
ar
X

iv
:0

90
1.

43
79

v3
  [

cs
.IT

]  
16

 J
un

 2
01

2
TO APPEAR IEEE TRANS. INFO. THEORY. 1

Ergodic Interference Alignment
Bobak Nazer,Member, IEEE, Michael Gastpar,Member, IEEE,

Syed Ali Jafar,Senior Member, IEEE, Sriram Vishwanath,Senior Member, IEEE

Abstract—This paper develops a new communication strat-
egy, ergodic interference alignment, for the K-user interference
channel with time-varying fading. At any particular time, each
receiver will see a superposition of the transmitted signals plus
noise. The standard approach to such a scenario results in each
transmitter-receiver pair achieving a rate proportional t o 1/K
its interference-free ergodic capacity. However, given two well-
chosen time indices, the channel coefficients from interfering
users can be made to exactly cancel. By adding up these two
observations, each receiver can obtain its desired signal without
any interference. If the channel gains have independent, uniform
phases, this technique allows each user to achieve at least1/2
its interference-free ergodic capacity at any signal-to-noise ratio.
Prior interference alignment techniques were only able to attain
this performance as the signal-to-noise ratio tended to infinity.
Extensions are given for the case where each receiver wants
a message from more than one transmitter as well as the “X
channel” case (with two receivers) where each transmitter has
an independent message for each receiver. Finally, it is shown
how to generalize this strategy beyond Gaussian channel models.
For a class of finite field interference channels, this approach
yields the ergodic capacity region.

Index Terms—Interference channels, interference alignment,
time-varying channels

I. I NTRODUCTION

Consider K transmitter-receiver pairs that communicate
over a wireless channel on the same frequency band. If the
users are not allowed to cooperate, it is clear that concurrent
transmissions will interfere with one another. The key question
is at what rate can each pair communicate in the presence of
interference from all other pairs. If only one pair is active, this
reduces to an interference-free point-to-point communication
problem for which the capacity is known. Intuitively, it seems
that the best possible scheme forK active pairs would allow
each transmitter to operate at roughly1/K its interference-
free capacity. Surprisingly, through a new strategy known as

B. Nazer is with the Department of Electrical and Computer Engineering,
Boston University, Boston, MA, 02215 USA (email: bobak@bu.edu). M. Gast-
par is with the Department of Electrical Engineering and Computer Sciences,
University of California, Berkeley, CA 94720 USA, and with the School
of Computer and Communication Sciences, Ecole Polytechnique Fédérale
(EPFL), 1015 Lausanne, Switzerland (e-mail: gastpar@eecs.berkeley.edu). S.
A. Jafar is with the Department of Electrical Engineering and Computer
Science, University of California, Irvine, Irvine, CA, 92697-2625 (email:
syed@uci.edu). S. Vishwanath is with the Department of Electrical and
Computer Engineering, University of Texas, Austin, Austin, TX, 78712, USA
(email: sriram@ece.utexas.edu).

B. Nazer and M. Gastpar were supported by NSF grants CCR-0347298,
CNS-0627024, and CCF-0830428. M. Gastpar was also supported by the
European ERC Starting Grant 259530-ComCom. S. A. Jafar was supported
by NSF grant CCF-0830809, ONR YIP grant N00014-08-1-0872, and ONR
grant N00014-12-1-0067. S. Vishwanath was supported by AROYIP grant
52491CI. The material in this paper was presented in part at the IEEE
International Symposium on Information Theory, Seoul, South Korea, July
2009 and at the 47th Annual Allerton Conference on Communications,
Control, and Computing, September 2009.

interference alignment[1], [2], it is possible to have each
transmitter operate all the way up to1/2 its interference-
free capacity. The basic idea is that, from the viewpoint of
each receiver, the interference should look as if it originated
from a single user. For the interference channel, Cadambe and
Jafar developed a vector space alignment strategy over many
parallel channels (which can be obtained by using multiple
frequency bands or time instances). The end result is that each
receiver sees its desired signal in half the dimensions while
the interfering signals occupy the other half and each user
can approach1/2 its interference-free capacity as the signal-
to-noise ratio (SNR) goes to infinity [2]. In this paper, we
propose a simple new strategy,ergodic interference alignment,
that permits each user to achieve at least half its interference-
free capacity at any SNR. At its heart, our scheme relies on the
availability of time-varying, independent channel coefficients
that are drawn from distributions with uniform phase.

We now provide a high-level description of our scheme. As-
sume that theK transmitters send out signalsX1, X2, . . . , XK

at time t under channel matrixH = {hkℓ} and that each
receiver observes:

Yk[t] =

K∑

ℓ=1

hkℓXℓ + Zk[t] (1)

whereZk[t] is independent and identically distributed (i.i.d.)
additive noise. The transmitters wait until the complementary
channel matrixHC occurs at timetC where

HC =




h11 −h12 · · · −h1K

−h21 h22 · · · −h2K

...
...

. . .
...

−hK1 −hK2 · · · hKK


 (2)

and then resendX1, X2, . . . , XK . This gives each receiver
access to

Yk[tC ] = hkkXk −
∑

ℓ 6=k

hkℓXℓ + Zk[tC ] (3)

which it can add toYk[t] to get

Yk[t] + Yk[tC ] = 2hkkXk + Zk[t] + Zk[tC ] . (4)

So, for the cost of two channel uses, we can get an
interference-free channel. The observant reader will haveno-
ticed that, for most reasonable fading distributions, any single
HC ∈ CK×K has measure zero and will effectively never
occur. Fortunately, for our purposes, it is enough to wait until
the channel matrix is fairly close toHC to retransmit the
signals. The description above is meant only to illustrate the
key principles at work and we will make our analysis rigorous
in the sequel.

http://arxiv.org/abs/0901.4379v3
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In some scenarios, each receiver may wish to recover more
than one of the transmitted messages. Assume each receiver
wants L messages out of theK > L messages that were
transmitted. We can think of these messages as unknown
variables and allocate one additional unknown variable for
the remaining transmitted messages which act as interference.
If the transmitters send out the same signals overL + 1
appropriately chosen channel matrices, the receivers willhave
enough “equations” to eliminate the interference and solve
for their desired messages. We will generalize our ergodic
alignment scheme to this scenario and show that it can also
be applied to an X channel with two receivers that each want
an independent message from each transmitter.

In the Gaussian case, each receiver can simply add up its
observations from paired channel matrices and then try to
recover its desired messages. This is because the desired signal
is combinedcoherentlywhile the noise is not which boosts
the effective signal-to-noise ratio (SNR). For other channel
models, it may be beneficial to remove the noise prior to
combining the two observations. We will demonstrate this
through the derivation of the capacity region of a finite field
interference channel with time-varying channel coefficients.
Here, the optimal strategy is to reliably decode equations of the
transmitted messages using the computation codes developed
in [3] and then solve for the desired messages.

A. Related Work

To date, the capacity region of the Gaussian interference
channel is unknown except in some special cases. If the
interference strength at each receiver is very strong, thenit has
been shown that it is optimal to first decode the interference
and then extract the desired message [4]–[7]. Conversely, if the
interference strength is very weak, it is optimal to treat the
interference as noise [8]–[10]. For the two-user case, Etkin,
Tse, and Wang showed that a version of the Han-Kobayashi
scheme [6] is approximately optimal and achieves the capacity
region to within one bit [11].

For interference channels withK > 2 transmitter-receiver
pairs, interference alignment [1], [2], [12] offers substantial
rate gains. Specifically, Cadambe and Jafar [2] showed that
K/2 degrees-of-freedom are attainable using an alignment
scheme that exploits instantaneous channel state information at
the transmitters (CSIT), coding across many parallel channels
[7], [13], and taking a high SNR limit. Subsequent work has
focused on developing alignment strategies that can operate
outside of this regime.

One natural question following the results in [2] is whether
the same gains are attainable at finite SNR. This paper answers
this question in the affirmative through a new alignment strat-
egy (under an additional condition on the channel coefficient
phases). In concurrent work to our own,Özgür and Tse
examined the interference alignment scheme of Cadambe and
Jafar [2] and found a lower bound on the rate at finite SNR
for phase fading [14]. In parallel, Jeon and Chung developed
an alignment strategy for finite field interference networks
[15]. For a single-hop interference network, they match up
pairs of channel matrices as we do to get interference-free

channels. For a multi-hop network, they use subsequent hops
to invert the channel matrix from the first hop. This technique
was subsequently used to characterize the degrees-of-freedom
region for a broad class of layered Gaussian relay networks
[16]. Earlier work by Grokop, Tse, and Yates proposed an
alignment scheme for line-of-sight interference channelswith
provably good rates at finite SNR [17].

Several groups have recently applied the techniques devel-
oped here to derive tighter capacity scaling laws for dense
wireless networks. Jafar showed that for transmitter-receiver
pairs distributed uniformly in the unit square, ergodic align-
ment yields the exact capacity as the network size goes to
infinity [18]. Subsequent work by Aldridge, Johnson, and
Piechocki extended this result to a broader class of node
placement distributions [19]. Niesen studied multi-hop net-
works with K nodes with unicast and multicast traffic and
found upper and lower bounds that differed by only alogK
factor [20]. For the multiple-access wiretap channel, Bassily
and Ulukus have developed a variant of our technique that
pairs channel realizations to minimize the information leaked
to the eavesdropper [21].

