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On the Labeling Problem of Permutation Group
Codes under the Infinity Metric

Itzhak Tamo and Moshe Schwartz,Senior Member, IEEE

Abstract—Codes over permutations under the infinity norm
have been recently suggested as a coding scheme for correcting
limited-magnitude errors in the rank modulation scheme. Given
such a code, we show that a simple relabeling operation, which
produces an isomorphic code, may drastically change the minimal
distance of the code. Thus, we may choose a code structure for
efficient encoding/decoding procedures, and then optimizethe
code’s minimal distance via relabeling.

We formally define the relabeling problem, and show that all
codes may be relabeled to get a minimal distance at most2. On
the other hand, the decision problem of whether a code may be
relabeled to distance2 or more is shown to be NP-complete, and
calculating the best achievable minimal distance after relabeling
is proved hard to approximate.

Finally, we consider general bounds on the relabeling problem.
We specifically show the optimal relabeling distance of cyclic
groups. A general probabilistic bound is given, and then used to
show both the AGL(p) group and the dihedral group on p ele-
ments, may be relabeled to a minimal distance ofp−O(

√

p ln p).

I. INTRODUCTION

FLASH memory is a prominent contender to address the
increasing demand for dense storage devices. Initially,

each flash-memory cell was able to store one bit of informa-
tion. However, a multi-level technology is now common, in
which each cell stores information by choosing one ofq > 2
discrete levels. Hence, each cell can storelog2 q bits.

Flash memories possess inherent problems one has to ad-
dress in designing such storage device. The problems range
from data reliability to costly write operations. Recently,
the rank-modulation scheme was proposed [13] in order to
address specifically these inherent problems. In this scheme,
the information is stored in the permutation induced by the
n distinct charge levels being read fromn cells. Each cell
has arank which indicates its relative position when ordering
the cells in descending charge level. The ranks of then cells
induce a permutation of{1, 2, . . . , n}.

While this new scheme alleviates some of the problems
associated with current flash technology, the flash-memory
channel remains noisy and error correction must be employed
to increase reliability. In a recent work [23], spike-error
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correction for rank modulation was addressed. Such errors are
characterized by a limited-magnitude change in charge level
in the cells, which readily translates into a limited-magnitude
change in the rank of, possibly,all cells in the stored permu-
tation. These errors correspond to a bounded distance change
in the induced permutation under theℓ∞-metric. We call
codes protecting against such errorslimited-magnitude rank-
modulation codes, or LMRM-codes. Throughout the paper we
will consider only LMRM-codes.

A similar error model for flash memory was considered not
in the context of rank modulation in [5], while a different
error-model (charge-constrained errors for rank modulation)
was studied in [1], [14], [19]. Codes over permutations are
also referred to aspermutation arrays and have been studied
in the past under different metrics [2], [3], [6], [7], [9], [11],
[24]. Specifically, permutation arrays under theℓ∞-metric
were considered in [17]. We also mention a generalization of
the rank modulation scheme which uses partial permutations
studied in [10], [21].

A code over permutations, being a subset of the symmetric
group Sn, may happen to be a subgroup, in which case we
call it a group code. Group theory offers a rich structure to be
exploited when constructing and analyzing group codes, in an
analogy to the case of linear codes over vector spaces. Hence,
throughout this paper, we focus on LMRM group codes.

If C andC ′
are conjugate subgroups of the symmetric group,

then from a group-theoretic point of view, they are almost
the same algebraic object, and they share many properties.
However, from a coding point of view these two codes can
possess vastly different minimal distance, which is one of the
most important properties of a code. For example, consider
the following two subgroups ofSn, C = {ι, (1, n)} andC ′

=
{ι, (1, 2)}, whereι is the identity permutation and the rest of
the permutations are given in a cycle notation. The subgroups
C andC ′

are conjugate but the minimal distance ofC andC ′
is

n− 1 and1 respectively, which are the highest and the lowest
possible minimal distances in theℓ∞-metric.

Hence, we conclude that the minimal distance of a codeC
depends crucially on the specific conjugate subgroup. Thus,
while a certain group code might be chosen due to its group-
theoretic structure (perhaps allowing simple encoding or de-
coding), we may choose to use an isomorphic conjugate of the
group, having the same group-theoretic structure, but witha
higher minimal distance. We refer to the problem of finding the
optimal minimal distance among all conjugate groups (sets)of
a certain group (set) as thelabeling problem.

Apart from introducing and motivating the labeling problem,
we show that this algorithmic problem is hard. However, we
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are able to show the existence of a labeling with high minimal
distance for a variety of codes, based on the size of the code
and the number of cycles in certain permutations derived from
the code itself.

The rest of the paper is organized as follows. In Section
II we define the notation, introduce the error model with
the associatedℓ∞-metric, as well as formally defining the
labeling problem. We proceed in Section III to introduce two
algorithmic problems related to the labeling problem, and we
show their hardness. In Section IV we give some labeling
results on ordinary groups and we present our main result of
the paper, which gives general labeling results for arbitrary
codes based on a probabilistic argument. In addition with give
a few corollaries by applying this result to some well-known
groups. We conclude in Section V with a summary of the
results and short concluding remarks.

II. D EFINITIONS AND NOTATIONS

For any m, n∈N, m 6 n, let [m, n] denote the set
{m, m + 1, . . . , n}, where we also denote by[n] the set[1, n].
Given anyn∈N we denote bySn the set of all permutations
over the set[n].

We will mostly use the cycle notation for permutations
f ∈ Sn, where f = ( f0, f1, . . . , fk−1) denotes the permuta-
tion mapping fi 7→ f(i+1) mod k for i ∈ [0, k − 1]. We shall
occasionally use the vector notation whereby a permutation
f = [ f1, f2, . . . , fn]∈ Sn denotes the mappingi 7→ fi, for all
i ∈ [n]. Given two permutationsf , g∈ Sn, the productf g is a
permutation mappingi 7→ f (g(i)) for all i ∈ [n].

