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Abstract

Passive network tomography uses end-to-end observations of network communication to characterize the net-

work, for instance to estimate the network topology and to localize random or adversarial glitches. Under the

setting of linear network coding this work provides a comprehensive study of passive network tomography in the

presence of network (random or adversarial) glitches. To be concrete, this work is developed along two directions:

1. Tomographic upper and lower bounds (i.e., the most adverse conditions in each problem setting under which

network tomography is possible, and corresponding schemes (computationally efficient, if possible) that achieve this

performance) are presented for random linear network coding (RLNC). We consider RLNC designed with common

randomness, i.e., the receiver knows the random code-books all nodes. (To justify this, we show an upper bound

for the problem of topology estimation in networks using RLNC without common randomness.) In this setting

we present the first set of algorithms that characterize the network topology exactly. Our algorithm for topology

estimation with random network errors has time complexity that is polynomial in network parameters. For the

problem of network error localization given the topology information, we present the first computationally tractable

algorithm to localize random errors, and prove it is computationally intractable to localize adversarial errors. 2. New

network coding schemes are designed that improve the tomographic performance of RLNC while maintaining the

desirable low-complexity, throughput-optimal, distributed linear network coding properties of RLNC. In particular,

we design network codes based on Reed-Solomon codes so that a maximal number of adversarial errors can be

localized in a computationally efficient manner even without the information of network topology. The tomography

schemes proposed in the paper can be used to monitor networks with other glitches such as packets losses and link

delays, etc.
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I. INTRODUCTION

The goal of passive network tomography (or passive network monitoring) is to use end-to-end observations of

network communication to infer the network topology, estimate link statistics such as loss rate and propagation

delay, and locate network failures [3].

In networks using linear network coding each node outputs linear combinations of received packets; this has

been shown to attain optimal multicast throughput [4]. In fact, even random linear network codes (where each node

independently and randomly chooses the linear combinations used to generate transmitted packets) suffice to attain

the optimal multicast throughput [5], [6], [7]. In addition to their desirable distributed nature, such schemes also

have low design and implementation complexity [6], [7].

The main observation driving this work is that the linear transforms arising from random linear network coding

have specific relationships with the network structure, and these relationships can significantly aid tomography.

Prior work [8][9] has also observed this relationship.

Toy example for error localization: Consider the tomography problem in Figure 1. Source s transmits probe

symbols ( say 1 and 2) to receiver r via intermediate node u. Suppose edge e1 is erroneous and adds (say) 2 to

every symbol transmitted over it. Receiver r knows the probe symbols, network, and communication schemes a

priori. It also knows one of the links is erroneous (though it doesn’t know in what manner), and wants to locate

the erroneous link.
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(a) Routing Case
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(b) Coding Case

Fig. 1. A tomographic example for locating an error at edge e1. In Figure 1(a) observing error vector E = [2 0]T is not enough to
distinguish the error locations e1 and e2. In Figure 1(b), since network coding is used by intermediate node u, the information of E = [2 2]T

is enough to locate the erroneous edge e1.

The case where the network communicates only via routing is shown in Figure 1(a). The probe symbols 1 and 2

are transmitted over edges e1 and e2 respectively to node u. Due to the error introduced over e1, node u receives

symbols 3 and 2 via edges e1 and e2 respectively, and forwards them to node r via edges via edges e3 and e4

respectively. Node r receives two symbols from e3 and e4, denoted by the vector Y = [3 2]T . Since r knows that

probe symbols a priori, it can compute the error vector to be E = Y − [1 2]T = [2 0]T . Using E and its knowledge

of the routing scheme, node r can infer that the error happened in the routing path {e1, e3}, but can not figure out

whether the error occurred on e1 or e3.



3

Figure 1(b) shows the case where node u applies linear network coding to transmit symbols. In particular, node

u outputs x3 = x1 +2x2 to link e3 and x4 = x1 +x2 to e4, where x1 and x2 are the symbols that node u receives

from e1 and e2, and x3 and x4 are the symbols to be sent over e3 and e4. For a unit additive error e = 1 at e1, e2,

e3 or e4, the receiver r would observe error vectors e[1 1]T , e[2 1]T , e[1 0]T or e[0 1]T respectively. Thus, errors in

different links result in observed error vectors corresponding to vector spaces. Such linear algebraic characteristics

of networks can be exploited to locate the erroneous link. Specifically, if error e = 2 is injected into e1, node r

receives Y = [7 5]T . Knowing in advance the probe symbols and node u’s coding scheme, the receiver r computes

the error vector as E = Y − [1 + 2 · 2, 1 + 2]T = [2 2]T . Upon observing E = [2 2]T and comparing with the set of

possible error vectors corresponding to different error locations, r can determine that e1 is the erroneous link and

the error is e = 2. �

While the toy example above might give the impression that the coding scheme needs to be carefully designed for

the communication problem at hand, our results in this paper show that in fact random linear coding suffices to result

in tomographic schemes that are distributed and have low computational and communication overhead. Further,

if end-to-end network error-correcting codes (see for instance [10][11]) are used for the network communication

layer, in addition network tomography can also be implemented in a “passive” manner, i.e., no dedicated probe

messages are necessary. Thus throughout this work, the phrase “network tomography” stands for “passive network

tomography” unless otherwise specified.

In this work we consider a network in which all nodes perform linear network coding. Besides receiving the

messages, the receiver(s) wants to recover the network topology, and then detect and locate adversarial attacks, and

random glitches (errors or erasures).

We perform a comprehensive study of passive network tomography in the presence of network errors, under the

setting of network coding. In particular, we seek answers to the following questions:

• In networks performing random linear network coding (RLNC), what are the appropriate tomographic upper

and lower bounds? That is, what are the most adverse conditions in each problem setting under which network

tomography is possible, and what schemes (computationally efficient, if possible) achieve this performance?

• Are there any linear network coding schemes that improve upon the tomographic upper bounds for RLNC while

maintaining their desirable low-complexity, throughput-optimal, distributed linear network coding properties?

A. Main contributions

We now examine the relationship that linear transforms arising from random linear network coding have with

the structure of the network. For this we find it useful to define the impulse response vector (IRV) t′(e) for every

link e as the transform vector from link e to the receiver (see Section III-A for details). As shown in subsequent
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sections, each t′(e) can be treated as the fingerprint of corresponding link e. Any error on e exposes its fingerprint,

allowing us to detect the location of the error. Note that all the tomography schemes proposed in the paper for

network errors can be used to monitor networks with other glitches such as network erasures (i.e., packet losses)

and link delays. We delay discussion on these related topics to the Appendix.

• For network tomography under RLNC, our results are categorized into two classes:

1) Topology estimation. For networks suffering from random or adversarial errors, we provide the first algo-

rithms (under some sufficient conditions) that estimate the network topology (in the case of random errors, our

algorithms are computationally efficient). We also provide necessary conditions for such topology estimation

to be possible (there is currently a gap between our necessary and sufficient conditions). Common randomness

is assumed, i.e., that the coding coefficients of each node are chosen from a random code-book known by the

receiver. Note that the adversaries are allowed to access such knowledge. Without such knowledge, we prove

that in the presence of adversarial or random errors it is either theoretically impossible or computationally

intractable to estimate topology accurately.

2) Error localization. We provide the first polynomial time algorithm for locating edges experiencing random

errors. For networks suffering from adversarial errors we provide an upper bound of the number of locatable

errors, and also a corresponding (exponential-time) algorithm that matches this bound. Moreover, we provide

the first proof of computational intractability of the problem. Note that as with error-localization schemes in

the previous literature ([8], [12], [13], [14]), the schemes we provide for RLNC require the information of

network topology and the local linear coding coefficients – this can be from the topology estimation algorithms

in this work, or as part of the network design a priori.

• In the other direction, to circumvent the provable tomographic limitations of RLNC, we propose a specific

class of random linear network codes that we call network Reed-Solomon coding (NRSC), which have the

following three desirable features:

1) NRSC are linear network codes that are implemented in a distributed manner (each network node only

needs to know the node-IDs of its adjacent neighbors).

2) With high probability over code design NRSC achieves the the multicast capacity.

3) NRSC aids tomography in the following two aspects:

– Computational efficiency. Under the adversarial error model, the receiver can locate a number of adversarial

errors that match a corresponding tomographic upper bound in a computationally efficient manner.For the

random error model, an lightweight topology algorithm is provided under NRSC.

– Robustness for dynamic networks. For adversarial (and random) error localization the algorithms under

NRSC do not require the priori knowledge of the network topology and thus are robust against dynamic
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network updating. For topology estimation in the random error model, the the algorithm under NRSC fits

for dynamic networks better than the one under RLNC.

In Table I we compare our results and previous works on computational complexity.

TABLE I
COMPARISON OUR RESULTS AND PREVIOUS WORKS ON COMPUTATIONAL COMPLEXITY

Objective Failure model Tomography for Tomography for Tomography for
RLNC[Previous works] RLNC[This work] NRSC[This work]

Adversarial Errors - Exponential -
Topology Estimation

Random Errors - Polynomial Polynomial
Adversarial Errors Exponential[8] Hardness Proof Polynomial

Failure Localization
Random Errors Exponential[8], [12] Polynomial Polynomial

B. Related work

Common randomness: Essentially all prior tomography results for RLNC assume some form of common random-

ness, i.e.,, the receiver is assumed to have prior knowledge of the random coding coefficients used by internal nodes.

Some previous results [9], [8], [14] for locating errors under RLNC do not explicitly assume common randomness,

but assume the receiver knows all the linear coding coefficients employed by each node in the network, which is

related to our notion of common randomness.

We summarize related work on network inference under the following categories.

1) Passive tomography: The work in [9] provided the first explicit (exponential-time) algorithm for estimating

the topology of networks performing RLNC with no errors. The work in [8] studied the problem of locating

network errors for RLNC with prior knowledge of network topology. In particular, error localization can be

done in time O
(|E|
z

)
, where |E| is the number of links in the network and z is the number of errors the

network experiences.

2) Active tomography: The authors in [12], [13], and [14] perform network tomography by using probe packets

and exploiting the linear algebraic structure of network coding. The setting considered in these works concern

active tomography, whereas in this work we focus on passive tomography.

a) Random error localization: The authors in [12] and [14] study error1 localization in a network using

binary XOR coding. Using pre-designed network coding and probe packets, they show that the sources

can use fewer probe packets than traditional tomography schemes based on routing. Again, O
(|E|
z

)
is

the computational complexity of localization.

1In fact network erasures are considered in their works. Here we classify network erasures as a subclass of network errors.
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b) Topology estimation: For binary-tree networks using pre-designed binary XOR coding [13] show that

the topology can be recovered by using probe packets. The authors in [15] generalize the results to

multi-source multi-receiver scenario.

3) Network inference with internal nodes’ information: Another interesting set of works ([16], [17], [18]) infer

the network by the “packet information” of each internal node. In particular, the work in [17] discusses

the subspace properties of packets received by internal nodes, the work in [16] infers the bottlenecks of

P2P networks using network coding, and the works in [18], [19] provides efficient schemes to locate the

adversaries in the networks. Note that these works require the topology estimator to have access to internal

network nodes.

C. Organization of the paper

The rest of this paper is organized as follows. We formulate the problem in Section II and present preliminaries

in Section III. We then present our main technical results. Our results for network tomography consist of two parts:

Part I considers RLNC, the schemes for topology estimation in the presence of network adversary and random errors

are presented in Section IV, and the schemes for error localization is presented in Section V; Part II, consists of a

particular type of RLNC, network Reed-Solomon coding (NRSC), in Sections VI, Section VII and Section VIII.

