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Abstract—In most multiple-input multiple-output (MIMO) sys-
tems, the family of waterfall error curves, calculated at different
spectral efficiencies, are asymptotically parallel at high signal-to-
noise ratio. In other words, mostMIMO systems exhibit a single di-
versity value for all fixed rates. TheMIMOminimummean square
error (MMSE) receiver does not follow this pattern and exhibits
a varying diversity in its family of error curves. This paper ana-
lyzes this interesting behavior of the MMSE MIMO receiver and
produces the MMSE MIMO diversity at all rates. The diversity of
the quasi-static flat-fading MIMO channel consisting of any arbi-
trary number of transmit and receive antennas is fully character-
ized, showing that full spatial diversity is possible if and only if the
rate is within a certain bound which is a function of the number
of antennas. For other rates, the available diversity is fully charac-
terized. At sufficiently low rates, the MMSE receiver has a diver-
sity similar to the maximum likelihood receiver (maximal diver-
sity), while at high rates, it performs similarly to the zero-forcing
receiver (minimal diversity). Linear receivers are also studied in
the context of theMIMOmultiple-access channel. Then, the quasi-
static frequency selective MIMO channel is analyzed under zero-
padding and cyclic-prefix (CP) block transmissions andMMSE re-
ception, and lower and upper bounds on diversity are derived. For
the special case of SIMO under CP, it is shown that the aforemen-
tioned bounds are tight.

Index Terms—Diversity, linear receiver, minimum mean square
error (MMSE), multiple-input multiple-output (MIMO).

I. INTRODUCTION

L INEAR receivers are widely used for their low complexity
compared to maximum likelihood (ML) receivers. In

the context of multiple-input multiple-output (MIMO) sys-
tems, linear receivers such as the minimum mean square error
(MMSE) receiver are adopted in some of the emerging stan-
dards, e.g., IEEE 802.11n and 802.16e. Therefore, the analysis
of MMSE receivers is strongly motivated by both theoretical
and practical considerations.
A significant amount of research has focused on linear re-

ceivers; however, their performance is not fully understood in
the MIMO channel. For instance, the distribution of the output
signal-to-interference-plus-noise ratio (SINR) of the linear
MIMO receiver is still unknown except in asymptotic regimes
[large number of antennas, and high/low signal-to-noise ratio
(SNR)] [1]–[4]. The outage and diversity of MMSE receiver
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have also been a subject of interest. It has been observed [5]–[7]
that while the MMSE receiver can extract the full spatial diver-
sity of the MIMO quasi-static channel at low rates, it does not
enjoy this feature at high rates.
Fig. 1 shows the outage probabilities (for various spectral ef-

ficiencies ) of MMSE andML receivers respectively.
Clearly, one of themain differences between the two characteris-
tics is the slope of the error curves, i.e., the diversity. Fig. 1 shows
that in a 2 2 MIMO system, the ML receiver achieves diver-
sity 4 at all rates. However, the MMSE receiver diversity varies
with the operating spectral efficiency. From a system design per-
spective, obtaining the MMSE diversity is important in order to
understand the broad tradeoffs involved in the determination of
the operating point of the system and predicting its performance.
In this paper, we seek answers for the following questions:

when can theMMSE receiver exploit the full diversity inMIMO
channel? More generally, how does the diversity of the MMSE
receiver vary with the system parameters such as spectral effi-
ciency , the number of antennas, and in case of intersymbol
interference channel (ISI), the channel memory?
The well-known and powerful framework of diversity-mul-

tiplexing tradeoff (DMT) is not sufficient to answer the above
questions, because the DMT framework cannot distinguish be-
tween different spectral efficiencies that correspond to the same
multiplexing gain. In the MIMOMMSE receiver, rates that cor-
respond to the same multiplexing gain can produce different di-
versities.
We approach the problem of MMSE reception in MIMO flat-

fading channels through a rate-dependent approximation of the
outage probability and then proceed with bounding the pairwise
error probability (PEP) from both sides using the outage. This
leads to a closed-form expression for the diversity-rate tradeoff
which reveals the relationship between diversity, spectral effi-
ciency, and number of transmit and receive antennas. The ap-
proximation of outage and PEP as functions of rate requires
more delicate handling compared with the DMT analysis, as cer-
tain ratios and terms that simply vanish in the DMT analysis are
in our case relevant and must be carefully handled.
We then analyze the frequency-selective, quasi-static MIMO

channel. Specifically, we consider single-carrier (SC) MMSE
equalization under zero-padding (ZP) and cyclic-prefix (CP)
transmission. SC-MMSE provides an attractive alternative to
orthogonal frequency-division multiplexing (OFDM) due to its
low complexity and natural avoidance of the peak-to-average
power ratio problem. The use of CP and ZP has been investi-
gated in the literature, but the explicit tradeoff between the spec-
tral efficiency and diversity of MIMO SC-MMSE under these
two schemes has been unknown and is the subject of our work.
We show that the diversity is a function of number of antennas,
channel memory, and spectral efficiency, and obtain the explicit
tradeoff in the special case of SIMO under CP transmission.