A code, C is a subsetC ⊆ Sn. Note that sometimesC will
also be a subgroup ofSn, in which case we shall refer toC
as agroup code. For a codeC and a permutationf ∈ Sn we
call the codefC f−1 = { f c f−1 : c ∈C} a conjugate of C.

Considern flash memory cells which we name1, 2, . . . , n.
The charge level of each cell is denoted byci ∈R for all
i ∈ [n]. In the rank-modulation scheme defined in [13], the
information is stored by the permutation induced by the cells’
charge levels in the following way: The induced permutation
(in vector notation) is[ f1, f2, . . . , fn] iff c f i

> c f i+1
for all

i ∈ [n − 1].
Having stored a permutation inn flash cells, a corrupted

version of it may be read due to any of a variety of error
sources (see [4]). To model a measure of the corruption in
the stored permutations one can use any of the well-known
metrics overSn (see [8]). Given a metric overSn, defined
by a distance functiond : Sn × Sn → N ∪ {0}, an error-
correcting code is a subset ofSn with lower-bounded distance
between distinct members.

In [14], the Kendall-τ metric was used, where the distance
between two permutations is the number of adjacent transpo-
sitions required to transform one into the other. This metric is
used when we can bound the total difference in charge levels.

In this work we consider a different type of error – a limited-
magnitude spike error. Suppose a permutationf ∈ Sn was
stored by setting the charge levels ofn flash memory cells to
c1, c2, . . . , cn. We say a singlespike error of limited-magnitude
L has occurred in thei-th cell if the corrupted charge level,c′i,

obeys
∣

∣ci − c′i
∣

∣ 6 L. In general, we say spike errors of limited-
magnitudeL have occurred if the corrupted charge levels of
all the cells,c′1, c′2, . . . , c′n, obey

max
i∈ [n]

∣

∣ci − c′i
∣

∣ 6 L.

Denote by f ′ the permutation induced by the cell charge
levelsc′1, c′2, . . . , c′n under the rank-modulation scheme. Under
the plausible assumption that distinct charge levels are not
arbitrarily close (due to resolution constraints and quantization
at the reading mechanism), i.e.,

∣

∣ci − cj

∣

∣ > ℓ for some positive
constantℓ∈R for all i 6= j, a spike error of limited-magnitude
L implies a constantd ∈N such that

max
i∈ [n]

∣

∣

∣ f−1(i)− f ′−1(i)
∣

∣

∣ < d.

Loosely speaking, an error of limited magnitude cannot change
the rank of the cell i (which is simply f−1(i)) by d or more
positions.

We therefore find it suitable to use theℓ∞-metric overSn

defined by the distance function

d∞( f , g) = max
i∈ [n]

| f (i)− g(i)| ,

for all f , g∈ Sn. Since this will be the distance measure used
throughout the paper, we will usually omit the∞ subscript.

Definition 1. A limited-magnitude rank-modulation code
(LMRM-code)with parameters(n, M, d), is a subsetC ⊆ Sn

of cardinality M, such thatd∞( f , g) > d for all f , g∈ C,
f 6= g. (We will sometimes omit the parameterM.)

We note that unlike the charge-constrained rank-modulation
codes of [14], in which the codeword is stored in the per-
mutation induced by the charge levels of the cells, here the
codeword is stored in theinverse of the permutation.

Permutation codes under theℓ∞-metric have been studied
before in [16], [23]. The size of spheres in this metric has
been studied in [15], [20], and the size of optimal anticodes
in [22].

For a codeC we define its minimal distance and denote it
by d(C) as

d(C) = min
f ,g∈ C

f 6=g

d( f , g).

A labeling function is a permutationl ∈ Sn. A relabeling of
a codeC by a labelingl ∈ Sn is defined as the setlCl−1. We
say that the codeC has minimal distanced with a labeling
function l when

d(lCl−1) = d.

It is well known (see [8]) that theℓ∞-metric overSn is only
right invariant and not left invariant, i.e., for anyf , g, h ∈ Sn,
d( f , g) = d( f h, gh), and usuallyd( f , g) 6= d(h f , hg), thus
we would expect that in many casesd(C) 6= d(lC l−1).
Therefore, the questions of which labeling permutation leads to
the optimal minimal distance, and what is the optimal minimal
distance, rise naturally in the context of error-correcting codes
over permutations under the infinity metric. Note thatl is
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called a labeling function because for a permutation in cycle
notation f = (a1, . . . , ak1

) . . . (ak j+1, . . . , an) we get

l f l−1 = (l(a1), . . . , l(ak1
)) . . . (l(ak j+1), . . . , l(an)).

The labeled permutationl f l−1 has the same cycle structure as
f but the elements within each cycle are relabeled byl.

By virtue of the right invariance of theℓ∞-metric, we shall
assume throughout the paper that any codeC ⊆ Sn contains
the identity permutation, since right cosets ofC preserve the
distances between codewords, and one of the cosets contains
the identity. Furthermore,

d(C) = min
g,h ∈C,g 6=h

d(gh−1, ι),

whereι is the identity element ofSn, and where the distance
from the identity shall be called theweight of the permutation.
This makes it easier to calculate the minimal distance of a
group code sincegh−1 simply goes over all the codewords.

More specifically, we will explore the case whereC is a
subgroup ofSn and ask which conjugate group ofC has the
largest minimal distance. We denote byLmin(C) (Lmax(C))
the minimal (maximal) achievable minimal distance among all
the conjugates of a codeC.

III. T HE LABELING PROBLEM IS HARD TO APPROXIMATE

In this section we define two algorithmic problems regard-
ing the labeling of codes, and show that they are hard to
approximate. We shall begin by showing that for any code
C, Lmin(C) 6 2, which means that the minimal distance of
a code depends crucially on its labeling. We then continue by
showing the decision problem of whetherLmax(C) > 2 is NP-
complete, while finding outLmax(C) is hard to approximate.