Another natural question is whether interference alignment
is possible over static channels. Bresler, Parekh, and Tse
demonstrated that alignment can be achieved on the signal
scale using lattice codes and employed this strategy to ap-
proximate the capacity of the many-to-one (and one-to-many)
interference channel to within a constant number of bits [22].
Lattice-based codes have also been used to characterize a “very
strong” regime [23], the generalized degrees-of-freedom [24],
and the approximate sum capacity [25] for symmetricK-
user interference channels. Recent efforts have attemptedto
generalize this approach to a broader class of channel gains
[26], [27]. Motahariet al. found thatK/2 degrees-of-freedom
are achievable (up to a set of channel matrices of measure zero)
by embedding alignment vectors into scalar irrationals [28].
However, for rational coefficients, the degrees-of-freedom is
strictly less thanK/2 as shown by Etkin and Ordentlich [29].

Recent work has also strived to characterize the gains of
linear alignment strategies using limited channel realizations.
For 3-user interference channels, Cadambe, Jafar, and Wang
showed that linear precoding combined with asymmetric com-
plex signaling offers alignment gains for a single channel
realization [30]. Subsequent work by Bresler and Tse found
the degrees-of-freedom for symmetric linear alignment foran
arbitrary number of channel realizations [31]. More recently,
several groups have developed feasibility conditions on linear
alignment over a single channel realization of aK-user MIMO
interference channel [32]–[34].

Another interesting line of recent work has developed
alignment schemes that do not require instantaneous CSIT.
For instance, if the channel coefficients are appropriately
correlated, alignment is possible without any CSIT [35]. For
independent channel coefficients, alignment is still possible
with delayed CSIT [36]–[40], although, in general, the gains
are not as high as in the instantaneous case.

For a more comprehensive overview of the alignment liter-
ature, we point to a recent survey [18].
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B. Paper Organization

The next section provides a formal problem statement for
the time-varying interference channel and Section III develops
a quantization scheme that will be useful for our analysis.
In Section IV, we show that each receiver can achieve at
least half its interference-free rate at any SNR and, in Section
IV-A, we discuss the delay incurred by this scheme. Section V
generalizes ergodic alignment to the case where each receiver
wants more than one message. In Section VI, we attempt to
extend our scheme to the X channel and give a scheme that
works for the2-receiver case. All of the prior schemes operate
on the symbol level; in Section VII, we show that for non-
Gaussian channels, sometimes each receiver should denoiseits
received signals prior to combining them. Finally, Appendix
A provides upper bounds for the Gaussian case and Appendix
B reviews a useful result from computation coding.

II. T IME-VARYING GAUSSIAN INTERFERENCECHANNEL

We begin with some notational conventions. We will denote
vectors using boldface lowercase letters and matrices with
boldface uppercase letters. Realizations of a random variable
are (sometimes) denoted using sans-serif font. For instance,
P(H = H) denotes the probability that the random matrixH

takes on the valueH. All logarithms are to base2.
There areK transmitter-receiver pairs that communicate

across a narrowband wireless channel overT time steps (see
Figure 1).

m1 E1
X1[t]

m2 E2
X2[t]

...

mK EK
XK [t]

H(t)

Z1[t]

Y1[t]

Z2[t]

Y2[t]

ZK [t]

YK [t]

D1 m̂1

D2 m̂2

...

DK m̂K

Fig. 1. K-user Gaussian interference channel with time-varying channel
coefficients.

Definition 1 (Messages):Each transmitter has amessage
mℓ chosen independently and uniformly from the set
{1, 2, . . . , 2nR̃ℓ} for someR̃ℓ ≥ 0.

Definition 2 (Encoders):Each transmitter has anencoding
function, Eℓ : {1, 2, . . . , 2nR̃ℓ} → CT , that maps its message
mℓ into a lengthT channel input{Xℓ[t]}Tt=1 that satisfies the
power constraint

1

T

T∑

t=1

∣∣Xℓ[t]
∣∣2 ≤ P . (5)

Definition 3 (Channel Model):The channel output ob-
served by each receiver is a noisy linear combination of the

inputs

Yk[t] =

K∑

ℓ=1

hkℓ[t]Xℓ[t] + Zk[t] (6)

where thehkℓ[t] are time-varying channel coefficients and
Zk[t] is additive i.i.d. noise and drawn from a circularly
symmetric complex Gaussian distribution with unit variance,
Zk[t] ∼ CN (0, 1). Let H[t] = {hkℓ[t]} denote the matrix
of channel coefficients at timet. Each entry of this matrix is
independent of the others for allt and the channel matrix itself
is i.i.d. across time,

fH(H) =

K∏

k=1

K∏

ℓ=1

fhkℓ
(hkℓ) (7)

fH[1]···H[T ](H1, . . . ,HT ) =

T∏

t=1

fH(Ht) . (8)

We assume that the phase of each channel coefficient is drawn
according to a uniform distribution and independent from its
magnitude,

fhkℓ
(h) = fhkℓ

(ejbh) ∀h ∈ C, b ∈ [0, 2π) . (9)

Remark 1:Although our alignment scheme requires the
phases to be drawn from uniform distributions, this require-
ment can be relaxed by changing how channel matrices are
paired. See [41] for a recent study of ergodic alignment under
asymmetric phase distributions.

The transmitted symbols at timet can depend on the channel
realizations up to and including timet. This is the usual notion
of causal CSIT. LetH[t] = {hkℓ[t]} denote the matrix of
channel coefficients at timet.

Remark 2:Channel coefficients that change at every time
step are often referred to as a fast fading process. For our
considerations, we just need that there is sufficient variation
of the channel coefficients over the duration of a codeword.
The assumption that the channel coefficients are i.i.d. across
time is taken to simplify the analysis.

Remark 3:We can model the effect of different power con-
straints at each transmitter and different noise variancesat each
receiver by modifying the coefficient probability distributions.

Definition 4 (Decoders):Each receiver has adecoding
function, Dk : CT → {1, 2, . . . , 2nR̃k}, that maps its length
T observed channel output{Yk[t]}Tt=1 into an estimatêmk of
its desired messagemk.

Definition 5 (Achievable Rates):We say that a rate tuple
(R1, R2, . . . , RK) is achievableif for all ǫ > 0 andn large
enough there exist channel encoding and decoding functions
E1, . . . , EK ,D1, . . . ,DK such that

R̃k > Rk − ǫ, k = 1, 2, . . . ,K, (10)

P

(
{m̂1 6= m1} ∪ . . . ∪ {m̂K 6= mK}

)
< ǫ . (11)

Definition 6 (Capacity):The capacity regionis the closure
of the set of all achievable rate tuples.
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III. C HANNEL QUANTIZATION

Our scheme relies on matching up channel matrices so
that the interference terms cancel out when we sum up the
matrices. Clearly, given any channel matrixH, the prob-
ability that its exact complementHC will occur is zero
(for continuous-valued fading). Thus, we can only match up
matricesapproximately. We will accomplish this by quantizing
the channel coefficients and matching up matrices based on
their quantized values. By taking finer and finer quantizations,
we can achieve the target rate in the limit.

We also need to ensure that nearly all matrices that occur
will be successfully paired up with their complements. Since
the coefficients are drawn i.i.d. from distributions with uniform
phase, the probability that the complement of a channel matrix
occurs in a given time step is the same as the probability that
the original matrix occurs. We will constrain the quantized
matrices to lie within a finite set by throwing out any matrices
with coefficients larger than a threshold. Finally, we choose the
blocklength to be large enough so that the sequence of quan-
tized channel matrices is strongly typical with high probability.
This means that the empirical distribution of channel matrices
will be close to the true distribution which implies that nearly
all matrices can be matched.

Let hMAX denote the channel coefficient threshold. We will
ignore any channel matrix that contains at least one coefficient
with magnitude larger thanhMAX . Let

L ,
{
H ∈ C

K×K : |hkℓ| > hMAX for somek, ℓ
}

(12)

denote the set of all matrices that violate the threshold andlet

ρ , P
(
H[t] ∈ L

)
(13)

be the probability of some matrix in this set occurring at time
t. Note thatρ is a decreasing function ofhMAX .

We now define the quantization functionq for the channel
coefficients. The complex plane up to distancehMAX from the
origin is divided up intoκ disjoint rings of equal width. These
rings are further subdivided into equal segments based onη
angles spaced equally between0 and 2π. The parametersκ
andη are chosen to be large enough such that the maximum
distance between any two points within a segment isδ where
δ > 0 will be specified later. Each segment is a quantization
cell for the channel coefficients which we represent by its
centroid. Thus,q

(
hkℓ[t]) mapshkℓ[t] to the centroid within its

segment if
∣∣hkℓ[t]

∣∣ ≤ hMAX . If
∣∣hkℓ[t]

∣∣ > hMAX , thenq
(
hkℓ[t])

maps to an erasure symbolΓ. See Figure 2 for an illustration
of this quantization scheme.

