ 2 L2
On the other hand, the maximum eigen value X)I;L Exa|=1-4p"a= 1—4p2
+ENL(ML) satisfies M=1-20d=X3=1,=1+2p.
Uax < 1mja<XL{“J +0} < a+ b+ Cmax 1) Four eigen valule;(r),i = 1,2, 3,4 are given by
Properties on bounds of the eigen vaIue@IgjLJr ENL(UL) Bi(r)=1—-2p+ ﬁ(l —e 2",
including the property stated i (R1) and their proofs akeui Ba(r) = Bs(r) =1 + L(1—e?), (27)
in Appendix C. From[{20),[{21), and Corollaty 2, we obtain Balr) = 1420+ & (1 o)
the following theorem. a p '
Theorem 7:1f (a, b, min, Cmax, D) Satisfies The matching condition is
L b L
atbtcmin (1 + a+b+cmirLb) D= cher:rclmx (22) >3lp |1+ §|p|
then, ' el
RS“)(D) =Rr(D) = R(LO“)(D). Summerizing the above argument, we obtain the following.

Theorem 9:We consider the case whefe= 4, ¥ yx. and

In particular, Y4 are given by[(Z6). If
RsumL(D) ‘ 3| |1+2|p|
E L + E L L
= min Zrl X NE(rt) .(23) 2|p|’
rieBL(D ‘E then, the rate distortion curvd®® = Rgum,4(D) has the

It can be seen from[{22) that the matching cond|t|ofo”OWIng parametric form:

holds for sufficiently smalb and cy,.x. This implies that the 1

determination problem oR (D) is solved if the correlation R = -log [(1 — 4p%)e®" Hﬂi(r)] ,
L ! ) : R 2 :

of X* is relatively small and the noise variance df is =

relatively large.

NE

Now we derive an explicit form oRsum,. (D) in the case D=
wherec = cpin = cmax. I this case, we have = Pilr)
¢ ={(a,b,c,D): wheres;(r),i = 1,2,3,4 are definded by[(27).
D> (1 + )} From this the_ore_m we can see that_ for Fhe above example
- a+b+c a+b+c Lb of (X4, N*) satisfying the cyclic shift invariant property the
Set determination problem oR.., 4(D) is solved if the identical
AL varainceo? is relatively high or correlation coefficient is
L= 5 [1 + Db+ /(1 —Db)? + 4TDZ’} . (24) relatively small.

The determination problem @®s,m (D) was first investi-
Solving the minimization problem in the right memberlﬁ_ﬂ(,23)gated by Pandyat al. [16]. They derived upper and lower
we have the following. o bound of Reum,.(D). Pandyaet al. [16] also numerically
Theorem 8:If (a,b, ¢, D) satisfies compared those two bounds to show that the gap between them
L b <D< 1 is relatively small for some examples. In this paper we have
a+btc (1 + a“’*‘?*“’) D a+b+c (1 + L) (25) determinedRsum, (D) for some nontrivial case of Gaussian

then, sources.
o L (1— )Llc
Rgum,p(D) = b) log (D(a +b+c)— L1> V. DERIVATION OF OUTER AND INNER BOUNDS
—|—llog{1+ (L—-1)p (1 LDb)} In this section we state the proofs of Theordms 3 ahd 5
2 1—p Ly stated in Section III.



A. Derivation of the Outer Bound

In this subsection we prove the inclusioR.(D) C
R(LO‘“)(D) stated in Theorerh]3. We use the following two

well known lemmas to prove this inclusion.

Lemma 4 (Water Filing Lemma)Let a;,i = 1,2,---
be L positive numbers. The maximum ﬂle & subject to

Zle&* < D and¢; > a;,i=1,2,---, L is given by

L

H{[f—(li]Jr +a;},

=1
where¢ is determined byy"" | {[¢ — a,]T +a;} = D

Lemma 5:For anyn dimensional random vectdV;,
1,2, we have

1 1 1
Eh(U1|U2) < 5 log [(27re) : EE||U1 — U, ?

whereh(-) stands for the differential entropy.

Then, we have the following chain of inequalities:

I(XS;WS)
@ (Xs)—h(Zs|Ws)
I s
< h(Xs) =Y h(ZilZs (4Ws)
i—1
(b)
<

n
5 log [ (270)*! [T |

1
(o (e +52)01 )

S|

1og|ZXS| +Z 5 log [vi]
i=1

©

Z':

- 21og|zxs|+ S log 23] + 2]

(28)

Ns(rg”)

1og I+YxX ! (32)

Ns(rg)| -

Next, we state an important lemma which is a mathematical

core of the converse coding theorem. ket 1,2,--- L,

wal
Wi 2 0 (Vi),r™ 2 1Y 5 Wil X,) .
n

For S C A, let Qs be a unitary matrix which transform¥g
7XS,n)|

into Ls = Xst. For Xgs = (XS,la Xsyg,
set

Zs=X5Qs5 = (X51Qs,Xs52Qs, -,

Then, we have the following lemma.
Lemma 6:For anyS C A, we have

XsnQs).

h(Zi| Zs_(3Ws)

> glog {(271'6) [Qsl (EXS =+ E 1 (n>)> QS]

—1

i

}

where[C];; stands for thgi, j) element of the matrixC.
Proof of this lemma will be stated in Appendix B. Thi

lemma provides a strong result on outer bound of

distortion region. From Lemm@l 6, we obtain the following

corollary.
Corollary 3: For anyS C A, we have

I(Xs; Ws) log

I+ Sx. 57}

Ns(rg”)|

Proof: We choose unitary matrig)s so that
—1
QS (EXS + EN ( (n))> QS
becomes the following diagonal matrix:

31
V2

0

Qs' (EXS +3° 1( m))) Qs =

Vs

Step (a) follows from the rotation invariance of the (condi-
tional) differential entropy. Step (b) follows from Lemrha 6
Step (c) follows from[(31). [ |

Using Lemmag$ {16, Corollary] 3 and a standard argument
on the proof of converse coding theorems, we can prove
R.(D) C RY"™(D).

