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Abstract

An encoder, subject to a rate constraint, wishes to describea Gaussian source under squared error distortion.
The decoder, besides receiving the encoder’s description,also observes side information consisting of uncompressed
source symbol subject to slow fading and noise. The decoder knows the fading realization but the encoder knows
only its distribution. The rate–distortion function that simultaneously satisfies the distortion constraints for allfading
states was derived by Heegard and Berger. A layered encodingstrategy is considered in which each codeword
layer targets a given fading state. When the side-information channel has two discrete fading states, the expected
distortion is minimized by optimally allocating the encoding rate between the two codeword layers. For multiple
fading states, the minimum expected distortion is formulated as the solution of a convex optimization problem
with linearly many variables and constraints. Through a limiting process on the primal and dual solutions, it is
shown that single-layer rate allocation is optimal when thefading probability density function is continuous and
quasiconcave (e.g., Rayleigh, Rician, Nakagami, and log-normal). In particular, under Rayleigh fading, the optimal
single codeword layer targets the least favorable state as if the side information was absent.

Index Terms

Convex optimization, distortion minimization, fading channel, Heegard–Berger, rate–distortion function, side
information, source coding.

I. INTRODUCTION

IN lossy data compression, side information at the decoder can help reduce the distortion in the
reconstruction of the source [1]. The decoder, however, mayhave access to the side information only

through an unreliable channel. For example, in distributedcompression over wireless sensor networks,
correlated sensor measurements from a neighboring node maybe available to the decoder through a
fading wireless channel. In this work, we consider a Gaussian source where the encoder is subject to
a rate constraint and the distortion metric is the mean squared error of the reconstruction. In addition
to the compressed symbol, we assume that the decoder observes the original symbol through a separate
analog fading channel. We assume, similar to the approach in[2], that the fading is quasistatic, and
that the decoder knows the fading realization but the encoder knows only its distribution. The rate–
distortion function that dictates the rate required to satisfy the distortion constraint associated with each
fading state is given by Heegard and Berger in [3]. We consider a layered encoding strategy based on
the uncertain fading realization in the side-information channel, and optimize the rate allocation among
the possible fading states to minimize the expected distortion. In particular, we formulate the distortion
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minimization as a convex optimization problem, and developan efficient representation for the Heegard–
Berger rate–distortion function under which the optimization problem size is linear in the number of
discrete fading states. Furthermore, we identify the conditions under which single-layer rate allocation is
expected-distortion–minimizing, and extend these optimality conditions for continuous fading distributions
through a limiting process on the primal and dual solutions in the optimization. We show that single-
layer rate allocation is optimal for fading distributions with continuous, quasiconcave probability density
functions such as Rayleigh, Rician, Nakagami, and log-normal.

When the side-information channel exhibits no fading, the distortion is given by the Wyner–Ziv rate–
distortion function [4]. Rate–distortion is considered in[5], [6] when the side information is also available
at the encoder, and in [7] when there is a combination of decoder-only and encoder-and-decoder side
information. Successive refinement source coding in the presence of side information is considered in
[8], [9]. The side-information scalable rate–distortion region is characterized in [10], in which the user
with inferior side information decodes an additional layerof the source-coding codeword. Lossless source
coding with an unknown amount of side information at the decoder is considered in [11], in which a
fixed data block is broadcast to different users in a variablenumber of channel uses [12]. In [13], [14],
expected distortion is minimized in the transmission of a Gaussian source over a slowly fading channel in
the absence of channel state information at the transmitter(CSIT). Broadcast transmission with imperfect
CSIT is considered in [15]. Another application of source coding with uncertain side information is in
systematic lossy source-channel coding [16] over a fading channel without CSIT. For example, when
upgrading legacy communication systems, a digital channelmay be added to augment an existing analog
channel. In this case the analog reception then plays the role of side information in the decoding of the
description from the digital channel. In [17], [18], hybriddigital/analog and digital transmission schemes
are considered for Wyner–Ziv coding over broadcast channels. The system model studied in this paper is
also related to distributed source coding over multiple links [19], [20] where, besides source coding over
a finite-capacity reliable link, noisy versions of the source are described through additional backhaul links
with infinite capacity but that are subject to random failure. At the decoder, the realized quality of the
side information is determined by the number of backhaul links that are successfully connected. Similar
models are considered in [21] for distributed unreliable relay communications.

The remainder of the paper is organized as follows. The system model is described in Section II.
Section III derives the minimum expected distortion and presents the convex optimization framework when
the side-information channel has discrete fading states. Section IV investigates the optimal rate allocation
under different fading distributions in the side-information channel. Section V considers the optimality
of single-layer rate allocation under discrete fading states as well as continuous fading distributions.
Conclusions are given in Section VI.

II. SYSTEM MODEL

A. Source Coding with Fading Side-Information Channel

Consider the system model shown in Fig. 1. An encoder wishes to describe a real Gaussian source
sequence{X} under a rate constraint ofRX nats per symbol, where the sequence of random variables
are independent identically distributed (i.i.d.) withX ∼ N (0, σ2

X). The decoder, in addition to receiving
the encoder’s description, observes side informationY ′, whereY ′ =

√
SX +Z, with Z ∼ i.i.d. N (0, 1).

Hence the quality of the side information depends onS, the power gain of the side-information channel.
We assumeS is a quasistatic random variable: it is drawn from some cumulative distribution function (cdf)
F (s) at the beginning of each transmission block and remains unchanged through the block. The decoder
knows the realization ofS, but the encoder knows only its distributionF (s). When the fading distribution
is continuous, it is characterized by the probability density function (pdf) f(s) = F ′(s). The decoder
forms an estimate of the source and reconstructs the sequence {X̂}. We are interested in minimizing the
expected squared error distortionE[D] of the reconstruction, whereD = (X − X̂)2.
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Fig. 1. Source coding with fading side-information channel.

Suppose the side-information channel hasM discrete fading states. Let the probability distribution of
S be given as follows:

Pr{S = si} = pi, i = 1, . . . ,M,

M
∑

i=1

pi = 1 (1)

where thesi’s are enumerated in ascending order0 ≤ s1 < s2 < · · · < sM . Let Y ′
i denote the side

information under fading statesi

Y ′
i ,

√
siX + Z, i = 1, . . . ,M. (2)

Note that the set of side information random variables are stochastically degraded. Let̂Xi be the recon-
struction when side informationY ′

i is available at the decoder, andDi be the corresponding squared error
distortion. The minimum expected distortion under rate constraintRX is then given by

E[D]∗ = min
D :R(D)≤RX

pTD (3)

wherep , [p1 . . . pM ]T , D , [D1 . . .DM ]T , andR(D) is the rate–distortion function that simultaneously
satisfies the distortion setD.

B. Heegard–Berger Rate–Distortion Function

The rate–distortion function that dictates the rate required to simultaneously satisfy a set of distortion
constraints associated with a set of degraded side-information random variables is given by Heegard and
Berger in [3] (an alternate form forM = 2 is described in [22]). When the side information random
variables satisfy the degradedness conditionX ↔ YM ↔ YM−1 ↔ · · · ↔ Y1, the rate–distortion function
is

RHB(D) = min
WM

1
∈P (D)

M
∑

i=1

I(X ;Wi|Yi,W
i−1
1 ) (4)

whereW i
1 denotes the vectorW1, . . . ,Wi. The minimization takes place overP (D), the set of allWM

1

jointly distributed withX, Y M
1 such that:

WM
1 ↔ X ↔ YM ↔ YM−1 ↔ · · · ↔ Y1 (5)

and there exists decoding functionŝXi(Yi,W
i
1)’s under given distortion measuresdi’s that satisfy

E[di(X, X̂i)] ≤ Di, i = 1, . . . ,M. (6)

As noted in [3], sinceRHB(D) depends onX, Y M
1 only through the marginal distributionp(x, yi),

i = 1, . . . ,M , the degradedness of the side information need not be physical. We constructY M
1 to have

the same marginals asY ′M
1 by settingp(yi|x) = p(y′i|x), i = 1, . . . ,M . The rate–distortion functionR(D)

in (3) is then given by the Heegard–Berger rate–distortion function (4) with squared error distortion
measuresdi(X, X̂i) = (X − X̂i)

2.