Throughout the paper, we will match up channel coefficients
based on their quantization cells. For notational convenience,
let

ĥkℓ[t] , q
(
hkℓ[t]

)
(14)

denote the quantized channel coefficients.
One important aspect of this quantization scheme is that

each segment has the same probability of occurring as any
other segment within the same ring. Note that this depends
strongly on the assumptions of uniform phase and the in-
dependence of phase and magnitude. Ideally, we would pair

Re(hkℓ)

Im(hkℓ)

hMAX

δ

Over Threshold

Fig. 2. Quantizing complex-valued channel coefficientshkℓ with magnitude
less thanhMAX to a finite set. Here, the number of rings isκ = 5 and the
number of segments per ring isη = 12. The maximum distance between any
two points in a quantization cell isδ.

up channel coefficients to cancel out the interference exactly.
However, as explained above, this is not possible at any
finite blocklength. The following lemma bounds the effect
of combining channel coefficients based on their quantization
cells.

Lemma 1:Let hkℓ[t1], hkℓ[t2], . . . , hkℓ[tN ] be channel co-
efficients with magnitudes less thanhMAX . Then, for any
an ∈ C,
∣∣∣∣∣

N∑

n=1

anhkℓ[tn]

∣∣∣∣∣ ≤
∣∣∣∣∣

N∑

n=1

anĥkℓ[tn]

∣∣∣∣∣+ δ

N∑

n=1

|an| (15)

∣∣∣∣∣

N∑

n=1

anhkℓ[tn]

∣∣∣∣∣ ≥ max

(
0,

∣∣∣∣∣

N∑

n=1

anĥkℓ[tn]

∣∣∣∣∣− δ

N∑

n=1

|an|

)

whereδ is the maximum distance between any two points in
a quantization cell.

Proof: Define ekℓ[tn] , hkℓ[tn] − ĥkℓ[tn]. Since the
coefficient magnitudes are less thanhMAX , then|ekℓ[tn]| < δ.
By the triangle inequality,

∣∣∣∣∣

N∑

n=1

anhkℓ[tn]

∣∣∣∣∣ =
∣∣∣∣∣

N∑

n=1

an
(
ĥkℓ[tn] + ekℓ[tn]

)
∣∣∣∣∣ (16)

≤

∣∣∣∣∣

N∑

n=1

anĥkℓ[tn]

∣∣∣∣∣+ δ
N∑

n=1

|an| . (17)

The second inequality follows similarly via the reverse triangle
inequality.

Channel matrices are quantized simply by quantizing their
individual coefficients

Ĥ[t] ,
{
ĥkℓ[t]

}
. (18)

Let H denote the finite set onto which channel matrices are
quantized.
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To facilitate our analysis, we will split theT time slots into
N consecutive blocks ofT/N time slots each. Let

H(n) ,

(
H

[
1 +

(n− 1)T

N

]
, . . . ,H

[
nT

N

])
(19)

for n ∈ {1, 2, . . . , N} and letĤ(n) denote the corresponding
quantized sequence.

We now recall the notion of strong typicality for sequences
of discrete random variables and specialize it to sequencesof
quantized channel matrices. We define

p
Ĥ

(
Ĥ
)
, P

(
Ĥ[t] = Ĥ

)
(20)

to be the probability under the fading distribution that a
channel matrix quantizes tôH ∈ H. Also, define

#
(
Ĥ|Ĥ(n)

)
,

∣∣∣∣
{
t : Ĥ[t] = Ĥ, 1 +

(n− 1)T

N
≤ t ≤

nT

N

}∣∣∣∣

to be the number of quantized channel matrices within thenth

block that are equal tôH ∈ H.
Definition 7 (Strong Typicality):A block of quantized

channel matrices,̂H(n), is γ-typical if
∣∣∣∣
N

T
#
(
Ĥ|Ĥ(n)

)
− p

Ĥ

(
Ĥ
)∣∣∣∣ ≤ γ ∀Ĥ ∈ H . (21)

Lemma 2:For any ǫ > 0 and T large enough, the prob-
ability that all blocksĤ(1), . . . , Ĥ(N) are γ-typical is lower
bounded by1− ǫ.

Proof: From Lemma 2.12 in [42], the probability that a
block Ĥ(n) is γ-typical is at least

1−
|H|N

4Tγ2
. (22)

Since the blocks are independent, the probability that all
blocksĤ(1), . . . , Ĥ(N) areγ-typical is lower bounded by

(
1−

|H|N

4Tγ2

)N

. (23)

From our choice of quantization scheme,|H| = (κη + 1)K
2

.
Thus, (23) goes to1 as T goes to infinity which completes
the proof.
We will only work with sequences of channel matrices that
areγ-typical and declare errors on the rest. This ensures that
nearly all time indices can be matched up appropriately.

IV. ERGODIC INTERFERENCEALIGNMENT

Each transmitter-receiver pair would clearly be better offif
it had exclusive access to the channel and faced no interference
from other users. Specifically, ifhkℓ = 0 ∀ℓ 6= k, each
receiver sees a point-to-point channel from its transmitter and
can achieve

Rk = E
[
log
(
1 + |hkk|

2P
)]

. (24)

We call this theinterference-free rateand will use it as a
benchmark to gauge our performance.

Remark 4:Note that this assumes a uniform power allo-
cation across all time slots and one can do better by using
the causal channel state information to optimize the power

allocation [43]. For simplicity, we use a uniform power al-
location throughout our derivations. See [44] for a study of
power allocation for fast fading2-user interference channels.
The interplay of interference alignment and waterfilling isan
interesting subject for future study.

A simple approach to interference management is to have
transmitters take turns using the channel, often referred to as
time-division. For instance, if we partition the channel equally
between transmitters, each one can achieve

Rk =
1

K
E
[
log (1 +K|hkk|

2P )
]
. (25)

The extraK factor inside the logarithm comes from saving up
power while the transmitter is required to stay silent. Under
this approach, the sum rate stays nearly constant as we add
users to the network. Although this seems like a fundamental
performance barrier, we can in fact do much better using
interference alignment.

The main idea underlying alignment is to carefully design
the transmission scheme so that the effective interferenceat
each receiver appears as if it came from a single transmitter.
For the channel model under consideration, Cadambe and Jafar
showed that this is possible using a vector space strategy [2]. In
brief, their strategy groups together several channel usesto get
a (virtual) multiple-input multiple-output (MIMO) interference
channel. Each transmitter is assigned a linear transformation
based on the fading realization with rank roughly equal to half
the number of channel uses. At each receiver, the interfering
signals occupy one half of the dimensions while the desired
signal occupies the other half and can be extracted using zero-
forcing. This strategy allows the sum rate to increase linearly
with the number of users at high SNR. Recall thatf(x) =
o(g(x)) means thatlimx→∞ f(x)/g(x) = 0.

Theorem 1 (Cadambe-Jafar):For the time-varying Gaus-
sian interference channel, each transmitter can achieve a rate
satisfying

Rk =
1

2
log (1 + P ) + o(log (1 + P )) . (26)

For a full proof, see [2, Theorem 1]. This result characterizes
the “pre-log” term of the achievable rates (also referred toas
the degrees-of-freedom)1. It implies that, at sufficiently high
SNR, each user can achieve one half its interference-free rate
regardless of the number of users in the network. We now
set out to prove that each user can achieve at least half its
interference-free rate at any SNR.

Theorem 2:For the time-varying Gaussian interference
channel defined in Section II, the rates

Rk =
1

2
E
[
log (1 + 2|hkk|

2P )
]

(27)

are achievable fork = 1, 2, . . . ,K.
Proof: Chooseǫ > 0. We will divide up theT chan-

nel uses into two consecutive intervals of equal length. We
quantize all channel realizations using the scheme described
in Section III. Applying Lemma 2 withN = 2, it follows
that both blocks ofT/2 channel uses areγ-typical with

1Note that this high SNR result does not depend on the uniform phase
assumption.
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probability at least(1 − ǫ
2 ) (with γ to be specified later).

By Definition 7, this means that the number of occurrences
of each possible quantized channel matrix in each interval is
bounded as follows:

T

2

(
p
Ĥ

(
Ĥ
)
− γ
)
≤ #

(
Ĥ|Ĥ(n)

)
≤

T

2

(
p
Ĥ

(
Ĥ
)
+ γ
)

(28)

for all Ĥ ∈ H.
If either interval is notγ-typical, we declare an error.

Otherwise, we know that each quantized matrix will occur
at leastT2

(
p
Ĥ

(
Ĥ
)
− γ
)

times in each interval. A time slott
in an interval is useable unless:

1) The channel matrixH[t] contains one or more elements
with magnitude larger thanhMAX .

2) The channel matrixH[t] does not violate the threshold
but the corresponding quantized matrixĤ[t] has already
occurred at leastT2

(
p
Ĥ

(
Ĥ
)
− γ
)

times.

Assuming all intervals areγ-typical, the number of useable
time slots per interval is
T
2

∑

Ĥ:ĥkℓ 6=Γ

(
p
Ĥ

(
Ĥ
)
− γ
)
 =

⌊
T

2

(
1− ρ− (κη)K

2

γ
)⌋

.

Recall thatρ is the probability the channel matrix contains an
element larger thanhMAX (which corresponds to the quantized
matrix containing an erasure symbolΓ) and κ and η are
parameters in the channel quantization.

Each encoder uses an independent codebookCk with rate
R̃k and length equal to the number of useable time slots per
interval. Each codebook is generated elementwise i.i.d. from
a circularly symmetric Gaussian distribution with variance
slightly less thanP (to ensure that, for large blocklengths,
the power constraint is satisfied).