0018-9448/$31.00 © 2012 IEEE
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Fig. 1. Outage probability of ML receiver (left) and MMSE (right) with antennas and for rates , 4, and 10 b/s/Hz.

The results of this paper fully characterize the MIMOMMSE
diversity in the fixed rate flat quasi-static regime. We analyze
both the cases and , showing that in either
case it is possible for the system to be limited to a diversity
strictly less than . More specifically, the central result of
the paper is as follows: with transmit and receive antennas
(for any and ), the diversity is

, where
and denotes rounding up to the next higher integer.

Our results confirm and refine the earlier approximate results
on the diversity of MMSE MIMO receivers that were obtained
for very high and very low rates [5]–[7]. The MIMO multiple-
access channel (MAC) channel is also studied.
Some of the related literature is as follows. The performance

of MMSE receiver in terms of reliability goes back to [8] where
outage analysis was performed forMMSE SIMO diversity com-
biner in a Rayleigh fading channel with multiple interferers. In
the context of point-to-point MIMO systems, Gore et al. [9]
compared the performance of MMSE D-BLAST with the or-
dered successive cancellation V-BLAST. They show that the
former has better throughput at low and moderate SNR. Ong-
gosanusi et al. [5] studied MMSE and zero-forcing (ZF) MIMO
receivers and noticed their distinct outage performance at high
SNR, specifically for large number of transmit antennas and low
spectral efficiencies , but provided no analysis.
Hedayat and Nosratinia [6] considered the outage probability

as a function of fixed rates under joint and separate spatial
encoding, but for MMSE they obtained results only in the ex-
tremes of very high and very low rates. Kumar et al. [7] pro-
vided a DMT analysis for the system of [6] and observed that the
DMT analysis does not predict the diversity of MMSE receivers
at lower rates. We note that all existing analyses are limited to
the case where the number of receive antennas is greater
than or equal the number of the transmit antennas .
This paper is organized as follows. Section II describes the

system model. Section III finds the exponential order of outage.
Section IV bounds the codeword error probabilities using the

outage values and derives the final result. Section V extends the
result to the MAC channel. Section VI calculates the diversity
of MIMO MMSE reception in frequency-selective block-trans-
mission systems. Section VII provides simulations that illumi-
nate our results.

II. LINEAR RECEIVERS

The input–output system model for flat-fading MIMO
channel with transmit and receive antennas is given by

(1)

where is the channel matrix whose entries
are independent and identically distributed (i.i.d.) complex
Gaussian, is the transmitted vector, is
the Gaussian noise vector. The vectors and are assumed
independent. We assume a quasi-static flat-fading channel
and perfect channel state information (CSI) at the receiver
(CSIR) and no CSI at the transmitter (CSIT), therefore transmit
antennas operate with equal power.
We aim to characterize the diversity gain, , as a

function of the spectral efficiency and the number
of transmit and receive antennas. This requires a PEP analysis
which is not directly tractable. Instead, we find the exponential
order of outage probability and then demonstrate that outage and
PEP exhibit identical exponential orders.
Following the notation of [10], we define the outage-type

quantities

(2)

(3)

where is the per-stream SNR.
We say that the two functions and are exponentially

equal, denoted by when
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Fig. 2. MIMO system with linear MMSE receiver.

The ordering operators and are also defined accordingly.
If , we say that is the exponential order of .

A. MMSE Equalizer

The equalizer, denoted by , decouples the transmitted
data streams at the receiver (see Fig. 2). The MMSE equalizer is
obtained by minimizing the mean square error (MSE) defined as

. It is usually assumed [6], [7] that the number
of transmit antennas is no more than that of receive antennas
. In the following, we start with but later generalize

it to as well.
For , using the orthogonality principle, the MMSE

equalizer is given by [5], [11]

(4)

The corresponding SINR of the output stream of theMMSE
detector is

(5)

where denotes matrix Hermitian, denotes the diag-
onal element of the matrix inverse.
For the case , it can be shown using a technique1 very

similar to [8, Appendix A] that the SINR expression (5) is again
valid.
The square matrix is random, nonnegative

definite, and obeys the Wishart Distribution [12], [13]. In this
study, the joint distribution of the eigenvalues of this equivalent
channel matrix opens the door to the development of our
analysis, as is also the case in many other MIMO results.
The equalizer output is

(6)

The signal streams of the transmit antennas may be either sepa-
rately or jointly encoded. Separate encoding is simpler and has
been fully analyzed [6], but we mention the central result for
completeness.

Theorem 1 [6], [7]: In a MIMO system consisting of
transmit and receive antennas , under separate spa-
tial encoding, the MMSE receiver achieves the diversity

(7)

under either uniform or nonuniform rate assignment.

1In [8], an MMSE diversity combiner is used at the receiver in the presence
of one transmit antenna and interferers.

Furthermore, it has been established [6], [7] that the ZF equal-
izer achieves diversity under both joint or separate
spatial encoding.
According to Theorem 1, an MMSE receiver operating under

separate spatial encoding (e.g., horizontal encoding V-BLAST)
will have no more diversity gain than ZF receiver.

