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Abstract

We introduce a novel algorithm for decoding binary linear codes by linear programming.

We build on the LP decoding algorithm of Feldman et al. and introduce a post-processing

step that solves a second linear program that reweights the objective function based on

the outcome of the original LP decoder output. Our analysis shows that for some LDPC

ensembles we can improve the provable threshold guarantees compared to standard LP de-

coding. We also show significant empirical performance gains for the reweighted LP decoding

algorithm with very small additional computational complexity.

1 Introduction

Linear programming (LP) decoding for binary linear codes was introduced by Feldman, Karger

and Wainwright [2]. The method is based on solving a linear-programming relaxation of the

integer program corresponding to the maximum likelihood (ML) decoding problem. LP decoding

is connected to message-passing decoding [3, 4], and graph covers [5, 6] and has received

substantial recent attention (see e.g. [6], and [7]).

As with the work described here, a related line of work has studied various improvements to

either standard iterative decoding [8, 9] or to LP decoding via nonlinear extensions [10] or loop

corrections [11].

The practical performance of LP decoding is roughly comparable to min- sum decoding and

slightly inferior to sum-product decoding. In contrast to message-passing decoding, however, the
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LP decoder either concedes failure on a problem, or returns a codeword along with a guarantee

that it is the ML codeword, thereby eliminating any undetected decoding errors.

The main idea of this paper is to add a second LP as a post-processing step when original

LP decoding fails and outputs a fractional pseudocodeword. We use the difference between the

input channel likelihood and the pseudocodeword coordinate to find a measure of disagreement

or unreliability for each bit. We subsequently use this unreliability to bias the objective function

and re-run the LP with the reweighted objective function. The reweighting increases the cost

of changing reliable bits and decreases the cost for unreliable bits. We present an analysis that

the provable BSC recovery thresholds improve for certain families of LDPC codes. We stress

that the actual thresholds, even for the original LP decoding algorithm, remain unknown. Our

analysis only establishes that the obtainable lower bounds on the fraction of recoverable errors

are improved compared to the corresponding bounds for LP decoding. It is possible, however,

that this is just an artifact of the lower bound techniques and that the true threshold is identical

for both algorithms. In any case, the empirical performance gains we observe in our preliminary

experimental analysis seem quite substantial.

A central idea in our analysis is a notion of robustness to changes in the BSC bit-flipping

probability. This concept was inspired by a similar reweighted iterative `1 minimization idea for

compressive sensing [21, 20]. We note that the reweighting idea of this paper involves changing

the objective function of the LP from the reweighted max- product algorithm [12].

2 Basic Definitions

A vector x in Rn is called k-sparse if it has exactly k nonzero entries. The support set of a

sparse vector x is the index set of its nonzero entries. If x is not sparse, the k-support set of

x is defined as the index set of the maximum k entries of x in magnitude. We use ‖x‖p to

denote the `p norm of a vector x for p ≥ 0. in particular ‖x‖0 is defined to be the number of

nonzero entries in x. For a set S, cardinality of S is denoted by |S| and if S ⊂ {1, 2, · · · , n},
then xS is the sub-vector formed by those entries of x indexed in S. Also the complement set of

S is denoted by Sc. The rate of a linear binary code C is denoted by R, and the corresponding

parity check matrix is H ∈ Fm×n, where n is the length of each codeword and m = Rn. The

factor graph corresponding to C is denoted by G = (Xv, Xc, E), where Xv and Xc are the sets

of variable nodes and check nodes respectively, and E is the set of edges. For regular graphs,

dv and dc denote the degree of variable and check nodes respectively. The girth of a graph G,

denoted by girth(G), is defined to be the size of the smallest cycle in G.

2



3 Background

Suppose that C is a memoryless channel with binary input and an output alphabet Y, defined

by the transition probabilities PY |X(y|x). For a received symbol y, the likelihood ratio is defined

as log(
PY |X(y|x=0)

PY |X(y|x=1)), where x is the transmitted symbol. If a codeword x(c) of length n from

the linear code C is transmitted through the channel, and an output vector x(r) is received,

a maximum likelihood decoder can be used to estimate the transmitted codeword by finding

the most likely transmitted input codeword. Let γi be the likelihood ratio assigned to the ith

received bit x
(r)
i , and γ be the likelihood vector γ = (γ1, · · · , γn)T . The ML decoder can be

formalized as follows [1]

ML decoder: minimize γTx

subject to x ∈ conv(C), (1)

where conv(C) is the convex hull of all the codewords of C in Rn. The linear program (1) solves

the ML decoding problem by the virtue of the fact that the objective γTx is minimized by a

corner point (or vertex) of conv(C), which is necessarily a codeword (In fact, vertices of conv(C)
are all the codewords of C). In a linear program, the polytope over which the optimization

is performed is described by linear inequalities describing the facets of the polytope. Since

decoding for general linear codes is NP hard, it is unlikely that Conv(C) can be efficiently

described. Feldman et al. introduced a relaxation of (1) by replacing the polytope conv(C) with

a new polytope P that has much fewer facets, contains conv(C) and retains the codewords of C
as its vertices [1]. One way to construct P is the following. If the parity check matrix of C is

the m× n matrix H and if hTj is the j-th row of H, then

P = ∩1≤j≤mconv(Cj), (2)

where Cj = {x ∈ Fn | hTj x = 0 mod 2}. As mentioned earlier, with this construction, all

codewords of C are vertices of P. However, P has some additional vertices with fractional

entries in [0, 1]n. A vertex of the polytope P is called a pseudo-codeword. Moreover, if a pseudo-

codeword is integral, i.e., if it has 0 or 1 entries, then it is definitely a codeword. The LP

relaxation of (1) can thus be written as:

LP decoder: minimize γTx

subject to x ∈ P. (3)
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The number of facets of P is exponential in the maximum weight of a row of H. Therefore,

for LDPC codes with a small (often constant) row density, P has a polynomial number of facets,

and it is possible to solve (3) in polynomial time.