Proof of R, (D) C R\™(D): Assume that(R;, R,

-,Rr) € Rr(D). Then, for anyd > 0 and anyn with
n > no(d), there existqp1, w2, -+, pr, V) e]—"é")(Rl,Rg

-+, Ry) such that

set

(29)

we

L
> E|IX; - Xi|P <D +34.
i=1

We setZ, 2 XAQ, Zx 2 X ,Q. Furthermore, fori € A,
set

3

(m &l

&" =Bz - Zi|*.

S%é/ rotation invariance of the squared norm, we have

the ra
Zé‘”’ Z EIIZ - Zi|?

= ZEEHXZ- - X,P<D+65. (33

(30) ~
By Lemmadb andl6, foi = 1,2,---, L, we have
glog [(2%)5(")} > W(Zi — i) > h(Z|Z))
> WZi|\Wa) > MZi|Z iy Wa)
—1
> glog{@ﬂe) {Q (EXA + X 1( (n))> Q} } )
from which we have
(31) o

> [0 (321570 )@

fori e A.

(2

(34)



Now we proceed to the derivation of the outer bound. We first

observe that
Ws — Xg— Xge — Wge (35)

hold for any subsef of A. For any subsef C A, we obtain
the following chain of inequalities:

Zn(Ri +4) > ZlogMi
i€s ics

> > H(W;) > HWs|Wse)
€S

I(XA; W5|W5c) + H(W5|WSCXA)
I(X 5; Ws[Wse) + Y H(W;| X y)
€S
= I(X ;s Ws[Wse) + > H(Wi| X))
€S
I(X A Ws|Wse) +n_r™
€S

@ (36)

Step (a) follows from[(35). We estimate a lower bound o

I(X 5; Ws|Wge). Observe that

I(X p; Ws|Wee) = I(X p; Wa)
= I(Xa; Wa)

— I(X p; Wse)

— (X ge;Wse). (37)

Since an upper bound df X s.; Ws<) is derived by Corollary
[3, it suffices to estimate a lower bound &fX ; W,). On a

lower bound of this quantity we have the following chain of

inequalities:
I(X A; W)

= W(Xa) — (X AIWa) 2 (X 1) — h(ZA|Wa)
L

= h(XA) =Y h(Zi|Z7'Wy)
1=1
L A

> W(Xa) = > h(Zi|Z:)
i=1

®) n L n (n)

> 5 log [(27‘(6 12 x4 1] Z 5o [ (2me)€ ]

=1
L
5 log [Zx,| - 7 log [Hé‘f”’] : (38)
i=1

Step (a) follows from the rotation invariance of the diffetial

entropy. Step (b) follows from Lemnha 5. Combinihgl(37).1(38)

and Corollary(B, we have

I(X p; Ws|Wse) + TLZTEn)

ics
[Liese® [Zx, |
> 10g €S XA
L n
I+2Xsc2 ! 5o (r0) | fi( )
=5 log ies e |
-1 (n)
I I+ EXAENA(T(SZ)) Hizl gl

H’LGS 62 En)

L
[Lis

n
=3 log
Sxh + 57 &

N (r (n))
Note here that
I(X p; Ws|Wse) + TLZ Tgn)
=5
is nonnegative. Hence, we have

[(Xp;Ws|Wse) +n 7™
€S

L
_— (Hém,rgm rgy) | @)
=1
Combining [36) and(39), we obtain
S (Ri+0) > Jg (Hg’” rsc> . (40)
=
PrSCA Fori € A, set
r; = hmsupr( R = limsup — I(Yl,W | X)),
n—oo n—oo
& 2 limsupfi = limsup — E||Z Zi)?.
n—oo n—oo
Then, by lettingn — oo in 33), (34), and[(40), we obtain
L
Z gi S D + 51
i=1
—1
& [0 (23 +ew) 9, (41)
forie A,
Z(Ri +9)>Jg (Hle &i,rs 7’5c)
ieS
for S C A.
Sinced can be made arbitrary small, we obtain
L
Zgi S Da
i=1
-1
&2 [ (25, + Ben) @), (42)
forie A,
ZRi > Js (Hlefiﬁs 7’5c)
=
for S C A.
Here we choose unitary matrix) so that Q‘l(Egi +
E;,A(T ))Q becomes the following diagonal matrix:
(651 O
1 @2
O (EXA Ly A(m)) 0= (43)
O ay,
From the second inequality df (42), we have
giza;lza;l(rl\)7 i:172a"'1L7 (44)
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which together with the first inequality of (#2) yields that Then, we have

L
> ar(ra) Q" (EXA + ENA(Mn))) Q
i=1 —
x 0 1 0
-1 1 A1 1
—tr (EXA + 2R m) Zgl <D. (45) L e |1
= +—
., 2
On the other hand, by the first |nequal|ty of (44).1(44), and ' ?
Lemmal4, we have I O = O 1
. -
[T <em.ra), (46) A 0
i=1 B B2
which together with the third inequality of (42) yields that B :
D> R > Js(0(D,rp),rslrse) for SC AL (47) 0 BrL
i€S )
@5) and [ V) imply thaR (D) C R (D). B WesetZ, 2 X0, Zn 2 Z,Q. Furthermore, set
Proof of Reym, (D) > Réu)m .(D): Assume that R, R»,
-,Rz) € Rp(D). Then, for anys > 0 and anyn with 1 . _ 1
) (n) & 2 (n) & (n)
n > TLQ(&), there exists(cpl,gog,---, L, ’lﬂ) E]‘—én)(Rl,Rg li EEHZZ_ZZZH ’ gi - Zzg '
-, Ry) such that 1=0
L . By the rotation invariance of the squared norm dnd (48), we
Y ElIX; - X[ <D+, have
i=1
Foreach = 0,1,---,L—1, we US&(¢,i1, Pri(2), "+ Pri(L)) L “(n) Lo 1E P
for the encoding of(Y,Y,---,Y ). Fori € A and for Zgi - Z_ Z n 1Zi = Zul|
l=0,1,---,L—1, set
1
AN < AN _ 2
Wii = 0wy (Yi),  Xii =P (0n6)(Y1)), = Z Z EHX ~XuilP <D +34. (51)
n On the other hand, for € A, we have the following chain of
In part|cular, inequalities:
) =" = —I(Y ;Wi X,), forie A. =
n n )] _n (n)
Furthermore, set 3 log [(2”6)@' } =5 log [(2”6)5 lz: S 1
=0
) &) () - -
Ty = (1) o ) fori=0,1,---,L —1, (a) 1 k=1 b) 1 Lzt .
oy T T2 hE > 2 glog {(271'6) m > 23 nzilZ) 62
qm ol Z () 1=0 1=0
L — v L—1