II. PROBLEM FORMULATION AND PRELIMINARIES

A. Notational convention

Scalars are in lower-case (e.g. z). Matrices are in upper-case (e.g. X). Vectors are in lower-case bold-face (e.g.

e). Column spaces of a matrix are in upper-case bold-face (e.g. E). Sets are in upper-case calligraphy (e.g. Z).

B. Network setting

For ease of discussion, we consider an direct acyclic and delay-free network G = (V, E) where V is the set

of nodes and E is the set of edges. Each node has a unique identification number known to itself. Such a label

could correspond to the node’s GPS coordinates, or its IP address, or a factory stamp. The capacity of each edge

is normalized to be one symbol of Fq per unit time. We denote e(u, v) as the edge from node u to v. For each

node v ∈ V , let In(v) be the set of all incoming edges (or nodes) of v and Out(v) be the set of all outgoing edges

(or nodes) of v. The out-degree of node v is defined as |Out(v)| and in-degree of node v is defined as |In(v)|.

Note that all the results in the paper can be generalized to the scenario where edges with non-unit capacity

are allowed. Non-unit capacity edge is modeled as parallel edges, which can be notated by somewhat unwieldy

notations, say e(u, v, i), which stands for the i’th parallel edge from u to v.
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We focus on the unicast scenario where a single source s communicates with a single receiver r over the network.

In principle, our results can be generalized to other communication scenarios where RLNC suffices. For instance,

in the networks with multiple receivers, we assume all incoming edges of the receivers are reconnected to a virtual

receiver who performs network tomography.

Let C be the min-cut (or max-flow) from s to r. Without loss of generality, we assume that both the number of

edges leaving the source s and the number of edges entering the receiver r equal C. We also assume that for every

node in V , there is at least one path between the node and the receiver r; Otherwise the node does not involve in

the communication and is irrelevant to our study.

C. Dependency

Any set of z edges e1, e2, ..., ez is said to be flow-independent if there is a path from the tail of each to

the receiver r, and these z paths are edge-disjoint. The flow-rank of an edge-set Z equals the max-flow from

the tails of edges in Z to the receiver r. A collection of edge-sets Z1,Z2, ...,Zn is said to be flow-independent if

flow-rank(∪ni=1Zi) =
∑n

i=1 flow-rank(Zi). The flow-rank of an internal node equals to the flow-rank of its outgoing

edges. For the set Z ⊆ E with flow-rank z, the extended set (or Ext(Z)) is the set that is of flow-rank z, includes

Z and is of maximum size. Note that Ext(Z) is well-defined and unique [20].

D. Network transmission via linear network coding

In this paper we consider the linear network coding scheme proposed in [21]. Let each packet have n symbols

from Fq, and each edge have the capacity of transmitting one packet, i.e., a row vector in F1×n
q .

Source encoder: The source s arranges the data into a C×n message matrix X over Fq. Then on each outgoing

edge of s a linear combination over Fq of the rows of X is transmitted. X contains a pre-determined “short” header

(say, the identity matrix in FC×Cq ) known in advance to both the source and the receiver, to indicate the linear

transform from the source to the receiver.

Network encoders: Each internal node similarly takes linear combinations of the packets on incoming edges to

generate the packets transmitted on outgoing edges. Let x(e) represent the packet traversing edge e. An internal

node v generates its outgoing packet x(e′) for edge e′ ∈ Out(v) as

x(e′) =
∑

e∈In(v)

β(e, v, e′)x(e), (1)

where β(e, v, e′) is the linear coding coefficient from the packet x(e) to the packet x(e′) via v. As a default let

β(u, v, w) = β(e, v, e′), where e = (u, v) and e′ = (v, w).

Receiver decoder: The receiver r constructs the C × n matrix Y over Fq by treating the received packets as

consecutive length-n row vectors of Y . The network’s internal linear operations induce a linear transform between
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X and Y as

Y = TX, (2)

where T ∈ FC×Cq is the overall transform matrix. The receiver r can extract T from the packet headers (recall that

internal nodes mix headers in the same way as they mix messages). Once T is invertible the receiver can decode

X by X = T−1Y .

E. Network error models

Networks may experience disruption as a part of normal operation. Edge errors are considered in this work –

node errors may be modeled as errors of its outgoing edges.

Let x(e) ∈ F1×n
q be the input packet of e. For each edge e ∈ E a length-n row-vector z(e) is added into x(e).

Thus the output packet of e is y(e) = x(e)+z(e). Edge e is said to suffer an error if and only if z(e) is a non-zero

vector.

Both adversarial and random errors are considered:

1) Random errors: every edge e in E independently experiences random errors with a non-negative probability.

A random error on e means that z(e) has at least one randomly chosen position, say i, such that the i’th

symbol of z(e) is chosen from Fq uniformly at random. 2

2) Adversarial errors: The network is said to have z adversarial errors if and only if the adversary can arbitrarily

choose a subset of edges Z ⊆ E with |Z| = z and the corresponding erroneous packets {z(e), e ∈ Z}. Note

that the adversary is assumed to have unlimited computational capability and has the access to the information

of the source matrix X , network topology, all network coding coefficients and tomography algorithms used

by the receiver.

F. Tomography Goals

The focus of this work is network passive end-to-end tomography in the presence of network errors. There are

two tomographic goals:

1) Topology estimation: The receiver r wishes to correctly identify the network topology upstream of it (i.e.,

the graph G).

2) Error location: The receiver r wishes to identify the locations where errors occur in the network.

Remark: In fact, all tomography schemes in the paper can be generalized in the following manner. Instead of

the incoming edges In(r) of the receiver r, consider any cut EC of edges that disconnects source s from receiver

2Note the difference of this model from the usual model of dense random errors on Fq [22], wherein z(e) is chosen from Fn
q at random.

The model described in this work is more general in that it can handle such errors as a special case. However, it can also handle what we
call “sparse” errors, wherein only a small fraction of symbols in z(e) are non-zero. Such a sparse error may be a more natural model of
some transmission error scenarios [23], [24]. They may also be harder to detect. In our model we consider the worst-case sparsity of 1.
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r. A network manager that has access to the packets output from EC can use the tomography schemes in the paper

to estimate the topology of the upstream network and locate the network errors.

G. Network error-correcting codes

Consider the scenario where a randomly or maliciously faulty set of edges Z of size z injects faulty packets into

the network. As in [11], the network transform (2) then becomes

Y = TX + E. (3)

Note that the C × n error matrix E has rank at most z (see Section III-C for details). The goal for the receiver

r in the presence of such errors is still to reconstruct the source’s message X . Note that the loss-rate 2z/C is

necessary and sufficient for correcting z adversarial errors [11], [10], while the loss-rate (z + 1)/C is necessary

and sufficient [10] for correcting z random errors.

In this work we use the algorithms of [11] for adversarial errors, and the algorithms of [10] for random errors.

All our tomography schemes are based on the correct using of these network error-correcting codes.

H. Computational hardness of NCPRLC

Several theorems we prove regarding the computational intractability of some tomographic problems utilize the

hardness results of the following well-studied problem.

The Nearest Codeword Problem for Random Linear Codes (NCPRLC) is defined as follows:

• NCPRLC: (H, z, e): Given a parity check matrix H which is chosen uniformly at random over Fl1×l2q with

l2 > l1, a constant z, and a vector e ∈ H which is linear combined from at most z columns of H . The

algorithm is required to output a z-sparse solution b for Hb = e, i.e., e = Hb and b has at most z nonzero

components.

Note that NCPRLC is a well known computational hard problem [25], [25], [26].

I. Decoding of Reed-Solomon codes

This section introduces some properties of the well-studied Reed-Solomon codes (RSCs) [27], used in particular

for worst-case error-correction for point-to-point channels. A Reed Solomon code (RSC) is a linear error-correcting

code over a finite field Fq defined by its parity check matrix H ∈ Fl1×l2q with l2 > l1. Here l1 + 1 is minimum

Hamming distance of the code, i.e., minimum number of nonzero components among the codewords belonging to

the code. In particular, H is formed as

H = [h1,h2, ...,hl2 ], (4)
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where hi = [hi, (hi)
2, ..., (hi)

l1 ]T ∈ Fdq and hi 6= 0 for each i ∈ [1, l2] and hi 6= hj for i 6= j.

Given e which is a linear combination of any z ≤ (l1+1)/2 columns of H , the decoding algorithm of RS-CODE,

denoted as RS-DECODE(H, e), outputs a z-sparse solution of Hb = e with O(l2l1) operations over Fq (see [28]).

That is, b ∈ Fl2q has at most z non-zero components and e = Hb. Further more, for any b′ 6= b either e 6= Hb′

or b′ has more than z non-zero components, i.e., b is the unique z-sparse solution of Hb = e.

III. IMPULSE RESPONSE VECTOR (IRV)

In this section, we explain the relationship between the linear transforms induced by the linear network coding

and the network structures, by introducing the concept of impulse response vector (IRV). The relationship forms

the mathematical basis for our proposed tomography schemes.

A. Definition of Impulse Response Vector (IRV)

Corresponding to each edge e ∈ E we define the length-C impulse response vector (IRV) t′(e) ∈ FCq as the

linear transform from e to the receiver. In particular, let the source s transmit the all-zeroes packet 0 ∈ Fnq on all

outgoing edges, let edge e inject a packet z(e) ∈ Fnq , and let each internal node perform the linear network coding

operation. Then the matrix Y received by the receiver r is Y = t′(e)z(e) ∈ FC×nq . So t′(e) can be thought of as

a “unit impulse response” from e to r.

An illustrating example for edge IRVs is in Figure 2 and Figure 3, where the coding coefficients are shown in

Figure 2 and the packet length is assumed to be 1. In Figure 3(a), only e4 has an injected symbol 1 and what r

receives is Y = [1, 0]T , thus the IRV of e4 is t′(e4) = [1, 0]T . For the same reason, the IRVs of e5, e3, e2 and e1

are computed in Figure 3(b) , Figure 3(c), Figure 3(d) and Figure 3(e) respectively.

For a set of edges Z ⊆ E with |Z| = z, the columns of the C × z impulse response matrix T ′(Z) comprise of

the set of vectors {t′(e) : e ∈ Z}.

All IRVs can be inductively computed. First, the IRV for each edge incoming to the receiver is set as a distinct

unit vector, i.e., a distinct column of the C × C identity matrix. Then for each edge e incoming to node v with

outgoing edges {e1, e2, ..., ed} we have

t′(e) =
∑

j=1,2,...,d

β(e, v, ej)t
′(ej).

B. IRVs under random linear network coding (RLNC)

The linear network coding defined in Section II-D is a random linear network coding (RLNC) if and only if [6]:
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Fig. 3. The IRVs of the edges shown in Figure 2: t′(e4) = [1, 0]T , t′(e5) = [0, 1]T , t′(e3) = t′(e5) = [0, 1]T , t′(e2) = 2t′(e5) = [0, 2]T

and t′(e1) = 3t′(e4) + 2t′(e3) = [3, 2]T . Edges e2 and e3 are not flow-independent, so the IRV t′(e2) equals the t′(e3) (up to a scalar
multiple). Conversely, e1 and e5 are flow-independent, so t′(e1) is linearly independent from t′(e5).

Source encoder: The source s takes C independently and uniformly random linear combinations of the rows of

X to generate respectively the packets transmitted on each edge outgoing from s (recall that exactly C edges leave

the source s).

Network encoders: Each internal node, say v, independently and uniformly chooses its local coding coefficients

{β(e, v, e′), e ∈ In(v), e′ ∈ Out(v)} at random.

Receiver decoder: As shown in Equation (2), the receiver r receives Y as Y = TX , where T is the overall

transform matrix. It is proved that with a probability at least 1 − |E|/q the matrix T is invertible for RLNC [6].