For binary symmetric channels, (3) has another useful interpretation. In this case, rather

than minimize γTx it turns out that one can alternatively minimize the Hamming distance

between the output of the channel x(r) and the individual codewords x ∈ C. Using the fact that

the LP relaxation with P relaxes the entries of x from xi ∈ {0, 1} to xi ∈ [0, 1], we may replace

the Hamming distance with the `1 distance ‖x − x(r)‖1. This implies that the decoder (3) is

equivalent to

BSC-LP decoder: minimize ‖x− x(r)‖1

subject to x ∈ P. (4)

The above formulation can be interpreted as follows. For a received output binary vector x(r),

the solution to the LP decoder is basically the closest (in the `1 distance sense) pseudo-codeword

to x(r).

Linear programming decoding was first introduced by Feldman et al. [1, 2]. Subsequently

[13] it was shown that if the parity check matrix is chosen to be the adjacency matrix of a

high-quality expander, LP decoding can correct a constant fraction of errors. A fundamental

lemma in [2] and used in the results therein, is that the LP polytope P is the same polytope

from the view point of every codeword, and therefore for the analysis of LP decoding, it can be

assumed without loss of generality that the transmitted codeword is the all zero codeword. The

theoretical results of [13] were based on a dual witness argument, i.e. a feasible set of variables

that set the dual of LP equal to zero. However, the bounds on success threshold of LP decoding

achieved by this technique is considerably smaller than the empirical recovery threshold of LP

decoder in practice. A later analysis of LP decoding by Daskalakis et al. [14] improved upon

those bounds for random expander codes, through employing a different dual witness argument,

and considering a weak notion of LP success rather than the strong notion of [13]. A strong

threshold means that every set of errors of up to a certain size can be corrected, whereas a weak

threshold implies that almost all error sets of a certain size are recoverable. Note that there is

a gap of about one order of magnitude between the error-correcting thresholds of [14] and the

ones observed in practice.

The arguments of [13] and [14] are based on the existence of dual certificates that guarantee

the success of the LP decoder and require codes that are based on bipartite expander graphs. A

more recent work of Arora et al. uses a quite different certificate based on the primal LP problem
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[15]. This approach results in fairly easier computations and significantly better thresholds for

LP decoding. However, the underlying codes discussed in [15] are based on factor graphs with

a large girth (at least doubly logarithmic in the number of variables), rather than unbalanced

expanders considered in previous arguments. Note that similar to [14], the bounds of [15] are

weak bounds, certifying that for a random set of errors up to a fraction of bits, LP decoding

succeeds with high probability. The largest such fraction is called the weak recovery threshold.

A somewhat related problem to the LP decoding of linear codes is the compressed sensing

(CS) problem. In CS an unknown real vector x of size n is to be recovered from a set of m

linear measurement, represented by y = Ax, where A ∈ Rm×n, and m << n. This is in general

infeasible, since the measurement matrix A is under-determined and the resulting system of

equations is ill-posed, i.e., it can have infinitely many solutions. However, imposing a sparsity

condition on x can make the solution unique. The unique sparse solution can be found by

exhaustive search for instance, which is formulated by the following minimization program:

minimize ‖x‖0

subject to Ax = y. (5)

Since (5) is NP-hard, one possible approximation is relaxing the `0 norm of x to the closet

convex norm ‖x‖1, which results in the following `1 minimization program:

minimize ‖x‖1 (6)

subject to Ax = y. (7)

(7) is a linear program, which can in general be solved in polynomial time. There has been

substantial theoretical work on this linear programming relaxation, see e.g. [18, 19, 23, 24, 26]

Recently, systematic connections between the problems of channel coding LP and CS `1

relaxation has been found [16, 17]. In this paper, we build on those connections to improve

LP decoding, and further extend the ideas of robustness and reweighted `1 minimization in

compressed sensing to channel coding LP.

4 Extended Certificate and Robustness of LP decoder

The success of LP decoder is often certified by the existence of a dual witness [13, 14]. Similarly,

for `1 minimization in the context of CS, a dual witness certificate can guarantee that the recovery

of sparse signals is successful [22]. However, it has proven more promising to express the success
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condition of `1 minimization in terms of the properties of the null space of the measurement

matrix [23, 24, 25]. The condition is called null space property, through which it is possible

to characterize one class of “good” measurement matrices for CS, namely matrices that are

congruent with `1 minimization decoding. The advantage of the null space interpretation, apart

from the fact that it results in sharper analytical bounds, is that with proper parametrization,

it can also be used to evaluate the performance of `1 minimization in the presence of noise. This

is known as the robustness of `1 minimization. A consequence of the robustness property is that

when `1 minimization fails to recover a sparse signal, it often gives a decent approximation to it

[20]. To the best of our knowledge, a similar certificate has not been introduced in the context

of channel coding linear programming. In other words, when LP decoding fails to return an

integral solution, it is not known how far in the proximity of the actual codeword it lies. We

provide an approximate solution to this question in this section, using the following strategy.

We introduce a property called fundamental cone property for an arbitrary code C, and show

that for binary symmetric channels, this is related to the robustness of the solution of the LP

decoder. The robustness of LP decoding has two consequences. First, it implies that the linear

program is tolerant to a limited mismatch in the available formulation. Second, it can be used

to develop iterative schemes that improve the performance of the decoder. We will discuss these

issues in proceeding sections. We begin by defining the fundamental cone of a code from [16].

Definition 1. Let H be a parity check matrix. Define J and I to be the set of rows and columns

of H. Also, for each j ∈ J , define Ij = {i ∈ I | H(j, i) = 0}. The fundamental cone, K(H), of

H is the set of all vectors ω = (ω1, ω2, . . . , ωn)T that satisfy

ωi ≥ 0, ∀1 ≤ i ≤ n, (8)

ωi ≤
∑

i′∈Ij\i

ωi′ , ∀j ∈ J ∀i ∈ Ij . (9)

K(H) is the smallest cone in Rn that encompasses the polytope P. If a vector lies on an edge

of K, it is called a minimal pseudo-codeword. For simplicity, in the sequel, we use K instead of

K(H) whenever there is no ambiguity.

