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Caching in Wireless Networks

Urs Niesen, Devavrat Shah, Gregory W. Wornell

Abstract

We consider the problem of delivering content cached in &less network ofi nodes randomly located on a
square of area. The network performance is described by #iex n-dimensional caching capacity region of the
wireless network. We provide an inner bound on this cachaggacity region, and, in the high path-loss regime, a
matching (in the scaling sense) outer bound. For large lpathexponent, this provides an information-theoretic
scaling characterization of the entire caching capaciyore The proposed communication scheme achieving the
inner bound shows that the problems of cache selection aadneh coding can be solved separately without loss
of order-optimality. On the other hand, our results show tha common architecture of nearest-neighbor cache
selection can be arbitrarily bad, implying that cache s&lacand load balancing need to be performed jointly.

. INTRODUCTION

Wireless networks are an attractive communication archite in many applications as they require
only minimal fixed infrastructure. While unicast and mudist traffic in wireless networks has been widely
studied, the influence of caches on the network performamaseréceived considerably less attention.
Nevertheless, the ability to replicate data at severalgslac the network is likely to significantly increase
supportable rates. In this paper, we consider the probleahafacterizing achievable rates with caching
in large wireless networks.

In a rather general form, this problem can be formulated Bews. Consider a wireless network with
n nodes, and assume a nodein the network requests a message available at the set oéxé&Clia
subset of the nodes) at a certain raig,. The collection of all\;,, can be represented as a caching
traffic matrix A € R¥ ™. The question is then to characterize the set of achievaioleirng traffic matrices
A(n) C R

A. Related Work

Several aspects of caching in wireless networks have beestigated in prior work. In the computer
science literature, the wireless network is usually madlele a graph induced by the geometry of the
node placement. This is tantamount to making a protocol irestgimption (as proposed [ [1]) about the
communication scheme used. By definition, such an appros&lmees separation of source and channel
coding. The quantity of interest involves the distance fremech node to the closest cache that holds the
requested message. The problem of optimal cache locattandtiicasting from a single source has been
investigated in[[R2],[[B]. Optimal caching densities undeiform random demand have been considered
in [4], [B]. Several cache replacement strategies are megofor example, in_[6].

To the best of our knowledge, caching has not been directhsidered in the information theory
literature. However, the more general problem of transngjticorrelated sources over a network has
been studied. Caching is a special case of this problem, iichmbources are either independent or
identical. While for a single point-to-point channel segigim of source and channel coding was shown
to be optimal by Shannon][7], the work by Cover, El Gamal, aateld [8] established that separation
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is strictly suboptimal for the transmission of correlatediises over a multiple access channel. Hence,
even for simple networks, source and channel coding havestoonsidered jointly. We note that for
some special cases separate source and channel codingmalpfiir example for transmitting arbitrarily
correlated sources over a network consisting of indepdnpleimt-to-point links [9]-[11]. The general
problem of joint source-channel coding for noisy networksinsolved.

Finally, it is worth mentioning the problem of transmittingicast traffic over a wireless network, which
is a special case of the caching problem with each messagg beailable at only a single cache. This
problem has been widely studied. Approximate charactéoiza of the unicast capacity region of large
wireless networks (also known as scaling laws) were deyif@dexample, in[[1], [1R]+H22].

B. Summary of Results

We consider the general caching problem from an informatti@oretic point of view. Compared to
the prior work mentioned in the last section, there are stJary differences. First, we do not make a
protocol channel model assumption, and instead allow teeofigrbitrary communication protocols over
the wireless network including joint source-channel cgdiecond, we allow for general traffic demands,
i.e., arbitrary number of caches, and arbitrary demands@t destination. Third, we do not impose that
each destination requests the desired message from onlgldbest cache, nor do we impose that the
entire message be requested from the same cache. Ratheloweparts of the same message to be
requested from different caches.

We present a communication scheme for the caching problesidiryg an inner bound on the caching
capacity regionA(n). This communication scheme performs separate source amhehcoding. For
large values of path-loss exponent, we provide a matchmgh@ scaling sense) outer bound, proving the
approximate optimality of our proposed scheme for largeieslofn. Together, this provides a scaling
description of the entire caching capacity region of theeless network in the large path-loss regime. This
result further implies that for caching traffic the loss doesdource-channel separation is small (again in the
scaling sense) in the large path-loss regime. Since cadhaffgc is a special case of correlated sources,
in which two sources are either identical or independens, iésult is a step towards understanding the
loss incurred due to source-channel separation for therresion of arbitrarily correlated sources.

C. Organization

The remainder of this paper is organized as follows. Sedfiortroduces the channel model and nota-
tion. Sectior 1l presents the main results of the paperti@egV] analyzes the proposed communication
scheme and establishes its optimality (up to scaling) fagelgpath-loss exponent. Sectibh V contains
concluding remarks.

I[I. NETWORK MODEL AND NOTATION
Consider a square of area denoted by

A(n) 2 [0, /]

Let V(n) C A(n) be a set ofV(n)| = n nodes placed independently and uniformly at randonAém).
We assume the following complex baseband-equivalent @&lanadel. The received signal at nodend

timet is
Yolt] = Z huo[t]zult] + 20[t]
weV(n)\{v}

for all v € V(n),t € N, and wherex,[t] is the channel input at node at time¢. Here (z,[t]),: are
independent and identically distributed (i.i.d.) ciraljasymmetric complex Gaussian random variables
with mean0 and variancel, and

P ot] £ r;g/z exp(vV —10,,[t]),



for path-loss exponent > 2, and where, , is the Euclidean distance betweerandv. Due to physical
constraints, the path-loss exponensatisfiesa > 2; we adopt the slightly stronger assumptian> 2
because it simplifies the statements and derivations of safntlee results. The phase tern, ,[t])...
are assumed to be i.i.d. with uniform distribution pn27) [ We either assume thad, ,[t]); is stationary
and ergodic as a function of which is calledfast fadingin the following, or we assume thét,, , [t]); is
constant as a function af which is calledslow fadingin the following. In either case, we assume full
channel state information (CSI) is available at all nodes, each node knows &lh, ,[t])., ., at timetJ3
We also impose an average unit power constraint on the chayqmas (z,[t]); for every nodeu € V(n).

A caching traffic matrixis an element\ € R2 *". Considerw € V(n) andU C V(n). Assume a
message that is requested at destination node available at all of the cachéds. )\, ,, denotes then the
rate at which nodev requests the message from the cachiés Note that we do not impose that any
particular cache: € U providesw with the desired message, rather multiple node#’ioould provide
parts of the message. Note also that, and ;7 ,, could both be strictly positive fot/ # U, i.e., the
same destination could request more than one message fftaredti collection of caches. We assume
that messages for differe(/, w) pairs are independent. Tleaching capacity regior(n) of the wireless
network V' (n) is the closure of the set of all achievable caching trafficrioes A € R *".

Example 1. ConsiderV (n) = {v;}{_; with n = 4. Assume that, requests a message,,, ,,}., available
at the caches;, andv, at ratel bit per channel use, and an independent messggg,,, available only
atvs at a rate of2 bits per channel use. Node requests a message,, .,}., available at the caches
andv, at a rate of4 bits per channel use. The messages, .,},0., M{vs},0,, ANAMyy, 0,10, are assumed
to be independent. This traffic pattern can be described bgchimg traffic matrix\ € R1*** with
Aogoahor = Ly Afoshor = 21 Aoy}, = 4 @nd Ay, = 0 otherwise. Note that in this example nodgis
destination for two (independent) caching messages, add moand v, serve as caches for more than
one message (but these messages are again assumed ind®pende O

To simplify notation, we assume when necessary that largks r@e integers and omjt| and |- |
operators. For the same reason, we suppress dependenceitiin proofs whenever this dependence is
clear from the context. We use bold font to denote matricesnetier the matrix structure is of importance.
We use thef symbol to denote the conjugate transpose of a matrix. kinklg and In represent the
logarithms with respect to bageande, respectively.

