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On the Labeling Problem of Permutation Group
Codes under the Infinity Metric
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Abstract—Codes over permutations under the infinity norm  correction for rank modulation was addressed. Such errers a
have been recently suggested as a coding scheme for corregti characterized by a limited-magnitude change in chargd leve
limited-magnitude errors in the rank modulation scheme. Gven in the cells, which readily translates into a limited-magde
such a code, we show that a simple relabeling operation, whic S . .
produces an isomorphic code, may drastically change the mimal chf';lnge in the rank of, possiblgil cells in the stor_ed permu-
distance of the code. Thus, we may choose a code structure fortation. These errors correspond to a bounded distance ehang
efficient encoding/decoding procedures, and then optimiz¢he in the induced permutation under thig,-metric. We call
code’s minimal distance via relabeling. codes protecting against such erréirsited-magnitude rank-

We formally define the relabeling problem, and show that all \yqulation codes. or LMRM-codes Throughout the paper we
codes may be relabeled to get a minimal distance at mo&t On . . ' ’
will consider only LMRM-codes.

the other hand, the decision problem of whether a code may be o .
relabeled to distance2 or more is shown to be NP-complete, and A similar error model for flash memory was considered not

calculating the best achievable minimal distance after relbeling in the context of rank modulation i [[5], while a different
is proved hard to approximate. _ error-model (charge-constrained errors for rank modurgti
Finally, we consider general bounds on the relabeling pro@m. \y55 studied in[1], [[24],[[19]. Codes over permutations are

We specifically show the optimal relabeling distance of cyid - .
groups. A general probabilistic bound is given, and then use to also referred to apermutation arrays and have been studied

show both the AGL(p) group and the dihedral group on p ele- N the past under different metricsl [2[.] [3[.I [6L.] [7].I[9L1],
ments, may be relabeled to a minimal distance op — O(,/pInp). [24]. Specifically, permutation arrays under ttig-metric
were considered i [17]. We also mention a generalization of
the rank modulation scheme which uses partial permutations
studied in [[10], [21].
|. INTRODUCTION A code over permutations, being a subset of the symmetric
LASH memory is a prominent contender to address tHEOUP Sy, may happen to be a subgroup, in which case we
increasing demand for dense storage devices. Initialfall it 2 group code. Group theory offers a rich structure to be
each flash-memory cell was able to store one bit of informgxploited when constructing and analyzing group codesnin a
tion. However, a multi-level technology is now common, iftnalogy to the case of linear codes over vector spaces. Hence
which each cell stores information by choosing onejof 2 throughout this paper, we focus on LMRM group codes.
discrete levels. Hence, each cell can storg, g bits. If C andC' are conjugate subgroups of the symmetric group,
Flash memories possess inherent problems one has to g0 from a group-theoretic point of view, they are almost
dress in designing such storage device. The problems raf@@ same algebraic object, and they share many properties.
from data reliability to costly write operations. Recentlyrfowever, from a coding point of view these two codes can
the rank-modulation scheme was proposed [13] in order td0SS€ss vastly different minimal distance, which is onehef t
address specifically these inherent problems. In this seherff10St important properties of a code. For example, consider
the information is stored in the permutation induced by tH8€ following two subgroups o$,,, C = {1, (1,n)} andC' =
n distinct charge levels being read fromcells. Each cell {%(1,2)}, where: is the identity permutation and the rest of
has arank which indicates its relative position when orderingn€ permutations are given in a cycle notation. The subgroup
the cells in descending charge level. The ranks ofitreells C andC' are conjugate but the minimal distance(oandC is
induce a permutation of1,2,...,n}. n— 1. andllre.spect.lvely, Whlf:h are the h_|ghest and the lowest
While this new scheme alleviates some of the problerR§Ssible minimal distances in thg.-metric.
associated with current flash technology, the flash-memoryHence, we conclude that the minimal distance of a a6de
channel remains noisy and error correction must be employdpPends crucially on the specific conjugate subgroup. Thus,

to increase reliability. In a recent work [23], spike-erroivhile a certain group code might be chosen due to its group-
theoretic structure (perhaps allowing simple encoding er d

The material in this paper was presented in part at the IEE&rational coding), we may choose to use an isomorphic conjugate of the
Symposizlé)m on Information Theory (ISIT 2011), St. PetergbuRussia, group, having the same group-theoretic structure, but with
August 2011. . L . .
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are able to show the existence of a labeling with high minimabeys\ci — c” < L. In general, we say spike errors of limited-
distance for a variety of codes, based on the size of the cadagnitudeL have occurred if the corrupted charge levels of
and the number of cycles in certain permutations deriveah froall the ceIIs,c’l,cg, ...,cl, obey

the code itself.

