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Abstract

An encoder, subject to a rate constraint, wishes to deseriBaussian source under squared error distortion.
The decoder, besides receiving the encoder’s descrigtisn observes side information consisting of uncompressed
source symbol subject to slow fading and noise. The decadewn the fading realization but the encoder knows
only its distribution. The rate—distortion function thamnsiltaneously satisfies the distortion constraints fofading
states was derived by Heegard and Berger. A layered encatliategy is considered in which each codeword
layer targets a given fading state. When the side-infolmnathannel has two discrete fading states, the expected
distortion is minimized by optimally allocating the encndirate between the two codeword layers. For multiple
fading states, the minimum expected distortion is formadaas the solution of a convex optimization problem
with linearly many variables and constraints. Through aitimg process on the primal and dual solutions, it is
shown that single-layer rate allocation is optimal when féading probability density function is continuous and
quasiconcave (e.g., Rayleigh, Rician, Nakagami, and togaal). In particular, under Rayleigh fading, the optimal
single codeword layer targets the least favorable staté tag iside information was absent.

Index Terms

Convex optimization, distortion minimization, fading cireel, Heegard—Berger, rate—distortion function, side
information, source coding.

I. INTRODUCTION

N lossy data compression, side information at the decoderhedp reduce the distortion in the

reconstruction of the sourcel[1]. The decoder, however, hae access to the side information only
through an unreliable channel. For example, in distribuidedchpression over wireless sensor networks,
correlated sensor measurements from a neighboring nodeb@agvailable to the decoder through a
fading wireless channel. In this work, we consider a Gamnssiaurce where the encoder is subject to
a rate constraint and the distortion metric is the mean sguarror of the reconstruction. In addition
to the compressed symbol, we assume that the decoder obgbeveriginal symbol through a separate
analog fading channel. We assume, similar to the approadg]jrthat the fading is quasistatic, and
that the decoder knows the fading realization but the enc&dews only its distribution. The rate—
distortion function that dictates the rate required tos$atthe distortion constraint associated with each
fading state is given by Heegard and Berger(ih [3]. We comsad&ayered encoding strategy based on
the uncertain fading realization in the side-informatidracnel, and optimize the rate allocation among
the possible fading states to minimize the expected distortn particular, we formulate the distortion
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minimization as a convex optimization problem, and develogefficient representation for the Heegard—
Berger rate—distortion function under which the optimmatproblem size is linear in the number of

discrete fading states. Furthermore, we identify the doovtB under which single-layer rate allocation is
expected-distortion—minimizing, and extend these ogttyneonditions for continuous fading distributions

through a limiting process on the primal and dual solutiamghie optimization. We show that single-

layer rate allocation is optimal for fading distributiongthvcontinuous, quasiconcave probability density
functions such as Rayleigh, Rician, Nakagami, and log-m@abrm

When the side-information channel exhibits no fading, tistodtion is given by the Wyner—Ziv rate—
distortion function[[4]. Rate—distortion is considered%, [6] when the side information is also available
at the encoder, and inl[7] when there is a combination of decodly and encoder-and-decoder side
information. Successive refinement source coding in thegmee of side information is considered in
[8], [9]. The side-information scalable rate—distorticegion is characterized in_[L0], in which the user
with inferior side information decodes an additional lagéthe source-coding codeword. Lossless source
coding with an unknown amount of side information at the decas considered in_[11], in which a
fixed data block is broadcast to different users in a variableber of channel uses [12]. In [13], [14],
expected distortion is minimized in the transmission of ai$d&n source over a slowly fading channel in
the absence of channel state information at the transn(@t®iT). Broadcast transmission with imperfect
CSIT is considered in_[15]. Another application of sourcelinog with uncertain side information is in
systematic lossy source-channel codihgl [16] over a fadimgniel without CSIT. For example, when
upgrading legacy communication systems, a digital chamasl be added to augment an existing analog
channel. In this case the analog reception then plays tleeofoside information in the decoding of the
description from the digital channel. In[17], [18], hybmiigital/analog and digital transmission schemes
are considered for Wyner—Ziv coding over broadcast chanfiégle system model studied in this paper is
also related to distributed source coding over multipl&difil9], [20] where, besides source coding over
a finite-capacity reliable link, noisy versions of the saiaze described through additional backhaul links
with infinite capacity but that are subject to random failuié¢ the decoder, the realized quality of the
side information is determined by the number of backhaWslithat are successfully connected. Similar
models are considered in [21] for distributed unreliablayecommunications.

The remainder of the paper is organized as follows. The systodel is described in Sectidn Il.
Sectiori 1l derives the minimum expected distortion andsprgs the convex optimization framework when
the side-information channel has discrete fading statesti@[IM investigates the optimal rate allocation
under different fading distributions in the side-informoat channel. Sectioh |V considers the optimality
of single-layer rate allocation under discrete fadingestads well as continuous fading distributions.
Conclusions are given in SectiénlVI.

[I. SYSTEM MODEL
A. Source Coding with Fading Side-Information Channel

Consider the system model shown in Fi. 1. An encoder wisbedescribe a real Gaussian source
sequenceg X'} under a rate constraint d®x nats per symbol, where the sequence of random variables
are independent identically distributed (i.i.d.) with ~ A(0,0%). The decoder, in addition to receiving
the encoder’s description, observes side informationwhereY’ = v/SX + Z, with Z ~ i.i.d. N(0,1).
Hence the quality of the side information dependsSprthe power gain of the side-information channel.
We assumeé is a quasistatic random variable: it is drawn from some cativd distribution function (cdf)
F(s) at the beginning of each transmission block and remainsamggd through the block. The decoder
knows the realization af, but the encoder knows only its distributidf{s). When the fading distribution
is continuous, it is characterized by the probability dgn$inction (pdf) f(s) = F’(s). The decoder
forms an estimate of the source and reconstructs the segi&hc We are interested in minimizing the
expected squared error distorti®fiD] of the reconstruction, wher® = (X — X)2,
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Fig. 1. Source coding with fading side-information channel

Suppose the side-information channel hWdsdiscrete fading states. Let the probability distributidn o
S be given as follows:

M
Pr{S=s}=p;, 1=1,..., M, szzl Q)
i=1

where thes;’s are enumerated in ascending ordeK s; < s, < --- < sy. Let Y/ denote the side
information under fading state

Y/ & /s X + Z, i=1,..., M. (2)

Note that the set of side information random variables avehststically degraded. Let; be the recon-
struction when side informatiol is available at the decoder, agj be the corresponding squared error
distortion. The minimum expected distortion under ratest@int Ry is then given by
E[D]*= min p'D 3)
D: R(D)<Rx
wherep = [p; ...py]T, D 2 [D; ... Dy|T, and R(D) is the rate—distortion function that simultaneously
satisfies the distortion sdd.

B. Heegard—Berger Rate—Distortion Function

The rate—distortion function that dictates the rate remuiio simultaneously satisfy a set of distortion
constraints associated with a set of degraded side-inttomeandom variables is given by Heegard and
Berger in [3] (an alternate form fob/ = 2 is described in[[22]). When the side information random
variables satisfy the degradedness conditlor+ Y, <+ Yy, <> - -- <> Y], the rate—distortion function
is

M

Ryp(D) = mi I(X; Wiy, Wit 4

ns(D) W, ; ( | i) (4)

where W} denotes the vectoli/, ..., ;. The minimization takes place ovét(D), the set of alliv;}¥
jointly distributed with X, Y} such that:

WMo X o YyeYy1&- oY (5)

and there exists decoding functioﬁ’s(Yi, Wi)'s under given distortion measurdss that satisfy

As noted in [3], sinceRyp(D) depends onX, Y™ only through the marginal distributiop(z, v;),
i=1,...,M, the degradedness of the side information need not be @iySie construct’; to have

the same marginals a8}’ by settingp(y;|z) = p(y.|z), i = 1,..., M. The rate—distortion functio®(D)
in (3) is then given by the Heegard-Berger rate—distortioncfion [4) with squared error distortion
measuresl;(X, X;) = (X — X;)%.



