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Abstract

This paper presents an efficient algorithm for finding the dominant trapping sets of a low-density parity-check

(LDPC) code. The algorithm can be used to estimate the error floor of LDPC codes or to be used as a tool to

design LDPC codes with low error floors. For regular codes, the algorithm is initiated with a set of short cycles

as the input. For irregular codes, in addition to short cycles, variable nodes with low degree and cycles with low

approximate cycle extrinsic message degree (ACE) are also used as the initial inputs. The initial inputs are then

expanded recursively to dominant trapping sets of increasing size. At the core of the algorithm lies the analysis of

the graphical structure of dominant trapping sets and the relationship of such structures to short cycles, low-degree

variable nodes and cycles with low ACE. The algorithm is universal in the sense that it can be used for an arbitrary

graph and that it can be tailored to find a variety of graphicalobjects, such as absorbing sets and Zyablov-Pinsker

(ZP) trapping sets, known to dominate the performance of LDPC codes in the error floor region over different

channels and for different iterative decoding algorithms.Simulation results on several LDPC codes demonstrate

the accuracy and efficiency of the proposed algorithm. In particular, the algorithm is significantly faster than the

existing search algorithms for dominant trapping sets.

I. INTRODUCTION

ESTIMATING the error floor performance of low-density parity-check (LDPC) codes under iterative

message-passing decoding, and the design of LDPC codes withlow error floors have attracted

a great amount of interest in recent years. The performance of LDPC codes under iterative decoding

algorithms in the error floor region is closely related to thestructure of the code’s Tanner graph. For

the binary erasure channel (BEC), the problematic structures arestopping sets[10]. In the case of the

binary symmetric channel (BSC) and the additive white Gaussian noise (AWGN) channel, the error-prone

patterns are calledtrapping sets[30], near codewords[24] or pseudo codewords[38]. Among the trapping

sets, the so-calledelementary trapping setsare shown to be the main culprits [30], [17], [7], [26], [16],

[48]. Related to this, it is demonstrated in [8] that for somestructured LDPC codes decoded by iterative

algorithms over the AWGN channel, a subset of trapping sets,calledabsorbing sets, determine the error

∗A preliminary version of part of this work appeared in Proc.6th International Symposium on Turbo Codes & Iterative Information
Processing,Brest, France, Sept. 6 - 10, 2010.
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floor performance. In fact, in an overwhelmingly large number of cases, dominant absorbing sets appear

to be elementary trapping sets.

For a given LDPC code, the knowledge of dominant trapping sets is important. On one hand, efficient

methods for estimating the error floor of an LDPC code, which rely on the importance sampling technique,

operate by biasing the noise toward the dominant trapping sets of the code, see, e.g., [7]. On the other

hand, by knowing the dominant trapping sets, several decoder modifications can be applied to improve

the error floor performance (see, e.g., [4], [11]). Furthermore, the knowledge of dominant trapping sets

can be used to design LDPC codes with low error floor. Related to this, Ivkovic et al. [14] applied the

technique of edge swapping between two copies of a base LDPC code to eliminate the dominant trapping

sets of the base code over the BSC. This was then generalized by Asvadi et al. [1] to cyclic liftings of

higher degree to construct quasi-cyclic LDPC codes with lowerror floor. While the knowledge of the

problematic sets that dominate the error floor performance is most helpful in the design and analysis of

LDPC codes, attaining such knowledge, regardless of differences in the graphical structure of these sets,

is a hard problem. For instance, it was shown in [27], [20], [23] that the problem of finding a minimum

size stopping set is NP hard. McGregor and Milenkovic [23] showed that not only the problem of finding

a minimum size trapping set, but also the problem of approximating the size of a minimal trapping set is

NP hard, regardless of the sparsity of the underlying graph.

It should be noted that while the majority of the literature on estimating the error floor of LDPC codes

rely on finding the dominant trapping sets, as an eventual result of decoder failure, in [42], [44], [43],

Xiao and Banihashemi took a different approach. By focussing on the input error patterns that cause the

decoder to fail, they developed a simple technique to estimate the frame error rate (FER) and the bit

error rate (BER) of finite-length LDPC codes over the BSC [42]. The complexity of this technique was

then reduced in [44], and the estimation technique was extended to the AWGN channel with quantized

output in [43]. In this work, unlike [42], [44], [43], we are particularly interested in the examination of the

graphical structure of the problematic sets which dominatethe error floor performance. This information

is then used to efficiently search for these sets.

The complexity of the exhaustive brute force search method for finding problematic structures of size

t in a code of lengthn becomes quickly infeasible asn and t increase. Efficient search algorithms have

been devised to find small (dominant) stopping and trapping sets [40], [7], [32], [44], [41], [2], [21].

The reach of these algorithms however is still very limited.For example, the complexity of the algorithm

of [40], [41] is only affordable for codes with lengths up to∼ 500. Even for these lengths, the algorithm
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can only find trapping sets of maximum size11 with only one or two unsatisfied check nodes. This

is while for many codes, some of the dominant trapping sets may have larger size and/or more than

two unsatisfied check nodes. In [37] and [29], the authors proposed to build a database of all possible

configurations for trapping sets of different sizes in a graph with specific degree distribution and girth.

They then used a parent-child relationship between the trapping sets of different sizes to simplify the

search of the larger trapping sets. This method was used to find the dominant trapping sets of left regular

LDPC codes with left degree3 [37]. The method proposed in [37] however becomes very complex when

the degree of variable nodes, and in turn the number of possible configurations increases. The application

of this method becomes even more difficult when dealing with irregular LDPC codes as for such codes,

there may be a large number of possible configurations for each type of trapping set, due to the variety

of variable node degrees. Even for the left regular graphs with small left degrees, the number of possible

configurations becomes quite large for the larger trapping sets. It is therefore important to look for more

efficient algorithms to find the problematic structures thatdominate the error floor performance of LDPC

codes.

In this paper, we study the problematic graphical structures that dominate the error floor performance

of LDPC codes, collectively referred to as trapping sets, and demonstrate that they all contain at least one

short cycle (with a small exception of some of the trapping sets of irregular LDPC codes with degree-2

variable nodes). By examining the relationships between cycles and trapping sets, we devise an efficient

algorithm to find dominant trapping sets of an LDPC code. The algorithm is initiated by a set of short

cycles as input. Each cycle is then expanded recursively to trapping sets of increasing size in a conservative

fashion, i.e., the expanded sets all have the smallest size larger than the size of the current set, and each of

them will be used as a new input to the next step of the algorithm. It should be mentioned that although

our algorithm uses the topological relationships between the small trapping sets and the larger ones, it is

different from the method of [37] in several ways. Our algorithm is not based on the knowledge of the

exact structure of trapping sets, and hence does not need to build a database. In fact, instead of checking

all the possible configurations to find the existing ones in a graph, it directly and efficiently finds those

existing configurations, and so it is much faster. Moreover,unlike the method of [37], our algorithm uses

a general framework for all the degree distributions and girths (with a small exception of some of the

trapping sets of irregular LDPC codes with degree-2 variable nodes). The proposed algorithm is applicable

to any Tanner graph (structured or random) and can be tailored to find a variety of graphical structures,

such as elementary trapping sets and absorbing sets among others. For structured graphs, such as those of
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quasi-cyclic or protograph codes, one can use the existing automorphisms in the graph to further simplify

the search. Results on several LDPC codes verify the high efficiency and accuracy of the algorithm. For

example, for the tested codes, the search speed is improved by a factor of 10 to 100 compared to the

methods of [2] and [7].

The remainder of this paper is organized as follows. Basic definitions and notations are provided in

Section II. In Section III, we develop the proposed algorithm. Section IV presents the modification needed

for irregular LDPC codes. Section V includes some numericalresults. Section VI concludes the paper.

II. DEFINITIONS AND NOTATIONS

Let G = (L∪R ,E) be the bipartite graph, or Tanner graph, corresponding to the LDPC codeC, where

L is the set of variable nodes,R is the set of check nodes andE is the set of edges. The notationsL and

R refer to “left” and “right”, respectively, pointing to the side of the bipartite graph where variable nodes

and check nodes are located, respectively. The degree of a node v ∈ L (or R) is denoted byd(v) . For

a subsetS ⊂ L , Γ(S) denotes the set of neighbors ofS in R . The induced subgraphof S, represented

by G(S), is the graph containing nodesS ∪ Γ(S) with edges{(u, v) ∈ E : u ∈ S, v ∈ Γ(S)}. The

set of check nodes inΓ(S) with odd degree inG(S) is denoted byΓo(S). Similarly, Γe(S) represents

the set of check nodes inΓ(S) with even degree inG(S). The subgraph resulting from removing the

nodes ofΓo(S) and their edges fromG(S) is denoted byG′(S). In this paper, we interchangeably use the

termssatisfied check nodesand unsatisfied check nodesto denote the check nodes inΓe(S) andΓo(S),

respectively. Given a Tanner graphG = (L ∪ R ,E), the following objects play an important role in the

error floor performance of the corresponding LDPC code:

Definition 1:

i) A set S ⊂ L is an (a, b) trapping setif |S| = a and |Γo(S)| = b. The integera is referred to as the

sizeof the trapping setS.

ii) An (a, b) trapping setS is calledelementaryif all the check nodes inG(S) have degree one or two.

iii) A set S ⊂ L is an (a, b) absorbing setif S is an (a, b) trapping set and if all the nodes inS are

connected to more nodes inΓe(S) than to nodes inΓo(S).

iv) A set S ⊂ L is an (a, b) fully absorbing setif S is an (a, b) absorbing set and if all the nodes in

L\S have strictly more neighbors inR\Γo(S) than inΓo(S).

v) A setS ⊂ L is a k-out trappingset [40] if Γo(S) contains exactlyk nodes of degree one inG(S).

vi) Let G = (L ∪ R ,E) be a left-regular bipartite graph with left degreel. A setS ⊂ L is a Zyablov-

Pinsker (ZP) trapping set[23] if every node ofS is connected to less thanl− ⌊(l− 1)/2⌋ nodes in
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Fig. 1. Two lollipop walks of length7.