The rest of the paper is organized as follows. In Section
M we define the notation, introduce the error model with
the associated,-metric, as well as formally defining the Denote byf’ the permutation induced by the cell charge
labeling problem. We proceed in Section Il to introduce twtevelsc), ¢, ..., c;, under the rank-modulation scheme. Under
algorithmic problems related to the labeling problem, ared whe plausible assumption that distinct charge levels arte no
show their hardness. In SectignlIV we give some labeliraybitrarily close (due to resolution constraints and dizatibn
results on ordinary groups and we present our main resultasfthe reading mechanism), i.{ac,- — c]-\ > ( for some positive
the paper, which gives general labeling results for amyitraconstant € R for all i # j, a spike error of limited-magnitude
codes based on a probabilistic argument. In addition wile giL implies a constan# € IN such that
a few corollaries by applying this result to some well-known L 1
groups. We conclude in Sectidn] V with a summary of the }2% foa-f (l)‘ <d.
results and short concluding remarks.

max |¢; — ¢j| < L.
i€ n]

Loosely speaking, an error of limited magnitude cannot gean
the rank of the celli (which is simply f~1(i)) by d or more
positions.

For any m,ncIN, m < n, let [m,n] denote the set e therefore find it suitable to use thg-metric overs,,

{m,m+1,...,n}, where we also denote ly| the set[1,n]. defined by the distance function
Given anyn € N we denote bys,, the set of all permutations

over the sefn]. deo(f,8) = max|f(i) —g(i)|,

We will mostly use the cycle notation for permutations i€
f€Su, wheref = (fo, f1,..., fr_1) denotes the permuta-for all f,¢ € S,. Since this will be the distance measure used
tion mappingf; — f(i+1)mod k for i € [0,k —1]. We shall throughout the paper, we will usually omit the subscript.
occasionally use the vector notation whereby a permutation = | . , i
£ =1fi, far .-, fa] €Su denotes the mapping— f;, for all Definition1. A _ limited-magnitude ran_k-modulat|on code
i € [n]. Given two permutationg;, g € S,,, the productfg is a (LMRM-code)with parametersn, M, d), is a subset C Sy
permutation mapping > f(g(i)) for all i € [n]. of cardlnallty_M, such thatdoo(f,g) > d for all f,geC,

A code, C is a subset C S,. Note that sometime€ will [ 7 & (We will sometimes omit the parametet.)

also be a subgroup df,, in which case we shall refer t6 e note that unlike the charge-constrained rank-moduiatio
as agroup code. For a codeC and a permutatiorf €S, we codes of [14], in which the codeword is stored in the per-

II. DEFINITIONS AND NOTATIONS

call the.codefo—l ={feft:c €C} aconjugate of C. mutation induced by the charge levels of the cells, here the
Considern flash memory cells which we nanie2,...,n.  codeword is stored in thewerse of the permutation.
The charge level of each cell is denoted iy R for all Permutation codes under thfg,-metric have been studied

i € [n]. In the rank-modulation scheme defined in [13], the before in [16], [28]. The size of spheres in this metric has

information is stored by the permutation induced by thestellpeen studied in[15]/]20], and the size of optimal anticodes
charge levels in the following way: The induced permutatiop [272].

(in vector notation) is[f1, fo, ..., fu] iff cs > cf , for all For a codeC we define its minimal distance and denote it
ieln—1]. by d(C) as
Having stored a permutation in flash cells, a corrupted d(C) = min d(f,g).
version of it may be read due to any of a variety of error fgec
sources (se€ [4]). To model a measure of the corruption in f78

the stored permutations one can use any of the well-knowna |abeling function is a permutatiohc S,,. A relabeling of
metrics overS, (see [8]). Given a metric ove$,, defined 3 codeC by a labelingl € S,, is defined as the séCl~1. We

by a distance functionl : S, x S, — IN U {0}, anerror-  say that the cod€ has minimal distance with a labeling
correcting code is a subset of,, with lower-bounded distance fynction! when

between distinct members. d(IC171) = d.

In [14], the Kendallr metric was used, where the distance
between two permutations is the number of adjacent transpoit is well known (seel[8]) that thé..-metric overs,, is only
sitions required to transform one into the other. This rnaéfi right invariant and not left invariant, i.e., for anyg,h € S,
used when we can bound the total difference in charge level$f, ¢) = d(fh, gh), and usuallyd(f,g) # d(hf,hg), thus

In this work we consider a different type of error — a limitedwe would expect that in many case§C) # d(ICI71).
magnitude spike error. Suppose a permutatfoa S, was Therefore, the questions of which labeling permutatiodsda
stored by setting the charge levelsmoflash memory cells to the optimal minimal distance, and what is the optimal mirdima
c1,6,...,cn. We say a singlepike error of limited-magnitude distance, rise naturally in the context of error-corregttodes

L has occurred in theth cell if the corrupted charge levef, over permutations under the infinity metric. Note tHais



called a labeling function because for a permutation ineycCorollary 3. LetC be any conjugacy class 6f,, then
notationf = (aq,..., (A, ..., we get
f={(a1,....a1) . (ag11,...,a0) We g B(L,2)NC £ O.