Definition 2. Let S ⊂ {1, 2, · · · , n} and C ≥ 1 be fixed. A code C with parity check matrix H

is said to have the fundamental cone property FCP(S,C), if for every nonzero vector ω ∈ K(H)

the following holds:

C‖ωS‖1 < ‖ωSc‖1, (10)
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if for every index set S of size k, C has the FCP(S,C), then we say that C has the fundamental

cone property FCP(k,C).

In the next lemma we show how the fundamental cone property can be used to evaluate

the performance of an LP decoder, even when it fails to recover the true codeword. The key

assumption is that the channel is a bit flipping channel (e.g. BSC).

Lemma 4.1. Let C be a code that has the FCP(S,C) for some index set S and some C ≥ 1.

Suppose that a codeword x(c) from C is transmitted through a bit flipping channel, and the received

codeword is x(r). If the pseudocodeword x(p) is the output of LP decoder for the received codeword

x(r), then the following holds:

‖x(p) − x(c)‖1 < 2
C + 1

C − 1
‖(x(r) − x(c))Sc‖1. (11)

Proof. Without loss of generality, we may assume that the all zero codeword was transmitted,

i.e. x(c) = 0. We have

‖x(r)
S ‖1 + ‖x(r)

Sc ‖1 = ‖x(r)‖1
(a)

≥ ‖x(p) − x(r)‖1

= ‖(x(p) − x(r))S‖1 + ‖(x(p) − x(r))Sc‖1
(b)

≥ ‖x(r)
S ‖1 − ‖x

(p)
S ‖1 + ‖x(p)

Sc ‖1 − ‖x(r)
Sc ‖1. (12)

(a) is true because from (4), ‖x(p) − x(r)‖1 ≤ ‖x(c) − x(r)‖1. Also (b) holds by the triangular

inequality. Note that x(p) ∈ K(H), so by definition, C‖x(p)
S ‖1 < ‖x

(p)
Sc ‖1. This implies that

‖x(p)
Sc ‖1 − ‖x(p)

S ‖1 >
C − 1

C + 1
‖x(p)‖1. (13)

Applying this to the left hand side of (12) we obtain

2
C + 1

C − 1
‖x(r)

Sc ‖1 > ‖x(p)‖1, (14)

Which is the desired result.

An asymptotic case of Lemma 4.1 for C → 1 is in fact equivalent to the LP success condition.

Namely, let S be the index set of the flipped bits in the transmitted codeword, i.e. the set of

bits that differ in x(r) and x(c). If FCP(S,C) holds for some C > 1, then Lemma 4.1 implies

that LP decoding can successfully recover the original codeword. Now let us say that the set of
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errors (flipped bits) is slightly larger than S, and does include S. Then the vector (x(r)−x(c))Sc

has a few (but not too many) nonzero entries. Therefore, even if the LP decoder output x(p) is

not equal to the actual codeword, it is still possible to obtain an upper bound on its `1 distance

to the unknown codeword. We recognize this as the robustness of LP decoder, and characterize

it by FCP(S,C), for C > 1. Furthermore, two notions of robustness can be considered. Strong

robustness means that for every set S of up to some cardinality k, the FCP condition holds,

namely FCP(k, S). Weak robustness on the other hand deals with almost all sets S of up to

a certain size. In the next section we present a thorough analysis of LP robustness for two

categories of codes: expander codes and codes with Ω(log logn) girth. For these two classes

of codes, rigorous analysis has been done on the performance of LP decoders in [13, 14] and

[15], respectively. We build on the existing arguments to incorporate the robustness condition

and analyze the fundamental cone property. Afterwards, we discuss the implications of LP

robustness.

5 Analysis of LP Robustness

In most cases, if there exists a certificate for the success of LP decoder, it can be often extended

to guarantee that the LP decoder is robust, namely that the FCP condition is satisfied for some

C > 1. By carefully re-examining the analysis of LP decoder, one might be able to do such

a generalization. This is the main focus of this section. We consider three major methods

that exist in the literature for analyzing the performance of LP decoders. The first one is

due to Feldman et. al [13], and is based on using a dual witness type of argument to certify

the success of LP decoder for expander graphs. The second one is that of Daskalakis et al.

[14], which again considers linear programming decoding in expander codes. Specifically, [14]

analyzes the dual of LP and finds a simple combinatorial condition for the dual value to be

zero (implying that the LP decoder is successful). The condition is basically the existence of

a so-called hyperflow from the set of flipped bits to unflipped bits. The existence of a valid

hyperflow can be secured by the presence of so-called (p, q)-matchings. It then follows from

a detailed series of probabilistic calculations that (p, q)-matchings of interest exist for certain

expander codes. The main difference between this analysis and that of Feldman et al. is the

probabilistic nature of the arguments in [14], which account for weak recovery thresholds.

A third analysis of the LP decoder was done by Arora et al., [15], which is based on factor

graphs with a doubly logarithmic girth. Unlike previous dual feasibility arguments, the authors

in [15] introduce a certificate in the primal domain, which is of the following form: If in the

primal LP problem, the value of the objective function for the original codeword is smaller than

its value for all vectors within a local deviation from the original codeword, then LP decoder
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succeeds. Local deviations are defined by weighted minimal local trees whose induced subgraphs

are cycle-free.

5.1 Strong LP Robustness for Expander Codes

Strong thresholds of LP decoding for expander codes are derived in [13]. To show that the

transmitted codeword is the LP optimal obtained by (3) when a subset of the bits are flipped, a

set of feasible dual variables are found that satisfy the following conditions. Suppose the factor

graph of C is denoted by G = (Xv, Xc, E). We may also assume without loss of generality that

the all zero codeword was transmitted. A set of feasible dual variables is defined as follows (see

[13] for more details)

Definition 3. For an error set S, a set of feasible dual variables is a labeling of the edges of

the factor graph G, say {τij | vi ∈ Xv cj ∈ Xc}, where the following two conditions are satisfied:

i) For every check node cj ∈ Xc and every two disjoint neighbors of cj, say vi, vi′ ∈ N(j), we

have τij + τi′j ≥ 0.

ii) For every variable node vi ∈ Xv, we have
∑

cj∈N(vi)
τij ≤ γi.

We show that a generalized set of dual feasible variables can be used to derive LP robustness.

To this end, we show that the existence of a set of feasible dual variables implies the FCP

condition. The following lemma is proved in Appendix A.