[l. MINIMUM EXPECTED DISTORTION
A. Gaussian Source under Squared Error Distortion

The Heegard—Berger rate—distortion functipg(D;, ..., D)) for a Gaussian source under squared
error distortion is given in[[3],[19],[[10]. Fon/ = 2, [3] describes the Gaussian rate—distortion function
where the worst fading state corresponds to no side infeomatnd [9] considers side information
with different quality levels. The Gaussian Heegard—Bergé&—distortion function is considered [n [10]
for M > 2. However, the representations &f5(D1, ..., D)) described in[[B],[[9] are characterized
by exponentially-many distinct regions, and [10] involvegtimal Gaussian random variables whose
variances are determined by an algorithmic procedure.él'bkaracterizations, though complete, are not
amenable to efficient minimization of the expected distartiln this section, we derive a representation
for Rug(D;, ..., D)) that can be incorporated in an optimization framework. Intipalar, instead of
describing the achievable distortion set by its exponéytaany segments of boundaries, we construct a
characterization that comprises a sequence of convex atiggs, each relating the achievable distortion
between two adjacent fading states. Consequently, we fatethe distortion minimization as a convex
optimization problem where the number of variables and ttaimgs are linear inM/. First we consider
the case when the side-information channel has only twaetisd¢ading states\( = 2); in Section 1lI-C
we extend the analysis to multiple fading states where- 2.

When the side-information channel has two fading statesetitoder constructs a source-coding scheme
that consists of two layers of codewords. The base layerdgded to be decodable under either channel
condition, while the top layer is only decodable under thearfavorable channel realization. We derive
the rate requirements of the two codeword layers, and ofif{imHocate the encoding rat&x between
them to minimize the expected distortion. Fof = 2, the Heegard—Berger rate—distortion function is
given by

W1,Wo€eP(D1,D2)
For a Gaussian source under a squared error distortion neeasiointly Gaussian codebook is optimal
[3], [9], [10]. When WM X are jointly Gaussian, the mutual information expressiongl) evaluate to
I(X; WA YY) + 1(X; WalYs, W)
1. VAR[X|Y;, W] 1

- ——1
5 log VAR[X [V, W] 2 og(VAR[X|Y,, Wy, Ws]) (8)

1 1 1
= ——log(s; +0,%) — 3 log(l + (s9 — s1)VAR[X |V, Wl]) ~3 log(VAR[X |Ya, W4, Wy)) (9)

~ S log(VARIX|Yi)) -

2
wherelog is the natural logarithm, andl(9) follows from expanding toaditional variance expressions
by applying Lemma]l and Corollafy 1. The proof of Lemhia 1 isegiin AppendixXA.

Lemma 1. Let X, W} be jointly Gaussian random variables. ¥f = /sX + Z, whereZ ~ N(0,1) is
independent fromi, W, then

VARIX|Y, W] = (VAR[X W)™ +5) 7" (10)
Corollary 1. LetY; = VX + 2, Y= /s X + 7.
VAR[X|Y;, WY _ k
VARIK]Y, i = 1 T (& — s VARIXIY, WY, (11)

To characterize the Heegard—Berger rate—distortion fomd®ys(D:, Ds), we substitutel(9) in(7), and
minimize overWW,, W,

1 1

Fap(Di, Da) = — log(s: +0,%) + Hv%}ln{—§ log (1 + (so — s1)VAR[X|Y3, 7))

(12)

1

+ min{—= log(VAR[X |Ys, W1, Wg])}}
Wa 2



Note thatsy > s; > 0 by assumption. Accordingly, in the inner minimization 2§l Ryp(D;, D)
is decreasing IVAR[X|Y,, Wy, Ws]. Hence the choice ofV; is optimal whenVAR[X|Y,, Wy, Ws] is
increased until one of its upper bound constraints is tight

max VAR[X|Yy, Wi, Wa] = min(VARX[Yz, Wi], Dy). (13)
The optimal W3 that achieves[(13) is presented subsequently. The first iterthe min(-) expression

in (13) follows from the non-negativity of the mutual infoation 7(X; W5|Y;, Wy ), and the second one
follows from the distortion constraint oA, as given in[(6)

VAR[X Yy, Wy, Wy] = B[(X — Xa(Ya, Wy, W2))’] < Ds. (14)
Applying Corollary[1, the first term in(13) evaluates to
VAR[X|Ya, Wi = (VAR[X|Yy, W3] ™ + 55 — 51) . (15)

Under optimall¥,, therefore, the Heegard—Berger rate—distortion funcimo2) reduces to

1 . 1
RHB(DI, DQ) = —5 log(51 + O‘;Z) + Hv%}ln{—Q log(l + (82 — Sl)VAR[XD/l, Wl]) (16)
1 .
-5 logmin((VAR[X|Y1, W™ + 55— 1) D2> }

The maximization ovelV; in (16) has a similar structure as the one previously constia (13). Specif-
ically, Ryp(D1, D) in (16) is decreasing iVAR[X |Y;, W;]. HencelV; is optimal whenVAR[X |Y7, W]
is increased until it meets one of its upper bound conssaint

max VAR[X |V, W] = min(VAR[X Y], Dy) (17)
where the first term i (17) follows from the non-negativify/@ X'; ,|Y;), and the second one from the
distortion constraint onX;

VAR[X[Y;, Wi] = B[(X — X1(¥1,W))°] < Dy. (18)

Next, we consider the construction Bf,, I/, that achieves the rate—distortion function, namely, |gint
Gaussian random variables with conditional variances shtisfy [13), [1l7). We construct the optimal
distribution W7, W, as follows:

Wi =X+ N, (19)
Wy = Vaz X + N (20)

where N; ~ i.i.d. N(0,1), i« = 1,2, is independent fromX, Y}, Y5, and a;, a, are nonnegative scalars
whose values are to be specified. For notational convenieveaefine

Vi & VAR[X (Y, W] (21)
=min((ox* + s1)"", D1) (22)

where [22) follows from[(1I7). Substitute (19) in_{21), amdevaluates to
ap =Vt =0y — s (23)

Similarly, to identify the optimalVy, we define

Vo £ VAR[X|Y;, Wi, W3] (24)
=min((V; " + 52— s1)7", D») (25)



which follows from [I13), [(1b). Substituté (20) ih (24), ang evaluates to
ag =Vy =Vt = (s2— s1). (26)

To provide an interpretation regarding the source encodigs under different fading states of the
side-information channel, we introduce the notations

Ry £ I(X; Wi Yy) (27)
1 (0% 4 51)7!
= _—log~&X "~ 28
= 5 log 7 (28)
Ry £ I(X; W5|Ya, WY) (29)
1 -1 _ -1
log Uy Fs2 =51 (30)
Vo

where [28), [(30) follow from expandlng the mutual infornaatiexpressions applyind (23}, (26). We
interpretR; as the rate of a source coding base layer that descAbeden the side-information quality
is that of Y7 or better. On the other hand®, is the rate of a top layer that describ&sonly when the
decoder has the better side informatign Finally, we substitutd (28)[_(B0) ifnl(7) to obtain the tvayér
Heegard—Berger rate—distortion function

Rus(D1,D3) = Ry + R, (31)
1 1 1
=3 log(oy® + 81) — 5 log Vs — 3 log(1 + (s2 — s1)V4) (32)

whereV, V; are as defined in(21), (P4) above. The derivatior_of (32) dépen the side information only
through the marginals(y;|x)’s; therefore, the rate—distortion function applies asl wethe stochastically
degraded side informatio¥;,, ..., Y7.

B. Optimal Distortion Trade-off and Rate Allocation
Under a source-coding rate constraintfof, the Heegard—Berger feasible distortion region is desdrib
by
D(Rx) = {(Dy, Ds) | Rus(D1, Dy) < Rx}. (33)
The distortion regions under different values®f are illustrated in Fig.12. Settingyp(D;, D2) = Rx,

the dominant boundary df( Dy, D,)} defines the Pareto optimal trade-off curve (shown in boldign[B)
between the two distortion constraints 8 and X5, which is given by

-1

Dy = [*¥ (03> 4+ s1) (1 + (55 — 51)D1) | (34)
over the interval

(02 +5)) <D< (0 +s1)7" (35)
We find the optimal operating point on the Pareto curve to mizé the expected distortion

E[D]* = min p1D1 + p2Ds. (36)

D1,Dy: RHB(D1 D2)<RX

In Section1ll-G, it is shown that the above minimization ix@nvex optimization problem. Hence the
Karush—Kuhn—Tucker (KKT) conditions are necessary anficgerit for optimality. MoreoverD(Rx),
being the sublevel set of a convex function, is a convex skerAubstituting[(34) in[(36), from the KKT
optimality conditions, we obtain the optimal base layeitatison

Dy = (Di*) (D7, D) (37)
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Fig. 2. Achievable distortion under different values of #mecoding rate constraim®x. For eachRx, the Pareto optimal trade-off curve
is shown in bold.

where (z),,; denotes the projection

(2)[a,5 = min(max(a, z), b) (38)
and the distortion and its boundaries are given by
Dy 2 (X (0% + 1)) (39)
1 o+ s pr\ /2
D} £ i L —— —1 40
! So — S1 [(6 S22 — 81 pg) ] ( )
DY = (ox* +51)7". (41)
The optimal top layer distortio®; is given by
D, = (Dg)[D;,D;} (42)
where
Dy £ (2 (032 + 55)) (43)
D} 2 (2™ (03 4 51)(s2 — Sl)Pz/pl)_1/2 (44)
Dj £ (™ (0” + 51) + 59 — 31)_1. (45)

The corresponding optimal rate allocatiétj, R can be found as given in_(28), (30).

