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Distributed Source Coding of Correlated Gaussian
Remote Sources

Yasutada Oohama

Abstract—We consider the distributed source coding system for
L correlated Gaussian remote sourcesXi, i = 1, 2, · · · , L, where
Xi, i = 1, 2, · · · , L are L correlated Gaussian random variables.
We deal with the case where each ofL distributed encoders can
not directly observeXi but its noisy version Yi = Xi +Ni. Here
Ni, i = 1, 2, · · · , L are independent additiveL Gaussian noises
also independent ofXi, i = 1, 2, · · · , L. On this coding system
the determination problem of the rate distortion region remains
open. In this paper, we derive explicit outer and inner bounds of
the rate distortion region. We further find an explicit suffic ient
condition for those two bounds to match. We also study the sum
rate part of the rate distortion region when the correlation has
some symmetrical property and derive a new lower bound of the
sum rate part. We derive a sufficient condition for this lower
bound to be tight. The derived sufficient condition depends only
on the correlation property of the sources and their observations.

Index Terms—Multiterminal source coding, Gaussian, rate-
distortion region, CEO problem.

I. I NTRODUCTION

In multi-user source networks distributed coding of corre-
lated information sources is a form of communication system
which is significant from both theoretical and practical point
of view. The first fundamental theory in those coding systems
was established by Slepian and Wolf [1]. They considered a
distributed source coding system of two correlated information
sources. Those two sources are separately encoded and sent to
a single destination, where the decoder reconstruct the original
sources. In this system, Slepian and Wolf [1] determined
the admissible rate region, the set that consists of a pair of
transmission rates for which two sources can be decoded with
an arbitrary small error probability.

In the above distributed source coding system we can con-
sider the case where the source outputs should be reconstructed
with average distortions smaller than prescribed levels. Such
a situation suggests the multiterminal rate-distortion theory.

The rate distortion theory for the distributed source coding
system formulated by Slepian and Wolf has been studied by
[2]-[9]. Recently, Wagneret al. [10] have given a complete
solution in the case of Gaussian information sources and mean
squared distortion.

As a practical situation of the distributed source coding
system, we can consider a case where the separate encoders
can not directly observe the original source outputs but can
observe their noisy versions. This situation was first studied
by Yamamoto and Ito [11]. Subsequently, a similar distributed
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source coding system was studied by Flynn and R. M. Gray
[12].

In this paper we consider the distributed source coding
system forL correlated Gaussian remote sourcesXi, i =
1, 2, · · · , L, whereXi, i = 1, 2, · · · , L areL correlated Gaus-
sian random variables. We deal with the case where each of
L distributed encoders can not directly observeXi but its
noisy versionYi = Xi + Ni. HereNi, i = 1, 2, · · · , L are
independent additiveL Gaussian noises also independent of
Xi, i = 1, 2, · · · , L. In the above setupYi, i = 1, 2, · · · , L can
be regarded as correlated Gaussian observations ofXi, i =
1, 2, · · · , L, respectively. This coding system can also be
considered as a vector version of the Gaussian CEO problem
investigated by [13], [14], and [15], whereXi, i = 1, 2, · · · , L
are identical.

The above distributed source coding system was first posed
and investigated by Pandyaet al. [16]. They derived upper and
lower bounds of the sum rate part of the rate distortion region.
Oohama [17], [18] derived explicit outer and inner bounds of
the rate distortion region. Wagneret al. [10] determined the
rate distortion region in the case ofL = 2.

In [18], Oohama also derived a sufficient condition for his
outer bound to coincide with the inner bound. Subsequently,
Oohama [19] derived a matching condition which is simple
and stronger than that of Oohama [18].

In this paper, we derive a new sufficient condition with
respect to the source correlation and the distortion under
which the inner and outer bounds match. We show that if the
distortion is smaller than a threshold value which is a function
of the source correlation, the inner and outer bounds match
and find an explicit form of this threshold value. This sufficient
condition is a significant improvement of the condition derived
by Oohama [19]. We also investigate the sum rate part of rate
distortion region. The optimal sum rate part of the outer bound
derived by Oohama [18] serves as a lower bound of the sum
rate part of the rate distortion region. When the covariance
matrix ΣXL of the remote sourceXL = (X1, X2, · · · , XL)
have a certain symmetrical property and the noise variancesof
Ni, i = 1, 2, · · · , L have an identical variance denoted byσ2,
we derive a new lower bound of the sum rate part. We further
derive a sufficient condition for this lower bound to be tight.
The derived sufficient condition depends only onΣXL andσ2.
From this matching condition we can see that an explicit form
of the sum rate part of the rate distortion region can be found
when the noise varianceσ2 is relatively high compared with
the eigen values ofΣXL .

In Oohama [17], [18], details of derivations of the inner and
outer bound were omitted. In this paper we also present the
details of derivation of those two bounds.
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The rest of this paper is organized as follows. In Section
II, we present problem formulations and state the previous
works on those problems. In Section III, we give our main
result. We first derive explicit inner and outer bounds of the
rate distortion region. Next we presented an explicit sufficient
condition for the outer bound to coincide with the inner bound.
In Section IV, we explicitly compute the matching condition
for two examples of Gaussian sources. In Sections V and VI
we give the proofs of the results. Finally, in Section VII, we
conclude the paper.

II. PROBLEM STATEMENT AND PREVIOUS RESULTS

A. Formal Statement of Problem

In this subsection we present a formal statement of problem.
Throughout this paper all logarithms are taken to the base
natural. LetΛ = {1, 2, · · · , L} and letXi, i ∈ Λ be correlated
zero mean Gaussian random variables taking values in the
real linesXn

i . We write aL dimensional random vector as
XL = (X1, X2, · · · , XL) and use similar notation of other
random variables. We denote the covariance matrix ofXL

by ΣXL . Let {(X1,t, X2,t, · · · , XL,t)}∞t=1 be a stationary
memoryless multiple Gaussian source. For eacht = 1,2, · · · ,
(X1,t, X2,t, · · · , XL,t) obeys the same distribution as(X1,
X2, · · ·,XL) . Let a random vector consisting ofn independent
copies of the random variableXi be denoted byXi = Xi,1

Xi,2 · · ·Xi,n. Furthermore, letXL denote the random vector
(X1,X2, · · · ,XL).

We consider the separate coding system forL correlated
sources, whereL encoders can only access noisy versionYi
of Xi for i = 1, 2, · · · , L, that is,

Yi = Xi +Ni, i ∈ Λ (1)

whereNi, i ∈ Λ are zero mean independent Gaussian random
variables with varianceσ2

Ni
. We assume thatXL and NL

are independent. The separate coding system forL correlated
Gaussian remote sources is shown in Fig. 1. For eachi ∈ Λ,
the noisy versionY i of Xi is separately encoded toϕi(Y i).
TheL encoded dataϕi(Y i), i ∈ Λ are sent to the information
processing center, where the decoder observes them and out-
puts the estimation(X̂1, X̂2, · · · , X̂L) of (X1,X2, · · · ,XL)
by using the decoder functionψ = (ψ1, ψ2, · · · , ψL).

The encoder functionsϕi , i ∈ Λ are defined by

ϕi : X
n
i → Mi = {1, 2, · · · ,Mi} (2)

and satisfy rate constraints

1

n
logMi ≤ Ri + δ (3)

where δ is an arbitrary prescribed positive number. The
decoder functionψ = (ψ1, ψ2, · · · , ψL) is defined by

ψi : M1 × · · · ×ML → X̂n
i , i = 1, 2, · · · , L, (4)

where X̂i is the real line in which a reconstructed random
variable ofXi takes values. Denote byF (n)

δ (R1,R2, · · · , RL)
the set that consists of all the(L + 1) tuple of encoder and

X1

X2

...

XL

X1 Y 1

N 1

X2 Y 2

N 2

XL Y L

NL

✲ ✲❄❤

✲ ✲❄❤

✲ ✲❄❤

ϕ1

ϕ1(Y 1)

ϕ2

ϕ2(Y 2)
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ϕL

ϕL(Y L)

❏
❏
❏
❏❏❫✲

✁
✁
✁
✁
✁
✁✕
ψ ✲ (X̂1, X̂2,

· · · , X̂L)

Fig. 1. Separate coding system forL correlated Gaussian
observations

decoder functions(ϕ1, ϕ2, · · ·, ϕL, ψ) satisfying (2)-(4). For
X

L = (X1, X2, · · · , XL) and its estimation

X̂
L
= (X̂1, X̂2, · · · , X̂L)
△
= (ψ1(ϕ1(Y 1)), ψ2(ϕ2(Y 2)), · · · , ψL(ϕL(Y L)),

set

dii
△
= E||Xi − X̂ i||

2 ,

dij
△
= E〈Xi − X̂i,Xj − X̂j〉 , 1 ≤ i 6= j ≤ L.

where||a|| stands for the Euclid norm ofn dimensional vector
a and〈a, b〉 stands for the inner product betweena andb. Let
Σ

XL−X̂
L be a covariance matrix withdij in its (i, j) element.

In this communication system we can consider two dis-
tortion criterions. For each distortion criterion we definethe
determination problem of the rate distortion region. Thosetwo
problems are shown below.

Problem 1. Vector Distortion Criterion:Fix positive vector
DL = (D1, D2, · · · , DL). For a givenDL, the rate vector
(R1, R2, · · · , RL) is admissibleif for any positiveδ > 0 and
any n with n ≥ n0(δ), there exists(ϕ1, ϕ2, · · · , ϕL, ψ) ∈

F
(n)
δ (R1, R2 · · · , RL) such that

[
1

n
Σ

XL−X̂
L

]

ii

≤ Di + δ ,

where [A]ii stands for the(i, j) entry of the matrixA. Let
RL(D

L) denote the set of all the admissible rate vector. On
a form of RL(D

L), we have a particular interest in its sum
rate part. To examine this quantity, define

Rsum,L(D
L)

△
= min

(R1,R2,···,RL)∈RL(DL)

{
L∑

i=1

Ri

}

.

To determineRsum,L(D
L) in an explicit form is also of our

interest.
Problem 2. Sum Distortion Criterion: Fix positive D.

For a given positiveD, the rate vector(R1, R2, · · · , RL) is
admissibleif for any positiveδ > 0 and anyn with n ≥ n0(δ),
there exists(ϕ1, ϕ2, · · · , ϕL, ψ) ∈F

(n)
δ (R1, R2 · · · , RL) such

that

tr

[
1

n
Σ

XL−X̂
L

]

≤ D + δ ,
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Let RL(D) denote the set of all the admissible rate vector. To
examine the sum rate part ofRL(D), define

Rsum,L(D)
△
= min

(R1,R2,···,RL)∈RL(D)

{
L∑

i=1

Ri

}

.

We can easily show that we have the following relation
betweenRL(D) andR(in)

L (DL):

RL(D) =
⋃

∑
L

i=1
Di≤D

RL(D
L) . (5)

In this paper our argument is concentrated on the study of
Problem 2. It is well known that whenD ≥ tr[ΣXL ], R1 =
R2 =· · · = RL = 0 is admissible. In this case, we have

RL(D) = {(R1, · · · , RL) : Ri ≥ 0, i ∈ Λ} .

In the subsequent arguments we focus on our arguments in
the case ofD < tr[ΣXL ].

B. Previous Results

In this subsection we state previous results on the deter-
mination problem ofRL(D). We first state a previous result
on an inner bound ofRL(D) andRL(D

L). Let Ui, i ∈ Λ be
random variables taking values in real linesUi. For any subset

S ⊆ Λ, we introduce the notationUS
△
=(Ui)i∈S . In particular,

UΛ= UL =(U1, U2, · · · , UL). Similar notations are used for
other random variables. Define

G(DL)
△
=
{
UL : UL is a Gaussian

random vector that satisfies

US → YS → XL → YSc → USc ,

UL → Y L → XL

for anyS ⊆ Λ and

E
[

Xi − ψ̃i(U
L)
]2

≤ Di

for some linear mapping

ψ̃i : UL → X̂i, i ∈ Λ . }

and set

R̂
(in)
L (DL)

△
= conv

{
RL : There existsUL ∈ G(DL)

such that
∑

i∈S

Ri ≥ I(US ;YS |USc)

for anyS ⊆ Λ . } ,

R̂
(in)
L (D)

△
= conv

{
RL : There existDL and

UL ∈ G(DL) such that
∑

i∈S

Ri ≥ I(US ;YS |USc)

for anyS ⊆ Λ and
L∑

i=1

Di ≤ D . } ,

where conv{A} denotes a convex hull of the setA. We
can easily show that we have the following relation between
R̂

(in)
L (D) andR̂(in)

L (DL):

R̂
(in)
L (D) =

⋃

∑
L

i=1
Di≤D

R̂
(in)
L (DL) . (6)

Then, we have the following result.
Theorem 1 (Berger [4] and Tung [5]):

R̂
(in)
L (D) ⊆ RL(D) , R̂

(in)
L (DL) ⊆ RL(D

L) .