Γo(S).

The ZP trapping sets are the trapping sets of the Zyablov-Pinsker bit-flipping algorithm [49] over the

BSC [23]. It should also be noted that for odd values ofl, the definitions of ZP trapping sets and absorbing

sets are identical.

It is important to note that Definitions 1(ii) – 1(vi) are all special cases of a trapping set in Definition 1(i).

In the rest of the paper, therefore, we collectively refer tothem as trapping sets. Distinctions will be made

as necessary. Trapping sets with smaller values ofa and b are generally believed to be more harmful to

iterative decoding. Loosely speaking, such trapping sets are calleddominant. To measure how harmful a

trapping set really is, one can use techniques such as importance sampling [7] to measure the contribution

of the trapping set to the error floor. This contribution and the dominance of a trapping set (compared

to others) would also depend on the channel model and the iterative decoding algorithm, as well as the

detailed structure of the Tanner graph (not just the values of a andb).

In a graphG = (V,E) with the set of nodesV and the set of edgesE, a lollipop walk of lengthk is

defined as a sequence of nodesv1, v2, . . . , vk+1 in V such thatv1, v2, . . . , vk are distinct,vk+1 = vm for

somem ∈ [2, k], and (vi, vi+1) ∈ E for all i ∈ {1, . . ., k}. Fig. 1 shows two lollipop walks of length7.

The lollipop walk in Fig. 1(a) is represented asv1v2v3v4v5v6v7v2. A cyclecan be considered as a special

lollipop walk if the definition is extended tom = 1. The length of the shortest cycle in a graphG is

denoted byg and is called thegirth of G.

III. D EVELOPMENT OF THEPROPOSEDALGORITHM

A. Graphical Structure of Trapping Sets

Without loss of generality, we assume that the induced subgraph of a trapping set is connected.

Disconnected trapping sets can be considered as the union ofconnected ones. Moreover, to the best

of our knowledge, almost all the structures reported as dominant trapping sets (of regular LDPC codes) in

the literature have the property that every variable node isconnected to at least two satisfied check nodes

in the induced subgraph. We thus focus on trapping sets with this property except for irregular LDPC
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Fig. 2. The induced subgraph of a trapping set.

codes, where we relax this condition for degree-2 variable nodes. As an example, the subgraph in Fig. 2

does not satisfy this condition. (Variable nodes and check nodes are represented by circles and squares,

respectively.) Removal of nodev1 and its edges however makes the subgraph satisfy the condition. The

following lemma proves this property for certain absorbingand ZP trapping sets.

Lemma 1:Suppose thatS ⊂ L is an absorbing set (ZP trapping set) inG = (L ∪ R,E), and that for

all variable nodesv ∈ S, we haved(v) ≥ 2 (d(v) ≥ 3). Then each variable nodev ∈ S is connected to

at least two satisfied check nodes inG(S).

Proof: The proof follows from the definition of absorbing and ZP trapping sets.

For small trapping sets, which dominate the error floor performance, it is unlikely to see check nodes

of degree larger than2 in their subgraphs, i.e., most of the dominant trapping setsare elementary [7],

[30]. Related to this, almost all the trapping sets reportedas the dominant trapping sets of practical LDPC

codes are elementary. In fact, it can be shown that the sizes of non-elementary trapping sets for left-regular

graphs are generally larger than those of elementary ones (cf. Lemma 7 in Appendix A).

Example 1:For left-regular LDPC codes with left degree 4 and girths 6, 8and 10, lower bounds on

the sizes of non-elementary trapping setsS with less than 3 unsatisfied check nodes and with at least one

satisfied check node of degree larger than 2 inG(S), are 7, 14 and 22, respectively (based on Lemma

7 in Appendix A, and by choosingb = 2). Moreover, for the same conditions, the minimum sizes of

non-elementary trapping setsS with at least one unsatisfied check node of degree larger than1 in G(S)

(and without satisfied check nodes of degree larger than 2 inG(S)) are at least 5, 11 and 17, respectively.

This is while for the same scenario, the code can have elementary trapping sets of size 5, 8 and 17,

respectively.

In the following, we develop our search algorithm mainly forelementary trapping sets, and then present

simple modifications to tailor the algorithm to find non-elementary trapping sets.

In the rest of the paper, we use the notationT to denote the set of all trapping setsS in a graphG

whose induced subgraphG(S) is connected and for which every nodev ∈ S is connected to at least two

nodes inΓe(S). NotationT a is used for the set of all elements inT with sizea andTS denotes the set

of all elements inT that contain the setS. Naturally,T a
S denotes the set of all elements inT of sizea
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Fig. 3. Possible expansions of an elementary trapping setS to a larger elementary trapping setS ′. (Unsatisfied check nodes ofG(S ′) are
not shown.)

that contain the setS. In the following, we also assume that the Tanner graphG has no parallel edges

and no node of degree less than 2.

B. Expansion of Elementary Trapping Sets

The main idea of the proposed algorithm is to start from a relatively small set of small elementary

trapping sets, which are easy to enumerate, and then recursively expand them to larger elementary trapping

sets. To achieve this, we first characterize the expansion ofan elementary trapping set to a larger elementary

trapping set through the following lemmas.

Lemma 2:Let S be an elementary trapping set of sizea in T . Then for each elementary trapping set

S ′ ∈ T a+1

S (if any), the variable node inS ′\S is only connected to unsatisfied check nodes ofS (i.e., to

the check nodes inΓo(S)).

Proof: If the node inS ′\S is connected to any satisfied check nodes ofS, thenS ′ will have unsatisfied

check nodes inΓo(S
′) connected to3 variable nodes ofS ′. This contradictsS ′ being an elementary trapping

set.

Fig. 3(a) depicts an example of the setS ′ discussed in Lemma 2. (It should be noted that in all the

configurations of Fig. 3, including 3(a), unsatisfied check nodes ofG(S ′) are not shown.)

Lemma 3:Suppose thatA = {a1, ..., ai, ai+1, ..., aI} is the sorted set of sizes of the elementary trapping

sets inT in increasing order. LetS be an elementary trapping set of sizeai in T . If ai+1 > ai + 2, then

for each elementary trapping setS ′ ∈ T
ai+1

S (if any), the setS ′\S is connected to zero satisfied check
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nodes ofS (i.e., nodes inΓe(S)) and to only one or two unsatisfied check nodes ofS (i.e., nodes in

Γo(S)). If the setS ′\S is connected to two nodes inΓo(S), then there is no cycle inG(S ′\S). If the set

S ′\S is connected to only one node inΓo(S), then there is exactly one cycle inG(S ′\S).

Proof: If any variable node inS ′\S is connected toΓe(S), thenG(S ′) contains satisfied check nodes

of degree4 or higher, or unsatisfied check nodes of degree greater than1. Both are in contradiction with

S ′ being an elementary trapping set.

SinceS ′ is an elementary trapping set, there cannot be more than one connection between each node of

Γo(S) and the nodes inS ′\S. To see this, consider a nodev ∈ S ′\S which is connected toΓo(S). Node

v can have only one connection toΓo(S) because otherwise, all the other nodes inS ′\S can be removed

and we will end up with an elementary trapping set of sizeai + 1 in T , which is in contradiction with

the assumption of the lemma.

Now suppose that there are at least 3 connections between thevariable nodes inS ′\S and Γo(S).

Based on the discussion in the previous paragraph, this means that there are at least3 variable nodes in

S ′\S each with a single connection to a different check node inΓo(S). If G(S ′\S) is not connected,

then one can remove one of its components and obtain an elementary trapping set of size smaller than

ai+1, which results in a contradiction. IfG(S ′\S) is connected, then one can find the shortest paths in

G(S ′\S) between every two variable nodes ofS ′\S that are connected toΓo(S), and among them select

the one with the least number of nodes. By keeping the nodes onthe selected path and removing all the

other nodes inS ′\S, one can then obtain an elementary trapping set of size smaller thanai+1, which is

again a contradiction. We therefore conclude that the number of connections between the variable nodes

in S ′\S andΓo(S) must be strictly less than 3.