>
By the cyclic shift invariant property of the sourcé” and —o

its noisy observatio’* = X + NL, we have © 1571, “1
L X > 7 B log {(27re) [Q‘l (EX}\ + EN,l\(T("))) Q} }
S BIXi - Xl <D+6 for0<I<L-1,(48) 1=0 A
; 4 —1
i=1 L-1 L —op(™)
L—1 L—1 L (@ 1 n 1 o l—e 7t
1 (n) 1 (n) - 1 ) _ _(n) = — — log (27‘(6) . + Z Qi ———
L " T ") = ZZT =r L 1=0 2 A j=1 ?
1=0 1=0 j=1 -
. 4 -1
for 1 <i<L. (49) © n 1 1 L—1 L , 1_ eiQTl(;j)
We choosel x L unitary matrix@ = [g;;] so that 2 5 log (27e) NI P o2
=0 j=1
by 0 (53)

QilE;c}\Q - . (50) Step (a) follows from the concavity dégt. Step (b) follows
O ' from Lemmal[b. Step (c) follows from Lemnid 6. Step (d)

v follows from (50). Step (e) follows from the convexity of



—logt. From [53), we have

£ >

(54)

Step (a) follows from the concavity df—e~2!. On the other
hand, by [(Bll) and(54), we have

L
DEDI G Z ™ < D+5.
i=1

~

(55)

Now we proceed to an evaluation of lower bound of the sum
rate. In a manner quite similar to the derivation [of](36) ie th

proof of R, (D) € R (D), we have
=
> I(X 5 Wopy) +n Y rf? for0 <1< L—1.(56)
ieA
From [56), we have

L—-1
1
Zn(Ri +0) =7 > Zn(RTz(i) +6)
€A 1=0 i€A
1L 1
> = ZI X 7; Wyigay) +nLr™ . (57)

=0

11

Step (a) follows from [52). Combinind_(b7) and58), we
obtain

L
S (Ri+6)>J <H &", r<">> . (59)
€A =1
Set
r= hmsupr(") = limsup — Z —I(Y;; W;1X,),
n—oo n—oo
) L 1 1
P = 2 =1 ~E||Z, - Z i
& = lfznfolipg im sup - Z I il
By letting n — oo in (B4), (55), andIIEQ), we obtain
&> B (r)foric A,
L L
=Y B <) &<D+6
Z:: ; (60)
L
i€EA i=1
Sinced can be made arbitrary small, we have
&> B Hr)forie A,
L L B
$(r)=> B ()<Y & <D,
=1 =1 (61)

(fi)

ZRi >J
i€A
From the first and second inequality ¢f{61) and Lenirha 4,
we have

L
[ <om.r).
i=1

We estimate a lower bound of the first quantity in the ”ghllence we have
members ofl(57). On this quantity we have the following chain

of inequalities:

Z (X as W)
=0
L—1
= h(Xy)— = Zh XAWriay)
1 L—l
= h(X4)— 7 > h(ZAWri(a)
=0
1 L—-1 L
= h(Xa) -7 > WZi|ZT Wa)
=0 i=1
L 1 L—1 R
> h(XA)_ZE h(Zz|le)
i=1 =0
(@) z
> —log [(2me)"|Ex,|] — Z B log [(27re)§z(n)]

(58)

Il
|
—
o
o
™
>
z
|
—
]
o
}
=
aadl
RSN
3
_

> R > J(O(D,r),r) andg(r) < D,

iE€EA

which imply that Ry, (D) > Rgl)m (D). .

B. Derivation of the Inner Bound

In this subsection we proVR(Li“) (D) € Rr(D) stated in
TheorenB.

Proof of R{™ (D) C Ry (D): SinceR{™ (D) € R.(D)
is proved by Theorenil]1, it suffices to shoR\™ (D) C
RIM(D) to prove R{™(D) € Rp(D). We assume that
RE e R{™(D). Then, there exists nonnegative vectbrsuch

that
-1 -1 -1
tr {(EXL + ENL(TL)) ] <D (62)

and
> R; > K(rs|rs:) for any S € A.
ies

(63)

Let V;,i € A be L independent Gaussian random variables
with mean 0 and variancer%,i. Define Gaussian random
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variablesU;,i € A by U; = X; + N; + V;. By definition The seﬂz(L"“t)(D,rL) forms a kind of polytope which is called

it is obvious that a co-polymatroidal polytopen the terminology of matroid
UL vyl 5 xL theory. It is well known as a property of this kind of polytope
Ug — Ys — XL = Yo — Use (64) that the polytopeR(L"ut)(D,rL) consists of ! end-points
forany S C A. whose components are given by

For givenr; > 0,i € A and D > 0, chooseo—%,i so that Rz
oy, = ox,/(e* —1) whenr; > 0. Whenr; = 0, we choose = Fer @y, m @y (M im@), o m (WP (1), (- 1)))
U; so thatl; take the constant value zero. Then, the covariance — f{ (i 1),...x()} (" {x(i+1), . w(L) T {r (1) n()}) p (68)

matrix of N* + VX becomesX y. (). Choose covariance fori=1,2,---,L—1,

matrix X p so that
Ry = fir @)y (e 7 (=), m(e-1)3) 5
tr[Sp] =D, Ep= (S0 +S30 )

NL(rl) wherer is an arbitrary permutation oA, that is
Since [G2), the above choice &fp is possible. Define the 1 2 v i o L
linear functionwy) of U* by = (ﬁ(l) w(2) - w(i) - w(L))
b (U*F) = ULZX,IL(TL)(E;L + ZX[IL(TL))il : Forli=1,2,---,L, set
SetX =4 (U) and Br.(D) 2 {r¥: vL € B,(D) and
Tr(4) :Oforz’:l+1,-~-,L},

0B,.(D) 2 {rF : v € 0B, (D) and
Te@y =0fori=141,---,L}.

dii £ E||X; — X2,
di; éE(Xi—Xi) (Xj—Xj) 1<i#j<L.