IfIt = (I(a1), ..., lag,)) - .. (l(“kj+1)f“"l(“"))' Proof: Every conjugacy class &, is uniquely defined
by the set of its cycles’ lengths. Ldty,n,...,n,} be the
%ycles’ lengths of the permutations whereﬂ‘:1 n; = n.
By Lemma[2 we conclude that there exists sofreC; such
hat

The labeled permutatiohf/~! has the same cycle structure a
f but the elements within each cycle are relabeled.by

By virtue of the right invariance of thé,,-metric, we shall
assume throughout the paper that any c6de S, contains
the identity permutation, since right cosets®@preserve the  f = (a,a3,...,a5,)(a,a3,...,a%) ... (a}, a5, ..., a}),
distances between codewords, and one of the cosets contains

the identity. Furthermore, where for each, Fhe' set{a}};lél =1+ o, Yy ]
B . _ and the cycle(all,alz,...,a;]_) satisfies Lemm&]2. One can
d(C) = g,hlenég#hd(gh ), easily check thatl(f,) < 2, thus f € B(1,2). [

_ _ ) ) Now we are ready to prove that any codehas a “bad”
where: is the identity element of,,, and where the distance|gpeling.

from the identity shall be called theeight of the permutation. ]

This makes it easier to calculate the minimal distance of 'd€orem4. For any codeC C Sy, |C| > 2, there exists a

group code sincghfl simply goes over all the codewords. labeling of. the elementg such that the minimum distance is
More specifically, we will explore the case whefeis a &t Most2, i.e., there exist$ € S, such thaul(ICI™") < 2.

subgroup ofS,, and ask which conjugate group 6fhas the Moregver,C has a lIalbellng with mlnlmal dlstgncb if .and

largest minimal distance. We denote Bynin(C) (Lmax(C)) only if thfe set{ab=" : a,beC} contains an involution (a

the minimal (maximal) achievable minimal distance amorg dfermutation of ordez).

the conjugates of a code. Proof: Let f €C, f # 1, be a permutation whose cycles’
lengths are{nq,n, ..., n;} and where
IIl. THE LABELING PROBLEM IS HARD TO APPROXIMATE 1 1 1 > 2 ) K Kk k
f=(ayay... a,)(a1,05...,0,,) ... (4,45, . .., 4).

In this section we define two algorithmic problems regard- ,
ing the labeling of codes, and show that they are hard By Corollary[3 there existy’ € B(;,2) with the same cycle
approximate. We shall begin by showing that for any coddructure asf. Let/c S, be the permutation that conjugates
C, Lmin(C) < 2, which means that the minimal distance of to f, i.e., [fI"! = f . Therefore,
a code depends crucially on its labeling. We then continue b /
showing thpe decision prgblem of whethg{nax(c) > 2is NP- g (eIt <d(=4IfI7) = d(, f) < 2.
complete, while finding ouCmax(C) is hard to approximate. \we note that the only permutations of weightare invo-
Recall the conjugacy relation ove,: Two permutations |ytions in S, and that any involution irs, may be easily
8,f €Sy are said to be conjugate if there exiéts S, such relabeled to be of weight. Hence,C has a labeling with
that hgh~! = f. Conjugacy is an equivalence relation, anghinimal distancel if and only if the set{ab~" : a,b € C}
its equivalence classes are called conjugacy classesl’ ket ~gntains an involution. m
{C1,Cy, ..., Gy} be the set of conjugacy classesf. Itis  After proving that the worst labeling satisfign (C) < 2
known that two permutations have the same cycle structurgd all ¢ C S,,, we turn to consider the best labeling. We show
and only if they share the same conjugacy class. Denote {4t the algorithmic decision problem of determining wieeth

B(1,7) the ball of radius' centered at the identity, a certain cod& has Lmax(C) = 1 o Lyax(C) > 2 is NP-
complete.
= : <rt.
Blor) ={f€Sn:d(f,) <7} 2-DISTANCE PROBLEM :
The following lemma will help us show that any codehas o INPUT: A subset of permutatiorn C S, given as a list
a “bad” labeling, i.e., a labeling with minimal distanteor 2. of permutations, each given in vector notation.

o« OUTPUT: The correct Yes or No answer to the question
“DoesC have a labeling that leads to a minimal distance
at least2, i.e., is Lmax(C) =227 "

We start with a few definitions. For a codeC S,,, define

Proof: The proof is by induction. For = 1,2,3 all n- its associated set of involutions as

cycles in S, satisfy the claim. We assume the claim holds 5 1

for n, and prove it also holds fon + 1. By the induction I(C)={g€Sn:8"=1, g=ab~" #1, a,beC}.

hypothesis there i§ = (ag,ay,...,a,-1) €Sy that satisfies For an

the claim. W.l.o.g., we can assume thgf 1 = n — 1,

ag = n, anda; = n— 2, otherwisef‘1 would satisfy

these conditions. Set, = n+ 1 and the permutatiorf’ =

(ap,aq,...,a,_1,a,) € S,41 satisfies the claim. | E(g) ={uv€E(Ky):g(u) =v,u #v}.