The receiver extracts T from the header of Y and decodes X by X = T−1Y .

For RLNC, the linear transforms defined in Section III-A provides an algebraic interpretation for the graphes.

To be concrete, Lemma 1 below states that the linear independence of the IRVs has a close relationship with the

flow-independence of the edges. The relationship is used in tomography schemes shown in later sections.

Lemma 1: 1) The rank of the impulse response matrix T ′(Z) of an edge set Z with flow-rank z is at most

z.

2) The IRVs of flow-independent edges are linear independent with a probability at least 1− |E|/q.

Proof:
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1) When the flow-rank of Z is z, the max-flow from Z to r is at most z. If the rank of T ′(Z) is larger than

z, say z + 1, Z can transmit information to r at rate z + 1, which is a contradiction.

2) For an flow-independent edge set Z with cardinality z, assume a virtual source node s′ has z virtual edges

connected to the headers of Z , and all outgoing edges (except for Z) of the headers of Z are deleted. The

max-flow from s′ to r is z and Z is a cut. Then T ′(Z) has rank z if and only if s′ can transmit information

to r at rate z. By a direct corollary of Theorem 1 in [5], this happens with a probability at least 1− |E|/q.

�

Thus for a large enough field-size q, properties of the edge sets map to the similar properties of the IRVs.

For instance, with a probability at least 1 − |E|/q, flow-rank(∪di=1Zi) =
∑d

i=1 flow-rank(Zi) if and only if

rank(T ′(∪di=1Zi)) =
∑d

i=1 rank(T ′(Zi)). Thus by studying the ranks of T ′(Zi), we can infer the flow-rank

structures of Zi.

The example in Figure 3 also shows the relationship between flow-independence and linear independence.

C. IRVs for network errors

Assume a faulty set of edges Z of size z injects faulty packets into the network, i.e., Z = {e : e ∈ E , z(e) 6= 0}

and |Z| = z. From the definition of IRV, we have:

Y = TX + T ′(Z)Z, (5)

where Z is a z × n matrix whose rows comprised of erroneous packets {z(e) : e ∈ Z}. Thus the error matrix E

defined in Equation (3) (of Section II-G) equals T ′(Z)Z and has rank at most z.

Part I: Network Tomography for Random Linear Network Coding (RLNC)

IV. TOPOLOGY ESTIMATION FOR RLNC

A. Common randomness

Common randomness means that all candidate local coding coefficients {β(u, v, w), u, w ∈ V} of node v ∈ V

are chosen from its local random code-book Rv, and the set of all local random code-books R = {Rv, v ∈ V} is

known a priori to the receiver r. Note that R can be public to all parties including the adversaries.

Common randomness is both necessary and sufficient for network topology estimation under RLNC. On one

hand the sufficiency is followed by the works in [9] and this section. On the other hand we show that in the presence

of adversarial (or random errors), determining the topology without assuming common randomness is theoretically

impossible (or computationally intractable) later in Theorem 2 and Theorem 3.
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Each local random code-book in R comprises of a list of elements from Fq, with each element chosen inde-

pendently and uniformly at random. These random code-books can be securely broadcasted by the source a priori

using a common public key signature scheme such as RSA [29], or as part of network design.

Depending on the types of failures in the network, we define two types of common randomness. Recall that

β(u, v, w) is the local coding coefficient from edge e(u, v) via v to the edge e′(v, w) (see Section II-D for details).

1) Weak type common randomness for random errors: For node v ∈ V each distinct element (u,w) in V ⊗ V

indexes a distinct element in Rv. The local coding coefficient β(u, v, w) is chosen as the element Rv(u,w).

For instance consider the subnetwork shown in Figure 4. Under weak type common randomness, Figure 5

shows how node v1 chooses the coding coefficient β(v2, v1, v4).

v1

v2 v3

v4 v5 v6

Fig. 4. The adjacent neighbors of node v1.

v2 v3 v4 v5 v6

v3

v1
v2

v1

Rv1

Fig. 5. Under weak type common randomness, node v1 in Figure 4 chooses β(v2, v1, v4) as the element shown in the dark region.

2) Strong type common randomness for adversarial errors: For node v ∈ V each distinct element (u,w,w′) in

V ⊗ V ⊗ V indexes a distinct element in Rv. For an instance network, recall that Out(v) is the outgoing

edges of v. The coding coefficients β(u, v, w) is chosen as

β(u, v, w) =
∑

e(v,w′)∈Out(v)

Rv(u,w,w′). (6)

For instance consider the subnetwork shown in Figure 4. Under strong type common randomness, Figure 6

shows how node v1 chooses the coding coefficient β(v2, v1, v4).
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v2 v3 v4 v5 v6

v3

v1
v2

v1

Rv1

bv1 bv2bv3 bv4 bv5bv6

Fig. 6. Under strong type common randomness, node v1 in Figure 4 chooses β(v2, v1, v4) as bv4 + bv5 + bv6 .

Remark 1: For strong type common randomness, since 1) all symbols inRv are independently and uniformly chosen

over finite field Fq and 2) for different coding coefficient β(u, v, w) the summation in equation (6) involves distinct

elements in Rv, the coding coefficients β(u, v, w) chosen by equation (6) is also independently and uniformly

distributed over Fq.

Remark 2: For adversarial errors it is required that the existence of an edge e(v, w) would effect the coding

coefficients {β(u, v, w′) : w′ 6= w}. Otherwise, if the adversary corrupts e(v, w) and only sends all-zero packet on

e(v, w), the receiver is impossible to notice the existence of e(v, w). Thus a different type of common randomness

is used for network suffering adversarial errors.

Remark 3: Assuming the common randomness, given the knowledge of network topology all local coding coeffi-

cients are known. Thus the IRVs of the edges can be computed efficiently.

Remark 4: For network with parallel edges the random code-book Rv can be described by somewhat unwieldy

notations. For instance, under weak common randomness the element Rv(u,w, i, j) is for the coding coefficient

from edge (u, v, i) (i.e., the ith parallel edge between u and v) to (v, w, j) via v.

We first prove the necessity of using common randomness for topology estimation in networks with adversarial

errors. Since the network adversaries can hide themselves and only inject zero errors, it suffices to prove common

randomness is necessary for topology estimation in networks with zero errors.

Theorem 2: If internal nodes choose local coding coefficients independently and randomly without assuming

common randomness, there exist two networks which can not be distinguished by the receiver in the absence of

network errors.

Proof: Since the overall transform matrix (see Equation (2) for details) is the only information the receiver can

retrieve from the receiving packets, it suffices to prove the overall transform matrixes of Exp1 and Exp2 in Figure 7
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are statistically indistinguishable.

For Exp1, let Ts(1) ∈ F2×2
q be the transform matrix from s to u1. Similarly, matrices Tu1

∈ F3×2
q , Tu2

∈ F2×3
q ,

and Tu3
∈ F2×2

q are the transform matrices from u1, u2, u3 to the adjacent downstream nodes respectively. Thus,

the transform matrix T (1) from s to r in Exp1 is T (1) = Tu3
Tu2

Tu1
Ts(1).

For the similar reason, the transform matrix T (2) from s to r in Exp2 is T (2) = Tv3Tv2Tv1Ts(2).

Since each element in Tu3
, Tu2

, Tu1
, Ts(1), Tv3 , Tv2 , Tv1 , Ts(2) is independently and uniformly chosen at random,

T (1) is statistically indistinguishable from T (2). �

s

u1

u2

u3

r

s

r

v1

v2

v3

Exp1 Exp2

Fig. 7. Two networks that are impossible to distinguish by the receiver.

For the random error model (see Section II-E for details), Theorem 2 does not suffice to show the necessity of

common randomness. The reason is that in a zero error network the only network information observed by the

receiver is the transform matrix T , while in networks suffering random errors, an random error on the edge may

expose its IRV information which aids topology estimation. In the following it is proved that without assuming

common randomness topology estimation is at least as computationally intractable as NCPRLC (see the definition

in Section II-H for details).

For random error model, as in (5), the receiver gets Y = TX+E, where E = T ′(Z)Z. Thus E and T are all the

information observed by the receiver r. Let IIRV be the set of vectors, each of which equals an IRV of an edges

in the network. Note that IIRV is merely a set of vectors, and as such, individual element has no correspondence

with any edge in the network. When the edge suffers random errors independently, Z are errors chosen at random.

Thus the error matrix E = T ′(Z)Z can not provide more information than T ′(Z), whose columns are in IIRV .

Thus it suffices to prove:

Theorem 3: When the internal nodes choose local coding coefficients independently and randomly without

assuming common randomness, if the receiver r can correctly estimate the topology in polynomial time (in network

parameters) with knowing T and IIRV a priori, NCPRLC can be solved in time polynomial (in problem parameters).

Proof: Given a NCPRLC instance (H, z, e), as shown in Figure 8, we construct a network with l1 edges to r and



16

r

...

...
l2 edges

l1 edges

u

Fig. 8. A network reduced from the NCPRLC instance (H, z, e).

l2 edges to node u.

Since H is a matrix chosen uniformly at random over Fq, it corresponds to a RLNC, where each column of H

corresponds to an IRV of an edge in In(u).

Let e be an edge whose tail is connected to z edges in In(u). Let the IRV of e be e. If the receiver r can recover

the topology, r is able to tell how the tail of e is connected to the z edges in In(u). Thus r can find a linear

combination of z columns of H resulting in e and thus solve (H, z, e). �

B. Topology estimation for networks with adversarial errors

In this section, we use an error-correcting code approach [11] to estimate the topology of a network with

adversarial errors. At a high level, the idea is that in strongly connected networks, each pair of networks generates

transform matrices that look “very different”. Hence no matter what the adversary does, he is unable to make the

transform matrix for one network resemble that of any other. The estimation algorithm and proof techniques are

similar in flavor to those from algebraic coding theory.

As is common in the network error-correcting literature, we assume that the adversary is bounded, and therefore

corrupts no more than z edges in the network.

Assumptions and justifications:

1) At most z edges in Z suffer errors, i.e., {e : e ∈ E , z(e) 6= 0} = Z and |Z| ≤ z. When 2z+ 1 ≤ C, network-

error-correcting codes (see Section II-G for details) are used so that the source message X is provably

decodable.

2) Strong connectivity. A set of networks satisfies “strong connectivity” if the following is true: each internal

node has both in-degree and out-degree at least 2z + 1. Note that in an acyclic graph it implies the source

has at least 2z + 1 edge disjoint pathes to each internal node, which has 2z + 1 edge disjoint pathes to the

receiver. We motivate this strong connectivity requirement by showing in Theorem 6 lower bounds on the

connectivity required for any topology estimation scheme to work in the presence of an adversary.3

3Note that for the single source (or single receiver) network, such connectivity requires parallel edges at the source (or the receiver).
Otherwise if parallel edges are not allowed, we assume the neighbors of the source (or the receiver) are the end-nodes, i.e., they are not in
the domain of tomography. Similar argument holds in later sections.
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3) Knowledge of local topology. We assume that each node knows the ID numbers of the nodes exactly one hop

away from it, either upstream or downstream of it.

4) Strong type common randomness is assumed. It is justified by Theorem 2.

After receiving the overall transform matrix Te which is polluted by the network adversarial errors, the receiver

r using the following algorithm to estimate of topology of the network.

• ALGORITHM I: TOPO-ADV-RLNC: Under RLNC, the algorithm is to use the end information observed

by the receiver to estimate the network topology in the presence of network adversaries.

• The inputs are Te and R = {Rv, v ∈ V}. The output is a graph G.

• Step A: For each candidate graph G with nodes in V and satisfying the strong connectivity requirement (see

Assumption 2) for details), goto Step B.