During the first interval, each transmitter sends out a new
symbol from its codeword during each useable time slott1 and
records the corresponding quantized channel matricesĤ[t1].
We match up each useable time slott1 from the first interval
with a useable time slott2 from the second interval for which
the quantized channel matrix̂H[t2] is complementary,

Ĥ[t2] =




ĥ11[t1] −ĥ12[t1] · · · −ĥ1K [t1]

−ĥ21[t1] ĥ22[t1] · · · −ĥ2K [t1]
...

...
. . .

...
−ĥK1[t1] −ĥK2[t1] · · · ĥKK [t1]


 .

Note that this can be done using only causal channel knowl-
edge by greedily matching up time slots from the first interval
in the order in which they occur. To ensure that−ĥkℓ corre-
sponds to a valid quantization cell, we constrain the numberof
angles (given byη) to be even. Since each channel coefficient
has uniform phase, all of the useable time slots from the
first interval can be matched with useable time slots from the
second interval (assuming that the intervals areγ-typical).

Each receiver adds up its observations from the first interval
to the matched observations in the second time slotYk[t1] +
Yk[t2]. We now calculate the resulting signal-to-interference-
and-noise ratio (SINR) at each receiver. The channel coeffi-
cient corresponding to the desired signal belongs to the same

quantization cell in matched time slots,ĥkk[t1] = ĥkk[t2].
From Lemma 1, we have that

∣∣hkk[t1] + hkk[t2]
∣∣ ≥ max

(
2
∣∣ĥkk[t1]

∣∣− 2δ, 0
)

(29)

≥ max
(
2
∣∣hkk[t1]

∣∣− 4δ, 0
)

(30)

whereδ is the maximum distance between any two points in
a quantization cell. It follows that the signal power inYk[t1]+
Yk[t2] for the symbolXk[t1] is at least

(2
∣∣hkk[t1]

∣∣− 4δ)2P (31)

if
∣∣hkk[t1]

∣∣ > 2δ. For interfering signals, the channel coef-
ficients from matched time slots satisfŷhkℓ[t1] = −ĥkℓ[t2].
Applying Lemma 1, we get that

∣∣hkk[t1] + hkk[t2]
∣∣ ≤ 2δ . (32)

It follows that the total interference power inYk[t1] + Yk[t2]
is at most

4δ2(K − 1)P . (33)

The noise power inYk[t1] + Yk[t2] is 2. Combining these
bounds, we get that ifhkk[t1] > δ, the SINR at receiverk is
at least

SINRk ≥
P (2|hkk[t1]| − 4δ)

2

4δ2(K − 1)P + 2
. (34)

Taking δ → 0, we see that

lim
δ→0

SINRk ≥ 2|hkk[t1]|
2P . (35)

By choosinghMAX large enough, we can make the probabil-
ity τ that the channel matrix violates the threshold as small as
we desire. Next, we can chooseκ (the number of quantization
rings) andη (the number of angles) large enough, to makeδ
as small as desired and get theSINR at each receiver to be as
close to2|hkk[t1]|2P as we would like. Then, we can choose
γ to be sufficiently small so that the fraction of useable time
slots is large. Finally, by takingT large enough, we can find
a good code with probability of error at mostǫ2 and rate at
least

1

2
E
[
log
(
1 + 2|hkk|

2P
)]

−
ǫ

2
. (36)

Recall also that with probabilityǫ2 the channel is notγ-typical
so the total probability of error is less thanǫ. Thus, there must
exist a set of good fixed codebooks with the same performance.
Finally, we expurgate all codewords that violate the power
constraint which results in a rate loss of at mostǫ/2 for T
large enough.

In Figure 3, we have plotted the performance of the ergodic
alignment scheme from Theorem 2 for a time-varying10-
user interference channel with i.i.d. Rayleigh fading,hkℓ ∼
CN (0, 1). For comparison, we have also plotted the upper
bound from (99) in Appendix A and the performance of time
division from (25). For all three curves, we have taken a
uniform power allocation across time. Note that the rates for
ergodic alignment and the upper bound only depend on the
fading statistics, not the number of users.
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Fig. 3. Rate per user for the ergodic alignment scheme over a time-varying
interference channel with i.i.d. Rayleigh fading. For comparison, we have also
plotted the performance of time division for10 users.

Remark 5:Assume all the channel coefficients have equal
magnitudes and random, uniform phases,hkℓ = exp(j2πφkℓ)
for φkℓ ∼ Unif[0, 2π). A quick comparison of the upper bound
in (99) and Theorem 2 reveals that ergodic alignment achieves
the sum capacity. Jafar [45] has shown that this holds more
generally through the concept of a “bottleneck state.” Thatis,
if each receiver sees an interferer of equal strength to their
desired signal, ergodic alignment is optimal.

In general, ergodic alignment alone does not yield the ca-
pacity region. For instance, if the cross-channel gains arevery
small relative to the direct gains, then it is better to treatthe
interference as noise, rather than spending two channel uses
to cancel it out [8]–[10]. Thus, for Rayleigh fading, we can
achieve higher rates by using this weak interference strategy
over certain channel matrices and the alignment strategy over
the rest. Conversely, if the cross-channel gains are very large
relative to the direct gains, then it is better to decode the
interference prior to decoding the desired message [4]–[7]. It
remains unclear as to whether an appropriate mixture of these
three schemes can be used to approach the ergodic capacity
region. That said, as the number of users increases, it becomes
more likely that the network will be in a “bottleneck state,”
implying that ergodic alignment is optimal [45].

Suppose that userℓ wants to communicate at more than
half its interference-free rate. We now propose a simple time-
sharing strategy for this scenario that blends our alignment
scheme with a time-division scheme.

Corollary 1: For the time-varying Gaussian interference
channel defined in Section II, the following rates are achiev-
able

Rℓ = αE
[
log (1 + |hℓℓ|

2P )
]

+
(1− α)

2
E
[
log
(
1 + 2|hℓℓ|

2P
)]

(37)

Rk =
(1− α)

2
E

[
log

(
1 +

2|hkk|2P

1− α

)]
k 6= ℓ (38)

for any 0 ≤ α ≤ 1 if each channel coefficient is drawn from
a distribution with uniform phase.

Proof: For αT channel uses, all users exceptℓ are silent.
User ℓ employs a standard point-to-point channel code to
achieve rateE[log (1 + |hℓℓ|2P )] over these channel uses. For
the remaining(1 − α)T channel uses, we employ ergodic
interference alignment as in the proof of Theorem 2. User
ℓ achieves1

2E
[
log
(
1 + 2|hℓℓ|

2P
)]

over these channel uses
as before. Since each userk 6= ℓ was silent for the priorαT
channel uses, it has saved up power and can afford to transmit
each symbol with average powerP1−α resulting in a rate of
1
2E

[
log
(
1 + 2|hkk|

2P
1−α

)]
over the remaining channel uses.

A. Delay Analysis

We now provide a brief analysis of the delay requirements
of our scheme. First, we note that we designed our matrix
pairing strategy to simplify the achievability proof; there may
be other choices that will result in lower delay. In general,the
delay incurred by an alignment scheme will depend on the
number on usersK, the SNR, and the achievable rates.

For our analysis, we consider the special case of fixed-
magnitude channel gains. Lethkℓ[t] = rkℓe

jφkℓ[t] where the
magnitudesrkℓ are real, positive constants and the phases
φkℓ[t] are i.i.d. according to a uniform distribution over[0, 2π).
Since the magnitude is held constant, our quantization scheme
from Section III consists of mapping the phasesφkℓ[t] to
the closest of theη quantized angles. The maximum distance
δkℓ between two channel gainshkℓ[t1] and hkℓ[t2] that are
quantized to the same angle is

δkℓ = 2rkℓ sin

(
π

η

)
(39)

≤
2πrkℓ
η

. (40)

Plugging this into (34), we find that the SINR per codeword
symbol is lower bounded by

SINRk ≥
r2kkP

(
2− 8π

η

)2

16π2

η2 (K − 1)P maxℓ 6=k r2kℓ + 2
. (41)

To maintain a capacity scaling of roughly12 logP per user,
we require that, for some constantφ > 0,

η2 = (K − 1)Pφ . (42)

Consider the expected delay before a single codeword symbol
from each transmitter is successfully obtained by the receivers.
If the transmitters were to send a new symbol every time slot
and the receivers were to simply treat interference as noise, this
expected delay is 1. For ergodic alignment, codeword symbols
must travel through a channel matrix and the complementary
channel matrix with opposite quantized phases. Since the
channel gains are independent, the probability of the com-
plementary matrix occurring in a given time slot is(1/η)K

2

.
Thus, the number of time slots until the complementary matrix
occurs is a geometric random variable with parameter(1/η)K

2

and the expected delay is

ηK
2

= ((K − 1)Pφ)K
2/2 . (43)
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For time-varying magnitudes, the expected delay scales in a
similar fashion with an additional penalty for waiting for the
magnitudes to match.

This delay scaling roughly corresponds to the2K
2

inde-
pendent channel realizations required by the Cadambe-Jafar
beamforming scheme to attainK/2 degrees-of-freedom over
a time-varying interference channel [2]. The rate-delay tradeoff
for linear beamforming schemes can be interpreted as the
degrees-of-freedom that is attainable for a given number
of independent channel realizations. This tradeoff has been
characterized for3-user interference channels by Bresler and
Tse [31].

In the context of ergodic alignment, the first-order question
is whether the exponent of the expected delay can be signif-
icantly improved without sacrificing rate. More generally,the
challenge is to design channel matching schemes that operate
on the optimal tradeoff between delay and rate. See [46], [47]
for recent work related to these questions.

