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Abstract

This paper presents an efficient algorithm for finding the ohamt trapping sets of a low-density parity-check
(LDPC) code. The algorithm can be used to estimate the emwor f LDPC codes or to be used as a tool to
design LDPC codes with low error floors. For regular codes,dlgorithm is initiated with a set of short cycles
as the input. For irregular codes, in addition to short cyclariable nodes with low degree and cycles with low
approximate cycle extrinsic message degree (ACE) are asd as the initial inputs. The initial inputs are then
expanded recursively to dominant trapping sets of incnegsize. At the core of the algorithm lies the analysis of
the graphical structure of dominant trapping sets and tlagioaship of such structures to short cycles, low-degree
variable nodes and cycles with low ACE. The algorithm is ensal in the sense that it can be used for an arbitrary
graph and that it can be tailored to find a variety of graphidgécts, such as absorbing sets and Zyablov-Pinsker
(zZP) trapping sets, known to dominate the performance of CBdes in the error floor region over different
channels and for different iterative decoding algorithi@snulation results on several LDPC codes demonstrate
the accuracy and efficiency of the proposed algorithm. Iriqdar, the algorithm is significantly faster than the

existing search algorithms for dominant trapping sets.

I. INTRODUCTION

STIMATING the error floor performance of low-density paritheck (LDPC) codes under iterative
E message-passing decoding, and the design of LDPC codeslomitierror floors have attracted
a great amount of interest in recent years. The performahdeD®C codes under iterative decoding
algorithms in the error floor region is closely related to #taucture of the code’s Tanner graph. For
the binary erasure channel (BEC), the problematic strastarestopping set§10]. In the case of the
binary symmetric channel (BSC) and the additive white Ganssoise (AWGN) channel, the error-prone
patterns are callettapping set430], near codeword§24] or pseudo codeword88]. Among the trapping
sets, the so-calledlementary trapping set@re shown to be the main culprils [30], [17]] [7],_[26], [16],
[48]. Related to this, it is demonstrated in [8] that for sosteictured LDPC codes decoded by iterative
algorithms over the AWGN channel, a subset of trapping setiéed absorbing setsdetermine the error
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floor performance. In fact, in an overwhelmingly large numbgcases, dominant absorbing sets appear
to be elementary trapping sets.

For a given LDPC code, the knowledge of dominant trapping seimportant. On one hand, efficient
methods for estimating the error floor of an LDPC code, whétit on the importance sampling technique,
operate by biasing the noise toward the dominant trappitgy &fethe code, see, e.g., [7]. On the other
hand, by knowing the dominant trapping sets, several decodelifications can be applied to improve
the error floor performance (see, e.ql, [4],/[11]). Furthenen the knowledge of dominant trapping sets
can be used to design LDPC codes with low error floor. Relatetthis, Ivkovic et al. [14] applied the
technique of edge swapping between two copies of a base LDBEto eliminate the dominant trapping
sets of the base code over the BSC. This was then generaljzéduadi et al. [1] to cyclic liftings of
higher degree to construct quasi-cyclic LDPC codes with évor floor. While the knowledge of the
problematic sets that dominate the error floor performasamast helpful in the design and analysis of
LDPC codes, attaining such knowledge, regardless of diffegs in the graphical structure of these sets,
is a hard problem. For instance, it was shown in] [27]) [208] [that the problem of finding a minimum
size stopping set is NP hard. McGregor and Milenkovic [23jveed that not only the problem of finding
a minimum size trapping set, but also the problem of appratimg the size of a minimal trapping set is
NP hard, regardless of the sparsity of the underlying graph.

It should be noted that while the majority of the literatureestimating the error floor of LDPC codes
rely on finding the dominant trapping sets, as an eventuailtre$ decoder failure, in[[42],144], 143],
Xiao and Banihashemi took a different approach. By focugssin the input error patterns that cause the
decoder to fail, they developed a simple technique to estirttee frame error rate (FER) and the bit
error rate (BER) of finite-length LDPC codes over the BSC [4idje complexity of this technique was
then reduced in[44], and the estimation technique was deténo the AWGN channel with quantized
output in [43]. In this work, unlike [42][144])143], we areapticularly interested in the examination of the
graphical structure of the problematic sets which dominla¢eerror floor performance. This information
is then used to efficiently search for these sets.

The complexity of the exhaustive brute force search metloodifiding problematic structures of size
t in a code of lengtm becomes quickly infeasible asandt increase. Efficient search algorithms have
been devised to find small (dominant) stopping and trappetg BL0], [7], [32], [44], [41], [2], [21].
The reach of these algorithms however is still very limitEdr example, the complexity of the algorithm

of [40], [41] is only affordable for codes with lengths up t0500. Even for these lengths, the algorithm



can only find trapping sets of maximum sizé with only one or two unsatisfied check nodes. This
is while for many codes, some of the dominant trapping setg have larger size and/or more than
two unsatisfied check nodes. In_[37] and|[29], the authorp@sed to build a database of all possible
configurations for trapping sets of different sizes in a grapth specific degree distribution and girth.
They then used a parent-child relationship between thepingpsets of different sizes to simplify the
search of the larger trapping sets. This method was usedddHendominant trapping sets of left regular
LDPC codes with left degreg [37]. The method proposed ih [37] however becomes very cexhen
the degree of variable nodes, and in turn the number of pessiimfigurations increases. The application
of this method becomes even more difficult when dealing witkbgular LDPC codes as for such codes,
there may be a large number of possible configurations fdn &gue of trapping set, due to the variety
of variable node degrees. Even for the left regular graplis small left degrees, the number of possible
configurations becomes quite large for the larger trappetg. st is therefore important to look for more
efficient algorithms to find the problematic structures tthatninate the error floor performance of LDPC
codes.

In this paper, we study the problematic graphical strustihbat dominate the error floor performance
of LDPC codes, collectively referred to as trapping setsl, @@monstrate that they all contain at least one
short cycle (with a small exception of some of the trappintg & irregular LDPC codes with degree-2
variable nodes). By examining the relationships betweearesyand trapping sets, we devise an efficient
algorithm to find dominant trapping sets of an LDPC code. Tigerdhm is initiated by a set of short
cycles as input. Each cycle is then expanded recursivehapping sets of increasing size in a conservative
fashion, i.e., the expanded sets all have the smallestaigerlthan the size of the current set, and each of
them will be used as a new input to the next step of the alguarith should be mentioned that although
our algorithm uses the topological relationships betwdensimall trapping sets and the larger ones, it is
different from the method of [37] in several ways. Our altfum is not based on the knowledge of the
exact structure of trapping sets, and hence does not neadltbabdatabase. In fact, instead of checking
all the possible configurations to find the existing ones irraply, it directly and efficiently finds those
existing configurations, and so it is much faster. Moreoualike the method of [37], our algorithm uses
a general framework for all the degree distributions anthgifwith a small exception of some of the
trapping sets of irregular LDPC codes with degree-2 vagialoldes). The proposed algorithm is applicable
to any Tanner graph (structured or random) and can be tdilmrdind a variety of graphical structures,

such as elementary trapping sets and absorbing sets antwrg.dtor structured graphs, such as those of



quasi-cyclic or protograph codes, one can use the existitmparphisms in the graph to further simplify
the search. Results on several LDPC codes verify the higtiesfiy and accuracy of the algorithm. For
example, for the tested codes, the search speed is imprgvedféictor of 10 to 100 compared to the
methods of[[2] and[]7].

The remainder of this paper is organized as follows. Basfnitiens and notations are provided in
Section Il. In Section Ill, we develop the proposed alganttSection IV presents the modification needed

for irregular LDPC codes. Section V includes some numerieallts. Section VI concludes the paper.

[I. DEFINITIONS AND NOTATIONS

Let G = (LUR, FE) be the bipartite graph, or Tanner graph, correspondingad BPPC code’, where
L is the set of variable nodeg is the set of check nodes aritlis the set of edges. The notatiohsand
R refer to “left” and “right”, respectively, pointing to thade of the bipartite graph where variable nodes
and check nodes are located, respectively. The degree ofl@wmne L (or R) is denoted byd(v) . For
a subsetS C L, I'(S) denotes the set of neighbors &fin R. Theinduced subgraplof S, represented
by G(S), is the graph containing nodes U I'(S) with edges{(u,v) € F : u € S, v € I'(S)}. The
set of check nodes if'(S) with odd degree inG(S) is denoted byl',(S). Similarly, I'.(S) represents
the set of check nodes ii(S) with even degree irG(S). The subgraph resulting from removing the
nodes ofl’,(S) and their edges frort(S) is denoted byG'(S). In this paper, we interchangeably use the
termssatisfied check nodemnd unsatisfied check nodeés denote the check nodes In(S) and T, (S),
respectively. Given a Tanner gragh= (L U R, E), the following objects play an important role in the
error floor performance of the corresponding LDPC code:
Definition 1:
i) AsetS C L is an(a,b) trapping setif |S| = a and|I',(S)| = b. The integer is referred to as the
sizeof the trapping ses.
i) An (a,b) trapping setS is calledelementanyf all the check nodes iid*(S) have degree one or two.
i) AsetS C L is an(a,b) absorbing seif S is an (a,b) trapping set and if all the nodes & are
connected to more nodes In(S) than to nodes i, (S).
iv) AsetS C L is an(a,b) fully absorbing seif S is an(a,b) absorbing set and if all the nodes in
L\S have strictly more neighbors iR\I',(S) than inT[',(S).
v) AsetS C L is ak-out trappingset [40] if I',(S) contains exactly: nodes of degree one if(S).
vi) Let G = (LU R, F) be a left-regular bipartite graph with left degreeA setS C L is a Zyablov-
Pinsker (ZP) trapping s€f23] if every node ofS is connected to less thdn- | (I — 1)/2] nodes in
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Fig. 1. Two lollipop walks of lengttv.