The optimal rate allocation and the corresponding minimwupeeted distortion are plotted in Figl 3
and Fig.[4, respectively, foRx = 1, 0% = 1, ands; = 0 dB. Note thatR}, the rate allocated to the
top layer, is not monotonic with the side-information cheincondition. As fading state, improves,R;
increases to take advantage of the better side-informapiatity. However, whers, is large, R} begins
to decline as the expected distortion is dominated by theswwfading state. In addition, the optimal rate
allocation is heavily skewed towards the lower layB5: > 0 only whenp, is large.

C. Multiple Discrete Fading States

The rate—distortion functiori (82) extends directly to tteses when the side-information channel has
multiple discrete fading states: = s; with probability p;, where: =1,..., M, with 0 < s; < - -+ < sy,
and M > 2. The Heegard—Berger rate—distortion function fidr > 2 can be characterized by a similar
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Fig. 4. Minimum expected distortion under optimal rate edition. The side-information channel has two discretenfgadiates{; = 0 dB).

representation as that given [n{32) fof = 2. Specifically, we construct the optimal distribution foeth
auxiliary random variabléV*’s to be given by

Wr=yaX+N, i=1,....M (46)

whereN; ~ i.i.d. N'(0,1), anda;’s are nonnegative scalars whose values are to be specifiedraie of
the i th layer is

R & I(X; WY, Wi, ... WE) (47)
1. (Viii+si—si1)7"!
where
V; £ VAR[X|Y;, WY, ..., W/ (49)
= mln((VZj + S; — Si_l)_l, Dz) (50)

ands, = 0, V, £ 0% for convenience in notations. In the above,](50) followsifrthe non-negativity of

I(X; W;|Y;, Wy, ..., W,;_;) and the distortion constrairitl(6). The that achieves (49) is determined from
(50), which evaluates to

a; = Vi_l - Vlj — (8 — 8i—1). (51)



As Ryp(D) = vai | Ri, we substitute[(48) in_{4) to obtain the rate—distortionciion
1 1 1+~
Rup(D) = D) 10%(0)—(2 +51) — 2 log Vs — 3 Z_; log(l + (Si41 — 32‘)‘/;) (52)
where thel}’s are as given in(B0).
Under multiple fading states, however, a closed-form esgio: for the minimum expected distortion
E[D]* does not appear analytically tractable. Neverthelessexpected distortion minimization ifl(3) can
be formulated as the following convex optimization probiem

minimize J(Dy,...,Dy) (53)
over Diy,....,Dy, Vi,....Viy € Ry (54)
subject to
1 » 1 1~
3 log(oy™ + s1) — 3 log Vs — 5 ; log(1+ (sit+1 — s:)Vi) < Rx (55)
Vi< (Vitasi—si)™t i=1,....M (56)
Vi<D;, i=1,....M (57)

whereR, ;. denotes the set of positive real numbers.[In (53) above, ¢ke fanction.J(-) may be any
arbitrary function that is convex ib,, . . ., D;,. The constrain{(85) prescribes the feasible Heegard-eBerg
distortion region under the source-coding rate constrRipt The constraintd (56) and (57) derive from
writing out the two upper bounds for eaéfy as described if_(50), as two separate inequality consdrain
The equality in[(ED) may be written as inequality constasince there is an optimal solution where for
each; at least one of (86) of (57) is tight. Specifically, the lefirkl side of the Heegard—Berger constraint
in (58) is monotonically decreasing #i’'s. Hence for a given optimalV;*, Dy}, if neither [56) nor[(57)

is tight, V;* may be increased to strictly enlarge the feasible setiof, ..., Dy, Vi, ..., Vi }\{D;, Vi }.

Proposition 1. The minimization given i (53)=(57) is a convex optimizagooblem.

See AppendiX_ B for the proof of Propositioh 1. Convexity imeplthat a local optimum is globally
optimal, and its solution can be efficiently computed by dtad convex optimization numerical tech-
niques, for instance, by the interior-point method [23#][2Vloreover, the optimization problerm (53)—-(57)
has2M variables an®@M + 1 inequality constraints, which are linear in the number desinformation
channel fading states/.

In the case where the cost functio Dy, ..., D)) is non-decreasing in each compondnt, the
constraints[(57) may be taken as tight: if at their optimdugaV;* < D}, then D; may be decreased
without violating feasibility nor increasing the cost fuion. In particular, in the remainder of the paper,
we consider minimizing the expected distortion:

M
J(D) =E[D] = pD. (58)

=1

In this case, the optimization problem can be specified momepactly as
over Dy,...,Dy (60)
subject to

1 1 1=

-5 log(ox® + 51) — 3 log Dy — 5 ; log(1 + (si41 — ;) D;) < Rx (61)

Di S (Di__ll + S; — Si_l)_l, 7= 1, . .,M (62)
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where in [62) similarlyD, = o%. For convenience in stating the optimization problem[f)(&nd in the
remainder of the papelyg refers to the extended-value logarithmic function, wheétakes on the value
—oo for non-positive arguments. Then the feasibility constii61), [(62) implyD; > 0,i=1,..., M,
and the domain qualificatiofiD; € R, . } is thus omitted from[(60). The positivity aD, can be shown
as follows. Note that (61) implies

Dy >0 (63)
1+(82+1_82)D2>07 Zzl,,M—l (64)

Consideri = M — 1. SupposeD,, ; < 0, then [64) rearranges toD,} | + sy — sy_1)"F < 0,
which contradicts[(62)[(63).D;; | + sm — sy—1)"* > Dy > 0. Next, supposeD,,_; = 0. Applying
limp,, , o+ ON (62), the inequality become#?,, < 0, which contradicts[(63). Thereford),,_; > 0,
and similar arguments apply fdp,;_», ..., D;.

IV. RATE ALLOCATION UNDER DIFFERENT FADING DISTRIBUTIONS

In this section, we apply the optimization framework depeld in Section IlI-C, and study the optimal
rate allocation when the side-information channel is sttbje different fading distributions. We first
consider the scenario when the side-information channgérences Rician fading, the pdf of which is
given by

fo(s) = %exp(—%)ﬂ) (2 M), >0 (65)

where I,(-) is the modified Bessel function of zeroth order, afids the mean channel power gain.
The Rician K-factor represents the power ratio of the line-of-sight 8 Gomponent to the non-LOS
components. Specifically,_(65) reduces to Rayleigh fadomg/A = 0, and to no fading (i.e., constant
channel power gain of) for K = co. We discretize the channel fading pdf inlé states

p; = Pr{Side information channel statg is realized (66)
Sit+1
:/ f(s)ds, i=1,....M (67)

where we truncate the pdf at,,. The quantized channel power gains are evenly spageé: (i —
Dsy /(M —1),i=1,...,M, andsy;,; = co. In the numerical experiments, the convex optimization
problems are solved using the primal-dual interior-poigoeathm described in([24, Section 11.7]. The
optimal rate allocation that minimizes the expected digiorE[D] is shown in Fig.[b and Fig.l6,
respectively, for different values ok and Ry with M = 150. For comparison, we also show in the
figures the optimal rate allocation under Nakagami fadinth whe pdf

(m/g)msm—le—ms/g

fN(S) = F(m) )

whereT'(-) is the gamma function. In Fidg] 5 and Fig. 6, the Nakagami patamn is set to be:rn =
(K +1)?/(2K + 1), under which the Nakagami distribution {68) is commonlydise approximate the
Rician distribution in [(6b)([25].