B. Practical Considerations

As noted above, the proposed ergodic alignment scheme
requires very long delays to attain half the interference-free
rate. This requirement, coupled with the need for full CSIT,
seems to limit the scheme to scenarios where high rates are far
more valuable than low delays. However, the core idea under-
lying ergodic alignment, matching up complementary channel
matrices, can be interpreted more broadly. For instance, one
can match up complementary channels across frequencies
rather than time slots. As shown by Jafar [35], interference
can also be completely eliminated using adjacent time slotsif
the direct channel gains change while the interfering channel
gains remain the same. Interestingly, for this blind alignment
scheme, the receivers do not need to know the channel gains,
only the coherence intervals. In certain cases, such as the X
channel, one can induce the desired coherence intervals simply
through antenna switching [38]. Going beyond the wireless
setting, ergodic alignment has recently been investigatedas
a simple network coding strategy for multiple unicast traffic
[48]. Note that in wired network coding, the “channel” coef-
ficients can be freely chosen, i.e., there is no need to wait for
nature to provide complementary channel gains.

V. RECOVERING MORE MESSAGES

In this section, we generalize our alignment scheme to
handle the case where each receiver attempts to decode more
than one message. The problem setup is largely the same as in
Section II except that now there areL transmitters, each with
a single messagemℓ of rate R̃ℓ, andK receivers that want
exactlyM messages each. For simplicity, we will assume that
all messages are requested by the same number of receivers.
(Note that this implicitly assumes thatKM

L is an integer.) Let
Sk denote the set of indices of messages desired at receiverk
and letSk(i) denote theith index in the set. We now replace
Definitions 4 and 5 with the following two definitions.

Definition 8 (Decoders):Each receiver has adecoding

m1 E1
X1[t]

m2 E2
X2[t]

m3 E3
X3[t]

m4 E4
X4[t]

H(t)

Z1[t]

Y1[t]

Z2[t]

Y2[t]

Z3[t]

Y3[t]

Z4[t]

Y4[t]

D1
m̂1,1

m̂2,1

D2
m̂2,2

m̂3,2

D3
m̂3,3

m̂4,3

D4
m̂4,4

m̂1,4

Fig. 4. Interference channel where each receiver wantsM = 2 messages.

function,

Dk : CT →
M∏

i=1

{1, 2, . . . , 2nR̃S
k
(i)} , (44)

that maps its lengthT observed channel output{Yk[t]}Tt=1 into
estimatesm̂ℓ,k of its desired messagesmℓ for all ℓ such that
ℓ ∈ Sk.

Definition 9 (Achievable Rates):We say that a rate tuple
(R1, R2, . . . , RL) is achievableif for all ǫ > 0 and T large
enough there exist channel encoding and decoding functions
E1, . . . , EL,D1, . . . ,DK such that

R̃ℓ > Rℓ − ǫ, ℓ = 1, 2, . . . , L , (45)

P

(
⋃

k

⋃

ℓ∈Sk

{m̂ℓ,k 6= mℓ}

)
< ǫ . (46)

In Figure 4, we provide a block diagram of a case with
L = 4 transmitters,K = 4 receivers, and message requests
S1 = {1, 2},S2 = {2, 3},S3 = {3, 4}, andS4 = {4, 1}.

As before, all encoders retransmit their symbols at well-
chosen time indices. This has the effect of giving the decoders
equations with the symbols as the variables and the coefficients
given by the channel. Here, it is insufficient to look for
pairs of channel coefficients that exactly cancel. Since each
receiver wantsM messages, we will needM + 1 time slots
(or dimensions). Of these,M will be used for the desired
messages and the remaining dimension will be used for the
interfering terms. Define

ω , exp

(
j2π

M + 1

)
(47)

to be the(M +1)th root of unity and letW be the sizeM+1
discrete Fourier transform (DFT) matrix:

W =




ω0 ω0 ω0 · · · ω0

ω0 ω1 ω2 · · · ωM

ω0 ω2 ω4 · · · ω2M

...
...

...
. . .

...
ω0 ωM ω2M · · · ωM2



. (48)
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The inverse DFT matrix has the following form:

W−1 =
1

M + 1




ω0 ω0 ω0 · · · ω0

ω0 ω−1 ω−2 · · · ω−M

ω0 ω−2 ω−4 · · · ω−2M

...
...

...
. . .

...
ω0 ω−M ω−2M · · · ω−M2




First, consider the following idealized scenario. As in
the introduction, assume that each transmitter sends signals
X1, X2, . . . , XL at timet1 under channel matrix̂H = {hkℓ}.
The transmitters then wait for channel coefficients satisfying

hkℓ[tn] =

{
ω(i−1)(n−1)hkℓ[t1] ℓ = Sk(i),

ωM(n−1)hkℓ[t1] ℓ /∈ Sk.
(49)

for n = 2, . . . ,M + 1 and resendX1, X2, . . . , XL during
these time slots. Assume that receiverk wants the firstM
messages2. Then, the channel observations at receiverk can
be written in vector form as



Yk[t1]
Yk[t2]

...
Yk[tM+1]


 = W




hk1[t1]X1

...
hkM [t1]XM∑

ℓ/∈Sk

hkℓ[t1]Xℓ



+




Zk[t1]
Zk[t2]

...
Zk[tM+1]


 .

That is, each desired signal is assigned to a unique DFT vector.
All of the undesired signals are assigned to a single DFT vector
that is orthogonal from the others. As a result, the receivercan
apply the inverse DFT matrix to its vector of observations to
extract its desired signals,

W−1




Yk[t1]
Yk[t2]

...
Yk[tM+1]


 =




hk1[t1]X1

...
hkM [t1]XM∑

ℓ/∈Sk

hkℓ[t1]Xℓ



+




Z̃k[t1]

Z̃k[t2]
...

Z̃k[tM+1]




where theZ̃k[tn] are transformed noise terms,

Z̃k[tn] =
1

M + 1

M+1∑

m=1

ω−(i−1)(n−1)Zk[tm] , (50)

that are i.i.d. circularly symmetric Gaussian random variables
with mean zero and variance1/(M+1). Of course, we cannot
afford to wait until the channel coefficients match precisely;
instead, we will match up time slots based on quantized
channel coefficients. The next theorem formalizes the scheme
described above.

Theorem 3:For the time-varying Gaussian interference
channel (as defined in Section II) where receiverk wantsM
messages{mℓ : ℓ ∈ Sk}, the rates

Rℓ = min
k:ℓ∈Sk

1

M + 1
E
[
log (1 + (M + 1)|hkℓ|

2P )
]
. (51)

are achievable forℓ = 1, 2, . . . , L.
Proof: Chooseǫ > 0. We will divide up theT channel

uses intoM + 1 consecutive intervals of equal length. We

2For any other choice ofSk simply replace the transmitter indices
1, . . . ,M with Sk(1), . . . ,Sk(M).

quantize all channel realizations using the scheme described
in Section III. Applying Lemma 2 withN = M+1, it follows
that allM+1 blocks ofT/(M+1) channel uses areγ-typical
with probability at least(1− ǫ

2 ) (with γ to be specified later).
By Definition 7, this means that the number of occurrences
of each possible quantized channel matrix in each interval is
bounded as follows:

T

M + 1

(
p
Ĥ

(
Ĥ
)
− γ
)
≤ #

(
Ĥ|Ĥ(n)

)
≤

T

M + 1

(
p
Ĥ

(
Ĥ
)
+ γ
)

for all Ĥ ∈ H.
If any block is notγ-typical, we declare an error. Otherwise,

we know that each quantized matrix will occur at least
T

M+1

(
p
Ĥ

(
Ĥ
)
− γ
)

times in each interval. A time slott in
an interval is useable unless:

1) The channel matrixH[t] contains one or more elements
with magnitude larger thanhMAX .

2) The channel matrixH[t] does not violate the threshold

but has already occurred at leastTM+1

(
p
Ĥ

(
Ĥ
)
− γ
)

times.

Assuming the intervals areγ-typical, the number of useable
time slots per interval is

 T

M + 1

∑

Ĥ:ĥkℓ 6=Γ

(
p
Ĥ

(
Ĥ
)
− γ
)


=

⌊
T

M + 1

(
1− ρ− γ(κη)KL

)⌋
. (52)

Each encoder employs an independent codebookCℓ with
rate R̃ℓ and length chosen to match the number of useable
time slots per block. The codewords are generated i.i.d. from
a circularly symmetric Gaussian distribution with variance
slightly less thanP .

During the first interval, each transmitter sends out a new
symbol from its codeword during each useable time slott1 and
records the corresponding quantized channel matricesĤ[t1] =
{ĥkℓ[t1]}. We match up each useable time slott1 from the
first interval with useable time slottn from the nth interval
for n = 2, . . . ,M + 1 such that

ĥkℓ[tn] =

{
ω(i−1)(n−1)ĥkℓ[t1] ℓ = Sk(i),

ωM(n−1)ĥkℓ[t1] ℓ /∈ Sk

(53)

whereSk(i) is the ith message requested by receiverk. Note
that this matching can be performed using only causal channel
knowledge by greedily matching up time slots from intervals
n = 2, . . . ,M + 1 with time slots from the first interval in
the order in which they occur. To ensure thatω(i−1)(n−1)ĥkℓ

corresponds to a valid quantization cell, we constrain the
number of angles (given byη) to be a multiple ofM + 1.
Owing to the symmetry of the uniform phase assumption, all
useable time slots will be successfully matched.