• Step B: Using R, receiver r computes the overall transform matrix T (G) for G. If rank(T (G)−Te) ≤ z, output

G and goto Step C; otherwise, go back to continue the loop in Step A.

• Step C: End TOPO-ADV-RLNC.

Before proving the correctness of TOPO-ADV-RLNC we show the key lemma for the rank distance of different

graphes. The rank-distance between any two matrices A,B ∈ FC×Cq is defined as rm(A,B) = rank(A − B). We

note that rank-distance indeed satisfies the properties of a distance function; in particular it satisfies the triangle

inequality [11].

Lemma 4: Let the transform matrices of different networks G and G′ be T (G) and T (G′) respectively. Then with

a probability at least 1− |V|4/q, rm(T (G), T (G′)) ≥ 2z + 1.

Proof: Since G 6= G′, there exists a node u 6= r in G which is either not in G′ or has an outgoing edge eu in G but

not in G′.4

We first show that there exists a (2z+ 1)× (2z+ 1) sub-matrix in T (G)−T (G′), such that its determinant is not

zero on an evaluation of the elements of the code-books in R. Using Assumption 2), in G there exist 2z + 1 edge

disjoint pathes from s to r via u. The elements in R can be evaluated such that i) only the routing transmissions

along these pathes are allowed; ii) in G, the source s can transmit 2z + 1 packets using routing via u to r; iii) the

elements in Ru satisfy R(v, u, w,w′) = 0 if (u,w′) 6= eu.

Thus for graph G, under such evaluation of R the transform matrix T (G) has a sub-matrix as a (2z+1)×(2z+1)

identity matrix.

For the case where u 6∈ G′, since the receiver r can only receive the routing transmissions via u, the transform

matrix T (G′) is therefor a zero matrix.

For the case where u ∈ G′, since eu 6∈ G′, in G′ all local coding coefficients used by u are zero and therefor the

4Otherwise we can switch the roles of G and G′ in the proof.
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transform matrix T (G′) is still a zero matrix.

Thus under such evaluation of R, T (G)− T (G′) always has a (2z + 1)× (2z + 1) sub-matrix with determinant

1.

The determinant of the sub-matrix is a polynomial of random variables belonging to R, with degree at most

|E|×(2z+1) ≤ |E|2 ≤ |V|4. Using Schwarth-Zippel Lemma [30], with a probability at least 1− |V|4q the determinant

of the sub-matrix is nonzero, i.e., rm(T (G)− T (G′)) ≥ 2z + 1. �

Since there are at most 2|V|
2/2 acyclic graphs and 2|V|

2

pairs of graphs to be compared, following a Union

Bound [31] argument, with a probability at least 1− |V|42|V|
2

/q the lemma is true for any pair of networks 5.

As in (5), after transmission, the erroneous transfer matrix Te received by r is actually

Te = T + T ′(Z)Zh, (7)

where Zh represents the errors injected for the packet headers, i.e., the first C columns of Z. This combined with

Lemma 4 enables us to prove the correctness of TOPO-ADV-RLNC.

Theorem 5: With a probability at least 1− |V|42|V|
2

/q, the network G outputted by TOPO-ADV-RLNC is the

correct network.

Proof: We assume lemma 4 is true for any pair of graphs, which happens with a probability at least 1−|V|42|V|
2

/q

as stated above.

By (7), the rank distance rm(Te, T (G)) equals rank(T ′(Z)Zh) ≤ rank(T ′(Z)) ≤ z. For any transfer matrix

T (G′) corresponding to a different network G′, by the triangle inequality of the rank distance, rm(T (G′), Te) ≥

rm(T (G′), T (G))− rm(T (G), Te) ≥ z + 1. This completes the proof. �

In the end, we show that the strong connectivity requirements (see Assumption 2) for details) we require for

Theorem 5 are “almost” tight6.

Theorem 6: For any network G that has fewer than z + 1 edges from the source s to each node, or fewer than

2z+1 edges from each node to the receiver r, there exists an adversarial action that makes any tomographic scheme

fail to estimate the network topology.

Proof: Assume node v has a min-cut 2z to the the receiver r, and the adversary controls a set Z of size z of

them. When the adversary runs a fake version of the tomographic protocol announcing that v is not connected to

the edges in Z , the probability that r incorrectly infers the presence of v is 1/2.

On the other hand, if v has only z incoming edges, the adversary can cut these off (i.e. simulate erasures on

5For counting the total number of networks we do not count the the networks with parallel edges for clarity of exposition. When parallel
edges is taken into count, the length of field size q should be Θ(|V|2 log(|E|)) to make the failure probability of tomography negligible.

6We remark that there is a mismatch between the sufficient connectivity requirement in Assumption 2) (that there be 2z+1 edges between
s and each node), and the necessary connectivity requirement of Theorem 6 (that there be z + 1 edges between s and each node). Whether
the gap between such mismatch can be closed is still open.
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these edges). Since the node can only transmit the message from its incoming edges, this implies that all messages

outgoing from u are also, essentially, erased. Hence the presence of v cannot be detected by r. �

In fact, the proof of Lemma 4 only requires G and G′ differs at a node with high connectivity. If we know the

possible topology set a priori, we can relax the connectivity requirement. The following corollary formalizes the

observation.

Corollary 7: For a set of possible networks {G1,G2, ...,Gd}, if any two of them differs at a node which has

max-flow at least 2z + 1 from the source and max-flow at least 2z + 1 to the receiver, with a probability at least

1− d2|V|4/q the receiver can find the correct topology by the receiving transform matrix.

C. Topology estimation for networks with random failures

Under RLNC, we provide a polynomial-time scheme to recover the topology of the network that suffers random

network errors (the definition of random errors can be found in Section II-E). The receiver r proceeds in two

stages. In the first stage (Algorithm II: FIND-IRV), r recovers the IRV information during several rounds of

network communications suffering random errors. In the second stage (Algorithm III: FIND-TOPO), r uses the

IRV information obtained to recover the topology. An interesting feature of the algorithms proposed is that random

network failures actually make it easier to efficiently estimate the topology.

Assumptions, justifications, and notation:

1) Multiple “successful” source generations. A “successful” generation means the number of errors does not

exceed the bound C−1 and receiver r can decode the source message correctly using network error-correcting-

codes (see Section II-G for details). The protocol runs for t independent “successful” source generations,

where t is a design parameter chosen to trade off between the probability of success and the computational

complexity of the topology estimation protocol. Let X(i) be the source messages transmitted, Z(i) be the

edge set suffering errors and Y (i) be the received matrix in the ith source generation.

2) Weak connectivity requirement. It is assumed that each internal node has out-degree no less than 2. Note it

is the necessary condition that each edge is distinguishable from every other edge, i.e., any pair of edges are

flow-independent (see the definition in Section II-C for details).

3) Each node knows the IDs of its neighbors. As in Section IV-B, Assumption 3).

4) The network is not “noodle like” (i.e., high-depth and narrow-width)7. To be precise for any distinct i, j ∈ [1, t]

let the random variable D(i, j) be 1 if and only if Z(i) is flow-independent to Z(j), i.e., flow-rank(Z(i) ∪

Z(j)) = flow-rank(Z(i)) + flow-rank(Z(j)). Since the random network errors are independent of the source

7 At a high-level, the problem lies in the fact that such networks have high description complexity (dominated by the height), but can
only support a low information rate (dominated by the width).
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generation, Pr(D(i, j) 6= 1) has no dependence on (i, j) and is defined as pc. The network is not “noodle

like” requires pc bounded away from 1.

5) For each source generation, each edge e independently has random errors with probability at least p. Note

that Assumption 1) and 4) require the typical number of error edges p|E| in each source generation is no

more than C. Thus we can assume p = Θ(1/|E|).

6) Weak type common randomness is assumed. It is justified by Theorem 3.

Stage I: Find candidate IRVs

Recall the source message is formed as X(i) = [IC ,M(i)], where IC is a C × C identity matrix and M(i) ∈

FC×(n−C)
q is the message. For any matrix N with n columns, let Nh (and Nm ) be the matrix comprised of the

first C columns (and last n− C ) of N . Then the algorithm that finds a set of candidate IRVs is as follows:

• Algorithm II, FIND-IRV: The algorithm is to recover a set of candidate IRVs of the network from t

“successful” source generations.

• The input is {Y (i), i ∈ [1, t]}. The output is IIRV which is a set of dimension-one subspaces in FCq and

initialized as an empty set.

• Step A: For i ∈ [1, t], r computes M(i) using network error-correction-code (see Section II-G for details) and

then E(i)r = Y (i)m − Y (i)hM(i).

• Step B: The intersection of the column-spaces E(i)r ∩ E(j)r is computed for each pair i, j ∈ {1, . . . , t}. If

rank(E(i)r ∩E(j)r) = 1 for any (i, j) pair, E(i)r ∩E(j)r is added into IIRV .

• Step C: End FIND-IRV:

Let pa denote pc + 2ps + |E|/q and ps be 1 − (1 − z/q)[1 − 2C2/(n − C)] and < v > be the dimension-one

subspace spanned by any vector v. Then the theorem followed characterizes the performance of FIND-IRV.

Theorem 8: The probability that IIRV contains {< t′(e) >: e ∈ E} is at least 1− |E|ptp/2a .

The proof will be presented later.

Remark 1: Each element in IIRV has no correspondence with any edge in the network. Such correspondences

would be found in next stage by algorithm FIND-TOPO.

Remark 2: The probability ps asymptotically approaches 0 with increasing block-length-n and field-size-q. Hence

pa is bounded away from 1 using Assumption 4). Thus if t = Θ(log(|E|)/p), the probability that IIRV contains

{< t′(e) >: e ∈ E} is 1 − o(1). Since p = Θ(1/|E|), without loss of generality we henceforth assume t =

Θ(|E| log(|E|)).

Remark 3: Since 2ps+|E|/q is asymptotically negligible for large block-length n and field size q, pa approximately

equals pc. Also Lemma 1 and Lemma 9 imply that for large n and q, any two failing edge-sets Z(i) and Z(j)

across multiple source generations are flow-independent if and only if the corresponding error matrices E(i)r and
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e1

e2 e3

e4
1

2

3

Fig. 9. Let Z(1) = {e1, e4} and Z(2) = {e2, e3} and rank(t′(e2), t′(e3), t′(e4)) = 3, then we have rank(T′(e2, e3)∩T′(e1, e4)) = 1
and T′(e2, e3) ∩T′(e1, e4) = [t′(e2) + 2t′(e3)], which is a “fake candidate”.

E(j)r are column linearly independent. Thus r can estimate 1− pa and hence 1− pc by estimating the probability

that pairs of E(i)r and E(j)r are linearly independent. This enables r to decide how many communication rounds

t are needed so that FIND-IRV has the desired probability of success.

Remark 4: The set of vectors output by FIND-IRV can also include some “fake candidate”, as demonstrated in the

example in Figure 9. In the next stage for topology estimation, these fake IRVs will be filtered out automatically.

Before the proof of Theorem 8, we show the following lemma arisen from the properties of random errors and

is a core lemma for network tomography in random network errors.

Lemma 9: For random error model, E(i)r = T′(Z(i)) with a probability at least 1− ps.

Proof: Recall that Z(i)m comprised of the last n−C columns of Z. We first prove that Z(i)m has full row rank

z with a probability at least 1− ps.

In the random error model (see Section II-E for details) each error edge e has at least one randomly chosen

location (say `) in the injected packet z(e) such that the `th component of z(e) is chosen uniformly at random

from Fq. Thus for each row of Z(i), all the last n − C elements are zero with a probability at most C/n. Using

Union Bound [31] Z(i)m has zero rows with a probability at most C2/n. Thus in the following we assume each

row of Z(i)m is non-zero.