Il. M AIN RESULTS

The main results of this paper are an achievable scheme andtanbound for the caching capacity
region A(n). SectiorIl[-A describes a construction used in SecfiofBllio establish an inner bound for
A(n). The communication scheme achieving this inner bound oéspource-channel separation and is
valid for any value of path-loss exponent> 2. In Sectior IlI-C, we provide an outer bound that matches
(in the scaling sense) the inner bound for large values di-|uss exponenty > 6. This leads to an
approximate characterization 4fn) for & > 6. This characterization is given in terms of a linear program
and is hence computationally tractable as is discusseddtioB@I[-Dl The communication architecture
achieving the inner bound on the caching capacity regiorrésgnted in Section II[HE. Various example
scenarios are presented in Secfion 1lI-F.

11t is worth pointing out that the i.i.d. assumption on the ghaerms has to be made with some care. In particular, it isrsho [21],
[23], [24] that this assumption is valid only if the wavel¢ngf the carrier frequency is less tha#(n)|'/2 /n. For a wide range of scenarios
this is the case, and we assume throughout this paper tlsadshumption holds.

2We make the full CSI assumption in all the converse resultsispaper. Achievability can be shown to hold under weaksumptions
on the availability of CSI. In particular, fox > 3, no CSI is necessary, and for € (2,3), a 2-bit quantization of the channel state
(0u,v[t])w,» available at all nodes at timeis sufficient.

3Note that several ratek,,, are trivial. For example for pairél/, w) with w € U, or for pairs(U, w) with U = §. We allow these trivial
choices for notational convenience. F@F, w) such thatw € U, the results will show thahy,., = oo is achievable; folU = §), they will
show that onlyAy,., = 0 is achievable, as would be expected.



Fig. 1. Subsquare§A, ;(n)} with 0 < ¢ <2, i.e., with L(n) = 2. The subsquare at levél= 0 is the aread(n) itself. The subsquares at
level ¢ = 1 are indicated by dashed lines, the subsquares at fevel by dotted lines. Assume for the sake of example that the suzbsg
are numbered from left to right and then from bottom to tog (tinecise order of numbering is immaterial). THéy. (n) are all the nodes
V(n), Vi,1(n) are the nine nodes in the lower left corner (delineated byethdines), and 1 (n) are the three nodes in the lower left
corner (delineated by dotted lines).

Fig. 2. Construction of the tree gragh. We consider the same nodes as in Fig. 1 wifm) = 2. The leaves of7 are the noded’(n)
of the wireless network. They are always at lefet L(n) + 1 (i.e., 3 in this example). At leveD < ¢ < L(n) in G, there are* nodes.
The tree structure is induced by the decompositior//¢f.) into subsquaregV; ;(n)}.,:, delineated by dashed and dotted lines. Level
contains the root node af.

A. Tree Graph and Linear Program

We describe the construction of a capacitated tree graphced by the wireless network and a
corresponding linear program. These will be needed for tmngunication scheme achieving the inner
bound. This tree graph construction was introduced firsgj.|

Partition the squarel(n) into 4/ subsquare§ A, (n)}X, of sidelength2~‘\/n, and letV,,(n) be the
nodes inA,;(n). The integer parametérvaries betweer) and

L(n) = %log(n)(l - log_l/Q(n)).

The partitions at various levelsform a dyadic decomposition of(n) as illustrated in Fig.1. The choice
of L(n) is made such that with high probability the number of nodesaoh set’;,, ; at the finest grid
level is growing to infinity, but not too quickly. See [22] fardetailed discussion.

We now construct an undirected, capacitated tree géaph(V, E¢) as depicted in Fid.]2. The vertex
set Vi of G consists of the node®'(n) in the wireless network plus some additional nodes. The tree
G has L(n) + 2 levels numbered to L(n) + 1: the root node is at leve) and leaf nodes are at level
L(n) + 1. The leaf nodes ofs are then nodesV (n) in the wireless network. The nodes Gfat level ¢
with 1 < ¢ < L(n) are elements of; \ V(n) and correspond to subsefts; ;(n)}%, of the nodes/ (n)
in the wireless network. The root node Gfat level0 corresponds to all the nodésn) in the wireless
network. A child node at level + 1 is connected to a parent node at levels follows. For¢ = L(n), a
nodev at level L(n)+1 (which is a leaf node off and hence also an element of the notés) C V in
the wireless network) is connected to the nodé igorresponding td/;(,,) ;(n) if v belongs toV; ) ;(n).



For0 < ¢ < L(n), a node inG at level/ + 1 corresponding td/,.,;(n) is connected to the node G
corresponding td/ ;(n) if Viy1:(n) C Vi i(n).

Note that through this construction, each gt(n) for ¢ € {0,...,L(n)}, i € 4° is represented by
exactly one internal node i&'. Thus, the cardinality of/; is

L(n)
Vol = [V(n)| + )4
=0

_ Lot )

=n+ 5 (4 1

< 2n. Q)
We assign to each edgec E at level/ in G (i.e., between nodes at leveland/ — 1) a capacity

. N (4—€n)2—min{3,a}/2 if 1 < / < L(n),
‘1 if = L(n)+ 1.

With slight abuse of notation, we let fai, v) = e € Eg
A
Cup = Ce.

The capacityc, associated with an edge = (u,v) is to be interpreted as follows. Recall that the
nodesu andwv in GG correspond to a subset of nodes in the wireless network. éésw. andv in G
be at levels — 1 and ¢ with 1 < ¢ < L(n). The corresponding subseéis ; ;(n) andV, ;(n) (for somei
and;) have approximately—“+'n and4~‘n nodes with high probability. Assume we could cooperatively
communicate froni;_, ;(n) to the noded/, ;(n) in the wireless network. This results in a large multiple-
input multiple-output (MIMO) channel with approximately “*'n transmit and§14‘én receive antennas.
The capacity of this MIMO channel can be evaluated to be agpmately (4=n)2-™{3}/2 Similarly,
for a nodeu at level L(n) + 1, the capacity fromu to the setV,,; it is contained in is approximately
equal to one. Thus, we see that the edge capacityapproximately equal to the MIMO capacity between
the subsets in the wireless network corresponding to thesodz connected by.

Recall that the leaf nodes @f are equal to the nodéeig(n) in of the wireless network. Hence, any
caching traffic matrix\ € R¥ " for the wireless network is also a valid traffic matrix betwdeave
nodes ofG. Assume the leaf nodes @f request messages according to the caching traffic matrix
Specifically, we wish to route data from cacheslinC V(n) to a nodew € V(n) over G at rate\y,,.
We say that\ is supportable onG if this is possible. LetAs(n) denote the collection of all caching
traffic matrices\ € R *" that are supportable ofi. It can be verified that\;(n) is a closed convex set
containing the origin.

Given the tree structure df, there is unigque path connecting any two of its nodes. Thg waly to
satisfy the rate demanxi; ,, by routing is to split it amongst differerit, w) pairs withu € U. Specifically,
let Py, denote the set di/| unique paths irG between nodes df andw. For a pattp € Py, between
u € U andw, let f,; be the rate at which demand is routed from nade U to w along pathp for
request(U, w). A caching traffic matrix\ is supportable on the capacitated graphf and only if for
each of the2” x n pairs (U, w) there exists a decomposition

AUw = E IoU
pePU,w

so that the resulting load on each edge-ois no more than its capacity. Formally, consider the follogvi



linear program
max 10)
s.t. Y huZ e VU CViweV,
pePU,w

SN Y ho<e  Veeks, @)

UCV weV pePy 4
ecp

fpu =0 VU CV,weV,pe Pyy,

with V' = V(n), and where the maximization is over the variabjesnd f, ;. Denote the maximum value
of ¢ by ¢(\). The caching traffic matrix is supportable on the graph, if and only if ¢(\) > 1.

Note that for any\ € R2 *", the caching traffic matrix(\)\ is supportable o, i.e., p(A\)A € Ag(n).
Thus,

S(\) = max{¢ >0\ € AG(n)}.

In words, () is the largest multiple such that the scaled traffic maiiX)\ is supportable oid-. Since
Ac(n) is a closed convex set containing the origin, knowledges©f) for all A € R3"™*" completely
specifiesAs(n). We can think of¢()), evaluated for all\, as an equivalent description of the region

Ag(n) .