['o(S).

The ZP trapping sets are the trapping sets of the ZyabloskBmbit-flipping algorithm[[49] over the
BSC [23]. It should also be noted that for odd values, @fie definitions of ZP trapping sets and absorbing
sets are identical.

It is important to note that Definitios 1(ii)2 1(vi) are afiecial cases of a trapping set in Definitidn 1(i).
In the rest of the paper, therefore, we collectively refethim as trapping sets. Distinctions will be made
as necessary. Trapping sets with smaller values afhd b are generally believed to be more harmful to
iterative decoding. Loosely speaking, such trapping setscalleddominant To measure how harmful a
trapping set really is, one can use techniques such as iammarisampling 7] to measure the contribution
of the trapping set to the error floor. This contribution ahd tlominance of a trapping set (compared
to others) would also depend on the channel model and thegtiterdecoding algorithm, as well as the
detailed structure of the Tanner graph (not just the valdes andb).

In a graphG = (V, E) with the set of node$” and the set of edges, alollipop walk of lengthk is
defined as a sequence of nodesuvs,, ..., v,y in V such thatvy, vs, ..., v, are distinctug,; = v, for
somem € [2,k], and (v;,v;41) € E for all i € {1, ..., k}. Fig.[d shows two lollipop walks of lengtf.
The lollipop walk in Fig[a) is represented as v,v3v4v5060702. A Cyclecan be considered as a special
lollipop walk if the definition is extended te» = 1. The length of the shortest cycle in a graghis

denoted byy and is called theirth of G.

[I[l. DEVELOPMENT OF THEPROPOSEDALGORITHM
A. Graphical Structure of Trapping Sets

Without loss of generality, we assume that the induced sybgrof a trapping set is connected.
Disconnected trapping sets can be considered as the uniconofected ones. Moreover, to the best
of our knowledge, almost all the structures reported as damitrapping sets (of regular LDPC codes) in
the literature have the property that every variable nodmisected to at least two satisfied check nodes

in the induced subgraph. We thus focus on trapping sets Withgroperty except for irreqular LDPC
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Fig. 2. The induced subgraph of a trapping set.

codes, where we relax this condition for degree-2 variabldes. As an example, the subgraph in Fig. 2
does not satisfy this condition. (Variable nodes and chemkes are represented by circles and squares,
respectively.) Removal of nodg and its edges however makes the subgraph satisfy the aomdithe
following lemma proves this property for certain absorbargl ZP trapping sets.

Lemma 1:Suppose thaf C L is an absorbing set (ZP trapping set)Gh= (L U R, F), and that for
all variable nodes € S, we haved(v) > 2 (d(v) > 3). Then each variable nodec S is connected to
at least two satisfied check nodesGHsS).

Proof: The proof follows from the definition of absorbing and ZP paqy sets. [ ]

For small trapping sets, which dominate the error floor peménce, it is unlikely to see check nodes
of degree larger thaf in their subgraphs, i.e., most of the dominant trapping aetselementary [7],
[30]. Related to this, almost all the trapping sets repoagthe dominant trapping sets of practical LDPC
codes are elementary. In fact, it can be shown that the sfaesneelementary trapping sets for left-regular
graphs are generally larger than those of elementary ofiekdimmalT in Appendix A).

Example 1:For left-regular LDPC codes with left degree 4 and girths &n8 10, lower bounds on
the sizes of non-elementary trapping s8twith less than 3 unsatisfied check nodes and with at least one
satisfied check node of degree larger than Z7ii&), are 7, 14 and 22, respectively (based on Lemma
[7 in Appendix A, and by choosing = 2). Moreover, for the same conditions, the minimum sizes of
non-elementary trapping sefswith at least one unsatisfied check node of degree largertharG(S)
(and without satisfied check nodes of degree larger than( &)) are at least 5, 11 and 17, respectively.
This is while for the same scenario, the code can have elememtpping sets of size 5, 8 and 17,
respectively.

In the following, we develop our search algorithm mainly &ementary trapping sets, and then present
simple modifications to tailor the algorithm to find non-ekartary trapping sets.

In the rest of the paper, we use the notatibrto denote the set of all trapping sefsin a graphG
whose induced subgragh(S) is connected and for which every nodec S is connected to at least two
nodes inl'.(S). Notation7* is used for the set of all elements Th with sizea and 75 denotes the set

of all elements in7 that contain the sef. Naturally, 7§ denotes the set of all elementsnof sizea



Fig. 3. Possible expansions of an elementary trappingdeta larger elementary trapping sét. (Unsatisfied check nodes 6f(S’) are
not shown.)

that contain the sef. In the following, we also assume that the Tanner gréphas no parallel edges

and no node of degree less than 2.

B. Expansion of Elementary Trapping Sets

The main idea of the proposed algorithm is to start from ativelly small set of small elementary
trapping sets, which are easy to enumerate, and then reglyrexpand them to larger elementary trapping
sets. To achieve this, we first characterize the expansian efementary trapping set to a larger elementary
trapping set through the following lemmas.

Lemma 2:Let S be an elementary trapping set of sizén 7. Then for each elementary trapping set
S' € T&*! (if any), the variable node i5"\S is only connected to unsatisfied check nodesSdf.e., to
the check nodes i, (S)).

Proof: If the node inS’\S is connected to any satisfied check nodes ahenS’ will have unsatisfied
check nodes i, (S’) connected t@ variable nodes a$’. This contradictsS’ being an elementary trapping
set. [

Fig.[3(a) depicts an example of the s&t discussed in Lemmig 2. (It should be noted that in all the
configurations of Figl]3, including|@), unsatisfied check nodes 6f(S’) are not shown.)

Lemma 3:Suppose thatd = {a4, ..., a;, a;11, ..., a; } is the sorted set of sizes of the elementary trapping
sets in7 in increasing order. Lef be an elementary trapping set of sizein 7. If a;,.; > a; + 2, then

for each elementary trapping s&t € 75 (if any), the setS’\S is connected to zero satisfied check



nodes ofS (i.e., nodes inl.(S)) and to only one or two unsatisfied check nodesSofi.e., nodes in
['o(S)). If the setS’\S is connected to two nodes in,(S), then there is no cycle it/(S'\S). If the set
S'\S is connected to only one node In,(S), then there is exactly one cycle #(S'\S).

Proof: If any variable node i5’\S is connected td'.(S), thenG(S’) contains satisfied check nodes
of degreed or higher, or unsatisfied check nodes of degree greaterithBoth are in contradiction with
S’ being an elementary trapping set.

SinceS’ is an elementary trapping set, there cannot be more thanamection between each node of
I'o(S) and the nodes i$’\S. To see this, consider a node= S'\S which is connected td',(S). Node
v can have only one connection IQ(S) because otherwise, all the other nodesSiRS can be removed
and we will end up with an elementary trapping set of size- 1 in 7, which is in contradiction with
the assumption of the lemma.

Now suppose that there are at least 3 connections betweewatfable nodes inS’\S and I',(S).
Based on the discussion in the previous paragraph, this sriban there are at leaStvariable nodes in
S’\S each with a single connection to a different check nodé'jaS). If G(S'\S) is not connected,
then one can remove one of its components and obtain an di@ydrapping set of size smaller than
a;+1, wWhich results in a contradiction. f7(S’\S) is connected, then one can find the shortest paths in
G(S'\S) between every two variable nodes®f\S that are connected t0,(S), and among them select
the one with the least number of nodes. By keeping the noddbleorelected path and removing all the
other nodes irS’\S, one can then obtain an elementary trapping set of size entaéna; ;, which is
again a contradiction. We therefore conclude that the nurabeonnections between the variable nodes
in S'\S andI',(S) must be strictly less than 3.

For the case tha$’\S is connected to exactly two nodeslip(S), there must be two different variable
nodesv andv’ of S’\S corresponding to those connections. Also, there must beydesin G(S'\S).
Otherwise, one can remove all the variable nodes on the exdept those on the shortest path between
v andv’, and obtain an elementary trapping set larger thabut smaller thanu,, . This contradicts the
lemma’s assumption. Figl 8 is an example of the case whefé\S is connected to exactly two nodes
in I'o(S).