Lemma 5.1. Suppose that a set of dual variables satisfy the feasibility conditions (Definition

3) for an arbitrary log-likelihood vector γ. Then for every vector ω ∈ K(C), the following holds

∑
1≤i≤n

γiωi > 0. (15)

A special case of Lemma 5.1 is when the channel is a BSC, and a set S of the bits have

been flipped. We can also assume without loss of generality that the all zero codeword was

transmitted. Then Lemmas 4.1 and 5.1 imply that if a dual feasible set exists, then LP decoder

succeeds, which is the conclusion of [13]. In this case the log-likelihood vector γ takes the value

−1 over the set S and 1 over the set Sc. Let us now define a new likelihood vector γ′ by

γ′ =

 −C i ∈ S
1 i ∈ Sc

, (16)

for some C > 1. If a dual feasible set exists that satisfies the feasibility condition for γ′, then it

follows that FCP(S,C) holds. Knowing this and pursuing an argument very similar to [13] for
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the construction of dual feasible in expander codes, we are able to prove the following lemma,

the proof of which is given in Appendix B.

Theorem 5.1. Let G be the factor graph of a code C of length n and rate R = m
n , and let

δ > 2/3 + 1/dv. If G is a bipartite (αn, δdv) expander graph, then C has FCP(t, C), where

t = 3δ−2
2δ−1α and C = 2δ−1

2δ−1−1/dv
. This means that for every every set S of size t, FCP(t, C) holds.

Basically, [13] shows that if the conditions of Theorem 5.1 are satisfied, then LP succeeds

for every error set of size t, namely that FCP(t, 1) holds. However Theorem 5.1 asserts that, in

addition, a strong robustness holds, i.e. FCP(t, C) for some C > 1.

5.2 Weak LP Robustness for Expander Codes

We show that for random expander codes a probabilistic analysis similar to the dual witness

analysis of [14] can be used to find the extents of the fundamental cone property for expander

codes, in a weak sense. We rely on the matching arguments of [14], with appropriate adjustments.

The following definition is given in [14].

Definition 4. For nonnegative integers p and q, and a set F of variable nodes, a (p, q)-matching

on F is defined by the following conditions:

(a) each bit vi ∈ F must be matched with p distinct check nodes, and

(b) each variable node vi′ ∈ F c must be connected with

Xi′ := max{q − dv + Zi′ , 0} (17)

checks nodes from the set N(F ), that are different from the check nodes that the nodes in

F are matched to, where Zi′ is defined as Zi′ := |N(i′) ∩N(F )|.

We prove the following lemma that relates the existence of a (p, q)-matching to the funda-

mental cone property of a code C. This lemma is proved in Appendix C.

Lemma 5.2. Let C be a code of rate R with a bipartite factor graph G, where every variable

node has degree dv. Let S be a subset of the variable nodes of G. If a (p, q)-matching on S exists,

then C has the FCP(S, 2p−dv
dv−q ).

[14] provides a probabilistic tool for the existence of (p, q)-matchings in regular bipartite

expander graphs, which helps answer the question of how large an error set LP decoding can

fix. For example, for a random LDPC(8,16) code, the probabilistic analysis implies that with

high probability, a fraction 0.002 of errors is recoverable using LP decoder. However, taking the
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specifications of the matching that leads to this conclusion and applying Lemma 5.2, it turns

out that for an error set of size 0.002n, the robustness factor is at least C = 1.3, i.e the code

has FCP(0.002n, 1.3).

5.3 Weak LP Robustness for Codes with Ω(log log(n)) Girth

Recall that G = (Xv, Xc, E) is used to denote the factor graph of the parity check matrix H

(or of code C), where Xv and Xc are the sets of variable and check nodes respectively and E is

the set of edges. Also recall that the girth of G is defined as the size of the shortest cycle in G.

Without loss of generality, we assume that Xv = {v1, v2, · · · , vn}, where vi is the variable node

corresponding to the ith bit of the codeword. Let T ≤ 1
4girth(G) be fixed. The following notions

are defined in [15].

Definition 5. A tree T of height 2T is called a skinny subtree of G, if it is rooted at some

variable node vi0, for every variable node v in T all the neighboring check nodes of v in G are

also present in T , and for every check node c in T exactly two neighboring variable nodes of c

in G are present in T .

Definition 6. Let w ∈ [0, 1]T be a fixed vector. A vector β(w) is called a minimal T -local

deviation, if there is a skinny subtree of G of height 2T , say T , so that for every variable node

vi 1 ≤ i ≤ n,

β
(w)
i =

 wh(i) if vi ∈ T \ {vi0}
0 otherwise

,

where hi = 1
2d(vi0 , vi).

The key to the derivations of [15] is the following lemma:

Lemma 5.3 (Lemma 1 of [15]). For any vector z ∈ P, and any positive vector w ∈ [0, 1]T , there

exists a distribution on the minimal T -local deviations β(w), such that

Eβ(w) = αz,

where 0 < α ≤ 1.

Lemma 5.3 has the following interpretation. If a linear property holds for all minimal T -local

deviations (e.g. f(β(w)) ≥ 0, where f(.) is a linear operator), then it also holds for all pseudo-

codewords (i.e. f(z) ≥ 0 ∀z ∈ P). Interestingly enough, the robustness of LP decoding for a

given set of bit flips S has a linear certificate, namely FCP(S,C)1. In other words, if we define:

1Note that this is only true for bit fliping channels, where the output alphabet in the binary field.
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f
(S)
C (x) =

∑
i∈Sc

xi − C
∑
i∈S

xi,

then FCP(S,C) holds, if and only if f
(S)
1 (z) ≥ 0 for every pseudocodeword z ∈ P. Therefore,

according to Lemma 5.3, it suffices that the condition be true for all T -local deviations. Fur-

thermore, for arbitrary C > 1, if f
(S)
C (β(w)) ≥ 0 for all minimal T -local deviations β(w), then it

follows that the code has the FCP(S,C) property. This simple observation helps us extend the

probabilistic analysis of [15] to robustness results for LP decoding. The resulting key theorem is

mentioned below, the proof of which can be found in Appendix D. In order to state the theorem,

first we define η to be a random variable that takes the value −C with probability p and value

1 with probability 1 − p. Also, define the sequences of random variables Xi, Yi, i ≥ 0, in the

following way:

Y0 = η,

Xi = min{Y (1)
i , . . . , Y

(dc−1)
i } ∀i > 0,

Yi = 2iη +X
(1)
i−1 + · · ·+X

(dv−1)
i−1 ∀i > 0,

(18)

Where X(j)s are independent copies of a random variable X.