The inner boundR̂(in)
L (DL) is well known as the inner

bound of Berger [4] and Tung [5]. The inner bound̂R(in)
L (D)

can be regarded as a variant of their inner bound.
The source coding problem considered in this paper was

first posed and investigated by Pandyaet al.[16]. They dealt
with the case thatY L = XLA + NL , whereA is L × L
a positive definite attenuation matrix. WhenA is an identity
matrix, the problem studied by Pandyaet al. is the same as
the problem considered here. They derived upper and lower
bounds ofRsum,L(D).

Recently, Wagneret al. [10] have determinedR2(D1, D2).
Their result is as follows.

Theorem 2 (Wagner et al. [10]):For any positiveD1 and
D2, we have

R2(D1, D2) = R̂
(in)
2 (D1, D2) .

From the above theorem, (5) and (6), we immediatly obtain
the following corollary.

Corollary 1 (Wagner et al. [10]):For any positiveD, we
have

R2(D) = R̂
(in)
2 (D) .

According to Wagneret al. [10], the results of Oohama [9],
[14], and [15] play an essential role in deriving the above
result. The determination problems ofRL(D

L) andRL(D)
for L ≥ 3 still remains to be solved. Their method for the
proof depends heavily on the specific property ofL = 2. It is
hard to generalize it to the case ofL ≥ 3.

III. M AIN RESULTS

In this section we state our results onRL(D) andRsum,L(
D).

A. Definition of Functions and their Properties

In this subsection we define several functions which are nec-
essary to describe our results and present their properties. For
ri ≥ 0, i ∈ Λ, let Ni(ri), i ∈ Λ be L independent Gaussian
random variables with mean 0 and varianceσ2

Ni
/(1− e−2ri).

Let ΣNL(rL) be a covariance matrix for the random vector

NL(rL). For any subsetS ⊆ Λ, we setrS
△
= (ri)i∈S . In

particular,rΛ = rL = (r1, r2, · · · , rL). Fix nonnegative vector
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rL. Let αi = αi(r
L), i ∈ Λ be L eigen values of the matrix

Σ−1
XL +Σ−1

NL(rL)
. For S ⊆ Λ, andθ > 0, define

Σ−1
NL(rSc )

△
= Σ−1

NL(rL)

∣
∣
∣
rS=0

,

JS(θ, rS |rSc)
△
=

1

2
log+







∏

i∈S

e2ri

θ
∣
∣
∣Σ−1

XL +Σ−1
NL(rSc)

∣
∣
∣






,

JS (rS |rSc)
△
=

1

2
log









∣
∣
∣Σ−1

XL +Σ−1
NL(rL)

∣
∣
∣

{
∏

i∈S

e2ri

}

∣
∣
∣Σ−1

XL +Σ−1
NL(rSc)

∣
∣
∣









,

whereSc = Λ− S and log+ x
△
= max{log x, 0} . Let BL(D)

be the set of all nonnegative vectorsrL that satisfy

tr

[(

Σ−1
XL +Σ−1

NL(rL)

)−1
]

≤ D . (7)

Let ∂BL(D) be the boundary ofBL(D), that is, the set of all
nonnegative vectorsrL that satisfy

tr

[(

Σ−1
XL +Σ−1

N(rL)

)−1
]

= D .

Let ξ be nonnegative number that satisfy
L∑

i=1

{
[ξ − α−1

i ]+ + α−1
i

}
= D.

Define

θ(D, rL)
△
=

L∏

i=1

{
[ξ − α−1

i ]+ + α−1
i

}
.

We can show that forS ⊆ Λ, JS(θ(D, r
L), rS |rSc) and

JS(rS |rSc) satisfy the following two properties.
Property 1:

a) If rL ∈ BL(D), then, for anyS ⊆ Λ,

JS(θ(D, r
L), rS |rSc) ≤ JS(rS |rSc) .

The equality holds whenrL ∈ ∂BL(D).
b) Suppose thatrL ∈ BL(D). If rL

∣
∣
rS=0

still belongs to
BL(D), then,

JS(θ(D, r
L), rS |rSc)

∣
∣
rS=0

= JS(rS |rSc)|rS=0

= 0 .

Property 2: Fix rL ∈ BL(D). For S ⊆ Λ, set

fS = fS(rS |rSc)
△
= JS(θ(D, r

L), rS |rSc) .

By definition it is obvious thatfS , S ⊆ Λ are nonnegative.

We can show thatf
△
= {fS}S⊆Λ satisfies the followings:

a) f∅ = 0.
b) fA ≤ fB for A ⊆ B ⊆ Λ.
c) fA + fB ≤ fA∩B + fA∪B .

In general(Λ, f) is called aco-polymatroidif the nonnegative
functionf on2Λ satisfies the above three properties. Similarly,
we set

f̃S = f̃S(rS |rSc)
△
= JS(rS |rSc) , f̃ =

{

f̃S

}

S⊆Λ
.

Then, (Λ, f̃) also has the same three properties as those of
(Λ, f) and becomes a co-polymatroid.

B. Results

In this subsection we present our results onRL(D). To
describe our result on inner and outer bounds ofRL(D), set

R
(out)
L (D, rL)

△
=
{
RL :

∑

i∈S

Ri ≥ JS

(
θ(D, rL), rS |rSc

)

for anyS ⊆ Λ . } ,

R
(out)
L (D)

△
=

⋃

rL∈BL(D)

R
(out)
L (D, rL) ,

R
(in)
L (rL)

△
=
{
RL :

∑

i∈S

Ri ≥ JS (rS |rSc)

for anyS ⊆ Λ . } ,

R
(in)
L (D)

△
= conv







⋃

rL∈BL(D)

R
(in)
L (rL)






.

Our main result is as follows.
Theorem 3:

R
(in)
L (D) ⊆ R̂

(in)
L (D) ⊆ RL(D) ⊆ R

(out)
L (D) .

Proof of this theorem will be given in Section V.
An essential gap betweenR(out)

L (D) andR
(in)
L (D) is the

difference betweenJS(θ(D, r
L), rS |rSc) in the definition of

R
(out)
L (D) and JS (rS | rSc) in the definition ofR(in)

L (D).
By Property 1 part a) and the definitions ofR(out)

L (D, rL)

andR(in)
L ( rL), if rL ∈ ∂BL(D), then,

R
(out)
L (D, rL) = R

(in)
L (rL) ,

which suggests a possibility that in some nontrivial cases
R

(out)
L (D) and R

(in)
L (D) match. ForL ≥ 3, we present a

sufficient condition forR(out)
L (D) ⊆ R

(in)
L (D) . We consider

the following condition onθ(D, rL).
Condition: For any i ∈ Λ, e−2riθ(D, rL) is a monotone

decreasing function ofri ≥ 0.
We call this condition the MD condition. The following is

a key lemma to derive the matching condition.
Lemma 1: If θ(D, rL) satisfies the MD condition onBL(

D), then,

R
(in)
L (D) = R̂

(in)
L (D) = RL(D) = R

(out)
L (D).

Proof of this lemma will be given in Section VI. Based on
Lemma 1, we derive a sufficient condition forθ(D, rL) to
satisfy the MD condition.

Let aii, i = 1, 2, · · · , L be (i, i)-element ofΣ−1
XL and set

ci
△
= 1

σ2
Ni

. Let αmin = αmin(r
L) andαmax = αmax(r

L) be

the minimum and maximum eigen values ofΣ−1
XL+ Σ−1

NL(rL)
,

respectively. The following is a key lemma to derive a suffi-
cient condition for the MD condition to hold.

Lemma 2: If αmin(r
L) andαmax(r

L) satisfy

1

αmin(rL)
−

1

αmax(rL)
≤

1

aii + ci
, for i ∈ Λ



5

on BL(D), then, θ(D, rL) satisfies the MD condition on
BL(D).

Set

C
△
= {(D,ΣXL ,ΣNL) : rL ∈ BL(D)

for some nonnegativerL.}.

WhenrL ≥ sL, we have

Σ−1
XL +Σ−1

NL(rL) � Σ−1
XL +Σ−1

NL(sL) ,

⇒
(

Σ−1
XL +Σ−1

NL(rL)

)−1

�
(

Σ−1
XL +Σ−1

NL(sL)

)−1

, (8)

whereB � A stands for thatB −A is positive semi-definite.

The equation (8) implies thattr

[(

Σ−1
XL +Σ−1

NL(rL)

)−1
]

is a

monotone decreasing function ofrL. Hence, we have

C =
{

(D,ΣXL ,ΣNL) : D > tr
[(
Σ−1

XL +Σ−1
NL

)−1
]}

.

From Lemmas 1, 2 and an elementary computation we obtain
the following.

Theorem 4:Let α∗
max be the maximum eigen value of

Σ−1
XL+ Σ−1

NL . If

tr
[(
Σ−1

XL +Σ−1
NL

)−1
]

< D ≤ L+1
α∗

max
,

then,

R
(in)
L (D) = R̂

(in)
L (D) = RL(D) = R

(out)
L (D).

In particular,

Rsum,L(D)

= min
rL∈BL(D)







L∑

i=1

ri +
1

2
log

∣
∣
∣Σ−1

XL +Σ−1
NL(rL)

∣
∣
∣

∣
∣Σ−1

XL

∣
∣






. (9)

Proofs of Lemma 2 and Theorem 4 will be stated in Section
VI. From Theorem 4, we can see that we have several nontriv-
ial cases whereR(in)

L (D) andR
(out)
L (D) match. In Oohama

[19], the author derived the sufficient matching condition

D ≤
L+ 1

L−1

α∗
max

on upper bound ofD. Thus the matching
condition presented here provides a significant improvement
of that of Oohama [19] for largeL.

We further examine an explicit characterization ofRsum,L(
D) when the source has a certain symmetrical property. Let

τ =

(
1 2 · · · i · · · L

τ(1) τ(2) · · · τ(i) · · · τ(L)

)

be a cyclic shift onΛ, that is,

τ(1) = 2, τ(2) = 3, · · · , τ(L − 1) = L, τ(L) = 1 .

Let pXΛ(xΛ) = pX1X2···XL
(x1, x2, · · · , xL) be a probability

density function ofXL. The sourceXL is said to be cyclic
shift invariant if we have

pXΛ(xτ(Λ)) = pX1X2···XL
(x2, x3, · · · , xL, x1)

= pX1X2···XL
(x1, x2, · · · , xL−1, xL)

for any (x1, x2, · · · , xL)∈ XL. In the following argument we
assume thatXL satisfies the cyclic shift invariant property.
We further assume thatNi, i ∈ Λ are independent identically

distributed (i.i.d.) Gaussian random variables with mean 0and
varianceσ2. Then, the observationY L = XL + NL also
satisfies the cyclic shift invariant property.

Fix r > 0, let Ni(r), i ∈ Λ be L i.i.d. Gaussian random
variables with mean 0 and varianceσ2/(1−e−2r). LetΣNL(r)

be a covariance matrix for the random vectorNL(r). Let
λi, i ∈ Λ be L eigen values of the matrixΣXL and let
βi = βi(r), i ∈ Λ be L eigen values of the matrixΣ−1

XL

+Σ−1
NL(r)

. Using the eigen values ofΣXL , βi(r), i ∈ Λ can
be written as

βi(r) =
1

λi
+

1

σ2
(1− e−2r) .

Let ξ be a nonnegative number that satisfies
∑L

i=1{[ξ−β
−1
i ]+

+β−1
i } = D. Define

θ(D, r)
△
=

L∏

i=1

{
[ξ − β−1

i ]+ + β−1
i

}
,

J(θ(D, r), r)
△
=

1

2
log

[

e2Lr |ΣXL |
θ(D, r)

]

,

and set

φ(r)
△
= tr

[(

Σ−1
XL +Σ−1

NL(r)

)−1
]

=

L∑

i=1

1

βi(r)
.