For the case thatS ′\S is connected to exactly two nodes inΓo(S), there must be two different variable

nodesv and v′ of S ′\S corresponding to those connections. Also, there must be no cycles inG(S ′\S).

Otherwise, one can remove all the variable nodes on the cycleexcept those on the shortest path between

v andv′, and obtain an elementary trapping set larger thanai but smaller thanai+1. This contradicts the

lemma’s assumption. Fig. 3(b) is an example of the case whereS ′\S is connected to exactly two nodes

in Γo(S).

The proof for the case with one connection is similar and omitted. Fig. 3(c) is an example of this

case, where the expansion of setS is through a lollipop walk. In both Figs. 3(b) and(c), the dashed line

indicates that more variable and check nodes can be part of the chain.

Lemma 4:Suppose thatA = {a1, ..., ai, ai+1, ..., aI} is the sorted set of sizes of the elementary trapping
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sets inT in increasing order and thatai+1 = ai + 2. Let S be an elementary trapping set of sizeai in

T . If the girth of the graph is larger than 4, then for each elementary trapping setS ′ ∈ T
ai+1

S (if any),

the only possible configuration forG(S ′) is that of Fig. 3(b), described in Lemma 3, with only 2 variable

nodes inS ′\S. If the girth is 4, then the only possible configurations are those in Figs. 3(b) (with only

2 variable nodes inS ′\S) 3(d) and 3(e).

Proof: The proof is similar to that of Lemma 3 and is omitted.

C. Proposed Algorithm

The basic idea behind the proposed algorithm is to constructlarger elementary trapping sets by

expanding smaller ones. More precisely, given an elementary trapping setS of size ai at the input,

the algorithm finds all the elementary trapping setsS ′ containingS, with the property that their sizeai+1

is the smallest size greater thanai. The algorithm then continues by using the sets found in the current

step as the inputs to the next step and finds the next set of larger elementary trapping sets. Each step

of the algorithm is performed by using Lemmas 2 - 4. The pseudo-code for one step of the proposed

algorithm is given in Algorithm 1.

Algorithm 1: Expansion of input elementary trapping sets to larger onesof size up tok with the number

of unsatisfied check nodes up toT in G = (L ∪R ,E) .

(Lin andLout are the lists of input and output trapping sets, respectively.)

1: Inputs: G andLin.

2: Initialization: Lout ← ∅.

3: repeat

4: Select an element ofLin and denote it astj .

5: Construct a new graphG′ by removing all the nodes inΓe(tj) and their neighbors fromG.

6: imax ← (k − |tj|) andG ← ∅.

7: for each nodec in Γo(tj) do

8: Examine the neighborhood ofc in G′ one layer at a time and to the maximum ofimax layers

in search for paths withi ≤ imax variable nodes betweenc and the other nodes ofΓo(tj), and

lollipop walks with i ≤ imax variable nodes starting fromc.

9: DenoteGc as the set of all such paths/lollipop walks of shortest length i (if any).
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10: if i < imax then

11: imax ← i.

12: G ← Gc.

13: else

14: G ← G ∪ Gc.

15: end if

16: end for

17: for each elementS in G do

18: t′ ← tj ∪ S.

19: if (t′ /∈ Lout) and (|Γo(t
′)| ≤ T ) then

20: Lout ← Lout ∪ {t
′}.

21: end if

22: end for

23: until all the elements ofLin are selected.

24: Output: Lout.

Remark 1:Note that in Line 5 of Algorithm 1, all the satisfied check nodes inG(tj), i.e., the setΓe(tj),

and their neighboring variable nodes are removed from the graph. This is because, based on Lemmas 2 - 4,

such nodes cannot be part of the expansion of an elementary trapping set.

Remark 2: In Line 19 of the algorithm, the threshold valueT on the number of unsatisfied check nodes

is needed to keep the complexity of the overall search algorithm, which involves multiple applications of

Algorithm 1, low. A proper choice ofT has negligible effect on the ability of the algorithm to find the

larger trapping sets(a, b) with small values ofb. This is explained in the following example.

Fig. 4. An example of a(7, 8) trapping set (satisfied and unsatisfied check nodes are shownby empty and full squares, respectively)

Example 2:Consider the(7, 8) trapping setS, shown in Fig. 4. This set belongs toT and contains4
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trapping sets of size6, all also inT . These four trapping sets can be each obtained by removing one of the

nodesv1, v3, v5 andv7. As a result, we have(6, 8), (6, 8), (6, 12) and(6, 10) trapping sets, respectively.

Among these trapping sets, the(6, 8) ones have a smaller number of unsatisfied check nodes. Starting

from each of these two trapping sets, Algorithm1 finds S. Hence, ignoring the(6, 12) (or even(6, 12)

and (6, 10)) trapping set(s) does not impair the ability of the algorithm to find S.

Remark 3:Based on Lemmas 2 – 4, it can be proved that starting from an(a, b) elementary trapping

setS, Algorithm 1 will find all the (a′, b′) elementary trapping sets of the smallest sizea′ larger thana

that containS (this requires the removal of the condition|Γo(t
′)| ≤ T in Line 19). Note that this does

not imply that by the recursive application of Algorithm 1 one can obtain all the elementary trapping sets

containingS. The following example demonstrates this.

Example 3:Consider the(6, 6) elementary trapping setS ′ = {v1, v2, v3, v4, v5, v6} in Fig. 5. Assume

that Algorithm 1 starts from the elementary trapping setS = {v1, v2, v6}. Using this input, the output

of the algorithm is{v1, v2, v6, v5}. By subsequent applications of the algorithm, the next outputs are

{v1, v2, v6, v5, v7} and{v1, v2, v6, v5, v7, v3, v4}, respectively. This means that the algorithm does not

find the trapping setS ′, althoughS ′ containsS. (It is however easy to see that if the algorithm starts

from the set{v2, v3, v4, v5}, it will find S ′.)

Fig. 5. An example explaining that the algorithm cannot find all the elementary trapping sets containing a specific elementary trapping set

In fact, the sufficient condition for the algorithm to find a trapping setS ′ of sizeaj , starting with one of

its subsetsS of sizeai < aj , is thatS ′ has at least one subset inT a
S for all a ∈ A, ai < a < aj , where

A is defined in Lemma 3.

The following example shows that despite the limitation explained in Remark 3 and Example 3, for

many cases, the proposed algorithm in fact finds (in a guaranteed fashion)all the trapping sets(a, b) with

a and b up to certain values.

Example 4:For a left-regular graph with left degree 4 and girth larger than 4, initiating the proposed

algorithm with the set of cycles of lengthg andg+2, one can guarantee to findall the elementary trapping
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sets of size less than9 with less than5 unsatisfied check nodes. This can be seen by the inspection ofall

the possible structures for such trapping sets and verifying that for each structure, the removal of only one

variable node will result in another trapping set inT . Subsequent removals of such nodes from an(a, b)

elementary trapping set witha < 9 and b < 5 in T , thus, results in a sequence of embedded elementary

trapping sets inT , each with size only one less than that of its parent. The sequence will always end

with a cycle of lengthg or g + 2. This implies that all such trapping sets satisfy the sufficient condition,

mentioned earlier, for being found by the algorithm starting from a cycle of lengthg or g + 2.

Similar results to those of Example 4 can be found for other left-regular graphs. For irregular graphs

however, it is very difficult to provide such guarantees. This is due to the fact that the number of possible

structures for a trapping set of a given size could be very large in this case.

Remark 4:For irregular LDPC codes, the variable nodes with large degrees cannot be part of small

trapping sets. This is formulated in the following lemma.

Lemma 5: In a graphG with girth g > 4, if an (a, b) trapping setS contains a variable nodev of

degreed(v) > b, thena ≥ d(v) + 1− b.

Proof: The proof is provided in Appendix A.

Based on Lemma 5, for example, for an irregular code with girth larger than4, a variable node of degree

15 can not participate in an(a, b) trapping set witha < 13 and b < 4. Such results can be used to

simplify the algorithm by removing the large degree variable nodes and their edges from the graph.

Remark 5: It is easy to see that for the left-regular graphs with left degree 3 or 4, all the trapping sets

found by Algorithm 1 are ZP trapping sets. For the left-regular graphs with left degree 3, the obtained

trapping sets are also absorbing sets.

Remark 6:Our simulations for many practical LDPC codes show that in almost all the cases,ai+1 ≤

ai + 3.

In the following, we discuss the selection of the initial setof elementary trapping sets.

D. Initial Set of Trapping Sets

One of the graphical objects that plays an important role in the structure of trapping sets is a cycle.

Tian et al. [36] showed that every stopping set includes the variable nodes of at least one cycle. Related

to this, the induced graph of the support of a pseudo-codeword always contains at least one cycle [18].

In [7], [44], [48], it was shown that an overwhelming majority of dominant trapping (absorbing) sets are

combinations of short cycles. Short cycles are also easy to enumerate [44]. We thus use short cycles as
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the initial inputs to the proposed algorithm. The followinglemma provides more justifications for this

choice.