III. OUTAGE ANALYSIS

We now consider the MMSE diversity where the data stream
is first encoded then multiplexed into sub-streams, each
transmitted by one antenna. This approach is known to improve
the performance compared with separate coding of the streams
[14]. Outage occurs if the channel fails to support the target
rate [12]. After channel equalization, the substreams
are decoupled, and thus, the mutual information between the
transmitted vector and the received vector given CSIR is
[5]

(8)

Thus, from (2) and (8), is given by

(9)

Substituting MMSE SINR from (5) in (9), we get

(10)

The dependence on the diagonal elements of the random ma-
trix makes further analysis intractable. We instead
proceed to provide lower and upper bounds on the outage proba-
bility. In Section IV, wewill show that outage probability
and PEP exhibit identical exponential error.

A. Outage Upper Bound

Lemma 1: For an MMSE MIMO system consisting of
transmit and receive antennas, under quasi-static Rayleigh
fading, we have where

(11)

where denotes the .
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Proof: We begin by bounding the sum in (10) via Jensen’s
inequality

(12)

where (12) is true because trace is equal to the sum of eigen-
values.
Notice that for , only eigenvalues are nonzero.

Hence, (12) can be written as

(13)

where .
Substituting (13) into (10), we have

(14)

Define

(15)

based on which we can write the exponential equality

(16)

Define and a new random variable

(17)

This definition is based on the observation that the term
defined in (16) is either 0 or 1 at high SNR; therefore, to char-
acterize at high SNR, we count the ones. Thus

(18)

(19)

inherits its randomness from . The bound in
(14) is evaluated by computing the probability of ,
where

denotes the outage event based on the approxima-
tion in (14). In order to evaluate the probability of this event, we
need the joint distribution of the eigenvalues, or equivalently the
distribution of . The distribution follows Wishart distribution
and was initially discovered by [13]. The distribution of can
be easily evaluated as follows [15].

Let be an random matrix whose entries
are . The joint PDF of the ordered random variables
(defined in (15) for the eigenvalues of ) is given by

(20)

where is a normalizing factor.
Using the distribution of for the defined matrix , the

asymptotic outage bound is

(21)

The simplification of the integral follows from [15]. The term
outside the integral has no effect on the exponent. The term

is dominated by at high SNR. We now di-
vide the integration range into and its comple-
ment. If , the exponential term will dominate the other
terms and will drive the integral to zero. If , the expo-
nential term is approximately 1 at high SNR and will disappear.
Therefore

(22)

where

(23)

and . The integration region
has boundaries that are parallel to nonnegative orthant ;

therefore, the integration over multiple variables in (22) can be
separated

(24)

(25)

(26)

which establishes the proof of Lemma 1.



6792 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 58, NO. 11, NOVEMBER 2012

B. Outage Lower Bound

Lemma 2: For an MMSE MIMO system consisting of
transmit and receive antennas (and ),
operating under quasi-static Rayleigh fading, we have

where

Proof: The lower bound is also based on Jensen’s in-
equality. Recall

(27)

Let the eigendecomposition of be given by
, where is unitary and is a diagonal matrix that has

the eigenvalues of the Wishart matrix on its diagonal. Let
the vector be the column of the matrix and be the
element of this column; we have

(28)

Let . Using (28), we can bound the sum in (27)

(29)

(30)

Thus, the outage bound in (27) can be further bounded using
(29)

(31)

We now bound (31) by conditioning on the event

, where is a positive real number that

is slightly smaller than 1, i.e., , and is a small
positive number. We then have

(32)

(33)

where (32) follows because is finite and independent of
; this can be proved similarly to [7, Appendix A]. To make the
upcoming expressions compact, we introduce a new variable

(34)

Whenever is noninteger, the constant can be chosen
such that

. We note this is satisfied for all rates, with the excep-
tion of an isolated set of points. As long as , we have

(35)

The remaining steps follow similarly to the proof of Lemma 1.
Thus, with is given by Lemma 2.
On the set of isolated points , the right-hand side

of (35) obeys a slightly weaker upper bound by replacing with
. We can combine the cases where is integer and

noninteger to write the upper bound compactly as follows:

Inspection shows that this bound is tight against the lower bound
everywhere except its discontinuity points. In other words, the
upper bound is left-continuous while the lower bound was right-
continuous at the discontinuity points.
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IV. PEP ANALYSIS

Recalling that the diversity is roughly defined as the slope of
PEP at high SNR, we now proceed to bound the PEP tightly
from both sides using the outage results already obtained.

A. PEP Upper Bound

We start by a lower bound that is inspired by [15, Lemma
5] but requires a more careful treatment since we are analyzing
rate, not the DMT (see Section I).

Lemma 3: For a quasi-static fading MIMO channel with
MMSE receiver, we have .