The proof for the case with one connection is similar and twditFig.[¥c) is an example of this
case, where the expansion of gets through a lollipop walk. In both Fig§l8) and(c), the dashed line
indicates that more variable and check nodes can be pareaghain. [ |

Lemma 4:Suppose thatd = {a4, ..., a;, a;11, ..., a; } is the sorted set of sizes of the elementary trapping



sets in7T in increasing order and that . ; = a; + 2. Let S be an elementary trapping set of sizein
T. If the girth of the graph is larger than 4, then for each eleta trapping setS’ € 75" (if any),
the only possible configuration f@r(S’) is that of Fig[b), described in Lemmia 3, with only 2 variable
nodes inS’\S. If the girth is 4, then the only possible configurations drese in Figs[1®) (with only

2 variable nodes i"\S) B(d) andZe).

Proof: The proof is similar to that of Lemnid 3 and is omitted. [ |

C. Proposed Algorithm

The basic idea behind the proposed algorithm is to constarger elementary trapping sets by
expanding smaller ones. More precisely, given an elemgntapping setS of size a; at the input,
the algorithm finds all the elementary trapping s&t€ontainingS, with the property that their size ,
is the smallest size greater thap The algorithm then continues by using the sets found in threeot
step as the inputs to the next step and finds the next set adrlalgmentary trapping sets. Each step
of the algorithm is performed by using Lemnids Bl- 4. The psagte for one step of the proposed

algorithm is given in Algorithm 1.

Algorithm 1: Expansion of input elementary trapping sets to larger afesze up tok with the number
of unsatisfied check nodes up1oin G = (LUR,E).

(L;, and L,,; are the lists of input and output trapping sets, respegtivel

1: Inputs: G and LZ,,,.

2: Initialization: L,.; < 0.

3: repeat

4:  Select an element of,, and denote it as;.

5. Construct a new grap&’ by removing all the nodes ifi.(¢;) and their neighbors frond.

6 maz < (K —|t;]) and G < 0.

7. for each node: in I',(¢;) do

8: Examine the neighborhood aefin G’ one layer at a time and to the maximumigf,, layers
in search for paths with < i,,,, variable nodes betweenand the other nodes df,(¢;), and
lollipop walks with: < i,,,, variable nodes starting from

o: Denoteg. as the set of all such paths/lollipop walks of shortest lkrigif any).
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10: if i <4 then

11: Cmax < 1.
12: g+ G..

13: else

14; G+ GuUgG..
15: end if

16:  end for

17:  for each elemenf in G do

18: t' <+t US.

19: if (t' ¢ Lou:) and (To(t)] < T) then
20: Lot < Low U{t'}.

21: end if

22:  end for

23: until all the elements of;,, are selected.

24: Output: L.

Remark 1:Note that in Line 5 of Algorithm 1, all the satisfied check nedeG(¢;), i.e., the set’.(¢;),
and their neighboring variable nodes are removed from tAphgrThis is because, based on LemmakI2 - 4,
such nodes cannot be part of the expansion of an elemenégyirig set.

Remark 2:In Line 19 of the algorithm, the threshold valiieon the number of unsatisfied check nodes
is needed to keep the complexity of the overall search dlgariwhich involves multiple applications of
Algorithm 1, low. A proper choice of" has negligible effect on the ability of the algorithm to firftet

larger trapping set$a, b) with small values of. This is explained in the following example.

Fig. 4. An example of 47, 8) trapping set (satisfied and unsatisfied check nodes are shpwempty and full squares, respectively)

Example 2:Consider the7, 8) trapping setS, shown in Fig[#. This set belongs # and containst
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trapping sets of size, all also in7. These four trapping sets can be each obtained by removimgfihe
nodesuy, vs, us andvz. As a result, we havés, 8), (6, 8), (6, 12) and(6, 10) trapping sets, respectively.
Among these trapping sets, tli¢, 8) ones have a smaller number of unsatisfied check nodes.ngtarti
from each of these two trapping sets, Algoritiniinds S. Hence, ignoring the€6, 12) (or even(6, 12)
and (6, 10)) trapping set(s) does not impair the ability of the algaritto find S.

Remark 3:Based on Lemmadd 2[3 4, it can be proved that starting frorfuah) elementary trapping
setS, Algorithm 1 will find all the (¢/, ") elementary trapping sets of the smallest sizéarger thana
that containS (this requires the removal of the conditi¢pi,(¢)| < 7" in Line 19). Note that this does
not imply that by the recursive application of Algorithm leooan obtain all the elementary trapping sets
containingS. The following example demonstrates this.

Example 3:Consider thg6, 6) elementary trapping s&’ = {vy, va, v3, v4, vs, v6} IN Fig.[3. Assume
that Algorithm 1 starts from the elementary trapping Set {v;, v, vg}. Using this input, the output
of the algorithm is{vy, vs, vs, v5}. By subsequent applications of the algorithm, the next wist@re
{v1, va, vg, vs, v7} and {vy, ve, vg, vs, V7, V3, v4}, respectively. This means that the algorithm does not
find the trapping setS’, althoughS’ containsS. (It is however easy to see that if the algorithm starts

from the set{vs, vs, v4, vs}, it will find S’.)

Fig. 5. An example explaining that the algorithm cannot fifidke elementary trapping sets containing a specific eléangrirapping set

In fact, the sufficient condition for the algorithm to find apping setS’ of sizea;, starting with one of
its subsetsS of sizea; < a;, is thatS’ has at least one subsetTi§ for all « € A, a; < a < a;, where
A is defined in Lemmal3.

The following example shows that despite the limitation lakmgd in RemarkI3 and Examplé 3, for
many cases, the proposed algorithm in fact finds (in a gueedrfashiongll the trapping setsa, b) with
a andb up to certain values.

Example 4:For a left-regular graph with left degree 4 and girth lardernt 4, initiating the proposed

algorithm with the set of cycles of lengthandg+2, one can guarantee to firsdl the elementary trapping
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sets of size less thahwith less tharb unsatisfied check nodes. This can be seen by the inspectah of
the possible structures for such trapping sets and vegfthat for each structure, the removal of only one
variable node will result in another trapping setfin Subsequent removals of such nodes from @)
elementary trapping set withh < 9 andb < 5 in 7T, thus, results in a sequence of embedded elementary
trapping sets i7", each with size only one less than that of its parent. The esezpuwill always end
with a cycle of lengthy or g + 2. This implies that all such trapping sets satisfy the swfiticondition,
mentioned earlier, for being found by the algorithm st@rtirom a cycle of lengthy or g + 2.

Similar results to those of Examplé 4 can be found for othftfrégyular graphs. For irregular graphs
however, it is very difficult to provide such guarantees.sTisidue to the fact that the number of possible
structures for a trapping set of a given size could be veigelan this case.

Remark 4:For irregular LDPC codes, the variable nodes with large elegrcannot be part of small
trapping sets. This is formulated in the following lemma.

Lemma 5:In a graphG with girth ¢ > 4, if an (a,b) trapping setS contains a variable node of
degreed(v) > b, thena > d(v) + 1 — b.

Proof: The proof is provided in Appendix A. [ |
Based on Lemma@l 5, for example, for an irregular code witthdatger thard, a variable node of degree
15 can not participate in aftu, b) trapping set witha < 13 andb < 4. Such results can be used to
simplify the algorithm by removing the large degree vaabbdes and their edges from the graph.

Remark 5:1t is easy to see that for the left-regular graphs with lefjrée 3 or 4, all the trapping sets
found by Algorithm 1 are ZP trapping sets. For the left-regudraphs with left degree 3, the obtained
trapping sets are also absorbing sets.

Remark 6:Our simulations for many practical LDPC codes show that madt all the casesy; 1 <
a; + 3.

In the following, we discuss the selection of the initial sételementary trapping sets.

D. Initial Set of Trapping Sets

One of the graphical objects that plays an important roleha dtructure of trapping sets is a cycle.
Tian et al. [36] showed that every stopping set includes the variabieamf at least one cycle. Related
to this, the induced graph of the support of a pseudo-codbabwvays contains at least one cydle![18].
In [[7], [44], [48], it was shown that an overwhelming majgriaif dominant trapping (absorbing) sets are

combinations of short cycles. Short cycles are also easytierate[[44]. We thus use short cycles as
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the initial inputs to the proposed algorithm. The followitegnma provides more justifications for this
choice.