B. Inner Bound

The first result provides an inner bound for the caching dapaggion A(n) in terms of the sef\;(n)
of supportable caching traffic matrices over the gré&phThis result is valid for alle > 2, i.e., for all
values of the path-loss exponenof interest (excluding the boundary poiat= 2 as discussed in Section

iy

For \ R3 ", define
p(\) £ max{p >0:phe A(n)}

In words, p(\) is the largest multiple such that the scaled traffic map(X)\ is achievable over the
wireless network. The caching capacity regidtw) is a closed convex set containing the origin, and
hencep()\) is an equivalent description df(n).

Theorem 1. Under either fast or slow fading, for any > 2, there exist$;(n) > n=°) such that

p(A) > bi(n)d(A)
for all A € RZ"*" with probability 1 — o(1) asn — oc.

The proof of Theoreni]l is provided in Sectibn 1V-A. We pointt ¢ébiat TheoreniIl holds only with
probability 1 —o(1) for different reasons in the fast and slow fading case. Firféading, the theorem holds
only for node placements that are “regular” enough. A ransmae placement satisfies these regularity
conditions with high probability as — oo. For slow fading, Theoremn 1 holds under the same regularity
conditions on the node placement, but additionally onlydeakith probabilityl — o(1) for the realization
of the channel gains.

Given the equivalence of()\), #(\) and A(n), A¢(n) as mentioned above, Theordmh 1 states that
bi(n)Ag(n) C A(n) with high probability. This links the tree grapfi to the wireless network: Every
caching traffic matrix that can be routed over the gréplean also (up to a small, in the scaling sense,
factor) be transmitted reliably over the wireless network.

The communication scheme achieving the inner bound in Emeldr consists of three layers. The lower
two layers handle channel coding and load balancing, amttafely transform the wireless network into
the tree graphGG. The top layer assigns caches to destination nodes andsrdata overG. Thus, this
scheme performs separate source coding (in the top laydrglzannel coding (in the two bottom layers).
See Section Il[-E for a detailed description of this comneation architecture.
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Fig. 3. Fora > 6, the setAg(n) approximates the caching capacity regib(r) of the wireless network in the sense thatn)Ag(n)
(with by (n) > n~°M)) provides an inner bound t&(n) andba(n)Ac(n) (with b2(n) < n°M) provides an outer bound th(n). The figure
shows two dimensions (namel,,},u, and A{y, v,},05) Of the 2™ x n-dimensional sete\(n) and Ag(n).

C. Outer Bound

The next result provides an outer bound for the caching égpeegion A(n) in terms of theAg(n).
This result is valid fora > 6, i.e., for large path-loss exponents.

Theorem 2. Under either fast or slow fading, for any > 6, there exists(n) < n°(!) such that

p(A) < ba(n)d(N)
for all A € R2"*" with probability 1 — o(1) asn — oo.

The proof of Theoreni]2 is provided in Sectipn TV-B. As with Bnem[1, Theoreni]2 holds with
probability 1 — o(1) for the realization of the node placement and, in the slovinfpdase, the realization
of the channel gains.

Using again the equivalence pf)\), #(\) andA(n), Ag(n), Theoreni R states that(n) C by(n)Ag(n)
with high probability. Comparing Theorerh$ 1 dnd 2, we seg floa o« > 6 and with high probability,

n=Wo(X) < p(A) < n"Wg(N)
for all A € R¥™*" or, equivalently,
n°WAg(n) € A(n) € n°DAg(n).

In other words, fora > 6, the set of caching traffic matrice;(n) supportable by routing over the tree
graphG scales as the caching capacity regibfm). This is illustrated in Figl]3.

D. Computational Aspects

Theoremg 1 anfll2 show that, for large A(n) ~ A(n). Computationally, the question of interest is
that of membership, i.e., determining if a givare R *" belongs toA(n) or, equivalently, determining
if p(A) > 1. Sincep(\) =~ ¢(\), computation ofp(A\) answers the membership question approximately
(up to a multiplicative error ofi°).

The linear prograni (2) defining()\) can be solved in polynomial time in the number of its constsi
and variables[[25]. Define

IAllo £ {(U,w) : Ay > 0}

as the number ofU, w) pairs with positive demand,,,, > 0. The number of constraints in the linear
program [(2) scales linearly ifFs| + ||A]|o- And the number of variables scales :@§\||,. Noting that



|E¢| is polynomial inn by (1), this implies that the approximate membership of anm A(n) can be
checked in time polynomial im and ||A||,.

Note that this need not be polynomial i since |||, could be exponential im. However, even
just to ask the membership query, one needs to spéicify; distinct numbers. Therefore, the above
discussion shows that the computational cost of approemambership testing takes time polynomial
in the effective problem statement, which is the best onehmpe for. Moreover, in many situations of
practical interest, the number of paiiS, w) with positive demand can be expected to be only polynomial
in the network sizen. In these cases, approximate membership can be testedyinopall time also in
n.

E. A Content Delivery Protocol

Theorem[l provides an inner bound for the caching capacgiomeof a wireless network. We now
describe the communication scheme achieving this innendholihe matching outer bound shows that,
for a > 6, this scheme is optimal in the scaling sense.

Our proposed communication scheme consists of three lagendar to a protocol stack. From the
highest to lowest level of abstraction, these three layerdheedata layer the cooperation layerand the
physical layer

From the view of the data layer, the wireless network is g@ats the abstract capacitated tree graph
G, up to a loss of a factob, (n) in the capacity of each link. Let us assume t@%)\ € Ag(n). Solve
the corresponding linear program (2), and fet (f, ) be its solution. Sinc%/\ € Ag(n), routing
traffic according to this solutiorf allows to support the caching traffic matrixin this layer. The next
two layers transform this routing solutighfor A over the graplG into a communication strategy for the
wireless network.

The cooperation layer provides this tree graph abstracticdhe data layer. Recall that the leaf nodes
of G are the node$ (n) of the wireless network and that each internal nodé;akepresents a subset of
nodesl; ;(n) C V(n) within the subsquaré, ;(n) in the wireless network. The cooperation layer provides
the tree abstractioy by ensuring that, whenever a message is located in the dgta d& a particular
nodewv, the message is evenly distributed in the wireless networirey the node$ ;(n) represented by
the nodev. Recall that the set§V;;(n)} are nested and increasing é@slecreases. Hence, as a message
travels towards the root node i in the data layer, it is distributed over a larger area in theeless
network by the cooperation layer. Similarly, as a messaaeels away from the root node i@ in the
data layer, it is concentrated on a smaller area in the veisefeetwork by the cooperation layer. Thus,
sending a message up or down an edge in the @ree the data layer corresponds in the cooperation
layer to distributing or concentrating the same messaghannireless network (see also Fig. 4 below).

Formally, this distribution and concentrating of messaggserformed as follows. To send a message
from a child node to its parent i& (i.e., towards the root node ¢f), the message at the wireless nodes in
V(n) represented by the child node @his evenly distributed over the wireless channel among alleso
in V(n) represented by the parent nodeGn This distribution is performed by splitting the message at
each node in/(n) represented by the child node (& into equal sized parts and by transmitting one
part to each node i (n) represented by the parent node(in To send a message from a parent node
to a child node inG (i.e., away from the root node af), the message at the wireless noded/ifn)
represented by the parent nodedhis concentrated on the wireless nodeslifn) represented by the
child node inG. This concentration is performed be collecting at each riadg(n) corresponding to
the child node inG' the message parts of the previously split up message loeatéee nodes irl/(n)
corresponding to the parent nodeGh

Finally, the physical layer performs this concentratiord afistribution of messages induced by the
cooperation layer over the physical wireless channel. Nb&t the kind of traffic resulting from the
operation of the distribution or cooperation is highly anifi in the sense that within each subsquare
all nodes receive data at the same rate. Uniform traffic of fort is well understood. Depending on



the path-loss exponent, we use either hierarchical cooperation|[19],/{20] (foe (2, 3]) or multi-hop
communication (fora. > 3). It is this operation of each edge in the physical layer thetermines the
edge capacity of the grapd as seen from the data layer.