Recall the conjugacy relation overSn: Two permutations
g, f ∈ Sn are said to be conjugate if there existsh ∈ Sn such
that hgh−1 = f . Conjugacy is an equivalence relation, and
its equivalence classes are called conjugacy classes. LetT =
{C1, C2, . . . , Ck} be the set of conjugacy classes ofSn. It is
known that two permutations have the same cycle structure if
and only if they share the same conjugacy class. Denote by
B(ι, r) the ball of radiusr centered at the identity,

B(ι, r) = { f ∈ Sn : d( f , ι) 6 r} .

The following lemma will help us show that any codeC has
a “bad” labeling, i.e., a labeling with minimal distance1 or 2.

Lemma 2. For anyn∈N there is a permutationf composed
of a singlen-cycle, i.e.,f = (a0, a1, . . . , an−1)∈ Sn, such that
|ai − a(i+1) mod n| 6 2 for all i ∈ [0, n − 1].

Proof: The proof is by induction. Forn = 1, 2, 3 all n-
cycles in Sn satisfy the claim. We assume the claim holds
for n, and prove it also holds forn + 1. By the induction
hypothesis there isf = (a0, a1, . . . , an−1)∈ Sn that satisfies
the claim. W.l.o.g., we can assume thatan−1 = n − 1,
a0 = n, and a1 = n − 2, otherwise f−1 would satisfy
these conditions. Setan = n + 1 and the permutationf ′ =
(a0, a1, . . . , an−1, an)∈ Sn+1 satisfies the claim.

Corollary 3. Let C be any conjugacy class ofSn, then

B(ι, 2)∩ C 6= ∅.

Proof: Every conjugacy class ofSn is uniquely defined
by the set of its cycles’ lengths. Let{n1, n2 . . . , nk} be the
cycles’ lengths of the permutations inC, where∑

k
i=1 ni = n.

By Lemma 2 we conclude that there exists somef ∈ Cj such
that

f = (a1
1, a1

2, . . . , a1
n1
)(a2

1, a2
2, . . . , a2

n2
) . . . (ak

1, ak
2, . . . , ak

nk
),

where for eachi, the set{ai
j}

ni
j=1 = [1+ ∑

i−1
m=1 nm, ∑

i
m=1 nm]

and the cycle(ai
1, ai

2, . . . , ai
ni
) satisfies Lemma 2. One can

easily check thatd( f , ι) 6 2, thus f ∈ B(ι, 2).
Now we are ready to prove that any codeC has a “bad”

labeling.

Theorem 4. For any codeC ⊆ Sn, |C| > 2, there exists a
labeling of the elements such that the minimum distance is
at most2, i.e., there existsl ∈ Sn such thatd(lC l−1) 6 2.
Moreover,C has a labeling with minimal distance1 if and
only if the set{ab−1 : a, b∈ C} contains an involution (a
permutation of order2).

Proof: Let f ∈ C, f 6= ι, be a permutation whose cycles’
lengths are{n1, n2 . . . , nk} and where

f = (a1
1, a1

2, . . . , a1
n1
)(a2

1, a2
2, . . . , a2

n2
) . . . (ak

1, ak
2, . . . , ak

nk
).

By Corollary 3 there existsf
′ ∈ B(ι, 2) with the same cycle

structure asf . Let l ∈ Sn be the permutation that conjugates
f to f

′
, i.e., l f l−1 = f

′
. Therefore,

d(lC l−1) 6 d(lιl−1, l f l−1) = d(ι, f
′
) 6 2.

We note that the only permutations of weight1 are invo-
lutions in Sn, and that any involution inSn may be easily
relabeled to be of weight1. Hence,C has a labeling with
minimal distance1 if and only if the set{ab−1 : a, b ∈C}
contains an involution.

After proving that the worst labeling satisfiesLmin(C) 6 2
for all C ⊆ Sn, we turn to consider the best labeling. We show
that the algorithmic decision problem of determining whether
a certain codeC hasLmax(C) = 1 or Lmax(C) > 2 is NP-
complete.

2-DISTANCE PROBLEM :

• INPUT: A subset of permutationsC ⊆ Sn given as a list
of permutations, each given in vector notation.

• OUTPUT: The correct Yes or No answer to the question
“DoesC have a labeling that leads to a minimal distance
at least2, i.e., isLmax(C) > 2? ”.

We start with a few definitions. For a codeC ⊆ Sn, define
its associated set of involutions as

I(C) = {g ∈ Sn : g2 = ι, g = ab−1 6= ι, a, b∈C}.

For any g ∈ I(C) we define a set of edges,E(g), in the
complete graph onn vertices, Kn, where the vertices are
conveniently called1, 2, . . . , n, as

E(g) = {uv ∈ E(Kn) : g(u) = v, u 6= v} .
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Recall that a Hamiltonian path in an undirected graphG is
a path which visits each vertex exactly once. The following
theorem shows an equivalence between the property of a code
having a labeling with minimal distance at least2 and the
existence of a certain Hamiltonian path in the complete graph
Kn.

Theorem 5.Let C ⊆ Sn be a code, thenLmax(C) > 2 if and
only if there exists a Hamiltonian path inKn which does not
include all the edgesE(g), for anyg∈ I(C).

Proof: Recall thatd(C) = min f ,h ∈C , f 6=h d( f h−1, ι) and
note that any permutation which contains a cycle of length
3 or more is at distance at least2 from the identity. Hence,
we only have to make sure the set of involutions,I(C), has
distance at least2 from the identity.