Lemma 6:

i) In a left-regular graphG with left degreedl ≥ 2, if the induced subgraphG(S) of an (a, b) trapping

setS does not contain any cycle, thenb ≥ a(dl− 2)+2. The inequality is satisfied with equality for

elementary trapping sets.

ii) The variable nodes in any shortest cycle (of lengthg) of a Tanner graph form an elementary trapping

set.

iii) Let T be the set of all trapping setsS of a graphG, whose induced subgraphG(S) is connected

and for which every nodev ∈ S is connected to at least two nodes inΓe(S). Then for everyS ∈ T ,

its induced subgraphG(S) contains at least one cycle.

iv) Suppose thatS ⊂ L is an absorbing set of a left-regular Tanner graphG = (L∪R,E) with left node

degrees at least 2. ThenG(S) contains at least one cycle.

v) Suppose thatS ⊂ L is a ZP trapping set of a Tanner graphG = (L ∪ R,E) with node degrees at

least 3. ThenG(S) contains at least one cycle.

Proof: The proof of Part (i) is provided in Appendix A. The proofs forParts (ii) and (iii) are simple

and thus omitted. Parts (iv) and (v) follow from Lemma 1 and Part (iii).

It can be shown that Part (i) of Lemma 6 can be generalized to the case where variable node degree

distribution is irregular. In this case, the result is modified asb ≥ a(d̄S − 2) + 2, whered̄S is the average

degree of variable nodes inS. The following example, based on Part (i) of Lemma 6, demonstrates that

cycle-free(a, b) trapping sets have relatively large values ofb.

Example 5:For a left-regular graphG with left degree 4, any cycle-free(a, b) trapping set satisfies

b ≥ 2(a+1). Such large values ofb for a givena would imply that the(a, b) trapping set is not dominant.

Our simulation results indicate that for denser graphs, theset of short cycles of lengthg, or g andg+2,

whereg is the girth, is sufficient to find almost all the small (with, say, a ≤ 10) dominant trapping sets.

In this case, adding short cycles of larger lengths to the input set has negligible effect on the performance

of the algorithm, while increasing its complexity. For example, we examined a number of randomly

constructed codes with rates larger than 0.4. The codes had block length 1000 and left-regular Tanner

graphs with left degree 5 and girth 6. In all cases, the trapping sets obtained by Algorithm 1 using cycles

of length 6 and 8 as input were identical to those obtained by using cycles of length 6, 8 and 10 as the

input set.
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For sparser graphs, however, one may need to use short cyclesof larger lengths (e.g.,g, g + 2, and

g + 4) as the initial set.

E. Complexity of the Algorithm

The complexity of the algorithm is highly dependent on the short cycle distribution of the graph, which

itself is mostly a function of the degree distribution of thegraph (code) [19]. As a result, in general, the

complexity increases much faster with the increase in the average variable and check node degrees of the

graph than it does with increasing the block length. To have amore detailed analysis of the complexity

of Algorithm 1, we note that the total complexity can be divided into two parts:a) Finding the initial

input set andb) Expanding the input set to larger trapping sets.

Regarding the complexity of Part(a), assuming that an exhaustive brute force search is used to find

cycles of lengthk, say forg ≤ k ≤ g+4, the complexity isO(nd
k/2
v d

k/2
c ), for a (dv, dc) regular graph with

n variable nodes. This is obtained by considering all the possible paths of lengthk starting from all then

variable nodes in the graph. The memory required for the storage of all thek-cycles is of orderO(kNk),

whereNk is the number ofk-cycles in the graph. To the best of our knowledge, there is notheoretical

result on howNk scales withn or the degree distribution of the Tanner graph. Empirical results of [19]

however suggest thatNk is mainly a function of the degree distribution and is ratherindependent ofn.

Regarding the complexity of expanding the input trapping sets to larger ones, consider the expansion

of an (a, b) trapping setS of a (dv, dc) graph. Depending on the sizea′ > a of the smallest trapping set(s)

S ′ that containS, the complexity and memory requirements for finding and storing the setsS ′ would

differ. For a′ = a+1, a+2 anda+3, the complexity isO(bdc), O(bdvd
2
c) andO(bd2vd

3
c), respectively. The

memory requirement for these cases are respectivelyO(abdc), O(abdvd
2
c) andO(abd2vd

3
c). To see this, for

example, consider the case wherea′ = a + 1. To find S ′, one needs to check at mostb(dc − 1) variable

nodes as possible candidates, which corresponds toO(bdc) complexity. The memory required to store all

possible trapping sets of sizea+ 1 obtained through such a search is thus upper bounded by(a+ 1)bdc,

which is of orderO(abdc).

Based on the above discussions, assuming that the initial set is limited to cycles of length up to

g + 4, and that we only consider trapping setsS ′ of size up toa′ = a + 3 in the expansion process, the

complexity of Algorithm 1 will beO(d2vd
3
c(T

∑g/2+2

i=g/2 N2i+nd
g/2
v d

g/2−1
c )) and the memory requirement will

beO(Td2vd
3
c

∑g/2+2

i=g/2 2iN2i), whereT is the maximum number of unsatisfied check nodes in Algorithm1.

It is however important to note that the actual complexity and memory requirements are much less than

what these complexity bounds may suggest. In particular, our simulation results show that codes with
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block lengths up to about 10,000 with a wide variety of degreedistributions can be managed using the

proposed algorithm on a regular desktop computer.

F. Expansion of Non-Elementary Trapping Sets

According to the general definition of trapping sets, any arbitrary set of variable nodes can be considered

as a trapping set. Hence, to expand a connected trapping setS of sizea, one just needs to select a variable

node from the neighboring variable nodes, and add it toS to obtain a new trapping setS ′ with size

a′ = a + 1. This method of expansion leads to an exponentially growingsearch space. Even by limiting

the search space to the trapping sets inT , i.e., connected trapping sets for which every variable node is

connected to at least two satisfied check nodes, there are still too many configurations forS ′, especially

whena′ ≫ a. For practical LDPC codes withg > 4, however, considering a nested sequence of trapping

sets, the size of the next larger trapping seta′ is almost always less thana + 3.

The search for non-elementary trapping sets of sizea′ ≤ a + 3 in a graph with girthg > 4, can

be performed similar to what was described for the elementary trapping sets with a number of small

differences. For non-elementary trapping sets, since there is no limitation on the degrees of the check

nodes inG(S), only the variable nodes ofS and their edges are removed from the graph. Then the shortest

paths between different check nodes ofG(S) or the shortest lollipop walks starting from different check

nodes ofG(S) are found. However, it should be mentioned that not all such structures will necessarily

satisfy the condition that each variable node is connected to at least two satisfied check nodes. After

finding a candidate trapping set, one should thus check for this condition. In summary, to find the non-

elementary trapping sets of sizea′ ≤ a + 3, the only modifications needed to be applied to Algorithm 1

are the followings:

5: Construct a new graphG′ by removing all the nodes ofS from G.

7: for each nodec in Γ(tj) do

8: Examine the neighborhood ofc in G′ one layer at a time and to the maximum ofimax layers in

search for paths withi ≤ imax variable nodes betweenc and the other nodes ofΓ(tj), and lollipop

walks with i ≤ imax variable nodes starting fromc.

19: if (t′ ∈ T ) and (t′ /∈ Lout) and (|Γo(t
′)| ≤ T )

IV. IRREGULAR LDPC CODES

For the irregular LDPC codes which do not have variable nodesof degree 2, Algorithm 1 without any

modification can be used to find the dominant trapping sets. Asmentioned in Remark 4 of Section III.C,
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based on the desired sizes of trapping sets, one may also remove the high-degree variable nodes and their

edges from the graph to simplify the algorithm. In the case that the code has variable nodes of degree

2, some modifications are needed for the initial input set of the algorithm. In this section, we study the

effect of degree-2 variable nodes on the structure of trapping sets in irregular LDPC codes, and present

simple steps to find the corresponding trapping sets.1

A. On the Degree-2 Variable Nodes

It is known that degree-2 variable nodes play an important role in the performance of irregular LDPC

codes. On one hand, to have codes with asymptotic performance close to the capacity, the proportion

of degree-2 variable nodes should be as large as possible. This is usually a considerable fraction of the

total variable nodes of the code. On the other hand, having a large proportion of degree-2 variable nodes

results in a small minimum distance and a high error floor [35]. Cycles containing only degree-2 variable

nodes are codewords. Hence, to have a large minimum distance, it is desirable to avoid such cycles,

especially the shorter ones. To avoid all cycles of any length containing only degree-2 variable nodes,

the number of these nodesnv2 must be strictly less than the number of check nodesm (i.e., nv2 < m).

Based on this fact, a class of irregular LDPC codes withnv2 = m − 1, calledextended irregular repeat

accumulate(eIRA) codes was proposed in [46]. It was shown in [46] that these codes exhibit relatively

better error floor performance compared to the codes constructed by the optimized degree distributions

without applying this restriction onnv2 . Related to this, it was proved in [33] that for the case where

nv2 > m, the minimum distance grows only logarithmically with the code length. For the special case

wherenv2 = m and all the degree-2 variable nodes are part of a single cycle, the minimum distance is

a sub-linear power function of the block length [35]. In the following, we study the effect of having a

large fraction of degree-2 variable nodes on the structure of trapping sets in irregular LDPC codes.