The “Birthday Paradox” [31] implies that with a probability at least 1 − C2/(n − C), for each row of Z(i)m,

the following happens: there are z distinct column indexes l1, . . . , lz ∈ {1, . . . , n − C} such that Z(i)m(i, li) is

chosen uniformly at random. Then the determinant of the sub-matrix of the {l1, . . . , lz}th columns of Z(i)m is

a nonzero polynomial of degree z of uniformly random variables over Fq. By the Schwartz-Zippel Lemma [30]

this determinant is non-zero with a probability at least (1− z/q). Thus Z(i)m has z independent columns with a

probability at least (1− z/q)[1− 2C2/(n− C)] = 1− ps.

Since E(i)r = E(i)m−E(i)hM(i) = T ′(Z(i))(Z(i)m−Z(i)hM(i)) and the non-zero random variables in Z(i)m

are chosen independently from Z(i)hM(i), (Z(i)m − Z(i)hM(i)) has full row rank z with the same probability

1− ps. Thus E(i)r = T′(Z(i)) with a probability at least 1− ps. �

Then we have:
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Proof of Theorem 8: For any edge e and any i, j ∈ {1, . . . , t} and e ∈ Z(i) ∩ Z(j), we compute the probability

of the event F(e, i, j): < t′(e) > equals the one-dimensional subspace E(i)r ∩E(j)r.

By Assumption 4), with a probability at least 1 − pc, Z(i) − e is flow-independent of Z(j) − e. Conditioned

on this, Lemma 1.2 implies that with a probability at least 1 − pc − |E|/q, T′(Z(i)\e) is linearly independent

of T′(Z(j)\e). Hence T′(Z(i)) ∩ T′(Z(j)) equals < t′(e) >. And by Lemma 9, either of E(i)r 6= T′(Z(i)) or

E(j)r 6= T′(Z(j)) with a probability at most ps. Conditioning on all the events implies that the probability of event

F(e, i, j) is at least 1− pc − 2ps − |E|/q.

When t is large enough, by the Chernoff bound [31] e will fail at least tp/2 times with a probability at least

1 − pΘ(t). Conditioned on these many failures, there are tp/4 probabilistically independent F(e, i, j) for edge e,

and FIND-IRV accepts t′(e) with a probability at least 1− (p
tp/4
a + pΘ(t)). Taking the Union Bound over all edges

gives the required result. �

Stage II: Topology recovery via candidate IRVs

Using IIRV , we now describe Algorithm FIND-TOPO that determines the network topology.

Note that IIRV is merely a set of dimension-one subspaces, and as such, individual element may have no

correspondence with the actual IRV of any edge in the network. At any point in FIND-TOPO, let Ḡ denote the

network topology recovered thus far. Let V̄ and Ē be the corresponding sets of nodes and edges respectively in Ḡ,

and ĪIRV be the set of IRVs of the edges in Ē , which are computed from Ḡ and the set of local random code-books

R = {Rv : v ∈ V}. We note that the IRVs in ĪIRV are vectors rather than dimension-one subspaces.

We describe algorithm estimating the network topology as follows.

• Algorithm III, FIND-TOPO: The algorithm is to use IIRV and R = {Rv, v ∈ V} to recover the network

topology.

• The input is IIRV and R. The output is Ḡ = (V̄, Ē).

• Step A: The set V̄ is initialized as the receiver r, all its upstream neighbors, and the source s. The set Ē is

initialized as the set of edges incoming to r. Hence Ḡ = (V̄, Ē). The initial set of ĪIRV are the IRVs of the

incoming edges of r, i.e., a set of distinct columns of the C ×C identity matrix. The state flag STATE(New-

Edge) is initialized to be “False”.

• Step B: For each node v 6= s in V̄ , call function FindNewEdge(v) (Step C). If

– STATE(New-Edge) is “True”, set STATE(New-Edge) be “False” and repeat the loop of Step B.

– STATE(New-Edge) is “False”, go to Step E.

• Step C: (Function FindEdge(v)) Let e1, . . . , ed be the outgoing edges of v in Ḡ. If {t̄′(e1), . . . , t̄′(ed)} from

ĪIRV has

– rank 1, step-back and continue the loop in Step B.
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– rank greater than 1, for each candidate incoming edge of v, say e = (u, v), if e 6∈ Ē , call function

CheckIRV (v, e) (Step D). Step-back and continue the loop in Step B.

• Step D: (Function CheckIRV (v, e)) Use R to compute the IRV of e as t̄′(e) =
∑d

j=1 β(e, v, ej )̄t
′(ej). Check

whether < t̄′(e) > is in IIRV . If so,

1) Set STATE(New-Edge) be “True”.

2) If u 6∈ V̄ , add u to V̄ .

3) Add e = e(u, v) to Ē .

4) Based on R, update ĪIRV from Ḡ = (V̄, Ē).8.

Step-back to the loop in Step C.

• Step E: End FIND-TOPO.

If IIRV contains all edge IRVs which is supported by Theorem 8, we show correctness of FIND-TOPO as:

Theorem 10: With a probability 1 − O(log2(|E|)|E|4|V|)/q, FIND-TOPO recovers the accurate topology by

performing O(log2(|E|)|E|4|V|C) operations over Fq.

Before the proof of Theorem 10 we need the following lemma, which shows that with high probability function

CheckIRV (v, e) accept an edge e if and only if e is actually in the network G.

Lemma 11: 1) If edge e = (u, v) exists in G, < t′(e) > is in IIRV , {e1, . . . , ed} are exactly all the outgoing

edges of v in G and t̄′(ei) = t′(ei) for i = 1, 2, ..., d, function CheckIRV (v, e) accepts e as a new edge in

Ē with a probability 1.

2) If edge e does not exist in G, function CheckIRV (v, e) accepts e as a new edge in Ē with a probability

O(log2(|E|)|E|2)/q.

Proof:

1) Under the conditions we have t̄′(e) =
∑d

j=1 β(e, v, ej )̄t
′(ej) = t′(e) and will be accepted.

2) If e does not exist in G, the coding coefficients {β(e, v, ej) : j = 1, . . . , d} are not used. Hence from the

perspective of any element < h > in IIRV ,
∑d

j=1 β(e, v, ej )̄t
′(ej) is an independently and uniformly chosen

vector in the span of the vectors {t̄′(ej) : j ∈ {1, . . . ,d}}. Since CheckIRV (v, e) is called only if the rank of

{t̄′(ej) : j ∈ {1, . . . ,d}} is no less than 2, so that t̄′(e) ∈< h > with a probability at most 1/q. Since FIND-

IRV in Stage I needs at most t = O(log(|E|)|E|) source generations9, IIRV has size at most O(log2(|E|)|E|2).

Using the Union Bound [31] < t̄′(e(u,v, i)) > is in IIRV with a probability O(log2(|E|)|E|2/q). �

Then we have:

8 The reason that ĪIRV needs to be updated is that: when e is found as a new edge in Ḡ, the IRVs of the edges upstream of e in Ḡ will
change.

9As pointed out in Remark 2 after Theorem 8.
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Proof of Theorem 10: Note that if no errors occur, Step B can find at most |E| edges, each time of finding a

new edge of Step B needs at most |V| invocations of Step C (once for each node), and each invocation of Step C

results in at most |E| invocations of Step D. Thus Step D can be invoked at most |E|2|V| times, and Lemma 11

demonstrates that each invocation results in an error with a probability at most O(log2(|E|)|E|2/q). Note further

that this is the only possible error event. Hence by the Union Bound [31] the probability that FIND-TOPO results

in an erroneous reconstruction of G is O(log2(|E|)|E|4|V|)/q. Also, each computation of Step D takes at most

O(log2(|E|)|E|2C) finite field comparisons to determine membership of < t̄′(e) > in IIRV . Hence, given that

the bound on the number of invocations of Step D and that this can be verified to be the most computationally

expensive step, the running-time of FIND-TOPO is O(log2(|E|)|E|4|V|C) operations over Fq.

Finally, we note that G is acyclic and the assumption that IIRV contains {< t′(e) >: e ∈ E}. Hence conditioning

on no incorrect edges being accepted, for each invocation of Step B, unless Ḡ = G, there exists an edge e such that

all edges e′ downstream of e in G are in Ē , which implies all the corresponding t̄′(e′)s are correctly computed.

Thus by Lemma 11 edge e is accepted into Ē by function CheckIRV (v, e) with a probability 1. Hence, each edge

actually in G also eventually ends up in Ḡ, and FIND-TOPO terminates. �

V. ERROR LOCALIZATION FOR RLNC

As previous works ( [8], [13], [14], under RLNC the receiver r must know the network topology and local

random coding coefficients to locate network errors. Thus in this section receiver r is assumed to know the IRVs

of each edge, which can follow topology estimation algorithms in Section IV, or the network design as a priori.

A. Locating adversarial errors under RLNC

In this subsection we demonstrate how to detect the edges in the network where the adversary injects errors.

Since the IRV is the fingerprint of the corresponding edge, detecting the error edges thus becomes an equivalent

mathematical problem which detects the IRVs in the error matrix E. Our technique is based on the fact that when

the edges are flow-independent (see the definition in Section II-C for details) enough to each other, the IRV of each

error edge is not erasable from the column space of the error matrix E, i.e., E.

Assumptions and justifications:

1) Each internal node has out-degree at least 2z. Since G is acyclic, it implies that every set of 2z edges in G are

flow-independent. While this assumption seems strong, we demonstrate in Theorem 13 that such a condition

is necessary for r to identify the locations of z corrupted edges.

2) At most z edges in Z suffer errors, i.e., {e : e ∈ E , z(e) 6= 0} = Z and |Z| ≤ z. When 2z + 1 ≤ C,

network-error-correcting codes (see Section II-G for details) are used so that the source message X (and thus

the error matrix E) is provably decodable.
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Then we have:

• ALGORITHM IV, LOCATE-ADVERSARY-RLNC: The algorithm is to locate the network adversaries under

RLNC.

• The input is the error matrix E and {t′(e) : e ∈ E}. The output is a set of edges Z ′.

• Step A: Compute rank(E)= η. Let {e1, e2, ..., eη} be a set of independent columns of E.

• Step B: For i = 1, 2, ..., η, find a set of edges Zi with minimal cardinality such that ei is in the column space

of the corresponding impulse response matrix T ′(Zi).

• Step C: Output Z ′ = ∪i∈[1,η]Z(i).

• Step D: End LOCATE-ADVERSARY-RLNC.

We show that with high probability LOCATE-ADVERSARY-RLNC finds the location of edges with adversarial

errors.

Theorem 12: With a probability at least 1− |E|
(|E|

2z

)
/q the solution of LOCATE-ADVERSARY-RLNC results

in Z ′ = Z .

Proof: Note that Assumption 1), with high probability, gives a similar statement about the rank of the corresponding

IRVs. Using the Union Bound [31] on the result of Lemma 1.2 gives us the result that any 2Z IRVs are independent

with a probability at least 1− |E|
(|E|

2z

)
/q. We henceforth assume it happens in the following.

First of all, since each ei is in T′(Z), we have |Zi| ≤ z for each i = 1, 2, ..., η.

We claim that for each i ∈ {1, 2, . . . , η}, Zi must be a subset of Z . If not, say e ∈ Z(i) is not in Z . By the

definition of LOCATE-ADVERSARY-RLNC, t′(e) is in the span of the columns of T ′(Z) and T ′(Zi− e). Thus

a non-trivial combination of the at most 2z − 1 IRVs result in t′(e). It contradicts that any 2z IRVs are linearly

independent.