Proof: Denote for an error event, and let be the
transmitted codeword from a codebook of size where
and are code rate and code length respectively. Define

that accounts for the combined effect of channel and
equalizer. The transmit messages are assumed equiprobable so
the entropy . Applying the Fano inequality
[16]

(36)

By defining for any as
, and noting that from

(36), we get

(37)

Also by using the definition of , we have

(38)
For small enough values of , we have

since is left-continuous with
respect to . Hence, by invoking (37) and (38), the error prob-
ability is given by

(39)

where we have used , which was derived in
[10]. This establishes the proof of the PEP upper bound.

B. PEP Lower Bound

We begin by writing the error probability in terms of error
event and outage event

In Section III-A, we have shown that, based on the event
, the outage prob-

ability is upper bounded by . Hence, the error
probability can be bounded as

(40)

We intend to show that , and thus
which produces the following

lemma.

Lemma 4: For a quasi-static fading MIMO channel with
MMSE receiver, we have .

Proof: We begin by giving a sketch of the proof then we
proceed with the details. The first part of the proof consists of
developing a bound on PEP conditioned on , namely

. To do this, we obtain an upper bound of the vari-
ance of the SINR which is expressed in terms of the eigen-
values of the Wishart matrix , resulting in

. The PEP is used to derive a con-
ditional union bound on error.We then divide the channel events
into two sets based on the exponential order of the eigenvalues:
the set where and otherwise.We apply the Bayes the-
orem on the union bound using these two sets. The calculation
of the terms of the Bayesian gives
as desired.
We now proceed in detail.Wewant to compute the probability

that the transmitted symbol is erroneously detected
as .
Recalling the equalizer output given by (6), define the noise-

plus-interference signal

(41)

Using the eigendecomposition of and noting that
and , we have

(42)

(43)

Thus, the variance of the noise sample is given by

(44)

where is the th diagonal of the matrix
and counts from 1 to .
By defining , the probability of erroneous detec-

tion for channel realization is given by

(45)
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where the inequality holds since
.

Denoting the real and imaginary parts of by
and , respectively,

we then have

(46)

Applying the property of the Gaussian tail function
for the PEP, we obtain

(47)

where the last step holds as ,
.

Now we proceed by showing that . Consider the
eigendecomposition of

(48)

where is unitary matrix, and is the eigendecomposition of
. Note that or . Therefore,

all elements of the matrix , being linear
combination of , cannot grow faster than , and

thus the elements of cannot grow faster than

, i.e., and therefore . The
same result holds for and .
As a result, for any and ,

and similarly . Thus,
from (47), we have

(49)

Now we bound the variance in (44) and apply it in (49)

(50)

Denoting the error event and using (50), the probability of
erroneous detection in (49) is bounded as

(51)

Applying the union bound, we get

(52)

Based on (52), we can evaluate in (40) as follows.
Recalling the exponential inequality

(53)

(54)

Consider the two regions: and
. At high SNR, the event is equiva-

lent to .
In the first region , at any rate , we have

so there is no
outage.
In the second region , the exponent order of the

outage probability depends on the rate. We investigate these two
regions separately.
In the region , we have since

all . From (52) and (54), we conclude that

(55)

Since exponential function dominates all polynomials and
, we get

which in turn yields

(56)

We next show that the same result holds for the other region
.

Following the same line of argument as we did for (56) but
for , we have

(57)

(58)



MEHANA AND NOSRATINIA: DIVERSITY OF MMSE MIMO RECEIVERS 6795

where (57) is direct application of (54) for , and (58)
follows from the fact that . Note that (58) is true
for any code length . Invoking the results of (56) and (58), we
can now evaluate as follows:

(59)

(60)

(61)

Therefore, for all regions of . Finally,
(40) becomes

(62)

which establishes the lemma.

From Lemma 3 and Lemma 4, we thus get the following.

Theorem 2: For MMSE MIMO receiver under quasi-static
channel and joint spatial encoding, the PEP and the outage prob-
ability are exponentially equal and the diversity gain is

, where is given
in (11).

V. MULTIPLE ACCESS CHANNEL (MAC)

We now extend the result to the MAC channel. Consider a
MIMO MAC channel with users, transmit antennas per
user, and receive antennas (there is no condition on , ,
and ). Assume flat-fading MIMO channel, the system model is
given by

(63)

where is the user channel matrix whose entries
are i.i.d. complex Gaussian, is the
overall equivalent channel matrix, is the trans-
mitted vector of user , is the overall
transmitted vector, and is the Gaussian noise vector.
The vectors and are assumed independent. We keep the
same assumptions about the channel. That is we assume a
quasi-static flat-fading channel and perfect CSIR and no CSIT.
We have the following theorem

Theorem 3: In a MIMO MAC system with MMSE receiver
consisting of users, transmit antennas per user, and
receive antennas, the lower and upper bounds on the per user
diversity are, respectively, given by and

(64)

(65)

From (64), it is straightforward to verify the single-user case.
The machinery of the proof is mostly similar to the single-user
case. However, the outage upper and lower bounds are obtained
in a different manner that is pointed out in the following analysis
for . The case can be similarly obtained.