Lemma 2. For anyn € N there is a permutatiofi composed
of a singlen-cycle, i.e.,f = (ag,a1,...,a,_1) € Sy, such that
\ai — a(i+1)m0dn| < 2forallie [O,Tl — 1].

y g€ I(C) we define a set of edge£(g), in the
complete graph om vertices, K;;, where the vertices are
conveniently called, 2, ...,n, as



Recall that a Hamiltonian path in an undirected graphs g€ I(C). This is true becausg(g) only contains edges that
a path which visits each vertex exactly once. The followingre not inE.

theorem shows an equivalence between the property of a cod€or the other direction, if there is a Hamiltonian pathkin
having a labeling with minimal distance at leastand the which does not include all the edgeskxfg) for anyg € I(C),
existence of a certain Hamiltonian path in the complete fyraghen, in particular, this path does not include alEdg), g € C,
Ky. g # 1. Since for any sucly = (u,v) €C, E(g) = {uv}, and

Theorem . LetC C S, be a code, thelimax(C) > 2 if and uv ¢ E, this path is also a Hamiltonian path . [ |

: : e : We now define a harder algorithmic question and deduce
only if there exists a Hamiltonian path K, which does not . . .
include all the edgeE(g), for anyg € I(C). by Theoreni b that this problem is hard to approximate.

_ . OPTIMAL-DISTANCE PROBLEM:
Proof: Recall thatd(C) = mingj,ec,r2nd(fh™" 1) and | |NpPUT: A subset of permutatior® C S, given in vector
note that any permutation which contains a cycle of length  qiation.
3 or more is at distance at leadtfrom the identity. Hence, | oUTPUT: The integermax (C).

we only have to make sure the set of involution&?), has

d|s|;anceh at ll_|ea§_|tfrom the tlflnentlty. ists inK.. th approximated if there exists an efficient algorithm thatdoy
such a Hamittonian patfuy, a, . . ., dn, €XISIS IR, then input C computesf (C) which satisfies

use this path as the labeling permutation and label the eleme )
a; asi, i.e., the labeling permutatione S,, satisfies (a;) = i ir C) < F(C) < el C).
for all i € [n]. For anyg € I(C) we know that there exists some max(€) < f(€) < €Lmax(C)
uv € E(g) which does not belong to the Hamiltonian path ifCorollary 7. For any constant < e < 2, the OPTIMAL-
K, and thereforgl(u) — I(v)| > 2. From the definition of DISTANCE problem cannot be-approximated unlesB =
E(g) we get thatg(u) = v, and sod(Igl~1,1) > 2. NP.

For the other direction, let< S, be a labeling such that Proof: Assume there exists an efficient algorithm com-

1 ; ; ;

7_(?; l)‘122 2. V}’fl now C(I)<n5|dBer the Hhamllton]:c'l;mf Pathy iting £(C) € N which is ane-approximation ofCmax (C). If
(1),17(2),...,1"(n) in Ky. By our choice ofl, for "ty 1 then £(C) < 2 and sof(C) < 1. If, however,
any g € 1(C) there existsu, v € [n] such thatg(u) = v and Lmax(C) > 2, then f(C) > 1. Thus, given such an efficient

(1) —I(v)] > 2. Hence, the edgev does not belong to the oy qrithm exists, we can decide wheth@hax(C) > 2, i.e.,

For a constant > 1 we say the problem may be-

constructed Hamiltonian path K. o n efficiently solve the 2-DISTANCE problem. By Theoré&in 6 we
By the last theorem we conclude that any algorithm thﬂf’low that the 2-DISTANCE problem is NP-complete, and so
finds a labeling of with minimal distance at lea&, actually — NP -

finds a Hamiltonian path iK;,, which does not include all the
edgesE(g), for anyg € I(C). We are now able to show that IV. CONSTRUCTIONS ANDBOUNDS

the 2-DISTANCE problem is NP-complete. . .
In the previous section we have shown that the 2-
Theorem 6. The 2-DISTANCE problem is NP-complete. DISTANCE and OPTIMAL-DISTANCE problems are hard.
Proof: First, we show that 2-DISTANCE is in NP. ForWe are therefore motivated to focus on solving and bounding
any given verifier,l € S,, which is a labeling function, we the latter problem for specific families of codes, and in
compute the distance betweeand all the elements df(C). Particular, codes that form a subgroup of the symmetric jgrou
Note that|I(C)| < |C|*> and constructind(C) may be easily Su- The rich structure offered by such codes makes them easier
done in polynomial time. Thus, the question can be verifid@ analyze, in much the same way as linear codes in vector
in polynomial time. space. Furthermore, knowing good labelings for certainigso
In order to verify the completeness we shall reduce th& of great interest since one can use them as building blocks
HAMILTONIAN-PATH problem (see [[I2]) to our problem. When constructing larger codes (see for example the dirett a
Let G(V,E) be a graph om vertices (given as am x n semi-direct product constructions in [23]).
adjacency matrix) in which we want to decide whether a
Hamiltonian path exists. Define the code A. Optimal Labeling for Cyclic Groups