4

III. M INIMUM EXPECTED DISTORTION

A. Gaussian Source under Squared Error Distortion

The Heegard–Berger rate–distortion functionRHB(D1, . . . , DM) for a Gaussian source under squared
error distortion is given in [3], [9], [10]. ForM = 2, [3] describes the Gaussian rate–distortion function
where the worst fading state corresponds to no side information, and [9] considers side information
with different quality levels. The Gaussian Heegard–Berger rate–distortion function is considered in [10]
for M > 2. However, the representations ofRHB(D1, . . . , DM) described in [3], [9] are characterized
by exponentially-many distinct regions, and [10] involvesoptimal Gaussian random variables whose
variances are determined by an algorithmic procedure. These characterizations, though complete, are not
amenable to efficient minimization of the expected distortion. In this section, we derive a representation
for RHB(D1, . . . , DM) that can be incorporated in an optimization framework. In particular, instead of
describing the achievable distortion set by its exponentially-many segments of boundaries, we construct a
characterization that comprises a sequence of convex inequalities, each relating the achievable distortion
between two adjacent fading states. Consequently, we formulate the distortion minimization as a convex
optimization problem where the number of variables and constraints are linear inM . First we consider
the case when the side-information channel has only two discrete fading states (M = 2); in Section III-C
we extend the analysis to multiple fading states whereM > 2.

When the side-information channel has two fading states, the encoder constructs a source-coding scheme
that consists of two layers of codewords. The base layer is designed to be decodable under either channel
condition, while the top layer is only decodable under the more favorable channel realization. We derive
the rate requirements of the two codeword layers, and optimally allocate the encoding rateRX between
them to minimize the expected distortion. ForM = 2, the Heegard–Berger rate–distortion function is
given by

RHB(D1, D2) = min
W1,W2∈P (D1,D2)

{I(X ;W1|Y1) + I(X ;W2|Y2,W1)}. (7)

For a Gaussian source under a squared error distortion measure, a jointly Gaussian codebook is optimal
[3], [9], [10]. WhenWM

1 , X are jointly Gaussian, the mutual information expressions in (7) evaluate to

I(X ;W1|Y1) + I(X ;W2|Y2,W1)

=
1

2
log(VAR[X|Y1])−

1

2
log

VAR[X|Y1,W1]

VAR[X|Y2,W1]
− 1

2
log(VAR[X|Y2,W1,W2]) (8)

= −1

2
log(s1 + σ−2

x )− 1

2
log
(

1 + (s2 − s1)VAR[X|Y1,W1]
)

− 1

2
log(VAR[X|Y2,W1,W2]) (9)

where log is the natural logarithm, and (9) follows from expanding theconditional variance expressions
by applying Lemma 1 and Corollary 1. The proof of Lemma 1 is given in Appendix A.

Lemma 1. Let X,W k
1 be jointly Gaussian random variables. IfY =

√
sX + Z, whereZ ∼ N (0, 1) is

independent fromX,W k
1 , then

VAR[X|Y,W k
1 ] =

(

VAR[X|W k
1 ]

−1 + s
)−1

. (10)

Corollary 1. Let Yj =
√
sjX + Z, Yi =

√
siX + Z.

VAR[X|Yi,W
k
1 ]

VAR[X|Yj,W k
1 ]

= 1 + (sj − si)VAR[X|Yi,W
k
1 ]. (11)

To characterize the Heegard–Berger rate–distortion function RHB(D1, D2), we substitute (9) in (7), and
minimize overW1,W2

RHB(D1, D2) = −1

2
log(s1 + σ−2

x ) + min
W1

{

−1

2
log
(

1 + (s2 − s1)VAR[X|Y1,W1]
)

+min
W2

{

−1

2
log(VAR[X|Y2,W1,W2])

}

}

.
(12)
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Note thats2 > s1 ≥ 0 by assumption. Accordingly, in the inner minimization in (12), RHB(D1, D2)
is decreasing inVAR[X|Y2,W1,W2]. Hence the choice ofW2 is optimal whenVAR[X|Y2,W1,W2] is
increased until one of its upper bound constraints is tight

max
W2

VAR[X|Y2,W1,W2] = min(VAR[X|Y2,W1], D2). (13)

The optimalW ∗
2 that achieves (13) is presented subsequently. The first termin the min(·) expression

in (13) follows from the non-negativity of the mutual information I(X ;W2|Y2,W1), and the second one
follows from the distortion constraint on̂X2 as given in (6)

VAR[X|Y2,W1,W2] = E
[(

X − X̂2(Y2,W1,W2)
)2] ≤ D2. (14)

Applying Corollary 1, the first term in (13) evaluates to

VAR[X|Y2,W1] =
(

VAR[X|Y1,W1]
−1 + s2 − s1

)−1
. (15)

Under optimalW2, therefore, the Heegard–Berger rate–distortion functionin (12) reduces to

RHB(D1, D2) = −1

2
log(s1 + σ−2

x ) + min
W1

{

−1

2
log
(

1 + (s2 − s1)VAR[X|Y1,W1]
)

− 1

2
logmin

(

(

VAR[X|Y1,W1]
−1 + s2 − s1

)−1
, D2

)}

.

(16)

The maximization overW1 in (16) has a similar structure as the one previously considered in (13). Specif-
ically, RHB(D1, D2) in (16) is decreasing inVAR[X|Y1,W1]. HenceW1 is optimal whenVAR[X|Y1,W1]
is increased until it meets one of its upper bound constraints

max
W1

VAR[X|Y1,W1] = min(VAR[X|Y1], D1) (17)

where the first term in (17) follows from the non-negativity of I(X ;W1|Y1), and the second one from the
distortion constraint on̂X1

VAR[X|Y1,W1] = E
[(

X − X̂1(Y1,W1)
)2] ≤ D1. (18)

Next, we consider the construction ofW1,W2 that achieves the rate–distortion function, namely, jointly
Gaussian random variables with conditional variances thatsatisfy (13), (17). We construct the optimal
distributionW ∗

1 ,W
∗
2 as follows:

W ∗
1 =

√
a1X +N1 (19)

W ∗
2 =

√
a2X +N2 (20)

whereNi ∼ i.i.d. N (0, 1), i = 1, 2, is independent fromX, Y1, Y2, and a1, a2 are nonnegative scalars
whose values are to be specified. For notational convenience, we define

V1 , VAR[X|Y1,W
∗
1 ] (21)

= min
(

(σ−2
X + s1)

−1, D1

)

(22)

where (22) follows from (17). Substitute (19) in (21), anda1 evaluates to

a1 = V −1
1 − σ−2

X − s1. (23)

Similarly, to identify the optimalW ∗
2 , we define

V2 , VAR[X|Y2,W
∗
1 ,W

∗
2 ] (24)

= min
(

(V −1
1 + s2 − s1)

−1, D2

)

(25)
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which follows from (13), (15). Substitute (20) in (24), anda2 evaluates to

a2 = V −1
2 − V −1

1 − (s2 − s1). (26)

To provide an interpretation regarding the source encodingrates under different fading states of the
side-information channel, we introduce the notations

R1 , I(X ;W ∗
1 |Y1) (27)

=
1

2
log

(σ−2
X + s1)

−1

V1

(28)

R2 , I(X ;W ∗
2 |Y2,W

∗
1 ) (29)

=
1

2
log

(V −1
1 + s2 − s1)

−1

V2
(30)

where (28), (30) follow from expanding the mutual information expressions applying (23), (26). We
interpretR1 as the rate of a source coding base layer that describesX when the side-information quality
is that ofY1 or better. On the other hand,R2 is the rate of a top layer that describesX only when the
decoder has the better side informationY2. Finally, we substitute (28), (30) in (7) to obtain the two-layer
Heegard–Berger rate–distortion function

RHB(D1, D2) = R1 +R2 (31)

= −1

2
log(σ−2

X + s1)−
1

2
log V2 −

1

2
log
(

1 + (s2 − s1)V1

)

(32)

whereV1, V2 are as defined in (21), (24) above. The derivation of (32) depends on the side information only
through the marginalsp(yi|x)’s; therefore, the rate–distortion function applies as well to the stochastically
degraded side informationY ′

M , . . . , Y ′
1 .