A. MAC Outage Upper Bound

The user outage probability can be written as

(66)

where is the SINR of the stream of user . Specializing this
to MMSE receiver, we get

(67)

Using Jensen’s Inequality, the outage probability can be
bounded as

(68)

(69)

where (68) is true since the summation in the left-hand side
of the inequality adds more positive terms (recall that

is a positive-definite matrix [12]). Following sim-
ilar steps that were used to obtain (26), we can easily show that

, where is given by (64).
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B. MAC Outage Lower Bound

The outage probability can be lower bounded as follows:

(70)

(71)

where (70) is a trivial bound based on dedicating all
antennas to one user, and (71) uses the same technique as in
Section III-B, and is a positive number slightly less than one.
Following similar steps that were used to obtain (26), we can
easily show that , where is given by
(65).

VI. FREQUENCY-SELECTIVE CHANNEL

Broadband wireless systems usually operate in frequency-se-
lective channels where, in addition to the spatial diversity ob-
tained in MIMO broadband systems, frequency diversity can
be achieved. Broadband systems usually employ OFDM or SC
transmission [17]. Specifically, SC was shown to be attractive
for broadband wireless channels due to its lower complexity,
lower peak-to-average power ratio, and reduced sensitivity to
carrier frequency errors compared to OFDM [17], [18].
In this section, we investigate the diversity achieved by

SC-MMSE receivers for two block transmission schemes,
namely CP and ZP schemes. The CP and ZP are commonly
used for guard intervals in block quasi-static channels. Although
CP was initially proposed for both single- and multicarrier sys-
tems, ZP was lately shown to be an attractive alternative for
both systems [19], [20].

A. System Model

We consider a general MIMO system in a rich scattering
quasi-static environment. The equivalent baseband channel is
given by multipath model with paths referred to as the ISI
channel in the sequel. The -tap channel impulse response
between the transmit antenna and receive antenna is de-
noted by the vector . We
assume a block-fading model where remains unchanged
during a transmission block. Assuming transmit and re-
ceive antennas, the received vector at time instant is given
by [10], [21]

(72)

where is the channel matrix that has as its
element, is transmitted vector at time index
, is the received vector and is the

Gaussian noise vector at time index .

Consider a transmission of spatial vectors each of
size , where is an integer representing the number of
transmissions over the quasi-static channel and is the length
of data extension to avoid interblock interference, in the form of
either ZP or CP. The receiver discards the vectors in the case
of CP transmission [21]. Stacking the transmitted vector in an

vector, we canwrite the stacked
transmitted as follows:

We can then rewrite (72) as

(73)

where is the received vector, is the
transmitted vector, is the white Gaussian noise vector

and is the channel matrix given by

...
. . .

. . .
. . .

. . .
...

(74)

The linear data extension operation maps the data vector to
the transmitted vector and is shown by

(75)

where is given by

(76)

The system model in (73) can now be written in terms of the
unpadded data vector and an equivalent channel matrix
as follows:

(77)

where in a CP system, is a block
circulant matrix constructed by block circulations of the matrix

.
For the ZP transmission, we can rewrite (72) as

(78)

where is the received vector, is the
transmitted vector, is the white Gaussian noise vector

and is the channel matrix given by

...
. . .

...
...

. . .

. . .
...

...
...

...

(79)

Assuming perfect CSIR and that the channel remains un-
changed during the transmission of vectors, the MMSE
equalizer is applied to decouple the received streams (after
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removing the extension vectors in case of CP transmission).
The MMSE equalizer is given by

(80)

and the unbiased decision-point SINRs of the equalizers output
for detecting the th transmitted stream are

(81)

In Sections VII and VIII, we analyze the outage diversity for
the ZP and CP systems. The PEP analysis follows in a direct
manner as in the flat-fading case so we omit it.

B. ZP MMSE Receiver

It is known that in a point-to-point single-antenna ISI
channel, linear receivers can achieve full multipath diversity
under ZP transmission [20], [22], [23]. In this section, we
investigate the similar question for MIMO systems whose
receivers use linear MMSE operations in both the spatial and
temporal dimensions. We provide lower and upper bounds on
diversity. The bounds are not always tight, but the diversity is
fully characterized for SIMO systems.
We begin by analyzing the tradeoff between the spectral

efficiency and the diversity of MMSE receiver in the
single-antenna ISI channel under ZP transmission.
Tajer and Nosratinia [10] shows that varies with
under CP transmission and MMSE equalization, in particular,
for a quasi-static single-antenna ISI channel with taps, the
diversity of the SC-MMSE receiver under CP transmission is

, where is the transmission
data block length. We show that the same is not true for ZP
transmission.

Lemma 5: For a quasi-static single-antenna ISI channel with
taps, the diversity of the SC-MMSE receiver under ZP

transmission is irrespective of .
Proof: See Appendix A.