Note that each receiver essentially observes a DFT of its
desired signals and the interference. Thus, by applying the
inverse DFT, each receiver can see its desired signals through
nearly interference-free channels. Specifically, the quantized
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channel coefficients satisfy

1

M + 1

M+1∑

n=1

ω−(i−1)(n−1)ĥkℓ[tn] =

{
ĥkℓ[t1] ℓ = Sk(i),

0 ℓ 6= Sk(i) .

Therefore, applying the same transformation to channel obser-
vations from matched time slotst1, . . . , tM+1,

Ỹkm[t1] =
1

M + 1

M+1∑

n=1

ω−(i−1)(n−1)Yk[tn] , (54)

will yield nearly interference-free channels from the transmit-
ters inSk to receiverk.

Using Lemma 1, we have that
∣∣∣∣

1

M + 1

M+1∑

n=1

ω−(i−1)(n−1)hkSk(i)[tn]

∣∣∣∣ (55)

≥ max
(∣∣ĥkSk(i)[t1]

∣∣− δ, 0
)

(56)

≥ max
(∣∣hkSk(i)[t1]

∣∣− 2δ, 0
)

(57)

whereδ is the maximum distance between any two points in
a quantization cell. It follows that the signal power iñYki[t1]
is at least

(∣∣hkSk(i)[t1]
∣∣− 2δ

)2
P (58)

if
∣∣hkSk(i)[t1]

∣∣ > 2δ. Applying Lemma 1, we get that the
interference power from each transmitterℓ 6= Sk(i) is at most
δ2P . The noise power is exactly1/(M +1) as shown in (50).
Thus, the resulting channel from each transmitterℓ to receiver
k for ℓ = Sk(i) has signal-to-interference-and-noise ratio no
less than

SINRkℓ ≥

(∣∣hkℓ[t1]
∣∣− 2δ

)2
P

Kδ2P + (M + 1)−1
.

if
∣∣hkℓ[t1]

∣∣ > 2δ. Choosingδ small enough (by makingκ and
η, the quantization parameters, large enough), we make the
signal-to-interference-and-noise ratios satisfy

SINRkℓ ≥ (M + 1)|hkℓ[t1]|
2P − λ (59)

for someλ > 0 to be specified later.
By choosinghMAX large enough andγ small enough, we

can ensure there are at leastT (1−λ)
M+1 useable time slots. For

T large enough, receiverk can decode the messagemℓ from
transmitterℓ ∈ Sk with probability of error ǫ

2KM if

R̃ℓ ≤
1− λ

M + 1
E
[
log (1 + (M + 1)|hkℓ[t1]|

2P − λ)
]
−

ǫ

3
.

Choosingλ small enough, we get

R̃ℓ ≤
1

M + 1
E
[
log (1 + (M + 1)|hkℓ[t1]|

2P )
]
−

2ǫ

3
. (60)

Thus, by the union bound, all receivers can decode their
messages with probability of errorǫ2 if

R̃ℓ ≤
1

M + 1
min

k:ℓ∈Sk

E
[
log (1 + (M + 1)|hkℓ[t1]|

2P )
]
−

2ǫ

3
.

Recall also that with probabilityǫ2 the channel is notγ-typical
so the total probability of error is less thanǫ. Therefore,

there must exist a set of good fixed codebooks which we can
expurgate to meet the power constraint with an additional rate
loss of at mostǫ/3.

As before, we have not optimized the power allocation using
the transmitters’ knowledge of the channel realizations.

From the upper bound (100) in Appendix A, it follows that
(for symmetric rates), it is impossible to attain a pre-log factor
greater than1/(M + 1).

Remark 6: If we simply extended the scheme from Theo-
rem 2 and cancelled out the interference from each desired
signal one-by-one, we would not attain the same power gain.
Specifically, assume that at timetn we flip the channel
coefficients from transmitterℓ = Sk(n− 1) to receiverk,

ĥkℓ[tn] =

{
ĥkℓ[t1] ℓ = Sk(n− 1),

−ĥkℓ[t1] ℓ 6= Sk(n− 1) .
(61)

The receivers can then simply add together timest1 andtn to
get a clean channel from transmitterℓ = Sk(n− 1) to obtain
their (n− 1)th desired message. However, this will only yield
a power gain of2 instead of the full gain ofM + 1,

Rℓ = min
k:ℓ∈Sk

1

M + 1
E

[
log
(
1 + 2|hkℓ|

2P
)]
. (62)

In Figure 5, we have plotted the performance of the scheme
from Theorem 3 over the network in Figure 4 with i.i.d.
Rayleigh fading. The upper bound is from (100) in Appendix
A and the time division scheme is from (25) for4 users. The
ergodic alignment scheme has the same1/3 slope as the upper
bound whereas the time division scheme has a slope of1/4.
The gap between alignment and time division becomes more
pronounced if we increase the ratio between transmittersL
and the number of desired messagesM .
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Fig. 5. Rate per user for the network in Figure 4 with i.i.d. Rayleigh fading.

Remark 7:Very recent work by Keet al.has determined the
degrees-of-freedom region for an interference channel where
each receiver requests an arbitrary subset of the transmitted
messages [49].
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VI. X M ESSAGESET

We now turn to a variant of the interference channel, the
X channel, that has garnered significant attention [1], [12],
[50]. In this scenario, there areL transmitters andK receivers
and each transmitter has an independent message for each
receiver. For the single antenna case, Cadambe and Jafar
showed that the sum degrees-of-freedom isLK

L+K−1 using
interference alignment [50]. Here, we extend this result tothe
finite SNR regime for the special case ofK = 2 receivers. Let
mℓ1 andmℓ2 denote the messages sent from theℓth transmitter
to the first and second receiver, respectively. Each messagehas
rateR̃ℓk. Figure 6 is a block diagram of an X message set for
K = 2 transmitters andL = 2 receivers.

m11

m12
E1

X1[t]

m21

m22
E2

X2[t]

H(t)

Z1[t]

Y1[t]

Z2[t]

Y2[t]

D1
m̂11

m̂21

D2
m̂12

m̂22

Fig. 6. X message set forK = 2 transmitters andL = 2 receivers.

Unlike in our previous schemes, we cannot hope for the
channel to generate an independent coefficient for every mes-
sage. Transmitters should instead separate their messagesby
premultiplying them by phases. This leaves us with fewer
variables to work with to align the interference at every
receiver. For simplicity, assume that each transmitter splits its
power equally between its messagesmℓ1 and mℓ2. Each of
these messages is mapped to a codeword whose symbols are
represented byXℓ1 andXℓ2, respectively.

We first introduce our scheme in an idealized setting where
the transmitters wait for channel coefficients that precisely
match. At timet1, each transmitter sendsXℓ = Xℓ1+Xℓ2 and
records the resulting channel realizationH[t1] = {hkℓ[t1]}.
The transmitters then wait for time slotst2, . . . , tL+1 satisfy-
ing

h1ℓ[tn] = h1ℓ[t1] (63)

h2ℓ[tn] = ω−(ℓ−1)(n−1)h2ℓ[t1] (64)

whereω = exp(j2π/(L + 1)). During these time slots, the
transmitters send

Xℓ[tn] = ω(ℓ−1)(n−1)Xℓ1 + ωL(n−1)Xℓ2 . (65)

The resulting channel outputs at receiver1 can be written
in vector form as




Y1[t1]
Y1[t2]

...
Y1[tL+1]


 = W




h11[t1]X11

...
h1L[t1]XL1
L∑

ℓ=1

h1ℓ[t1]Xℓ2



+




Z1[t1]
Z1[t2]

...
Z1[tL+1]


 .

Similarly, the channel outputs at receiver2 are




Y2[t1]
Y2[t2]

...
Y2[tL+1]


 = W




L∑

ℓ=1

h2ℓ[t1]Xℓ1

h2L[t1]XL2

...
h21[t1]X12



+




Z2[t1]
Z2[t2]

...
Z2[tL+1]


 .

As in Section V, each desired signal is assigned to a unique
DFT vector and all the interfering terms are grouped into the
remaining vector. Following the steps of the proof of Theorem
3, we can arrive at the following theorem.

Theorem 4:For the X message set withM = 2 receivers,
the following rates are achievable over the time-varying Gaus-
sian interference channel defined in Section II,

Rℓm =
1

L+ 1
E

[
log

(
1 +

(L+ 1)|hkℓ|2P

2

)]
. (66)

Remark 8:Unfortunately, the scheme above does not di-
rectly generalize toL > 2 receivers. The key issue is that each
symbol travels through an effective channel to each receiver,
with phases determined by our channel matching scheme. In
the interference channel, these phases can be set to arbitrarily
values. For the X channel, there areLK symbols that are
each seen byK receivers. If we demand specific phases for
each effective channel from symbol to receiver, we will end
up with LK2 constraints. Each transmitter can pre-multiply
the symbols by phases, leading toLK free variables, and we
can wait for phases on theLK channel gains. Overall, we
haveLK2 constraints and2LK free variables, meaning that
the problem becomes overconstrained whenL > 2.