B. Optimal Distortion Trade-off and Rate Allocation

Under a source-coding rate constraint ofRX , the Heegard–Berger feasible distortion region is described
by

D(RX) , {(D1, D2) | RHB(D1, D2) ≤ RX}. (33)

The distortion regions under different values ofRX are illustrated in Fig. 2. SettingRHB(D1, D2) = RX ,
the dominant boundary of{(D1, D2)} defines the Pareto optimal trade-off curve (shown in bold in Fig. 2)
between the two distortion constraints on̂X1 and X̂2, which is given by

D2 =
[

e2RX (σ−2
X + s1)

(

1 + (s2 − s1)D1

)]−1
(34)

over the interval
(

e2RX (σ−2
X + s1)

)−1 ≤ D1 ≤ (σ−2
X + s1)

−1. (35)

We find the optimal operating point on the Pareto curve to minimize the expected distortion

E[D]∗ = min
D1,D2 : RHB(D1,D2)≤RX

p1D1 + p2D2. (36)

In Section III-C, it is shown that the above minimization is aconvex optimization problem. Hence the
Karush–Kuhn–Tucker (KKT) conditions are necessary and sufficient for optimality. Moreover,D(RX),
being the sublevel set of a convex function, is a convex set. After substituting (34) in (36), from the KKT
optimality conditions, we obtain the optimal base layer distortion

D∗
1 =

(

D∗
1⋆)[D−

1
,D+

1
] (37)
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Fig. 2. Achievable distortion under different values of theencoding rate constraintRX . For eachRX , the Pareto optimal trade-off curve
is shown in bold.

where(x)[a, b] denotes the projection

(x)[a, b] , min
(

max(a, x), b
)

(38)

and the distortion and its boundaries are given by

D−
1 , (e2RX (σ−2

X + s1)
)−1

(39)

D⋆
1 ,

1

s2 − s1

[(

e2RX
σ−2
X + s1
s2 − s1

p1
p2

)−1/2

− 1
]

(40)

D+
1 , (σ−2

X + s1)
−1. (41)

The optimal top layer distortionD∗
2 is given by

D∗
2 =

(

D⋆
2

)

[D−

2
, D+

2
]

(42)

where

D−
2 , (e2RX (σ−2

X + s2)
)−1

(43)

D⋆
2 ,

(

e2RX (σ−2
X + s1)(s2 − s1)p2/p1

)−1/2
(44)

D+
2 ,

(

e2RX (σ−2
X + s1) + s2 − s1

)−1
. (45)

The corresponding optimal rate allocationR∗
1, R

∗
2 can be found as given in (28), (30).

The optimal rate allocation and the corresponding minimum expected distortion are plotted in Fig. 3
and Fig. 4, respectively, forRX = 1, σ2

X = 1, and s1 = 0 dB. Note thatR∗
2, the rate allocated to the

top layer, is not monotonic with the side-information channel condition. As fading states2 improves,R∗
2

increases to take advantage of the better side-informationquality. However, whens2 is large,R∗
2 begins

to decline as the expected distortion is dominated by the worst fading state. In addition, the optimal rate
allocation is heavily skewed towards the lower layer:R∗

2 > 0 only whenp2 is large.

C. Multiple Discrete Fading States

The rate–distortion function (32) extends directly to the case when the side-information channel has
multiple discrete fading states:S = si with probability pi, wherei = 1, . . . ,M , with 0 ≤ s1 < · · · < sM ,
andM > 2. The Heegard–Berger rate–distortion function forM > 2 can be characterized by a similar
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representation as that given in (32) forM = 2. Specifically, we construct the optimal distribution for the
auxiliary random variableW ∗

i ’s to be given by

W ∗
i =

√
aiX +Ni, i = 1, . . . ,M (46)

whereNi ∼ i.i.d. N (0, 1), andai’s are nonnegative scalars whose values are to be specified. The rate of
the i th layer is

Ri , I(X ;W ∗
i |Yi,W

∗
1 , . . . ,W

∗
i−1) (47)

=
1

2
log

(V −1
i−1 + si − si−1)

−1

Vi
(48)

where

Vi , VAR[X|Yi,W
∗
1 , . . . ,W

∗
i ] (49)

= min
(

(V −1
i−1 + si − si−1)

−1, Di

)

(50)

ands0 , 0, V0 , σ2
X for convenience in notations. In the above, (50) follows from the non-negativity of

I(X ;Wi|Yi,W1, . . . ,Wi−1) and the distortion constraint (6). Theai that achieves (49) is determined from
(50), which evaluates to

ai = V −1
i − V −1

i−1 − (si − si−1). (51)
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As RHB(D) =
∑M

i=1Ri, we substitute (48) in (4) to obtain the rate–distortion function

RHB(D) = −1

2
log(σ−2

X + s1)−
1

2
log VM − 1

2

M−1
∑

i=1

log
(

1 + (si+1 − si)Vi

)

(52)

where theVi’s are as given in (50).
Under multiple fading states, however, a closed-form expression for the minimum expected distortion

E[D]∗ does not appear analytically tractable. Nevertheless, theexpected distortion minimization in (3) can
be formulated as the following convex optimization problem:

minimize J(D1, . . . , DM) (53)

over D1, . . . , DM , V1, . . . , VM ∈ R++ (54)

subject to

− 1

2
log(σ−2

X + s1)−
1

2
log VM − 1

2

M−1
∑

i=1

log
(

1 + (si+1 − si)Vi

)

≤ RX (55)

Vi ≤ (V −1
i−1 + si − si−1)

−1, i = 1, . . . ,M (56)

Vi ≤ Di, i = 1, . . . ,M (57)

whereR++ denotes the set of positive real numbers. In (53) above, the cost functionJ(·) may be any
arbitrary function that is convex inD1, . . . , DM . The constraint (55) prescribes the feasible Heegard–Berger
distortion region under the source-coding rate constraintRX . The constraints (56) and (57) derive from
writing out the two upper bounds for eachVi, as described in (50), as two separate inequality constraints.
The equality in (50) may be written as inequality constraints since there is an optimal solution where for
eachi at least one of (56) or (57) is tight. Specifically, the left-hand side of the Heegard–Berger constraint
in (55) is monotonically decreasing inVi’s. Hence for a given optimal{V ∗

i , D
∗
i }, if neither (56) nor (57)

is tight, V ∗
i may be increased to strictly enlarge the feasible set of{D1, . . . , DM , V1, . . . , VM}\{Di, Vi}.

Proposition 1. The minimization given in (53)–(57) is a convex optimization problem.

See Appendix B for the proof of Proposition 1. Convexity implies that a local optimum is globally
optimal, and its solution can be efficiently computed by standard convex optimization numerical tech-
niques, for instance, by the interior-point method [23], [24]. Moreover, the optimization problem (53)–(57)
has2M variables and2M + 1 inequality constraints, which are linear in the number of side-information
channel fading statesM .

In the case where the cost functionJ(D1, . . . , DM) is non-decreasing in each componentDi, the
constraints (57) may be taken as tight: if at their optimal valuesV ∗

i < D∗
i , thenD∗

i may be decreased
without violating feasibility nor increasing the cost function. In particular, in the remainder of the paper,
we consider minimizing the expected distortion:

J(D) = E[D] =

M
∑

i=1

piDi. (58)

In this case, the optimization problem can be specified more compactly as

minimize p1D1 + · · ·+ pMDM (59)

over D1, . . . , DM (60)

subject to

− 1

2
log(σ−2

X + s1)−
1

2
logDM − 1

2

M−1
∑

i=1

log
(

1 + (si+1 − si)Di

)

≤ RX (61)

Di ≤ (D−1
i−1 + si − si−1)

−1, i = 1, . . . ,M (62)



10

where in (62) similarlyD0 , σ2
X . For convenience in stating the optimization problem, in (61), and in the

remainder of the paper,log refers to the extended-value logarithmic function, where it takes on the value
−∞ for non-positive arguments. Then the feasibility constraints (61), (62) implyDi > 0, i = 1, . . . ,M ,
and the domain qualification{Di ∈ R++} is thus omitted from (60). The positivity ofDi can be shown
as follows. Note that (61) implies

DM > 0 (63)

1 + (si+1 − si)Di > 0, i = 1, . . . ,M − 1. (64)

Consideri = M − 1. SupposeDM−1 < 0, then (64) rearranges to(D−1
M−1 + sM − sM−1)

−1 < 0,
which contradicts (62), (63):(D−1

M−1 + sM − sM−1)
−1 ≥ DM > 0. Next, supposeDM−1 = 0. Applying

limDM−1→0+ on (62), the inequality becomes:DM ≤ 0, which contradicts (63). Therefore,DM−1 > 0,
and similar arguments apply forDM−2, . . . , D1.