We proceed with lower and upper bounds on diversity for
MIMO ISI channel.
1) Diversity Upper Bound: Applying the MMSE equalizer

given by (80) to the received vector in (77), the effective mutual
information between and is equal to the sum of mutual
information of their components [5]

Thus, the outage probability is given by

(82)

(83)

(84)

where we have used Jensen’s inequality as in Section III-B. Let
the eigendecomposition of be given by

where is unitary and is a diagonal matrix that has
the eigenvalues of the matrix on its diagonal. Let the
eigenvalues of be given by with

. Let the vector be the column of the matrix ; we
have

Let . We can bound the sum in (84)

(85)

Thus, the outage bound in (84) can be further bounded

(86)

We now bound (86) by conditioning on the event

(87)

where is a positive real number that is slightly smaller than
one , and is a small positive number. We then have

(88)

(89)

(90)
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where (88) follows by removing some of the elements of the
sum corresponding to the largest eigenvalues. The steps used to
obtain (89) are similar to the steps used in Section III-B.
Note that is not aWishart matrix; hence, the analysis

of Section II does not directly apply here. The block diagonal
elements of are similar and are given by

(91)

The matrix is Toeplitz and Hermitian. Moreover, the
matrix given by (91) is a Wishart matrix.2

Observe that the probability in (90) depends on the
smallest eigenvalues. We now bound these eigenvalues with
the eigenvalues of the matrix via the Sturmian separation
theorem [24, P.1077].

Theorem 4 (Sturmian Separation Theorem): Let
be a sequence of symmetric matrices such that

each is a submatrix of . Then, if
denote the ordered eigenvalues of each matrix in

descending order, we have

For our purposes, we consider a special case of the
Sturmian Theorem by constructing a set of matrices

starting by the largest one

and making all other matrices to be
(successively embedded) principal submatrices of

, such that the smallest matrix is . Then,
we repeatedly apply the first inequality in the Sturmian to get

...
...

This implies that the smallest eigenvalues of are
bounded above by the eigenvalues of , respectively. Hence

(92)

is a sum of central Wishart matrices each with
degrees of freedom and with identity covariance matrix, i.e.,

. Therefore, the analysis of Section II
applies here and we have the following lemma.

Lemma 6: In a MIMO quasi-static frequency-selective
system (with channel memory ) consisting of transmit and

2Let denote a Wishart distribution with degree of freedom and
covariance (also called scale) matrix . Any of the diagonal block matrices

given by (91) follows a Wishart distribution since if and
then .

receive antennas, the MMSE receiver diversity under joint
spatial encoding and ZP transmission is upper bounded as

(93)

2) Diversity Lower Bound: We can upper bound the outage
probability as follows:

(94)

(95)

(96)

where (94) follows from Jensen’s inequality and (95) follows
from setting the smallest eigenvalues to zero.
Now we repeatedly use the second inequality in the Sturmian

theorem to get

...
...

with and , similar to the earlier case.
Therefore, the largest eigenvalues of are bounded
below by the eigenvalues of , respectively. Therefore

(97)

where . Recall that
is a Wishart matrix; therefore, the analysis of Section II follows
and we obtain the following lemma.
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Fig. 3. SC block transmission in a frequency-selective channel. In the case of CP, the extension is removed at the receiver prior to equalization.

Lemma 7: In a MIMO quasi-static frequency-selective
system (with channel memory ) consisting of transmit
and receive antennas, the MMSE receiver diversity is lower
bounded as

(98)

under joint spatial encoding and ZP transmission.
.

Remark 1: Notice that both lower and upper bounds differ
only in the second term of , i.e., . The diversity
lower bound for is tight against the upper bound, but
for the lower bound (98) is trivial.

C. CP MMSE Receiver

For the single-antenna ISI channel under CP transmission,
the explicit tradeoff between spectral efficiency and diversity
was found [10] to be . In this
section, we extend the analysis to the MIMO case. The system
model is shown in Fig. 3. We start with the general
MIMO system.
The systemmodel is again given by (77) where

and is generated by taking the IDFT of the information vector
[25], i.e.,

(99)

where is the augmented DFT matrix given by
, where is the identity matrix, is the normalized DFT

matrix, and is the Kroenecker product.
The block-circulant matrix has eigende-

composition , where . Both
and are unitary matrices. The block diagonal matrix

is given by

. . .
(100)

where the matrix is given by [26]

(101)

and is the instantaneous MIMO channel (cf., Section VI-A).
Analogous to the proof of [10], we first consider the case

where the transmission data block length is equal to the number
of channel taps, i.e., . In this case, the entries of
are i.i.d. normal complex Gaussian.