Sinceφ(r) is a monotone decreasing function ofr, there exists
a uniquer such thatφ(r) = D, we denote it byr∗(D). Note
that

(r, r, · · · , r
︸ ︷︷ ︸

L

) ∈ BL(D) ⇔ φ(r) ≤ D ⇔ r ≥ r∗(D) ,

θ(D, r∗) =
∣
∣
∣Σ−1

XL +Σ−1
NL(r∗)

∣
∣
∣

−1

.

Set
R

(l)
sum,L(D)

△
= min

r≥r∗(D)
J(θ(D, r), r) .

Then, we have the following.
Theorem 5:Assume that the sourceXL and its noisy

versionY L = XL + NL are cyclic shift invariant. Then, we
have

Rsum,L(D) ≥ R
(l)
sum,L(D) .

Proof of this theorem will be stated in Section V.
Next, we examine a sufficient condition forR(l)

sum,L(D) to
coincide withRsum,L(D). It is obvious from the definition
of J(θ(D, r), r) that whene−2Lrθ(D, r) is a monotone de-
creasing function ofr ∈ [r∗(D),+∞), we haveR(l)

sum,L(D)
= Rsum,L(D).

Lemma 3:Let a be an identical diagonal element ofΣ−1
XL .

Set c
△
= 1

σ2 . Let λmin and λmax be the minimum and
maximum eigen values ofΣXL , respectively. Let the minimum
and maximum eigen values ofΣ−1

XL+ Σ−1
NL(r)

be denoted by
βmin = βmin(r) andβmax = βmax(r), respectively. Those are
given by

βmin(r) =
1

λmax
+

1

σ2
(1− e−2r) ,

βmax(r) =
1

λmin
+

1

σ2
(1− e−2r) .



6

If βmin(r) andβmax(r) satisfy

1

βmin(r)
−

1

βmax(r)
≤
Lσ2e2r

L− 1
·
βmin(r)

βmax(r)

for r ≥ r∗(D), then,e−2Lrθ(D, r) is a monotone decreasing
function of r ∈ [r∗(D),∞).

From Lemma 3 and an elementary computation we obtain
the following.

Theorem 6:Assume thatXL and Y L = XL + NL are
cyclic shift invariant. If

σ2 ≥
L− 1

L
·
λmax

λmin
(λmax − λmin) , (10)

then,R(l)
sum,L(D) = Rsum,L(D). Furthermore, the curveR =

Rsum,L(D) has the following parametric form:

R =
1

2
log

[

|ΣXL |e2Lr

L∏

i=1

βi(r)

]

,

D =
L∑

i=1

1

βi(r)
.







Proofs of Lemma 3 and Theorem 6 will be stated in
Section VI. Note that the condition (10) depends only on the
correlation property ofXL andNL. From Theorem 6 we can
see that for(XN , NN) satisfying the cyclic shift invariant
property the determination problem ofRsum,L(D) is solved
if the identical varainceσ2 of Ni, i ∈ Λ is relatively high
compared with the eigen values ofΣXL .

IV. COMPUTATION OF MATCHING CONDITIONS

In this section we explicitly compute the matching condition
for some class of Gaussian information sources. Define

ui
△
= aii + ci(1− e−2ri) , i ∈ Λ . (11)

From (11), we have

2ri = log
ci

aii + ci − ui
.

By the above transformation we regardθ(D, rL) andΣ−1
XL +

Σ−1
NL(rL)

as functions ofuL, that is,θ(D, rL) = θ(D, uL) and

Σ−1
XL +Σ−1

NL(rL)
= Σ−1

XL +Σ−1
NL(uL)

.

We consider the case whereΣXL have identical diagonal and
nondiagonal elements, that is,

Var[Xi] = σ2
Xi

= 1 , for i ∈ Λ,

Cov[Xi, Xj ] = ρσXi
σXj

= ρ for i, j ∈ Λ, i 6= j.

In this identical variance case,(i, j) elementsaij of Σ−1
XL is

given by

aij =

{
1+(L−2)ρ

(1−ρ)(1+(L−1)ρ) if i = j ,
−ρ

(1−ρ)(1+(L−1)ρ) if i 6= j .

For simplicity of notations we seta
△
= aii, b

△
= −aij . We first

derive an explicit form of the setBL(D). To this end we use
the following formula
∣
∣
∣
∣
∣
∣
∣
∣
∣

z1 δ . . . δ
δ z2 . . . δ
...

...
. . .

...
δ δ . . . zL

∣
∣
∣
∣
∣
∣
∣
∣
∣

=

{
L∏

i=1

(zi − δ)

}{

1 + δ

L∑

i=1

1

zi − δ

}

.(12)

Using (12), the condition

tr

[(

Σ−1
XL +Σ−1

NL(uL)

)−1
]

≤ D (13)

is explicitly given by the following:

∑

i6=j

b2

(ui + b)(uj + b)

−(1 +Db)
L∑

i=1

b

ui + b
+Db ≥ 0 . (14)

Set

κ1
△
=

1

2
·
1 +Db

L− 1
, κ2

△
=

L

4(L− 1)
(1 +Db)2 −Db .

Then, the above condition is rewritten as
∑

i6=j

(

κ1 −
b

ui+b

)(

κ1 −
b

uj+b

)

≥ κ2 . (15)

From (15), we can see that the regionC is given by the set of
all (a, b, cL, D) satisfying

∑

i6=j

(

κ1 −
b

a+b+ci

)(

κ1 −
b

a+b+cj

)

≥ κ2 . (16)

The above condition is equivalent to

∑

i6=j

b2

(a+ b+ ci)(a+ b+ cj)

−(1 +Db)

L∑

i=1

b

a+ b+ ci
+Db ≥ 0 . (17)

Solving (17) with respect toD, we obtain

D ≥

L∑

i=1

1
a+b+ci

−
∑

i6=j

b
(a+b+ci)(a+b+cj)

1−
L∑

i=1

b
a+b+ci

. (18)

From Theorem 4, we obtain the following corollary.
Corollary 2: If D satisfy

L∑

i=1

1
a+b+ci

−
∑

i6=j

b
(a+b+ci)(a+b+cj)

1−
L∑

i=1

b
a+b+ci

≤ D ≤ L+1
α∗

max
,

then
R

(in)
L (D) = RL(D) = R

(out)
L (D).
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Next we derive a more explicit sufficient condition. Set

cmin
△
= min

1≤i≤L
ci, cmax

△
= max

1≤i≤L
ci .

Then, the condition

L(L− 1)
(

κ1 −
b

a+b+cmin

)2

> κ2 (19)

is a sufficient condition for(a, b, cL, D) ∈ C. The above
condition is equivalent to

D ≥ L
a+b+cmin

·
(

1 + b
a+b+cmin−Lb

)

. (20)

On the other hand, the maximum eigen value ofΣ−1
XL

+Σ−1
NL(uL) satisfies

α∗
max ≤ max

1≤j≤L
{uj + b} ≤ a+ b+ cmax . (21)

Properties on bounds of the eigen values ofΣ−1
XL+ Σ−1

NL(uL)
including the property stated in (21) and their proofs are given
in Appendix C. From (20), (21), and Corollary 2, we obtain
the following theorem.

Theorem 7:If (a, b, cmin, cmax, D) satisfies

L
a+b+cmin

·
(

1 + b
a+b+cmin−Lb

)

≤ D ≤ L+1
a+b+cmax

(22)

then,
R

(in)
L (D) = RL(D) = R

(out)
L (D).

In particular,

Rsum,L(D)

= min
rL∈BL(D)







L∑

i=1

ri +
1

2
log

∣
∣
∣Σ−1

XL +Σ−1
NL(rL)

∣
∣
∣

∣
∣Σ−1

XL

∣
∣






. (23)

It can be seen from (22) that the matching condition
holds for sufficiently smallb and cmax. This implies that the
determination problem ofRL(D) is solved if the correlation
of XL is relatively small and the noise variance ofNL is
relatively large.

Now we derive an explicit form ofRsum,L(D) in the case
wherec = cmin = cmax. In this case, we have

C = {(a, b, c,D) :

D ≥ L
a+b+c

·
(

1 + b
a+b+c−Lb

)

} .

Set

L1
△
=
L

2

[

1 +Db+
√

(1−Db)2 + 4Db
L

]

. (24)

Solving the minimization problem in the right member of (23),
we have the following.

Theorem 8:If (a, b, c,D) satisfies

L
a+b+c

·
(

1 + b
a+b+c−Lb

)

≤ D ≤ L
a+b+c

(
1 + 1

L

)
(25)

then,

Rsum,L(D) =
L

2
log

(
(1− ρ)L1c

D(a+ b+ c)− L1

)

+
1

2
log

{
1 + (L− 1)ρ

1− ρ

(

1−
LDb

L1

)}

.

Proof of this theorem is given in Appendix A.
Next, we consider another example where the source and

its noisy observation are cyclic shift invariant. LetL = 4 and

ΣX4 =







1 ρ 0 ρ
ρ 1 ρ 0
0 ρ 1 ρ
ρ 0 ρ 1






, |ρ| <

1

2
, ΣN4 =







1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1






. (26)

In this case, we have

|ΣX4 | = 1− 4ρ2, a =
1− 2ρ2

1− 4ρ2
,

λ1 = 1− 2ρ, λ2 = λ3 = 1, λ4 = 1 + 2ρ .

Four eigen valulesβi(r), i = 1, 2, 3, 4 are given by

β1(r) = 1− 2ρ+ 1
σ2 (1− e−2r) ,

β2(r) = β3(r) = 1 + 1
σ2 (1− e−2r) ,

β4(r) = 1 + 2ρ+ 1
σ2 (1− e−2r) .







(27)

The matching condition is

σ2 ≥ 3|ρ|
1 + 2|ρ|

1− 2|ρ|
.

Summerizing the above argument, we obtain the following.
Theorem 9:We consider the case whereL = 4, ΣX4 and

ΣN4 are given by (26). If

σ2 ≥ 3|ρ|
1 + 2|ρ|

1− 2|ρ|
,

then, the rate distortion curveR = Rsum,4(D) has the
following parametric form:

R =
1

2
log

[

(1− 4ρ2)e8r
4∏

i=1

βi(r)

]

,

D =

4∑

i=1

1

βi(r)
,







whereβi(r), i = 1, 2, 3, 4 are definded by (27).
From this theorem we can see that for the above example

of (X4, N4) satisfying the cyclic shift invariant property the
determination problem ofRsum,4(D) is solved if the identical
varainceσ2 is relatively high or correlation coefficientρ is
relatively small.

The determination problem ofRsum,L(D) was first investi-
gated by Pandyaet al. [16]. They derived upper and lower
bound of Rsum,L(D). Pandyaet al. [16] also numerically
compared those two bounds to show that the gap between them
is relatively small for some examples. In this paper we have
determinedRsum,L(D) for some nontrivial case of Gaussian
sources.

V. DERIVATION OF OUTER AND INNER BOUNDS

In this section we state the proofs of Theorems 3 and 5
stated in Section III.
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A. Derivation of the Outer Bound

In this subsection we prove the inclusionRL(D) ⊆

R
(out)
L (D) stated in Theorem 3. We use the following two

well known lemmas to prove this inclusion.
Lemma 4 (Water Filling Lemma):Let ai, i = 1, 2, · · · , L

be L positive numbers. The maximum of
∏L

i=1 ξi subject to
∑L

i=1 ξi ≤ D andξi ≥ ai, i = 1, 2, · · · , L is given by

L∏

i=1

{
[ξ − ai]

+ + ai
}
,

whereξ is determined by
∑L

i=1 {[ξ − ai]
+ + ai} = D.

Lemma 5:For anyn dimensional random vectorU i, i =
1, 2, we have

1

n
h(U1|U2) ≤

1

2
log

[

(2πe) ·
1

n
E||U1 −U2||

2

]

, (28)

whereh(·) stands for the differential entropy.
Next, we state an important lemma which is a mathematical

core of the converse coding theorem. Fori = 1, 2, · · · , L, set

Wi
△
= ϕi(Y i), r

(n)
i

△
=

1

n
I(Y i;Wi|Xi) . (29)

For S ⊆ Λ, let QS be a unitary matrix which transformsXS

into ZS = XSQS . For XS = (XS,1, XS,2, · · · , XS,n), we
set

ZS = XSQS = (XS,1QS , XS,2QS , · · · , XS,nQS) .