IV. RATE ALLOCATION UNDER DIFFERENT FADING DISTRIBUTIONS

In this section, we apply the optimization framework developed in Section III-C, and study the optimal
rate allocation when the side-information channel is subject to different fading distributions. We first
consider the scenario when the side-information channel experiences Rician fading, the pdf of which is
given by

fC(s) =
(1 +K)e−K

S̄
exp
(

−(1 +K)s

S̄

)

I0

(

2

√

K(1 +K)s

S̄

)

, s ≥ 0 (65)

where I0(·) is the modified Bessel function of zeroth order, andS̄ is the mean channel power gain.
The RicianK-factor represents the power ratio of the line-of-sight (LOS) component to the non-LOS
components. Specifically, (65) reduces to Rayleigh fading for K = 0, and to no fading (i.e., constant
channel power gain of̄S) for K = ∞. We discretize the channel fading pdf intoM states

pi = Pr{Side information channel statesi is realized} (66)

=

∫ si+1

si

f(s) ds, i = 1, . . . ,M (67)

where we truncate the pdf atsM . The quantized channel power gains are evenly spaced:si = (i −
1)sM/(M − 1), i = 1, . . . ,M , and sM+1 , ∞. In the numerical experiments, the convex optimization
problems are solved using the primal-dual interior-point algorithm described in [24, Section 11.7]. The
optimal rate allocation that minimizes the expected distortion E[D] is shown in Fig. 5 and Fig. 6,
respectively, for different values ofK and RX with M = 150. For comparison, we also show in the
figures the optimal rate allocation under Nakagami fading with the pdf

fN(s) =
(m/S̄)msm−1e−ms/S̄

Γ(m)
, s ≥ 0 (68)

whereΓ(·) is the gamma function. In Fig. 5 and Fig. 6, the Nakagami parameterm is set to be:m =
(K + 1)2/(2K + 1), under which the Nakagami distribution (68) is commonly used to approximate the
Rician distribution in (65) [25].

In each case of the numerical results, it is observed that theoptimal rate allocation is concentrated at
a single layer, i.e.,R∗

i = RX for somei = i∗ at si∗ , while R∗
i = 0 for all other i 6= i∗. The optimal

primal and dual variablesD∗
i , λ

∗
i are plotted in Fig. 7 for the case of Rician fading withK = 32, S̄ = 1,

RX = 0.25, σ2
X = 1. In this case, the rate allocation concentrates atsi∗ ≈ 0.55, and the complementary

slackness condition (110) stipulates that the corresponding dual variable be zero:λi∗ = 0. In Fig. 5, under
Rayleigh fading (K = 0), the optimal rate allocation concentrates at the base layer (i.e., si∗ = 0) of
the source code. In the case where the side-information channel has a prominent LOS component, i.e.,
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Fig. 5. Optimal rate allocation that minimizes the expecteddistortionE[D]. The rate allocation corresponding to Rician fading is shown
in bars, and the one corresponding to Nakagami fading withm = (K + 1)2/(2K + 1) is shown in lines. In each case, the optimal rate
allocation is concentrated at a single layer. (RX = 1, S̄ = 1, sM = 2S̄, RX = 1, σ2
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Fig. 6. Optimal rate allocation that minimizes the expecteddistortionE[D] with K = 16 under different values ofRX (the other parameters
are the same as those in Fig. 5). In each case, the optimal rateallocation is concentrated at a single layer.

whenK is large,si∗ increases accordingly as the channel distribution is more concentrated around̄S.
On the other hand, a large source-coding rateRX decreasessi∗, which implies that it is less beneficial
to be opportunistic to target possible good channel conditions whenRX is large. Moreover, for each̄S,
Nakagami fading results in a highersi∗ than its corresponding Rician fading distribution.

The minimum expectationE[D]∗ that corresponds to the optimal rate allocation is shown in Fig. 8.
For comparison, along withE[D]∗, in Fig. 8 we also show the distortion under different assumptions on
the side information. When no side information is available, the distortion is given by the rate–distortion
function for a Gaussian source [26]

DNo-SI(RX) = σ2
Xe

−2RX . (69)

In the absence of side information,DNo-SI is an upper bound toE[D]∗. On the other hand, whenK = ∞,
there is no uncertainty in the side-information channel condition with S = S̄, and the distortion is given
by the Wyner–Ziv [1] rate–distortion function

DWZ(RX) = (σ−2
X + S̄)−1e−2RX . (70)

In Fig. 8, a largerK decreases the expected distortionE[D]∗, and Nakagami fading has a lowerE[D]∗

than the corresponding Rician fading distribution. In addition, whenRX is small,E[D]∗ considerably
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Fig. 7. Optimal primal and dual variables in the expected distortion minimization under Rician fading withK = 32, S̄ = 1, RX = 0.25,
σ2
X = 1. The rate constraint (61) is tight, andµ∗

≈ 0.56.
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Fig. 8. Minimum expected distortion. The dash-dot line corresponds to the rate–distortion function with no side information (No SI). The
dashed line (K = ∞, i.e., the side-information channel has no fading) corresponds to the Wyner–Ziv (WZ) rate–distortion function. (S̄ = 10,
sM = 2S̄, σ2

X = 1, M = 150.)

outperformsDNo-SI where no side information is available, as the reduction inVAR[X ] from the side
information at the decoder is significant. However, whenRX is large, the improvement ofE[D]∗ over
DNo-SI diminishes, as most of the reduction inVAR[X ] is due to the source-coding rate ofRX .

In the following, we make a remark on thedistortion exponent∆, defined similarly as given in [27],
which characterizes the rate of exponential decay in distortion at asymptotically large encoding rates:

∆ , lim
RX→∞

− log E[D(RX)]
∗

2RX
(71)

whereRX is the source-coding rate, andE[D(RX)]
∗ is the corresponding minimum expected distortion

underRX . We note that the distortion exponent∆ does not depend on the fading distributionf(s), since

DWZ(RX) ≤ E[D(RX)]
∗ ≤ DNo-SI(RX) (72)

lim
RX→∞

− logDWZ(RX)

2RX

= lim
RX→∞

− logDNo-SI(RX)

2RX

= 1. (73)

Therefore, reducing the side-information channel uncertainty (e.g., via deploying multiple antennas or
through channel state information feedback) may reduce theexpected distortionE[D(RX)]

∗ at finiteRX ,
but it does not improve performance in the asymptotic regimein terms of the rate of exponential decay
in the distortion as a function of the encoding rateRX .
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V. SINGLE-LAYER RATE ALLOCATION

In the numerical experiments presented in Section IV, the optimal rate allocation concentrates at a single
codeword layer under a wide class of fading distributions inthe side-information channel. Motivated by
such observations, in the following, we consider the single-layer rate allocation:

Rs̄ = {encoding rateRX at fading statēs} (74)

and investigate the conditions under whichRs̄ is indeed expected-distortion–minimizing. First, we consider
the case where the side-information channel has infinitely many discrete fading states; based on the discrete
fading results, we then consider continuous fading distributions.