If such a Hamiltonian path,a1, a2, . . . , an, exists inKn, then
use this path as the labeling permutation and label the element
ai as i, i.e., the labeling permutationl ∈ Sn satisfiesl(ai) = i
for all i ∈ [n]. For anyg∈ I(C) we know that there exists some
uv ∈ E(g) which does not belong to the Hamiltonian path in
Kn, and therefore|l(u)− l(v)| > 2. From the definition of
E(g) we get thatg(u) = v, and sod(lgl−1, ι) > 2.

For the other direction, letl ∈ Sn be a labeling such that
d(lC l−1) > 2. We now consider the Hamiltonian path
l−1(1), l−1(2), . . . , l−1(n) in Kn. By our choice of l, for
any g∈ I(C) there existsu, v ∈ [n] such thatg(u) = v and
|l(u)− l(v)| > 2. Hence, the edgeuv does not belong to the
constructed Hamiltonian path inKn.

By the last theorem we conclude that any algorithm that
finds a labeling ofC with minimal distance at least2, actually
finds a Hamiltonian path inKn which does not include all the
edgesE(g), for any g∈ I(C). We are now able to show that
the 2-DISTANCE problem is NP-complete.

Theorem 6.The 2-DISTANCE problem is NP-complete.

Proof: First, we show that 2-DISTANCE is in NP. For
any given verifier,l ∈ Sn, which is a labeling function, we
compute the distance betweenι and all the elements ofI(C).
Note that|I(C)| 6 |C|2 and constructingI(C) may be easily
done in polynomial time. Thus, the question can be verified
in polynomial time.

In order to verify the completeness we shall reduce the
HAMILTONIAN-PATH problem (see [12]) to our problem.
Let G(V, E) be a graph onn vertices (given as ann × n
adjacency matrix) in which we want to decide whether a
Hamiltonian path exists. Define the code

C = {(u, v) : uv /∈ E} ∪ {ι} ⊆ Sn,

where(u, v) is the permutation that fixes everything in place
except commuting the elementsu and v. Obviously, we can
constructC from G in polynomial time. We then run the 2-
DISTANCE algorithm onC and return its answer.

We observe that

I(C) = {(u, v)(k, l) : (u, v), (k, l)∈C , {u, v} ∩ {k, l} = ∅}
∪ C \ {ι} .

If a1, a2, . . . , an is a Hamiltonian path inG, then it is also
a Hamiltonian path inKn not containing all ofE(g), for any

g∈ I(C). This is true becauseE(g) only contains edges that
are not inE.

For the other direction, if there is a Hamiltonian path inKn

which does not include all the edges ofE(g) for anyg ∈ I(C),
then, in particular, this path does not include all ofE(g), g∈ C,
g 6= ι. Since for any suchg = (u, v)∈C, E(g) = {uv}, and
uv /∈ E, this path is also a Hamiltonian path inG.

We now define a harder algorithmic question and deduce
by Theorem 6 that this problem is hard to approximate.

OPTIMAL-DISTANCE PROBLEM:
• INPUT: A subset of permutationsC ⊆ Sn given in vector

notation.
• OUTPUT: The integerLmax(C).
For a constantǫ > 1 we say the problem may beǫ-

approximated if there exists an efficient algorithm that forany
input C computesf (C) which satisfies

1

ǫ
Lmax(C) 6 f (C) 6 ǫLmax(C).

Corollary 7. For any constant1 < ǫ < 2, the OPTIMAL-
DISTANCE problem cannot beǫ-approximated unlessP =
NP.

Proof: Assume there exists an efficient algorithm com-
puting f (C)∈N which is anǫ-approximation ofLmax(C). If
Lmax(C) = 1 then f (C) < 2 and so f (C) 6 1. If, however,
Lmax(C) > 2, then f (C) > 1. Thus, given such an efficient
algorithm exists, we can decide whetherLmax(C) > 2, i.e.,
efficiently solve the 2-DISTANCE problem. By Theorem 6 we
know that the 2-DISTANCE problem is NP-complete, and so
P = NP.

IV. CONSTRUCTIONS ANDBOUNDS

In the previous section we have shown that the 2-
DISTANCE and OPTIMAL-DISTANCE problems are hard.
We are therefore motivated to focus on solving and bounding
the latter problem for specific families of codes, and in
particular, codes that form a subgroup of the symmetric group
Sn. The rich structure offered by such codes makes them easier
to analyze, in much the same way as linear codes in vector
space. Furthermore, knowing good labelings for certain groups
is of great interest since one can use them as building blocks
when constructing larger codes (see for example the direct and
semi-direct product constructions in [23]).

A. Optimal Labeling for Cyclic Groups

The most simple basic groups one can think of are cyclic
groups. Recall that for a cyclic groupG there is an element
g∈ G such thatG is generated by the powers ofg, i.e., G =
{gk : k ∈N}. We also recall that a groupG acting on[n] is
said to betransitive if for every a, b∈ [n] there existsg ∈ G
such thatg(a) = b. The following theorem gives an exact
optimal labeling for transitive cyclic groups over the set[n].

Theorem 8.Let C ⊆ Sn be a transitive cyclic group over the
set[n], then the optimal minimal distance forC is

Lmax(C) = n −
⌈√

4n − 3 − 1

2

⌉

.
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Proof: Let f = (a1, a2, . . . , an)∈C be a generator1 of C,
and let d be an achievable minimal distance, i.e., there is a
labeling l such thatd(lC l−1) = d. DenoteC ′ = lC l−1, then
f ′ = l f l−1 = (l(a1), l(a2), . . . , l(an)) is a generator ofC ′.
Define

B = {(x, y)∈ [n]× [n] : |x − y| > d}.

From the minimal distance ofC ′ we know that for anyg∈ C ′,
g 6= ι, d(g, ι) > d. Hence, there is at least one pair(x, y)∈ B
such thatg(x) = y. On the other hand,C is cyclic and
transitive and so isC ′, so for any pair(x, y)∈ B there is
exactly oneg∈C ′ such thatg(x) = y. It follows that

∣

∣C ′ \ {ι}
∣

∣ = n − 1 6 |B| = (n − d)(n − d + 1).