Note that the value of the path-loss exponeninly significantly affects the operation of the physical
layer. The cooperation layer is completely invariant undleanges iny, and the data layer is only affected
through the value of the edge capacities of the gi@pin particular, even when > 3 so that the physical
layer performs multi-hop communication, the constructairthe tree structurér is still necessary. In
fact, the role of routing ovet: can be understood as load balancing of traffic, which is reguno matter
how the physical layer operates.

We point out that this scheme respects source-channel aeparIn fact, source coding is only
performed at the data layer (through the selection of mespagts from the various available caches).
Channel coding is only performed in the cooperation and ichl/$ayers.

The next example illustrates the operation of this scheroe.nkore details on this architecture, see

22].

Example 2. Consider the three layers of the proposed communicatiohitaoture depicted in Fid.]4.
From top to bottom in the figure, these are the data layer, tlopearation layer, and the physical layer.
In this example, we consider a sindl€, w) pair. The set of caches consists of two nodeu;, us} in
the wireless network shown at the bottom left, and the cpmeding destinatiom is in the top right of
the network.

At the data layer, traffic is balanced by choosing which foactof the message requestedwatand
available atUU is delivered from each node, andu, in U. This load balancing is performed by solving
the linear program{2). In this simple example, a reasonabtgce is to deliver half the message from
u; and half fromu,. The routes betweefu,,us} andw chosen at the data layer are indicated in black
dashed lines.

Consider now the second edge along the pat& iftom u; to w labeled bye = (vy, v1) in the figure.
The middle plane in the figure shows the induced behaviorenctioperation layer from using this edge
in the data layer. Note that, andv; are not leaf nodes aff, and hence correspond to subsetd/df)
through the construction af. Let V5 ;(n) andV; ;(n) be the subsets df (n) corresponding tas, and
vy, respectively. Since, is a child node o, we must havé’; ; C Vi ;. When a message is presenvat
in the data layer, it is distributed evenly over the threeesonh 15 ;(n) in the cooperation layer; in other
words, each of the three nodeslif;(n) has access to a distinct third of the original message. Td sen
the message over edgefrom v, to v; in the data layer, the cooperation layer splits the messageap
each node in;;(n) into smaller parts and distributes these subparts everdy the nodes i/ ;(n).
Thus, when the message reachesn the data layer, each of the nine nodeslin;(n) has access to a
distinct ninth of the original message in the cooperatigreta

The bottom plane in the figure shows part of the correspondatigpns induced in the physical layer.
The distribution of message parts fro;(n) to V; ;(n) is properly scheduled to minimize interference,
and channel coding is performed. The precise nature of teeatipn of this layer depends on the path-loss
exponenta, as explained above.

O

F. Example Scenarios

We provide two examples illustrating various aspects ofdéehing capacity region. Example 3 shows
that the strategy of always selecting the nearest cache eartitrarily bad. ExamplEl 4 illustrates the
potential benefit of caching on achievable rates in the es®ihetwork.

Example 3. (Nearest-neighbor cache selectjon

A simple and intuitive strategy for selecting caches is tguest the entire message from the nearest
available cache. In fact, this is the strategy impliciths@sed in most of the prior work on caching in
wireless networks cited in Sectign I-A. This example shokat this strategy can be arbitrarily bad.
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Fig. 4. Example operation of the three-layer architectdrenessage available at the cachiés= {u1,u2} is requested at the destination
nodew. The figure shows the induced actions by this request in tke ldger (top plane), cooperation layer (middle plane), physical
layer (bottom plane).

We consider the scenario illustrated in Hif. 5. Assurbg(n) andV;3(n) are subsets of; ;(n), and
Va16(n) is a subset ol 4(n). Consider a node* € V5 3(n) geographically close td;;(n), and label
the nodes inV; ;(n) = {wy, wq, ...} and inVs16(n) = {u1, ug, .. .}. Construct the traffic matrix

A )1 if U={u" v}, w=w,; for somei,
)\Uw - .
’ 0 otherwise.
In words, each node i, € V51(n) requests a message available at a dedicated egchd’ ;s and at
a shared cache* € V,3;. We want to determing()), the largest multiple of\ such that the resulting

traffic matrix is achievable in the wireless network. In tBitting with unit demands;(\) can also be
interpreted as the largest uniformly achievable per-nade. r

*

S—— N—— N——
Va,1(n) Va,3(n) Va,16(n)

Via(n) Vi,4(n)

Fig. 5. Caching traffic pattern for Examg 3. Each destimatiodew; € V5 1(n) requests a message available at a dedicated cache
u; € Va,16(n) and at a shared cache € V3 3(n).

For every destination node;, the nearest cache (both in terms of geographic as well g gliatance)
is u*. Assume each node; requests the entire message from its nearest cath# is easy to show
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that each node in the wireless network, and, in particuladen*, can reliably transmit information at a
sum rate of at most°"). With high probability there will bed(n) nodes inV; ; (n) requesting a message
at equal rate from*. Hence this strategy achieves a per-node rate of at mosr(!) regardless of the
value of the path-loss exponent> 2.

Assume now eachy; uses only the more distant cachg The routes fromu; to w; for different values
of 7 intersect only at the four edges closest to the root nod€.ofhese four edges have a capacity of
order ©(n?>~™n{3.21/2) "and hence it can be seen that over the gré@pthese messages can be routed at
a per-node rate o (n!~min{32}/2) Together with Theorerl 1, this shows that

p()\) > nl—min{S,a}/?—o(l) > n—l-‘ro(l)

is achievable in the wireless network with high probabilfgr this simple example, it is easily checked
that this strategy is order-optimal for routing over thepird:. Together with Theorerl 2, this confirms
that, fora > 6, no scheme can achieve a better scaling in the wireless netience

p()\> — nl—min{3,a}/2:|:o(1)

for « > 6/ With some additional work, it can be shown that this is therextr scaling ofp(\) also
for a € (2,6]. This shows that the strategy of always selecting the neasehe can result in a scaling
exponent that is considerably worse than what is achiewaliteoptimal cache selection. O

Example 4. (Complete cachés
Assume we randomly pick” caches for3 € (0,1), each holding a complete copy of all the messages.
More precisely, letting/* = {u; gfl be the collection of caches, we consider a caching traffiairat

A € RZ*™ of the form
o iro=o
710 otherwise,

for every (U, w). In other words, every node € V (n) requests a message that is available at a common
set of cached/*. As before,p()\) can in this setting with uniform demands be interpreted asldgest
uniformly achievable per-node rate.

Assume every node chooses the nearest cache (as discugsaample B). With high probability, there
will be ©(n'~") nodes accessing the same cache. The bottleneck limitinfas from this cache to
the destination nodes is the edge with capacity one comgetiie cache to the tree. Hence, with this
strategy, we can achieve a per-node rat®(f’—!) over the graphG with high probability. By Theorem
[, this implies that a per-node rate of

p()\> > nﬁ—l—o(l)

is achievable with probability — o(1) asn — oo in the wireless network. A short calculation reveals
that this is an order-optimal routing strategy oveérwhich, by Theoreni]2, shows that

p(\) < nB—1+o(1)

for « > 6. Hence, fora > 6,
p()\) _ nﬁ—l:i:o(l)‘

Moreover, it can be shown that this is the correct scaling(of also fora € (2, 6].

This example illustrates that in situations in which thdfitalemand and location of caches are regular
enough, the strategy of selecting the nearest cache (agzadahlso in Examplgl 3, and which is shown
there to be arbitrarily bad in general) can actually be closeptimal. O

“The notationn™°") is used to indicate that°") is an upper anc=°") is a lower bound.
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IV. PROOFS

In Section[1V-A, we provide the proof of the inner bound in ®hem[1. The proof relies on the
communication scheme presented earlier in Sedfion] Il duter bound in Theorefd 2 is proved in
Section[1V-B. It consists of two key steps, summarized by s[4 and]5 below. The first step is
information-theoretic, outer bounding the caching caya@gion in terms of cuts in the wireless network
and then relating these cuts to cuts in the gréphrhe details of this first step are provided in Section
The second step relates these cuts in the gr@ph supportable flows ovetr. The details of this
second step are provided in Section TV-D.