C={(uo0):uv ¢ EYU{1} CS,, The most simple basic groups one can th_ink of are cyclic
groups. Recall that for a cyclic group there is an element
where (1, v) is the permutation that fixes everything in placg ¢ G such thatG is generated by the powers gf i.e., G =
except commuting the elementsand v. Obviously, we can {¢* : k€ N}. We also recall that a grou@ acting on[x] is
constructC from G in polynomial time. We then run the 2-said to betransitive if for every a, b € [n] there existsg € G

DISTANCE algorithm onC and return its answer. such thatg(a) = b. The following theorem gives an exact
We observe that optimal labeling for transitive cyclic groups over the $e}.
1(C) = {(u,0) (k1) : (u,0), (k1) €C,{u,0o} N{k,1} =@} Theorem8.LetC C S, be a transitive cyclic group over the
UC\ {1} set[n], then the optimal minimal distance f6ris

If ai,ao,...,a, is a Hamiltonian path irG, then it is also Lonax(C) = 11— Vin -3 -1 '
a Hamiltonian path irK,, not containing all ofE(g), for any 2



Proof: Let f = (aq,4a2,...,a,) €C be a generatﬂrof C, From labeling ruldR2 we get that
and letd be an achievable minimal distance, i.e., there is a

labeling! such thatd(ICI~!) = d. DenoteC’ = ICI!, then Anr iy g = 1= m+1,
f' = IfI71 = (I(a1),1(a2),...,1(an)) is a generator of’. 414 from labeling rulgl1
Define
- m(2k—m+1) 1
B ={(xy) €] x [n] : [x—y| > d}. e e I R
From the minimal distance @’ we know that for anygy € ¢/, @nd so
g #1,d(g,1) > d. Hence, there is at least one péir,y) € B A(f5,1) = max | (i) — |
such thatg(x) = y. On the other hand{ is cyclic and i€ [n]
transitive and so i<’, so for any pair(x,y) € B there is s (m(2k—m+1)
exactly oneg € C’ such thatg(x) = y. It follows that > \f 2 —s+l
'\ {1} =n—1< Bl = (n—d)(n—d+1). _ (—m@k—z’““) —s+1>’
Solving the inequality and remembering thats an integer,
we get =z |f (ﬂm<2k—m+1>_s+1> —(k—m+ 1)’ @)
2
J< van -3 -1
< |——|- - gmak;wn“—(k—m%—l)‘
In order to show the upper bound is achievable, conveniently =n-m+1—(k—m+1)|
denotek = [(v/4n — 3 —1)/2] and define the sets —n—k
Ay =[Lk], Ay=[k+1,n—k], As=[n—k+1,n]. wherel2) follows from[{L). [

) ) ) Since the labeling of indices id, is arbitrary, we actually
We define the following labeling € S, have (n — 2k)! different good labelings resulting from the
1) First setl(a;) =i for all i € A;. theorem.

2) Then set(a(,41i)ai—n+i)/2+1) =1 for all i € As. Example 9. Applying Theoreni8 for the caser = 10 we get

3) Finally _setl(a]-) = i for all i€ Ay, wherej is chosen ., " 3, and the optimal minimal distance Gnax(C) =
arbitrarily from the left-over indices. ;ome
) X n—k = 10—3 = 7. Moreover, such a labeling i5 = 1,
We will show that for anys € [n — 1], d(f*%,1) > n — k. Note 4y = 2,43 = 3,a4 = 10,a5 = 9,a; = 8, and one of the cycles

that it is enough to show the claim fer< [n/2] since if 54 generates the cyclic group of minimal distaide
s > [n/2] then by the right invariant property(f°,:) =

d(s, %) = d(i, f77%). (1,2,3,10,4,9,8,5,6,7).
Lets € [[n/2]], and note that 0
k1| Van—3-1| | Van—3+1
X;’ =3 [ 5 W [ 5 W B. The Neighboring-Sets Method
= — — In this section we present a general method we call the
> 1 van—3-1 vin—3+1 neighboring-sets method. With this method, lower and up-
in_4 2 2 per bounds onlmax(C) may be obtained provided certain
= neighboring sets of indices exist. We shall first describe th
" _81 general method, and then apply it, using further probatluilis
= . arguments, to show strong bounds Ba..x(AGL(p)) where
2 AGL(p) is the affine general linear group of orderas well
However, since_¥_, i is an integer we get that as Lmax(Dy), whereD,, is the dihedral group of order.
. We start by recalling the definitions d?, and AGL(p)
Zi S [” — 1} _ FJ . and dispensing with small parameters, for which we can give
= 7] 2 2 exact bounds.