Then, we have the following lemma.
Lemma 6:For anyS ⊆ Λ, we have

h (Zi|ZS−{i}WS

)

≥
n

2
log

{

(2πe)

[

Q−1
S

(

Σ−1
XS

+Σ−1

NS(r
(n)

S
)

)

QS

]−1

ii

}

,

where[C]ij stands for the(i, j) element of the matrixC.
Proof of this lemma will be stated in Appendix B. This

lemma provides a strong result on outer bound of the rate
distortion region. From Lemma 6, we obtain the following
corollary.

Corollary 3: For anyS ⊆ Λ, we have

I(XS ;WS) ≤
n

2
log

∣
∣
∣
∣
I +ΣXS

Σ−1

NS(r
(n)

S
)

∣
∣
∣
∣
. (30)

Proof: We choose unitary matrixQS so that

Q−1
S

(

Σ−1
XS

+Σ−1

NS(r
(n)

S
)

)

QS

becomes the following diagonal matrix:

Q−1
S

(

Σ−1
XS

+Σ−1

NS(r
(n)

S
)

)

QS =










ν1 0
ν2

. . .

0 ν|S|










. (31)

Then, we have the following chain of inequalities:

I(XS ;WS)
(a)
= h (XS)− h (ZS |WS)

≤ h (XS)−

|S|
∑

i=1

h
(
Zi|ZS−{i}WS

)

(b)

≤
n

2
log
[

(2πe)|S| |ΣXS
|
]

+

|S|
∑

i=1

n

2
log

{
1

2πe

[

Q−1
S

(

Σ−1
XS

+Σ−1

NS(r
(n)

S
)

)

QS

]

ii

}

(c)
=

n

2
log |ΣXS

|+

|S|
∑

i=1

n

2
log [νi]

=
n

2
log |ΣXS

|+
n

2
log

∣
∣
∣
∣
Σ−1

XS
+Σ−1

NS(r
(n)

S
)

∣
∣
∣
∣

=
n

2
log

∣
∣
∣
∣
I +ΣXS

Σ−1

NS(r
(n)

S
)

∣
∣
∣
∣
. (32)

Step (a) follows from the rotation invariance of the (condi-
tional) differential entropy. Step (b) follows from Lemma 6.
Step (c) follows from (31).

Using Lemmas 4-6, Corollary 3 and a standard argument
on the proof of converse coding theorems, we can prove
RL(D) ⊆ R

(out)
L (D) .

Proof of RL(D) ⊆ R
(out)
L (D): Assume that(R1, R2,

· · · , RL) ∈ RL(D). Then, for anyδ > 0 and anyn with
n ≥ n0(δ), there exists(ϕ1, ϕ2, · · · , ϕL, ψ) ∈ F

(n)
δ (R1, R2

· · · , RL) such that

L∑

i=1

E||Xi − X̂i||
2 ≤ D + δ .

We setZΛ
△
= XΛQ, ẐΛ

△
= X̂ΛQ. Furthermore, fori ∈ Λ,

set

ξ
(n)
i

△
=

1

n
E||Zi − Ẑi||

2 .

By rotation invariance of the squared norm, we have

L∑

i=1

ξ
(n)
i =

L∑

i=1

1

n
E||Zi − Ẑi||

2

=

L∑

i=1

1

n
E||Xi − X̂i||

2 ≤ D + δ . (33)

By Lemmas 5 and 6, fori = 1, 2, · · · , L, we have

n

2
log
[

(2πe)ξ
(n)
i

]

≥ h(Zi − Ẑi) ≥ h(Zi|Ẑi)

≥ h(Zi|WΛ) ≥ h(Zi|ZΛ−{i}WΛ)

≥
n

2
log

{

(2πe)

[

Q−1

(

Σ−1
XΛ

+Σ−1

NΛ(r
(n)
Λ

)

)

Q

]−1

ii

}

,

from which we have

ξ
(n)
i ≥

[

Q−1

(

Σ−1
XΛ

+Σ−1

NΛ(r
(n)

Λ
)

)

Q

]−1

ii

for i ∈ Λ . (34)
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Now we proceed to the derivation of the outer bound. We first
observe that

WS → XS → XSc →WSc (35)

hold for any subsetS of Λ. For any subsetS ⊆ Λ, we obtain
the following chain of inequalities:

∑

i∈S

n(Ri + δ) ≥
∑

i∈S

logMi

≥
∑

i∈S

H(Wi) ≥ H(WS |WSc)

= I(XΛ;WS |WSc) +H(WS |WScXΛ)

= I(XΛ;WS |WSc) +
∑

i∈S

H(Wi|XΛ)

= I(XΛ;WS |WSc) +
∑

i∈S

H(Wi|Xi)

(a)
= I(XΛ;WS |WSc) + n

∑

i∈S

r
(n)
i . (36)

Step (a) follows from (35). We estimate a lower bound of
I(XΛ;WS |WSc). Observe that

I(XΛ;WS |WSc) = I(XΛ;WΛ)− I(XΛ;WSc)

= I(XΛ;WΛ)− I(XSc ;WSc) . (37)

Since an upper bound ofI(XSc ;WSc) is derived by Corollary
3, it suffices to estimate a lower bound ofI(XΛ; WΛ). On a
lower bound of this quantity we have the following chain of
inequalities:

I(XΛ;WΛ)

= h(XΛ)− h(XΛ|WΛ)
(a)
= h(XΛ)− h(ZΛ|WΛ)

= h(XΛ)−
L∑

i=1

h(Zi|Z
i−1WΛ)

≥ h(XΛ)−
L∑

i=1

h(Zi|Ẑi)

(b)

≥
n

2
log
[
(2πe)L|ΣXΛ |

]
−

L∑

i=1

n

2
log
[

(2πe)ξ
(n)
i

]

=
n

2
log |ΣXΛ | −

n

2
log

[
L∏

i=1

ξ
(n)
i

]

. (38)

Step (a) follows from the rotation invariance of the differential
entropy. Step (b) follows from Lemma 5. Combining (37), (38)
and Corollary 3, we have

I(XΛ;WS |WSc) + n
∑

i∈S

r
(n)
i

≥
n

2
log







∏

i∈S e2r
(n)
i |ΣXΛ |

∣
∣
∣
∣
I +ΣXScΣ

−1

NSc(r
(n)

Sc )

∣
∣
∣
∣

∏L
i=1 ξ

(n)
i







=
n

2
log







∏

i∈S e2r
(n)
i |ΣXΛ |

∣
∣
∣
∣
I +ΣXΛΣ

−1

NΛ(r
(n)

Sc )

∣
∣
∣
∣

∏L
i=1 ξ

(n)
i







=
n

2
log







∏

i∈S e2r
(n)
i

∣
∣
∣
∣
Σ−1

XΛ
+Σ−1

NΛ(r
(n)

Sc )

∣
∣
∣
∣

∏L
i=1 ξ

(n)
i






.

Note here that

I(XΛ;WS |WSc) + n
∑

i∈S

r
(n)
i

is nonnegative. Hence, we have

I(XΛ;WS |WSc) + n
∑

i∈S

r
(n)
i

≥ nJS

(
L∏

i=1

ξ
(n)
i , r

(n)
S

∣
∣
∣
∣
∣
r
(n)
Sc

)

. (39)

Combining (36) and (39), we obtain

∑

i∈S

(Ri + δ) ≥ JS

(
L∏

i=1

ξ
(n)
i , r

(n)
S

∣
∣
∣
∣
∣
r
(n)
Sc

)

. (40)

for S ⊆ Λ. For i ∈ Λ, set

ri
△
= lim sup

n→∞
r
(n)
i = lim sup

n→∞

1

n
I(Y i;Wi|Xi) ,

ξi
△
= lim sup

n→∞
ξ
(n)
i = lim sup

n→∞

1

n
E||Zi − Ẑi||

2 .

Then, by lettingn→ ∞ in (33), (34), and (40), we obtain

L∑

i=1

ξi ≤ D + δ ,

ξi ≥
[

Q−1
(

Σ−1
XΛ

+Σ−1
NΛ(rΛ)

)

Q
]−1

ii
,

for i ∈ Λ ,
∑

i∈S

(Ri + δ) ≥ JS

(
∏L

i=1 ξi, rS

∣
∣
∣ rSc

)

for S ⊆ Λ.







(41)

Sinceδ can be made arbitrary small, we obtain

L∑

i=1

ξi ≤ D ,

ξi ≥
[

Q−1
(

Σ−1
XΛ

+Σ−1
NΛ(rΛ)

)

Q
]−1

ii
,

for i ∈ Λ ,
∑

i∈S

Ri ≥ JS

(
∏L

i=1 ξi, rS

∣
∣
∣ rSc

)

for S ⊆ Λ.







(42)

Here we choose unitary matrixQ so that Q−1(Σ−1
XΛ

+

Σ−1
NΛ(rΛ))Q becomes the following diagonal matrix:

Q−1
(

Σ−1
XΛ

+Σ−1
NΛ(rΛ)

)

Q =










α1 0
α2

. . .

0 αL










. (43)

From the second inequality of (42), we have

ξi ≥ α−1
i = α−1

i (rΛ), i = 1, 2, · · · , L , (44)
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which together with the first inequality of (42) yields that
L∑

i=1

α−1
i (rΛ)

= tr

[(

Σ−1
XΛ

+Σ−1
NΛ(rΛ)

)−1
]

≤
L∑

i=1

ξi ≤ D . (45)

On the other hand, by the first inequality of (42), (44), and
Lemma 4, we have

L∏

i=1

ξi ≤ θ(D, rΛ) , (46)

which together with the third inequality of (42) yields that
∑

i∈S

Ri ≥ JS(θ(D, rΛ), rS |rSc) for S ⊆ Λ . (47)

(45) and (47) imply thatRL(D) ⊆ R
(out)
L (D).

Proof ofRsum,L(D) ≥ R
(l)
sum,L(D): Assume that(R1, R2,

· · · , RL) ∈ RL(D). Then, for anyδ > 0 and anyn with
n ≥ n0(δ), there exists(ϕ1, ϕ2, · · · , ϕL, ψ) ∈ F

(n)
δ (R1, R2

· · · , RL) such that

L∑

i=1

E||Xi − X̂i||
2 ≤ D + δ .

For eachl = 0, 1, · · · , L−1, we use(ϕτ l1, ϕτ l(2), · · · , ϕτ l(L))
for the encoding of(Y 1,Y 2, · · · ,Y L). For i ∈ Λ and for
l = 0, 1, · · · , L− 1, set

Wl,i
△
= ϕτ l(i)(Y i), X̂ l,i

△
= ψτ l(i)(ϕτ l(i)(Y 1)),

r
(n)
l,i

△
=

1

n
I(Y i;Wl,i|X i).

In particular,

r
(n)
0,i = r

(n)
i =

1

n
I(Y i;Wi|Xi), for i ∈ Λ.

Furthermore, set

r
(n)

τ l(Λ)

△
= (r

(n)
l,1 , r

(n)
l,2 , · · · , r

(n)
l,L ) , for l = 0, 1, · · · , L− 1 ,

r(n)
△
=

1

L

L∑

i=1

r
(n)
i .

By the cyclic shift invariant property of the sourceXL and
its noisy observationY L = XL +NL, we have

L∑

i=1

E||Xi − X̂ l,i||
2 ≤ D + δ for 0 ≤ l ≤ L− 1 , (48)

1

L

L−1∑

l=0

r
(n)
l,i =

1

L

L−1∑

l=0

r
(n)

τ l(i)
=

1

L

L∑

j=1

r
(n)
j = r(n)

for 1 ≤ i ≤ L . (49)

We chooseL× L unitary matrixQ = [qij ] so that

Q−1Σ−1
XΛ
Q =










1
λ1

0
1
λ2

. . .

0 1
λL










. (50)

Then, we have

Q−1
(

Σ−1
XΛ

+Σ−1
NΛ(r(n))

)

Q

=










1
λ1

0
1
λ2

. . .

0 1
λL










+
1− e−2r(n)

σ2










1 0
1

. . .

0 1










=










β1 0
β2

. . .

0 βL










.