VII. T IME-VARYING FINITE FIELD INTERFERENCE

CHANNEL

For the Gaussian case, it is sufficient to match up chan-
nel matrices and add up the resulting channel outputs. The
simplicity of this strategy is in some ways an artifact of
the Gaussian setting. In general, the receivers may need to
perform a decoding step prior to combining the observed
signals to avoid noise build-up. In this section, we consider
a finite field interference channel with fast fading and derive
the entire capacity region. Each receiver groups together time
instances with the same channel coefficients and decodes a
function of the messages, using a linear code. By combining
two appropriately chosen functions, the interference can be
completely removed.

The problem statement is identical to that in Section II
except for the channel model. We assume that all operations
are carried out over a finite fieldFq. Let ⊕ and

⊕
denote

addition and summation overFq, respectively.
Definition 10 (Channel Model):We assume that the chan-

nel inputs and outputs take values on the same finite fieldFq.
The channel output observed by each receiver is a noisy linear
combination of its inputs:

Yk[t] =

K⊕

ℓ=1

hkℓ[t]Xℓ[t]⊕ Zk[t] (67)
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where thehkℓ[t] are time-varying channel coefficients and
Zk[t] is additive i.i.d. noise drawn from a distribution that
takes values uniformly on{1, 2, . . . , q− 1} with probabilityν
and is zero otherwise. The entropy of this distribution is

H(Z) = −ν log ν − (1− ν) log (1− ν) + ν log (q − 1) .

Remark 9:The assumed symmetry of the noise distribution
across its non-zero values plays an important role in our
capacity proof. That is, our outer bound relies on the fact
that scaling the noise by a non-zero number does not alter its
distribution.

We assume that at each time step each channel coefficient
is drawn independently and uniformly fromFq \ {0}. The
transmitters and receivers are given access to the channel
realizations causally. That is, before timet, each transmitter
and receiver is givenhkℓ[t] for all k andℓ. LetH[t] = {hkℓ[t]}
denote the matrix of channel coefficients.

Remark 10:Using counting arguments, we can extend our
results to the case where the channel coefficients are allowed to
equal zero with some probability. However, this considerably
complicates the description of the capacity region.

The basic idea underlying our scheme is to add together two
well-chosen channel outputs such that the interference exactly
cancels out. As before, we can will match a channel matrix
H with a complementary matrix

g(H) ,




1⊕ (−h11) −h12 · · · −h1K

−h21 1⊕ (−h22) · · · −h2K

...
...

. . .
...

−hK1 −hK2 · · · 1⊕ (−hKK)




so thatH ⊕ g(H) = I. However, for the finite field model,
if we directly sum up the observations from a given channel
matrix and its complement, we will accumulate noise. As it
turns out, it is better to group together time slots based on their
channel realization and send alinear functionof the messages
to each receiver using a linear code. This technique, sometimes
referred to as computation coding [3], is reviewed in detailin
Appendix B. We then match up linear functions so that the
receivers can solve for their desired messages.

Since the channel coefficients are drawn from a discrete
alphabet, we can define typicality without resorting to quan-
tization. Assume that theT channel uses are split into two
consecutive blocks of equal length. Let

#
(
H|H(n)

)
,

∣∣∣∣
{
t : H[t] = H, 1 +

(n− 1)T

2
≤ t ≤

nT

2

}∣∣∣∣

be the number of channel matrices within thenth block that are
equal toH ∈ FK×K

q . The definition ofγ-typicality is the same
as that given in Definition 7. From Lemma 2, it follows that,
for any ǫ > 0 andT large enough, both blocks areγ-typical
with probability at least1− ǫ.

If a transmitter-receiver pair had the channel to itself, itcan
achieve an interference-free rate oflog q−H(Z). We will now
show that all users can achieve half the interference-free rate
simultaneously.

Theorem 5:For the time-varying finite field interference
channel, the following rates are achievable

Rk =
1

2
(log q −H(Z)) . (68)

Proof: For anyǫ > 0, let γ be a small positive constant
that will be chosen later to satisfy our rate requirement.
Using Lemma 2, chooseT large enough such thatH(1)

and H(2) are both γ-typical with probability 1 − ǫ
2 . Let

F = {Fq\{0}}K×K denote the channel matrix alphabet. Now,
condition on the event that both blocks areγ-typical. Since the
channel coefficients are i.i.d. and uniform, the probability of
any channelH ∈ F is |F|−1. SinceH(n) is γ-typical we have
that for everyH ∈ F :

T

2

(
1

|F|
− γ

)
≤ #(H|H(n)) ≤

T

2

(
1

|F|
+ γ

)
. (69)

Let T (n)
H

denote the firstT2 (|F|−1 − γ) time indices from
thenth block with channel realizationH ∈ F . We will ignore
all other time slots which reduces the rate by at most a factor
(1− γ). Each transmitter splits its message into many distinct
chunks, one for each channel realizationH. Let wℓH ∈ Fκ

q be
the chunk intended for realizationH. Assuming the chunks are
all γ-typical, the length of each chunk is

κ =
T

2

(
1

|F|
− γ

)
log q −H(Z)− ǫ/2

log q
. (70)

Using the computation code described in Appendix B, each
transmitterℓ sends its messagewℓH during the time indices
in T

(1)
H

. Receiverk makes an estimatêukH of

ukH =

K⊕

ℓ=1

hkℓwℓH .

Each transmitter then employs a computation code with the
same messageswℓH over the time indicesT (2)

g(H) in the sec-
ond block corresponding to the complementary matrixg(H).
Receiverk then makes an estimatêvkH of

vkH = (1⊕ (−hkk))wkH ⊕


−

⊕

ℓ 6=k

hkℓwℓH


 .

By Lemma 4, forT large enough, the total probability of error
for all computation codes is upper bounded byǫ/2.

After collecting these (estimates of) linear functions, re-
ceiverk makes an estimate ofwkH by simply adding up the
two equations to get

ŵkH = ûkH ⊕ v̂kH .

The total number of bits encoded into the chunks across all
|F| channel realizations is

T

2

(
1− |F|γ

)
(log q −H(Z)− ǫ/2) . (71)

Normalizing byT and takingγ small enough, the rate per
transmitter is12 (log q−H(Z))− ǫ. The probability that either
block is atypical is less thanǫ/2 and the probability of error
over the computation code is less thanǫ/2 for T large enough
so the total probability of error is less thanǫ as desired.



TO APPEAR IEEE TRANS. INFO. THEORY. 13

We now use the scheme from Theorem 5 to establish the
following achievable rate region.

Theorem 6:For the time-varying finite field interference
channel, any rate tuple(R1, . . . , RK), satisfying the following
inequalities is achievable:

Rℓ +Rk ≤ log q −H(Z), ∀k 6= ℓ. (72)

First, we will give an equivalent description of this rate region
and then show that any rate tuple can be achieved by time
sharing the symmetric rate point from Theorem 5 and a single
user transmission scheme.

Lemma 3:Assume, without loss of generality, that the
users are labeled according to rate in descending order, so
that R1 ≥ R2 ≥ · · · ≥ RK . The achievable rate region from
Theorem 6 is equivalent to the following rate region:

R1 ≤ log q −H(Z) (73)

Rk ≤ min
(
log q −H(Z)−R1,

1

2

(
log q −H(Z)

))
, k ≥ 2

Proof: The key idea is that only one user can achieve a
rate higher than12 (log q −H(Z)). From (72), we must have
thatR1+Rk ≤ log q−H(Z) so if R1 > 1

2 (log q−H(Z)) all
other users must satisfyRk ≤ log q − H(Z) − R1. If R1 ≤
1
2 (log q −H(Z)), then we have thatRk ≤ 1

2 (log q −H(Z))
for all other users since the rates are in descending order.

Proof of Theorem 6: We show that the equivalent rate
region developed by Lemma 3 is achievable by time-sharing.
First, we consider the case whereR1 > 1

2 (log q−H(Z)). Let

β = 2

(
1−

R1

log q −H(Z)

)
. (74)

We allocateβT channel uses to the symmetric scheme from
Theorem 5. For, the remaining(1−β)T channel uses, users2
throughK are silent, and user1 employs a capacity-achieving
point-to-point channel code. This results in user1 achieving
its target rateR1:

β(log q −H(Z))

2
+ (1− β)(log q −H(Z)) (75)

= log q −H(Z)−R1 − log q +H(Z) + 2R1 = R1 (76)

and users2 throughK achievingRk = log q −H(Z) − R1.
If R1 ≤ 1

2 (log q−H(Z)), we can achieve any rate point with
the use of the symmetric scheme from Theorem 5.

Finally, we will give an upper bound using the techniques
in [2] to show that the achievable rate region in Theorem 6 is
the capacity region.