Example 6:For all the degree distributions optimized for rate-1/2 LDPC codes on the binary-input

AWGN (BIAWGN) channel [31],43% to 55% of variable nodes are of degree 2. This implies that, on

average, every check node in the corresponding codes is connected to about2 variable nodes of degree 2.

The average number of degree-2 variable nodes connected to each check node becomes even larger for

the optimized codes of higher rate. This is explained in the next example.

Example 7:For the optimized degree distribution of rate8/9 over the BIAWGN channel with the

maximum variable node degree 10 [31],31% of variable nodes are of degree 2. This implies that, on

1In case that the graph contains degree-1 variable nodes as well, a similar approach to the one described in Section IV.B (for finding
dominant trapping sets which include degree-2 variable nodes) can be used to find the dominant trapping sets containing degree-1 variable
nodes.
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Fig. 6. Typical trapping sets constructed mostly by the degree-2 variable nodes.

average, every check node in a Tanner graph with this degree distribution is connected to about6 variable

nodes of degree 2.

Consequently, it is very likely to see chains of degree-2 variable nodes, referred to as2-chains, in the

Tanner graph of LDPC codes with optimized degree distributions. The length of a 2-chain is defined as

the number of the edges in the subgraph induced by the degree-2 variable nodes of the chain. That is,

the length of a 2-chain containingk variable nodes of degree 2 is2k. A 2-chain of length2k is a (k, 2)

trapping set (with the exception of the case where the chain is closed and forms a cycle; in that case, we

refer to the 2-chain as a2-cycle. A 2-cycle of length2k, is a(k, 0) trapping set). Having only 2 unsatisfied

check nodes, 2-chains of length2k are among the most dominant trapping sets of sizek. Fig. 6(a) shows

a 2-chain of length 10 (a(5, 2) trapping set). Note that this trapping set also contains two(4, 2), three

(3, 2) and four (2, 2) trapping sets as its subsets. It is worth noting that although for the cases where

nv2 = m − 1 andnv2 = m, the graph may have no or only one 2-cycle, it can have many 2-chains of

different lengths. For example, it is easy to see that for thecase wherem = nv2 and all the degree-2

variable nodes are contained in a single cycle, there arem 2-chains of length2k, 1 ≤ k ≤ m− 1.

Another aspect of having 2-chains in the Tanner graph of irregular LDPC codes is that they might

participate in short cycles with other variable nodes of higher degrees. These cycles have low approximate

cycle extrinsic message degree (ACE) (ACE is defined as
∑

i di − 2, where the summation is taken over

all the variable nodes of the cycle, anddi is the degree of theith variable node in the cycle [36]). It has

been shown that cycles with low ACE deteriorate the error rate performance, and that avoiding them in

the construction of irregular LDPC codes generally improves the error rate [45], [39].

Example 8:Consider the case wherem = nv2 and all the degree-2 variable nodes are contained in

a single cycle. In this case, there exist two 2-chains between any two check nodes of the graph. This
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implies that every variable node of degreedv > 2 along with the 2-chains connecting its check nodes

form several trapping sets with at mostdv − 2 unsatisfied check nodes.

Example 9:Fig. 6(b) shows a(7, 1) trapping set composed of one variable node of degree 3 and a

chain of six variable nodes of degree 2.

Example 10:The (12, 1) trapping sets of the(1944, 972) LDPC code adopted in the IEEE 802.11

standard [13] are single cycles of length24, each consisting of a 2-chain of length 22 and one degree-3

variable node.

Even in the cases wherenv2 < m (but not much smaller), it is likely to see cycles mostly constructed by

2-chains.

Example 11:Fig. 6(c) shows a(7, 2) trapping set composed of two variable nodes of degree 3 and

five variable nodes of degree 2.

Due to the important role that 2-chains (and 2-cycles) play in the formation of dominant trapping sets,

we study the necessary condition to avoid these structures in the following theorem.

Theorem 1:Let m be the number of check nodes andnv2 be the number of degree-2 variable nodes in

the graphG corresponding to an irregular codeC. If G has no 2-chains of length2k or larger, fork ≥ 2

(and no 2-cycles of length less than or equal to2k) then

m ≥ nv2(1 +
1

∑k−2

i=0
(dc,max − 1)⌊

i+1

2
⌋
) ,

wheredc,max is the maximum check node degree inG.

Proof: Let Gv2 denote the induced subgraph of degree-2 variable nodes of the graphG. This subgraph

contains no cycle. Otherwise, the length of such a cycle would be at least2k+2, which would imply the

existence of a 2-chain of length2k in Gv2 , and thus inG. This contradicts the assumption of the theorem.

The subgraphGv2 is thus composed of some tree-like components. For each component, the number of

check nodes is always larger than the number of variable nodes by one. Therefore the total number of

check nodes of the graph is more than the number of degree-2 variable nodes by at least the number of

disjoint components inGv2 (some check nodes ofG may not appear inGv2). To avoid 2-chains of length2k

or larger, the maximum number of variable nodes in each component is
∑k−2

i=0
(dc,max − 1)⌊

i+1

2
⌋(Appendix

A, Lemma 8). The minimum number of components inGv2 is thus⌈nv2/
∑k−2

i=0
(dc,max − 1)⌊

i+1

2
⌋⌉ .

Theorem 1 can be used to determine the maximum number of degree-2 variable nodes in an irregular

graph to avoid 2-chains (and 2-cycles) of a specific length.

Example 12:For an irregular code with 1000 check nodes of degreedc = 6, to avoid(4, 2) trapping
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sets corresponding to 2-chains of length 8, the number of variable nodes of degree 2 must be at most

910.

Theorem 1 can be also used to obtain some information about the existing trapping sets in a code.

Example 13:For the same scenario as that of Example 12 (i.e.,m = 1000, dc = 6), the eIRA

construction [46] results innv2 = m − 1 = 999. For these parameters, the smallest value ofk which

satisfies the inequality of Theorem 1 isk = 9. This implies that the eIRA code will have 2-chains of

length 16 and smaller, corresponding to(k, 2) trapping sets for all values ofk < 9.

B. Finding Trapping Sets of Irregular LDPC Codes

In this section, we present a simple process to find the dominant trapping sets involving degree-2

variable nodes. The process can be used in combination with Algorithm 1 to find the dominant trapping

sets of irregular graphs containing degree-2 variable nodes. It is important to note that according to the

definition of absorbing sets, any variable node of degree 2 inthese sets is connected to 2 satisfied check

nodes. Also, for the trapping sets found by Algorithm 1, eachvariable node is connected to at least 2

satisfied check nodes. Therefore, 2-chains and other trapping sets containing variable node(s) of degree

2 with one satisfied check node are neither absorbing sets norfound by Algorithm 1. In fact, it appears

that being connected to 2 satisfied check nodes is too strong of a condition for a variable node of degree

2 to be part of a dominant trapping set. For this reason, we consider also trapping sets whose variable

nodes of degree 2 are connected to only one satisfied check node. To obtain such trapping sets using

the expansion of smaller trapping sets, we consider an(a− 1, b) trapping setS which is expanded to a

trapping setS ′ by the connection of a variable nodev of degree 2 to an unsatisfied check node ofS.

Three cases are possible:

a) v is not connected to any other check node ofΓ(S). In this case,S ′ = S ∪ {v} is an(a, b) trapping

set. If S is elementary, so isS ′.

b) v is also connected to a satisfied check node ofS. In this case,S ′ = S∪{v} is an(a, b) non-elementary

trapping set.

c) v is also connected to another unsatisfied check node ofS. In this case,S ′ = S ∪{v} is an(a, b−2)

trapping set. IfS is elementary (or is in the setT ), so isS ′.

Such an expansion of a trapping set can be performed multipletimes by adding one neighboring variable

node of degree 2, each time. This is summarized in Algorithm 2. In a general case, Algorithm 2 can be

used with Algorithm 1 to expand the trapping sets found by Algorithm 1. This is summarized in Algorithm

3.
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Algorithm 2: Finding trapping sets of size up tok with the number of unsatisfied check nodes up toT

constructed by adding degree-2 variable nodes to the input trapping sets for an irregular LDPC code with

the Tanner graphG = (L ∪ R ,E) .

(Lin andLout are the lists of input and output trapping sets, respectively)

1: Inputs: G, Lin

2: Lout ← ∅.

3: repeat

4: Select an element ofLin with size less thank, and denote it ast.

5: Form the setN2(t) which contains variable nodes of degree 2 inL\t that are connected to at least

one unsatisfied check node oft, i.e., toΓo(t).

6: for each nodev in N2(t) do

7: t′ ← t ∪ {v}.

8: if (t′ ∈ T ) 2 and (t′ /∈ Lout) and (|Γo(t
′)| ≤ T ) then

9: Lout ← Lout ∪ {t
′}.

10: end if

11: end for

12: until all the elements ofLin are selected.

13: Output: Lout.