A. Proof of Theoreri]1 (Inner Bound)

We wish to show thap(\) > b, (n)¢()\) for someb, (n) > n=°M") uniform in \. Equivalently, we will
argue that\ € Ag(n) impliesb; (n)\ € A(n). Assumel € Ag(n); theng(\) > 1. Let

f £ (fp,U)

be the corresponding solution of the linear programm (2). Bfinition of (2), the load induced by on
each edge o7 is no more than its capacity.

We now use this solutiorf to construct aunicasttraffic matrix solving the caching problem. Formally,
a unicast traffic matrixis an element\Y € R’*" associating with each source-destination gairw) €
V(n) x V(n) the rate);)S, at which destination node requests data from source nodeThe unicast
capacity regionA(n) C R7*" is the closure of the collection of all achievable unicasffit matrices
in the wireless network. In analogy to caching traffic, evanjcast traffic matrix\Y° for the wireless
network induces a unicast traffic matrix between the leafesarf the grapltz, and we can definaZ®(n)
as the collection of unicast traffic matrices that can beew\t.e., are supportable) ovéf.

Consider again the flowg as defined above. Construct the unicast traffic matkix = \Y°(f) as

uc A&
)‘u,w_ Z fpu,w,Uv

UCV(n):
uclU

wherep, ,, is the unique path in the tree graphbetween: andw. In Words,)\gffv is the sum of the flows
fpu,v fOr the caching problem from to w. The load induced by this unicast traffit“( /) on the edges
of G is the same as that due fo In particular, the total demand o#’°(f) across each edge is at most
its capacity. Since- is a tree, this implies thatV®(f) is supportable ovef, i.e., \YC(f) € AZ(n).

We have thus transformed the problem of routcaghingtraffic over G’ into one of routingunicast
traffic overG. The following result, established in [22], links the setsofpportable unicast traffic matrices
AZE(n) over G to the unicast capacity regioh”“(n) of the wireless network.

Proposition 3. Under either fast or slow fading, for any > 2, there existg/, (n) > n~°") such that
by (n)AgS(n) € A% (n)
with probability 1 — o(1) asn — oo.
Proof: See [22, Lemma 10]. [
Propositiori B is established by means of an explicit compatitn architecture, consisting of the three
layers (data layer, cooperation layer, physical layer) escdbed in detail in Sectidn IIIHE.
PropositionB implies that/ (n)\"¢(f) € AYS(n). Given that the unicast traffic matrixV°(f) was
created through decomposing the caching traffic matrik follows thatb)(n)\ can be supported using
these unicast transmissions over the wireless networkt ish& (n)\ € A(n) for
bi(n) £ b, (n) >n—°W,
This shows that
bi(n)Ag(n) C A(n),
completing the proof of Theoref 1. [ |
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B. Proof of Theorerml2 (Outer Bound)
We aim to show that

p(A) < ba(n)d(A)

for someb,(n) < n°® uniform in A\. The proof proceeds in two steps. First, we relate achievahffic
in the wireless network (characterized py\)) to cuts in the graphG (characterized by(\) defined
below). Second, we relate these cutgdrto supportable flows ovefr (characterized by (\)).

Define
A(n) 2 {)\ ERT™: Y D> Mw< DY e VSC VG}

UcsSnV wev\S (u,v)eEq:
ueS,vg¢sS

with V = V(n) and Vg = Vg (n). Furthermore, let, for any caching traffic matrixc R *",
p(N) £ max {p>0:p\eAn)}. (3)

The setf\(n) corresponds to the restrictions on the set of supportaloleig traffic matrices on the graph
G by all possible cutsS in V;(n). Consider one such cut C Vi;(n). For any caching traffic matrix
that can be routed over, the total flow

Z Z )\U,w

UcsSnV(n) weV(n)\S

across this cut can not be larger than the capacity of the cut

E Cuv-

(u,w)EEG:

ueSvg¢S
The regionf\(n) is the set of caching traffic matrices satisfying all thesast@ints. The scalgh(\)
yields an equivalent description df(n). Note that we can rewrite the definition pf\) as

Z(u,tgegg: Cu,v
p(\) = min uesy . (4)
SCVa(n ZUCsﬂV(n) ZwEV(n)\S AUw
Recall thatAs(n) is the set of supportable caching traffic matricescgrand that() is its equivalent
description. From the discussion in the last paragraphs tlear thatA;(n) C A(n), or, equivalently,
thatp(\) < p(\). The next lemma shows that)\) is also an approximate upper bound on the equivalent
descriptionp(\) of the caching capacity regiaf(n) of the wireless network.

Lemma 4. Under either fast or slow fading, for any > 6, there exists;(n) < n°") such that

p(A) < bs(n)p(N)
for all caching traffic matrices\ € R2 " with probability 1 — o(1) asn — oo.

The proof of Lemma4 is presented in Section IV-C.

Lemmal4 shows that, for > 6, A(n) C bs(n)A(n). This implication is much less obvious than the
statement\(n) C A(n). The proof of Lemmdl4 first uses the information-theoretit-sat bound to
upper bound achievable rates for caching traffic by cuts enwireless network and then relates these
cuts in the wireless network to cuts in the gra@h We point out that it is this step that limits the
applicability of the outer bound in Theorem 2 to large patbsl exponents: > 6. The reason for this
is that evaluation of the cut-set bound for the wireless pdtwor small path-loss exponents is quite
difficult. While it is known how to evaluate “rectangular” tsufor smalla [19], these techniques do not
extend to the arbitrary cuts that are required for the amalyscaching traffic.



14

Lemmal4 allows us to upper bound the equivalent descriptian of the caching capacity regiak(n)
by the equivalent descriptiof( \) of the setA(n) of caching traffic matrices satisfying all cut constraints
in the graphGG. We now show thap(\) can be upper bounded by the equivalent descriptiox) of the
setAg(n) of supportable caching traffic matrices 6h

Lemma 5. For any a > 2, there existd,(n) > n~°1) such that

ba(n)p(A) < 6(A)
for all caching traffic matrices\ € RY .
The proof of Lemmal5 is presented in Section IV-D.

Lemmalb shows that, for any > 2, by(n)A(n) € Ag(n). From the above discussion, we already know
that A¢(n) C A(n). Hence, we deduce from Lemra 5 thet(n) ~ A(n). This can be understood as an
approximate max-flow min-cut result for caching traffic ondiracted capacitated graphs. Lemma 5 is,
in fact, valid for any tree graple’ (with mild assumptions on the edge capacities, see the goodhe
details) and might be of independent interest.

Combining Lemmasgl4 arld 5 shows that, for any 6,
p(A) < bs(n)p(N)

bg(n)
= by (n) gb()\).

Setting
ba(n) £ bs(n)/by(n) < ne.

and noting thab,(n) is uniform in \, concludes the proof of Theorem 2.

C. Proof of Lemm&l4

We start with several auxiliary results. We first introduceng regularity conditions that are satisfied
with high probability by a random node placement. Defif{e) to be the collection of all node placements
V(n) that satisfy the following conditions:

Tyy>n"" for all u,v € V(n),u # v,
[Vi,i(n)] < log(n) for £ = log(n) and alli € {1,...,4%},
Vei(n)[ > 1 for ¢ = % log (#g(n)) and alli € {1,...,4%},

Via(n)| € [4~n, 47 n]  forall £ € {1,...,11log(n)(1 —log™%(n))},i € {1,...,4°}.

The first condition is that the minimum distance between raaies is not too small. The second condition
is that all squares of areacontain at mostog(n) nodes. The third condition is that all squares of area
2log(n) contain at least one node. The fourth condition is that allasgs up to Ieve% log(n)(l —
log‘5/6(n)) contain a number of nodes proportional to their area.

The next lemma, quoted from [22], states that a random naalgepient satisfies these conditions with
high probability.

Lemma 6.
P(V(n) € V(n)) >1-o0(1)

asn — oQ.