In each case of the numerical results, it is observed thaopiienal rate allocation is concentrated at
a single layer, i.e.,R; = Rx for some: = i* at s;+, while R} = 0 for all otheri # ¢*. The optimal

primal and dual variable®;, X} are plotted in Figll7 for the case of Rician fading with= 32, S =1,
Rx = 0.25, 0% = 1. In this case, the rate allocation concentrates;ats 0.55, and the complementary
slackness conditiom _(1110) stipulates that the corresmgndual variable be zero;- = 0. In Fig.[3, under
Rayleigh fading £ = 0), the optimal rate allocation concentrates at the baser laye, s;- = 0) of

the source code. In the case where the side-informationnehdras a prominent LOS component, i.e.,

s>0 (68)
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K=0 K=38 K=16 K =32

(nats/symbol)
o o
o o]

R*
o
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©
[N}
T

s

Fig. 5. Optimal rate allocation that minimizes the expedféstortion E[D]. The rate allocation corresponding to Rician fading is show

in bars, and the one corresponding to Nakagami fading wite= (K + 1)*/(2K + 1) is shown in lines. In each case, the optimal rate
allocation is concentrated at a single layex(=1, S =1, si;y =25, Rx =1, 0% = 1, M = 150).

Ry =2

Rx =1

‘ Rx =0.25
A T N
25 0.3 0.35 0.4
Si

0.15 0.2 0. 0.45 0.5

R* (nats/symbol)

Fig. 6. Optimal rate allocation that minimizes the expedatdortionE[D] with K = 16 under different values aRx (the other parameters
are the same as those in Hig. 5). In each case, the optimahltatation is concentrated at a single layer.

when K is large, s;- increases accordingly as the channel distribution is moreentrated around.
On the other hand, a large source-coding rRie decreases;:, which implies that it is less beneficial
to be opportunistic to target possible good channel canitivhenRx is large. Moreover, for each,
Nakagami fading results in a highex than its corresponding Rician fading distribution.

The minimum expectatioft[D]* that corresponds to the optimal rate allocation is showni@n [8.
For comparison, along witlii[D]*, in Fig.[8 we also show the distortion under different asstimng on

the side information. When no side information is availalte distortion is given by the rate—distortion
function for a Gaussian source [26]

Dyosi(Rx) = oy e . (69)

In the absence of side informatioPy, g1 is an upper bound t&[D]*. On the other hand, whelt' = oo,

there is no uncertainty in the side-information channeldition with S = S, and the distortion is given
by the Wyner—Ziv [[1] rate—distortion function

Dwz(Rx) = (03> + S) te 2x, (70)

In Fig.[8, a largerK decreases the expected distortiofD]*, and Nakagami fading has a lowBfD]|*
than the corresponding Rician fading distribution. In &iddi when Ry is small, E[D]* considerably
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0.8-
0.6
0.4

0.2

.............

i
0 0.5 1 15 2

Fig. 7. Optimal primal and dual variables in the expectedodi®n minimization under Rician fading withkk = 32, S = 1, Rx = 0.25,
0% = 1. The rate constrainf{61) is tight, and ~ 0.56.

8 — Rician
~~._ NoSI - Nakagami

0 0.5 1 15 2 25 3
Rx (nats/symbol)

Fig. 8. Minimum expected distortion. The dash-dot line esponds to the rate—distortion function with no side infation (No SI). The
dashed line K = oo, i.e., the side-information channel has no fading) cowas to the Wyner-Ziv (WZ) rate—distortion functios. & 10,
su =28, 0% =1, M =150.)

outperformsDy,.s1 Where no side information is available, as the reductio’ViR[X] from the side
information at the decoder is significant. However, whig is large, the improvement df[D]* over
Dno.s1 diminishes, as most of the reduction ViAR[X ] is due to the source-coding rate Biy.

In the following, we make a remark on tligstortion exponent\, defined similarly as given in [27],
which characterizes the rate of exponential decay in distoat asymptotically large encoding rates:

N2 g _lsED(RY)
RX—>oo 2RX

where Ry is the source-coding rate, aitiD(Rx)|* is the corresponding minimum expected distortion
under Rx. We note that the distortion exponefitdoes not depend on the fading distributiffs), since

(71)

Dwz(Rx) < E[D(Rx)]" < Dnosi(Rx) (72)
_ log Dwz(Rx) . log Dyo-s1(Rx)
T AT ok, (73)

Therefore, reducing the side-information channel unadstale.g., via deploying multiple antennas or
through channel state information feedback) may reducexpected distortiof| D(Rx)|* at finite Ry,
but it does not improve performance in the asymptotic regimerms of the rate of exponential decay
in the distortion as a function of the encoding réig.
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V. SINGLE-LAYER RATE ALLOCATION

In the numerical experiments presented in Sediidn 1V, thiera rate allocation concentrates at a single
codeword layer under a wide class of fading distributionghim side-information channel. Motivated by
such observations, in the following, we consider the silgyer rate allocation:

Rs = {encoding rateky at fading states} (74)

and investigate the conditions under whi€h is indeed expected-distortion—minimizing. First, we ddes
the case where the side-information channel has infinitagynaiscrete fading states; based on the discrete
fading results, we then consider continuous fading distidins.

A. Infinitely Many Discrete Fading States

Suppose the side-information channel has infinitely masgrdie fading stategs;, so, ...} with 0 <
s1 < s9 < ---. Letp; denote the probability the side-information channel takestates;, with > >~ p; =
1. Let D = [D; D, ...]" denote the set of distortion variables induced by the rdteaion scheme.
Note that the Heegard—Berger rate—distortion functioremds$ to the set of infinitely many degraded
fading states. We assume the total encoding fates finite, and hence so is the ratg for each fading
state. For admissibility, the random coding argument_ing8ction IIl] applies for each of the fading
states, and the converse in [3, Section VII] depends onlyhentdtal encoding rate but not the number
of fading states. Furthermore, it can be shown using the sgwpeoach in[[10] that the optimality of
Gaussian solution for the Gaussian side information HekeBarger problem still holds for this scenario.
The expected distortion minimization problem is given by

minimize ZpiDZ— (75)
i=1

over Dy, D,,... (76)

subject to
1 & _

) Z(log(Di_ll +5; — 8i-1) + log Di) < Rx (77)
i=1

Di S (Di__ll—i-si —Si_l)_l, 1= 1,2,... . (78)

The rate constrainE(T7) follows fror (48). Recall that tiréeeaded-value logarithm takes erc for non-
positive arguments. The constraint|(77) then impligs> 0; hence the domaid); > 0 is not explicitly
stated in the optimization problem. In Appendik C, it is simatlvat [75)-1(7B) is a convex problem, and its
KKT optimality conditions and dual function are given in Agudix(D. Next, we show that the single-layer
rate allocation[(74) is expected-distortion—minimizimg(¥3)—{78) under some conditions.

Consider the single-layer rate allocatidn|(74) with= s; for somei. Relating R; to the induced
distortion set[(48), we have

— (O')_(Q -+ Si>_1, 1.8, <8
D, = _ 79
{(<o-;f+§>eZRX+8z—5) Lirsizs o)
with the single-layer expected distortion given by
=1

In the notation, the overbar accent is used to represenesiager rate allocation. To determine optimality,
we apply the KKT complementary slackness condition (110) &) above, and it stipulates that

)\i = 0, 1: S; = S. (81)
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Next, we apply the KKT gradient conditions (109) ¢nl(79),)(8dnd the dual variables; are given as
follows:

_ 9 ] -2 N\ 2
= (5-s)b 2Ty p(ﬂ) it <3 (82)
- .

Ji8i<s;<8

A= —(s; — §)H (1 + _282;8)

(o~ + 5)e2hix

2

Sk+1 — Sk . _

+ ; 1+ , 11 8 > 8.
Z Pj H ( (0-)—(2 + 5)62RX + s, — S)

7t §§Sj<87; k: Sj§3k<3i

(83)

The dual variable: is set such that the rate constraint is tight[in (111):

2Rx

9
= X Getie © (84)

P ((0x* + 5)e2fx + 55 — 3)

wlt\

The single-layer rate allocation optimality conditiong atated in the following proposition, and its proof
is given in AppendixXE.

Proposition 2. In the expected distortion minimization problem where tige-snformation channel has
discrete fading state$s, s, . .. }, the single-layer rate allocation (Y4) at= s, for somei is optimal if
and only if

Ni>0, Vi (85)
where the variables\; are as given in[(82)[(83).

Approximately, the optimality conditions i (85) corresybto the tail summation in_(84) being greater
than the partial sum iH_(82) to the left af but smaller than that if (83) to the right ef after being
weighted by their respective factors. Next, we considerdhge when the side-information channel is
described by a continuous fading distribution, and we shioat it admits a remarkably simpler set of
sufficient conditions for single-layer rate allocation iaplity.

B. Continuous Fading Distributions

When the side-information channel has a continuous fadistyilsution, as defined in Propositidn 3
below, the corresponding expected distortion can be dgtiveugh a discretization and limiting process.
The expected distortion under continuous fading is stat@be proposition, and the details of the limiting
process can be found in its proof in Appendix F.