Lemma 6:

i) In a left-regular graplG with left degreed, > 2, if the induced subgrap&'(S) of an (a, b) trapping
setS does not contain any cycle, thérn> a(d; — 2) + 2. The inequality is satisfied with equality for
elementary trapping sets.

i) The variable nodes in any shortest cycle (of leng}tof a Tanner graph form an elementary trapping
set.

iif) Let 7 be the set of all trapping set$ of a graphG, whose induced subgragh(S) is connected
and for which every node € S is connected to at least two nodeslif(S). Then for everyS € T,
its induced subgrapty(S) contains at least one cycle.

iv) Suppose thaf C L is an absorbing set of a left-regular Tanner grépk- (LU R, E) with left node
degrees at least 2. The&#(S) contains at least one cycle.

v) Suppose thaS C L is a ZP trapping set of a Tanner graph= (L U R, EY) with node degrees at
least 3. Then=(S) contains at least one cycle.

Proof: The proof of Part (i) is provided in Appendix A. The proofs #arts (ii) and (iii) are simple
and thus omitted. Parts (iv) and (v) follow from Lemifda 1 andt Pid). [ |

It can be shown that Part (i) of Lemma 6 can be generalizeddgac#se where variable node degree

distribution is irregular. In this case, the result is maatifiash > a(ds — 2) + 2, whereds is the average
degree of variable nodes . The following example, based on Part (i) of Lemphla 6, denratess that
cycle-free(a, b) trapping sets have relatively large valuesbof

Example 5:For a left-regular grapltz with left degree 4, any cycle-freg:, b) trapping set satisfies

b > 2(a+1). Such large values d@ffor a givena would imply that the(a, b) trapping set is not dominant.
Our simulation results indicate that for denser graphss#tef short cycles of length, or g andg+2,
whereg is the girth, is sufficient to find almost all the small (witlgysa < 10) dominant trapping sets.
In this case, adding short cycles of larger lengths to thatispt has negligible effect on the performance
of the algorithm, while increasing its complexity. For exae we examined a number of randomly
constructed codes with rates larger than 0.4. The codes loa# length 1000 and left-regular Tanner
graphs with left degree 5 and girth 6. In all cases, the trappets obtained by Algorithm 1 using cycles
of length 6 and 8 as input were identical to those obtaineddiggucycles of length 6, 8 and 10 as the

input set.
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For sparser graphs, however, one may need to use short ©fclager lengths (e.g.g, g + 2, and

g + 4) as the initial set.

E. Complexity of the Algorithm

The complexity of the algorithm is highly dependent on thershycle distribution of the graph, which
itself is mostly a function of the degree distribution of tip@ph (code)[[19]. As a result, in general, the
complexity increases much faster with the increase in tlegage variable and check node degrees of the
graph than it does with increasing the block length. To haveoae detailed analysis of the complexity
of Algorithm 1, we note that the total complexity can be deddinto two partsa) Finding the initial
input set andh) Expanding the input set to larger trapping sets.

Regarding the complexity of Paft), assuming that an exhaustive brute force search is useddo fin
cycles of length, say forg < k < g+4, the complexity isO(nds/*d’?), for a(d,, d.) regular graph with
n variable nodes. This is obtained by considering all the iptespaths of lengttk starting from all then
variable nodes in the graph. The memory required for theagopf all thek-cycles is of ordelO(kNy),
where N,, is the number oft-cycles in the graph. To the best of our knowledge, there isheoretical
result on howN, scales withn or the degree distribution of the Tanner graph. Empiricalits of [19]
however suggest thaY, is mainly a function of the degree distribution and is ratimelependent of..

Regarding the complexity of expanding the input trappin $e larger ones, consider the expansion
of an (a, b) trapping setS of a (d,, d.) graph. Depending on the sizé > « of the smallest trapping set(s)
S’ that containS, the complexity and memory requirements for finding andis¢pthe setsS’ would
differ. Fora’ = a+1,a+2 anda+ 3, the complexity i80(bd,.), O(bd,d?) andO(bd%d?), respectively. The
memory requirement for these cases are respect®Vélyd,. ), O(abd,d?) and O (abd?d?). To see this, for
example, consider the case wherfe= a + 1. To find S, one needs to check at mdgt/. — 1) variable
nodes as possible candidates, which correspond¥&d.) complexity. The memory required to store all
possible trapping sets of size+ 1 obtained through such a search is thus upper bounded ¥yl )bd.,
which is of orderO(abd..).

Based on the above discussions, assuming that the initials skemited to cycles of length up to
g + 4, and that we only consider trapping setsof size up toa’ = a + 3 in the expansion process, the
complexity of Algorithm 1 will beO (d2d3(T S°9*1% Ny, +nd?/?d?*)) and the memory requirement will

i=g/2

be O(Td*d? fog}r; 2iNy;), whereT is the maximum number of unsatisfied check nodes in Algorithm

It is however important to note that the actual complexitd amemory requirements are much less than

what these complexity bounds may suggest. In particular,souaulation results show that codes with
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block lengths up to about 10,000 with a wide variety of degiestributions can be managed using the

proposed algorithm on a regular desktop computer.

F. Expansion of Non-Elementary Trapping Sets

According to the general definition of trapping sets, anyteaty set of variable nodes can be considered
as a trapping set. Hence, to expand a connected trappidfysfetizea, one just needs to select a variable
node from the neighboring variable nodes, and add iStto obtain a new trapping s&&’ with size
a’ = a + 1. This method of expansion leads to an exponentially grovgiegrch space. Even by limiting
the search space to the trapping set§in.e., connected trapping sets for which every variableenigd
connected to at least two satisfied check nodes, there #rostmany configurations fo&’, especially
whena' > a. For practical LDPC codes with > 4, however, considering a nested sequence of trapping
sets, the size of the next larger trapping geis almost always less than+ 3.

The search for non-elementary trapping sets of sizeC a + 3 in a graph with girthg > 4, can
be performed similar to what was described for the elemgniapping sets with a number of small
differences. For non-elementary trapping sets, sinceetieno limitation on the degrees of the check
nodes inG(S), only the variable nodes & and their edges are removed from the graph. Then the shortest
paths between different check nodesifS) or the shortest lollipop walks starting from different ckec
nodes ofG(S) are found. However, it should be mentioned that not all sunictires will necessarily
satisfy the condition that each variable node is conneabedt tleast two satisfied check nodes. After
finding a candidate trapping set, one should thus check fercitndition. In summary, to find the non-
elementary trapping sets of sizé< a + 3, the only modifications needed to be applied to Algorithm 1

are the followings:

5: Construct a new grapfi’ by removing all the nodes af from G.

7: for each node: in I'(¢;) do

8: Examine the neighborhood efin G’ one layer at a time and to the maximum f,. layers in
search for paths with < i,,, variable nodes betweenand the other nodes df(¢;), and lollipop
walks withi < i4,,,, variable nodes starting from

19:if (' € T) and ¢ ¢ Lo.;) and (Lo(t')| < T)

V. IRREGULAR LDPC cODES

For the irregular LDPC codes which do not have variable nadetegree 2, Algorithm 1 without any

modification can be used to find the dominant trapping setsn@stioned in Remark 4 of Section III.C,
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based on the desired sizes of trapping sets, one may alsveeim high-degree variable nodes and their
edges from the graph to simplify the algorithm. In the cass the code has variable nodes of degree
2, some modifications are needed for the initial input sethefalgorithm. In this section, we study the

effect of degree-2 variable nodes on the structure of trappets in irregular LDPC codes, and present

simple steps to find the corresponding trapping [Sets.

A. On the Degree-2 Variable Nodes

It is known that degree-2 variable nodes play an importalat iro the performance of irregular LDPC
codes. On one hand, to have codes with asymptotic perfoenelose to the capacity, the proportion
of degree-2 variable nodes should be as large as possikikisThsually a considerable fraction of the
total variable nodes of the code. On the other hand, havirsgge Iproportion of degree-2 variable nodes
results in a small minimum distance and a high error floor.[83]cles containing only degree-2 variable
nodes are codewords. Hence, to have a large minimum disténisedesirable to avoid such cycles,
especially the shorter ones. To avoid all cycles of any lerggintaining only degree-2 variable nodes,
the number of these nodes, must be strictly less than the number of check node§.e., n,, < m).
Based on this fact, a class of irregular LDPC codes with= m — 1, calledextended irregular repeat
accumulate(elRA) codes was proposed in_[46]. It was shownlin| [46] thaisthcodes exhibit relatively
better error floor performance compared to the codes casttlby the optimized degree distributions
without applying this restriction om,,. Related to this, it was proved in_[33] that for the case where
n,, > m, the minimum distance grows only logarithmically with thede length. For the special case
wheren,, = m and all the degree-2 variable nodes are part of a single cgfideminimum distance is
a sub-linear power function of the block length [35]. In tlfwldwing, we study the effect of having a
large fraction of degree-2 variable nodes on the structéiteapping sets in irregular LDPC codes.

Example 6:For all the degree distributions optimized for rate-1/2 DBodes on the binary-input
AWGN (BIAWGN) channel [31],43% to 55% of variable nodes are of degree 2. This implies that, on
average, every check node in the corresponding codes iectathto abou? variable nodes of degree 2.
The average number of degree-2 variable nodes connecteathoobeck node becomes even larger for
the optimized codes of higher rate. This is explained in thet example.