Proof: See [22, Lemma 5]. [ |
We continue with results upper bounding the MIMO capacityween subsets of nodes Wi (n).
Formally, for disjoint subsets;, Sy C V(n), denote byC'(S;, S2) the MIMO capacity between the nodes
in S; and S,. Let

HS1 ,S2 é (hu,v>u651,v€52
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be the matrix of channel gains between the nodeS;imand S,. Under fast fading,
C(S1,82) £ max B ( logdet (I + HY, ,Q(H)Hs,s,) ).

where the maximization is over all positive semi-definitetmicas Q(H) such thatE(q, ) < 1 for all
u € S1. Under slow fading,

C(Sy, S2) = maxlog det (I + H;1752QH51,52),

where the maximization is over all positive semi-definitetmeas @ such thatg, , < 1 for all v € 5.
See, e.g.,[26]. To simplify notation, define furthermore

T, = Minr,,
v ues

for S C V(n). The next lemma provides an upper bound on the MIMO capdcity, S¢) between the
nodes inS and S¢ in terms of the number of nodes close to the boundary betwssn.t

Lemma 7. Under either fast or slow fading, for every > 6, there exists a constant; such that for
large enoughn and all V(n) € V(n) and S C V(n)

C(S,5° < Kylog(n)|[{v € S : 15, <log(n) + 1}|.

Proof: SetS; £ S and S, £ S¢, and denote bys% the nodes inS, that are at distance betweén
andk + 1 from Sy, i.e.,

Sk & {v €Sy i1, € [k k+ 1)}.
Note that

&zﬁﬂ
k=0

and
log(n)

‘{'UeSg:Tslv log(n +1}‘ Z|Sk

Applying the generalized Hadamard inequality, we obtat tlmder either fast or slow fading
C(S1,82) < (1, U SE) + €81, Upsron S5 ). (5)

For the first term in[(5), using Hadamard’s inequality oncerengields

log(n)

C(S1UEPsE) < >0 > asi {vh)

k=0 veSk

log(n)

<> > CHuy v

k=0 vESk
By [22, Lemma 6],
C({v}* {v}) < Klog(n)
for some constank’ < oo depending only ony, and thus

log(n

c(sl, s s’f) < Klog(n Z K0 (6)
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For the second term il(5), we have the following upper bouonhfslightly adapting [13, Theorem 2.1]:
Under either fast or slow fading,

C(S1Uemmst) < > Y (2 _W)

k>log(n) vesk ueS:

By definition of S%, for v € S%, the (open) disk of radius aroundv does not contain any node fﬂE
Moreover, since/ € V, there are at modbg(n) nodes inside every subsquare 4fof sidelength o
Thus, given thaty > 6, we have for any € S%,

Z O‘/2<log ZlO?T /{:4—3 e/

u€eS|
< Klog(n )k‘2 o,
for some constank < co depending only orv. Therefore,
(81, UstogmS5) < D7 IS5IR? 10 (m)k'. W)
k>log(n)

Consider now some € S} with k& > log(n), and letu be the closest node if; to v. Sincev € S,
we must have
Tuw € [k, k+1).

Consider the (open) disk of radius, aroundv and the disk of radiusog(n) aroundu. Sincew is the
closest node t@ in Sy, all nodes in the disk around are inS,. Moreover, the intersection of the two
disks has an area of at Ie@togz(n). SinceV €V, this implies that, fom large enough, this intersection
must contain at least one point, sayand by construction

This shows that for every nodein S} there exists a node in U%OEE)")S;C such that
rvs € [k —log(n),k+1).
Now, sinceV €V, for every nodey, there are at most
21 (k + 3)(log(n) + 5) log(n) < K'klog*(n)

nodes at distancf: — log(n), k + 1) for some constank’ < co. Hence the number of nodes #} is at

most
log(n)

5% < K'klog?(n Z 1S5, (8)

Combining [8) with [¥) yields
O(S1: Ursiogny S5 ) < K*1og’(m) >~ [S5[k'

k>log(n)
< K'K? 10g4(n) (Zlog ‘Sko Z Lo
k>log(n)
log(n

= K"log*(n Z 1S5, (9)

®To simplify notation, we suppress dependenc&’¢f), V(n), A(n), . .. within proofs whenever this dependence is clear from théeotn
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for some constank” < oo depending only omy, and where we have used that> 6. Finally, substituting
(©) and [9) into[(b) shows that

log(n)

C(S1,5) < Kylog'(n) > |Sh]
k=0
= Kylog!(n)|{v € 8 : 14, < log(n) + 1}
with
K& K+ K"

[
The next lemma shows that, for large path-loss exponents §), every cut is approximately achievable,
i.e., for every cut there exists an achievable unicast ¢raffatrix that has a sum rate across the cut that
is not much smaller than the cut capacity.

Lemma 8. Under fast fading, for every > 6, there existss(n) < n°") and AU € AYC(n) such that
for anyn, V(n) € V(n), and S C V(n),

C(S,5%) < bs(n) Y D NS, (10)

ueS w¢S

Moreover, there exists a collection of channel gaifg:) such that
P((huu) € H(n)) > 1—o(1)
asn — oo, and such that, fofh, ,) € H(n), (L0) holds for slow fading as well.
Proof: By LemmalY, forVV € V
C (5,95 < K,y log4(n)}{v € 5 rg, <log(n) + 1}|. (11)
Construct a unicast traffic matrix’° € R as

\uC A& k(n) if 7y, <log(n) + 1,
~]o otherwise

for some functiorv(n). We now argue that for(n) = ©(log~*(n)) there existd(n) > n—°1) such that
b(n)A\YC € AYC. This follows from [22, Theorem 1] (see also Section IX.Cré)gonce we show that for
everyl € {1,...,L(n)} andi € {1,...,4°} we have

Z Z )\UC S 4— 2 min{3,o¢}/27 (123.)
uew’bw¢Wz
Z Z )\UC S 4— 2 min{3,o¢}/27 (12b)
ugVy; weVe

and, for allw € V,

DS <1,

uFw

Z)\UC Sl

uFw
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Since we assume that € V', we have for allw € V'
D N, < Klog®(n)k(n),
ST

D AN, < Klog?(n)s(n),

ST

for some constank” < oco. By the locality of the unicast traffic matrixU©, it can be verified that this is
sufficient for [12) to hold with

Kk(n) = %log_?’(n).
Hence [22, Theorem 1] applies, showing that)\UC e AUC for fast fading, and the same holds for slow

fading for H with
P((huw) € H) > 1—0(1)

asn — oo.
Now, by construction of the unicast traffic matrh¥©,

ZZ)\ = [{(u,w) € § x 811, <log(n)+ 1}|k(n)

uesS w¢sS
> [{w € 5°: rg. <log(n) + 1}|x(n)

Combined with[(1l1), this implies that
C(S, 8¢ < Kylog*(n) ‘{w € 5% rg. < log(n) + 1}
Kl log n) Z Z
< )\
ueS w¢S
Sinceb(n)A\UC € AYC, this proves the lemma with

bs(n) £ M < no,
r(n)b(n)

We are now ready for the proof of Lemrhh 4.
Proof of Lemmdl4: We wish to show that, forv > 6, there existds(n) < n°Y) such that

p(A) < b3(n)p(N)

with p(\) as defined in[(3). Consider the traffic matyig\) - A and a cutS C V' in the wireless network.
Assume we allow the nodes on each side of the cut to coopeittieutsany restriction—this can only
increase achievable rates. The total amount of traffic thatis to be transmitted across the cut is at least

NI IR
UCS w¢S

The maximum achievable sum rate (with the aforementionel® mooperation) is given bg/' (S, S¢), the
MIMO capacity between the nodes fand inS¢. Therefore,

(8, 5¢)
p(A) < DS S

Since this is true for all cuts' C V, we may optimize over the choice 6fto obtain the bound

C(S, 59
p(A) < min
) scv EUCS Ewgs AU

(13)
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We proceed by relating the citin the wireless network to a cuft in the graphG. By Lemmal8, for
V €V, there exists\Y® € AYC such that for fast fading

C(S,59 < bs(n) YD A, (14)
uesS w¢gsS
and [14) holds also for slow fading (f.,.,) € H with H defined as in Lemmid 8. By [22, Theorem 1] (see
also the discussion in Section IX.D there), for> 6 andV € V, there existsk such that ifAYc ¢ AYC
then K log~%(n)A\UC € AYC, where( is the tree graph defined in SectionTl-A.
Now, consider anys C VG such thatS NV = S. Note thatS is a cut inG separatingS from V' \ S.
Since K log™°(n)A\UC € AYC, we thus have