A. Infinitely Many Discrete Fading States

Suppose the side-information channel has infinitely many discrete fading states{s1, s2, . . . } with 0 ≤
s1 < s2 < · · · . Let pi denote the probability the side-information channel takeson statesi, with

∑∞
i=1 pi =

1. Let D , [D1 D2 . . . ]T denote the set of distortion variables induced by the rate allocation scheme.
Note that the Heegard–Berger rate–distortion function extends to the set of infinitely many degraded
fading states. We assume the total encoding rateRX is finite, and hence so is the rateRi for each fading
state. For admissibility, the random coding argument in [3,Section III] applies for each of the fading
states, and the converse in [3, Section VII] depends only on the total encoding rate but not the number
of fading states. Furthermore, it can be shown using the sameapproach in [10] that the optimality of
Gaussian solution for the Gaussian side information Heegard-Berger problem still holds for this scenario.
The expected distortion minimization problem is given by

minimize
∞
∑

i=1

piDi (75)

over D1, D2, . . . (76)

subject to

− 1

2

∞
∑

i=1

(

log(D−1
i−1 + si − si−1) + logDi

)

≤ RX (77)

Di ≤ (D−1
i−1 + si − si−1)

−1, i = 1, 2, . . . . (78)

The rate constraint (77) follows from (48). Recall that the extended-value logarithm takes on−∞ for non-
positive arguments. The constraint (77) then impliesDi > 0; hence the domainDi > 0 is not explicitly
stated in the optimization problem. In Appendix C, it is shown that (75)–(78) is a convex problem, and its
KKT optimality conditions and dual function are given in Appendix D. Next, we show that the single-layer
rate allocation (74) is expected-distortion–minimizing in (75)–(78) under some conditions.

Consider the single-layer rate allocation (74) withs̄ = si for some i. RelatingRs̄ to the induced
distortion set (48), we have

D̄i =

{

(σ−2
X + si)

−1, i : si < s̄
(

(σ−2
X + s̄)e2RX + si − s̄

)−1
, i : si ≥ s̄

(79)

with the single-layer expected distortion given by

E[D̄] =
∞
∑

i=1

piD̄i. (80)

In the notation, the overbar accent is used to represent single-layer rate allocation. To determine optimality,
we apply the KKT complementary slackness condition (110) on(79) above, and it stipulates that

λ̄i = 0, i : si = s̄. (81)
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Next, we apply the KKT gradient conditions (109) on (79), (81), and the dual variables̄λi are given as
follows:

λ̄i = (s̄− si)
µ̄

2

σ−2
X + si

σ−2
X + s̄

−
∑

j: si≤sj<s̄

pj

(

σ−2
X + si

σ−2
X + sj

)2

, i : si < s̄ (82)

λ̄i = −(si − s̄)
µ̄

2

(

1 +
si − s̄

(σ−2
X + s̄)e2RX

)

+
∑

j: s̄≤sj<si

pj
∏

k: sj≤sk<si

(

1 +
sk+1 − sk

(σ−2
X + s̄)e2RX + sk − s̄

)2

, i : si > s̄.
(83)

The dual variablēµ is set such that the rate constraint is tight in (111):

µ̄

2
=
∑

j: sj≥s̄

pj
(σ−2

X + s̄)e2RX

(

(σ−2
X + s̄)e2RX + sj − s̄

)2 . (84)

The single-layer rate allocation optimality conditions are stated in the following proposition, and its proof
is given in Appendix E.

Proposition 2. In the expected distortion minimization problem where the side-information channel has
discrete fading states{s1, s2, . . . }, the single-layer rate allocation (74) at̄s = si for somei is optimal if
and only if

λ̄i ≥ 0, ∀ i (85)

where the variables̄λi are as given in (82), (83).

Approximately, the optimality conditions in (85) correspond to the tail summation in (84) being greater
than the partial sum in (82) to the left of̄s, but smaller than that in (83) to the right ofs̄, after being
weighted by their respective factors. Next, we consider thecase when the side-information channel is
described by a continuous fading distribution, and we show that it admits a remarkably simpler set of
sufficient conditions for single-layer rate allocation optimality.

B. Continuous Fading Distributions

When the side-information channel has a continuous fading distribution, as defined in Proposition 3
below, the corresponding expected distortion can be derived through a discretization and limiting process.
The expected distortion under continuous fading is stated in the proposition, and the details of the limiting
process can be found in its proof in Appendix F.

Proposition 3. Suppose the side-information channel has a continuous fading distribution, i.e., the cdf
F (s) is absolutely continuous with pdff(s) = F ′(s). We further assume that the pdff(s) is continuous.
Then, under the single-layer rate allocationRs̄ in (74), the expected distortion is

E[D̄] =

∫ s̄

0

f(s)

σ−2
X + s

ds+

∫ ∞

s̄

f(s)

(s̄ + σ−2
X )e2RX + s− s̄

ds. (86)

Next, Proposition 4 describes a sufficient condition for single-layer rate allocation optimality under con-
tinuous fading, and its proof is given in Appendix G. In the proposition, note that the optimality condition
(87) is motivated by considering the limiting case of the optimality conditions (85) in Proposition 2.

Proposition 4. In Proposition 3,Rs̄ is expected-distortion–minimizing if

λ̄(s) ≥ 0, s ≥ 0 (87)
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where

λ̄(s) = (s̄− s)
µ̄

2

σ−2
X + s

σ−2
X + s̄

−
∫ s̄

s

f(t)

(

σ−2
X + s

σ−2
X + t

)2

dt, 0 ≤ s < s̄ (88)

λ̄(s) = −(s− s̄)
µ̄

2

(

1 +
s− s̄

(σ−2
X + s̄)e2RX

)

+

∫ s

s̄

f(t)

(

1 +
s− t

(σ−2
X + s̄)e2RX + t− s̄

)2

dt, s ≥ s̄

(89)

and

µ̄

2
=

∫ ∞

s̄

f(s)
(σ−2

X + s̄)e2RX

(

(σ−2
X + s̄)e2RX + s− s̄

)2 ds. (90)

C. Quasiconcave Probability Density Functions

In the following, we show that fading distributions with continuous, quasiconcave pdfs satisfy the
single-layer rate allocation optimality conditions (87) in Proposition 4. A functiong(x) is quasiconcave, or
referred to as unimodal, if its superlevel sets{x | g(x) ≥ α}, for all α, are convex. Notably, most common
wireless channel fading distributions have pdfs that are continuous and quasiconcave: e.g., Rayleigh,
Rician, Nakagami, and log-normal.

First, we set out the procedure to identifȳs∗, the state at which the encoding rateRX is to be
concentrated. Letf(s) denote the pdf of the fading distribution of the side-information channel, and
we assume thatf(s) is continuous and quasiconcave. We denote the superlevel set of f(s) by the interval
[sa, sb] , {s | f(s) ≥ α}, for some nonnegative scalarα ≥ 0. Specifically, we choose anα∗ such that the
following relationship holds:

∫ ∞

sa(α∗)

f(s)− α∗

(

(σ−2
X + sa(α∗))e2RX + s− sa(α∗)

)2 ds = 0. (91)

Note that the left-hand side of (91) varies continuously from positive to negative as a candidateα ranges
from 0 to max f(s); therefore, there exists anα∗ that equates the expression to zero. We sets̄∗ to be the
left endpoint of the superlevel set induced byα∗:

s̄∗ = sa(α
∗). (92)

With the single-layer rate allocation targets̄∗ properly defined, the following proposition identifies the class
of fading distributions under which this rate allocation isoptimal; its proof is presented in Appendix H.

Proposition 5. Suppose the side-information channel has a continuous fading distribution with pdff(s).
If f(s) is continuous and quasiconcave, then the single-layer rateallocation Rs̄∗, with s̄∗ as given in
(92), is expected-distortion–minimizing.

As an example, consider minimizing the expected distortionunder Rician fading (K = 32, RX = 0.25,
S̄ = 1, σ2

X=1), for which the KKT optimality conditions are illustrated in Fig. 9. At optimality,α∗ = µ̄/2.
In the figure,[sa, sb] is the µ̄/2-superlevel set off(s), and the regions betweenf(s) and µ̄/2 are shaded
and labeled(A) and (B), respectively, forsa ≤ s ≤ sb and s > sb. The choice ofα∗ in (91), which
leads tos̄∗ in (92), corresponds to the area of(A), weighted byw−1

2 (s), being equal to the area of(B),
weighted byw−1

2 (s), wherew2(s) is as defined in (143) in Appendix H. Solving (91) numerically, the
resulting single-layer rate allocation targets̄∗ is plotted in Fig. 10 for different values ofK andRX .