Let ¥y, . be a covariance matrix witll;; in its (i,7) In particular, whenr is the identity map, we omit to write
element. Then, by simple computations we can show that Bi(D) and9B;(D). By Property[l, when” € B, (D), the

Sy xr = (E}IL + E;VlL(TL))_l <% (65) end-point given by[(88) becomes

Ry
and that for ame < A, = fin(@) im0} (M@)o e T L (1) (= 1)})
Js(rslrse) = 1(Ys; Us|Use). (66) = [im(it 1) m ) (1) e T (1) ()}
From [62) and[{@5), we have fori=1,2,---,1—1,
X5 =g (UF) |2 = ||XE = X1))? By = fa@y (a7 {r 1) m-1)))
. . -1 Ry =0, fori=10+1,---,L.
—tr [(ZXL + b ] <t[Sp]=D. (67) (69)

Proof of Lemma&lLFix r € B (D) arbitrary. LetR~ be a

From [64) and[{67), we hav€’ € G(D). Then, from[[6B) nonnegative rate vector such tHacomponents ofR” satisfy
(in) 5 (in) (€8). To prove LemmaAl1, it suffices to show that this nonnega-

R (D) € Rp7(D), tive vector belongs t(RS“)(D). Fori=1,2,---, L, we prove

completing the proof. m the claim that under the MD condition,if € B, ;(D), then,

the rate vectorR” satisfying [69) belongs t(RS“)(D). We

VI. PROOFS OF THERESULTS ONMATCHING CONDITIONS  prove this claim by induction with respect toWhen! = 1,

In this section we prove Lemma# 1-3 and Theor&ins 4 afiem (639), we have

6] stated in Section llI.
§ Ry = frrany (r(1)) 5 } 70)
A. Proof of Lemmall Rr; =0, fori=2,--- L.

In this subsection we prove Lemria 1. We first presentTde functionf,1)}(r«1)) is computed as
preliminary observation oR\""" (D). For r- € BL(D), we
examine a form of the region

RY"(D,rb) = {R : 3" Ry > Jg (0(D, 1), rslrse)

‘ 1 27T (1)
€S = _ ]0g+ — © . (71)
forany S CA.}. 2 =X ] O(D,rL)|T{,,(1)}C—o]

fir(re(n)

L
= Linqy OO ) rx e, o

Let (A, f), f = {fs(rs|rs)}sca be a co-polymatroid defined Since v~ € B, (D), we can decrease,(;, keepingr: e
in Property(2. Using A, f), R(L(’“t)(D,rL) is expressed as B, (D) so that it arrives at,, = 0 or a positiver;

ou satisfying
'R,(L t)(D,rL) = {RL: ZRi > fs(rs|rse) ) )
icS (7’71,(1), T{w(l)}c) = (7’71,(1), O, ce, O) S 8Bﬁ71(D) . (72)
forany S CA.}. L1
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Let (Rjr(l), ~-~,R7*T(L)) be a rate vector corresponding tdB. Proofs of Lemmds 2 arid 3 and Theoréms 4[dnd 6

* _ L __
'(rﬁ(l) T{F(ﬁ)}C) If r7q) = 0, we haver” =0 € Br(D). In this subsection we prove Lemnids 2 &hd 3 and Theorems
en, we have @andm.

{(EXL + b))

We first observe that using the eigen valugs= oy (u”),
=tr[Ex] < D. keAof S +3y Vi (ury the condition

This contradicts the first assumption d@ < tr[Xyc]. L -1
Therefore,rj;(l) must be positive. Then, fronh (I72), we have (E + ENL( L)) } =D
Ry, R* ) = (R*1,,0,---,0) € RY(D). is rewritten as
( 71'(1) w(L)) ( 71'(1) ) L ( ) I )
L—1 Z ( - (75)
;U
By (Z1) and the MD conditionfy(1)}(7x(1)) iS @ monotone i=1

increasing function of(;). Then, we havefi.1) > R} ;). Next, we present a lemma necessary to prove Lefdima 2.
Hence, we have Lemma 7:For the eigen values;, = ai(u”),k € A of

(Raqys Ruqy) = (Rp1) 0,-++,0) € RS“)(D). 25+ ENL(UL) and foru,,i € A, we have the followings:

e D v,
Thus, the claim holds fof = 1. We assume that the claim ®min < Ui < Gmax, Z7= = 0, for k € A, Z du, |
holds forl— 1. Sincetr | (S5}, +ENL( L))*1 is a monotone =t
increasing function of ;) on B, ;(D), we can decrease. Proof of this lemma needs some analytical arguments on the
keepingr® € B (D) so that it arrives ar;, = 0ora eigen values of positive semidefinite Hermitian matrix. dilet
positiverj;(l) satisfying of the proof will be given in Appendix C.
Proof of Lemma&l2i et S be a set of integers that satisfies
(rr@)s Tir@yye) € OBru(D). (73) a;! > ¢ in the definition of (D, u"). Then, 8(D,u") is
omputed as
Let (R; ., -, R;,)) be a rate vector corresponding to

(rr Ty T l)}c) By Property 2 part b) and the MD condition,

L—|S|
the [ functions 0(D,ur) = m <H i) (D - Z i) .
res k kes Ok

Fr(@)m @Y (T (@)oo e T (1) (i- 1))

= fr (1), @ (i 1), m T L (1), m(0)}) Fix i € A arbitrary. For simplicity of notation we sed; 2
fori=1,2,---,1—1, (a;i + ¢;) and set
Fr @y Py 7 (1), m-11) 22108 ADc g 0(D.u").
appearing in the right members 6f{69) are monotone increas- N
ing functions ofr. ). Then, from [(€D), we have Computing the partial derivative of by u;, we obtain
Rw(i) > R:(i) fori=1,2,---,1, (74)
Rugy = Ripy =0fori=1I+1, L. 5_‘1122<%> RN el ) N
ou; = ou; ar D — Z 2 A —uy
Whenr? wy = 0, we have(r? ), rir@)}e) € Bri-1(D). Then, kes
by induction hypothesis we have (76)

. From Lemmdl and{76), we obtain
(Riqry, - Riry) € REV (D).