Klog™%(m)> Y NS < > ¢

uesS w¢S (uw)ebG:
ueSwes

By minimizing over the choice of such thatS NV = S, we obtain

Klog™%(n) Z Z )\g% < min Z Cup- (15)
ueS w¢sS $:5nv=s (u,v)€Eq:

ueS,v¢S

Combining [14) and(15) shows that

b
C(S,5 < (1) log®(n) min Z Cu-
K 5:8nv=s
( ’UEGEGN:
ueS,v¢S

Together with [(IB), and using Lemrha 6, this yields that witbbability
P((huy) €H,V €V) >1—0(1)

asn — oo, we have for any caching traffic matrix

(S, 59
p(A) < min
) SV Y s Dwgs AU

Z(u,v}EEqi Cu,v
< b3 (n) nin min ueS ¢S
SCV SeVg:8nv=s ZUCSOV ZwEV\S AUw
Z(U7U~€EG~: Cuv
_ bg( ) min ueS,vgsS
SCVe 2uciny ZweV\S AU

= bs(n)p(N),

with

and where we have used (4) for the last equality. [ |
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Fig. 6. Construction of the directed graghfrom the undirected grapty.

D. Proof of Lemmal5
We wish to show that there existg(n) > n~°) such that for any\

G(A) > ba(n)p(N) (16)

with p(\) as defined in[{3). To this end, we need to argue that whenevactang traffic matrix can be
supported over the grapH, then there exists at least one cut in the graph that is appataly saturated.
In other words, we need to argue that an approximate max-flowcot result holds for caching traffic
over@.

The proof of the lemma proceeds as follows. We first transfihreundirectedgraphG into andirected
graphG such thatcachingtraffic can be supported ovéf if and only if a correspondingnicasttraffic
can be supported ovér. We then argue that for unicast traffic ov&ran approximate max-flow min-cut
result holds. Finally, we map this result for unicast traffit G back toG to obtain the desired max-flow
min-cut result for caching traffic over.

Pick any\ € RZ™™. For A = 0, ¢()\) and5(\) are both infinite, and the lemma trivially holds. Assume
then that\ # 0. By rescaling) if required, we can then assume without loss of generaliég th

Z )\U,w = 1 (17)
(Uyw)

Furthermore, we can assume that,, = 0 wheneverw € U, since thenw already has access to the
message it requests. .

Recall thatG is an undirected capacitated graph. We constructdaected capacitated grapli: =
(Va, Eg) as illustrated in Figl6. Take the undirected grapland turn it into a directed graph by splitting
each edge € E into two directed edges each with the same capacity. @&g1d 2" additional nodes to
Vi, one for each subséf C V(n). Connect the new nodé corresponding td/ C V(n) to each node
u € U by a directed edgeéu, ) with infinite capacityc;, = oo.

We call the directed version df that is contained irix as a subgraph itsore. Note that if some flows
can be routed throug¥ then the same flows can be routed through the co&,aind if some flows can
routed through the core d@F then at least half of each flow can be routed throgghence, for scaling
purposes, the two are equivalent. .

_ Now, assume we are given a caching traffic mafrifor G. Construct aunicasttraffic matrix AU for
G by making for eachU, w) pair inG (i.e.,U C V(n), w € V(n)) the nodex in G corresponding td/
a source forw with rate

AV L\

For all other node pairs, the traffic demand is set to zeroe Nuwdt with this construction, all traffic over
G originates at a node i \ Vi of G and is destined for a node ii(n) C V. Denote byA‘éC(n) the

set of such unicast traffic matrices that are supportablé pand define
H(AY€) £ max {¢p>0: PAC € Agc(n)}
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to be the equivalent description (AIUC( ). By construction ofG from G, and by the above argument
relating G to the core ofG, we have

B > S, (19)

We have thus related caching traffic in the undirected gi@gb unicast traffic in the directed gragh.

We are then left with the problem of analyzing unicast traffier G. Recall that we have seen earlier
that trivially p(A) > ¢()) (since the total flow over each cut can be at most equal to theapacity).
By ([@8), this implies that)(\UC) < 25()\). The goal here is to establish thét\) is also an approximate
lower bound tOgb()\UC) This is nontrivial because it requires showing that thQ/mxpieA( ) with fewer
constraints is closely approximated by the polytopg ) with more constraints. Specifically, we are
looking for this approximation to be of the form

b(n)A(n) C A2%(n) C 2A(n),

whereb(n) > n=°W,

In the recent literature on multicommaodity flows, startinghmvorks by Leighton and Rad [27], and
by Linial, London, and Rabinovich [28], such approximatexaflaw min-cut results for unicast traffic for
undirected graphs have been studied. However, in our cporvex difficulties arise. First( is a directed
graph. While for undirected graphs with nodesO (log(m)) approximation results for the unicast capacity
region of such graphs in terms of cut-set bounds are knowjy {28 best known approximation result for
general directed graphs(m!'/23) up to polylog factors inn [29]. Second, the grapf¥ is exponentially
big in n. More precisely|V| > 2". Hence even a logarithmic (in the size of the graph) approximation
result will only yield a polynomial approximation in. We are interested here in an approximation ratio
that scales like:", i.e., strictly sub-logarithmic in the size ¢¥|. Nonetheless, as we shall see, the
special structure ofs can be used to obtain ad(log(n)) < n°™® approximation forAUC( ) in terms of
A(n).

We use an idea from [30], namely that the unicast traffic gnobtan be reduced to a maximum sum-
rate problem. More precisely, for a subgetC V: x Vj of (u,w) pairs inG, define themaximum sum
rate as . }

Gp= max{)\%c :AYC € Agc(n)},

uéZ)\

(u,w)eF

where here and in the following

The quantitys is the largest sum rate that can be supported between theesdestination pairs 13
over the graplG.
We now argue that for every unicast traffic mati%° there exists¥ such that the ratuarl[,/)\uC is not

too much bigger tham(\YC).
Lemma 9. Given AU on G as described above, there exists a gebf (u,w) pairs withu € V; \ Vg
andw € V(n) C Vg so that

uc 1 Op
PO 2 2(1+In(2nt)) NUe’ (19)

Recall that the unicast traffic matrix \"*)\'C is the largest scalar multiple oi“° that is supportable
over G by definition of 3(A\UC). Hence Lemm&]9 shows that for a poit\U“)A\YC on the boundary of
the reglonAUC( ) there exists a set of source-destination pairsuch that the total demanjz(AUC))\UC
between the pairs i is almost as large as the maximum sum rate that is suppottableeenF’. Thus,
for ¢(AY€)AUC, the pairs inF’ can be understood as the approximate bottleneck, limitimthér scaling
of AUC beyond the multiples(\Y°).
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The next lemma links the ratiép/S\UFC appearing in the right-hand side df {19) to the equivalent
descriptionp()\) of the regionA(n).

Lemma 10. For any setF of (u,w) pairs withu € Vi \ Vi andw € V(n) C Vg

Gp 1.
ﬁ > ZpO‘)'
F
Combining Lemmag]9 arld 110 with (18) shows that
1~ -
B) > S0)
1 G
~ 4(1 4 In(2n%)) S\%C
1 .
P(A).

>
~ 16(1 + In(2n?))
This establishes Lemnia 5 with

1
by(n) £ > o),
() = A T ) 2"

_
It remains to prove Lemmads 9 ahd] 10. ) )
Proof of Lemma19: Given a unicast traffic matrin on G as described above, we want to find a
set of node paird” such thatp(A”°) is not too much smaller than the ratg./\%°.

First, note that&(ﬁ“c) is the solution to the following linear program

max )
S.t. Zpeﬁu,w fp> <b)\g% Vu,w € Vg, (20)
Zpefj;eep fp <c Ve € E~|C¥7
fp 2 0 VP S P7
whereﬁw is the collection of all paths it/ from nodew to nodew, and
Pe | P
(u,w)EVéXVé
The corresponding dual linear program is
min ZeeEé CeMe
s.t. Zeep Me> dyw Yu,w € Ve, p € pu,w;
2 uwev, duwAig > 1 (21)
me > 0 Ve € Eé,
dyw>0 Vu,w € Va.