As a special case of fading distributions with continuous and quasiconcave pdfs, let us consider Rayleigh
fading. Its pdf is given by

fR(s) = (1/S̄)es/S̄, s ≥ 0 (93)
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Fig. 10. Optimal single-layer rate allocation targets̄∗ under Rician fading (̄S = 1, σ2
X=1).

whereS̄ is the average channel power gain. Recognizing that any nonempty superlevel set offR(s) begins
at sa = 0, we have the following corollary:

Corollary 2. When the side-information channel is under Rayleigh fading(93), the single-layer rate
allocation targets̄∗ = 0 is optimal, and the corresponding minimum expected distortion is

E[D̄R]
∗ =

∫ ∞

0

(1/S̄)es/S̄

σ−2
X e2RX + s

ds = (1/S̄)eC/S̄E1(C/S̄) (94)

whereC , σ−2
X e2RX , andE1(·) is the exponential integralE1(x) ,

∫∞

x
e−t

t
dt.

Therefore, under Rayleigh fading, the source-coding scheme does not depend on̄S, RX , andσ2
X . It is

optimal to concentrate the entire encoding rateRX at the base layer̄s∗ = 0, i.e., the source is encoded
as if the side information was absent.

VI. CONCLUSIONS

We studied the problem of optimal rate allocation and distortion minimization for Gaussian source
coding under squared error distortion, when the uncompressed source symbol is also conveyed over a
fading side-information channel. The encoder knows the fading channel distribution but not its realization.
A layered encoding strategy is used, with each codeword layer targeting the realization of a given
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fading state. When the side-information channel has two discrete fading states, we derived closed-form
expressions for the optimal rate allocation among the fading states and the corresponding minimum
expected distortion. The optimal rate allocation is conservative: rate is allocated to the higher layer only
if the better fading state is highly probable. For the case ofmultiple discrete fading states, the minimum
expected distortion was shown to be the solution of a convex optimization problem. We derived an efficient
representation for the Heegard–Berger rate–distortion function, under which the number of variables and
constraints in the optimization problem is linear in the number of fading states.

Next, we considered single-layer rate allocation, and identified the conditions under which such allo-
cation is expected-distortion–minimizing, for the respective cases of discrete as well as continuous fading
in the side-information channel. Under continuous fading,we showed that these optimality conditions are
satisfied by distributions with continuous and quasiconcave pdfs, e.g., Rayleigh, Rician, Nakagami, and
log-normal. Moreover, for Rayleigh fading, the optimal rate allocation concentrates at the base layer: i.e.,
the source is encoded as if the side information was absent.

In this paper, we focused on fading distributions for which the optimal rate allocation consists of a single
codeword layer. For fading distributions with continuous pdfs that are not quasiconcave, we conjecture that
the expected-distortion–minimizing rate allocation remains discrete but may comprise multiple codeword
layers. By contrast, a continuum of codeword layers is in general necessary when maximizing expected
capacity or minimizing expected distortion over a slowly fading channel [2], [13], [14]. In a broader
context, the techniques for source coding under fading side-information channels may be applied to
improve quantize-and-forward schemes [28] in wireless network transmissions, where the side information
represents the auxiliary signals forwarded by a cooperating user as received via a fading channel. In those
cases where different distortion measures other than squared error are considered, however, different
conclusions regarding the optimal number of source-codinglayers may result.

APPENDIX A
PROOF OFLEMMA 1

Proof: The lemma follows from the minimum mean square error (MMSE) estimate of Gaussian
random variables. LetX,W, whereW , [W1 . . .Wk]

T , be distributed as
[

W

X

]

∼ N
([

µW

µX

]

,

[

ΣW ΣWX

ΣT
WX σ2

X

])

. (95)

The conditional distribution is Gaussian, and the corresponding variance is

VAR[X|Y,W] = σ2
X −

[

ΣWX√
sσ2

X

]T [
ΣW

√
sΣWX√

sΣT
WX sσ2

X + 1

]−1 [
ΣWX√
sσ2

X

]

(96)

=
σ2
X −ΣT

WXΣW
−1ΣWX

1 + s(ΣT
WXΣW

−1ΣWX)
(97)

=
(

VAR[X|W]−1 + s
)−1

. (98)

APPENDIX B
PROOF OFPROPOSITION1

Proof: Each of the inequality constraints in (55)–(57) is convex: i.e., it is of the form

cx(D1, . . . , DM , V1, . . . , VM) ≤ cc(D1, . . . , DM , V1, . . . , VM) (99)
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wherecx(·) is convex inD1, . . . , VM , andcc(·) is concave inD1, . . . , VM . In particular, in (56), the right-
hand side of each inequality constraint depends on onlyVi−1. Being twice-differentiable, its concavity
can be verified by the second-order condition

d2

dV 2
i−1

(V −1
i−1 + si − si−1)

−1 =
−2(si − si−1)

(

1 + (si − si−1)Vi−1

)3 (100)

which is negative sincesi > si−1, Vi−1 > 0 as given in the problem formulation, fori = 2, . . . ,M .
Therefore, in (53)–(57), we minimize a convex function subject to a set of convex inequality constraints,
which is a convex optimization problem.

APPENDIX C
CONVEX OPTIMIZATION PROBLEM (75)–(78)

We show that (75)–(78) is a convex problem. For convenience,let us denote the left-hand side of (77)
as follows:

Φ(D) , −1

2

∞
∑

i=1

(

log(D−1
i−1 + si − si−1) + logDi

)

. (101)

We show thatΦ(D) is convex inD. Let D(1),D(2) ≻ 0 be two sets of element-wise positive distortion
variables. By the mean-value theorem, for someγ ∈ [0, 1], we have

Φ
(

D(2)
)

= Φ
(

D(1)
)

+

∞
∑

i=1

∂Φ
(

D(1)
)

∂Di

(

D
(2)
i −D

(1)
i

)

+
∞
∑

i=1

∞
∑

j=1

∂2Φ
(

D(1) + γ(D(2) −D(1))
)

∂Di∂Dj

(

D
(2)
i −D

(1)
i

)(

D
(2)
j −D

(1)
j

)

(102)

≥ Φ
(

D(1)
)

+
∞
∑

i=1

∂Φ
(

D(1)
)

∂Di

(

D
(2)
i −D

(1)
i

)

(103)

which corresponds to the first-order convexity condition. In (103), the inequality follows from:

∂2Φ

∂Di∂Dj
=







1
2

(

si+1−si
1+(si+1−si)Di

)2

, i = j

0, i 6= j
(104)

which shows that the last term in (102) is nonnegative. Each constraint in (78) is shown to be a convex set
in (100). Convexity is preserved under the intersection of apossibly infinite number of convex sets [24,
Section 2.3.1]. The linear objective function in (75) is convex; therefore, (75)–(78) is a convex optimization
problem.

APPENDIX D
KKT OPTIMALITY CONDITIONS AND DUAL FUNCTION FOR (75)–(78)

In the following, we characterize the KKT optimality conditions [29] for the expected distortion
minimization problem (75)–(78). First, we form the Lagrangian

L(D,λ, µ) = L1(D,λ, µ) + L2(D,λ, µ) + L3(D,λ, µ) (105)

L1(D,λ, µ) ,
∞
∑

i=1

piDi (106)

L2(D,λ, µ) ,

∞
∑

i=1

λi

(

Di − (D−1
i−1 + si − si−1)

−1
)

(107)

L3(D,λ, µ) , µ
(

−1

2

∞
∑

i=1

(

log(D−1
i−1 + si − si−1) + logDi

)

− RX

)

(108)



19

where λ , [λ1 λ2 . . . ]T , and µ,λ are the Lagrange multipliers, or dual variables, associated with
inequalities (77), (78), respectively. At optimality, thegradient of the Lagrangian vanishes:

0 =
∂L

∂Di

= pi + λi −
λi+1

(

1 + (si+1 − si)Di

)2 − µ

2

si+1 − si
1 + (si+1 − si)Di

, i = 1, 2, . . . (109)

and the complementary slackness conditions hold:

0 = λi

(

Di − (D−1
i−1 + si − si−1)

−1
)

, i = 1, 2, . . . (110)

0 = µ
(

−1

2

∞
∑

i=1

(

log(D−1
i−1 + si − si−1) + logDi

)

−RX

)

. (111)

The primal feasibility conditions are given by (77), (78), and the dual feasibility conditions are

µ ≥ 0, λi ≥ 0, i = 1, 2, . . . . (112)

Together, (77), (78), and (109)–(112) are the necessary andsufficient conditions for optimality in the
convex problem (75)–(78).