Theorem 5.2. Let 0 ≤ p ≤ 1/2 be the probability of bit flip, and S be the random set of flipped

bits. If for some j ∈ N,

c = γ1/(dv−2) min
t≥0

Ee−tXj < 1,

where γ = (dc−1)CR+1
CR

(CR·p
1−p )1/(CR+1)(1−p) < 1, Then with probability at least 1−O(n)cdv(dv−1)T−1

the code C has the FCP(S,C), where T is any integer with j ≤ T < 1/4girth(G).

For dc = 6 and dv = 3, a lower bound on the robustness parameter C that results from

Theorem 5.2 is plotted against the probability of bit flip p, in Figure 1.

6 Implications of LP robustness

6.1 Mismatch Tolerance

One of the direct consequences of the robustness of LP decoding is that if there is a slight mis-

match in the implementation of the LP decoder, its performance does not degrade significantly.
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More formally, suppose that due to noise, quantization or some other factor, a mismatched log-

likelihood vector γ′ = γ+ ∆γ is used in the LP implementation. We refer to such a decoder as a

mismatched LP decoder. Since the channel is BSC, the entries of γ all have the same amplitude

g. We also define δ = maxi |∆γi|, and assume that δ < g. We can prove the following theorem.

Theorem 6.1. Suppose that S is the set of bit errors. Let C = g+δ
g−δ . If C has FCP(S,C), then

the mismatched LP decoder corrects all errors and recovers the original codeword.

Proof. We assume without loss of generality that the all zero codeword is transmitted. We show

that if FCP(S,C) holds, then the all zero codeword is the minimum cost vector in the polytope

P. Suppose ω is a nonzero vector in the fundamental code K. We begin with the definition of

FCP(S,C) and write

− C
∑
i∈S

ωi +
∑
i∈Sc

ωi > 0. (19)

Multiply both sides by (g − δ):

−
∑
i∈S

(g + δ)ωi +
∑
i∈Sc

(g − δ)ωi > 0. (20)

We also know from the definition of δ that γ′i > (g − δ) for i ∈ Sc, and γ′i > −g − δ for i ∈ Sc,
and that ω ≥ 0. Therefore

−
∑

i∈S∪Sc

γ′iωi > 0, (21)

which proves that the all zero codeword is the unique minimum cost solution of the mismatched

LP.

6.2 Pseudocodewords and High Error Rate Subsets

We showed in Section 4 that for an appropriate code C, even when LP decoder fails to recover an

actual codeword from the output of a BSC, the `1 distance between the obtained pseudocodeword

and the actual codeword can be bounded by a finite factor of excess errors (see equation 11).

We now show that this property allows us to use the output of LP decoder to find a high error

rate subset of the bits of linear size, namely a subset of bits over which the fraction of errors is

significantly larger than the fraction of errors in the entire received codeword. Obtaining such

importance subset is very crucial, since it provides additional information about a significant

13
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Figure 1: Approximate upper bound for the robustness factor C as a function of error probability p for dc = 6 and
dv = 3, based on Theorem 5.2.

proportion of the bits which can be used to improve the decoder’s performance. For instance, one

can impose additional soft or hard constraints on the importance subset, and solve a constrained

linear program or other post processing algorithms following the initial linear program. This

forms the idea for the proposed iterative LP decoding algorithm which will be outlined in Section

7.

Consider a code C of length n and rate R, and a codeword x(c) from C transmitted through a

bit flipping channel. Suppose that a set K of the bits get flipped, where the cardinality of K is

(1 + p∗)εn for some 0 < p∗ < 1 and ε > 0. Denote the received vector by x(r). We are interested

in the case where LP fails, so the LP minimal x(p) is a fractional pseudocodeword. However,

the size of the error set is only slightly larger than the correctable size p∗n. In other words, we

assume that for some subset K1 ⊂ K of size p∗n, the code has FCP(K1, C), for some C > 1.

We show in the next lemma that the index set of the largest k entries of the vector x(r) − x(p)

has a significant overlap with K with high probability, and is thus a high error rate subset of

entries. The following theorem formalized this claim.

Theorem 6.2. Suppose that a codeword x(c) is transmitted through a bit flipping channel, and

the output x(r) differs from the input in a set K of the bits with |K| = p∗(1 + ε)n, for some

0 < p∗ < 1 and ε > 0. Also, suppose that for a subset K1 ⊂ K of size p∗n, FCP(K1, C) holds,

for some C > 1, and that the LP minimal is the pseudocodeword x(p). If L is the set of the

p∗(1 + ε)n largest entries of the vector x(r) − x(p) in magnitude, then the fraction of errors in

x(r) over the set L is at least 1− 2C+1
C−1ε.

Before proving this theorem, we state the following definition and lemma.

Definition 7. Let x ∈ Rn be a k-sparse vector. For λ > 0, We define W (x, λ) to be the size of

the largest subset of nonzero entries of x that has a `1 norm less than or equal to λ, i.e.,

W (x, λ) := max{|S| | S ⊆ supp(x), ‖xS‖1 ≤ λ}. (22)
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The following Lemma is proven in [20].