Remark 7:Note that in Algorithm 2, the number of unsatisfied check nodes of the resultant trapping

sets never increases. Hence, to find trapping sets of sizea with less thanb unsatisfied check nodes, one

should consider all the (a′, b′) trapping sets witha′ < a, b′ < b.3 It should be mentioned that since every

single variable node of degreedv can be regarded as a(1, dv) trapping set, to find the trapping sets with

less thanb unsatisfied check nodes, we consider also all the variable nodes of degreedv ≤ b as part of

the initial set. For example, for the case ofb = 3, starting with a single variable node of degreedv = 2 or

dv = 3, two typical structures of the resultant trapping sets are shown in Figs. 7(a) and 7(b), respectively.

Note that starting from a degree-2 variable node and performing the above steps results in finding a

2This condition ensures that each variable node of degree larger than 2 is connected to at least 2 satisfied check nodes. Thecondition has
no bearing on degree-2 variable nodes.

3Although this condition may not cover all the trapping sets discussed in Partc of Section IV.B, our simulations show that for the tested
codes, almost all the trapping sets are in fact found by Algorithm 2. The trapping sets that are missed by Algorithm 2 are the ones that can
only be obtained by starting from trapping sets with larger number of unsatisfied check nodes.
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Fig. 7. Typical expansions of degree-2 and degree-3 variable nodes by adding the neighboring degree-2 variable nodes.

2-chain.

Algorithm 3: Finding trapping sets of size up tok with the number of unsatisfied check nodes up toT

for an irregular LDPC code with the Tanner graphG = (L ∪R ,E) .

(Lin andLout are the lists of input and output trapping sets, respectively.)

1: Inputs: G, Lin

2: UseLin as the input of Algorithm 1

3: L1out = trapping sets found by Algorithm 1

4: L2in = L1out
⋃
{low degree variable nodes}

5: UseL2in as the input of Algorithm 2

6: Lout = trapping sets found by Algorithm 2

7: Output: Lout.

Remark 8:For irregular codes, in addition to short cycles, cycles with low ACE are also considered

as part of the initial input set of Algorithm 1. This is because these cycles may not be found using

the expansion process of Algorithm 1. Algorithm 1 finds the smallest trapping sets containing the input,

which are usually the combination of the input and a short cycle (or a structure described in Lemmas 2

– 4). Since variable nodes of large degree are more likely to be part of such structures, the outputs of

Algorithm 1 are usually the combinations of the input and variable node(s) of large degree. This is while

cycles with low ACE are generally constructed by low degree variable nodes. Cycles with low ACE can

be easily found by monitoring the ACE value during the execution of a cycle finding algorithm.

Remark 9:As an alternative approach to using Algorithm 3, one can onlyuse Algorithm 2 with the

variable nodes of low degree and cycles with low ACE as the initial input set, and then recursively expand

them to larger trapping sets. It should however be noted thatfor the irregular LDPC codes with a small
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fraction of degree-2 variable nodes, this approach may not find all the dominant trapping sets of the code.

V. NUMERICAL RESULTS

For the simulations, we assume binary phase-shift keying (BPSK) modulation over the AWGN channel

with coherent detection. NotationsEb andN0 are used for the average energy per information bit and the

one-sided power spectral density of the AWGN, respectively.

A. Regular Codes

We have applied the proposed algorithm successfully to a large number of regular LDPC codes. Here,

we only present the results for four of them. The first three examples are random and structured LDPC

codes whose dominant trapping sets have already been reported in the literature and thus provide us with

a reference for comparison. The fourth example is a random LDPC code of rate1/2 with variable node

degree 4. To verify the trapping sets found by the proposed algorithm for this code, we estimate the

error floor using importance sampling [7] based on the obtained trapping sets and demonstrate that the

estimation is practically identical to the results of MonteCarlo simulations. The reported running times

in the following examples are for a desktop computer with2-GHz CPU and1 GB of RAM.

Example 14:We consider an LDPC code constructed by the progressive edgegrowth (PEG) algorithm

[12] (PEGReg252x504of [50]). This code is left-regular with the left degree 3, and girth 8. The same

code was also investigated in [21] and the distribution of its fully absorbing sets was determined. For

Algorithm 1, the short cycles of lengthg, g+2 andg+4 were used as the initial input set. The algorithm

was limited to finding trapping sets of maximum size 13, and the thresholdT was selected such that only

the trapping sets with the two smallest values ofb for each size were considered. (Using a largerT has

no effect on the accuracy of the results reported here.) Since all the variable nodes have degree 3, all the

trapping sets found by Algorithm 1 are absorbing sets. Fullyabsorbing sets were found by examining

the obtained absorbing sets and testing them for the definition of a fully absorbing set. Table I shows

the absorbing sets and the fully absorbing sets found by the proposed algorithm and their multiplicities.

In the table, we have also reported the results obtained by the exhaustive search algorithm of [21], for

comparison. (Note that the hyphen notation “-” in the table means that no data was reported.) As can

be seen from Table I, for many classes of trapping sets, the proposed algorithm found exactly the same

number of fully absorbing sets as the exhaustive search algorithm of [21] did. For the other classes,

the difference between the two sets of results is rather small. Moreover, the proposed algorithm found

(11, 3), (13, 3), (10, 4) and(12, 4) fully absorbing sets which are out of the reach of the exhaustive search
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algorithm. It is worth mentioning that the exhaustive search algorithm of [21] took about 7 hours to find

only the first three rows of Table I [21] (needless to say, the larger the size of the absorbing sets, the

longer the running time of the algorithm). This is while Algorithm 1 took only 10 minutes to find all the

absorbing sets listed in Table I.

TABLE I
DOMINANT ABSORBING SETS(ABS) AND FULLY ABSORBING SETS OF THEPEGReg252x504CODE OBTAINED BY THE

PROPOSEDALGORITHM AND THE EXHAUSTIVE SEARCH ALGORITHM OF [21]

Trapping Proposed Proposed Exhaustive
Set Algorithm Algorithm Search [21]

(ABS) (Fully ABS) (Fully ABS)

(4, 4) 802 760 760

(5, 3) 14 14 14

(5, 5) 11279 10156 10156

(6, 4) 985 849 849

(6, 6) 86391 66352 66352

(7, 3) 57 47 47

(7, 5) 27176 21810 22430

(8, 2) 5 4 4

(8, 4) 2610 2258 2270

(9, 1) 1 1 1

(9, 3) 156 146 146

(10, 2) 6 6 6

(10, 4) 7929 6691 -

(11, 3) 605 558 -

(12, 2) 25 24 26

(12, 4) 23668 19959 -

(13, 1) 1 1 1

(13, 3) 2124 1954 -

Example 15:In this example, we consider the Tanner(155, 64) code [34]. This code was also investi-

gated in [41]. The exhaustive search algorithm of [41] showed that this code has no trapping set of length

less than8 with 2 unsatisfied check nodes and has no trapping set of length up to11 with 1 unsatisfied

check node. It was also shown in [41] that the code has465 (8, 2) trapping sets.

The girth for the Tanner graph of this code isg = 8. The short cycles of lengthg, g+2 andg+4 were

used as the initial inputs to Algorithm 1. The algorithm was limited to only find trapping sets of maximum

size 12 and the thresholdT was selected such that only the trapping sets with the two smallest values of

b for each size were considered. Table II shows the trapping sets found by the proposed algorithm and

their multiplicity. As can be seen in the table, the algorithm found all the 465(8, 2) trapping sets among

others. All the trapping sets in Table II were found in less than 2 minutes.

To further verify that the obtained trapping sets do in fact include the dominant ones, we performed
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Monte Carlo simulations on the code with a 4-bit quantized min-sum decoder over the AWGN channel

at signal-to-noise ratio (SNR) of 6.5 dB (which is in the error floor region of this code). Among the300

error patterns, about90% were (8, 2) trapping sets, about8% were (10, 2) trapping sets, and only 2 did

not belong to the sets reported in Table II.

TABLE II
DOMINANT TRAPPINGSETS OF THETANNER (155, 64) CODE OBTAINED BY THE PROPOSEDALGORITHM

Trapping Set Multiplicity

(4,4) 465

(5,3) 155

(6,4) 930

(7,3) 930

(8,2) 465

(9,3) 1395

(10,2) 1395

(11,3) 1860

(12,2) 930

Example 16:As the third example, we consider the Margulis(2640, 1320) code [25], [50]. It is known

that the most dominant trapping sets of this code are1320 (12, 4) and 1320 (14, 4) trapping sets [30].

The Tanner graph of this code has girthg = 8. The set of short cycles of lengthg, g + 2 andg + 4 was

used as the input set of the proposed algorithm. The algorithm was limited to use only the trapping sets

with the two smallest values ofb for each size. Since the degree of all the variable nodes of this code is

3, all the trapping sets found by Algorithm 1 are also absorbing sets. The first column in Table III shows

the dominant absorbing sets found by Algorithm 1. For comparison, the dominant trapping sets obtained

by the algorithm of [2] are listed in the last column of Table III. It should be noted that in [2] there is

no condition on the number of satisfied check nodes connectedto each variable node. Thus to have a

fair comparison, we also consider the trapping sets constructed by the combination of trapping sets found

by Algorithm 1 and one of their neighboring variable nodes. The second column of Table III shows the

number of such trapping sets.4 As can be seen, for all the trapping set classes, the proposedalgorithm

performs at least as well as the algorithm of [2]. Moreover, the required time for the algorithm of [2]

was 7 days on a 2.8 GHz PC [2], while the proposed algorithm took about 5 hours to finish. As another

comparison for the running time of the proposed algorithm, it took the algorithm 55 minutes to find all

the absorbing sets of size less than 15, while the same task took 8.2 hours for the impulse method of [7]

on a comparable computer (2.2-GHz CPU with 1 GB RAM).