We prove next that for any edge e ∈ Z on which the adversary injects a non-zero error, LOCATE-ADVERSARY-

RLNC outputs at least one Zi such that e ∈ Zi. Without loss of generality, let e be the first edge in Z . Then

E = T ′(Z)Z and the first row of Z is nonzero. Since any z IRVs are independent, T ′(Z) is of full column rank.

Then for any η independent columns in E there must be at least one, say ei, such that the IRV t′(e) has nonzero

contribution to it. That is, ei = T ′(Z)(c1, c2, ..., cz)
T with c1 6= 0. Hence running LOCATE-ADVERSARY-RLNC

on ei will find t′(e) and include the corresponding edge e into Zi. Otherwise, t′(e) is in the space of T′(Z − e,Zi),

which contradicts that any 2z IRVs are linearly independent. �

We now show matching converses for Theorem 12. In particular, we demonstrate in Theorem 13 that Assump-

tion 1), i.e., that any 2z edges are flow-independent, is necessary.

Theorem 13: For linear network coding, any z corrupted edges are detectable if and only if any 2z edges are

flow-independent.
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Proof: The “if” direction is a corollary of Theorem 12. For the “only if” direction, suppose there exist 2z edges such

that they are not flow-independent. Then the corresponding IRVs cannot be linearly independent by Lemma 1.1.

Then there must exist a partition of these 2z edges into two edge sets Z1 and Z2 such that |Z1| = z and |Z2| = z

and T′(Z1) ∩ T′(Z2) 6= {0}, i.e., the spanning spaces of the corresponding IRVs in the two sets intersect non-

trivially. Then the adversary can choose to corrupt Z1 and inject errors Z in a manner such that the columns of

T ′(Z1)Z are in T′(Z2). This means r cannot distinguish whether the errors are from Z1 or Z2. �

Theorem 13 deals with the case that any z edges can be corrupted. If only some sets of edges are candidates for

adversarial action (for instance the set of outgoing edges from some “vulnerable” nodes) we obtain the following

corollary.

Corollary 14: Let S = {Z1,Z2, ...,Zt} be disjoint sets of edges such that exactly one of them is controlled by

an adversary. Then r can detect which edge set is controlled by the adversary if and only if any two sets Zi and

Zj in S are flow-independent.

Note: The flow-independence between edge-sets Zi and Zj in S does not require the edges within either of Zi
or Zj to be flow-independent. It merely requires that flow-rank(Zi) + flow-rank(Zj) = flow-rank(Zi ∪ Zj).

Note that running LOCATE-ADVERSARY-RLNC might require checking all the
(E
z

)
subsets of edges in the

network – this is exponential in z. We now demonstrate that for networks performing RLNC, the task of locating

the set of adversarial edges is in fact computationally intractable even when the receiver knows the topology and

local encoding coefficients in advance.

Theorem 15: For RLNC, if knowing the network G and all local coding coefficients allows the receiver r

correctly locating all adversarial locations in time polynomial in network parameters, NCPRLC (see the definition

in Section II-H for details) can be solved in time polynomial in problem parameters.

Proof: Given a NCPRLC instance (H, z, e), as shown in Figure 8, we construct a network with l1 edges to receiver

r and l2 edges to node u.

Since H is a matrix chosen uniformly at random over Fq, it corresponds to a RLNC, where each column of H

corresponds to an IRV of an incoming edge of u.

Assume the adversary corrupts z incoming edges of u. Adversary can choose the errors Z such that each column

of E = T ′(Z)Z equals e. In the mean time E is all the information about the adversarial behavior known by r

under RLNC. Any algorithm that outputs the corrupted set Z must satisfy e ∈ T′(Z) and |Z| ≤ z. Once Z is

found, r actually solves the NCPRLC instance (H, z, e). �

B. Locating random errors under RLNC

We now consider the problem of finding the set of edges Z that experience random errors (see Section II-E for

details). Since T′(Z) = T′(Ext(Z)) (see the definition of Ext(Z) in Section III-A for reference), the receiver can
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not distinguish whether the errors are from Z or Ext(Z). So rather than finding Z , we provide a computationally

tractable algorithm to locate Ext(Z), a proxy for Z . The algorithm that finds Ext(Z) is as follows:

• Algorithm V, LOCATE-RANDOM-RLNC: Under RLNC, the algorithm is to locate the edges in the network

suffering random errors.

• The input is the matrix Y received by r and {t′(e) : e ∈ E}. The output is an edge set Z ′ initialized as an

empty set.

• Step A: Compute Er as the Step A of Algorithm II: FIND-IRV.

• Step B: Check for each edge e whether its IRV t′(e) lies in Er. If so, the edge e is added into Z ′.

• Step C: End LOCATE-RANDOM-RLNC.

The correctness of LOCATE-RANDOM-RLNC is followed.

Theorem 16: If z is no more than C − 1, Z ′ = Ext(Z) with a probability at least 1− 3|E|2/q− 2C2/(n−C).

The computational complexity is O(|E|C2) operations over Fq.

Proof: Lemma 1.2 and Lemma 9 implies that Er = T′(Z)) = T′(Ext(Z)) with a probability at least 1−2|E|/q−

2C2/(n− C). It implies Ext(Z) ⊆ Z ′.

For the other direction, using the Union Bound [31] over all |E| edges on Lemma 1.2, with a probability at least

1− |E|2/q, for any edge e 6∈ Ext(Z), t′(e) is not in Er. In the end we have Ext(Z) = Z ′ with a probability at

least 1− 3|E|2/q − 2C2/(n− C).

For each IRV t′(e), it cost at most C2 operations over Fq to check whether it is in Er. Then the total complexity

of LOCATE-RANDOM-RLNC is O(|E|C2) operations over Fq. �

Part II: Design Network Coding for Network Tomography

VI. NETWORK REED-SOLOMON CODING (NRSC)

A. Motivations

In part I, under random linear network coding (RLNC), network tomography is studied for both adversarial and

random error models (see Section II-E for the definition of error models). For random error model the schemes

for both static topology estimation and error localization can be done in polynomial time, while the schemes

for adversarial error model all cost exponential time. Moreover, under RLNC localizing adversarial errors is

computational intractable (see Theorem 15) and requires the knowledge of network topology, whose estimation

algorithm also costs exponential time.

In this section network Reed-Solomon Coding (NRSC) is proposed to improve the tomographic performance

(specially for the adversarial error model), and meanwhile preserving the key advantages of RLNC. To be concrete,

NRSC has the following features:
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v

t′(e1) t′(e2) t′(e3) t′(e4)

t′(e) =
∑
i∈[1,4] βit

′(ei)

Fig. 10. The IRV of e is a linear combination of the IRVs of e1, e2, e3 and e4.

• Low implementation complexity. The proposed NRSC is a linear network coding scheme (see Section II-D for

details), and can be implemented in a distribute and efficient manner where each network node only needs to

know the node-IDs of its adjacent neighbors. Thus once an edge (or node) has left or come, only its adjacent

neighbors need to adjust the coding coefficients.

• High throughput. The capacity of multicast is achieved with high probability.

• NRSC aids tomography in the following two aspects:

– Computational efficiency. For the adversarial error model, the receiver under NRSC can locate a number

of adversarial errors that match a corresponding tomographic upper bound (see Theorem 13 for details)

in a computationally efficient manner. For the random error model, a lightweight topology estimation

algorithm is provided under NRSC.

– The robustness for dynamic networks. For adversarial (and random) error localization, the algorithms under

NRSC do not require the priori knowledge of the network topology and thus are robust against edge and

node updating. 10 For topology estimation in the random error model, the lightweight algorithm under

NRSC fits dynamic networks better than the one under RLNC.

B. Overview of NRSC

In NRSC, in addition to an IRV each edge e is also assigned a virtual IRV t′′(e). This virtual IRV is a deterministic

function of the node-IDs of the header and tail of e (and hence is known to them). Further, each node in an NRSC

(say node v in Figure 10) carefully chooses its coding coefficients (e.g., {β1, ..., β4} at node v in Figure 10, where

βi = β(e, v, ei) for i = 1, ..., 4) such that the virtual IRVs of edges entering and leaving v satisfy the same linear

relationship as the IRVs (in the case of Figure 10, t′′(e) = β1t
′′(e1) + ...+β4t

′′(e4)). In other words, under NRSC

every network node makes “local contribution” to force edge IRVs equaling the corresponding VIRVs. And the

object can be achieved if and only if a connectivity requirement is satisfied (see Corollary 22 for details).

At a high level, we compare the tomography performance between RLNC and NRSC in the following:

10Note that under RLNC, the error localization algorithms in previous works [8], [12], [14] and this paper require the priori knowledge of
the network topology. However, the topology estimation under RLNC costs exponential time for the networks with adversarial errors, and
costs polynomial time for the static networks with random errors.
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• Computational efficiency. Under RLNC, each edge IRV is randomly chosen from the linear subspace spanned

by the down-streaming edge IRVs, resulting that locating network adversaries is as hard as NCPRLC (see

Theorem 15 for details). Under NRSC, VIRVs (and then IRVs) are smartly chosen such that locating adversaries

can be done in an efficient manner.

• The robustness for dynamic networks. Under RLNC each edge (say e) updating results into IRV updating

for all up-streaming (of e) edges. Under NRSC, once an edge is update, its adjacent header would adjust its

local coefficients to stop IRV updating. For instance consider the subnetwork in Figure 10. Once edge e1 is

disconnected, v would change the local coefficients such that the IRV of e still equals to the VIRV of e. Thus

no updating is needed for the up-streaming nodes of v.

C. Node and edge IDs

Each pair of nodes (u, v) in V ⊗ V has an ID id(u, v) chosen independently and uniformly at random from Fq.

These IDs can be broadcast by the source using digital signature schemes such as RSA [29], or outputted by a

pseudorandom hash function11 (with input as a pair of nodes) such as AES [33] that can be accessed by all parties.

Thus this set of |V|2 IDs is publicly known a priori to all parties (including the adversaries), even though they

may not know which nodes and edges are actually in the network.

The following lemma shows that each node pair has a distinct ID with high probability:

Lemma 17: With a probability at least 1− |V|4/q, for any (u, v) 6= (u′, v′) in E , id(u, v) 6= id(u′, v′).

Proof: For any (u, v) 6= (u′, v′), id(u, v) = id(u′, v′) with a probability at most 1/q. Since V × V has size |V|2,

there are at most
(|V|2

2

)
< |V|4 distinct pairs in V × V . Using Union Bound [31] over all these pairs the lemma is

true with a probability at least 1− |V|4/q. �

For each edge e(u, v) ∈ E the ID of e is id(e) = id(u, v). Thus the ID of edge e(u, v) can be figured out by

both u and v if they know their adjacent neighbors. A direct corollary of Lemma 17 is that each edge has a distinct

ID with high probability. We henceforth assume that this is indeed the case.

Note that for scenario where parallel edges are allowed, we assume some pairs of nodes has multiple IDs, the

i’th of which is the ID of the i’th edge between them.

For each edge e the virtual impulse response vector (VIRV) is t′′(e) ∈ FCq , which is [id(e), (id(e))2, ..., (id(e))C ]T .

For any set of edges Z with size z, the virtual impulse-response-matrix (VIRM) is T ′′(Z) ∈ FC×zq , with the columns

comprised of {t′′(e), e ∈ Z}.

For the ease of notation we also defined a dimension-parameterized VIRV as t′′(e, i) = [id(e), (id(e))2, ..., (id(e))i]T .

For any set of edges Z with size z, the corresponding VIRM is T ′′(Z, i) ∈ Fi×zq , with the columns comprised of

11Note that the randomness of the IDs is used in proving Lemma 17 and Theorem 18, which (the distinctness of node-pair IDs and the
throughput of multicast) are polynomial time distinguishable. Thus pseudorandomness suffices [32].
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{t′′(e, i), e ∈ Z}. Note that T ′′(Z, z) is a Vandermonde matrix and invertible when |Z| = z and the edges in Z

have distinct IDs.