Whenr7 ) > 0, from (Z3), we have ov Jay ) | L 1Sl 1 1
. ou; — ou; g D Z 1 % — O'min
(Ryys -+ Riry) € REV(D). et
Hence, by(74), we have To examine signs of contents of the above summation we set

(RTr(l)v"'vRﬂ'(L)) ) {D Z |S|} (Az _amin)

= (Rei)s > Rut, 0, --,0) € REV(D). kes @

o +ay, <D -y i) :

Thus, the claim is proved. [ | kes ¥
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If |S| =L, &, >0,k € A is obvious. We hereafter assume Proof of Lemmd&l3Let S be a set of integers that satisfies

|S| < L — 1. Computing®;, we obtain Bt > ¢ in the definition of (D,r). Then 6(D,r) is
) IS computed as
q)k = A’L <D - Z _> - — | | . (A’L - amin) L—|S|
Qe Qe
A 0w (L3) (- 25)
S S
ek = amin) (D - = a_k> Fix i € A arbitrary and set
N
>A_<D_Zi>_L—|S|.(A__a') U 2 2Lr —logf(D, 7).
kes Ok Xk Computing the derivative o’ by r, we obtain
() — -
D av - 2 1 sl 1
« «
keA—S k k d_ — W Z B_ | |1 /8_ + 2L
— — r (o k
Omax Qmin - kES
1 1 1
B Ai(L_ |S|) (amax a Qmin + Xz) ' (77) B i Z i |S| 1 +o 2 27‘ R
2a2r k2
Step (a) follows from the inequality_(I5), that is, T hes B D - Zﬁl & 151
L kes
D— Z >0 To examine signs of contents of the above summation we set
T s
Py = D
From [ZT), we can see that if b %
1 — L < 2z fori e A, 2 2r
Omin(TF)  amax(rt) = A; +o‘e Eﬁk D — Z 5
then, &), > 0 for k € S, n ke
Proof of Theorenil4: By (75), we have If |S| =L, ®x >0,k € A is obvious. We hereafter assume
. I_1 |S| < L — 1. Computing®;, we obtain
- < - - -
amin(TL) o b amax(TL) (I)
1 L (a) S| 262
- 4D " B
O‘max(rL) O‘max(rL) kgs |S| ke;s ﬂ
Hence, if — 15| - |S| Brmin
I . > - 0% (L |S))
D= amax('f'L) = ai; +c¢;’ Bmax Blmin 1 |S| L ﬁﬁ.max
_ 2 2r min
or equivalent to N (L a |S|) |:Bmax a ﬂmin rote E . Bmax:| ' (82)
D_ 1 e () < L (78) Step (a) follows from
CL,LZ + C,L' max —
holds forr’ € B (D) andi € A, the condition o, and D — Z B_ 20&D - Z @ 2 Z Bk
amax I Lemmal2 holds. By Lemmia 7, we have kesS keA=sS
e (1F) < 0. for 1 € By (D) (79) From [82), we can see that if
max max : 1 1 , L ﬂmin
It can be seen froni{78) and {79) that Boin Bonox < o%e? 15] B (83)
(D— 1 ) <Lforich. 80) then,®; >0fork e S. Since|S| < L -1,
Qi + ¢ G =
i ffici dition f hold L __1 e L uinlr)
;;sa\fjlesu icient condition for[{78) to hold. By Lemnia 7, we Boin (") B (1) — L1 Boax(r)
e <at forieA. g1) s a sufficient condition forl(83) to hold. [ |
@i+ G S Omax 1070 € (81) Proof of TheorenilléComputings,.;, — BmL., We have
From [80) and[(81), we have 1 1
D _ 1 < DO( —1. Bmin(r) ﬁmax(r)
Qi + ¢ Fmax = max o )\max - Amin
Thus, if we haveDa?,, — 1 < L or equivalent toD < {14 2mpx(1 —e2r)} {1+ 2mpp (1 —e—2r)}

(L + 1)/amax, we ha.ve ED) | S Amax - )\min .



On the other hand Set

627« ﬁmin(r) _2r 1 + %(1 - 6727“) )\min

a1

15

={a+b+c(l—e )}t

= e . =
Bmax("’) 1+ %(1 — 67270) )\max Ui + b
S Amin Then, we have
H f Amax u; = ’U;l _ b,
ence, i
1 c (87)
Amax — Amin < 07 Amin A Ry
max min > L —1 /\max 3 a ¢ U;
or equivalent to From (13) in Section IV and (87), we can see that the condition
rL € BL(D) is equivalent to
2 L - 1 /\max
0" > —- (Amax Amin) ) L
L Amin >
we have bgvivg‘—(l‘FDb);vrPD_O
1#£] 1=
1 . 1 < g2 L ) Brmin(T) I 2
Bmin(r) ﬂmax("’) L—-1 Bmax("’) = b (Z Ui) — bz 1}?
for » > 0, completing the proof. [ | i=1 i=1

VII. CONCLUSION
We have considered the distributed source coding of corre-

L
~(1+Db)Y vi+D>0. (88)
=1

lated Gaussian observation and given a partial solutiohigo tFrom [86) and[(87), we have

problem by deriving explicit outer bound of the rate distmmt
region. Furthermore, we established a sufficient condition
under which this outer bound is tight.

In this paper our arguments have been concentrated on
Problem 2, the determination problem®f, (D). On Problem
1, the determination problem oR.(D%), the techniques
we have used to derive the outer bound7f (D) are not
sufficient to derive an outer bound &, (D¥).

In [20], we introduced a unified approach to deal with
Problems 1 and 2 and derived outer bounds of the rate
distortion regions on those two problems. For Problem 1,
the outer bound of [20] has a form of positive semi definite
programming. For Problem 2, the outer bound[of| [20] is the

same as that of this paper. Recently, we have obtained some

extentions of the results of Oohama [[20]. Details of those
results are to be presented in a future paper.

APPENDIX
A. Proof of Theorerq]8.