Proposition 3. Suppose the side-information channel has a continuousdadistribution, i.e., the cdf
F(s) is absolutely continuous with pdf(s) = F’(s). We further assume that the pffs) is continuous.
Then, under the single-layer rate allocati@®; in (74), the expected distortion is

o~ [ LB ds+/oo e /() ds. (86)

0 O+ s )eBx 45— 5

Next, Proposition 4 describes a sufficient condition fogterayer rate allocation optimality under con-
tinuous fading, and its proof is given in Appendix G. In thepusition, note that the optimality condition
(87) is motivated by considering the limiting case of theimpldity conditions [[8b) in Proposition 2.

Proposition 4. In Proposition[8,R; is expected-distortion—minimizing if

A(s) >0, s>0 (87)
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where

A(s)z(s—s)ﬁa)_fQ*S—/sf(t)(";fZ”) i, 0<s<s (88)

20°+5 o+t

As) = —(8—5)g<1+(L)

~2 | 3)e2R
oy +5)e2hx

s 2
s—t
+ [ o1+ dt, > 5
/Sﬂ)( (a;f+s)eZRx+t—s> vt

o 032 + §)efix
:[ f(s)(( (ox” +5)  ds. (90)

o’ +5)ex 45— 5)

(89)

and

N | =

C. Quasiconcave Probability Density Functions

In the following, we show that fading distributions with d¢onous, quasiconcave pdfs satisfy the
single-layer rate allocation optimality conditiofis (8@)Rropositio 4. A functiorgy(x) is quasiconcave, or
referred to as unimodal, if its superlevel séis| g(z) > «a}, for all o, are convex. Notably, most common
wireless channel fading distributions have pdfs that amsticnous and quasiconcave: e.g., Rayleigh,
Rician, Nakagami, and log-normal.

First, we set out the procedure to identify, the state at which the encoding raf&; is to be
concentrated. Leff(s) denote the pdf of the fading distribution of the side-infatian channel, and
we assume thaf(s) is continuous and quasiconcave. We denote the superlevel gés) by the interval
(54, 50) = {s | f(s) > a}, for some nonnegative scalar> 0. Specifically, we choose am* such that the
following relationship holds:

/°° S - _ds=0. (91)
sale) (037 4 sa(@®))e2Rx 4 5 — 5,(a%))

Note that the left-hand side df (91) varies continuouslyrfrpositive to negative as a candidatganges
from 0 to max f(s); therefore, there exists af that equates the expression to zero. Wessdb be the
left endpoint of the superlevel set induced &b

5 = s.(a"). (92)

With the single-layer rate allocation targétproperly defined, the following proposition identifies thass
of fading distributions under which this rate allocationojgtimal; its proof is presented in AppendiX H.

Proposition 5. Suppose the side-information channel has a continuousdadiistribution with pdff (s).
If f(s) is continuous and quasiconcave, then the single-layer afitecation R;-, with s* as given in
©2), is expected-distortion—minimizing.

As an example, consider minimizing the expected distortioder Rician fading X = 32, Rx = 0.25,
S =1, 0%=1), for which the KKT optimality conditions are illustratén Fig.[9. At optimality,a* = ji/2.
In the figure,|[s.,, s, is the ii/2-superlevel set of (s), and the regions betweef{(s) andi/2 are shaded
and labeled(A) and (B), respectively, fors, < s < s, ands > s,. The choice ofa* in (@), which
leads tos* in [@2), corresponds to the area (@f), weighted byw, ' (s), being equal to the area ¢B),
weighted byw; *(s), wherew,(s) is as defined in[(143) in Appendix]H. Solving{91) numericatlye
resulting single-layer rate allocation targgtis plotted in Fig[ 1D for different values df and Ry.

As a special case of fading distributions with continuous @nasiconcave pdfs, let us consider Rayleigh
fading. Its pdf is given by

fr(s) = (1/9)e’, s>0 (93)
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Fig. 9. KKT optimality conditions under Rician fading<(= 32, Rx = 0.25, S = 1, 0% =1). Note that the area dfA), weighted by
wy ' (s), is equal to the area of3), weighted byw; ' (s), wherews(s) is as defined in[{143) in Appendix]H.

1of— Rx =1

—~10F

-20 c 1
0 10 20

5 (dB)

Fig. 10. Optimal single-layer rate allocation targ&tunder Rician fading§ = 1, 0%=1).

whereS is the average channel power gain. Recognizing that anymjptyesuperlevel set of(s) begins
at s, = 0, we have the following corollary:

Corollary 2. When the side-information channel is under Rayleigh fad@g), the single-layer rate
allocation targets* = 0 is optimal, and the corresponding minimum expected distotis

B[Dy]" = / T WS (1/8)e R (C)) (94)

oy 4 g
whereC' £ g %¢*x, and E,(-) is the exponential integral, (v) £ [ <~ dt.

Therefore, under Rayleigh fading, the source-coding sehdoes not depend o$, Ry, ando%. It is
optimal to concentrate the entire encoding r&te at the base layes* = 0, i.e., the source is encoded
as if the side information was absent.

VI. CONCLUSIONS

We studied the problem of optimal rate allocation and digiorminimization for Gaussian source
coding under squared error distortion, when the uncomedessurce symbol is also conveyed over a
fading side-information channel. The encoder knows thentadhannel distribution but not its realization.
A layered encoding strategy is used, with each codewordr ltggeting the realization of a given
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fading state. When the side-information channel has tworelis fading states, we derived closed-form
expressions for the optimal rate allocation among the faditates and the corresponding minimum
expected distortion. The optimal rate allocation is covestgre: rate is allocated to the higher layer only
if the better fading state is highly probable. For the casenoftiple discrete fading states, the minimum
expected distortion was shown to be the solution of a conpéixnization problem. We derived an efficient
representation for the Heegard—Berger rate—distortioction, under which the number of variables and
constraints in the optimization problem is linear in the temof fading states.

Next, we considered single-layer rate allocation, andtified the conditions under which such allo-
cation is expected-distortion—minimizing, for the regpaccases of discrete as well as continuous fading
in the side-information channel. Under continuous fadimg,showed that these optimality conditions are
satisfied by distributions with continuous and quasicoadaslfs, e.g., Rayleigh, Rician, Nakagami, and
log-normal. Moreover, for Rayleigh fading, the optimaleralocation concentrates at the base layer: i.e.,
the source is encoded as if the side information was absent.

In this paper, we focused on fading distributions for whicé bptimal rate allocation consists of a single
codeword layer. For fading distributions with continuoudssthat are not quasiconcave, we conjecture that
the expected-distortion—minimizing rate allocation re@maliscrete but may comprise multiple codeword
layers. By contrast, a continuum of codeword layers is inegainnecessary when maximizing expected
capacity or minimizing expected distortion over a slowlylifag channel([2], [[13], [14]. In a broader
context, the techniques for source coding under fading-isitbemation channels may be applied to
improve quantize-and-forward schemes [28] in wirelesgvagk transmissions, where the side information
represents the auxiliary signals forwarded by a coopegyatser as received via a fading channel. In those
cases where different distortion measures other than eduaror are considered, however, different
conclusions regarding the optimal number of source-cotiggrs may result.

APPENDIX A
PROOF OFLEMMA [1]

Proof: The lemma follows from the minimum mean square error (MMSH)neate of Gaussian
random variables. LeX, W, whereW = [, ... W,]?, be distributed as

]l ) 09
The conditional distribution is Gaussian, and the corraedptg variance is
T -1
anpirw =t -] [, ) [m] e
— 0% — SwaEw  Bwx (©o7)
14 s v 2w ' Zwx)
— (VAR[X|W]™ 4 5)7". (98)
u

APPENDIX B
PrROOF OFPrROPOSITIONI

Proof: Each of the inequality constraints in_ (53)4(57) is conves.,iit is of the form
CI(Dl, ey D]\/[, ‘/1, ey VM) S CC<D1, ey DM, Vi, ey VJ\/[) (99)
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wherec,(-) is convex inDy, ..., Vi, andc.(-) is concave inDy, ..., Vy,. In particular, in [(5B), the right-
hand side of each inequality constraint depends on &fly. Being twice-differentiable, its concavity
can be verified by the second-order condition

d2 1 —2(5’@ — Si—l)

(Vii+si—sim) ' = (100)
dV2 (1 + (8i — Si—l)v;—l)3
which is negative since; > s;,_1, V;_; > 0 as given in the problem formulation, far= 2,... M.
Therefore, in[(BB)L(87), we minimize a convex function sabjto a set of convex inequality constraints,
which is a convex optimization problem. [ ]