We setZΛ
△
= XΛQ, Ẑτ l(Λ)

△
= ẐΛQ. Furthermore, set

ξ
(n)
l,i

△
=

1

n
E||Zi − Ẑl,i||

2 , ξ̄
(n)
i

△
=

1

L

L−1∑

l=0

ξ
(n)
l,i .

By the rotation invariance of the squared norm and (48), we
have

L∑

i=1

ξ̄
(n)
i =

L∑

i=1

1

L

L−1∑

l=0

1

n
E||Zi − Ẑl,i||

2

=
1

L

L−1∑

l=0

L∑

i=1

1

n
E||Xi − X̂ l,i||

2 ≤ D + δ . (51)

On the other hand, fori ∈ Λ, we have the following chain of
inequalities:

n

2
log
[

(2πe)ξ̄
(n)
i

]

=
n

2
log

[

(2πe)
1

L

L−1∑

l=0

ξ
(n)
l,i

]

(a)

≥
1

L

L−1∑

l=0

n

2
log
[

(2πe)ξ
(n)
l,i

] (b)

≥
1

L

L−1∑

l=0

h(Zi|Ẑl,i) (52)

≥
1

L

L−1∑

l=0

h(Zi|ZΛ−{i}Wτ l(Λ))

(c)

≥
1

L

L−1∑

l=0

n

2
log

{

(2πe)

[

Q−1

(

Σ−1
XΛ

+Σ−1

NΛ(r
(n)

Λ
)

)

Q

]−1

ii

}

(d)
=

1

L

L−1∑

l=0

n

2
log







(2πe)




1

λi
+

L∑

j=1

q2ji ·
1− e−2r

(n)

l,j

σ2





−1






(e)

≥
n

2
log







(2πe)




1

λi
+

1

L

L−1∑

l=0

L∑

j=1

q2ji ·
1− e−2r

(n)

l,j

σ2





−1






.

(53)

Step (a) follows from the concavity oflog t. Step (b) follows
from Lemma 5. Step (c) follows from Lemma 6. Step (d)
follows from (50). Step (e) follows from the convexity of
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− log t. From (53), we have

ξ̄
(n)
i ≥




1

λi
+

1

L

L−1∑

l=0

L∑

j=1

q2ji ·
1− e−2r

(n)

l,j

σ2





−1

(a)

≥




1

λi
+

L∑

j=1

q2ji ·
1− e−2 1

L

∑
L−1

l=0
r
(n)

l,j

σ2





−1

=

[

1

λi
+

1− e−2r(n)

σ2

]−1

= β−1
i (r(n)), for i ∈ Λ . (54)

Step (a) follows from the concavity of1− e−2t. On the other
hand, by (51) and (54), we have

φ(r(n)) =

L∑

i=1

β−1
i (r(n)) ≤

L∑

i=1

ξ̄
(n)
i ≤ D + δ . (55)

Now we proceed to an evaluation of lower bound of the sum
rate. In a manner quite similar to the derivation of (36) in the
proof of RL(D) ⊆ R

(out)
L (D), we have

∑

i∈Λ

n(Rτ l(i) + δ)

≥ I(XΛ;Wτ l(Λ)) + n
∑

i∈Λ

r
(n)
l,i for 0 ≤ l ≤ L− 1. (56)

From (56), we have

∑

i∈Λ

n(Ri + δ) =
1

L

L−1∑

l=0

∑

i∈Λ

n(Rτ l(i) + δ)

≥
1

L

L−1∑

l=0

I(XΛ;Wτ l(Λ)) + nLr(n) . (57)

We estimate a lower bound of the first quantity in the right
members of (57). On this quantity we have the following chain
of inequalities:

1

L

L−1∑

l=0

I(XΛ;Wτ l(Λ))

= h(XΛ)−
1

L

L−1∑

l=0

h(XΛ|Wτ l(Λ))

= h(XΛ)−
1

L

L−1∑

l=0

h(ZΛ|Wτ l(Λ))

= h(XΛ)−
1

L

L−1∑

l=0

L∑

i=1

h(Zi|Z
i−1Wτ l(Λ))

≥ h(XΛ)−
L∑

i=1

1

L

L−1∑

l=0

h(Zi|Ẑl,i)

(a)

≥
n

2
log
[
(2πe)L|ΣXΛ |

]
−

L∑

i=1

n

2
log
[

(2πe)ξ̄
(n)
i

]

=
n

2
log |ΣXΛ | −

n

2
log

[
L∏

i=1

ξ̄
(n)
i

]

. (58)

Step (a) follows from (52). Combining (57) and (58), we
obtain

∑

i∈Λ

(Ri + δ) ≥ J

(
L∏

i=1

ξ̄
(n)
i , r(n)

)

. (59)

Set

r
△
= lim sup

n→∞
r(n) = lim sup

n→∞

1

L

L∑

i=1

1

n
I(Y i;Wi|Xi),

ξ̄i
△
= lim sup

n→∞
ξ̄
(n)
i = lim sup

n→∞

1

L

L−1∑

l=0

1

n
E||Zi − Ẑl,i||

2.

By letting n→ ∞ in (54), (55), and (59), we obtain

ξ̄i ≥ β−1
i (r) for i ∈ Λ ,

φ(r) =

L∑

i=1

β−1
i (r) ≤

L∑

i=1

ξ̄i ≤ D + δ ,

∑

i∈Λ

(Ri + δ) ≥ J

(
L∏

i=1

ξ̄i, r

)

.







(60)

Sinceδ can be made arbitrary small, we have

ξ̄i ≥ β−1
i (r) for i ∈ Λ ,

φ(r) =
L∑

i=1

β−1
i (r) ≤

L∑

i=1

ξ̄i ≤ D ,

∑

i∈Λ

Ri ≥ J

(
L∏

i=1

ξ̄i, r

)

.







(61)

From the first and second inequality of (61) and Lemma 4,
we have

L∏

i=1

ξ̄i ≤ θ(D, r) .

Hence, we have
∑

i∈Λ

Ri ≥ J(θ(D, r), r) andφ(r) ≤ D ,

which imply thatRsum,L(D) ≥ R
(l)
sum,L(D).

B. Derivation of the Inner Bound

In this subsection we proveR(in)
L (D) ⊆ RL(D) stated in

Theorem 3.
Proof of R(in)

L (D) ⊆ RL(D): SinceR̂(in)
L (D) ⊆ RL(D)

is proved by Theorem 1, it suffices to showR(in)
L (D) ⊆

R̂
(in)
L (D) to prove R

(in)
L (D) ⊆ RL(D). We assume that

RL ∈ R
(in)
L (D). Then, there exists nonnegative vectorrL such

that

tr

[(

Σ−1
XL +Σ−1

NL(rL)

)−1
]

≤ D (62)

and ∑

i∈S

Ri ≥ K(rS |rSc) for anyS ⊆ Λ . (63)

Let Vi, i ∈ Λ be L independent Gaussian random variables
with mean 0 and varianceσ2

Vi
. Define Gaussian random
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variablesUi, i ∈ Λ by Ui = Xi + Ni + Vi. By definition
it is obvious that

UL → Y L → XL

US → YS → XL → YSc → USc

for anyS ⊆ Λ .






(64)

For given ri ≥ 0, i ∈ Λ and D > 0, chooseσ2
Vi

so that
σ2
Vi

= σ2
Ni
/(e2ri − 1) whenri > 0. Whenri = 0, we choose

Ui so thatUi take the constant value zero. Then, the covariance
matrix of NL + V L becomesΣNL(rL). Choose covariance
matrix ΣD so that

tr[ΣD] = D , ΣD � (Σ−1
XL +Σ−1

NL(rL)
)−1.

Since (62), the above choice ofΣD is possible. Define the
linear functionψ̃ of UL by

ψ̃
(
UL
)
= ULΣ−1

NL(rL)
(Σ−1

XL + Σ−1
NL(rL)

)−1 .

Set X̂L = ψ̃
(
UL
)

and

dii
△
= E||Xi − X̂i||

2 ,

dij
△
= E

(

Xi − X̂i

)(

Xj − X̂j

)

, 1 ≤ i 6= j ≤ L.

Let Σ
XL−X̂L be a covariance matrix withdij in its (i, j)

element. Then, by simple computations we can show that

Σ
XL−X̂L = (Σ−1

XL +Σ−1
NL(rL)

)−1 � ΣD (65)

and that for anyS ⊆ Λ,

JS(rS |rSc) = I(YS ;US |USc) . (66)

From (62) and (65), we have

||XL − ψ̃
(
UL
)
||2 = ||XL − X̂L||2

= tr

[(

Σ−1
XL +Σ−1

NL(rL)

)−1
]

≤ tr [ΣD] = D . (67)

From (64) and (67), we haveUL ∈ G(D). Then, from (66)

R
(in)
L (D) ⊆ R̂

(in)
L (D) ,

completing the proof.

VI. PROOFS OF THERESULTS ONMATCHING CONDITIONS

In this section we prove Lemmas 1-3 and Theorems 4 and
6 stated in Section III.

A. Proof of Lemma 1

In this subsection we prove Lemma 1. We first present a
preliminary observation onR(out)

L (D). For rL ∈ BL(D), we
examine a form of the region

R
(out)
L (D, rL) =

{
RL :

∑

i∈S

Ri ≥ JS

(
θ(D, rL), rS |rSc

)

for anyS ⊆ Λ . } .

Let (Λ, f), f = {fS(rS |rSc)}S⊆Λ be a co-polymatroid defined
in Property 2. Using(Λ, f), R(out)

L (D, rL) is expressed as

R
(out)
L (D, rL) =

{
RL :

∑

i∈S

Ri ≥ fS (rS |rSc)

for anyS ⊆ Λ . } .

The setR(out)
L (D, rL) forms a kind of polytope which is called

a co-polymatroidal polytopein the terminology of matroid
theory. It is well known as a property of this kind of polytope
that the polytopeR(out)

L (D, rL) consists ofL! end-points
whose components are given by

Rπ(i)

= f{π(i),···,π(L)}(r{π(i),···,π(L)}|r{π(1),···,π(i−1)})

−f{π(i+1),···,π(L)}(r{π(i+1),···,π(L)}|r{π(1),···,π(i)})

for i = 1, 2, · · · , L− 1 ,

Rπ(L) = f{π(L)}(rπ(L)|r{π(1),···,π(L−1)}) ,







(68)

whereπ is an arbitrary permutation onΛ, that is

π =

(
1 2 · · · i · · · L

π(1) π(2) · · · π(i) · · · π(L)

)

.

For l = 1, 2, · · · , L, set

Bπ,l(D)
△
= {rL : rL ∈ BL(D) and

rπ(i) = 0 for i = l + 1, · · · , L} ,

∂Bπ,l(D)
△
= {rL : rL ∈ ∂BL(D) and

rπ(i) = 0 for i = l + 1, · · · , L} .

In particular, whenπ is the identity map, we omitπ to write
Bl(D) and∂Bl(D). By Property 1, whenrL ∈ Bπ,l(D), the
end-point given by (68) becomes

Rπ(i)

= f{π(i),···,π(l)}(r{π(i),···,π(l)}|r{π(1),···,π(i−1)})

−f{π(i+1),···,π(l)}(r{π(i+1),···,π(l)}|r{π(1),···,π(i)})

for i = 1, 2, · · · , l − 1 ,

Rπ(l) = f{π(l)}(rπ(l)|r{π(1),···,π(l−1)}) ,

Rπ(i) = 0, for i = l + 1, · · · , L .







(69)
Proof of Lemma 1:Fix rL ∈ BL(D) arbitrary. LetRL be a

nonnegative rate vector such thatL components ofRL satisfy
(68). To prove Lemma 1, it suffices to show that this nonnega-
tive vector belongs toR(in)

L (D). For l = 1, 2, · · · , L, we prove
the claim that under the MD condition, ifrL ∈ Bπ,l(D), then,
the rate vectorRL satisfying (69) belongs toR(in)

L (D). We
prove this claim by induction with respect tol. When l = 1,
from (69), we have

Rπ(1) = f{π(1)}(rπ(1)) ,

Rπ(i) = 0, for i = 2, · · · , L .