4Our simulations indicate that the effect of extra trapping sets found by removing the constraint on the number of satisfied check nodes
connected to each variable node of the trapping set on the error floor performance of the code is negligible.
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TABLE III
DOMINANT TRAPPING SETS OF THEMARGULIS (2640, 1320) CODE OBTAINED BY THE PROPOSEDALGORITHM AND THE

ALGORITHM OF [2]

Trapping Proposed Proposed Algorithm
Set Algorithm Algorithm of [2]

(Absorbing) (Trapping) (Trapping)

(7, 5) 7920 7920 -

(8, 6) 106920 >106920 -

(9, 5) 2640 2640 -

(10, 6) 117480 >117480 -

(11, 5) 5280 5280 9

(12, 4) 1320 1320 1320

(13, 5) 2640 26400 2699

(14, 4) 1320 1320 1320

(15, 5) 0 26400 7938

(16, 6) 0 258347 21153

(17, 5) 5280 5280 0

(18, 6) 0 132000 2642

Example 17:For this example, we consider a(1008, 504) random code with variable node degree 4

and check node degree 8 constructed by the program of [50].5 This code has one cycle of length 4 (C4).

In addition to that, the short cycles of length 6 to 10 were used as the initial input set for Algorithm 1.

The algorithm was constrained to find trapping sets of size upto 12 and to use only the trapping sets with

the two smallest values ofb for each size. Table IV shows the dominant trapping sets found by Algorithm

1 and their multiplicities. It is worth mentioning that noneof the trapping sets listed in Table IV contains

any of the variable nodes participating inC4. The trapping sets reported in Table IV were used to estimate

the error floor of the code using the importance sampling technique described in [7]. Fig. 8 shows the

Monte Carlo simulation results for the frame error rate (FER) and the corresponding error floor estimation

based on importance sampling. The results are for a 3-bit min-sum decoder with a maximum number

of 50 iterations. As can be seen in Fig. 8, the estimation closely matches the Monte Carlo simulation,

verifying the dominance of the trapping sets found by Algorithm 1. Monte Carlo simulations also revealed

that the most harmful trapping set of this code is the(6, 4) trapping set. In fact, in almost all the decoding

failures, the decoder converged to the (6,4) trapping set. As can be seen in Table IV, all the trapping sets

have at least 4 unsatisfied check nodes. This makes the exhaustive search methods of [40], [41], [21]

ineffective for finding the dominant trapping sets of this code. This is while all the trapping sets in Table

IV were found in less than 5 minutes by the proposed algorithm.

5Using code6.cwith seed=380.
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TABLE IV
DOMINANT TRAPPINGSETS OF THE(1008, 504) REGULAR LDPC CODE (dv = 4, dc = 8) OBTAINED BY THE PROPOSED

ALGORITHM

Trapping Set Multiplicity

(5,6) 15

(6,4) 1

(6,6) 36

(7,5) 13

(8,6) 5

(9,6) 5

(10,6) 3

(11,6) 3

(12,8) 75

Fig. 8. Error floor estimation and Monte Carlo simulation forthe (1008, 504) regular LDPC code (dv = 4, dc = 8).

B. Irregular Codes

In this section, we present the results of applying the proposed algorithm to three irregular LDPC

codes. To find the dominant trapping sets of the irregular codes, we used two approaches. In the first

approach, we used Algorithms 1 and 2 in the framework described in Algorithm 3. In this approach, as

the first step, we used the short cycles of the codes, as well asthe low ACE cycles as the initial input set,

and applied Algorithm 1. We then used the trapping sets foundby Algorithm 1 along with the variable

nodes of low degree, and applied Algorithm 2 to expand them. As the second approach, we only used the

variable nodes of low degree and cycles with low ACE as the initial input set, and then used Algorithm

2 to recursively expand them to larger trapping sets. Interestingly, for all three codes, the results of the

second approach were very close to those of the first one.
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Example 18:For this example, we consider the irregular LDPC code constructed by the PEG algorithm

(PEGirReg252x504code [50]). This code was also investigated in [21] for its fully absorbing sets. For

Algorithm 1, the short cycles of lengthg, g + 2, and the cycles with length less than 20 and ACE less

than 4 were used as the initial input set. The algorithm was constrained to find only trapping sets of size

less than 12 and the thresholdT was selected such that only the trapping sets with the four smallest

values ofb for each size were considered. The resultant trapping sets and variable nodes of degree 2 and

3 were then expanded by adding neighboring degree-2 variable nodes, and finally were examined to find

the fully absorbing sets. Table V shows the fully absorbing sets found by Algorithm 3 and the exhaustive

search algorithm of [21]. It should be noted that, similar to[21], we relaxed the condition that degree-2

variable nodes of (fully) absorbing sets must be connected to two satisfied check nodes. As can be seen

from Table V, the proposed algorithm found almost all the fully absorbing sets of this code.6 Moreover,

the proposed algorithm found a number of(a, 1) trapping sets fora ≥ 9, which were not reported in [21].

For the second approach, the cycles of length up to 20 with ACElower than 4 and the variable nodes of

degree 2 and 3 were used as the initial inputs, and the algorithm found almost the same trapping sets as

in the first approach. For the running time, the first and the second approaches took 15 minutes and 5

minutes, respectively.

TABLE V
DOMINANT FULLY ABSORBING SETS OF THEPEGirReg252x504CODE OBTAINED BY THE PROPOSEDALGORITHM AND

THE ALGORITHM OF [21]

Trapping Proposed Exhaustive
Set Algorithm Search [21]

(3, 2) 219 219

(4, 2) 208 208

(5, 2) 198 198

(6, 2) 205 205

(7, 1) 2 2

(7, 2) 271 272

(8, 1) 8 8

(8, 2) 458 460

(9, 1) 16 -

(9, 2) 855 -

(10, 1) 22 -

(10, 2) 1533 -

(11, 1) 36 -

Example 19:For this example, we used the(1944, 972) structured irregular code with rate1/2, adopted

6The multiplicity for trapping sets(7, 2) and(8, 2) are reported as 274 and 468 in [21], respectively. Moreover,no (7, 1) or (8, 1) trapping
set is reported in [21]. The values reported for these four trapping sets in the last column of Table V are based on [22].
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in the IEEE 802.11 standard [13]. We used the same parametersas in the previous example for the two

approaches. Table VI shows the number of dominant trapping sets of different sizes found by the algorithm

of [2] and the proposed approaches. For this code, both of ourapproaches found exactly the same set of

trapping sets. In fact, all the trapping sets listed in TableVI have one of the following three structures: a

2-chain, a single cycle with low ACE, and the combination of a2-chain and a single cycle of low ACE.

For example, all the trapping sets of size less than 7 listed in Table VI are 2-chains, and all the(12, 1)

trapping sets are single cycles of eleven degree-2 variablenodes and one degree-3 variable node. As can

be seen in Table VI, for all classes of trapping sets, the proposed algorithms found at least as many

trapping sets as the algorithm of [2] did. The first and the second approaches took 45 and 5 minutes,

respectively, to find all the trapping sets in Table VI. This is while the algorithm of [2] took 5 days (on

a 2.8-GHz CPU) to find the results reported in Table VI.

TABLE VI
DOMINANT TRAPPING SETS OF THE(1944,972)CODE OBTAINED BY THE PROPOSED ALGORITHM

Trapping Proposed Algorithm
Set Algorithm of [2]

(2, 2) 810 -

(3, 2) 729 -

(4, 2) 648 648

(5, 2) 567 567

(6, 2) 486 486

(7, 2) 486 485

(8, 2) 648 637

(9, 2) 972 -

(10, 2) 1377 1210

(11, 2) 1944 1635

(12, 1) 81 81

(12, 2) 2754 2166

(13, 1) 162 162

(14, 1) 162 162

(15, 1) 162 -

(16, 1) 162 -

(17, 1) 162 -

(18, 1) 81 -

Based on the importance sampling technique of [7], the trapping sets in Table VI with sizel, 6 ≤ l ≤ 12,

were used to estimate the error floor of this code for a 3-bit quantized min-sum decoder over the AWGN

channel. Fig. 9 shows the error floor estimation and the MonteCarlo simulation results for this code. As

can be seen in Fig. 9, the importance sampling estimation closely matches the Monte Carlo simulation,

further verifying the dominance of the trapping sets found by the proposed algorithm.
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Fig. 9. Error floor estimation and Monte Carlo simulation forthe (1944, 972) irregular LDPC code.