APPENDIX C
CONVEX OPTIMIZATION PROBLEM (75)-(78)

We show that[(75)E(78) is a convex problem. For convenieletals denote the left-hand side 6f(77)
as follows:

1 o
(D) 2 3 Z(log(D;_ll + s — si1) + log Di>. (101)
i=1
We show that®(D) is convex inD. Let D, D® » 0 be two sets of element-wise positive distortion
variables. By the mean-value theorem, for some [0, 1], we have
=, 00(DW)
»(D?) = o(DW ——— /(p®» _ pW
(D) = a(D) + 3 20 (0~ pf?)

i=1

(102)

- PEDY+y(DP DY) )y h@ 0

D~ — D) (D;” — D:
+;; — (D~ ) (D - D)
o2 (DW)
> @(DW == J(p® - pM 103
_()+;5,Di(z ) (103)
which corresponds to the first-order convexity condition{103), the inequality follows from:
2
2 1 Si+1—Si s

0 _ a(m) 1= (104)

which shows that the last term in_(102) is nonnegative. Eactsttaint in [(78) is shown to be a convex set
in (Z00). Convexity is preserved under the intersection pbasibly infinite number of convex sets [24,
Section 2.3.1]. The linear objective function [n(75) is eex; therefore [(A5)E(78) is a convex optimization
problem.

APPENDIX D
KKT OPTIMALITY CONDITIONS AND DUAL FUNCTION FOR (75)—(78)

In the following, we characterize the KKT optimality conidits [29] for the expected distortion
minimization problem[(75)£(78). First, we form the Lagrany

1(D, X, ) sz ; (106)
Ly(D, A, ) 2 ZA( (D + 5= 1)) (107)

o0

Lg(D, A, M) £ lu(—% Z(log(Dz_—ll + 8; — Si—l) + log Dz) — Rx> (108)

i=1
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where X 2 [A\; X\, ...]7, and u, A are the Lagrange multipliers, or dual variables, assctiatith
inequalities [(7]7),[(78), respectively. At optimality, tgeadient of the Lagrangian vanishes:

oL Ait1 o Si+1 — i

0= =pi+ A — — = , i=1,2,... (109)
oD; (1 + (8i41 — si)Di)z 21+ (siy1 — 81)D;
and the complementary slackness conditions hold:
0= )\i(Di — (D7 4 s — si_l)_l), i=1.2, ... (110)
1 & _
0= n(—5 > (log(Di2y + 5 = si-1) +log i) — R ). (111)

i=1

The primal feasibility conditions are given by (77), (78hdathe dual feasibility conditions are
©w>0, N>0, i=1,2,.... (112)

Together, [(717),[(78), and (109)—(112) are the necessarysaffitient conditions for optimality in the
convex problem[{75)E(78).
The dual function of the expected distortion minimizatiaolgem is given by

G(A, p) =f L(D, A, ). (113)
Let D £ [D, D, ...]” denote the Lagrangian-minimizir® in (II3). ForA = 0, x > 0, D can be
determined from the KKT gradient conditioris (109):

D(A ) — M(Si—‘rl - Si) - 4(pz + )\2) -+ \//’LZ(Si—i-l _ 32‘)2 + 16<p2 + )\i))\i+1
e A(sip1 — si)(pi + Ni) ’ (114)

i=1,2,....

The dual function provides a lower bound to the solution @& ¢iptimization problem. Let* denote the
minimum expected distortion in_(75)=(78). For abythat is primal feasible by (77) (¥8), and any dual
feasibleX - 0, i > 0, we have

G\ i) < J* < J(D). (115)

Furthermore, since the optimization problem is convex atadeB8s condition holds, the duality gap is
zero:

G\, p*) = J* = J(D*) (116)

where D* and \*, u* respectively denote the optimal primal and dual variabled satisfy the KKT
optimality conditions[(717),[(78), and (109)=(112).

APPENDIX E
PROOF OFPROPOSITIONEZ

Proof: In the convex optimization problen (75)—(78), the singlgdr rate allocatiorR; is primal
feasible by [(7I7),[{78). Through construction of the dualiateles );, i in (81)-[84), the KKT gradient
conditions[(20B) and the complementary slackness comdi{ib10),[(11l1) are satisfied. The dual feasibility
conditionz > 0 follows from the non-negativity of each term in the summatin (84). Besides[(81),
dual feasibility of)\; as given in[(8b) are the remaining necessary and sufficienditions for optimality.

u
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APPENDIX F
PROOF OFPROPOSITIONS

Proof: We assume the side-information channel has a fading distib with a continuous pdf
f(s), and we partition the continuum of fading state into sulbi@ks [ug, u1], [u1,us], ... oOf lengths
Auy, Aus, ..., With Aw; = u; — u;_1, ug = 0. Let us assume > 0; in the case of = 0, it is interpreted
aslim;_,o+. The partition boundaries are chosen such that s for some index. The fading realization
falls within each subinterval with probabiligy: = fu“jil f(s)ds, fori=1,2,.... We consider two sets of
discretized fading states. In the first set, for each subiatewe discretize the fading state to its worst-case
realization:{s;} = u,, £ {ug,us,...}, i.e., we have fading state,_, with probability p;. In the second
set, in a similar manner, for each subinterval we discretimefading state to its best-case realization:
{s;} =y, = {u1,us, ...}, where probabilityp; is associated with fading state.

Next, we apply the single-layer rate allocatiRn to the worst-case states,, the continuous distribution
f(s), and the best-case statas. Since the decoder may arbitrarily add noise to the sidernétion
channel, the expected distortions undey are ordered as follows:

Jo(Rs) < Je(Rs) < Ju(Rs) (117)

where J,(Rs), J.(Rs), Jw(Rs) represent the expected distortions undey for the best-case states,
continuous distribution, and worst-case states, respdyti

Finally, consider the inequalities il (117) in the limit ahall subintervals agu| — 0, where||ju| =
max Au;. As f(s) is continuous, by the mean-value theorem, we have

P = /u f(s)ds = (u; —wi—1) f(u]) (118)

for someu! € [u;_1,u;] that achieves the mean value ff) within the partition[u;_1, u;]. Apply (118)

to (79), [80), we have

7—1 0o
: : (wi — ui—1) f(u]) (wi — wim1) f(u)
1 Jb(Rs) = 1 : : 119
Jull 0 o(Rs) Jull 50 ; o+ " z:: (0> +3)e2Bx 4 u; — 5 (119)
0 Ox +u s (o +35)e?Px+u—35
—1 0o
. (g — wimy) f(uy) (g — wi—r) f(uy)
- i L 121
Hulnrgo ; o+ Ui * z:: (0> +38)e2Bx +u;  — 5 (121)
= lim Ju(Rs). (122)
[lul|—0
Since from [(1IB)£(122) the limits of,(Rs), Jw(Rs) coincide and equal (120), frorh (1117)(R5) also
equals this limit, which is given by (86) in the main body oéttext. [ |
APPENDIX G

PROOF OFPROPOSITIONZ

Proof: Consider the set of best-case and worst-case discretidetjfatates described in Appendix F.
We have the following inequalities:
- (@ () (o) (d)

Gu(Aw), ) < Jp < J7 < T3 < Ju(Rs) (123)
where J;, J7, J; denote the minimum expected distortion under the best-stdes, continuous distri-
bution, and worst-case states, respectivély(-) is the dual function under the best-case stais;,)
denotes applying\(-) on u;, element-wise; and,,(R;) is as defined in((117). In_(123})), (c) follow
from the ordering on the sets of the fading states, @nd(d) follow from the duality boundg (115)(uy,)
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is dual feasible by the assumptioris) > 0; j is dual feasible since the integrand [n](90) is nonnegative;
andR;, being a valid rate allocation, induces a set of distortiariables that is primal feasible.
Next, we considers, (A(uy), i) in the limit of |lu| — 0. Writing (II3) in terms of[(105), recall that

Gb (S\(Hb), IL_L) = L1 (f) (S\(Ub), [L), S\(ub), /1) + L2 (]f) (S\(Ub), ﬂ), S\(llb), [L)
+ L3 (f)(;\(llb), [L), S\(Hb), [L)

where D(\(uy,), /1) is as given in[(114). Note that eadd; (\(uy), 7)) depends om(u;) and A(u;y1).
Since A(s) is continuous and differentiable over> 0, its values at the partition boundaries are related
through the mean-value theorem:

(124)