}

(70)

The functionf{π(1)}(rπ(1)) is computed as

f{π(1)}(rπ(1))

= J{π(1)} (θ(D, rL), rπ(1)|r{π(1)}c)
∣
∣
r{π(1)}c=0

=
1

2
log+

[

e2rπ(1)
∣
∣Σ−1

XL

∣
∣ θ(D, rL)|r{π(1)}c=0

]

. (71)

Since rL ∈ Bπ,l(D), we can decreaserπ(1) keepingrL ∈
Bπ,1(D) so that it arrives atr∗

π(1) = 0 or a positiver∗
π(1)

satisfying

(r∗π(1), r{π(1)}c) = (r∗π(1), 0, · · · , 0
︸ ︷︷ ︸

L−1

) ∈ ∂Bπ,1(D) . (72)
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Let (R∗
π(1), · · · , R∗

π(L)) be a rate vector corresponding to
(r∗π(1), r{π(1)}c). If r∗π(1) = 0, we haverL = 0 ∈ BL(D).
Then, we have

tr

[(

Σ−1
XL +Σ−1

NL(rL)

)−1
]

= tr [ΣXL ] ≤ D .

This contradicts the first assumption ofD < tr [ΣXL ] .
Therefore,r∗

π(1) must be positive. Then, from (72), we have

(R∗
π(1), · · · , R

∗
π(L)) = (R∗

π(1), 0, · · · , 0
︸ ︷︷ ︸

L−1

) ∈ R
(in)
L (D) .

By (71) and the MD condition,f{π(1)}(rπ(1)) is a monotone
increasing function ofrπ(1). Then, we haveRπ(1) ≥ R∗

π(1).
Hence, we have

(Rπ(1), · · · , Rπ(L)) = (Rπ(1), 0, · · · , 0
︸ ︷︷ ︸

L−1

) ∈ R
(in)
L (D) .

Thus, the claim holds forl = 1. We assume that the claim
holds forl−1. Sincetr

[

(Σ−1
XL +Σ−1

NL(rL)
)−1
]

is a monotone

increasing function ofrπ(l) onBπ,l(D), we can decreaserπ(l)
keepingrL ∈ Bπ,l(D) so that it arrives atr∗

π(l) = 0 or a
positiver∗π(l) satisfying

(r∗π(l), r{π(l)}c) ∈ ∂Bπ,l(D) . (73)

Let (R∗
π(1), · · · , R∗

π(L)) be a rate vector corresponding to
(r∗π(l), r{π(l)}c). By Property 2 part b) and the MD condition,
the l functions

f{π(i),···,π(l)}(r{π(i),···,π(l)}|r{π(1),···,π(i−1)})

−f{π(i+1),···,π(l)}(r{π(i+1),···,π(l)}|r{π(1),···,π(i)})

for i = 1, 2, · · · , l − 1 ,

f{π(l)}(rπ(l)|r{π(1),···,π(l−1)})

appearing in the right members of (69) are monotone increas-
ing functions ofrπ(l). Then, from (69), we have

Rπ(i) ≥ R∗
π(i) for i = 1, 2, · · · , l ,

Rπ(i) = R∗
π(i) = 0 for i = l+ 1, · · · , L .

}

(74)

Whenr∗
π(l) = 0, we have(r∗

π(l), r{π(l)}c) ∈ Bπ,l−1(D) . Then,
by induction hypothesis we have

(R∗
π(1), · · · , R

∗
π(L)) ∈ R

(in)
L (D) .

Whenr∗
π(l) > 0, from (73), we have

(R∗
π(1), · · · , R

∗
π(L)) ∈ R

(in)
L (D) .

Hence, by(74), we have

(Rπ(1), · · · , Rπ(L))

= (Rπ(1), · · · , Rπ(l), 0, · · · , 0
︸ ︷︷ ︸

L−l

) ∈ R
(in)
L (D) .

Thus, the claim is proved.

B. Proofs of Lemmas 2 and 3 and Theorems 4 and 6

In this subsection we prove Lemmas 2 and 3 and Theorems
4 and 6.

We first observe that using the eigen valuesαk = αk(u
L),

k ∈ Λ of Σ−1
XL +Σ−1

NL(uL)
, the condition

tr

[(

Σ−1
XL +Σ−1

NL(uL)

)−1
]

≤ D

is rewritten as
L∑

i=1

1

αi(uL)
≤ D . (75)

Next, we present a lemma necessary to prove Lemma 2.
Lemma 7:For the eigen valuesαk = αk(u

L), k ∈ Λ of
Σ−1

XL +Σ−1
NL(uL) and forui, i ∈ Λ, we have the followings:

αmin ≤ ui ≤ αmax ,
∂αk

∂ui
≥ 0, for k ∈ Λ,

L∑

k=1

∂αk

∂ui
= 1 .

Proof of this lemma needs some analytical arguments on the
eigen values of positive semidefinite Hermitian matrix. Detail
of the proof will be given in Appendix C.

Proof of Lemma 2:Let S be a set of integers that satisfies
α−1
i ≥ ξ in the definition ofθ(D, uL). Then, θ(D, uL) is

computed as

θ(D, uL) = 1
(L−|S|)L−|S|

(
∏

k∈S

1

αk

)(

D −
∑

k∈S

1

αk

)L−|S|

.

Fix i ∈ Λ arbitrary. For simplicity of notation we setAi
△
=

(aii + ci) and set

Ψ
△
= log

Dci
Ai − ui

− log θ(D, uL) .

Computing the partial derivative ofΨ by ui, we obtain

∂Ψ

∂ui
=
∑

k∈S

(
∂αk

∂ui

)







1

αk

−
L− |S|

D −
∑

k∈S

1
αk

1

α2
k






+

1

Ai − ui
.

(76)
From Lemma 7 and (76), we obtain

∂Ψ

∂ui
≥
∑

k∈S

(
∂αk

∂ui

)







1

αk

−
L− |S|

D −
∑

k∈S

1
αk

1

α2
k

+
1

Ai − αmin






.

To examine signs of contents of the above summation we set

Φk
△
=

{

D −
∑

k∈S

1

αk

−
L− |S|

αk

}

(Ai − αmin)

+αk

(

D −
∑

k∈S

1

αk

)

.
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If |S| = L, Φk ≥ 0, k ∈ Λ is obvious. We hereafter assume
|S| ≤ L− 1. ComputingΦk, we obtain

Φk = Ai

(

D −
∑

k∈S

1

αk

)

−
L− |S|

αk

· (Ai − αmin)

+(αk − αmin)

(

D −
∑

k∈S

1

αk

)

≥ Ai

(

D −
∑

k∈S

1

αk

)

−
L− |S|

αk

· (Ai − αmin)

(a)

≥ Ai

∑

k∈Λ−S

1

αk

−
L− |S|

αk

· (Ai − αmin)

≥ Ai ·
L− |S|

αmax
−
L− |S|

αmin
· (Ai − αmin)

= Ai(L− |S|)

(
1

αmax
−

1

αmin
+

1

Ai

)

. (77)

Step (a) follows from the inequality (75), that is,

D −
L∑

k=1

1

αk(rL)
≥ 0 .

From (77), we can see that if

1

αmin(rL)
−

1

αmax(rL)
≤

1

Ai

for i ∈ Λ,

then,Φk ≥ 0 for k ∈ S .
Proof of Theorem 4:By (75), we have

1

αmin(rL)
≤ D −

L− 1

αmax(rL)

=
1

αmax(rL)
+D −

L

αmax(rL)
.

Hence, if

D −
L

αmax(rL)
≤

1

aii + ci
,

or equivalent to
(

D −
1

aii + ci

)

αmax(r
L) ≤ L (78)

holds forrL ∈ BL(D) and i ∈ Λ, the condition onαmin and
αmax in Lemma 2 holds. By Lemma 7, we have

αmax(r
L) ≤ α∗

max for rL ∈ BL(D). (79)

It can be seen from (78) and (79) that
(

D −
1

aii + ci

)

α∗
max ≤ L for i ∈ Λ . (80)

is a sufficient condition for (78) to hold. By Lemma 7, we
have

aii + ci ≤ α∗
max for i ∈ Λ. (81)

From (80) and (81), we have
(

D −
1

aii + ci

)

α∗
max ≤ Dα∗

max − 1 .

Thus, if we haveDα∗
max − 1 ≤ L or equivalent toD ≤

(L+ 1)/α∗
max, we have (80).

Proof of Lemma 3:Let S be a set of integers that satisfies
β−1
i ≥ ξ in the definition of θ(D, r). Then θ(D, r) is

computed as

θ(D, r) = 1
(L−|S|)L−|S|

(
∏

k∈S

1

βk

)(

D −
∑

k∈S

1

βk

)L−|S|

.

Fix i ∈ Λ arbitrary and set

Ψ
△
= 2Lr − log θ(D, r) .

Computing the derivative ofΨ by r, we obtain

dΨ

dr
=

2

σ2e2r

∑

k∈S







1

βk
−

L− |S|

D −
∑

k∈S

1
βk

1

β2
k






+ 2L

=
2

σ2e2r

∑

k∈S







1

βk
−

L− |S|

D −
∑

k∈S

1
βk

1

β2
k

+ σ2e2r ·
L

|S|






.

To examine signs of contents of the above summation we set

Φk
△
= D −

∑

k∈S

1

βk
−
L− |S|

βk

+σ2e2r
L

|S|
βk

(

D −
∑

k∈S

1

βk

)

.

If |S| = L, Φk ≥ 0, k ∈ Λ is obvious. We hereafter assume
|S| ≤ L− 1. ComputingΦk, we obtain

Φk

(a)

≥
∑

k∈Λ−S

1

βk
−
L− |S|

βk
+ σ2e2r

L

|S|
βk

∑

k∈Λ−S

1

βk

≥
L− |S|

βmax
−
L− |S|

βmin
+ σ2e2r

L

|S|
(L− |S|)

βmin

βmax

= (L− |S|)

[
1

βmax
−

1

βmin
+ σ2e2r

L

|S|
·
βmin

βmax

]

. (82)

Step (a) follows from

D −
L∑

k=1

1

βk
≥ 0 ⇔ D −

∑

k∈S

1

βk
≥

∑

k∈Λ−S

1

βk
.

From (82), we can see that if

1

βmin
−

1

βmax
≤ σ2e2r

L

|S|
·
βmin

βmax
, (83)

then,Φk ≥ 0 for k ∈ S . Since|S| ≤ L− 1,

1

βmin(r)
−

1

βmax(r)
≤ σ2e2r

L

L− 1
·
βmin(r)

βmax(r)

is a sufficient condition for (83) to hold.
Proof of Theorem 6:Computingβ−1

min − β−1
max, we have

1

βmin(r)
−

1

βmax(r)

=
λmax − λmin

{
1 + λmax

σ2 (1 − e−2r)
} {

1 + λmin

σ2 (1− e−2r)
}

≤ λmax − λmin .
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On the other hand

e2r
βmin(r)

βmax(r)
= e2r

1 + λmax

σ2 (1− e−2r)

1 + λmin

σ2 (1− e−2r)
·
λmin

λmax

≥
λmin

λmax
.

Hence, if

λmax − λmin ≤ σ2 L

L− 1
·
λmin

λmax
,

or equivalent to

σ2 ≥
L− 1

L
·
λmax

λmin
(λmax − λmin) ,

we have

1

βmin(r)
−

1

βmax(r)
≤ σ2e2r

L

L− 1
·
βmin(r)

βmax(r)

for r ≥ 0, completing the proof.

VII. C ONCLUSION

We have considered the distributed source coding of corre-
lated Gaussian observation and given a partial solution to this
problem by deriving explicit outer bound of the rate distortion
region. Furthermore, we established a sufficient condition
under which this outer bound is tight.

In this paper our arguments have been concentrated on
Problem 2, the determination problem ofRL(D). On Problem
1, the determination problem ofRL(D

L), the techniques
we have used to derive the outer bound ofRL(D) are not
sufficient to derive an outer bound ofRL(D

L).
In [20], we introduced a unified approach to deal with

Problems 1 and 2 and derived outer bounds of the rate
distortion regions on those two problems. For Problem 1,
the outer bound of [20] has a form of positive semi definite
programming. For Problem 2, the outer bound of [20] is the
same as that of this paper. Recently, we have obtained some
extentions of the results of Oohama [20]. Details of those
results are to be presented in a future paper.