Solving the inequality and remembering thatd is an integer,
we get

d 6 n −
⌈√

4n − 3 − 1

2

⌉

.

In order to show the upper bound is achievable, conveniently
denotek =

⌈

(
√

4n − 3 − 1)/2
⌉

and define the sets

A1 = [1, k], A2 = [k + 1, n − k], A3 = [n − k + 1, n].

We define the following labelingl ∈ Sn,

1) First setl(ai) = i for all i ∈ A1.
2) Then setl(a(n+1−i)(2k−n+i)/2+1) = i for all i ∈ A3.
3) Finally set l(aj) = i for all i ∈ A2, where j is chosen

arbitrarily from the left-over indices.

We will show that for anys∈ [n − 1], d( f s, ι) > n − k. Note
that it is enough to show the claim fors 6 ⌈n/2⌉ since if
s > ⌈n/2⌉ then by the right invariant propertyd( f s, ι) =
d(ι, f−s) = d(ι, f n−s).

Let s∈ [⌈n/2⌉], and note that

k

∑
i=1

i =
1

2

⌈√
4n − 3 − 1

2

⌉ ⌈√
4n − 3 + 1

2

⌉

>
1

2
·
√

4n − 3 − 1

2
·
√

4n − 3 + 1

2

=
4n − 4

8

=
n − 1

2
.

However, since∑k
i=1 i is an integer we get that

k

∑
i=1

i >

⌈

n − 1

2

⌉

=
⌊n

2

⌋

.

Thus, letm ∈ [k] be the smallest integer such that

m−1

∑
j=0

(k − j) =
m(2k − m + 1)

2
> s.

Hence
m(2k − m + 1)

2
− s + 1 6 k − m + 1. (1)

1A single-cycle generator must exist sinceC is transitive.

From labeling rule 2 we get that

a m(2k−m+1)
2 +1

= n − m + 1,

and from labeling rule 1

a m(2k−m+1)
2 −s+1

=
m(2k − m + 1)

2
− s + 1

and so

d( f s, ι) = max
i ∈ [n]

| f s(i)− i|

>

∣

∣

∣

∣

f s

(

m(2k − m + 1)

2
− s + 1

)

−
(

m(2k − m + 1)

2
− s + 1

)∣

∣

∣

∣

>

∣

∣

∣

∣

f s

(

a m(2k−m+1)
2 −s+1

)

− (k − m + 1)

∣

∣

∣

∣

(2)

=

∣

∣

∣

∣

a m(2k−m+1)
2 +1

− (k − m + 1)

∣

∣

∣

∣

= |n − m + 1 − (k − m + 1)|
= n − k,

where (2) follows from (1).
Since the labeling of indices inA2 is arbitrary, we actually

have (n − 2k)! different good labelings resulting from the
theorem.

Example 9.Applying Theorem8 for the casen = 10 we get
that k = 3, and the optimal minimal distance isLmax(C) =
n − k = 10 − 3 = 7. Moreover, such a labeling isa1 = 1,
a2 = 2, a3 = 3, a4 = 10, a6 = 9, a7 = 8, and one of the cycles
that generates the cyclic group of minimal distance7 is

(1, 2, 3, 10, 4, 9, 8, 5, 6, 7).

✷

B. The Neighboring-Sets Method

In this section we present a general method we call the
neighboring-sets method. With this method, lower and up-
per bounds onLmax(C) may be obtained provided certain
neighboring sets of indices exist. We shall first describe the
general method, and then apply it, using further probabilistic
arguments, to show strong bounds onLmax(AGL(p)) where
AGL(p) is the affine general linear group of orderp, as well
asLmax(Dn), whereDn is the dihedral group of ordern.

We start by recalling the definitions ofDn and AGL(p)
and dispensing with small parameters, for which we can give
exact bounds.

Definition 10. For n∈N, the dihedral group of ordern, de-
notedDn is the group generated by the two permutations

Dn = 〈(1, 2, . . . , n), (1, n)(2, n− 1) . . . (⌊n/2⌋ , ⌈n/2⌉)〉 .

We refer to the labeling ofDn described in the definition
above as thenatural labeling of Dn.

Definition 11. Let p ∈N be a prime, thenAGL(p) is defined
by the subgroup of permutations that acts on the set[0, p − 1]
and is generated by the permutationsf (x) = x + 1 andg(x) =
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ax, where all calculations are overGF(p) anda is a primitive
element inGF(p).

Throughout we shall consider onlyAGL(p) for p > 3.
Like before, we refer to the natural labeling ofAGL(p) as
the labeling derived from the permutationsf and g described
above. For example, the natural labeling ofAGL(5) is the
group generated by the permutations (in cycle notation)f =
(0, 1, 2, 3, 4) andg = (1, 2, 4, 3). The following theorem gives
us the minimal distance of the natural labeling ofAGL(p).

Theorem 12.For any primep > 3, AGL(p) with the natural
labeling has minimal distance(p − 1)/2.

Proof: BecauseAGL(p) is a group and the metric is
right invariant it suffices to check only the distances from the
identity permutation. Letσb be the permutationσb : x 7→ x+ b
for someb ∈ [1, p − 1]. If b > (p − 1)/2 then |σb(0)− 0| >
(p − 1)/2. Otherwise,|σb(p − 1)− (p − 1)| > (p − 1)/2.
Thus, in any case,d(σb, ι) > (p − 1)/2.

Let τ ∈ AGL(p) be an arbitrary permutation of the kind
τ(x) = ax + b where a 6= 1. Both of the permutations
σ(p−1)/2 and τ represent lines in the affine plane with dif-
ferent slopes, and so there existsx0 ∈ [0, p − 1] such that
τ(x0) = σ(p−1)/2(x0). Hence, |τ(x0) − x0| > (p − 1)/2
and thend(τ, ι) > (p − 1)/2, which concludes the proof.