Example 7:For the optimized degree distribution of ra&¢9 over the BIAWGN channel with the
maximum variable node degree 10 [33],% of variable nodes are of degree 2. This implies that, on

!In case that the graph contains degree-1 variable nodes lgsavsmilar approach to the one described in Section IV.& (fnding
dominant trapping sets which include degree-2 variableespdan be used to find the dominant trapping sets contairdgged-1 variable
nodes.
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(c)

Fig. 6. Typical trapping sets constructed mostly by the eegt variable nodes.

average, every check node in a Tanner graph with this degsaédtion is connected to aboGtvariable
nodes of degree 2.

Consequently, it is very likely to see chains of degree-2abde nodes, referred to @chains in the
Tanner graph of LDPC codes with optimized degree distrdm#ti The length of a 2-chain is defined as
the number of the edges in the subgraph induced by the d@gveeiable nodes of the chain. That is,
the length of a 2-chain containingvariable nodes of degree 2 2¢. A 2-chain of lengthek is a (k, 2)
trapping set (with the exception of the case where the clsagtosed and forms a cycle; in that case, we
refer to the 2-chain as2cycle A 2-cycle of lengthek, is a(k, 0) trapping set). Having only 2 unsatisfied
check nodes, 2-chains of length are among the most dominant trapping sets of siz€ig.[6(a) shows
a 2-chain of length 10 (&5, 2) trapping set). Note that this trapping set also contains (W), three
(3, 2) and four (2,2) trapping sets as its subsets. It is worth noting that altholeg the cases where
n,, = m — 1 andn,, = m, the graph may have no or only one 2-cycle, it can have manyafs of
different lengths. For example, it is easy to see that foraase wheren = n,, and all the degree-2
variable nodes are contained in a single cycle, therera@chains of lengtiRk, 1 < k < m — 1.

Another aspect of having 2-chains in the Tanner graph ofulee LDPC codes is that they might
participate in short cycles with other variable nodes ohkigdegrees. These cycles have low approximate
cycle extrinsic message degree (ACE) (ACE is defined ag; — 2, where the summation is taken over
all the variable nodes of the cycle, angdis the degree of thé” variable node in the cyclé [36]). It has
been shown that cycles with low ACE deteriorate the errag prformance, and that avoiding them in
the construction of irregular LDPC codes generally impgotree error rate [45]) [39].

Example 8:Consider the case where = n,, and all the degree-2 variable nodes are contained in

a single cycle. In this case, there exist two 2-chains betwae® two check nodes of the graph. This
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implies that every variable node of degrég > 2 along with the 2-chains connecting its check nodes
form several trapping sets with at magt— 2 unsatisfied check nodes.

Example 9:Fig. [6(b) shows a(7, 1) trapping set composed of one variable node of degree 3 and a
chain of six variable nodes of degree 2.

Example 10:The (12, 1) trapping sets of th€1944, 972) LDPC code adopted in the IEEE 802.11
standard[[13] are single cycles of lengdth, each consisting of a 2-chain of length 22 and one degree-3
variable node.

Even in the cases wherg, < m (but not much smaller), it is likely to see cycles mostly domsted by
2-chains.

Example 11:Fig.[6(c) shows a(7, 2) trapping set composed of two variable nodes of degree 3 and
five variable nodes of degree 2.

Due to the important role that 2-chains (and 2-cycles) ptayhe formation of dominant trapping sets,
we study the necessary condition to avoid these structarései following theorem.

Theorem 1:Let m be the number of check nodes amg be the number of degree-2 variable nodes in
the graphG corresponding to an irregular code If G has no 2-chains of lengt?% or larger, fork > 2

(and no 2-cycles of length less than or equakid then

1
Jo— i+1
Zi:(]z (dc,ma:p - 1)\' 2 J

whered, ... IS the maximum check node degreeGh

m > n,, (14

Proof: Let G,,, denote the induced subgraph of degree-2 variable nodes of#iphG. This subgraph
contains no cycle. Otherwise, the length of such a cycle abel at leasRk + 2, which would imply the
existence of a 2-chain of lengtlt in GG,,, and thus inG. This contradicts the assumption of the theorem.
The subgrapl,, is thus composed of some tree-like components. For eachawenp the number of
check nodes is always larger than the number of variable nbgleone. Therefore the total number of
check nodes of the graph is more than the number of degreedbleanodes by at least the number of

disjoint components i, (Some check nodes 6f may not appear idr,,). To avoid 2-chains of lengthk

or larger, the maximum number of variable nodes in each commois > "7 (d.. .. — 1)L7 ) (Appendix

A, Lemmal8). The minimum number of components(ip, is thus [12,,/ S-7 2 (depae — D2 1] . m

Theoren Ll can be used to determine the maximum number ofel@gvariable nodes in an irregular
graph to avoid 2-chains (and 2-cycles) of a specific length.

Example 12:For an irregular code with 1000 check nodes of degiee 6, to avoid (4, 2) trapping
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sets corresponding to 2-chains of length 8, the number oéar nodes of degree 2 must be at most

910.

Theoren( ]l can be also used to obtain some information abeutxisting trapping sets in a code.
Example 13:For the same scenario as that of Examplé 12 (ne.= 1000, d. = 6), the elRA

construction [[46] results im,, = m — 1 = 999. For these parameters, the smallest valué: afhich

satisfies the inequality of Theorem 1 is= 9. This implies that the elRA code will have 2-chains of

length 16 and smaller, corresponding(fg 2) trapping sets for all values df < 9.

B. Finding Trapping Sets of Irregular LDPC Codes

In this section, we present a simple process to find the darhitrapping sets involving degree-2
variable nodes. The process can be used in combination vgbrighm 1 to find the dominant trapping
sets of irregular graphs containing degree-2 variable sioldas important to note that according to the
definition of absorbing sets, any variable node of degreethese sets is connected to 2 satisfied check
nodes. Also, for the trapping sets found by Algorithm 1, esahable node is connected to at least 2
satisfied check nodes. Therefore, 2-chains and other trgpg@ts containing variable node(s) of degree
2 with one satisfied check node are neither absorbing setfonod by Algorithm 1. In fact, it appears
that being connected to 2 satisfied check nodes is too strbagcondition for a variable node of degree
2 to be part of a dominant trapping set. For this reason, waiden also trapping sets whose variable
nodes of degree 2 are connected to only one satisfied cheak fodobtain such trapping sets using
the expansion of smaller trapping sets, we considefaan 1, b) trapping setS which is expanded to a
trapping setS’ by the connection of a variable nodeof degree 2 to an unsatisfied check nodeSof
Three cases are possible:

a) v is not connected to any other check nodd'¢f). In this caseS’ = SU {v} is an(a, b) trapping
set. If S is elementary, so i§’.
b) wvis also connected to a satisfied check nod§.dh this caseS’ = SU{v} is an(a, b) non-elementary
trapping set.
c¢) v is also connected to another unsatisfied check nod® &f this caseS’ = SuU{v} is an(a,b—2)
trapping set. IfS is elementary (or is in the séf), so isS'.
Such an expansion of a trapping set can be performed muliipés by adding one neighboring variable
node of degree 2, each time. This is summarized in Algorithrim 2 general case, Algorithm 2 can be
used with Algorithm 1 to expand the trapping sets found byofilpm 1. This is summarized in Algorithm
3.



20

Algorithm 2: Finding trapping sets of size up fowith the number of unsatisfied check nodes ugto
constructed by adding degree-2 variable nodes to the ingpping sets for an irregular LDPC code with
the Tanner graplt- = (LU R, F).

(L;, and L,,; are the lists of input and output trapping sets, respegfivel

1: Inputs: G, L;,

2 Low + 0.

3: repeat

4.  Select an element of;, with size less thark, and denote it as.

5.  Form the setV,(¢) which contains variable nodes of degree ZLixy that are connected to at least
one unsatisfied check node ©fi.e., tol',(¢).

6: for each node in Ny(t) do

7: t' +tU{v}.

8: if (' eT) Ij and ¢’ ¢ L,,;) and (T,(#')] < T) then
9: Lout < Lo U{t'}.

10: end if

11:  end for

12: until all the elements of,, are selected.

13: Output: L.

Remark 7:Note that in Algorithm 2, the number of unsatisfied check rsodethe resultant trapping
sets never increases. Hence, to find trapping sets ofasizigh less thanh unsatisfied check nodes, one
should consider all thea(, b') trapping sets withi' < a, b’ < bH It should be mentioned that since every
single variable node of degrek can be regarded as(a, d,) trapping set, to find the trapping sets with
less thanb unsatisfied check nodes, we consider also all the variabdeshof degreel, < b as part of
the initial set. For example, for the casetof 3, starting with a single variable node of degrge= 2 or
d, = 3, two typical structures of the resultant trapping sets amvs in Figs[V(a) andl 7(b), respectively.
Note that starting from a degree-2 variable node and perfgrithe above steps results in finding a

2This condition ensures that each variable node of degrgerianan 2 is connected to at least 2 satisfied check nodescdFfuttion has

no bearing on degree-2 variable nodes.