Lemma 6.1 (Lemma 1 of [20]). Let x be a k-sparse vector and x̂ be another vector. Also, let

K be the support set of x and L be the k-support set of x̂, namely the set of k largest entries of

x̂. If d = ‖x− x̂‖1, then

|K ∩ L| ≥ k −W (x, d). (23)

Proof of Theorem 6.2. Define k = p∗(1 + ε)n, and apply Lemma 6.1 to the k-sparse vector

x(r) − x(c), and the vector x(p) − x(r). If L is the index set of the largest k entries of x(p) − x(r)

in magnitude, then from Lemma 6.1 we have

|K ∩ L| ≥ k −W (x(r) − x(c),∆), (24)

where ∆ = ‖x(c) − x(p)‖1. Since ‖x(r) − x(c)‖ has only ±1 nonzero entries, (24) can be written

as

|K ∩ L| ≥ k − ‖x(c) − x(p)‖1. (25)

We use the inequality in (11) to further lower bound the right hand side of (25). Recall that

K1 ⊂ K is such that C has FCP(K1, C). Therefore, we can write:

|K ∩ L| ≥ k − 2
C + 1

C − 1
‖(x(r) − x(c))Kc

1
‖1 (26)

= k − 2
C + 1

C − 1
(k − p∗n). (27)

Dividing both sides by |K| = k, we conclude that at least a fraction 1− 2C+1
C−1ε of the set L

are flipped bits.

7 Iterative Reweighted LP Algorithm and Improved Strong Thresh-

old

First, we briefly define different recovery thresholds for LP decoding for more clarity of the

statements that will follow. In general, the actual weak and strong thresholds for a given classes

of linear codes might be unknown, and the existing threshold only provide lower bounds on these

quantities. For expander codes for instance, the size of the error set that can be recovered via
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LP can be lower bounded by the size of the set for which a dual witness exists [13, 14]. Since a

dual witness is only a sufficient condition for the success of LP decoding, the actual thresholds

are generally expected to be higher. However, to date, the best achievable thresholds for LP

decoding for expander codes are those given by the dual feasibility arguments. Therefore, we also

consider thresholds associated with those limits, namely the “provable” thresholds. Specifically,

we define the following four thresholds for LP decoding on a given code C that has regular

variable and check degrees dv and dc.

Definition 8 (Recovery thresholds). Strong recovery threshold is denoted by p∗s, and is defined

as the largest fraction such that every set of size p∗sn is recoverable via LP decoding. Weak

recovery thresholds is denoted by p∗w, and it means that almost all sets of size p∗wn is recoverable

via LP. We define p∗sd to be the maximum provable strong threshold achieved by a dual feasible,

[13]. Similarly, p∗wd is the provable weak threshold, i.e. for almost all sets of size p∗wdn, a dual

feasible ([14]) exist.

As sketched in Theorem 6.2, by examining the deviation of the LP optimal (pseudo-codeword)

and the received vector, it is possible to identify a high error rate (HER) subset of bits in which

the fraction of bit flips is higher than the overall probability of error, or the fraction of errors

in the complement of the HER set. One way this imbalancedness can be exploited is by using

a weighted LP scheme. This is outlined in the following iterative algorithm.

Algorithm 1.

1. Run LP decoding. If the output is integral terminate, otherwise proceed.

2. Take the fractional pseudocodeword x(p) from the LP decoder, and construct the deviation

vector x(d) = x(r) − x(p).

3. Sort the entries of x(d) in terms of absolute value, and denote by L the index set of its

smallest pn entries.

4. solve the following weighted LP:

min
x∈P

λ1‖(x− y)L‖1 + λ2‖(x− y)Lc‖1, (28)

where λ1 and λ2, where λ1 < 0 ad λ2 > 0 are fixed parameters.

Algorithm 1 is only twice as complex as LP decoding. We prove in the following that

algorithm 1 has a strictly improved provable strong and weak recovery thresholds than the dual

feasibility thresholds p∗sd and p∗wd (Recall the definitions of p∗sd and p∗sd from Definition 8).
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Theorem 7.1. For any code C, there exist ε1 > 0,ε2 > 0, λ1 < 0 and λ2 > 0 so that every error

set of size (1 + ε1)p∗sd, and almost all error sets of size (1 + ε2)p∗wd can be corrected by Algorithm

1.

we start with the following lemma

Lemma 7.1. Suppose a codewords x transmitted is through a binary channel. Also suppose that

the bits of x can be divided into two sets L and Lc, so that at least a fraction p1 of the bits in L

are flipped, and at most a fraction p2 of the bits in Lc are flipped. Then the following weighted

LP decoding

min
x∈P
−‖(x− y)L‖1 + ‖(x− y)Lc‖1, (29)

can recover x, provided that

(1− p1)|L|+ p2|Lc| ≤ p∗sd. (30)

Proof. We assume without loss of generality that the all zero codeword has been transmitted

and prove that there exists a feasible dual (Definition 3 ) for the LP decoder 29. The feasible

dual must satisfy condition (i) of Definition 3 for all check nodes, and in addition:

∑
j∈N(i)

τij ≤


1 i ∈ L ∩ S
−1 i ∈ L ∩ Sc

−1 i ∈ Lc ∩ S
1 i ∈ Lc ∩ Sc

. (31)

One can note that the conditions of (31) are equivalent to τij ’s being a feasible dual set for

ordinary LP decoder when the error set is S1 = (L ∩ Sc) ∪ (Lc ∩ S). Therefore if the size of S1

is smaller than p∗sdn, from the definition of p∗sd, such a feasible dual set exists. This completes

the proof the theorem.

proof of Theorem 7.1. We set λ1 = −1 and λ2 = 1. Suppose the all zero codeword have been

transmitted without loss of generality, and the received binary vector x(r) has pn errors, where

p = (1 + ε0)p∗sd. From Theorem 5.1, C has FCP(p∗sn,C) for some C > 1. Therefore, if we apply

Theorem 6.2 to the output of LP, namely x(p), we conclude that the set L of most pn deviated

bits in x(p) with respect to x(r), and the set S of the errors in x(r), have at least a fraction

1− 2C+1
C−1ε1 overlap. Define p1 = |L∩S|

|L| and p2 = |Lc∩S|
|Lc| . We must have

p1 ≥ 1− 2
C + 1

C − 1
ε0, (32)

p1|L|+ p2|Lc| = p. (33)

17



Therefore, as ε0 → 0, p1 → 1 and p2 → 0. So, for some small enough ε0, the following will

eventually hold

(1− p1)|L|+ p2|Lc| ≤ p∗sd. (34)

Thus, according to Lemma 7.1, the weighted LP step of Algorithm 1 corrects all errors. similarly,

if a random set of pn bits are flipped, when p = (1 + ε2)p∗wd, from Lemma 5.2 we conclude that

with high probability there exists a C > 1 so that FCP(S1, C) holds for a random subset S1 of

the bit errors of size p∗wdn. Therefore, using Theorem 6.2, it follows that the set L of most pn

deviated bits in x(p) with respect to x(r), and the set of errors in x(r) have at least an overlap

fraction of 1 − 2C+1
C−1ε2. The remainder of the proof is the same as the previous case, i.e. by

applying Lemma 7.1.