The dual function of the expected distortion minimization problem is given by

G(λ, µ) = inf
D

L(D,λ, µ). (113)

Let D̂ , [D̂1 D̂2 . . . ]T denote the Lagrangian-minimizingD in (113). Forλ � 0, µ ≥ 0, D̂ can be
determined from the KKT gradient conditions (109):

D̂i(λ, µ) =
µ(si+1 − si)− 4(pi + λi) +

√

µ2(si+1 − si)2 + 16(pi + λi)λi+1

4(si+1 − si)(pi + λi)
,

i = 1, 2, . . . .

(114)

The dual function provides a lower bound to the solution of the optimization problem. LetJ∗ denote the
minimum expected distortion in (75)–(78). For anyD̃ that is primal feasible by (77), (78), and any dual
feasibleλ̃ � 0, µ̃ ≥ 0, we have

G(λ̃, µ̃) ≤ J∗ ≤ J(D̃). (115)

Furthermore, since the optimization problem is convex and Slater’s condition holds, the duality gap is
zero:

G(λ∗, µ∗) = J∗ = J(D∗) (116)

whereD∗ and λ
∗, µ∗ respectively denote the optimal primal and dual variables that satisfy the KKT

optimality conditions (77), (78), and (109)–(112).

APPENDIX E
PROOF OFPROPOSITION2

Proof: In the convex optimization problem (75)–(78), the single-layer rate allocationRs̄ is primal
feasible by (77), (78). Through construction of the dual variables λ̄i, µ̄ in (81)–(84), the KKT gradient
conditions (109) and the complementary slackness conditions (110), (111) are satisfied. The dual feasibility
condition µ̄ ≥ 0 follows from the non-negativity of each term in the summation in (84). Besides (81),
dual feasibility ofλ̄i as given in (85) are the remaining necessary and sufficient conditions for optimality.
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APPENDIX F
PROOF OFPROPOSITION3

Proof: We assume the side-information channel has a fading distribution with a continuous pdf
f(s), and we partition the continuum of fading state into subintervals [u0, u1], [u1, u2], . . . of lengths
∆u1,∆u2, . . . , with ∆ui , ui − ui−1, u0 = 0. Let us assumēs > 0; in the case of̄s = 0, it is interpreted
as lims̄→0+ . The partition boundaries are chosen such thatuı̄ = s̄ for some index̄ı. The fading realization
falls within each subinterval with probabilitypi =

∫ ui

ui−1
f(s) ds, for i = 1, 2, . . . . We consider two sets of

discretized fading states. In the first set, for each subinterval, we discretize the fading state to its worst-case
realization:{si} = uw , {u0, u1, . . . }, i.e., we have fading stateui−1 with probability pi. In the second
set, in a similar manner, for each subinterval we discretizethe fading state to its best-case realization:
{si} = ub , {u1, u2, . . . }, where probabilitypi is associated with fading stateui.

Next, we apply the single-layer rate allocationRs̄ to the worst-case statesuw, the continuous distribution
f(s), and the best-case statesub. Since the decoder may arbitrarily add noise to the side-information
channel, the expected distortions underRs̄ are ordered as follows:

Jb(Rs̄) ≤ Jc(Rs̄) ≤ Jw(Rs̄) (117)

where Jb(Rs̄), Jc(Rs̄), Jw(Rs̄) represent the expected distortions underRs̄ for the best-case states,
continuous distribution, and worst-case states, respectively.

Finally, consider the inequalities in (117) in the limit of small subintervals as‖u‖ → 0, where‖u‖ ,

max∆ui. As f(s) is continuous, by the mean-value theorem, we have

pi =

∫ ui

ui−1

f(s) ds = (ui − ui−1)f(u
∗
i ) (118)

for someu∗
i ∈ [ui−1, ui] that achieves the mean value off(·) within the partition[ui−1, ui]. Apply (118)

to (79), (80), we have

lim
‖u‖→0

Jb(Rs̄) = lim
‖u‖→0

ı̄−1
∑

i=1

(ui − ui−1)f(u
∗
i )

σ−2
X + ui

+

∞
∑

i=ı̄

(ui − ui−1)f(u
∗
i )

(σ−2
X + s̄)e2RX + ui − s̄

(119)

=

∫ s̄

0

f(u)

σ−2
X + u

du+

∫ ∞

s̄

f(u)

(σ−2
X + s̄)e2RX + u− s̄

du (120)

= lim
‖u‖→0

ı̄−1
∑

i=1

(ui − ui−1)f(u
∗
i )

σ−2
X + ui−1

+

∞
∑

i=ı̄

(ui − ui−1)f(u
∗
i )

(σ−2
X + s̄)e2RX + ui−1 − s̄

(121)

= lim
‖u‖→0

Jw(Rs̄). (122)

Since from (119)–(122) the limits ofJb(Rs̄), Jw(Rs̄) coincide and equal (120), from (117)Jc(Rs̄) also
equals this limit, which is given by (86) in the main body of the text.

APPENDIX G
PROOF OFPROPOSITION4

Proof: Consider the set of best-case and worst-case discretized fading states described in Appendix F.
We have the following inequalities:

Gb

(

λ̄(ub), µ̄
)

(a)

≤ J∗
b

(b)

≤ J∗
c

(c)

≤ J∗
w

(d)

≤ Jw(Rs̄) (123)

whereJ∗
b , J∗

c , J∗
w denote the minimum expected distortion under the best-casestates, continuous distri-

bution, and worst-case states, respectively;Gb(·) is the dual function under the best-case states;λ̄(ub)
denotes applyinḡλ(·) on ub element-wise; andJw(Rs̄) is as defined in (117). In (123),(b), (c) follow
from the ordering on the sets of the fading states, and(a), (d) follow from the duality bounds (115):̄λ(ub)
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is dual feasible by the assumptionλ̄(s) ≥ 0; µ̄ is dual feasible since the integrand in (90) is nonnegative;
andRs̄, being a valid rate allocation, induces a set of distortion variables that is primal feasible.

Next, we considerGb

(

λ̄(ub), µ̄
)

in the limit of ‖u‖ → 0. Writing (113) in terms of (105), recall that

Gb

(

λ̄(ub), µ̄
)

= L1

(

D̂
(

λ̄(ub), µ̄
)

, λ̄(ub), µ̄
)

+ L2

(

D̂
(

λ̄(ub), µ̄
)

, λ̄(ub), µ̄
)

+ L3

(

D̂
(

λ̄(ub), µ̄
)

, λ̄(ub), µ̄
)

(124)

where D̂
(

λ̄(ub), µ̄
)

is as given in (114). Note that eacĥDi

(

λ̄(ub), µ̄
)

depends on̄λ(ui) and λ̄(ui+1).
Since λ̄(s) is continuous and differentiable overs > 0, its values at the partition boundaries are related
through the mean-value theorem:

λ̄(ui+1) = λ̄(ui) + (ui+1 − ui)λ̄
′(u†

i) (125)

for someu†
i ∈ [ui, ui+1]. Consider the first term in (124):

lim
‖u‖→0

L1

(

D̂
(

λ̄(ub), µ̄
)

, λ̄(ub), µ̄
)

= lim
‖u‖→0

∞
∑

i=1

piD̂i

(

λ̄(ub), µ̄
)

(126)

=

∫ ∞

0

f(u)
λ̄′(u)− f(u) + µ̄/2

2λ̄(u)
du (127)

=

∫ s̄

0

f(u)

σ−2
X + u

du+

∫ ∞

s̄

f(u)

(σ−2
X + s̄)e2RX + u− s̄

du (128)

= lim
‖u‖→0

Jw(Rs̄) (129)

where (127) follows from applying (118), (125) to (126); and(129) follows from (120). In (127),̄λ(·) is
as defined in (88), (89), and its derivative is given as follows:

λ̄′(s) =
µ̄

2

s̄− 2s− σ−2
X

σ−2
X + s̄

+ f(s)−
∫ s̄

s

2f(t)
σ−2
X + s

(σ−2
X + t)2

dt, 0 ≤ s < s̄ (130)

λ̄′(s) = − µ̄

2
− µ̄(s− s̄)

(σ−2
X + s̄)e2RX

+ f(s)

+

∫ s

s̄

2f(t)
(σ−2

X + s̄)e2RX + s− s̄
(

(σ−2
X + s̄)e2RX + t− s̄

)2 dt, s ≥ s̄.
(131)

Substituting (88), (89), (130), (131) into (127), note thatthe factor in the integrand (defined asD(s)
below) simplifies to the following expressions which are independent off(s):

D(s) ,
λ̄′(s)− f(s) + µ̄/2

2λ̄(s)
(132)

=

{

(σ−2
X + s)−1, 0 ≤ s < s̄

(

(σ−2
X + s̄)e2RX + s− s̄

)−1
, s ≥ s̄.