The next theorem shows that the natural labeling is optimal
for any primep < 8.

Theorem 13.For any prime3 6 p < 8,

Lmax(AGL(p)) =
p − 1

2
.

Proof: Let I be the set of involutions ofAGL(p). It is
easy to verify that any permutationg∈ I is of the formg(x) =
−x+ b for someb∈ GF(p), and so|I| = p. We note also that
for any x1, x2 ∈ GF(p) there is exactly one involutiong∈ I
such thatg(x1) = x2 (finding g is by solving the equation
x2 = −x1 + b).

Assume that we have a labeling ofAGL(p) with minimal
distance more than the natural minimal distance. In particular,
with this labeling every involution has minimal distance at
least(p + 1)/2 from the identity permutation. Let

B =

{

{x, y} : x, y ∈ GF(p), |x − y| > p + 1

2

}

.

Now, for any g∈ I there is at least one unordered pair
{x, y} ∈ B such thatg(x) = y. It follows that

|B| = p2 − 1

8
> |I| = p.

Solving the inequality we getp > 4 +
√

17 > 8.
We can get a very similar result (which we omit) regarding

the distance of the natural labeling of the dihedral groupDn,
showing it to be approximatelyn/2.

It is tempting to assume that for largep and n we can
get labelings forAGL(p) and Dn with normalized distance
tending to1, by virtue of their size alone:|Dn| = 2n and
|AGL(p)| = p(p − 1), both vanishing in comparison to the

size of Sn and Sp, respectively. However, a simple example
of a code

C = {ι} ∪
{

l(1, 2)l−1 : l ∈ Sn

}

⊆ Sn

dispels this thought since|C| = n(n − 1)/2 + 1, d(C) = 1,
and for anyl ∈ Sn we havelC l−1 = C, so relabeling does
not change the code’s distance. Thus, we turn to describe the
neighboring-sets method which will attain better results for
AGL(p) and Dn.

Definition 14. Let C ⊆ Sn be any set of permutations acting on
[n]. Two disjoint subsetsA, B ⊆ [n] are calledC-neighboring
setsif for any f ∈ C, f 6= ι, the following holds

( f (A) ∩ B) ∪ ( f (B)∩ A) 6= ∅.

We defineO(C) to be the smallest integerO(C) = |A|+ |B|,
whereA andB areC-neighboring sets. If there are no such sets
then we defineO(C) = ∞.

First we show that ifC is a group then,O(C) is closely
related to its optimal minimal distance.

Theorem 15. Let C ⊆ Sn be a group that acts on[n] with
O(C) < ∞, then

n −O(C) + 1 6 Lmax(C).

Moreover, ifLmax(C) > n
2 then also

Lmax(C) 6 n − O(C)
2

.

Proof: SinceO(C) < ∞ there existC-neighboring sets
A, B ⊆ [n] such that|A| + |B| = O(C). Let the labeling
function l ∈ Sn be such thatl(A) = [1, |A|], and l(B) =
[n − |B|+ 1, n]. It is trivial to check thatlC l−1 has minimal
distancen − O(C) + 1 6 d(C).

For the other inequality, assume that the labelingl of C gives
the optimal minimal distance,d(lC l−1) = Lmax(C) > n

2 . It
follows that n − Lmax(C) < Lmax(C) + 1, so A = [1, n −
Lmax(C)], and B = [Lmax(C) + 1, n], are two disjoint sets.
We will show thatA and B areC-neighboring sets.

For any n − Lmax(C) < i < Lmax(C) + 1, if such
i exists at all, and for anyf ∈ lC l−1, f 6= ι, we have
| f (i)− i| < Lmax(C). However,d( f , ι) > Lmax(C) and so
necessarily( f (A) ∩ B) ∪ ( f (B) ∩ A) 6= ∅. Thus, A and B
areC-neighboring sets. Hence,O(C) 6 2(n−Lmax(C)), and
the result follows.

It is pointed out in the definition that some groupsC ⊆ Sn

might haveO(C) = ∞, e.g., O(Sn) = ∞. The following
theorem shows that for any primep > 5, O(AGL(p)) is
finite while also showing a lower bound.

Theorem 16. If p = 3, 5, thenO(AGL(p)) = ∞. For any
prime p > 7,

O(AGL(p)) > max

{

√

2(p − 1), 6

}

.

For primesp > 37 we also have

O(AGL(p)) 6 p.
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Proof: We first start with the lower bounds. It is
well known that AGL(p) is 2-transitive, i.e., for any
(a, b), (c, d)∈ [0, p − 1]2, a 6= b, c 6= d, there exists
f ∈ AGL(p) such thatf ((a, b)) = (c, d). If O(AGL(p)) 6 5
and A and B areAGL(p)-neighboring sets then, w.l.o.g., we
can assume that|A| 6 2. Hence there existsf ∈ AGL(p),
f 6= ι, such that f (A) = A which contradicts the fact that
A andB areAGL(p)-neighboring sets. As a consequence we
also get thatO(AGL(3)) = O(AGL(5)) = ∞.

The second lower bound is based on a counting argument.
AGL(p) contains a permutationf composed of one cycle
of length p. For any i ∈ [p − 1] there exists at least one
(k, m)∈ (A × B) ∪ (B × A) such that f i(k) = m. On the
other hand, for any(k, m)∈ (A × B) ∪ (B × A) there exists
only onei ∈ [p − 1] such thatf i(k) = m. Thus,

p − 1 6 |(A × B) ∪ (B × A)| = 2|A| · |B|, (3)

and the result follows because the minimum ofO(AGL(p)) =
|A|+ |B| given by (3) is

√

2(p − 1).
For the upper bound we will show that there areAGL(p)-

neighboring setsA, B ⊆ [0, p − 1] of sizes (p − 1)/2 and
(p + 1)/2, respectively, and thusO(AGL(p)) 6 p. We note
that A and B of the appropriate sizes are neighboring sets
if and only if f (A) 6= A for all f 6= ι. We shall therefore
try to bound the number of such “bad” subsetsA. Assume
A ⊆ [0, p − 1], |A| = p−1

2 , and f ∈ AGL(p), f 6= ι. Then
f (A) = A iff A is a union of cycles off . We define a
polynomial which is related to the cycle-index polynomial of
f as

Z f (x) = ∏
i

(1 + xi)ai( f ),

where ai( f ) is the number of cycles off of length i. It
follows that the number of “bad” setsA for f is the coef-
ficient of x(p−1)/2 in Z f (x). Summing over all permutations
f ∈ AGL(p) except the identity permutation will upper bound
the number of such “bad” sets inAGL(p).