Muizr) = Mug) + (wisr — ug) N (u]) (125)
for someu! € [u;, u;,1]. Consider the first term if (124):
H1111HH—1>0 Ll (]f) (5‘<ub>7 /1) ’ 5‘<ub>7 /1) = ||1111||I£l>o Z piﬁi (;\(ub>7 /j) (126)
=1
_ [ "(u) = f(u) + /2
=/ f(u) o) du (127)
7 fw) = f(u)
Jo o +u dut /8 (0> + 5)e2Bx 4y — 3 du (128)
= ||li”m0 Jw(Rs) (129)

where [1277) follows from applyind (118, (125) fo (126); afi@9) follows from [I20). In[(IZ7))\(-) is
as defined in[(88)[(89), and its derivative is given as fodow

-2

L5 —2s—o0y o +s

V(s) = I fi(s = 5)
By T e T s

+/ 2f(t dt, s> 5.
5 ()((0)}2+s)62Rx+t—s)2

Substituting [(8B), [(89),[(I30)[(IB1) intd_(127), note thia¢ factor in the integrand (defined &%s)
below) simplifies to the following expressions which aredpdndent off (s):

D(s) 2 X _2§ 8 /2 (132)
e+ )7 0<s<s
B {((;—()}2 +5)e*fix 45 —35) 7, s>5. (133)

For the second term in_(1R4), note thgt:;) = 0, and henceé = 7 can be excluded from the following
summation:

lim L, (f) (AMap), 1), AMay), 2)

f[uf—=0

i o . -1 134
= H,111HH_1>0 Z )\(ul) (Dz ()\(llb), ﬂ) - (Di—l ()\(ub), ,a) + u; — ui_1> ) ( )
= /\_ Au) (D' (u) + D(u)?) du (135)

- (136)
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where Dy(-) £ 0%, and [118),[(I25) are applied il (134); the notatifgsn- du in (I38) is defined as

/\g(u) du & /Ogg(u) du+/:g(u) du (137)

convergence of the partition summation follows frdfits), A(s), N'(s) being continuous when the mean-
value theorem is applied t®;(-) in (I14); and [(I36) follows fromD’(s) + D(s)* = 0 over the intervals
0 < s < 5 ands > 5. Finally, consider the third term in_(1R4):

lim Ls (f) (X(ub), ﬁ), A(uy), [L)

Jull >0
L o - o (138)
= Hllli”IgO i (‘5 Z <10g<Di—1 (Aup), i)~ +u; — uz’—l) +log D (A(uy), :“)) - RX)
! [ D+ g(fj)) du+ i(Rx — Ry) (139)
0 (140)

where [1I8),[(125) are applied in (138); the last terniin §88ows from noting thatD;_;(-) — (o3> +
5)"tandD;(-) — ((o—)‘(2+§)e2RX)_1; the notation/, , - du is as given in[(137), and its convergence follows
from continuity of f(s), A(s), X'(s); (14Q) follows fromD(s)+D'(s)/D(s) = 0 over the interval§ < s <

s ands > 5. Combining [124),[(129) [(136)[_(I40), we hav@na, o Gy (A(up), i) = limay—o Jw(Rs).
Since the inequalities i _(123) coincide in the limit, thenimum expected distortiosi* is given by [128),
which is achievable byR; by Propositiori B. [

APPENDIX H
PROOF OFPROPOSITIONS

Proof: We show that the single-layer rate allocation satisfies fitanality conditions[(8]7) in Propo-

sition[4. It will be useful to comparég(s) againstii/2, so we bringji/2 inside in the integrals in (88),
(89), and rewrite the expressions as

Ms) _ [ f() — /2
) —/g wn () dt (141)

w

wheren =1 for 0 < s < 5, n = 2 for s > s, with w,(s) > 0 given as follows:
wi(s) = (05> +5)° (142)
ws(s) = (052 + 5)e2™ + 5 — 5)°, (143)
We now show the non-negativity df (141). Solving fet in (1) and comparing its solution against the
right-hand side of[(90), we recognize that = i/2. Thus for0 < s < 5%, being outside of the superlevel
set[s,, sp), we havef(s) < i/2 in the integrand in[(141): hencgs) > 0. Fors > 5* buts < s, we have
f(s) > [i/2: henceA(s) > 0. Finally, for s > s, note that\(s)/w.(s) is monotonically decreasing, but

it never descends below zeridn, ., A(s)/ws(s) = 0, which is a consequence of haw is constructed
as specified in[(91). [ |

ACKNOWLEDGMENT

The authors thank Erik Ordentlich for providing detaileeédback on the manuscript and his valuable
technical suggestions during the review process.



23

REFERENCES

[1] A. D. Wyner and J. Ziv, “The rate-distortion function fepurce coding with side information at the decod#EE Trans. Inf. Theory
vol. 22, no. 1, pp. 1-10, Jan. 1976.
[2] S. Shamai (Shitz) and A. Steiner, “A broadcast approawhaf single-user slowly fading MIMO channelEEE Trans. Inf. Theory
vol. 49, no. 10, pp. 2617-2635, Oct. 2003.
[3] C. Heegard and T. Berger, “Rate distortion when siderimiation may be absentlEEE Trans. Inf. Theoryol. 31, no. 6, pp. 727-734,
Nov. 1985.
[4] A.D.Wyner, “The rate-distortion function for sourceding with side information at the decoder—II: General sesttinform. Contr,
vol. 38, pp. 60-80, Jul. 1978.
[5] R. M. Gray, “A new class of lower bounds to information eatof stationary sources via conditional rate-distortionctions,” |IEEE
Trans. Inf. Theoryvol. 19, no. 4, pp. 480-489, Jul. 1973.
[6] R. Zamir, “The rate loss in the Wyner—Ziv problemEEE Trans. Inf. Theoryvol. 42, no. 6, pp. 2073—-2084, Nov. 1996.
[7] M. Fleming and M. Effros, “On rate-distortion with mixetypes of side information,IEEE Trans. Inf. Theoryvol. 52, no. 4, pp.
1698-1705, Apr. 2006.
[8] Y. Steinberg and N. Merhav, “On successive refinementtiier Wyner-Ziv problem,”IEEE Trans. Inf. Theoryvol. 50, no. 8, pp.
1636-1654, Aug. 2004.
[9] C. Tian and S. N. Diggavi, “On multistage successive &gfient for Wyner—Ziv source coding with degraded side inftiams,” |IEEE
Trans. Inf. Theoryvol. 53, no. 8, pp. 2946-2960, Aug. 2007.
[10] ——, “Side-information scalable source codindZEE Trans. Inf. Theoryvol. 54, no. 12, pp. 5591-5608, Dec. 2008.
[11] M. Feder and N. Shulman, “Source broadcasting with omkm amount of receiver side information,” Proc. IEEE Inform. Theory
Workshop Bangalore, India, Oct. 2002, pp. 127-130.
[12] N. Shulman and M. Feder, “Static broadcasting,’Proc. IEEE Int. Symp. on Inform. Theorgorrento, Italy, Jun. 2000, p. 23.
[13] C. Tian, A. Steiner, S. Shamai (Shitz), and S. N. Diggé8uccessive refinement via broadcast: Optimizing expkdistortion of a
Gaussian source over a Gaussian fading chanHeEE Trans. Inf. Theoryvol. 54, no. 7, pp. 2903-2918, Jul. 2008.
[14] C.T. K. Ng, D. Gunduz, A. J. Goldsmith, and E. Erkip,i&brtion minimization in gaussian layered broadcast rgduith successive
refinement,”IEEE Trans. Inf. Theoryvol. 55, no. 11, pp. 5074-5086, Nov. 2009.
[15] A. Steiner and S. Shamai (Shitz), “Achievable rateswiitperfect transmitter side information using a broadt@stsmission strategy,”
IEEE Trans. Wireless Commurvol. 7, no. 3, pp. 1043-1051, Mar. 2008.
[16] S. Shamai (Shitz), S. Verdd, and R. Zamir, “Systemédisy source/channel codingEEE Trans. Inf. Theoryvol. 44, no. 2, pp.
564-579, Mar. 1998.
[17] D. Gunduz, J. Nayak, and E. Tuncel, “Wyner—Ziv codingobroadcast channels using hybrid digital/analog trassiom,” in Proc.
IEEE Int. Symp. on Inform. Theagrforonto, Canada, Jul. 2008, pp. 1543—-1547.
[18] J. Nayak, E. Tuncel, and D. Gindiiz, “Wyner—Ziv codimger broadcast channels: Digital scheméBEE Trans. Inf. Theoryvol. 56,
no. 4, pp. 1782-1799, Apr. 2010.
[19] P. Ishwar, R. Puri, K. Ramchandran, and S. S. Pradhan, r&e-constrained distributed estimation in unreliatdassr networks,”
IEEE J. Sel. Areas Commurvol. 23, no. 4, pp. 765-775, Apr. 2005.
[20] J. Chen and T. Berger, “Robust distributed source @ptilEEE Trans. Inf. Theoryvol. 54, no. 8, pp. 3385-3398, Aug. 2008.
[21] O. Simeone, O. Somekh, E. Erkip, H. V. Poor, and S. Sha8hitz), “Robust communication via decentralized procegssvith
unreliable backhaul linksJEEE Trans. Inf. Theoryvol. 57, no. 7, pp. 4187-4201, Jul. 2011.
[22] A. H. Kaspi, “Rate-distortion function when side-imfoation may be present at the decoddEEE Trans. Inf. Theoryvol. 40, no. 6,
pp. 2031-2034, Nov. 1994.
[23] J. RenegarA Mathematical View of Interior-Point Methods in Convex @ptation Philadelphia, PA: MPS-SIAM, 2001.
[24] S. Boyd and L. Vandenbergh€onvex Optimization Cambridge, UK: Cambridge University Press, 2004.
[25] G. L. Stiber,Principles of Mobile Communication Norwell, MA: Kluwer Academic Publishers, 2000.
[26] T. M. Cover and J. A. Thomaglements of Information Theary New York, NY: Wiley-Interscience, 1991.
[27] J. N. Laneman, E. Martinian, G. W. Wornell, and J. G. Aptspoulos, “Source-channel diversity for parallel chalsif IEEE Trans.
Inf. Theory vol. 51, no. 10, pp. 3518-3539, Oct. 2005.
[28] M. Katz and S. Shamai (Shitz), “Cooperative schemesafepurce and an occasional nearby relay in wireless netWdESE Trans.
Inf. Theory vol. 55, no. 11, pp. 5138-5160, Nov. 2009.
[29] D. G. LuenbergerQptimization by Vector Space MethodsNew York, NY: Wiley-Interscience, 1969.