(133)

For the second term in (124), note thatλ̄(uı̄) = 0, and hencei = ı̄ can be excluded from the following
summation:

lim
‖u‖→0

L2

(

D̂
(

λ̄(ub), µ̄
)

, λ̄(ub), µ̄
)

= lim
‖u‖→0

∑

i 6=ı̄

λ̄(ui)
(

D̂i

(

λ̄(ub), µ̄
)

−
(

D̂i−1

(

λ̄(ub), µ̄
)−1

+ ui − ui−1

)−1) (134)

=

∫

\s̄

λ̄(u)
(

D′(u) +D(u)2
)

du (135)

= 0 (136)
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whereD̂0(·) , σ2
X , and (118), (125) are applied in (134); the notation

∫

\s̄
· du in (135) is defined as

∫

\s̄

g(u) du ,

∫ s̄−

0

g(u) du+

∫ ∞

s̄+
g(u) du (137)

convergence of the partition summation follows fromf(s), λ̄(s), λ̄′(s) being continuous when the mean-
value theorem is applied tôDi(·) in (114); and (136) follows fromD′(s) +D(s)2 = 0 over the intervals
0 < s < s̄ ands > s̄. Finally, consider the third term in (124):

lim
‖u‖→0

L3

(

D̂
(

λ̄(ub), µ̄
)

, λ̄(ub), µ̄
)

= lim
‖u‖→0

µ̄

(

−1

2

∞
∑

i=1

(

log
(

D̂i−1

(

λ̄(ub), µ̄
)−1

+ ui − ui−1

)

+ log D̂i

(

λ̄(ub), µ̄
)

)

− RX

)

(138)

=
µ̄

2

∫

\s̄

D(u) +
D′(u)

D(u)
du+ µ̄(RX −RX) (139)

= 0 (140)

where (118), (125) are applied in (138); the last term in (139) follows from noting thatD̂ı̄−1(·) → (σ−2
X +

s̄)−1 andD̂ı̄(·) →
(

(σ−2
X +s̄)e2RX

)−1
; the notation

∫

\s̄
· du is as given in (137), and its convergence follows

from continuity off(s), λ̄(s), λ̄′(s); (140) follows fromD(s)+D′(s)/D(s) = 0 over the intervals0 < s <
s̄ and s > s̄. Combining (124), (129), (136), (140), we have:lim∆u→0Gb

(

λ̄(ub), µ̄
)

= lim∆u→0 Jw(Rs̄).
Since the inequalities in (123) coincide in the limit, the minimum expected distortionJ∗

c is given by (128),
which is achievable byRs̄ by Proposition 3.

APPENDIX H
PROOF OFPROPOSITION5

Proof: We show that the single-layer rate allocation satisfies the optimality conditions (87) in Propo-
sition 4. It will be useful to comparef(s) againstµ̄/2, so we bringµ̄/2 inside in the integrals in (88),
(89), and rewrite the expressions as

λ̄(s)

wn(s)
=

∫ s

s̄

f(t)− µ̄/2

wn(t)
dt (141)

wheren = 1 for 0 ≤ s < s̄, n = 2 for s ≥ s̄, with wn(s) ≥ 0 given as follows:

w1(s) = (σ−2
X + s)2 (142)

w2(s) =
(

(σ−2
X + s̄)e2RX + s− s̄

)2
. (143)

We now show the non-negativity of (141). Solving forα∗ in (91) and comparing its solution against the
right-hand side of (90), we recognize thatα∗ = µ̄/2. Thus for0 ≤ s < s̄∗, being outside of the superlevel
set[sa, sb], we havef(s) < µ̄/2 in the integrand in (141): hencēλ(s) > 0. For s ≥ s̄∗ but s ≤ sb, we have
f(s) ≥ µ̄/2: henceλ̄(s) ≥ 0. Finally, for s > sb, note thatλ̄(s)/w2(s) is monotonically decreasing, but
it never descends below zero:lims→∞ λ̄(s)/w2(s) = 0, which is a consequence of howα∗ is constructed
as specified in (91).

ACKNOWLEDGMENT

The authors thank Erik Ordentlich for providing detailed feedback on the manuscript and his valuable
technical suggestions during the review process.



23

REFERENCES

[1] A. D. Wyner and J. Ziv, “The rate-distortion function forsource coding with side information at the decoder,”IEEE Trans. Inf. Theory,
vol. 22, no. 1, pp. 1–10, Jan. 1976.

[2] S. Shamai (Shitz) and A. Steiner, “A broadcast approach for a single-user slowly fading MIMO channel,”IEEE Trans. Inf. Theory,
vol. 49, no. 10, pp. 2617–2635, Oct. 2003.

[3] C. Heegard and T. Berger, “Rate distortion when side information may be absent,”IEEE Trans. Inf. Theory, vol. 31, no. 6, pp. 727–734,
Nov. 1985.

[4] A. D. Wyner, “The rate-distortion function for source coding with side information at the decoder—II: General sources,” Inform. Contr.,
vol. 38, pp. 60–80, Jul. 1978.

[5] R. M. Gray, “A new class of lower bounds to information rates of stationary sources via conditional rate-distortion functions,” IEEE
Trans. Inf. Theory, vol. 19, no. 4, pp. 480–489, Jul. 1973.

[6] R. Zamir, “The rate loss in the Wyner–Ziv problem,”IEEE Trans. Inf. Theory, vol. 42, no. 6, pp. 2073–2084, Nov. 1996.
[7] M. Fleming and M. Effros, “On rate-distortion with mixedtypes of side information,”IEEE Trans. Inf. Theory, vol. 52, no. 4, pp.

1698–1705, Apr. 2006.
[8] Y. Steinberg and N. Merhav, “On successive refinement forthe Wyner-Ziv problem,”IEEE Trans. Inf. Theory, vol. 50, no. 8, pp.

1636–1654, Aug. 2004.
[9] C. Tian and S. N. Diggavi, “On multistage successive refinement for Wyner–Ziv source coding with degraded side informations,” IEEE

Trans. Inf. Theory, vol. 53, no. 8, pp. 2946–2960, Aug. 2007.
[10] ——, “Side-information scalable source coding,”IEEE Trans. Inf. Theory, vol. 54, no. 12, pp. 5591–5608, Dec. 2008.
[11] M. Feder and N. Shulman, “Source broadcasting with unknown amount of receiver side information,” inProc. IEEE Inform. Theory

Workshop, Bangalore, India, Oct. 2002, pp. 127–130.
[12] N. Shulman and M. Feder, “Static broadcasting,” inProc. IEEE Int. Symp. on Inform. Theory, Sorrento, Italy, Jun. 2000, p. 23.
[13] C. Tian, A. Steiner, S. Shamai (Shitz), and S. N. Diggavi, “Successive refinement via broadcast: Optimizing expected distortion of a

Gaussian source over a Gaussian fading channel,”IEEE Trans. Inf. Theory, vol. 54, no. 7, pp. 2903–2918, Jul. 2008.
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[16] S. Shamai (Shitz), S. Verdú, and R. Zamir, “Systematiclossy source/channel coding,”IEEE Trans. Inf. Theory, vol. 44, no. 2, pp.

564–579, Mar. 1998.
[17] D. Gunduz, J. Nayak, and E. Tuncel, “Wyner–Ziv coding over broadcast channels using hybrid digital/analog transmission,” in Proc.

IEEE Int. Symp. on Inform. Theory, Toronto, Canada, Jul. 2008, pp. 1543–1547.
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