8 Simulations

We have implemented Algorithm 1 on a random LPDC code of size n = 1000 and rate R = 3/4

and have compared the results with other existing methods. The variable node degree is dv = 3,

and thus, dc = 4. The algorithm is compared with the mixed integer method of Draper and

Yedidia [27], and the random facet guessing algorithm of [28]. The mixed integer algorithm

re-runs the LP decoding by setting integer constraints on a small subset of “least certain” bits,

namely the positions where the LP minimal pseudocodeword entries are closest to 0.5. We

have taken the size of the constrained subset to be M = 5, which means the number of extra

iterations is 32 for the mixed integer method. We also choose to run 20 more extra random

iterations for facet guessing. In random facet guessing, a face (facet) of the polytope P is

selected at random, among all the faces on which the LP minimal pseudocodeword does not

reside. Then, LP decoder is re-run with the additional constraint that the solution is on the

selected face. In contrast, Algorithm 1 has only one extra iteration. All methods are simulated

in MATLAB where LP decoder is implemented via the cvx toolbox [29]. We have plotted the

BER curves versus the probability of error p in Figure 2. For Algorithm 1, for each p, we have

experimentally found the optimal λ1 and λ2 by choosing the values that on average result in the

best performance. For most of the cases the chosen values where in the ranges −3 ≤ λ1 ≤ −0.5

and 1 ≤ λ2 ≤ 3. Observe the superior BER performance of Algorithm 1 which becomes more

significant for smaller values of p. For p = 0.11, the BER improvement in the reweighted LP

method is at least one order of magnitude. In our preliminary experimental evaluation we

observe that the BER curves eventually collapse into the same curve as the LP curve, except for

the reweighted LP algorithm, which is an indication of the fact that the empirical thresholds of
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Figure 2: BER curves as a function of channel flip probability p, for LP decoding and different iterative schemes; random
facet guessing of [28], mixed integer method of [27], and the suggested iterative reweighted LP of Algorithm 1. The code is
a random LDPC(3,4) of length n = 1000.

Algorithm 1 are better than those of LP decoder and existing polynomial time post processing

methods.
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A Proof of Lemma 5.1

We first prove the following lemma.

Lemma A.1. Suppose {τij | 1 ≤ i ≤ n, 1 ≤ j ≤ m} is a set of feasible dual variables on the

edges of the factor graph G of the code C, for some arbitrary log-likelihood vector γ. Then for

every vector w ∈ K(C) and every check node cj, the following holds

∑
vi∈N(cj)

wiτij ≥ 0. (35)

Proof. We only use condition (i) of a feasible set of dual variables. Note that among the variable

nodes in N(cj), there can be at most one node vi with τi,j < 0. Let vi be such a variable node.

From the definition of K we can write

wi ≤
∑

i′∈N(j)\i

wi′ ,

or equivalently:

τijwi +
∑

vi′∈N(vj)\i

|τij |wi′ ≥ 0. (36)
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Moreover, we know that τij + τi′j ≥ 0 for i′ 6= i, from the condition (i) of the dual feasibility.

Therefore, replacing τi′j with |τij | for each i′ 6= i does not decrease the left hand side of (36),

and thus ∑
vi∈N(cj)

wiτij ≥ 0.

We now invoke Lemma A.1 that for every check node cj ,
∑

vi∈N(cj)wiτij ≥ 0. If we sum

these inequalities for all check nodes cj we obtain:

∑
cj∈Xc

∑
vi∈N(cj)

wiτij =
∑
vi∈Xv

wi
∑

cj∈N(vi)

τij ≥ 0,

When Xv and Xc are the sets of variable and check nodes respectively. Since τijs are feasible

dual variables, from condition (ii) of feasibility (Definition 3), we must have
∑

cj∈N(vi)
τij < γi.

It then follows that

∑
vi∈Xv

γiwi > 0.

B Proof of Theorem 5.1

We basically repeat the argument of [13] with some slight adjustments. Let S be the set of

flipped bits, or interchangeably the set of corresponding variable nodes in the factor graph G
(we use vi to refer to the variable node corresponding to the ith bit).

Definition 9 ((δ, λ) matching from [13]). A (δ, λ) matching of the set S is a set M of edges of

the factor graph G, so that no two edges are connected to the same check node, every node in S

is connected to at least δdv edges of M , and every node in S′ is connected to at least λdv edges

of M . Here S′ is the set of variable nodes that are connected to at least (1− λ) check nodes in

N(S).

If there is a (δ, λ) matching on the set S, then we consider the following labeling of the edges

of G. For a check node vj , if it is adjacent to an edge τij is M then set τij = −x and τi′j = x

for every other variable node v′i ∈ N(vj) i
′ 6= i. Otherwise, label all of the edges of the edges

adjacent to j by 0. It can be seen that this for this labeling {τij} satisfies condition (i) of dual

feasibility (Definition 3), and furthermore:

∑
j∈N(i)

τij ≤

 (1− 2δ)dvx i ∈ S
(1− λ)dvx i ∈ Sc

. (37)
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We know take λ = 2− 2δ + 1/dv. Let us define a new likelihood vector γ′ by

γ′ =

 −C i ∈ S
1 i ∈ Sc

. (38)

If a dual feasible set exists that satisfies the feasibility condition for the vector γ′, then this

implies that the FCP(S,C) holds. Now, since C < 2δ−1
1−λ , if we choose x to be

x =
1

(1− λ)dv
, (39)

then, it is clear that (1 − 2δ)dvx < −C. So the dual feasibility condition is satisfied, if we can

construct the required (δ, λ) matching for S. From [13], if |S| ≤ 3δ−2
2δ−1α, and G is a bipartite

(αn, δdv) expander, the desired matching exists. This proves that FCP(S,C) holds. Since this

argument holds for every set S of size t = 3δ−2
2δ−1α, we conclude that C has FCP(t, C).