In this appendix we prove Theordm 8.
Proof of Theoreni]8We first observe that

~1 ~1
L 1 ‘EXL + EJ\/L(rL)
Zri + §log =1
i=1 P
- 1

—1 —1
= 27}- + 510g ‘ExL + XN (ny

1
+ 5 1Og|EXL| s (84)

Sl == o fre L2 (®5)

-1 -1
‘ExL + EJ\/‘L(,,‘L)

L b L

=1 =1

L

1 _ _
E r; + ilog ‘EXIL + ENlL(TL)
i=1

Since

L
1 _ _
Zri + 5 10g ‘EXIL + ENIL(TL)
i=1

L
:leo ¢
2 g(a—i—b—l—c)vi—l
1 L
+§1og<1—b2vi>
L c
— log T
2 T (a+bdtor X vi—1

L
1
+3 log (1 - b;m) . (89)

—
o
N

Y

Step (a) follows from the convexity of logt. Here, we set

A1 L o
(i)
i=1

Then, from [[8B), we have

(De)y
D(a+b+c)—~

+L1og (1 - (Db)§> (90)

Lo I »
and [88), we obtain
bL(L—1)y 2= (1+Db)Ly '+ D>0

e (2) o (2 con(i- 1) e



Sincev; < b~! for i € A, v must bey > Lb. Solving [91)
under this constraint, we obtain

L
Dy >3 [1+Db+ (1—Db)2+4TDb} =Li. (92

Combining [84), [(8b),[(90), and (P2), we have

L ‘ExL—i_ENL(TL)
Zri + - 1og
2 Exe

i=1
5)

L (1—=p)Lic
>
= g los (D(a+b+c)—

1 1+ (L—-1)p LDb
+2 log { 1=, 1 I .
The equality holds
1 Dc .
Ty = §IOgD(a+b—|—c)—L1 , forie A,
completing the proof. |

B. Proof of Lemm&l6

In this appendix we prove Lemmi@ 6. Without loss o{

generality we may assume th&t= {1,2,---,s}. We write

unitary matrix@Qs as Qs = [¢;;], whereg;; stands for the

(i,7) element of@Qs. The unitary matrixQgs transformsXg

into Zs= XsQg. The following lemma states an important

property on the distribution of Gaussian random vectgr
This lemma is a basis of the proof of Lemiija 6.
Lemma 8:For anyi € S, we have the following.

qji
= —— Vij Z + Y + N’Lv 93
- ~ S Z 2 (93)
J#i J
where
4 i
gii = [QS EXSC?S -+ E J (94)

NJ

v;j, j € S—{i} are suitable constants aid is a zero mean

Gaussian random variables with varian;ée For eachi € S,
N; is independent of;,j € S — {i} andY},j € S.
Proof: Without loss of generality we may assume= 1

16

Set N
vij = [Qg'(ZxL + E:@QS} 3

qkiqkj
[QslzstS Z - (95)
k=1 Nk
A —1y—1 Gy
Bij = — [QS ENsL'j - _UJQVJ- :

Now, we consider the following partition (EZSYS'

1 Q5! (ZxL +ENS)QS Qslst
pIps
ZSYS _ENSQS EX]S

911 gi2
912 Gaa |’

wheregi1, g12, andGoo are scalar2s — 1 dimensional vector,
and(2s—1) x (2s — 1) matrix, respectively. It is obvious from
the above partition OEE;YS that we have

Z qm

visBi1frz - Pis) -

t is well known that¥,, !, has the following expression:
sts

nol o gi1 | 912
ZsYs Y912|Ga2

g11 = V11 = [QS EXSQS (96)

gi2 = [V12"'

Z1
: . . / - = [=alzs—q1yys] {fi’gi} Y25-(1)
Let Y x.v, be a covariance matrix on the pair of the Gaussian 912|422 tyg

random vectorsXs andYs. SinceYs = Xg + Ng, we have

s [Exe  Ex
XsYs EXS EXS+ENS .

SinceZs = XsQg, we have

Sy, = Q5'Sx:Qs Q5'Exy _
578 YxsQs Xxg+ XnNg
The density functionz.v.(zs,ys) of (Zs,Ys) is given by
1 —3[zsys|S,} [’ZS}
pZSYS(257yS) = 7s¥s | Tys )

(27Te)s |2ZsYs | g
whereEg;Y has the following form:

Qs (Zx; +Zx:)0s Q;ENS],

It -
ZsYs _ENSQS ZNS

o 1 |0 911 012
gu 912|IL 1] | "012|Ga2 — gj *g12912
y [t I 912] '
O12| Ip—1
Set
1 = [z1]25-{1}¥s] —11—
i 912 (97)
=21+ 7= gn [257{1}%] 912 -
Then, we have
t
Zg
z %
[ sys] ZsYs |:tyS:|
1
. 911 | 012 —
= _ _ .(98
[71|2s5—{1}¥s] [t012|G22 — gT 912912} Zf ay | (98)
Yys
From [95%)49¥), we have
. 1< 1<
=z +— ZVUZJ' +— Zﬂljyj
UAR st g1 i3
:Zl+iil/1j2j — Liq]lej (99)
UAR st 911 i3 N,

It can be seen froni (98) and {99) that the random variahle
defined by
Nl Z1 + — Z V17Z —

g11 =2

1 g
Y
g11 = ON;
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is a zero mean Gaussian random variable with varlariee From [102), we have

and is independent ofg_;;; and Ys. This completes 'the op(™

proof of LemmaB. B AWz s 8 L 2h(wi|Xs,Ws)
The followings are two variants of the entropy power 27€ 2me 2me (103)

inequality. Substituting [I08) into[{101), we obtain

Lemma 9:Let U;,i = 1,2,3 be n dimensional random () ()
vectors with densities and 16t be a random variable taking € s € 1 Le%h(\Pl\Xs,Ws) n 1 (104)
values in a finite set. We assume tldt is independent of 2me T 2me g 2me Gii
U, Uy, andT. Then, we have ) ) on(n) .