3Although this condition may not cover all the trapping seitcdssed in Part of Section IV.B, our simulations show that for the tested
codes, almost all the trapping sets are in fact found by Allgor 2. The trapping sets that are missed by Algorithm 2 agedtes that can
only be obtained by starting from trapping sets with larger nundfaunsatisfied check nodes.
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Fig. 7. Typical expansions of degree-2 and degree-3 varinbtles by adding the neighboring degree-2 variable nodes.

2-chain.

Algorithm 3: Finding trapping sets of size up fowith the number of unsatisfied check nodes ugto
for an irregular LDPC code with the Tanner graph= (LUR, E).

(L;, and L,,; are the lists of input and output trapping sets, respegtivel

1: Inputs: G, L;,

2: Use L;, as the input of Algorithm 1

3: L1,, = trapping sets found by Algorithm 1
4: L2;, = L1, {low degree variable nodés
5: Use £2;, as the input of Algorithm 2

6: L., = trapping sets found by Algorithm 2
7. Output: L.

Remark 8:For irregular codes, in addition to short cycles, cycleshviitw ACE are also considered
as part of the initial input set of Algorithm 1. This is becauthese cycles may not be found using
the expansion process of Algorithm 1. Algorithm 1 finds theaBest trapping sets containing the input,
which are usually the combination of the input and a shortecyor a structure described in Lemmas 2
— 4). Since variable nodes of large degree are more likelyet@dot of such structures, the outputs of
Algorithm 1 are usually the combinations of the input andatale node(s) of large degree. This is while
cycles with low ACE are generally constructed by low degragable nodes. Cycles with low ACE can
be easily found by monitoring the ACE value during the exiecubf a cycle finding algorithm.

Remark 9:As an alternative approach to using Algorithm 3, one can aslg Algorithm 2 with the
variable nodes of low degree and cycles with low ACE as thiirinput set, and then recursively expand

them to larger trapping sets. It should however be notedftrathe irregular LDPC codes with a small
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fraction of degree-2 variable nodes, this approach may ndtdll the dominant trapping sets of the code.

V. NUMERICAL RESULTS

For the simulations, we assume binary phase-shift keyift58 modulation over the AWGN channel
with coherent detection. Notatiorts, and N, are used for the average energy per information bit and the

one-sided power spectral density of the AWGN, respectively

A. Regular Codes

We have applied the proposed algorithm successfully togelaumber of regular LDPC codes. Here,
we only present the results for four of them. The first threengxles are random and structured LDPC
codes whose dominant trapping sets have already beenedporthe literature and thus provide us with
a reference for comparison. The fourth example is a randorR@.Bode of ratd /2 with variable node
degree 4. To verify the trapping sets found by the proposgdrithm for this code, we estimate the
error floor using importance sampling [7] based on the obthittapping sets and demonstrate that the
estimation is practically identical to the results of Moi@arlo simulations. The reported running times
in the following examples are for a desktop computer vetEHz CPU andl GB of RAM.

Example 14:We consider an LDPC code constructed by the progressive grdgeh (PEG) algorithm
[12] (PEGReg252x504f [50]). This code is left-regular with the left degree 3, and girthTBe same
code was also investigated in_[21] and the distribution sffitlly absorbing sets was determined. For
Algorithm 1, the short cycles of length g+ 2 andg+ 4 were used as the initial input set. The algorithm
was limited to finding trapping sets of maximum size 13, aralttiresholdl” was selected such that only
the trapping sets with the two smallest values)dbr each size were considered. (Using a largehnas
no effect on the accuracy of the results reported here.)eSatiche variable nodes have degree 3, all the
trapping sets found by Algorithm 1 are absorbing sets. Fabigorbing sets were found by examining
the obtained absorbing sets and testing them for the defindf a fully absorbing set. Tablé | shows
the absorbing sets and the fully absorbing sets found by ihypoged algorithm and their multiplicities.
In the table, we have also reported the results obtained éyexhaustive search algorithm of [21], for
comparison. (Note that the hyphen notation “-” in the tableams that no data was reported.) As can
be seen from Tablg I, for many classes of trapping sets, thpoged algorithm found exactly the same
number of fully absorbing sets as the exhaustive searctritidgo of [21] did. For the other classes,
the difference between the two sets of results is ratherlsiMalreover, the proposed algorithm found

(11,3), (13,3), (10,4) and (12, 4) fully absorbing sets which are out of the reach of the exliaeisearch
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algorithm. It is worth mentioning that the exhaustive shaatgorithm of [21] took about 7 hours to find
only the first three rows of Tablé [ [21] (needless to say, tirgdr the size of the absorbing sets, the
longer the running time of the algorithm). This is while Atlghm 1 took only 10 minutes to find all the

absorbing sets listed in Tadle I.

TABLE |
DOMINANT ABSORBING SETS(ABS) AND FULLY ABSORBING SETS OF THEPEGReg252x5080DE OBTAINED BY THE
PROPOSEDALGORITHM AND THE EXHAUSTIVE SEARCH ALGORITHM OF [21]]

Trapping | Proposed Proposed Exhaustive

Set Algorithm | Algorithm | Search [2]]
(ABS) (Fully ABS) | (Fully ABS)

4, 4) 802 760 760
(5, 3) 14 14 14
(5, 5) 11279 10156 10156
(6, 4) 985 849 849
(6, 6) 86391 66352 66352
(7, 3) 57 47 47
(7, 5) 27176 21810 22430
8, 2) 5 4 4
(8, 4) 2610 2258 2270
9, 1) 1 1 1
9, 3) 156 146 146
(10, 2) 6 6 6
(10, 4) 7929 6691 -
(11, 3) 605 558 -
(12, 2) 25 24 26
12, 4) 23668 19959 -
(13, 1) 1 1 1
(13, 3) 2124 1954 -

Example 15:In this example, we consider the Tanr{ét5, 64) code [34]. This code was also investi-
gated in[41]. The exhaustive search algorithm_of [41] sttt this code has no trapping set of length
less tham8 with 2 unsatisfied check nodes and has no trapping set of length up wath 1 unsatisfied
check node. It was also shown in [41] that the code 46s(8, 2) trapping sets.

The girth for the Tanner graph of this codegis= 8. The short cycles of length, g+ 2 andg + 4 were
used as the initial inputs to Algorithm 1. The algorithm wiasied to only find trapping sets of maximum
size 12 and the thresholtl was selected such that only the trapping sets with the twdleshaalues of
b for each size were considered. Table Il shows the trappitgyfeend by the proposed algorithm and
their multiplicity. As can be seen in the table, the algaritfound all the 4658, 2) trapping sets among
others. All the trapping sets in Tallé Il were found in lesanth minutes.

To further verify that the obtained trapping sets do in faatlude the dominant ones, we performed
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Monte Carlo simulations on the code with a 4-bit quantized-sum decoder over the AWGN channel
at signal-to-noise ratio (SNR) of 6.5 dB (which is in the erfloor region of this code). Among th&)0
error patterns, abouwt0% were (8,2) trapping sets, abowt% were (10, 2) trapping sets, and only 2 did

not belong to the sets reported in Table II.

TABLE Il
DOMINANT TRAPPING SETS OF THETANNER (155, 64) CODE OBTAINED BY THE PROPOSEDALGORITHM

| Trapping Set | Multiplicity

(4,4) 465
(5,3) 155
(6,4) 930
(7.3) 930
(8.2) 465
(9,3) 1395
(10,2) 1395
(11,3) 1860
(12,2) 930

Example 16:As the third example, we consider the Margu$40, 1320) code [25], [50]. It is known
that the most dominant trapping sets of this code 1&2) (12,4) and 1320 (14,4) trapping sets[[30].
The Tanner graph of this code has girth= 8. The set of short cycles of lengt)) g + 2 andg + 4 was
used as the input set of the proposed algorithm. The algontlas limited to use only the trapping sets
with the two smallest values d@ffor each size. Since the degree of all the variable nodesisfctide is
3, all the trapping sets found by Algorithm 1 are also absaylsiets. The first column in Tablellll shows
the dominant absorbing sets found by Algorithm 1. For conspar the dominant trapping sets obtained
by the algorithm of[[2] are listed in the last column of TablB It should be noted that in_[2] there is
no condition on the number of satisfied check nodes conndotedch variable node. Thus to have a
fair comparison, we also consider the trapping sets coctstiuby the combination of trapping sets found
by Algorithm 1 and one of their neighboring variable nodekse Becond column of Tablellll shows the
number of such trapping s€isAs can be seen, for all the trapping set classes, the propdgedthm
performs at least as well as the algorithm [of [2]. Moreovke tequired time for the algorithm of1[2]
was 7 days on a 2.8 GHz PC [2], while the proposed algorithrk &dmut 5 hours to finish. As another
comparison for the running time of the proposed algorithintioaok the algorithm 55 minutes to find all
the absorbing sets of size less than 15, while the same takk8t& hours for the impulse method 6f [7]
on a comparable computer (2.2-GHz CPU with 1 GB RAM).