Definition 10. For n € IN, the dihedral group of order, de-

Thus, letm € [k] be the smallest integer such that _ !
notedD,, is the group generated by the two permutations
1

m- ) 2k — 1
Y (k- j)= w >, D= ((1,2,...,1),(L,n)(2n—1)...(In/2], [n/2])).
=0 We refer to the labeling oD,, described in the definition
Hence (2K 1) above as thaatural labeling of D,,.
m —m
5 —s+1<k-m+1 (1) Definition 11. Let p €IN be a prime, thethGL(p) is defined

by the subgroup of permutations that acts on the(set — 1]
!A single-cycle generator must exist sin€eis transitive. and is generated by the permutatigiis) = x + 1 andg(x) =



ax, where all calculations are oveif(p) anda is a primitive  size of S, and S,,, respectively. However, a simple example
element inGF(p). of a code

Throughout we shall consider onlxGL(p) for p > 3. C={1}U {1(1,2)1‘1 :le Sn} cS,
Like before, we refer to the natural labeling 8iGL(p) as
the labeling derived from the permutatiofisandg described dispels this thought sincg’| = n(n —1)/2+1, d(C) = 1,
above. For example, the natural labeling AGL(5) is the and for anyl € S, we havelCl~! = C, so relabeling does
group generated by the permutations (in cycle notatjos) not change the code’s distance. Thus, we turn to describe the
(0,1,2,3,4) andg = (1,2,4,3). The following theorem gives neighboring-sets method which will attain better resutis f
us the minimal distance of the natural labelingAGL(p).  AGL(p) andD,,.

Theorem 12. For any primep > 3, AGL(p) with the natural Definition 14. LetC C S, be any set of permutations acting on
labeling has minimal distande — 1) /2. [n]. Two disjoint subset#\, B C [n] are calledC-neighboring

) _ . setsifforany f € C, f # 1, the following holds
Proof: BecauseAGL(p) is a group and the metric is

right invariant it suffices to check only the distances fr t .
ight invariant it suff heck only the di frdva (f(A)NB)U (F(B)NA) # @

identity permutation. Let;, be the permutationy, : x — x+b We defineO(C) to be the smallest integel(C) = |A| + |B|,
for somebe[1,p—1]. If b > (p—1)/2 then|o,(0) — 0| > : ;
: whereA andB areC-neighboring sets. If there are no such sets

(p—1)/2. Otherwise,|o(p—1)—(p—1)| = (p—1)/2. then we defin® (C) — oo
Thus, in any casei(cy, 1) > (p—1)/2. (C) = oo.

Let 7€ AGL(p) be an arbitrary permutation of the kind First we show that ifC is a group thenO(C) is closely
T(x) = ax + b wherea # 1. Both of the permutations related to its optimal minimal distance.
0(p—1)/2 @and T represent lines in the affine plane with dlf-_l_heorem 15.LetC C S, be a group that acts o] with
ferent slopes, and so there existse [0, p — 1] such that 0(C) < oo, then
T(x0) = 0(p_1)/2(x0). Hence,|t(xg) — x| = (p—1)/2 ’
and thend(t,:) > (p — 1)/2, which concludes the proofm n—0(C)+1< Lmax(C).

The next theorem shows that the natural labeling is optimal )
for any primep < 8. Moreover, ifLmax(C) > 5 then also

Theorem 13.For any primed < p < 8, Lmax(C) <n— %
~ 2 .
-1
Lmax(AGL(p)) = pT Proof: SinceO(C) < oo there existC-neighboring sets

A,B C [n] such that|A| + |B| = O(C). Let the labeling
Proof: Let I be the set of involutions oAGL(p). Itis  function [ € S, be such that(A) = [1,|A|], and [(B) =

easy to verify that any permutatigne I is of the formg(x) =  [n — |B| + 1,n]. It s trivial to check thatC!~! has minimal

—x + b for someb € GF(p), and sqI| = p. We note also that distancen — O(C) +1 < d(C).

for any x1, x, € GF(p) there is exactly one involutiog € I For the other inequality, assume that the labelin§C gives

such thatg(x;) = x; (finding ¢ is by solving the equation the optimal minimal distance](ICI™!) = Lmax(C) > gt

Xy = —x1 +b). follows that# — Lmax(C) < Lmax(C) +1, S0A = [1,n —
Assume that we have a labeling AIGL(p) with minimal  £,,,,x(C)], and B = [Lmax(C) + 1,1], are two disjoint sets.

distance more than the natural minimal distance. In pdaicu We will show thatA and B are C-neighboring sets.

with this labeling every involution has minimal distance at For any n — Lmax(C) < i < Lmax(C) + 1, if such

least(p + 1) /2 from the identity permutation. Let i exists at all, and for anyf €ICI~!, f # 1, we have
1 |f(i) —i] < Lmax(C). However,d(f,1) > Lmax(C) and so
B = {{x,y} :x,y€ GE(p), |[x—y| > p_} : necessarily(f(A) NB) U (f(B) N A) # @. Thus, A and B
2 areC-neighboring sets. Henc&,(C) < 2(n — Lmax(C)), and
Now, for any g€ there is at least one unordered paithe result follows. u
{x,y} € B such thatg(x) = y. It follows that It is pointed out in the definition that some groups_ S,
) might haveO(C) = oo, e.g.,0(S,) = oo. The following
_p -1 _ theorem shows that for any prime > 5, O(AGL(p)) is
Bl == > 1l =». fheorem !

inite while also showing a lower bound.