Solving [104) with respect t65—, we obtain

Le%h(U2+U3‘U1T) > Le%h(Ug‘U{T) + Le%h(Ug) Te

2me — 2me 2me : egh(n) 1

Lemma 10:Let U;, i = 1,2,3 ben random vectors with e 2 |9ii = e
densities. LetT},75 be random variables taking values in T X W
finite sets. We assume that those five random variables fohtfXt, we evaluate a lower bound ef "(*"| “sWs) . Note that
a Markov chain(Ty,U,) — Us — (Ty,Us,) in this order. forj=1,2,---,5—1 we have the following Markov chain:

Then, we have N
(W5j+1’\11j+1(YSj+1)) — Xg — (Wj, #Yj) . (106)

—1
e%mlxs,vvs)] . (105)

Le%h(U1+U2|U3T1T2)
> s ehhUUTY) 4 L o3h(Us|UsTs) Based onII]I]G) we apply Lemrhal 10 gé—ezh (¥31Xs,Ws)
forj=1,2,---,s—1.Then, forj =1,2, - —1, we have
Proof of Lemmal6By Lemmal8, we have the following chains of inequalities :
1 2h00.
__ Z’/UZ + Z 4ji Y, LN (100) %enh(q’g\X&Ws)
Yii J#i j=1 Nj

N ) i 1 %h<‘PJ+1+ Y, X57WS]+1aWj>
where N, is a vector ofn independent copies of zero mean = —¢ )

Gaussian random variables with varlanée For eachi € S, 2re

N, is independent ofZ S — andY S. Set 2| v,
P j’j € {Z} j’j < Le%h(\l,j+1|XS)Wsj+l) + Le ( N] ’

(n) & 1 2me 2me

XS,WJ>

Y

W = —hZi|Zs_1iy, Ws). gy
"o = L 3n(wnixsws,,,) + (107)
Furthermore, fork € A, define 2me / N,
Using [107) iteratively forj = 1,2,---,s — 1, we have
= {k, k41, 5}, ¥ = W (Yg,) é qﬂ j ’ : ’ ()
=k NJ L zn(uxs.we) ) > Zq K . (108)
Applying Lemmd® to[(100), we have ome” = UNJ
02h(™) 1 1 2pize 1 Combining [94), [(105), and (1D8), we have
> enhWilZs—yWs) o~ (101) .
2me ~ (gii)* 2me Gii 2R (™ oy )
e 1 g l—e 7
On the quantityh(¥1|zg_g;y, Ws) in the right member of e — [Qs EXSQS +Zq - 2
(101), we have the following chain of equalities: N]'
—1
h(V1|Zs_qiy, Ws) = Q5 (ZxL +27 oo )Qs] B (109)
= I(V,; X5|Zg (11, Ws) +h(V1|X s, Zs_ 1y, W, _ i
(2) ( s1Zs—tip, Ws) W1l Xs, Zs—ay, Ws) completing the proof. |
= 1(V1;Z5s|Zs_ g3y, Ws) + h(V1][ X s, Ws)
= 1(V1;Zi|Zs iy, Ws) + h(V1] X s, W) C. Eigen Values oy} + X% 0
= WZilZs_(iy, Ws) — MZi|V1, Zs_(iy, Ws) In this appendix we prove some properties on eigen values
+h(T1]| X 5, W) of ¥ +2NL( Ly Using those properties, we prove Lemma

b .
©) R WMZi[V1, Zs—1iy) + h(01] X5, Ws) We first consider the case treated in section 1V, whe(e
= nh™ — Zlog [2me(gis) '] + h(U1| X 5, Ws). (102) +E} sz has the identical valui of non diagonal elements.
2 Usmg []j) we can show that;,s = 1,2, ---,L are L
Step (a) follows from thatZ s can be obtained fronX s by solutions to the following eigen value equation:
the invertible matrix@. Step (b) follows from the Markov

L L
chain b
1= — 2 VTl +b-—a)=0. (110)

Z;— (V1,Zs _(iy) > Y5 — Ws. < ;’M-ﬁ-b—a) 11;[1( )
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9(a) we have0 < g(0) < 1. This implies thatl = g(a) has a
unique solution in the intervdD, u;, +b). Furthermore, since

alug,, +b

I I I I
5 T . lim g(a)=—oco, lim g(a)=0,

there is no eigen value in the open interval, + b,+00).

1 , ; ; ; Summarizing the above arguments, we obtdid3). For
i i i i convenience we show the shapegéfy) in Fig.[d. The part b)
_ : : : : is obvious from [(TT1). [
0 a i o | i o a Next, we consider the case wheke” is a general covari-
! ! ! " ance matrix. Set
| ! | | _ bz
/! /! /! /! P E = {tblz B2z ] '
o=utb oa=u b .. o=u b o=u;+b ) .
Letn, n2, -+, n,—1 be L —1 eigen values 0B3,,. SinceBa,
Fig. 1. Shape ofi(a). is positive definite, thosé& — 1 eigen values are positive. Let
p be the number of distinct eigen values®f, and letn;, <
Mk, < -+ < 1, be the ordered list of eigen valuesB$,. For
) A A
Let m be the number of distinct values of ,uz,- - -,uy, and let eachj = 1,2, ---,p, setT; = {l : m = nx, } andt; = [Tj].
i, < ui, <--- < u, be the ordered list of those values. FoFor eachj = 1,2, ---,p, the quantity/; is the multiplicity
eachj = 1,2, ---,m, setL; 4 {1 =uy,} andl; 4 IL,]. of thg eigen valuey,,. Choose théL — 1) x (L — 1) unitary
Then, the eigen value equatidn (110) becomes matrix Q22 so that
> T | "D
-y — (ui, +b—a)i =0. (111) 2
=1 W +b0—« =1 £Q20B29Qa2 = Q5 Boo Qoo = .
From [111), we obtain the following proposition. 0
Proposition 1: Eigen values oB +E]’V1L(UL) satisfies the L1
following two properties. and set ~ s ~ A
a) The matrix2 [} + X} .., hasm positive eigen values, big = [bibz -+ br_1] = b12Q22.
which are then d|st|nct solutlons of the nonlinear scalafrhen, we have the following lemma.
equation . Lemma 11:
1 —gla) 25— (112)
=02 ‘2 + Sk gy oJL’
Let be the ordered st of solut IRt «
eta; < ag < -+ < au, be the ordered list of solutions — (1 — — ) — i RN
of (II2). Then, we have (w1 =) ll;ll(m ) ; ’ Jl;[l(nj )
O<o¢1<ui1—|—b<a2<ui2—|—b<--~ L1 [;2 L-1
= Ul_a_z ’ (m — )
< < Ui, + b (113) o
" =1 =1
The multiplicity of those eigen values is 1. Proof: Set
b) Whenl; > 2, the matrixS ), +E‘1( has the eigen A 1 |0n
valueul +b with the multiplicity 7; — 1. Q= 019 | Qa2 |
Proof: We first prove the part a). Frorh (1111), we can S€8hen. we have
that every solution of the equatidn= g(«) is an eigen value
of EXL+ENL( 1y~ Since Q' (S + EjvlL(uL) —alp)Q
_t —1 —1
S T -+ e
g — (ui, +b— )’ ’ _ L |012] {U1—Oé| bi2 } [ 1 |012}
o ) ! ) o | 7012[* Qa2 “b1o |Baz —alp_1| | "012]Qa2
g(«) is differentiable and monotone increasing in each of the Cu—a | b1oQ)
m Open Intenvalg —oc, 1, 1), (g, +b. 1y 4), - (s, + = |apg e B ]
b, u;,, +b). Sinceg(a) is unbounded in each of these intervals, L w22 Tla] e L2 ]
it has positive and negative values there, and thus g(«) uy — b12
has a unigue solution in each of thesedisjoint intervals. In m—a O
particular, since = = Ny — o _ (114)
L b1z .
2XL + ENL(uL) H u; +b) O
i=1 L NL—1 — & |