40ur simulations indicate that the effect of extra trappietsSound by removing the constraint on the number of satisfleck nodes
connected to each variable node of the trapping set on tle #oor performance of the code is negligible.



TABLE 1lI
DOMINANT TRAPPING SETS OF THEMARGULIS (2640, 1320) CODE OBTAINED BY THE PROPOSEDALGORITHM AND THE
ALGORITHM OF [2]

25

Trapping Proposed Proposed Algorithm
Set Algorithm || Algorithm of [2]
(Absorbing) || (Trapping) | (Trapping)
(7, 5) 7920 7920
(8, 6) 106920 >106920
(9, 5) 2640 2640
(10, 6) 117480 >117480 -
(11, 5) 5280 5280 9
(12, 4) 1320 1320 1320
(13, 5) 2640 26400 2699
(14, 4) 1320 1320 1320
(15, 5) 0 26400 7938
(16, 6) 0 258347 21153
(17, 5) 5280 5280 0
(18, 6) 0 132000 2642

Example 17:For this example, we consider (4008, 504) random code with variable node degree 4
and check node degree 8 constructed by the program 0OH[bBis code has one cycle of length @,).
In addition to that, the short cycles of length 6 to 10 wereduase the initial input set for Algorithm 1.
The algorithm was constrained to find trapping sets of sizeouf? and to use only the trapping sets with
the two smallest values offor each size. Table IV shows the dominant trapping setsddaynAlgorithm
1 and their multiplicities. It is worth mentioning that nonéthe trapping sets listed in TallellV contains
any of the variable nodes participatingdh. The trapping sets reported in Tabld IV were used to estimate
the error floor of the code using the importance samplingrtiegte described in[7]. Fid.l8 shows the
Monte Carlo simulation results for the frame error rate (fFBRd the corresponding error floor estimation
based on importance sampling. The results are for a 3-bitson decoder with a maximum number
of 50 iterations. As can be seen in Fig. 8, the estimationetyomatches the Monte Carlo simulation,
verifying the dominance of the trapping sets found by Algor 1. Monte Carlo simulations also revealed
that the most harmful trapping set of this code is tfe4) trapping set. In fact, in almost all the decoding
failures, the decoder converged to the (6,4) trapping setcah be seen in TablellV, all the trapping sets
have at least 4 unsatisfied check nodes. This makes the ¢ixieassarch methods of[_[40], [41], [21]
ineffective for finding the dominant trapping sets of thigleoThis is while all the trapping sets in Table
[Vliwere found in less than 5 minutes by the proposed algorithm

SUsing code6.cwith seed=380.
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TABLE IV
DOMINANT TRAPPING SETS OF THE(1008, 504) REGULAR LDPC CoDE (d,, = 4, d. = 8) OBTAINED BY THE PROPOSED
ALGORITHM

| Trapping Set | Multiplicity |

(5.6) 15
(6,4) 1
(6,6) 36
(7.5) 13
(8,6) 5
(9,6) 5
(10,6) 3
(11,6) 3
(12,8) 75

0
10 T T T T T

—Monte Carlo Simulation
—e¢— |mportance Sampling Estimation

Frame Error Rate
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T

I i i 1 I

I 1 I | 1
2 25 3 35 4 45 5 55 6 65 7

E, /N, (dB)

Fig. 8. Error floor estimation and Monte Carlo simulation foe (1008, 504) regular LDPC coded, = 4, d. = 8).

B. Irregular Codes

In this section, we present the results of applying the psedoalgorithm to three irregular LDPC
codes. To find the dominant trapping sets of the irregularespave used two approaches. In the first
approach, we used Algorithms 1 and 2 in the framework desdrib Algorithm 3. In this approach, as
the first step, we used the short cycles of the codes, as wiedsw ACE cycles as the initial input set,
and applied Algorithm 1. We then used the trapping sets fdundlgorithm 1 along with the variable
nodes of low degree, and applied Algorithm 2 to expand thesith& second approach, we only used the
variable nodes of low degree and cycles with low ACE as thigainnput set, and then used Algorithm
2 to recursively expand them to larger trapping sets. Istargly, for all three codes, the results of the

second approach were very close to those of the first one.
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Example 18:For this example, we consider the irregular LDPC code canstd by the PEG algorithm
(PEGIirReg252x5040de [50]). This code was also investigated[in! [21] for itByfabsorbing sets. For
Algorithm 1, the short cycles of length, g + 2, and the cycles with length less than 20 and ACE less
than 4 were used as the initial input set. The algorithm wasstrained to find only trapping sets of size
less than 12 and the threshdld was selected such that only the trapping sets with the fowallest
values ofb for each size were considered. The resultant trapping setyvaiable nodes of degree 2 and
3 were then expanded by adding neighboring degree-2 variaddes, and finally were examined to find
the fully absorbing sets. Tabld V shows the fully absorbiets $ound by Algorithm 3 and the exhaustive
search algorithm of_ [21]. It should be noted that, similaf2d], we relaxed the condition that degree-2
variable nodes of (fully) absorbing sets must be conneaidaw¢ satisfied check nodes. As can be seen
from Table[V, the proposed algorithm found almost all thdyfalbsorbing sets of this coHdVloreover,
the proposed algorithm found a number(of 1) trapping sets for > 9, which were not reported in [21].
For the second approach, the cycles of length up to 20 with A@er than 4 and the variable nodes of
degree 2 and 3 were used as the initial inputs, and the digofibund almost the same trapping sets as
in the first approach. For the running time, the first and theoiseé approaches took 15 minutes and 5
minutes, respectively.

TABLE V
DOMINANT FULLY ABSORBING SETS OF THEPEGIirReg252x50€0DE OBTAINED BY THE PROPOSEDALGORITHM AND
THE ALGORITHM OF [21]]

Trapping | Proposed | Exhaustive
Set Algorithm | Search [21]

3, 2) 219 219
4, 2) 208 208
(5, 2) 198 198
(6, 2) 205 205
(7, 1) 2 2
(7, 2) 271 272
(8, 1) 8 8
8, 2) 458 460
9, 1) 16
9, 2) 855
(10, 1) 22
(10, 2) 1533
(11, 1) 36

Example 19:For this example, we used thi&d44, 972) structured irregular code with rat¢2, adopted

®The multiplicity for trapping set$7, 2) and (8, 2) are reported as 274 and 468[in][21], respectively. Morea@(7, 1) or (8, 1) trapping
set is reported in_[21]. The values reported for these faapging sets in the last column of Talhlé V are based oh [22].
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in the IEEE 802.11 standard [13]. We used the same paranexdrsthe previous example for the two
approaches. Table VI shows the number of dominant trapptsgas different sizes found by the algorithm
of [2] and the proposed approaches. For this code, both opproaches found exactly the same set of
trapping sets. In fact, all the trapping sets listed in Talldhave one of the following three structures: a
2-chain, a single cycle with low ACE, and the combination &-ahain and a single cycle of low ACE.
For example, all the trapping sets of size less than 7 listetiable[V] are 2-chains, and all thg2, 1)
trapping sets are single cycles of eleven degree-2 varratiles and one degree-3 variable node. As can
be seen in Tablé VI, for all classes of trapping sets, the gge@ algorithms found at least as many
trapping sets as the algorithm of [2] did. The first and theoedcapproaches took 45 and 5 minutes,
respectively, to find all the trapping sets in Tablé VI. Thisaihile the algorithm of{[2] took 5 days (on
a 2.8-GHz CPU) to find the results reported in Tdblé VI.

TABLE VI
DOMINANT TRAPPING SETS OF THE1944,972)CODE OBTAINED BY THE PROPOSED ALGORITHM

Trapping | Proposed | Algorithm
Set Algorithm of [2]
2, 2) 810 -
3, 2) 729 -
4, 2) 648 648
(5, 2) 567 567
(6, 2) 486 486
7, 2) 486 485
(8, 2) 648 637
9, 2) 972 -
(10, 2) 1377 1210
(11, 2) 1944 1635
(12, 1) 81 81
(12, 2) 2754 2166
(13, 1) 162 162
(14, 1) 162 162
(15, 1) 162 -
(16, 1) 162 -
(17, 1) 162 -
(18, 1) 81 -

Based on the importance sampling techniqué bf [7], the trgpgets in Table VI with sizé 6 <1 < 12,
were used to estimate the error floor of this code for a 3-b@ingjged min-sum decoder over the AWGN
channel. Fig[l9 shows the error floor estimation and the M@a#do simulation results for this code. As
can be seen in Fid.] 9, the importance sampling estimatiosellanatches the Monte Carlo simulation,

further verifying the dominance of the trapping sets fougdhe proposed algorithm.
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Fig. 9. Error floor estimation and Monte Carlo simulation fbe (1944, 972) irregular LDPC code.