Theorem 7:For the time-varying finite field interference
channel, the capacity region is the set of all rate tuple
(R1, . . . , RK) satisfying

Rℓ +Rk ≤ log q −H(Z), ∀k 6= ℓ. (77)

Proof: The required upper bound follows from steps
similar to those in Appendix II of [2]. Without loss of
generality, we upper bound the rates of users1 and 2.
Note that the capacity of the interference channel only de-
pends on the noise marginals. Thus, we can assume that
Z1[t] = h12[t](h22[t])

−1Z2[t] due to the symmetry of the noise

distribution. Multiplying Y2[t] by a non-zero factor does not
change the capacity so let̃Y2[t] = h12[t](h22[t])

−1Y2[t].
We give the receivers full access to the messages from users

3 throughK as this can only increase their respective rates.
Assume that the corresponding signalsX3[t], . . . , XK [t] have
been eliminated fromY1[t] and Ỹ2[t] below. We also give
receiver2 access tom1. Let ǫT = 1 + (R1 +R2)perror where
perror is the probability of error. From Fano’s inequality, we
have thatT (R1 +R2) is upper bounded as follows:

T (R1 + R2)

≤ I
(
m2;m1, {Ỹ2[t]}

T
t=1

)
+ I
(
m1; {Y1[t]}

T
t=1

)
+ T ǫT

= I
(
m2; {Ỹ2[t]}

T
t=1

∣∣∣m1

)
+ I
(
m1; {Y1[t]}

T
t=1

)
+ T ǫT

= I
(
m2; {h12[t]X2[t]⊕ Z1[t]}

T
t=1

∣∣∣m1

)

+ I
(
m1; {Y1[t]}

T
t=1

)
+ T ǫT (78)

= I
(
m2; {h11[t]X1[t]⊕ h12[t]X2[t]⊕ Z1[t]}

T
t=1

∣∣∣m1

)

+ I
(
m1; {Y1[t]}

T
t=1

)
+ T ǫT (79)

= I
(
m2; {Y1[t]}

T
t=1

∣∣∣m1

)
+ I
(
m1; {Y1[t]}

T
t=1

)
+ T ǫT

= I
(
m1,m2; {Y1[t]}

T
t=1

)
+ T ǫT (80)

≤ T
(
log q −H(Z)

)
+ T ǫT (81)

As the probability of errorperror tends to zero,ǫT → 0 which
yieldsR1+R2 ≤ log q−H(Z). Similar outer bounds hold for
all receiver pairsℓ andk. Comparing these to the achievable
region in Theorem 6 yields the capacity region.

VIII. C ONCLUSIONS

In this paper, we proposed a new scheme, ergodic in-
terference alignment, for time-varying interference channels.
Overall, this scheme shows how much can be gained by coding
over parallel interference channels. While in the Gaussiancase,
we can simply add up two well-matched channel outputs,
in general, we can think about this alignment scheme as
organizing the computations naturally provided by the channel.

An interesting subject for future study is the inclusion of
ergodic interference alignment into classical power allocation
and Han-Kobayashi message-splitting strategies. That is,the
optimal scheme will most likely have each transmitter splitits
message into several parts. Channel realizations will thenhave
to be grouped according to which messages should be treated
as noise, decoded, or aligned by each receiver.

APPENDIX A
OUTER BOUND

We now develop an upper bound that is applicable when the
receivers want to decode one or more messages over a time-
varying Gaussian interference channel (the setting of Sections
IV and V). The proof closely follows the multiple-access outer
bound used in [2].

Assume, without loss of generality, that receiverk wants
to recoverm1, . . . ,mM and that receivern wants to recover
(at least)mM+1. Now, give receiversk andn the messages
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mM+2, . . . ,mL as genie-aided side information, which can
only increase the ratesR1, . . . , RM+1. Both receivers can
now completely remove the effects ofXM+2[t], . . . , XL[t]
from their observations. We also assume thathkℓ[t] 6= 0 for
t = 1, . . . , T . This occurs with probability1 for many fading
distributions of interest. Finally, note that scaling the channel
output at a receiver cannot change the capacity. Overall, we
can assume that receiversk andn have access to the channel
observations

Ỹk[t] =

M+1∑

ℓ=1

hkℓ[t]Xℓ[t] + Zk[t] (82)

Ỹn[t] =
hk,M+1[t]

hn,M+1[t]

(M+1∑

ℓ=1

hnℓ[t]Xℓ[t]

)
+ Z̃n[t] (83)

where

Z̃n[t] =
hk,M+1[t]

hn,M+1[t]
Zn[t] . (84)

Since the receivers cannot cooperate, the capacity only
depends on the noise marginals. It is useful to assume that
the noise termsZk[t] and Z̃n[t] are generated in a correlated
fashion at each time step. Define

α[t] , min

(
1,

|hk,M+1[t]|2

|hn,M+1[t]|2

)
(85)

as well as the following independent noise processes

Z̄[t] ∼ CN (0, α[t]) (86)

Z̄k[t] ∼ CN (0, 1− α[t]) (87)

Z̄n[t] ∼ CN

(
0,

|hk,M+1[t]|2

|hn,M+1[t]|2
− α[t]

)
. (88)

that are each i.i.d. across time. We combine these to create the
correlated noise terms at the receivers

Zk[t] = Z̄[t] + Z̄k[t] (89)

Z̃n[t] = Z̄[t] + Z̄n[t] (90)

We will also givem1, . . . ,mM to receivern as genie-aided
side-information. Define

ǫT , 1 + perror

M+1∑

k=1

Rk (91)

where perror is the average probability of error. Via Fano’s

inequality, it follows that

T
M+1∑

k=1

Rk

≤ I
(
mM+1;

{
Ỹn[t]

}T
t=1

,m1, . . . ,mM

)

+ I
(
m1, . . . ,mM ;

{
Ỹk[t]

}T
t=1

)
+ T ǫT (92)

= I
(
mM+1;

{
Ỹn[t]

}T
t=1

∣∣m1, . . . ,mM

)

+ I
(
m1, . . . ,mM ;

{
Ỹk[t]

}T
t=1

)
+ T ǫT (93)

= I
(
mM+1;

{
hk,M+1[t]XM+1[t] + Z̃n[t]

}T
t=1

∣∣m1, . . . ,mM

)

+ I
(
m1, . . . ,mM ;

{
Ỹk[t]

}T
t=1

)
+ T ǫT (94)

= I

(
mM+1;

{M+1∑

ℓ=1

hkℓ[t]Xℓ[t] + Z̃n[t]

}T

t=1

∣∣∣∣m1, . . . ,mM

)

+ I
(
m1, . . . ,mM ;

{
Ỹk[t]

}T
t=1

)
+ T ǫT (95)

Now, we weaken the noise by giving receiversZ̄k[t] and
Z̄n[t] as side information. Let

Ȳk[t] =

M+1∑

ℓ=1

hkℓ[t]Xℓ[t] + Z̄[t] . (96)

It follows that

T

M+1∑

k=1

Rk ≤ I
(
mM+1;

{
Ȳk[t]

}T
t=1

∣∣m1, . . . ,mM

)

+ I
(
m1, . . . ,mM ;

{
Ȳk[t]

}T
t=1

)
+ T ǫT (97)

= I
(
m1, . . . ,mM+1;

{
Ȳk[t]

}T
t=1

)
+ T ǫT . (98)

Now, applying the usual steps, we can show that the mutual
information expression is maximized by independent Gaussian
inputs.

Assume that all transmitters employ a uniform power al-
location across time. Specializing the upper bound above to
theK-user interference channel from Section IV (and taking
T → ∞), we get that

Rℓ +Rk ≤ E


log


1 +

(|hkℓ|2 + |hkk|2)P

min
(
1, |hkℓ|2

|hℓℓ|2

)




 (99)

for all k = 1, 2, . . . ,K andℓ 6= k.
Specializing to the case in Section V, where receiverk

wants the messagesmℓ for ℓ ∈ Sk, we get that

Ri +
∑

ℓ∈Sk

Rℓ

≤ E


log


1 +

(
|hki|2 +

∑
ℓ∈Sk

|hkℓ|2
)
P

min
(
1, |hki|2

|hni|2

)




 (100)

for all i such thati ∈ Sn and i /∈ Sk.
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APPENDIX B
COMPUTATION CODING

We now review the computation coding scheme from [3] for
finite field channels. Assume that there areℓ transmitters, each
with a messagewℓ ∈ Fκ

q . Each transmitter maps its message
into a lengthτ codewordxℓ ∈ F

τ
q .

Receiver k observes a noisy linear combination of the
codewords

yk =

K⊕

ℓ=1

hkℓxℓ ⊕ zk (101)

wherezk is a noise vector whose elements are i.i.d. according
to a distribution with entropyH(Z). Each receiver would like
to make an estimatêuk of a linear equation of the messages

uk =

K⊕

ℓ=1

hkℓwℓ . (102)

The following lemma states an achievablecomputation rate
for this setting.

Lemma 4:For anyǫ > 0 andτ large enough, there exists a
set of encoders and decoders such that all receivers can make
estimateŝuk of the linear equationsuk with total probability
of error

P

( K⋃

k=1

{ûk 6= uk}

)
< ǫ (103)

so long as the rateκ/τ satisfies

κ

τ
<

log q −H(Z)

log q
. (104)

Proof: First, we find a linear code with generator matrix
G ∈ F

τ×k
q with rate κ/τ < (log q − H(Z))/ log q and

probability of error at mostǫ/K over the channel

y = x⊕ z (105)

wherez has the same distribution aszk andx = Gw. Each
encoder employsG to get xℓ = Gwℓ. As a result, each
receiver sees

yk =
K⊕

ℓ=1

hkℓGwℓ ⊕ zk (106)

= G

( K⊕

ℓ=1

hkℓwℓ

)
⊕ zk (107)

= Guk ⊕ zk (108)

from which it can decodeuk with probability of error at most
ǫ/K. By the union bound, the total probability of error is at
most ǫ.
Via standard cut-set arguments, it can also be shown that this
is the computation capacity.
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