C Proof of lemma 5.2

Consider a vector ω in the fundamental cone K = K(H) of the parity check matrix H. Without

loss of generality, we may assume that S = {1, 2, · · · , t}. For each 1 ≤ i ≤ t, let the neighbors of

the variable node vi in the (p, q)-matching on S be denoted by ci1, c
i
2, · · · , cip. The check nodes

cij are p× t distinct nodes. From the definition of K, if ω ∈ K, then for each cij we may write:

ωi ≤
∑

l∈N(cji )\vi

ωl, ∀1 ≤ i ≤ t 1 ≤ j ≤ p. (40)

We add all inequalities of (40) for 1 ≤ i ≤ t and 1 ≤ j ≤ p. For i ≤ t, ωi appears exactly p times

on the left hand side of the sum and, at most dv − p times on the right. For i > t, ωi appears in

at most dv − q inequalities and on the right hand side. This comes directly from the definition

of a (p, q)-matching on the set S. Therefore

p
∑
i∈S

ωi ≤ (dv − p)
∑
i∈S

ωi + (dv − q)
∑
i∈Sc

ωi, (41)

and thus,
2p− dv
dv − q

∑
i∈S

ωi ≤
∑
i∈Sc

ωi, (42)

which proves that C has the desired fundamental cone property.
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D Proof of Theorem 5.2

We denote the set of variable nodes and check nodes by Xv and Xc respectively. For a fixed

w ∈ [0, 1]T , let B be the set of all minimal T -local deviations, and Bi be the set of minimal

T -local deviations that result from a skinny tree rooted at the variable node vi. Also, assume S

is the random set of flipped bits, when the flip probability is p. Interchangeably, we also use S

to refer to the set of variable nodes corresponding to the flipped bits indices. We are interested

in the probability that for all β(w) ∈ B, f
(S)
C (β(w)) ≥ 0. Recall that

f
(S)
C (x) :=

∑
i∈Sc

xi − C
∑
i∈S

xi.

For simplicity we denote this event by f
(S)
C (B) ≥ 0. Since the bits are flipped independently

and with the same probability, we have the following union bound

P
(
f

(S)
C (B) ≥ 0

)
≥ 1− nP

(
f

(S)
C (B1) ≥ 0

)
. (43)

Now consider the full tree of height 2T, that is rooted at the node v1, and contains every node

u in G that is no more than 2T distant from v, i.e. d(v1, u) ≤ 2T . We denote this tree by

B(v1, 2T ). To every variable node u of B(v1, 2T ), we assign a label, I(u), which is equal to

−Cωh(u) if u ∈ S, and is ωh(u) if u ∈ Sc, where (ω0, ω2, · · · , ω2T−2) = w. We can now see that

the event f
(S)
C (B1) ≥ 0 is equivalent to the event that for all skinny subtrees T of B(v1, 2T ) of

height 2T , the sum of the labels on the variable nodes of T is positive. In other words, if Γ1 is

the set of all skinny trees of height 2T that are rooted at v1, then f
(S)
C (B1) ≥ 0 is equivalent to:

min
T ∈Γ1

∑
v∈T ∩Xv

I(v) ≥ 0. (44)

We assign to each node u (either check or variable node) of B(v1, 2T ) a random variable Zu,

which is equal to the contribution to the quantity minT ∈Γ1

∑
v∈T ∩Xv

I(v) by the offspring of

the node u in the tree B(v1, 2T ), and the node u itself. The value of Zu for can be determined

recursively from all of its children. Furthermore, the distribution of Zu only depends on the

height of u in B(v1, 2T ). Therefore, to find the distribution of Zu, we use X0, X1, · · · , XT−1 as

random variables with the same distribution as Zu when u is a variable node (X0 is assigned to

the lowest level variable node) and likewise Y1, Y2, · · · , YT−1 for the check nodes. It then follows

that:
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Y0 = ω0η,

Xi = min{Y (1)
i , . . . , Y

(dc−1)
i } ∀i > 0,

Yi = ωiη +X
(1)
i−1 + · · ·+X

(dv−1)
i−1 ∀i > 0,

(45)

where X(j)s are independent copies of a random variable X, and η is a random variable that

takes the value −C with probability p and value 1 with probability 1− p. It follows that

P
(
f

(S)
C (B1) ≤ 0

)
= P

(
X

(1)
T−1 + · · ·+X

(dv)
T−1 ≤ 0

)
≤ (E(e−tXT−1))dv . (46)

The last inequality is by Markov inequality and is true for all t > 0. The rest of the proof

we bring here is basically appropriate modifications of the derivations of [15] for the Laplace

transform evolution of the variables Xis and Yis, to account for a non-unitary robustness factor

C. By upper bounding the Laplace transform of the variables recursively it is possible to show

that (see Lemma 8 of [15], the argument is completely the same for our case)

Ee−tXi ≤
(
Ee−tXj

)(dv−1)i−j

∏
0≤k≤i−j−1

(
(dc − 1)Ee−tωi−kη

)(dv−1)k
, (47)

for all 1 ≤ j ≤ i < T .

If we take the weight vector as ω = (1, 2, · · · , 2j , ρ, ρ, · · · , ρ) for some integer 1 ≤ j < T , and

use equation (47), we obtain:

Ee−tXT−1 ≤ (Ee−tXj )(dv−1)T−j−1

·
(
(dc − 1)Ee−tρη

) (dv−1)T−j−1−1
dv−2 .

ρ and t can be chosen to jointly minimize Ee−tXj and Ee−tρη in the above, which along with
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(46) results in

P(fSC (B1 ≤ 0)) ≤ (Ee−tXT−1)dv

≤ γ−dv/(dv−2) × cdv(dv−1)T−j−1
,

where γ = (dc − 1)C+1
C (1 − p)( C.p1−p)1/(C+1) and c = γ1/(dv−2) mint≥0 Ee−tXj . If c < 1, then

probability of error tends to zero as stated in Theorem 5.2.
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