Example 20:As the last example, we use the following degree distrilbutiptimized for the min-sum
algorithm in [6] and construct 1000, 499) LDPC code using the PEG algorithm(z) = .30370z +
2775422 + .028432° + .200142° + 190192 and p(x) = .0160x° + .98402°. The girth of the resultant
graph is 6, and we use the short cycles of length 6 and 8, ardscgt length up to 20 with ACE less
than 4 as the initial input set of Algorithm 2. It takes 1 miadior the algorithm to find the trapping sets
of size up to 10. Based on the obtained trapping sets and tisnignportance sampling, we estimate the
error floor of the code. Fid._ 10 shows the estimation and M@wdo simulations for this code. As can
be seen in this figure, the estimation closely matches thet®Garlo simulation results, verifying that

the dominant trapping sets of the code have been found bylgloeitam.

VI. CONCLUSIONS

In this paper, we proposed an efficient algorithm for findihg tominant trapping sets of an LDPC
code. The algorithm starts from an initial set of trappings sed recursively and greedily expands them
to trapping sets of larger size. The initial set for regulades is a set of short cycles, and for irregular
codes, it also includes variable nodes of small degree ante<yith low ACE values. To devise the
expansions, the structure of dominant trapping sets isfulbrestudied for both regular and irregular
codes. The efficiency and accuracy of the proposed algontias demonstrated through a number of
examples. It was observed that the proposed algorithm isrfay up to about two orders of magnitude

compared to similar search algorithms.
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Fig. 10. Error floor estimation and Monte Carlo simulation flee (1000, 499) irregular LDPC code.

APPENDIX A

In this appendix, we present Lammas$ 7 ahd 8, used in Sectibasd IV, respectively, along with
their proofs. The appendix also contains the proofs for Lasif and 16(i).

Lemma 7:For a left-regular graplz with left degreed, > 3 and girthg > 4H consider an(a, b)
trapping set withb < a. If such a trapping set is elementary, let the notatipndenote its size, and
consider the case wherg(d; — 1) > b. Otherwise, for non-elementary trapping sets witk «, let the
notationsa,; anda,, denote the size of the trapping set if it has at least one igfiedt check node of
degreed, > 1 and one satisfied check node of degtee> 2 in G(S), respectively. For the two latter
cases, suppose thdf(d, — 1) > b andd.(d; — 1) > b, respectively. Then depending on the valuegof
we have the following two sets of inequalities:

a) Forg = 4k, wherek is an integer larger than 1, we have:

Ead

0> 14 dy+ (il —1) = 5) 3 (dr— 1)+ DD —d?(dz—l)’f—? |

Il
o

(2

i
[\

(075} Z de + (de(dl - 1) - b) (dl — 1)2 3

Il
o

2

"For the case ofl, = 2, it is easy to see that arfy:, b) elementary trapping set has= 0 or b = 2. For b = 0, the smallest value of
is g/2, which corresponds to the trapping set being a shortesecfdr an elementary trapping set with= 2, the smallest value of is
one, which corresponds to a single variable node. For a feneatary(a,b) trapping set however, i = 0, the smallest value af is g.
If b =2, the minimum value of: for such a trapping set i3.
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k—2
ny > do + (do(dy — 1) = b+ 1) > (dy — 1)
=0

b) Forg = 4k + 2, wherek is a positive integer, we have:

k—2
ae > 1+d+ (dy(d, — 1) = b)Y (dy — 1)’
=0

E
[\

(de(dy — 1) — b)(di — 1)

anlzde—i-(d(dl—l)—b) ¥ :
!

(d; —1)" +

N

T
[N}

(do(dy — 1) = b+ 1)(d; — 1)k—1
d

ang > do+ (do(dy — 1) —b+1) Y (dy —1)" +

7

1§
o

Proof: Here, we just present the sketch of the proof. For this, we fieed the following lemma,
whose proof follows later in the appendix.

Lemmadl(i): In a left-regular graphG with left degreed, > 2, if the induced subgrapl(S) of an
(a, b) trapping setS does not contain any cycle, thén> a(d;, — 2) 4+ 2. The inequality is satisfied with
equality for elementary trapping sets.

Based on Lemmal6(i), it is clear that a trapping set with: « has at least one cycle. Therefore,
considering any variable (or check) node ®fas the root, and growing/(S) from that node, one can
construct a tree of at leag'2 layers, where the layers contain either variable or chedesa@lternately,
with no repetition of nodes. The number of variable nodeshis tree can be used as a lower bound
on the number of variable nodes & In this tree, the number of check nodes in layer 1 of the
tree, N, is N! = (d; — 1)N:~', where N/~! is the number of variable nodes in layer- 1. Similarly,
Ni=3%" (dc;;l - 1), Wheredcéfl is the degree (withirG(S)) of the j'* check node in layei — 1, and
the summation is over all the check nodes in layer1. To minimize the number of variable nodes in
the tree, one needs to make (dczfl — 1) as small as possible in each check node layer of the tree. In
particular, this should be done at the upper layers of theifrpossible, since these layers contribute the
most in the total number of variable nodes in the tree. Intamdito obtain a lower bound on the size
of the trapping sets, we assume that even for the non-elanyeoase, except for one check node, the
degrees of all the other check nodesGiS) are either 1 or 2. Moreover, we assume that all the check
nodes of degree 1 are in the first (upper) layer(s) of checlesadter the root layer.

For the case of an elementary trapping set, according to skengption ofb < a, there is at least

one variable node that is not connected to any unsatisfiedkchedes. Considering such a variable
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node as the root node, all the check nodes in the first layesatsfied check nodes. That i§)? =

1 (root node),N! = N? = d;, N3 = di(d; — 1), N} = dy(d; — 1) — b and Ni7! = (d; — 1)Ni~2,

Ni = N1, fori =6,8,.. H Therefore, the total number of variable nodes in the constdutree is
1+d+ (di(dy — 1) = b) + (dy(d; — 1) — b)(d; — 1) + .. .. Distinction should be made between the cases
of g = 4k + 2 and g = 4k. While in the former, the last layer of the tree consists afalde nodes, in
the latter, it consists of check nodes. In this case, for e&tlofd;, check nodes in the last layer of the
tree, there must be at least one other variable node ifihe sketch of the proofs for the non-elementary
cases are similar to that of the elementary case, with tHerdifce that the check node of degrkeor

d. is used as the root node. [ ]

Proof of Lemmdg:

Consider thel(v) neighbors ofv in G(S). At leastd(v) —b of them are in’'.(S) and are thus connected
to other variable nodes i5. None of such variable nodes can share more than one cheek frmd
I'.(S) with v, because of the conditiopn > 4. This implies that there are at lea&t) — b variable nodes
in S\{v}. |

Proof of Lemmadg((i):

Since G(S) does not contain any cycle, it forms a tree (note thés) is connected). Suppose that
G(S) is grown from a variable node of as the root, one layer at a time, until along each path, the
growth is terminated by reaching a check node as a leaf. Thedes are the unsatisfied check nodes
of degree one. In the tree, each variable node, except the lras a parent which is a check node of
degree> 2. In the case thaFf is elementary, the degree of the parent check nodes is 2, emzkleach
check node is the parent to one variable node. There are ®auslyea — 1 check nodes of degree 2 in
G(S). SinceG(S) is a tree, the number of its nodes is more than the number efdiges by one. The
total number of nodes in the graphds+ (a — 1) + b; and the total number of edges ds d,, where
b, is the number of unsatisfied check nodes of degree one. Fdeareetary trapping set, we thus have
2a +b; — 1 = ad, + 1, which impliesb = b; = a(d, — 2) + 2. In the case thaF is not elementary, some
variable nodes may share the same parent. The number oft gk nodes is thus less than- 1, and
thereforeb > b, > a(d, — 2) + 2. |

Lemma 8:Let G = (L U R, E) be a left-regular bipartite graph with left degree Consider a set
S € L, for which the induced subgraph is a tree and has the longast @f length2k — 2. Then

8Here, based on the statement of the lemma, we have assunell e unsatisfied check nodes can fit in the third layer efttee. In
the case thatl;(d; — 1) — b < 0, some of the unsatisfied check nodes have to be located inettidayer(s), and the above equations and
the claims of the lemma will have to be accordingly revised.
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|S| < Zf:‘f (demaz — 1)L%J , where|S]| is the number of nodes i§ andd,. ., is the maximum degree
of the nodes inR.

Proof: The upper bound is derived by counting the number of varialoldes in a tree where the
number of check nodes is maximized with the constraint thatlbngest path ha®k — 2 edges. This
implies that there is a path of leng#t — 2 between any two leaf check nodes@{S). In addition, to

maximize|S|, the degree of all the check nodesdiiS) is assumed to bé. ... [ ]
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