The group AGL(p) is a disjoint union (except for the
identity) of p groups which are: the cyclic group of orderp
generated by(0, 1, . . . , p − 1), and p − 1 cyclic groups gen-
erated by a permutation of the form(a0, a1, . . . , ap−2)(ap−1).
Since, in a cyclic group of orderℓ, for eachi|ℓ there areφ(i)
elements of orderi, whereφ is Euler’s totient function, we
can define the polynomialZAGL(p)(x) and readily verify that

ZAGL(p)(x) , ∑
f ∈ AGL(p), f 6=ι

Z f (x) =

= (p − 1)(1 + xp) + ∑
i|p−1
i>1

pφ(i)(1+ x)(1+ xi)
p−1

i .

We shall now upper-bound the coefficienta(p−1)/2 of

x(p−1)/2 in ZAGL(p),

a p−1
2

= ∑
2i|p−1

i>1

pφ(i)

( p−1
i

p−1
2i

)

6
p3

√

π(p−1)
4

· 2
p−1

2

where the upper bound is derived by upper boundingφ(i) 6 p,
upper bounding the central binomial coefficient using [18],and
taking at mostp summands.

On the other hand, the number of subsets of[0, p − 1] of
size(p − 1)/2 is exactly( p

(p−1)/2
). One can easily verify that

(

p

(p − 1)/2

)

>
p3

√

π(p−1)
4

· 2
p−1

2 ,

for all primesp > 37. Thus, there are setsA such thatf (A) 6=
A, as required.

Example 17.Let p = 7. By Theorem16 we have the lower
boundO(AGL(7)) > 6, and indeed the setsA = {0, 1, 2},
B = {4, 5, 6} are AGL(7)-neighboring sets. Furthermore,
by Theorem15 we get that7 − O(AGL(7)) + 1 = 2 6
Lmax(AGL(7)). However, by Theorem13 we know that
Lmax(AGL(7)) = 3. ✷

The following theorem is our main result of this section. It
gives a generic labeling result for a codeC over the set[n]
based solely on the size of the code and the number of cycles
in the set of permutations{gh−1 : g, h ∈C}.

Theorem 18.Let C ⊆ Sn be a code. If there existp, t ∈R,
0 < p <

1
2 , andt > 0, such that

e−
2t2

n + e−np2/(1−p) ∑
f=gh−1

g,h ∈C ,g 6=h

ec( f )p2/(1−p)
< 1, (4)

wherec( f ) is the number of cycles in the permutationf , then
there exists a labelingl ∈ Sn such that

Lmax(C) > d(lCl−1) > n + 1 − ⌊2pn + t⌋ .

Proof: We use a probabilistic argument to show such
a labeling exists. We partition the set[n] into three disjoint
sets,A, B, andC, according the probabilitiesP(i∈ A) = p,
P(i∈ B) = p, and P(i∈C) = 1 − 2p, where elements are
placed independently.

Assume first that f ∈ Sn is a single cycle, i.e.,f =
(a0, a1, . . . , ak−1). We define the events

Di( f ) = {ai ∈ A and ai+1 ∈ B or ai ∈ B and ai+1 ∈ A} ,

for eachi ∈ [0, k − 1], and where the indices are taken modulo
k. Where it is clear from context, we shall writeDi for short.
We also define the eventD f to be thatA and B are { f}-
neighboring sets.

We would like to evaluate the probability thatA and B
are not{ f}-neighboring sets, i.e., the probabilityP(D f ) =

P(∩k−1
i=0 Di). It is easy to calculate that

P(Di) = 1 − 2p2.

Furthermore, for alli ∈ [0, k − 1] we denote

pi = P(Di|D0, . . . , Di−1).
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We find the following recursion, for alli ∈ [0, k − 3]:

pi+1 = P(Di+1|D0, . . . , Di)

= P(ai+1 ∈ C|D0, . . . , Di)

· P(Di+1|D0, . . . , Di, ai+1 ∈C)

+ P(ai+1 /∈ C|D0, . . . , Di)

· P(Di+1|D0, . . . , Di, ai+1 /∈ C)

= P(ai+1 ∈ C|D0, . . . , Di)

+ P(ai+1 /∈ C|D0, . . . , Di) · (1 − p).

In addition,

P(ai+1 ∈ C|D0, . . . , Di) =
P(ai+1 ∈C|D0, . . . , Di−1)

P(Di|D0, . . . , Di−1)

· P(Di|D0, . . . , Di−1, ai+1 ∈ C)

=
1 − 2p

pi
.

It follows that for all i ∈ [0, k − 3],

p0 = 1 − 2p2

pi+1 = 1 − p + p · 1 − 2p

pi
.

It is easily seen that for alli ∈ [0, k − 2], pi > 1 − p, and so
for all i ∈ [0, k − 3],

pi+1 = 1 − p + p · 1 − 2p

pi
6 1 − p2

1 − p
.

Furthermore, since0 < p < 1
2 ,

p0 = 1 − 2p2 6 1 − p2

1 − p
.