Solving the inequality we gep > 4 + /17 > 8. B Theorem16.If p = 3,5, thenO(AGL(p)) = oco. For any

We can get a very similar result (which we omit) regardingrimep > 7,

the distance of the natural labeling of the dihedral grayp

showing it to be approximately/2. O(AGL(p)) = max{ 2(p — ),6}.
It is tempting to assume that for large and n we can

get labelings forAGL(p) and D, with normalized distance For primesp > 37 we also have

tending to1, by virtue of their size alone{D,| = 2n and

|IAGL(p)| = p(p — 1), both vanishing in comparison to the O(AGL(p)) < p-



Proof: We first start with the lower bounds. It is
well known that AGL(p) is 2-transitive, i.e., for any
(a,b),(c,d)€[0,p —1]>, a # b, ¢ # d, there exists
f € AGL(p) such thatf((a,b)) = (c,d).If O(AGL(p)) <5

and A and B are AGL(p)-neighboring sets then, w.l.0.g., wesize (p — 1) /2 is exactly(

can assume thatA| < 2. Hence there existg € AGL(p),
f # 1, such thatf(A) = A which contradicts the fact that

A andB are AGL(p)-neighboring sets. As a consequence we

also get thaD(AGL(3)) = O(AGL(5)) = co.

The second lower bound is based on a counting argum
AGL(p) contains a permutatiorf composed of one cycle
of length p. For anyic [p — 1] there exists at least one
(k,m)€ (A x B)U (B x A) such thatfi(k) = m. On the
other hand, for anyk,m) € (A x B) U (B x A) there exists
only onei € [p — 1] such thatfi(k) = m. Thus,

p—1<[(AxB)U(BxA)[=2[A]-[B, (3

and the result follows because the minimun©{fAGL(p))
|A| + |B| given by [3) is\/2(p — 1).

For the upper bound we will show that there &L (p)-
neighboring setsA, B C [0,p — 1] of sizes(p —1)/2 and
(p+1)/2, respectively, and thu®(AGL(p)) < p. We note
that A and B of the appropriate sizes are neighboring se
if and only if f(A) # A for all f # 1. We shall therefore
try to bound the number of such “bad” subsets Assume
AC[0,p—1],|A| = &2, and f € AGL(p), f # 1. Then
f(A) = A iff A is a union of cycles off. We define a

2

polynomial which is related to the cycle-index polynomiél o

f as
Zp(x) = [T+ )50,

1

where a;(f) is the number of cycles of of lengthi. It
follows that the number of “bad” setd for f is the coef-
ficient of x(P~1/2in Z;(x). Summing over all permutations

f € AGL(p) except the identity permutation will upper bound

the number of such “bad” sets iNGL(p).

The group AGL(p) is a disjoint union (except for the
identity) of p groups which are: the cyclic group of order
generated by0,1,...,p — 1), andp — 1 cyclic groups gen-
erated by a permutation of the forfng, ay,...,a, 2)(a,_1).
Since, in a cyclic group of ordef, for eachi|¢ there arep(i)
elements of ordef, where¢ is Euler’s totient function, we
can define the polynomid z¢; (,)(x) and readily verify that

ZacL(p(x) = Y Zs(x) =
f€ AGL(p),f#i
=(p-1)(1+x")+ ‘Z (i) (1+x)(1+ ') 7.
ijp—1
i>1

We shall now upper-bound the coefficient, ;),, of
x(p_l)/z in ZAGL(

€

where the upper bound is derived by upper boungiig < p,
upper bounding the central binomial coefficient using [&8igl
taking at mostp summands.

On the other hand, the number of subsetgipf — 1] of

(pj)/z)' One can easily verify that
3 _
< p > > _P b
(p—1)/2 n(p—1)

4

t.
for all primesp > 37. Thus, there are sets such thatf (A) #
A, as required. [ |

Example 17.Let p = 7. By Theorenil@ we have the lower
boundO(AGL(7)) > 6, and indeed the setd = {0,1,2},

B = {4,5,6} are AGL(7)-neighboring sets. Furthermore,
by Theorenfl3 we get that7 — O(AGL(7)) +1 = 2 <
Lmax(AGL(7)). However, by Theorenil3d we know that
Lmax(AGL(7)) = 3. O

The following theorem is our main result of this section. It
gives a generic labeling result for a codeover the setn]
based solely on the size of the code and the number of cycles

|t2 the set of permutation§gh ! : ¢,h € C}.

Theorem 18.LetC C S, be a code. If there exist, t € R,
0 < p < 4%, andt > 0, such that

f=gh!
gheC,g#h

e

= et/ (1-p) NP I0=p) 1

(4)

wherec(f) is the number of cycles in the permutatipnthen
there exists a labelingz S,, such that

Lmax(C) =d(ICITY) = n+1— [2pn+t].

Proof: We use a probabilistic argument to show such
a labeling exists. We partition the spt| into three disjoint
sets,A, B, andC, according the probabilitieB(ic A) = p,
P(ieB) = p, andP(i€C) = 1 —2p, where elements are
placed independently.