Example 20:As the last example, we use the following degree distribution optimized for the min-sum

algorithm in [6] and construct a(1000, 499) LDPC code using the PEG algorithm:λ(x) = .30370x +

.27754x2 + .02843x5 + .20014x6 + .19019x19 and ρ(x) = .0160x5 + .9840x6. The girth of the resultant

graph is 6, and we use the short cycles of length 6 and 8, and cycles of length up to 20 with ACE less

than 4 as the initial input set of Algorithm 2. It takes 1 minute for the algorithm to find the trapping sets

of size up to 10. Based on the obtained trapping sets and usingthe importance sampling, we estimate the

error floor of the code. Fig. 10 shows the estimation and MonteCarlo simulations for this code. As can

be seen in this figure, the estimation closely matches the Monte Carlo simulation results, verifying that

the dominant trapping sets of the code have been found by the algorithm.

VI. CONCLUSIONS

In this paper, we proposed an efficient algorithm for finding the dominant trapping sets of an LDPC

code. The algorithm starts from an initial set of trapping sets and recursively and greedily expands them

to trapping sets of larger size. The initial set for regular codes is a set of short cycles, and for irregular

codes, it also includes variable nodes of small degree and cycles with low ACE values. To devise the

expansions, the structure of dominant trapping sets is carefully studied for both regular and irregular

codes. The efficiency and accuracy of the proposed algorithmwas demonstrated through a number of

examples. It was observed that the proposed algorithm is faster by up to about two orders of magnitude

compared to similar search algorithms.
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Fig. 10. Error floor estimation and Monte Carlo simulation for the (1000, 499) irregular LDPC code.

APPENDIX A

In this appendix, we present Lammas 7 and 8, used in Sections III and IV, respectively, along with

their proofs. The appendix also contains the proofs for Lemmas 5 and 6(i).

Lemma 7:For a left-regular graphG with left degreedl ≥ 3 and girth g > 4,7 consider an(a, b)

trapping set withb < a. If such a trapping set is elementary, let the notationae denote its size, and

consider the case wheredl(dl − 1) > b. Otherwise, for non-elementary trapping sets withb < a, let the

notationsan1 andan2 denote the size of the trapping set if it has at least one unsatisfied check node of

degreedo > 1 and one satisfied check node of degreede > 2 in G(S), respectively. For the two latter

cases, suppose thatdo(dl − 1) > b and de(dl − 1) > b, respectively. Then depending on the value ofg,

we have the following two sets of inequalities:

a) Forg = 4k, wherek is an integer larger than 1, we have:

ae ≥ 1 + dl + (dl(dl − 1)− b)

k−3∑

i=0

(dl − 1)i +
(dl(dl − 1)− b)(dl − 1)k−2

dl
,

an1 ≥ de + (de(dl − 1)− b)
k−2∑

i=0

(dl − 1)i ;

7For the case ofdl = 2, it is easy to see that any(a, b) elementary trapping set hasb = 0 or b = 2. For b = 0, the smallest value ofa
is g/2, which corresponds to the trapping set being a shortest cycle. For an elementary trapping set withb = 2, the smallest value ofa is
one, which corresponds to a single variable node. For a non-elementary(a, b) trapping set however, ifb = 0, the smallest value ofa is g.
If b = 2, the minimum value ofa for such a trapping set is3.
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an2 ≥ do + (do(dl − 1)− b+ 1)
k−2∑

i=0

(dl − 1)i .

b) For g = 4k + 2, wherek is a positive integer, we have:

ae ≥ 1 + dl + (dl(dl − 1)− b)
k−2∑

i=0

(dl − 1)i ,

an1 ≥ de + (de(dl − 1)− b)

k−2∑

i=0

(dl − 1)i +
(de(dl − 1)− b)(dl − 1)k−1

dl
;

an2 ≥ do + (do(dl − 1)− b+ 1)
k−2∑

i=0

(dl − 1)i +
(do(dl − 1)− b+ 1)(dl − 1)k−1

dl
.

Proof: Here, we just present the sketch of the proof. For this, we first need the following lemma,

whose proof follows later in the appendix.

Lemma6(i): In a left-regular graphG with left degreedl ≥ 2, if the induced subgraphG(S) of an

(a, b) trapping setS does not contain any cycle, thenb ≥ a(dl − 2) + 2. The inequality is satisfied with

equality for elementary trapping sets.

Based on Lemma 6(i), it is clear that a trapping set withb < a has at least one cycle. Therefore,

considering any variable (or check) node ofS as the root, and growingG(S) from that node, one can

construct a tree of at leastg/2 layers, where the layers contain either variable or check nodes alternately,

with no repetition of nodes. The number of variable nodes in this tree can be used as a lower bound

on the number of variable nodes inS. In this tree, the number of check nodes in layeri > 1 of the

tree,N i
c , is N i

c = (dl − 1)N i−1
v , whereN i−1

v is the number of variable nodes in layeri − 1. Similarly,

N i
v =

∑
(dci−1

j
− 1), wheredci−1

j
is the degree (withinG(S)) of the jth check node in layeri − 1, and

the summation is over all the check nodes in layeri − 1. To minimize the number of variable nodes in

the tree, one needs to make
∑

(dci−1

j
− 1) as small as possible in each check node layer of the tree. In

particular, this should be done at the upper layers of the tree if possible, since these layers contribute the

most in the total number of variable nodes in the tree. In addition, to obtain a lower bound on the size

of the trapping sets, we assume that even for the non-elementary case, except for one check node, the

degrees of all the other check nodes inG(S) are either 1 or 2. Moreover, we assume that all the check

nodes of degree 1 are in the first (upper) layer(s) of check nodes after the root layer.

For the case of an elementary trapping set, according to the assumption ofb < a, there is at least

one variable node that is not connected to any unsatisfied check nodes. Considering such a variable
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node as the root node, all the check nodes in the first layer aresatisfied check nodes. That is,N0
v =

1 (root node),N1
c = N2

v = dl, N3
c = dl(dl − 1), N4

v = dl(dl − 1) − b and N i−1
c = (dl − 1)N i−2

v ,

N i
v = N i−1

c , for i = 6, 8, . . ..8 Therefore, the total number of variable nodes in the constructed tree is

1 + dl + (dl(dl − 1)− b) + (dl(dl − 1)− b)(dl − 1) + . . .. Distinction should be made between the cases

of g = 4k + 2 and g = 4k. While in the former, the last layer of the tree consists of variable nodes, in

the latter, it consists of check nodes. In this case, for eachset ofdl check nodes in the last layer of the

tree, there must be at least one other variable node inS. The sketch of the proofs for the non-elementary

cases are similar to that of the elementary case, with the difference that the check node of degreedo or

de is used as the root node.

Proof of Lemma5:

Consider thed(v) neighbors ofv in G(S). At leastd(v)−b of them are inΓe(S) and are thus connected

to other variable nodes inS. None of such variable nodes can share more than one check node from

Γe(S) with v, because of the conditiong > 4. This implies that there are at leastd(v)− b variable nodes

in S\{v}. �

Proof of Lemma6(i):

SinceG(S) does not contain any cycle, it forms a tree (note thatG(S) is connected). Suppose that

G(S) is grown from a variable node ofS as the root, one layer at a time, until along each path, the

growth is terminated by reaching a check node as a leaf. Thesenodes are the unsatisfied check nodes

of degree one. In the tree, each variable node, except the root, has a parent which is a check node of

degree≥ 2. In the case thatS is elementary, the degree of the parent check nodes is 2, and hence each

check node is the parent to one variable node. There are thus exactly a− 1 check nodes of degree 2 in

G(S). SinceG(S) is a tree, the number of its nodes is more than the number of itsedges by one. The

total number of nodes in the graph isa + (a − 1) + b1 and the total number of edges isa · dv, where

b1 is the number of unsatisfied check nodes of degree one. For an elementary trapping set, we thus have

2a+ b1 − 1 = adv + 1, which impliesb = b1 = a(dv − 2) + 2. In the case thatS is not elementary, some

variable nodes may share the same parent. The number of parent check nodes is thus less thana− 1, and

thereforeb ≥ b1 > a(dv − 2) + 2. �

Lemma 8:Let G = (L ∪ R,E) be a left-regular bipartite graph with left degree2. Consider a set

S ∈ L, for which the induced subgraph is a tree and has the longest path of length2k − 2. Then

8Here, based on the statement of the lemma, we have assumed that all the unsatisfied check nodes can fit in the third layer of the tree. In
the case thatdl(dl − 1) − b ≤ 0, some of the unsatisfied check nodes have to be located in the next layer(s), and the above equations and
the claims of the lemma will have to be accordingly revised.
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|S| ≤
∑k−2

i=0
(dc,max − 1)⌊

i+1

2
⌋ , where|S| is the number of nodes inS anddc,max is the maximum degree

of the nodes inR.

Proof: The upper bound is derived by counting the number of variablenodes in a tree where the

number of check nodes is maximized with the constraint that the longest path has2k − 2 edges. This

implies that there is a path of length2k − 2 between any two leaf check nodes ofG(S). In addition, to

maximize|S|, the degree of all the check nodes inG(S) is assumed to bedc,max.
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