APPENDIX

A. Proof of Theorem 8.

In this appendix we prove Theorem 8.
Proof of Theorem 8:We first observe that

L∑

i=1

ri +
1

2
log

∣
∣
∣Σ−1

XL +Σ−1
NL(rL)

∣
∣
∣

∣
∣Σ−1

XL

∣
∣

=

L∑

i=1

ri +
1

2
log
∣
∣
∣Σ−1

XL +Σ−1
NL(rL)

∣
∣
∣+

1

2
log |ΣXL | , (84)

|ΣXL | = (1− ρ)L
{

1 +
ρL

1− ρ

}

, (85)
∣
∣
∣Σ−1

XL + Σ−1
NL(rL)

∣
∣
∣

=

(

1−
L∑

i=1

b

ui + b

)
L∏

i=1

(ui + b) . (86)

Set

vi
△
=

1

ui + b
= {a+ b+ c(1− e−2ri)}−1 .

Then, we have

ui = v−1
i − b ,

ri =
1

2
log

c

a+ b+ c− v−1
i

.







(87)

From (14) in Section IV and (87), we can see that the condition
rL ∈ BL(D) is equivalent to

b
∑

i6=j

vivj − (1 +Db)

L∑

i=1

vi +D ≥ 0

⇔ b

(
L∑

i=1

vi

)2

− b

L∑

i=1

v2i

−(1 +Db)

L∑

i=1

vi +D ≥ 0 . (88)

From (86) and (87), we have

L∑

i=1

ri +
1

2
log
∣
∣
∣Σ−1

XL +Σ−1
NL(rL)

∣
∣
∣

=

L∑

i=1

1

2
log

c

(a+ b+ c)vi − 1

+
1

2
log

(

1− b

L∑

i=1

vi

)

(a)

≥
L

2
log

c

(a+ b+ c) 1
L

∑L
i=1 vi − 1

+
1

2
log

(

1− b

L∑

i=1

vi

)

. (89)

Step (a) follows from the convexity of− log t. Here, we set

γ
△
=

{

1

L

L∑

i=1

vi

}−1

.

Then, from (89), we have

L∑

i=1

ri +
1

2
log
∣
∣
∣Σ−1

XL +Σ−1
NL(rL)

∣
∣
∣

≥
L

2
log

(Dc)γ

D(a+ b+ c)− γ
+

1

2
log

(

1− (Db)
L

γ

)

.(90)

Since
L∑

i

v2i ≥ L ·

(

1

L

L∑

i=1

vi

)2

= Lγ−2

and (88), we obtain

bL(L− 1)γ−2 − (1 +Db)Lγ−1 +D ≥ 0

⇔

(
Dγ

L

)2

− (1 +Db)

(
Dγ

L

)

+Db

(

1−
1

L

)

≥ 0.(91)
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Sincevi ≤ b−1 for i ∈ Λ, γ must beγ ≥ Lb. Solving (91)
under this constraint, we obtain

Dγ ≥
L

2

[

1 +Db+
√

(1−Db)2 + 4Db
L

]

= L1 . (92)

Combining (84), (85), (90), and (92), we have

L∑

i=1

ri +
1

2
log

∣
∣
∣Σ−1

XL +Σ−1
NL(rL)

∣
∣
∣

∣
∣Σ−1

XL

∣
∣

≥
L

2
log

(
(1 − ρ)L1c

D(a+ b + c)− L1

)

+
1

2
log

{
1 + (L− 1)ρ

1− ρ

(

1−
LDb

L1

)}

.

The equality holds

ri =
1

2
log

Dc

D(a+ b+ c)− L1
, for i ∈ Λ ,

completing the proof.

B. Proof of Lemma 6

In this appendix we prove Lemma 6. Without loss of
generality we may assume thatS = {1, 2, · · · , s}. We write
unitary matrixQS asQS = [qij ], whereqij stands for the
(i, j) element ofQS. The unitary matrixQS transformsXS

into ZS= XSQS . The following lemma states an important
property on the distribution of Gaussian random vectorZS.
This lemma is a basis of the proof of Lemma 6.

Lemma 8:For anyi ∈ S, we have the following.

Zi = −
1

gii

∑

j 6=i

νijZj +
1

gii

s∑

j=1

qji
σ2
Nj

Yj + N̂i , (93)

where

gii =
[
Q−1

S Σ−1
XS
QS

]

ii
+

s∑

j=1

q2ji
σ2
Nj

, (94)

νij , j ∈ S−{i} are suitable constants and̂Ni is a zero mean
Gaussian random variables with variance1

gii
. For eachi ∈ S,

N̂i is independent ofZj , j ∈ S − {i} andYj , j ∈ S.
Proof: Without loss of generality we may assumei = 1.

Let ΣXSYS
be a covariance matrix on the pair of the Gaussian

random vectorsXS andYS . SinceYS = XS +NS , we have

ΣXSYS
=

[
ΣXS

ΣXS

ΣXS
ΣXS

+ΣNS

]

.

SinceZS = XSQS , we have

ΣZSYS
=

[
Q−1

S ΣXS
QS Q−1

S ΣXS

ΣXS
QS ΣXS

+ΣNS

]

.

The density functionpZSYS
(zS , yS) of (ZS , YS) is given by

pZSYS
(zS , yS) =

1

(2πe)s |ΣZSYS
|
1
2

e
− 1

2 [zSyS ]Σ−1
ZSYS

[
tzS
tyS

]

,

whereΣ−1
ZSYS

has the following form:

Σ−1
ZSYS

=

[
Q−1

S (Σ−1
XS

+Σ−1
NS

)QS −Q−1
S Σ−1

NS

−Σ−1
NS
QS Σ−1

NS

]

.

Set
νij

△
=
[
Q−1

S (Σ−1
XS

+Σ−1
NS

)QS

]

ij

=
[
Q−1

S Σ−1
XS
QS

]

ij
+

s∑

k=1

qkiqkj
σ2
Nk

,

βij
△
= −

[
Q−1

S Σ−1
NS

]

ij
= −

qji
σ2
Nj

.







(95)

Now, we consider the following partition ofΣ−1
ZSYS

:

Σ−1
ZSYS

=

[
Q−1

S (Σ−1
XS

+Σ−1
NS

)QS −Q−1
S Σ−1

NS

−Σ−1
NS
QS Σ−1

NS

]

=

[
g11 g12
tg12 G22

]

,

whereg11, g12, andG22 are scalar,2s−1 dimensional vector,
and(2s−1)×(2s−1) matrix, respectively. It is obvious from
the above partition ofΣ−1

ZSYS
that we have

g11 = ν11 =
[
Q−1

S Σ−1
XS
QS

]

11
+

s∑

k=1

q2k1
σ2
Nk

,

g12 = [ν12 · · · ν1sβ11β12 · · ·β1s] .







(96)

It is well known thatΣ−1
ZSYS

has the following expression:

Σ−1
ZSYS

=

[
g11 g12
tg12 G22

]

=

[
1 012

1
g11

tg12 IL−1

] [
g11 012
t012 G22 −

1
g11

tg12g12

]

×

[
1 1

g11
g12

t012 IL−1

]

.

Set

n̂1
△
=
[
z1|zS−{1}yS

]
[

1
1

g11
tg12

]

= z1 +
1

g11

[
zS−{1}yS

]
tg12 .







(97)

Then, we have

[zSyS ]ΣZSYS

[
tzS
tyS

]

= [z1|zS−{1}yS ]

[
g11 g12
tg12 G22

]




z1
tzS−{1}

tyS





= [n̂1|zS−{1}yS ]

[
g11 012
t012 G22 −

1
g11

tg12g12

]




n̂1
tzS−{1}

tyS



 .(98)

From (95)-(97), we have

n̂1 = z1 +
1

g11

s∑

j=2

ν1jzj +
1

g11

s∑

j=1

β1jyj

= z1 +
1

g11

s∑

j=2

ν1jzj −
1

g11

s∑

j=1

qj1
σ2
Nj

yj . (99)

It can be seen from (98) and (99) that the random variableN̂1

defined by

N̂1
△
= Z1 +

1

g11

s∑

j=2

ν1jZj −
1

g11

s∑

j=1

qj1
σ2
Nj

Yj
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is a zero mean Gaussian random variable with variance1
g11

and is independent ofZS−{1} and YS . This completes the
proof of Lemma 8.

The followings are two variants of the entropy power
inequality.

Lemma 9:Let U i, i = 1, 2, 3 be n dimensional random
vectors with densities and letT be a random variable taking
values in a finite set. We assume thatU3 is independent of
U1, U2, andT . Then, we have

1
2πee

2
n
h(U2+U3|U1T ) ≥ 1

2πee
2
n
h(U2|U1T ) + 1

2πee
2
n
h(U3) .

Lemma 10:Let U i, i = 1, 2, 3 be n random vectors with
densities. LetT1, T2 be random variables taking values in
finite sets. We assume that those five random variables form
a Markov chain(T1,U1) → U3 → (T2,U2) in this order.
Then, we have

1
2πee

2
n
h(U1+U2|U3T1T2)

≥ 1
2πee

2
n
h(U1|U3T1) + 1

2πee
2
n
h(U2|U3T2) .

Proof of Lemma 6:By Lemma 8, we have

Zi = −
1

gii

∑

j 6=i

νijZj +
1

gii

s∑

j=1

qji
σ2
Nj

Y j + N̂ i , (100)

whereN̂ i is a vector ofn independent copies of zero mean
Gaussian random variables with variance1

gii
. For eachi ∈ S,

N̂ i is independent ofZj , j ∈ S − {i} andY j , j ∈ S. Set

h(n)
△
=

1

n
h(Zi|ZS−{i},WS) .

Furthermore, fork ∈ Λ, define

Sk
△
= {k, k + 1, · · · , s} ,Ψk = Ψk(Y Sk

)
△
=

s∑

j=k

qji
σ2
Nj

Y j .

Applying Lemma 9 to (100), we have

e2h
(n)

2πe
≥

1

(gii)2
1

2πe
e

2
n
h(Ψ1|ZS−{i},WS) +

1

gii
. (101)

On the quantityh(Ψ1|ZS−{i},WS) in the right member of
(101), we have the following chain of equalities:

h(Ψ1|ZS−{i},WS)

= I(Ψ1;XS |ZS−{i},WS) + h(Ψ1|XS ,ZS−{i},WS)

(a)
= I(Ψ1;ZS |ZS−{i},WS) + h(Ψ1|XS ,WS)

= I(Ψ1;Zi|ZS−{i},WS) + h(Ψ1|XS ,WS)

= h(Zi|ZS−{i},WS)− h(Zi|Ψ1,ZS−{i},WS)

+h(Ψ1|XS ,WS)
(b)
= nh(n) − h(Zi|Ψ1,ZS−{i}) + h(Ψ1|XS ,WS)

= nh(n) −
n

2
log
[
2πe(gii)

−1
]
+ h(Ψ1|XS ,WS) . (102)

Step (a) follows from thatZS can be obtained fromXS by
the invertible matrixQ. Step (b) follows from the Markov
chain

Zi → (Ψ1,ZS−{i}) → Y S →WS .

From (102), we have

1

2πe
e

2
n
h(Ψ1|ZS−{i},WS) =

e2h
(n)

2πe
gii ·

1

2πe
e

2
n
h(Ψ1|XS ,WS).

(103)
Substituting (103) into (101), we obtain

e2h
(n)

2πe
≥

e2h
(n)

2πe

1

gii
·

1

2πe
e

2
n
h(Ψ1|XS,WS) +

1

gii
. (104)

Solving (104) with respect toe
2h(n)

2πe , we obtain

e2h
(n)

2πe
≥

[

gii −
1

2πe
e

2
n
h(Ψ1|XS,WS)

]−1

. (105)

Next, we evaluate a lower bound ofe
2
n
h(Ψ1|XS ,WS) . Note that

for j = 1, 2, · · · , s− 1 we have the following Markov chain:

(
WSj+1 ,Ψj+1(Y Sj+1)

)
→ XS →

(

Wj ,
qji
σ2
Nj

Y j

)

. (106)

Based on (106), we apply Lemma 10 to12πee
2
n
h(Ψj |XS ,WS)

for j = 1, 2, · · · , s− 1. Then, forj = 1, 2, · · · , s− 1, we have
the following chains of inequalities :

1

2πe
e

2
n
h(Ψj |XS ,WS)

=
1

2πe
e

2
n
h

(

Ψj+1+
qji

σ2
N1

Y j

∣
∣
∣
∣
XS ,WSj+1

,Wj

)

≥
1

2πe
e

2
n
h(Ψj+1|XS ,WSj+1) +

1

2πe
e

2
n
h

(
qji

σ2
Nj

Y j

∣
∣
∣
∣
XS ,Wj

)

=
1

2πe
e

2
n
h(Ψj+1|XS ,WSj+1) + q2ji

e−2r
(n)

j

σ2
Nj

. (107)

Using (107) iteratively forj = 1, 2, · · · , s− 1, we have

1

2πe
e

2
n
h(Ψ1|XS ,WS) ≥

s∑

j=1

q2ji
e−2r

(n)
j

σ2
Nj

. (108)

Combining (94), (105), and (108), we have

e2h
(n)

2πe
≥







[
Q−1

S Σ−1
XS
QS

]

ii
+

s∑

j=1

q2ji
1− e−2r

(n)

j

σ2
Nj







−1

=

[

Q−1
S (Σ−1

XS
+Σ−1

NS(r
(n)

S
)
)QS

]−1

ii

, (109)

completing the proof.