Chris T. K. Ng (S'99-M'07) received the B.A.Sc. degree in engineeringiscé from the University of Toronto, Toronto, ON, Canada. He
received the M.S. and Ph.D. degrees in electrical engimgdrom Stanford University, Stanford, CA. Dr. Ng was a Membé Technical
Staff at Bell Labs, Alcatel-Lucent, in Holmdel, NJ. From 20® 2008, he was a Postdoctoral Researcher in the Deparwhétectrical
Engineering and Computer Science at the Massachusetisitesif Technology, Cambridge, MA. His research interésttude cooperative
communications, joint source-channel coding, crossklayieeless network design, optimization, and network infation theory. Dr. Ng
was a recipient of the 2007 IEEE International Symposiumrdariation Theory Best Student Paper Award, and a recig&at Croucher
Foundation Fellowship in 2007.



24

Chao Tian (S'00-M’05) received the B.E. degree in Electronic Engiiregefrom Tsinghua University, Beijing, China, in 2000 artM.S.
and Ph.D. degrees in Electrical and Computer Engineerimm €€ornell University, Ithaca, NY in 2003 and 2005, respetji

Dr. Tian was a postdoctoral researcher at Ecole Polyteaknkederale de Lausanne (EPFL) from 2005 to 2007. He joine®ITAT
Labs—Research, Florham Park, New Jersey in 2007, where hewisa Senior Member of Technical Staff. His research intsrexlude
multi-user information theory, joint source-channel cmgiquantization design and analysis, as well as imagedvideling and processing.
Dr. Tian is currently an associated editor for IEEE Signaldessing Letters.

Andrea Goldsmith is a professor of Electrical Engineering at Stanford Ursitgr and was previously an assistant professor of Eledtric
Engineering at Caltech. She co-founded Accelera MobileaBband, Inc. and Quantenna Communications Inc., and ha®opse/ held
industry positions at Maxim Technologies, Memorylink Cargtion, and AT&T Bell Laboratories. Dr. Goldsmith is a Fes¥l of the IEEE
and of Stanford, and she has received several awards for ¢r;, mcluding the IEEE Communications Society and Infotiora Theory
Society joint paper award, the National Academy of EngiimgeGilbreth Lecture Award, the IEEE Wireless CommunicasioTechnical
Committee Recognition Award, the Alfred P. Sloan Fellowstand the Silicon Valley/San Jose Business Journal’s Woafdnfluence
Award. Her research includes work on wireless informatiod aommunication theory, multihop wireless networks, dtem radios, sensor
networks, distributed control systems, “green” wirelegstam design, and applications of communications and kfmoaessing to biology
and neuroscience. She is author of the book “Wireless Corinations” and co-author of the books “MIMO Wireless Comnuations” and
“Principles of Cognitive Radio,” all published by Cambra&dniversity Press. She received the B.S., M.S. and Ph.Dedsgn Electrical
Engineering from U.C. Berkeley.

Dr. Goldsmith has served as associate editor for the IEERSAGtions on Information Theory and as editor for the Jdwndoundations
and Trends in Communications and Information Theory and eétwerks. She previously served as an editor for the IEEE Skretions on
Communications and for the IEEE Wireless Communicationgd#me, as well as guest editor for several IEEE journal aadgamnine special
issues. Dr. Goldsmith participates actively in committaed conference organization for the IEEE Information Thieord Communications
Societies and has served on the Board of Governors for batietes. She is a Distinguished Lecturer for both societsesved as the
President of the IEEE Information Theory Society in 200rfded and chaired the student committee of the IEEE InfoomaEheory
society, and currently chairs the Emerging Technology Cdtem and is a member of the Strategic Planning Committeehén I[EEE
Communications Society. At Stanford she received the ineldJniversity Postdoc Mentoring Award, served as Chaiitofaculty Senate,
and currently serves on its Faculty Senate and on its BudgmipgG

Shlomo Shamai (Shitz) received the B.Sc., M.Sc., and Ph.D. degrees in electricgineering from the Technion—Israel Institute of
Technology, in 1975, 1981 and 1986 respectively.

During 1975-1985 he was with the Communications Researbh, lia the capacity of a Senior Research Engineer. Since A886 with
the Department of Electrical Engineering, Technion—Iktastitute of Technology, where he is now a Technion Digtisged Professor,
and holds the William Fondiller Chair of Telecommunicagoilis research interests encompasses a wide spectrumicg topnformation
theory and statistical communications.

Dr. Shamai (Shitz) is an IEEE Fellow, and the recipient of2B&1 Claude E. Shannon Award. He is the recipient of the 1999der Pol
Gold Medal of the Union Radio Scientifique InternationaldR@l), and a co-recipient of the 2000 IEEE Donald G. Fink PRaper Award,
the 2003, and the 2004 joint IT/COM societies paper awarel, 2007 IEEE Information Theory Society Paper Award, the 2B08pean
Commission FP7, Network of Excellence in Wireless COMmatiims (NEWCOM++) Best Paper Award, and the 2010 ThomsoneRgu
Award for International Excellence in Scientific Researtle is also the recipient of 1985 Alon Grant for distinguishaaing scientists
and the 2000 Technion Henry Taub Prize for Excellence in &ebe He has served as Associate Editor for the Shannon ytuéahe
IEEE Transactions on Information Theory, and has also setwice on the Board of Governors of the Information Theorgi€ty. He is
a member of the Executive Editorial Board of the IEEE Tratieas on Information Theory.



	I Introduction
	II System Model
	II-A Source Coding with Fading Side-Information Channel
	II-B Heegard–Berger Rate–Distortion Function

	III Minimum Expected Distortion
	III-A Gaussian Source under Squared Error Distortion
	III-B Optimal Distortion Trade-off and Rate Allocation
	III-C Multiple Discrete Fading States

	IV Rate Allocation Under Different Fading Distributions
	V Single-Layer Rate Allocation
	V-A Infinitely Many Discrete Fading States
	V-B Continuous Fading Distributions
	V-C Quasiconcave Probability Density Functions

	VI Conclusions
	Appendix A: Proof of Lemma 1
	Appendix B: Proof of Proposition 1
	Appendix C: Convex Optimization Problem (75)–(78)
	Appendix D: KKT Optimality Conditions and Dual Function for (75)–(78)
	Appendix E: Proof of Proposition 2
	Appendix F: Proof of Proposition 3
	Appendix G: Proof of Proposition 4
	Appendix H: Proof of Proposition 5
	References
	Biographies
	Chris T. K. Ng
	Chao Tian
	Andrea Goldsmith
	Shlomo Shamai (Shitz)