1) Outage Upper Bound: The outage probability of the
MMSE receiver is given by

(102)

(103)

(104)

(105)

where (103) follows from Jensen’s inequality, (104) follows
from the eigendecomposition of , and is th eigenvalue
of the th Wishart matrix .
Recall from Section III that the eigenvalues of a Wishart ma-

trix have the asymptotic property

(106)

based on which we established in Lemmas 1 and 2 the following

(107)

where is defined in (15) and , , and are arbitrary inte-
gers. Define

are i.i.d. discrete random variables with the following asymp-
totic distribution [cf., Section III, (22)–(26)]

(108)



6800 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 58, NO. 11, NOVEMBER 2012

Using (107), the outage probability in (105) can be evaluated as

(109)

where . Evaluating the probability in (109) in
a combinatorial manner, we get

(110)

(111)

where for is the value of the th
discrete random variable , and (111) is true since the summa-
tion in (110) is dominated by the maximum element.
Let the set be the set of indices of the

optimal solution of (111). The set is obtained by solving
the following optimization problem:

or equivalently

(112)

The problem in (112) is a quadratic integer-programming
(QIP) problem (see, e.g., [27]). Integer programming problems
are in general NP-hard. However, due to the simple structure of
the objective function in (112), we can efficiently solve it, thus
obtain a closed-form expression for and hence (111).

Lemma 8: For the QIP given by (112), the optimum solution
is given by

where and .
Proof: See Appendix B

Using Lemma 8, we can now evaluate the outage upper bound
given by (111) as

(113)

where and .
2) Outage Lower Bound: The bound is obtained using the

same steps to obtain the lower bound in Section VI-B1. It can
be shown that

(114)

(115)

The bound in (115) is the same as the upper bound in (105);
thus, the bound is tight and the diversity is given by (113). The
PEP analysis follows in a manner similar to Section IV.
Recall that so far we have considered data block length
. It can be shown that the diversity for any

is upper bounded by the computed diversity for the case
. This bounding is derived from (104) via FFT arguments

similar to those used in [10], which we omit for brevity. A tight
diversity lower bound for data block lengths remains
an open problem, except for the SIMO system, as discussed in
Section VII.
3) Diversity of CP Transmission in the SIMO Channel:

Theorem 5: In a SIMO quasi-static frequency-selec-
tive channel with memory , receive antennas, and
data block length , the MMSE receiver diversity is

under joint spa-
tial encoding and CP transmission.
In order to prove Theorem 5, we first analyze the case of

and then generalize the result for . The
system model is given by (77) where the equivalent
channel matrix is given by

...
. . .

. . .
. . .

. . .
. . .

...
(116)

where (for ) is SIMO channel. Note
that the diagonal elements of are identical and equal
to . Thus, the MMSE SINR for each output infor-
mation stream is

(117)
Evaluating the outage probability as in (102)

(118)

(119)
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where (118) follows from (117) and (119) follows similarly to
(105).
In a manner similar to (105), we have because

now is simply a vector. For the case ,
the eigenvalues are distributed according to Gamma dis-
tribution with shape parameter and scale parameter 1, i.e.,

. For , the Gaussian variables in
are no longer independent and thus analyzing this case requires
the unknown distribution . Instead, we indirectly show that
the diversity of also holds for .

Lemma 9: In a SIMO quasi-static frequency-selective
channel with memory , receive antennas and data
block length , the MMSE receiver diversity is

under joint spatial encoding and
CP transmission.

Proof: The outage probability can be written as

(120)

where we use 1 from (106). We thus need to
evaluate . The probability density function of is

(121)

The distribution of is thus given by

(122)

The cumulative distribution function of is

(123)

(124)

(125)

where we have made a change of variables in (123),
and evaluate the integral according to [24, P.334 and P.336].
Thus, we have

(126)

(127)

where (126) follows from the Taylor expansion for (125).
From the independence of , and subsequently the inde-

pendence of , we conclude that in (120) is binomi-

ally distributed with parameter . Hence, similar to [10], we
have

which concludes the proof for

For , we follow steps similar to [10].

Lemma 10: Consider two SIMO systems both operating
under quasi-static frequency-selective channels with memory
. One system has data block length and the other

, we have the following property:

for any .
Proof: The proof has similarities with the SISO case de-

veloped in [10, Lemma 2], but is not a trivial extension (see
Appendix C).

Using Lemma 10 and the results in [10, Th. 2], Theorem 5 is
established.

VII. SIMULATION RESULTS

Simulations generate Monte Carlo random channel realiza-
tions and calculate outage probability by checking the appro-
priate linear MIMO receiver mutual information for the quasi-
static flat-fading model. Fig. 4 shows the case .
According to Theorem 2, for ,
for , and for . Fig. 4
shows the diversity step between and 4.8 b/s/Hz. The
slope of diversity 9 is difficult to measure precisely with simula-
tions, but it is approximately observed. Fig. 5 shows the outage
probability for , 4, and 10 with the Jensen bound, with a
diversity transition at . Fig. 6 shows the case of ,
and again with transition at . In Fig. 7, simula-
tions results for and are given and compared
with and . Theorem 2 gives the diversity for both
systems. It is observed that when , the break point of
the slopes occurs before its counterparts in case. Lower
rates were difficult to simulate precisely.

VIII. CONCLUSION

This paper settles the long standing problem of the diver-
sity of the MMSE MIMO receivers under all fixed rates for any
number of transmit and receive antennas, giving the
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Fig. 4. Outage probability of MMSE Receiver, for , 1.5,
2, 3, 4.5, 4.8, 5, 10 b/s/Hz.