D. Code construction of NRSC

We assume by default that the edges in E have distinct IDs, which happens with a probability at least 1−|V|4/q

by Lemma 17. Recall that C is the capacity of the network, i.e., C = max-flow(s, r), and for ease of notation we

assume that the source has exactly C outgoing edges and the receiver has C incoming edges (see Section II-B for

details).

The construction of NRSC is then as follows.

Source encoder: Let Out(s) = {e1, e2, ..., eC} be the outgoing edges of the source s and X ∈ FC×nq be the

source message matrix. The source s computes M = T ′′(Out(s), C)−1X and sends the ith row of M as the packet

over ei. Note that X contains a known “header”, say the C × C identity matrix over Fq, to indicate the network

transform to the receiver.

Network encoders: Let Out(v) = {e1, e2, ..., ed} be the outgoing edges of node v. For an incoming edge e of

v, v computes b(e) = T ′′(Out(v), d)−1t′′(e, d). For the coding coefficient β(e, v, ei) from e via v to ei, v sets

β(e, v, ei) to be the ith component of b(e)

Receiver decoder: The receiver receives

Y = TX, (8)

where T ∈ FC×Cq can be indicated by the header of Y . If T is invertible the receiver can decode X correctly.

Thus, similar to RLNC [5], NRSC can be implemented in a distributed manner given that each node knows

its local topology, i.e., the adjacent neighbors. If an edge/node has been added/deleted, only local adjustments are

needed.

E. Optimal throughput for multicast scenario

The theorem below shows that with high probability NRSC achieve the multicast capacity.

Theorem 18: With a probability at least 1− C|E|4/q, receiver r can decode X correctly.

Proof: Let X be the set of all random variables involved, i.e., X = {id(u, v), (u, v) ∈ V ⊗ V}. By default we

assume that any polynomial mentioned in the proof has variables in X .

Let detG = Πu∈Vdet(u), where det(u) is the determinant of the matrix T ′′(Out(u), |Out(u)|) for node u ∈ V .

For each u ∈ V , since each component of T ′′(Out(u), |Out(u)|) is a polynomial of degree at most |Out(u)|, det(u)

is a polynomial of degree at most |Out(u)|2. Thus detG is a polynomial of degree at most
∑

u∈V |Out(u)|2 ≤

(
∑

u∈V |Out(u)|)2 = |E|2.
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Let T be the transform matrix from s to r defined in Equation (8). We claim each element of detGT is a

polynomial of degree at most |E|4. To see this, we first note that each component in det(u)T ′′(Out(u), |Out(u)|)−1

is a polynomial of degree at most |Out(u)|2 − |Out(u)| (see Cramer’s rule in [34]). Thus in the construction

of NRSC each local coding coefficient β(e, u, e′) used by u ∈ V is Poly(e,u,e′)/det(u), where Poly(e,u,e′) is

a polynomial of degree at most |Out(u)|2. Each element in T can be expressed as
∑

α β̄(α), where β̄(α) =

Π(e,u,e′)∈αβ(e, u, e′) and α is a path from s to r (see [5] for references). Thus each element in T can be expressed

as Polyα/(Πu∈αdet(u)), where Polyα = Π(e,u,e′)∈αPoly(e,u,e′). Thus Polyα is a polynomial of degree at most
∑

u∈α |Out(u)|2 ≤ ∑u∈V |Out(u)|2 ≤ |E|2. Since no node appears twice in a path of an acyclic network, detG

is divisible by Πu∈αdet(u) for each path α. Thus detG
∑

α Polyα(X )/(Πu∈αdet(u)) is a polynomial of degree at

most |E|4. This completes the proof of the claim that each element of detGT is a polynomial of degree at most

|E|4.

Now we prove detGT is invertible with high probability. The determinant of detGT is denoted as detr, which

is therefore a polynomial of degree at most |E|4C.

Without loss of generality let {P1,P2, ...,PC} be the edge-disjoint paths from the source s to the receiver r. We

first prove that detr is a nonzero polynomial, i.e., that there exists an evaluation of X such that detG 6= 0 (i.e., for

each u ∈ V no two edges in Out(u) have the same ID) and the source can transmit C linearly independent packets

via P1,P2, ...,PC .

The evaluation of X is described in the following: First, assume each edge has a distinct ID. Second, since

the ith outgoing edge of the source sends the ith row of M = T ′′(Out(s), C)−1X , the paths P1,P2, ...,PC carry

linearly independent packets on their initial edges. Third, the IDs of edges in Pi are all changed to be the ID of

the first edge in Pi. Note that this operation preserves the property that for each u ∈ V no two edges in Out(u)

have the same ID (i.e., detG 6= 0). Finally in fact the network uses routing to transmit the C independent source

packets via P1,P2, ...,PC .

Thus under the above evaluation of X the matrix detGT is invertible and therefore detr 6= 0. Using Schwartz-

Zippel Lemma [30] detr 6= 0 and thus receiver r can decode X with a probability at least 1 − |E|4C/q over all

the evaluations of X . �

Thus if the network has k receivers, using the Union Bound [31] on all receivers we conclude with a probability

at least 1− k|E|4C/q each receiver can decode X .

Therefor the techniques over RLNC in multicast scenario can be directly moved into NRSC. For instance using

network error-correcting codes [10][11] NRSC are able to attain the optimal throughput for multicast with network

errors.
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F. IRVs under NRSC

Following above Theorem 18 the relations between IRVs and network structure can be shown the same as those

for RLNC (see Lemma 1 for details). To be concrete, for networks performing NRSC we have:

Lemma 19: 1) The rank of the impulse response matrix T ′(Z) of an edge set Z with flow-rank z is at most

z.

2) The IRVs of flow-independent edges are linear independent with a probability at least 1− C|E|4/q.

Proof: The proof is similar to the proof of Lemma 1. �

Note that for random error model (see Section II-E for details), all tomography schemes under RLNC are based

on Lemma 1. Thus such schemes still work under NRSC.

VII. LOCATING ERRORS UNDER NRSC

In this section we show that the receivers in networks using NRSC are able to efficiently locate the network

adversaries even without the knowledge of the network topology. The high level idea is that each column of error

matrix plays the role of vector e for RS-DECODE(H, e) (see Section II-I for details), where the columns of the

Reed-Solomon parity-check matrix H comprise of the VIRVs of network edges. Thus the output of algorithm

RS-DECODE(H,v) locates the set of error edges. In the end of this section, without the priori knowledge of the

network topology we provide an efficient algorithm which locates the edges suffering random errors.

Assumptions and Justifications

1) At most z edges in Z suffer errors, i.e., {e : e ∈ E , z(e) 6= 0} = Z and |Z| ≤ z. When 2z+ 1 ≤ C, network

error-correcting-codes (see Section II-G for details) are used so that the source message X is provably

decodable .

2) Each node in V−{r} has out-degree at least d = 2z. Note that Theorem 13 proves it is a necessary condition

for locating z errors.

Let the elements in V ⊗ V be indexed by {1, 2, ..., |V|2}. The parity check matrix H ∈ Fd×|V|
2

q is defined as

H = [h1,h2, ...,h|V|2 ]. Here hi is the VIRV (with length d) of the ith element in V ⊗V . Then the adversarial error

locating algorithm is:

• ALGORITHM VI LOCATE-ADVERSARY-RS: The algorithm is to locate network adversarial errors for

networks performing NRSC.

• The input of the algorithm is the source matrix X , the parity-check matrix H , and the C×n matrix Y received

by receiver r. The output of the algorithm is a set of edges Z ′ initialized as an empty set.

• Step A: Compute Y(RS,d) = T ′′(In(r), d)Y and L = Y(RS,d) −Xd, where Xd comprises of the first d rows of

X .
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• Step B: For each column of L, say v, compute b = RS-DECODE(H,v). If the ith component of b is nonzero,

the ith node pair (u, v) in V ⊗ V is added as an edge e = (u, v) into Z ′.

• Step C: End LOCATE-ADVERSARY-RS.

Theorem 20: The edge set Z ′ output by LOCATE-ADVERSARY-RS equals actual error edge set Z . The

computational complexity of LOCATE-ADVERSARY-RS is O(n|V|2d).

Before the proof we show the following key lemma when |Out(u)| ≥ d for each node u ∈ V − {r}. Recall that

z(e) is the error packet injected on edge e.

Lemma 21: If the source message matrix X equals 0,

Y(RS,d) =
∑

e∈E
t′′(e, d)z(e). (9)

Proof: We proceed inductively. Throughout the proof let ET be the set of edges satisfying the theorem, i.e.,

Y(RS,d) =
∑

e∈E t′′(e, d)z(e) when z(e) = 0 for all e ∈ E − ET .

Step A: If ET = In(r), the theorem is true by the definition.

Step B: Since the network is acyclic, unless ET = E , there must exist an edge e ∈ E − ET such that its adjacent

outgoing edge set Out(e) is a subset of ET . Let Out(e) = {e1, e2, ..., ek} with k ≥ d. If only e suffers non-

zero injected errors z(e), the output of e is z(e). Thus for each i ∈ [1, k] the output of ei is βiz(e), where βi

is the ith component of b(e) = T ′′(Out(e), k)−1t′′(e, k) (see Section VI-D for details). Since d ≤ k, we have
∑

i∈[1,k] βit
′′(ei, d) = t′′(e, d). Since Out(e) ⊆ ET , Y(RS,d) =

∑
i∈[1,k] t

′′(ei, d)βiz(e) = t′′(e, d)z(e). Therefore

Equation (9) is true for the case where only e suffers non-zero injected error z(e). Since NRSC are linear codes,

e can be added into ET .

Step C: Since the network is acyclic and each node (or edge) in V (or E) is connected to r, we can repeat Step

B until ET = E . �

Recall the definition of IRV in Section III-A, we have Y =
∑

e∈E t′(e)z(e). Thus the following corollary is true

for network satisfying |Out(u)| ≥ d for each node u ∈ V − {r}:

Corollary 22: For each edge e ∈ E , T ′(In(r), d)t′(e) = t′′(e, d).

For the case where no error happens in the network and the source s transmits the C × n message matrix X with

C ≥ d, by Lemma 21 above we have Y(RS,d) =
∑

i∈[1,C] t
′′(ei, d)x(ei), where ei is the ith edge of Out(s) and x(ei)

is the ith row of M = T ′′(Out(s), C)−1X (see Section VI-D for details). Thus Y(RS,d) = T ′′(Out(s), d)M = Xd,

where Xd is the matrix consisting of the first d rows of X .

Then we have the corollary:

Corollary 23: When the source message is X , Y(RS,d) = Xd +
∑

e∈E t′′(e, d)z(e).

Then we can prove main theorem of this section as:



34

Proof of Theorem 20: Using Corollary 23 we have L =
∑

e∈Z t′′(e, d)z(e). Since |Z| = z ≤ d/2, each column

of L is a linear combination of at most d/2 columns of H . Additionally, since H is also a parity check matrix

of a Reed-Solomon code, RS-DECODE correctly finds all the edges with nonzero injected errors, and therefore

Z ′ = Z . For each column of L, RS-DECODE runs in time O(|V|2d). Thus the overall time complexity of the

algorithm is O(n|V|2d). �

In the end of this section, under the condition that |Out(u)| ≥ d for each node u ∈ V−{r}, we show that NRSC

enables the receiver r locate any z ≤ d− 1 random errors without the priori knowledge of the network topology.