Assume first thatf €S, is a single cycle, ie.f =
(ag,a1,...,ar_1). We define the events

Di(f) ={a;j€ A anda;; ;€ Bora;€B anda; ;1€ A},

for eachi € [0, k — 1], and where the indices are taken modulo
k. Where it is clear from context, we shall write; for short.
We also define the everid, to be thatA and B are {f}-
neighboring sets.

We would like to evaluate the probability that and B
are not{f}-neighboring sets, i.e., the probabiliy{Ds) =
P(ﬂf:‘gﬁ-). It is easy to calculate that

P(D;j) = 1-2p*.

Furthermore, for ali € [0,k — 1] we denote

pi = P(E‘D_O,...,Dl‘,l).



We find the following recursion, for all€ [0,k — 3]: union bound

Pi+1 = P(D;i1|Dy, ..., Dj)

= P(a;41 €C|Dy,...,D;) P U DyU{S=ES)+t}| <
.P(D: . 1Dn D g =gh~1
P<DZ+1‘D0/;/D11@»16C) g,ilce%,g#h
+ P(aj ¢_C|D0, o D;) <P(SZES)+H+ Y. P(D)
- P(Dj11|Dy,...,Dj,ai1 & C) Fegh1
oW N JheC,g#h
:P(ai+1€C‘D0,...,Di) 2 , ghetg# ,
+P(ai 11 ¢ C|Dy,...,D;)- (1 p). Se T fe/Amp) Y (PP
f=gh!
In addition, gheCg#h
_ <1,
— — P(Cl‘+1€C|DO,...,D‘,1)
P(ais1 €C[Do, ..., Di) = 1;<§‘D—0 D, 11) whereP(S > E(S) + t) was upper-bounded using Hoeffding's
1 VAR 1— . .
—_ inequality.
P(Di|Do, -, Di-1, 4111 €C) Therefore, with positive probability neither of these egen
_ 1- ZP‘ occur, i.e., there is a labeling fé such that for any;, g € C,
pi h # ¢, A and B are {gh~'}-neighboring sets anfl = |A| +

|B| < E(S) 4+t =2pn+t, and the result follows. [
Note that wherC forms a subgroup o$, then the summa-

5 tion in equation[(4) is done only over the element£of{:}.
po=1-2p Theoreni 1B easily gives us achievable-labeling resultarigr
piii=l—p+p- 1- 2P' subgroup ofS,, only by knowing the number of cycles in each

Pi of its elements.
We say thau € [n] is a fixed point of a permutatiofi€ S,
if f(a) = a. The minimal degree of a subgroup C S,
is the minimum number of non-fixed points among the non-

It follows that for alli € [0,k — 3],

It is easily seen that for alle [0,k —2], p; > 1 —p, and so
forallie [0,k — 3],

1-9 5 identity permutations irC. The following corollary connects
pis1=1—p+p- p __F . the minimal degree of a group and an achievable distance by
pi 1—p applying Theoreni 18.
Furthermore, sinc@® < p < % Corollary 19. LetC be a subgroup d,, with minimal degree
d, such that there exist> 0,0 < p < 3, satisfying
p?
po=1-2p><1— . P
1—p e Nt lcle T < 1,
Combining the above, we get that thenC has a labeling € S, with
P(Dy) = P(N{-, D) d(ICI Y > n4+1— [2pn+t].

— ﬁp(ﬁ\ Ni-1D;) Proof: If C has minimal degred, then the number of
i SRR e cycles of anyg €C, g # 1, is at mostn — 4 and the claim

2 s o\ k-1 follows by Theoreni 18. ]

< H pi < <1 __F ) We now proceed to show strong bounds®g.x(AGL(p))

i=0 1—p and Lmax(Dy).

Theorem 20.Forq, a large enough prime,

sincel —x < e ¥ for all x e R. { /4—11—3—1—‘

Let g€ Sy, be a general permutation, with cycles’ lengthd — O(VqIng) < Lmax(AGL(q)) < q 2
Il ... I, andeé‘:l l; = n, then the probability tha and
B are not{g}-neighboring sets is, Proof: For the upper bound we simply note that a
transitive cyclic group of ordey is a subgroup ofAGL(qg),
and then use Theorelh 8. For the lower bound we recall that
AGL(q) is sharply 2-transitive, hence, its minimal degree is
g — 1. By Corollary[19,

Let S = |A|+ |B| = X1+ Xo + -+ + Xy, whereX; is o2 2 ,2 (-1
the indicator random variable for the evente A U B. By the e 7 +|AGL(g)|e 20T <e 7 +g%e 2 .

k
He (Li=1)p?/(1-p) _ — o (n —k)l’z/(l—!’)'
i=1



Fort =+/qln(g+1) andp = % we get shown. For the other two families of groups, a probabilistic
, 5 method was used to give a general bound which turned out to
e—% _lee—M _ 1 + q <1 provide strong bounds on the relabeling distance.
(g+1)2  (g+1)2 Finding out how the best achievable minimal distance after
We note that forg large enoughp < 1 1t follows that relabeling depends on certain group properties, and finding
2: its exact value for other well-known groups, is still an open
Lmax(AGL(q)) 2 g+1— [2qp + t] problem.
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