By (114), we have
Sk + Sk — aIL‘
Q_ (E;(L + E;\]L(UL) - aIL)Q‘

Uy — Q@ b12

0

m—«o

7 N2 —«
b2

0

L—-1

77L

-SRI
=1 VE:
L—-1

[Ton—a),

=1

11—«

(u1 — )

(

completing the proof.

(m — )
=1
L-1

Uy — o — E
=

1

B2

2
J
—«

19

g@)
U
/ a
/O al (12 c(w aw+1
/i /i /i /i
o=Ng o=Nng a=Nng . o=Ng,

Fig. 2. Shape ofj(«).

Proof: By LemmalIl, the eigen value equation of

From LemmdIll, we obtain the following proposition. Th@XH-ENL(uL) is

first two parts in this proposition are known results (cf.]j21
Proposition 2: Sete; 2 e, bi and

Clé{jléjépaej >O}7
A .
Co={j:1<j<p,e =0}.
Then, eigen values of } + X%
three properties.
a) Setw = |Cq]. Letj; < j2 < -+ < j, be the ordered list

of Cl Fori =1,2,---,w, setk;, £ J,. Then, the matrix
EXL + ENL(UL has(w + 1) eigen values, which are the

satisfies the following

(u®)

L—-1

62 L—-1
w-a=3 2 oy -
= M) 5
P P
Y P DRI | | (S
— Mk; —Q | -
=1 7j=1
€
= Uy — o —
J; Nk — &
<& [ omy, =) 3 8 T omy — ) p =0(118)
Jjet JjeCa

(w+1) distinct solutions of the nonlinear scalar equatioge first prove the part a). Frori (1118), we can see that every

w

:a_E: i
a—

i=1

JAN

up = gla) = a— &

Q= Nk,

>

JjeEC

Let & be the set of solutions df (I15) and tet < as <
- < 41 be its ordered list. Then, we have

—. (115)
ki

0< oy <M, <o <, <
(116)
(117)

< Oy <77]"€w < Oiy+1

ap < Up < Q41 -

b) Set

A . A .
51:{77kj :tJZ2,j€(/’1},52:{77kj SJGCQ}.

By the above definition andl16), we have&y N & =
E1NE = (. The set of all distinct eigen values Ef;(lL +
S vtz 1S given by&U E1U &. For eachy, € &1, the
multiplicity of 7., becomest; — 1. For eachn, € &
N(&o)¢, the multiplicity of 1, remainst;. For eachn,
€ &NE&, the multiplicity of 7, becomest; + 1. The
multiplicity of a € & (SQ)C is 1

Every eigen value oEXL + X
increasing function ofi;.

c) is a monotone

NL(uL)

solution of the equation:;
—1 1 .
EXL+ENL(UL). Since

~/ O[) — 1 + ejk
; (a —mng,)?

g(«) is differentiable and monotone increasing in each of the
(w + 1) open intervalg—oc, nz ), (g, M%,)s = (M, »00)-
Since g(«) is unbounded in each of these intervals, it has
positive and negative values there, and thys= §(«) has a
unique solution in each of thege + 1) disjoint intervals. In
particular, since

g(«) is an eigen value of

>0,

L—-1
i+ ENL(uL) 0)) H n; >0,
j=1
we have0 < g(0) < wu;. This implies thatu; = g(«) has a
unique solution in the interval, ;. ). Hence,[118) is proved.
It remains to prove[I1?). Sinceu; = g(a1) = g(auy+1), We

have "
€5 (a)
Uy — oy = Z % >0,
im1 e T M
w
€5 (b)
Ul — Q41 = Z J <0
i1 Tk — Qwl



Steps (a) and (b) follow from{I18). For convenience, the [11]
shape ofg(«) is shown in Fig[R. Thus, the proof of the part
a) is completed. The part b) is obvious frdm (1118). Finallg, wj;5;
show the part c). Taking the derivative 6f (115) with respect

to u;, we obtain [
da =~ €. da (14]
l=Fla)m =14+ —2& | =2
2 )dul ; (o — 77];1,)2 duq
- [15]

from which we obtain
—1
da €.
— =1+ — >0.
duy ; (a —mn;,)?
Hence, every eigen value belongingfpis monotone increas-
ing function ofu;. If the eigen value does not belong g,
it does not depend on;. Thus, the part c) is proved. m 18]
Proof of Lemm&l7it suffices to prove the claim of Lemma
[ fori =1, that is, [19]

[16]

17]

Omax Z Ui Z Omin (119)
Gau 0, for k € A, (120) [20]
6’11,1
80ék o
Z o =L (121) |y,

Inequalities [(T109) andIDZO) follow from Propositibh 2 gart
a) and c), respectively. It remains to prove (121). Since for
any matrix its trace is equal to the sum of its eigen values, we

have
L L
Z A = Z Uk - (122)
k=1 k=1

Taking partial derivative of both sides &f(122) with resptec
u1, we obtain [1211). [
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