The scheme is in the following:

Locate random errors under NRSC: Once matrix L is computed by Step A of LOCATE-ADVERSARY-RS,

for each (u, v) ∈ V ⊗ V check whether t′′((u, v), d) is in L (i.e., the column space of L). If so, e(u, v) is output

as an error edge. Continue the loop for another node pair in V × V .

By Corollary 22 and Equation (5), L = T ′′(Z, d)Z, where the rows of Z comprise of {z(e) : e ∈ Z}. By the

proof of Lemma 9 we have Z has rank |Z| with high probability. Thus for each edge e ∈ Z , t′′(e) ∈ L. For any

edge e′ 6∈ Z , since id(e′) is different from any ID in {id(e) : e ∈ Z}, t′′(e′, d) is linear independent to the columns

of T ′′(Z, d). Thus t′′(e′, d) is not in L.

VIII. TOPOLOGY ESTIMATION FOR NETWORK WITH RANDOM ERRORS UNDER NRSC

Under NRSC, the section provides a lightweight topology estimation algorithm for the random error model. The

high level idea is that once a candidate IRV is collected using Algorithm II, FIND-IRV of Section IV-C, the

corresponding VIRV can be computed by Corollary 22. Using the VIRV the corresponding edge can be detected.

Thus Algorithm III, FIND-TOPO is not involved, who requires FIND-TOPO recovering all IRV information.

For estimating the entire network topology, all assumptions in Section IV-C are required here except for As-

sumption 6, which assumes weak type common randomness.

Note that if the network has strong connectivity and each edge suffers random error with non-negligible prob-

ability, the algorithm for locating random errors shown in the end of Section VII can also detect the topology.

The algorithm shown below only requires weak connectivity, i.e., each internal node has out-degree at least 2, as

Assumption 2) in Section IV-C.

• ALGORITHM VII FIND-TOPO-RS: Under NRSC, the algorithm is to estimate the network topology in

the presence of random errors.

• The input is {Y (i), i ∈ [1, t]}, which are the received matrix for source generation {1, 2, ..., t}. The output is

E ′ which is a set of edges initialized as an empty set.

• Step A: For i ∈ [1, t] compute E(i)r as Step A in Algorithm II, FIND-IRV
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• Step B: For any two of {E(i)r, i ∈ [1, t]}, say E(i)r and E(j)r, compute the intersection E(i)r ∩ E(j)r. If

the intersection is a rank-one subspace < h >, goto Step C. Otherwise, continue the loop in the beginning of

Step B.

• Step C: Compute h1 (and h2) as the first (and second) component of T ′′(In(r), 2)h. For any node pair

(u, v) ∈ V ⊗V , if the ratio h2/h1 equals id(u, v), add (u, v) as an edge into E ′. Go back to continue the loop

in the beginning of Step B.

• Step D: End FIND-TOPO-RS.

Let G = (V, E) be the actual network topology, pc be the probability defined in Assumption 4) of Section IV-C,

ps be 1− (1− z/q)[1− 2C2/(n− C)] and p′a be pc + 2ps + C|E|4/q. Then the theorem is:

Theorem 24: 1) With a probability at most |V|2t2/q, E ′ has an edge which is not in E .

2) If edge e ∈ Z(i) ∩ Z(j), e ∈ E ′ with a probability at least 1− p′a.

Proof:

1) Consider node pair (u, v) ∈ V ⊗V which is not in E . Since id(u, v) is independent from the network coding

coefficients used in G and the random errors in each source generation, for any invocation of Step C the ratio

h2/h1 is independent from id(u, v). Thus h2/h1 = id(u, v) with probability at most 1/q. Since there are at

most t2 invocations of Step C, using Union Bound [31] edge e(u, v) is accepted in E ′ with a probability at

most t2/q. Since there are at most |V|2 node pairs, also by Union Bound [31] E ′ has an edge which is not

in E with a probability at most |V|2t2/q.

2) If e ∈ Z(i) ∩ Z(j), from the proof of Theorem 8 the intersection of E(i)r ∩E(j)r equals < t′(e) > with a

probability at least 1 − p′a. Note that the difference between pa and p′a comes from the difference between

Lemma 1 (which is for RLNC) and Lemma 19 (which is for NRSC). Since each internal node has out-degree

at least 2, from Corollary 22 we have T ′′(In(r), 2)t′(e) = t′′(e, 2) = [id(e), (id(e))2]T . It completes the

proof.

�

Remark 1: For estimating the failing topology (i.e., detecting the edges with errors), even Assumption 5) of

Section IV-C is not needed anymore, which requires each edge suffers random errors with a non-negligible

probability. Once an edge e has random errors for multiple source generations, it can be detected with high

probability.

Remark 2: For the scenario while network edges (or nodes) suffer dynamic updating, FIND-TOPO-RS is more

robust than the topology estimation algorithm under RLNC (see Section IV-C for details). The reason is that under

RLNC the receiver must use algorithm FIND-IRV to recover all IRV information before proceed the topology

estimation algorithm FIND-TOPO. Thus it requires the network unchanged during t = Θ(log(|E|)|E|) source
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generations (see Remark 2 after Theorem 8 for details). Under NRSC, for detecting edge e FIND-TOPO-RS only

requires the network unchanged between two fails of e.

IX. CONCLUSION AND FUTURE WORK

This work examines passive network tomography on networks performing linear network coding in the presence

of network errors. We consider both random and adversarial errors. In part I, under random linear network coding

(RLNC) we give characterizations of when it is possible to find the topology, and thence the locations of the

network errors. Under RLNC, many of the algorithms we provide have polynomial time computational complexity

in the network size; for those that are not efficient, we prove intractability by showing reductions to computationally

hard problems. In part II, we design network Reed-Solomon coding (NRSC) to address the undesirable tomography

capabilities of RLNC under some (especially adversarial error) settings, and yet preserving the key advantages of

RLNC.

Possible future work can proceed in many directions.

1) Adversarial nodes cannot be located exactly in general networks. For instance, when the adversarial node u

pretends it is receiving erroneous transmissions from its upstream neighbor v, it is impossible for the receiver

to determine whether the error is located at u or at v. Hence tomography schemes that approximately locate

adversarial nodes are hoped for.

2) Tomography schemes that approximately estimate the network topology in the presence of adversarial errors

are hoped for.

3) The question of designing a network coding scheme that enables efficient topology estimation in the presence

of adversarial errors, and yet preserves key advantages of RLNC (low-complexity rate-optimal distributed

coding), is open.
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X. APPENDIX

A. Network erasure model

An erasure on edge e means that the packet x(e) carried by e is treated as an all-zeroes length-n vector over Fq

by the node receiving x(e), i.e., the injected erroneous packet z(e) equals −x(e). Two network erasure models are

considered:

1) Random erasures: Every edge e in E experiences random erasures independently.

2) Adversarial erasures: The edges that suffer erasures are adversarially chosen.

B. Topology estimation for network erasures under RLNC

Since adversarial erasures is a weaker attack model than adversarial errors, the results in Section IV-B can be

directly applied to the case of adversarial erasures.

The topology estimation scheme for random erasures is slightly different from that for random errors. The

difference comes from the fact that in the random error model the injected errors in Z are chosen at random, while

in the random erasure model the injected errors are exactly the negative of the messages transferred. Thus Lemma 9

for random error model is not always true for the random erasure model. Hence we need the Lemma 25 below as

an alternative.

Let Z be the set of edges suffering erasures and |Z| = z. Let t(e) ∈ F1×C
q be the global encoding vectors [35] of

edge e, i.e., the packet carried by e is t(e)X when no errors or erasures happen in the network. Let T (Z) ∈ Fz×Cq

be the matrix whose rows comprise of {t(e), e ∈ Z}. Recall that E = T ′(Z)Z (as defined in Equation (5)), where

the rows of Z comprise of {z(e) : e ∈ Z}, i.e., {−x(e) : e ∈ Z}. Then we have:

Lemma 25: If the source has max-flow z to the headers of the edges in Z , with probability at least 1− |E|/q,

the matrix Z of injected errors has full row rank z and thus E = T′(Z).

Proof: Since the network is directed and acyclic, for ease of analysis we impose an partial order on the edges of

Z = {e1, e2, ..., ez}. In particular, for any j > i, ej can not be upstream of ej .



39

Similarly to Lemma 1, if the source has max-flow z to the headers of the edges in Z , T (Z) has full row rank

z with a probability at least 1− |E|/q under RLNC.

The error corresponding to the erasure on e1 equals −t(e1)X . The packet traversing e2 may be effected by the

first erasure. Hence the error corresponding to the erasure on e2 equals −(t(e2)−a1,2t(e1))X = −t̄(e2)X , where

a1,2 = c1,2 is the unit effect from e1 to e2. In general, the error corresponding to the erasure on ei equals

−t̄(ei)X = −(t(ei)−
∑

j=1,2,...,i−1

cj,it̄(ej))X

= −(t(ei)−
∑

j=1,2,...,i−1

aj,it(ej))X,

where cj,i is the unit effect from ej to ei.

Thus Z = −AT (Z)X , where A ∈ Fz×zq and the (i, j)’th element of A equal −a(j, i) with j < i, 0 if j > i, 1 if

i = j. Then A is invertible. If T (Z) has full row rank z and X has an invertible C×C sub-matrix (for instance, the

header corresponding to the identity matrix used in RLNC), Z has full row rank z. Thus we have that E = T′(Z).

�

To estimate the topology for random erasures under RLNC we use a two-stage scheme similar to that in

Section IV-C. That is, stage 1 is used for collecting IRV information from multiple source generations, and stage

2 is used for constructing the topology by the IRV information collected in stage 1.

For stage 1, recall that the identity matrix IC is the header of the source matrix X(i), where i denotes the index

of source generation. Thus the header of Y (i) is Y (i)h = T − T ′(Z(i))A(i)T (Z(i)), where A(i) is defined in

the proof of Lemma 25. For i1 6= i2, the difference of the headers Y (i1)h − Y (i2)h is T ′(Z(i2))A(i2)T (Z(i2))−

T ′(Z(i1))A(i1)T (Z(i1)). Since both A(i1) and A(i2) are invertible matrixes, the column space of Y (i1)h−Y (i2)h

equals T′(Z(i1) ∪ Z(i2)) if T (Z(i1) ∪ Z(i2)) has rank |Z(i1)| + |Z(i2)|. Thus, Y (i1)h − Y (i2)h could replace

E(i)r in FIND-IRV to provide the information of IRVs. Thus with the same assumptions as those in Section IV-C,

we can use FIND-IRV to collect the IRV information (E(i)r is replaced by Y (i1)h − Y (i2)h for a pair (i1, i2) ∈

[1, t . . . , ]⊗ [1, . . . , t]).

For stage 2, we can directly use FIND-TOPO to recover the topology of the network.

C. Locating erasures under RLNC

The algorithm LOCATE-RANDOM-RLNC can be also used for locating network erasures (both random and

adversarial), resulting in polynomial-time algorithms.

To locate random erasures, Lemma 25 proves that when the source has max-flow |Z| to the headers of Z who

suffer erasures, rank(Z) = z and E = T′(Z). Thus LOCATE-RANDOM-RLNC can be used to locate erasures

in the network, with using E in Step B instead of Er.
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To use the efficient algorithm LOCATE-RANDOM-RLNC to locate adversarial erasures, by Lemma 25 it is

required that any node has in-degree at least z. Otherwise, the high complexity algorithm LOCATE-ADVERSARY-

RLNC can be used to find the locations of the adversarial erasures.

Remark: The algorithm for locating erasures can also be used for locating edges experiencing problematic delays.

Let Yd ∈ FC×nq be the delayed packet matrix received by r. Then r can locate the delayed edges by treating Yd as

the erasure matrix E and then using the scheme for locating network erasures.
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