Fig. 5. Outage probability of MMSE Receiver, for
, 4, 10 b/s/Hz.

result as
. The analysis confirms the earlier approximate re-

sults [6], [7] showing that the system diversity can be as high
as for low spectral efficiency and as low as
for high spectral efficiency. The result is extended to the MAC.
We also analyze the case of frequency-selective MIMO channel
under CP and ZP transmission, and obtain the explicit tradeoff
between rate and diversity.

APPENDIX

A. Proof of Lemma 5

Consider a single-antenna ISI channel ,
where is channel memory. The transmitter sends a block of

symbols (i.e., the extension ), the last symbols
of which are zeros to remove the interblock interference. The
system model is given by

(128)

Fig. 6. Outage probability of MMSE Receiver, , and for
, 2.5, 4 b/s/Hz.

Fig. 7. Outage probability of MMSE Receiver for both cases (solid)
and (dashed). The spectral efficiency , 4, and
10 b/s/Hz.

where is the transmitted length- vector. We consider
the case where the padding length is equal to the memory of the
channel. The results are also valid for as a direct result
of [10, Th. 2].
The outage probability ofMMSE receiver under ZP transmis-

sion is given by [10]

(129)

(130)

(131)
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where (129) represents the outage probability of ZF equalizer
which upper bounds that of the MMSE. The bound in (130)
follows from Jensen’s inequality.
We want to show that in (131) is proportional

to . Thus, it is straightforward to obtain full diversity at
any since [15]

(132)

where is a constant that is independent of .
To show that this is indeed the case, we use the result of Te-

pedelenlioglu [22], [28] which provides a family of linear ZF
equalizers that is capable of achieving full multipath diversity in
zero-padded systems under certain constraints. We paraphrase
the result for convenience.

Lemma 11 [22], [28]: Under zero-padded transmission,
there exists a family of left-inverses of , denoted by , such
that for some constant independent of the
channel vector . Moreover, we have , for any
satisfying , and is given by

(133)

Applying the ZF equalizer on the channel output given
by (128), we get the equalized signal , where

. The filtered noise power can be evaluated as

(134)

where we assume the noise is uncorrelated and has variance
equal to 1.
Using the properties of the Frobenius norm, can be

bounded as

(135)

Using (134), (135), and Lemma 11, the trace in (131) can be
bounded by

(136)

Thus, from (131), we have

(137)

where is a constant independent of and .
Note that the constraints and constructionmethods in [22] and

[28] for the ZF equalizers to achieve full multipath diversity in
ZP systems do not apply in CP systems. That is, Lemma 11 is not
true for CP transmission. This is because the equivalent channel

in CP systems does not have the same properties that were used
in [22] and [28].

B. Proof of Lemma 8 (QIP Problem)

Consider the following QIP problem:

(138)

where and are integers.
Consider a candidate solution vector .

We partition the variables in this vector according to their
values into sets for ;
clearly some of these sets may be empty. Denote the member-
ship of each set . Furthermore, let
where is the divisor and is the remainder of the division
of by . From the constraint in (138), we have

(139)

Evaluating the objective function

(140)

(141)

(142)

where (140) and (142) use , which follows
from (139).
We now propose that one may achieve optimality when all

variables take values either or . In that case

where we substituted the value of from the first equation
into the second equation above. This shows that the variables
taking values or achieves the lower bound in (142). At
optimality, .
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C. Proof of Lemma 10

We begin by showing that for any integer multiplier of
denoted by and any real-valued

, we have

(143)
Note that for SIMO-CP system, , where is the

vector given by

(144)

where is the channel gain as a function of the tap index ,
and the superscript , 2 is used to distinguish the variables
in two systems with data block lengths and .
Recall that we can take a -point signal and apply a
-point DFT on it (after ZP), which will result in a resam-

pling in the Fourier domain at points. Following [10], we
can write the explicit relationship between entries of and

as

(145)
where

Define . Note that and

for since .
From (145), we have

(146)

We now analyze each part of the sum in (146). For the set

of indices , the
coefficients are nonzero constants, then

. Noting that must be real-valued, and defining

, (146) can be written as

(147)

Note that if the second term in (147) should be smaller
than the first term since otherwise the right-hand side of (147)

will be negative while the left-hand side is positive. Thus, for
, we have . Also, for we have

. Thus, we always have

, leading to the following
lemma.

Lemma 12: For and defined above, we have

for .
We now partition the DFT points into two sets

and
We now define the event

and proceed to evaluate the probability

(148)

(149)

where (148) follows since and and are given
by

We now evaluate (149)

(150)

Note that subject to the event , we have

Therefore, this term can be asymptotically ignored. Also subject
to , we have
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and since with probability one, , the other (nonnega-
tive) term can be asymptotically ignored. Thus, both the terms
involving the set can be altogether ignored and we have

We have thus established (143) when . We must now
show that the same result holds for any when . To
do so, let ; then, we have

(151)
Using (143) when and (151) when together

establishes (143) for any two positive integers.
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