Combining the above, we get that

P(D f ) = P(∩k−1
i=0 Di)

=
k−1

∏
i=0

P(Di| ∩i−1
j=0 Dj)

6
k−2

∏
i=0

pi 6

(

1 − p2

1 − p

)k−1

6 e−(k−1)p2/(1−p)

since1 − x 6 e−x for all x ∈R.
Let g∈ Sn be a general permutation, with cycles’ lengths

l1, l2, . . . , lk, and∑
k
i=1 li = n, then the probability thatA and

B are not{g}-neighboring sets is,

P(Dg) 6
k

∏
i=1

e−(li−1)p2/(1−p) = e−(n−k)p2/(1−p).

Let S = |A| + |B| = X1 + X2 + · · · + Xn, where Xi is
the indicator random variable for the eventai ∈ A ∪ B. By the

union bound

P











⋃

f=gh−1

g,h ∈C,g 6=h

D f ∪ {S > E(S) + t}











6

6 P (S > E(S) + t) + ∑
f=gh−1

g,h ∈C ,g 6=h

P(D f )

6 e−
2t2

n + e−np2/(1−p) ∑
f=gh−1

g,h ∈C ,g 6=h

ec( f )p2/(1−p)

< 1,

whereP(S > E(S)+ t) was upper-bounded using Hoeffding’s
inequality.

Therefore, with positive probability neither of these events
occur, i.e., there is a labeling forC such that for anyh, g∈ C,
h 6= g, A andB are{gh−1}-neighboring sets andS = |A|+
|B| 6 E(S) + t = 2pn + t, and the result follows.

Note that whenC forms a subgroup ofSn then the summa-
tion in equation (4) is done only over the elements ofC \ {ι}.
Theorem 18 easily gives us achievable-labeling results forany
subgroup ofSn only by knowing the number of cycles in each
of its elements.

We say thata ∈ [n] is a fixed point of a permutationf ∈ Sn

if f (a) = a. The minimal degree of a subgroupC ⊆ Sn

is the minimum number of non-fixed points among the non-
identity permutations inC. The following corollary connects
the minimal degree of a group and an achievable distance by
applying Theorem 18.

Corollary 19. Let C be a subgroup ofSn with minimal degree
d, such that there existt > 0, 0 < p <

1
2 , satisfying

e−
2t2

n + |C|e−
dp2

2(1−p) < 1,

thenC has a labelingl ∈ Sn with

d(lC l−1) > n + 1 − ⌊2pn + t⌋ .

Proof: If C has minimal degreed, then the number of
cycles of anyg ∈C, g 6= ι, is at mostn − d

2 and the claim
follows by Theorem 18.

We now proceed to show strong bounds onLmax(AGL(p))
andLmax(Dn).

Theorem 20.For q, a large enough prime,

q − O(
√

q ln q) 6 Lmax(AGL(q)) 6 q −
⌈

√

4q − 3 − 1

2

⌉

.

Proof: For the upper bound we simply note that a
transitive cyclic group of orderq is a subgroup ofAGL(q),
and then use Theorem 8. For the lower bound we recall that
AGL(q) is sharply 2-transitive, hence, its minimal degree is
q − 1. By Corollary 19,

e
− 2t2

q + |AGL(q)| e
− (q−1)p2

2(1−p) 6 e
− 2t2

q + q2e−
(q−1)p2

2 .
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For t =
√

q ln(q + 1) and p =
√

4 ln(q+1)
q−1 , we get

e
− 2t2

q + q2e−
(q−1)p2

2 =
1

(q + 1)2
+

q2

(q + 1)2
< 1.

We note that forq large enough,p <
1
2 . It follows that

Lmax(AGL(q)) > q + 1 − ⌊2qp + t⌋

> q − 2q

√

4 ln(q + 1)

q − 1
−

√

q ln(q + 1)

= q −O(
√

q ln q).

Theorem 21.For the dihedral group,Dn, n > 37,

n − O(
√

n ln n) 6 Lmax(Dn) 6 n −
⌈√

4n − 3 − 1

2

⌉

.

Proof: For the upper bound, again we note that a transitive
cyclic group of ordern is a subgroup ofDn and then use
Theorem 8. For the lower bound, we know that|Dn| = 2n,
and thatDn has minimal degreed > n − 2 (it is n − 2 for
evenn, andn − 1 for odd n). We use Corollary 19 with

t =

√

n ln(2n + 2)

2
p =

√

ln(2n + 2)

n/2 − 1

and get

e−
2t2

n + |Dn| e
− dp2

2(1−p) 6 e−
2t2

n + 2ne−
(n−2)p2

2

=
1

2n + 2
+

2n

2n + 2
< 1.

It is easy to verify thatp < 1
2 for all n > 37. Thus,

Lmax(Dn) > n + 1 − ⌊2pn + t⌋

> n − 2n

√

ln(2n + 2)

n/2 − 1
−

√

n ln(2n + 2)

2

= n − O(
√

n ln n).

V. SUMMARY

In this work we examined the relabeling of permutation
codes under the infinity metric. While relabeling preserves
the code structure, producing an isomorphic code, it may
drastically reduce or increase the relabeled code’s minimal
distance.

We formally defined the relabeling problem and showed
that all codes may be relabeled to get a minimal distance of
at most2. Deciding whether one can relabel a given code to
achieve minimal distance2 or more was shown to be an NP-
complete problem. In addition, calculating the best minimal
distance achievable after relabeling was shown to be hard to
approximate.

We then turned to bounding the best achievable minimal
distance after relabeling for certain groups, and in particu-
lar, cyclic groups, dihedral groups, and affine general linear
groups. For cyclic groups, an exact solution and relabelingwas

shown. For the other two families of groups, a probabilistic
method was used to give a general bound which turned out to
provide strong bounds on the relabeling distance.

Finding out how the best achievable minimal distance after
relabeling depends on certain group properties, and finding
its exact value for other well-known groups, is still an open
problem.
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