C. Eigen Values ofΣ−1
XL +Σ−1

NL(uL)

In this appendix we prove some properties on eigen values
of Σ−1

XL +Σ−1
NL(uL). Using those properties, we prove Lemma

7.
We first consider the case treated in section IV, whereΣ−1

XL

+Σ−1
NL(uL)

has the identical valueb of non diagonal elements.
Using (12), we can show thatαi, i = 1, 2, · · · , L are L
solutions to the following eigen value equation:

(

1−
L∑

i=1

b

ui + b− α

)
L∏

i=1

(ui + b− α) = 0 . (110)
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α
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Fig. 1. Shape ofg(α).

Letm be the number of distinct values ofu1,u2,· · ·,uL and let
ui1 < ui2 < · · · < uim be the ordered list of those values. For

eachj = 1, 2, · · · ,m, setLj
△
= {l : ul = uij} and lj

△
= |Lj |.

Then, the eigen value equation (110) becomes


1−
m∑

j=1

blj
uij + b− α





m∏

j=1

(uij + b − α)lj = 0 . (111)

From (111), we obtain the following proposition.
Proposition 1: Eigen values ofΣ−1

XL+Σ−1
NL(uL) satisfies the

following two properties.
a) The matrixΣ−1

XL +Σ−1
NL(uL)

hasm positive eigen values,
which are them distinct solutions of the nonlinear scalar
equation

1 = g(α)
△
=

m∑

j=1

blj
uij + b− α

. (112)

Let α1 < α2 < · · · < αm be the ordered list of solutions
of (112). Then, we have

0 < α1 < ui1 + b < α2 < ui2 + b < · · ·

< αm < uim + b . (113)

The multiplicity of those eigen values is 1.
b) Whenlj ≥ 2, the matrixΣ−1

XL +Σ−1
NL(uL) has the eigen

valueuij+b with the multiplicity lj − 1.
Proof: We first prove the part a). From (111), we can see

that every solution of the equation1 = g(α) is an eigen value
of Σ−1

XL+Σ−1
NL(uL)

. Since

g′(α) =

m∑

j=1

blj
(uij + b− α)2

> 0 ,

g(α) is differentiable and monotone increasing in each of the
m open intervals(−∞, ui1+b), (ui1+b, ui2+b), · · ·, (uim−1+
b, uim+b). Sinceg(α) is unbounded in each of these intervals,
it has positive and negative values there, and thus1 = g(α)
has a unique solution in each of thesem disjoint intervals. In
particular, since

∣
∣
∣Σ−1

XL +Σ−1
NL(uL)

∣
∣
∣ = (1− g(0))

L∏

i=1

(ui + b) > 0,

we have0 < g(0) < 1. This implies that1 = g(α) has a
unique solution in the interval(0, ui1 +b). Furthermore, since

lim
α↓uim+b

g(α) = −∞ , lim
α→+∞

g(α) = 0 ,

there is no eigen value in the open interval(uim + b,+∞).
Summarizing the above arguments, we obtain(113). For
convenience we show the shape ofg(α) in Fig. 1. The part b)
is obvious from (111).

Next, we consider the case whereXL is a general covari-
ance matrix. Set

Σ−1
XL +Σ−1

NL(uL)
=

[
u1 b12
tb12 B22

]

.

Let η1, η2, · · ·, ηL−1 beL−1 eigen values ofB22. SinceB22

is positive definite, thoseL− 1 eigen values are positive. Let
p be the number of distinct eigen values ofB22 and letηk1 <
ηk2 < · · · < ηkp

be the ordered list of eigen values ofB22. For

eachj = 1, 2, · · · , p, setTj
△
= {l : ηl = ηkj

} and tj
△
= |Tj |.

For eachj = 1, 2, · · · , p, the quantitytj is the multiplicity
of the eigen valueηkj

. Choose the(L− 1)× (L− 1) unitary
matrixQ22 so that

tQ22B22Q22 = Q−1
22 B22Q22 =









η1 0
η2

. . .

0 ηL−1









and set
b̃12 = [b̃1b̃2 · · · b̃L−1]

△
= b12Q22 .

Then, we have the following lemma.
Lemma 11:

∣
∣
∣Σ−1

XL +Σ−1
NL(uL) − αIL

∣
∣
∣

= (u1 − α)
L−1∏

l=1

(ηl − α)−
L−1∑

l=1

b̃2j
∏

j 6=l

(ηj − α)

=

(

u1 − α−
L−1∑

l=1

b̃2j
ηl − α

)
L−1∏

l=1

(ηl − α) .

Proof: Set

Q
△
=

[
1 012

t012 Q22

]

.

Then, we have

Q−1(Σ−1
XL +Σ−1

NL(uL)
− αIL)Q

= tQ(Σ−1
XL +Σ−1

NL(uL)
− αIL)Q

=

[
1 012

t012
tQ22

] [
u1 − α b12
tb12 B22 − αIL−1

] [
1 012

t012 Q22

]

=

[
u1 − α b12Q22

tQ22
tb12

tQ22(B22 − αIL−1)Q22

]

=











u1 − α b̃12

tb̃12

η1 − α 0
η2 − α

. . .

0 ηL−1 − α











. (114)
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By (114), we have
∣
∣
∣Σ−1

XL +Σ−1
NL(uL)

− αIL

∣
∣
∣

=
∣
∣
∣Q−1(Σ−1

XL +Σ−1
NL(uL)

− αIL)Q
∣
∣
∣

=

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

u1 − α b̃12

tb̃12

η1 − α 0
η2 − α

. . .

0 ηL−1 − α

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

= (u1 − α)

L−1∏

l=1

(ηl − α)−
L−1∑

l=1

b̃2j
∏

j 6=l

(ηj − α)

=

(

u1 − α−
L−1∑

l=1

b̃2j
ηl − α

)
L−1∏

l=1

(ηl − α) ,

completing the proof.
From Lemma 11, we obtain the following proposition. The

first two parts in this proposition are known results (cf. [21]).

Proposition 2: Set ǫj
△
=
∑

l∈Tj
b̃2l and

C1
△
= {j : 1 ≤ j ≤ p, ǫj > 0} ,

C2
△
= {j : 1 ≤ j ≤ p, ǫj = 0} .

Then, eigen values ofΣ−1
XL +Σ−1

NL(uL)
satisfies the following

three properties.

a) Setw = |C1|. Let j1 < j2 < · · · < jw be the ordered list

of C1. For i = 1, 2, · · · , w, setkji
△
= k̃i. Then, the matrix

Σ−1
XL +Σ−1

NL(uL)
has(w+1) eigen values, which are the

(w+1) distinct solutions of the nonlinear scalar equation

u1 = g̃(α)
△
= α−

∑

j∈C1

ǫj
α− ηkj

= α−
w∑

i=1

ǫji
α− ηk̃i

. (115)

Let E0 be the set of solutions of (115) and letα1 < α2 <
· · · < αw+1 be its ordered list. Then, we have

0 < α1 < ηk̃1
< α2 < ηk̃2

< · · ·

< αw < ηk̃w
< αw+1 , (116)

α1 < u1 < αw+1 . (117)

b) Set

E1
△
= {ηkj

: tj ≥ 2, j ∈ C1} , E2
△
= {ηkj

: j ∈ C2} .

By the above definition and(116), we haveE0 ∩ E1 =
E1∩E2 = ∅ . The set of all distinct eigen values ofΣ−1

XL+
Σ−1

NL(uL)
is given byE0∪ E1∪ E2. For eachηkj

∈ E1, the
multiplicity of ηkj

becomestj − 1. For eachηkj
∈ E2

∩(E0)c, the multiplicity of ηkj
remainstj . For eachηkj

∈ E2∩E0, the multiplicity of ηkj
becomestj + 1. The

multiplicity of α ∈ E0 ∩(E2)c is 1.
c) Every eigen value ofΣ−1

XL + Σ−1
NL(uL)

is a monotone
increasing function ofu1.

0

...

α

u1

g( )~ α

η
k1
∼α= α= k2

η ∼ ... α= α=kw-1
η ∼ η∼kw

α1 α2 αw αw+1

Fig. 2. Shape of̃g(α).

Proof: By Lemma 11, the eigen value equation of
Σ−1

XL+Σ−1
NL(uL)

is
(

u1 − α−
L−1∑

l=1

b̃2l
ηl − α

)
L−1∏

j=1

(ηj − α)

=



u1 − α−

p
∑

j=1

ǫj
ηkj

− α





p
∏

j=1

(ηkj
− α)tj

=



u1 − α−
∑

j∈C1

ǫj
ηkj

− α





×







∏

j∈C1

(ηkj
− α)tj













∏

j∈C2

(ηkj
− α)tj






= 0 .(118)

We first prove the part a). From (118), we can see that every
solution of the equationu1 = g(α) is an eigen value of
Σ−1

XL+Σ−1
NL(uL). Since

g̃′(α) = 1 +

w∑

i=1

ǫjk
(α− ηk̃i

)2
> 0 ,

g̃(α) is differentiable and monotone increasing in each of the
(w + 1) open intervals(−∞, ηk̃1

), (ηk̃1
, ηk̃2

), · · ·, (ηk̃w
,∞).

Since g̃(α) is unbounded in each of these intervals, it has
positive and negative values there, and thusu1 = g̃(α) has a
unique solution in each of these(w+ 1) disjoint intervals. In
particular, since

∣
∣
∣Σ−1

XL +Σ−1
NL(uL)

∣
∣
∣ = (u1 − g̃(0))

L−1∏

j=1

ηj > 0,

we have0 < g̃(0) < u1. This implies thatu1 = g̃(α) has a
unique solution in the interval(0, ηk̃1

). Hence,(116) is proved.
It remains to prove(117). Sinceu1 = g̃(α1) = g̃(αw+1), we
have

u1 − α1 =

w∑

i=1

ǫji
ηk̃i

− α1

(a)
> 0 ,

u1 − αw+1 =

w∑

i=1

ǫji
ηk̃i

− αw+1

(b)
< 0 .






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Steps (a) and (b) follow from(116). For convenience, the
shape of̃g(α) is shown in Fig. 2. Thus, the proof of the part
a) is completed. The part b) is obvious from (118). Finally, we
show the part c). Taking the derivative of (115) with respect
to u1, we obtain

1 = g̃′(α)
dα

du1
=

(

1 +

w∑

i=1

ǫji
(α− ηk̃i

)2

)

dα

du1
,

from which we obtain

dα

du1
=

(

1 +

w∑

i=1

ǫji
(α− ηk̃i

)2

)−1

> 0 .

Hence, every eigen value belonging toE0 is monotone increas-
ing function ofu1. If the eigen value does not belong toE0,
it does not depend onu1. Thus, the part c) is proved.

Proof of Lemma 7:It suffices to prove the claim of Lemma
7 for i = 1, that is,

αmax ≥ u1 ≥ αmin , (119)
∂αk

∂u1
≥ 0, for k ∈ Λ, (120)

L∑

k=1

∂αk

∂u1
= 1 . (121)

Inequalities (119) and (120) follow from Proposition 2 parts
a) and c), respectively. It remains to prove (121). Since for
any matrix its trace is equal to the sum of its eigen values, we
have

L∑

k=1

αk =

L∑

k=1

uk . (122)

Taking partial derivative of both sides of (122) with respect to
u1, we obtain (121).
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