Since the all-zero solution is feasible for the primal peogr(20), strong duality holds, i.e., the maximum
in the primal [20) is equal to the minimum in the du@l](21). Eaver, by weak duality, any feasible
solution to the dual probleni (P1) yields an upper bound tontlaimum in the primal(20).

Second is the solution to the linear program

maX Z(U7M)EF ZPEJ‘:’u,w fp
S.t. > pepeey fp < e Ve € Eg, (22)
>0 VpeP,
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and its dual is _
min EeeEé CeMe

S.t. Zeep Me > dyw Yu,w € Vg, p € ﬁ%w,
dyw>1 Y(u,w) € F, (23)
me > 0 Ve € Eg,
dyw >0 Vu,w € V.

Again strong and weak duality hold.

Let (m})eer., (d} ,)uwev, De @ minimizer for the dual(21) of the unicast traffic probleBy strong
duality, the minimum of the dual (21) is equal to the maximufrttee corresponding primal(20). We
now show how(m;), (d; ) can be used to construct a feasible solution to the dual (28)eomaximum
sum-rate problem for a specific choice of subBetBy weak duality, this feasible solution for the dual
(23) yields an upper bound on the maximum in the correspgnplirmal (22). This will allow us to lower
bound¢(\YC) in terms of the ratlmF/AgC as required.

Note first that we can assume without loss of optimality that

if AU =0,
dy=1" " Mo =0 (24)
’ min, s ., m: Otherwise.

Now, sincec. = co whenevere € E; \ E¢, we haven} = 0 for those edges. Since, in additioﬁjffv >0
only if u € V5 \ Vi and if w is a leaf node ofG, this implies that(d;w)u,wevé can take at most?
different nonzero values, since there are at most that matinct paths between leaf nodes in the tree
graphG. Order these values in decreasing order

di >dy > ...>dy >dp,; =0
with K < n?, and define forl < k < K

MeE Y NS, (25)
u,weVgdy, ,=dj
We now argue thatl; < n? for all k € {1,..., K}. In fact, assumel; > n?, then by [2%) there exists
at least one edge such thatn} > n, because in any path, ., there are at most edges with non-zero
mZ value. Hence
Z Cems > cemy >n
ecEgs
sincec. > 1 for all e € E;. Due to strong duality, this implies that the solution of fiveear program

(20), i.e., the value ofgS(/\UC), is strictly larger thann. But that is not possible. Indeed, due to the
normalization assumptio (L7), we haye, wev )\UC = 1. By construction, all destination nodesin

Vi are inV C Vz, and hence there are at m@snodeSw with nonzero/\UC Together, this implies that
for at least one node the total traffic intow satisfies

yogue > L
ueVys "
By definition, (AU®)\U¢ must be supportable i@. Sinced(A\U°) > 0, and since, by assumptiok;S, = 0
wheneverw € U, this will induce a load strictly greater than one on the éireapacity edge incident on
w. As w € V, this edge has unit capacity, which contradicts #h@t““)\““ is supportable. Therefore,
#(AYC) must be no more than and hence we obtain thadt < d; <n? for all 1 < k < K.
We now argue that at least onedjfin 1 < £ < K is not too small. To that end, lé} < ky < ... <k;
be such that ]
e, = {k: e > — 1, (26)

- 2nt
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with \VC as defined in[{25). Note thdt> 1 since otherwise

K
2 yuc __ 2 juc
)‘u,w - )‘k
u,weVg k=1

K

<
2n4
<1,

contradicting the normalization assumptiénl(17). Define

7
A 2 :~UC
j=1

Using that(dy) is feasible for the dual{21), that < n?, and thatK < n?, we have

id;jgfm— > dN©
=1

k:AYC<1/2n4

Zl—KnL
2n4
1
> Z 27
> @7)

We argue that this implies existence io$uch that
1
dy > .
M= 2s,(1 + In(2nt))
Indeed, assumé_(28) is false for allThen

(28)

I ~ 1 I S‘ILgJC

dr € <

; h ki 2(1+1n(2n4)); Si
(a) 1

—m(“zw —)

0
<3 1—|—ln ST (14 S (1n(s) = In(si0)) )
- 1+1n 2(1+ In(2n%)) <1+1H<S’/A ))
(<C) (1—|—ln 2n )

- 1—|—ln 2n4

1

-,

where we have used that> 1 in (a), thatl — 2 < —In(z) for everyxz > 0 in (b), and thats; < 1 by
(i)} and)\UC > 541 in (). This contradicts[{27), showing th&f{28) must hold for scm€onsider this
value of in the following. .

Now, consider the following set’ of (u,w) pairs:

F2 {(w,w):d;,,, > dy,}
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Note that, by [(2K),F" contains only pairgu, w) such thatu € Ve \ Ve andw € V' C Vg (i.e., nodes in
G corresponding to leaf nodes ). Set

oy = dz’w,
Cdg
m, 2
ki
for all u,w € V. Note that, for(u,w) € F,
Ay = CZZ*’“’ > 1,
ki

ecp k; ecp
1
> —-dy,
di. ™
= du,wu
by feasibility of (d;, ) and (m}) for the dual [(21). Hence, for thig', the choice of(m,) and (d,.,) is
feasible for the dual(23). By weak duality, any feasibleusoh for the dual[(Z213) yields an upper bound

for the corresponding primal{(R2). Therefore

Of S § CeMMe
EEEG*

1

By (28), .
o>
di, = 25;(1 +1n(2n%))’

and, sinced; > d; for all j <4,
J i
4
yucC
5i = Z)"fj
7j=1
4
yuc
=) > AL
7j=1

(u,w):dﬁ’w:dzj
E juc
< )\u7w
(u,w):d;deZi
_ E juc
- )\u,w
(uw)EF

_ juc
=\
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(note that the last equality is simply the definition&i@). Therefore,
1
op < pr Z Cems
k; BGEG
< 25;(1 +1n(2n%)) Z Cemy;
BGEG
<2091+ In(2n) Y com.
GEEG
Since, by assumptioriyn?) is optimal for the duall{21), and by strong duality, we have
> ceml = 6(A°),
EEEG*
and hence

7/yuc 1 Op
o) 2 201+ In(2n) AU

[
Proof of Lemmd_J0: We wish to analyze maximum sum ratés in G for setsF' such that for
(@,w) € F we havei € Vz\ Vg andw € V C Vi C V. Notice that, due to this form of' and since the
edges inE \ E¢ have infinite capacity, this analysis can be done by consigenly the core ofz. More
precisely, for a collection of node paifs in G as above, we construct a collection of node péirg1 G
as follows. For eaclfu,w) € F', note that by construction is connected to a subsetC V C Vi C Vg
of nodes. For eacki, w) € F, add (u,w) to F' for each such: € U. Denote byor the maximum sum
rate for F' in . Since( is the undirected version of the core Gf we have

5’15201:. (29)

For a collection of node pair$’ in GG, we call a set of edged/ a multicut for F' if in the graph
(Va, E¢ \ M) each pair inF’ is disconnected. For a subset C E, define

A
Cynr — Ce.
eeM

From the definition of a multicut, it follows directly thatr < ¢,,;. More surprisingly, it is shown in [31,
Theorem 8] that ifG is an undirected tree, then for evefye V; x V; there exists a multicud/ for F’
such that .

or Z §CM. (30)

Next, we show how the edge cf C E; can be transformed into a node ctitC V;. Denote by
{S;} the connected components @f;, £ \ M). We can assume without loss of generality that

M = J(Si x )N Eg,

since otherwise we can remove the additional edges fidno create a smaller multicut foF’. We
therefore have

1
Cpy = 5 ; C(SicXSi)ﬂEgv (31)

since every edge i/ appears exactly twice in the sum on the right-hand side. BdénS C Vj

AsE DT M

UcsSnV weV\S
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as the total caching traffic that needs to be transmitteddmtw NV and V' \ S. M is a multicut for F’
induced byF, and hence for everyi, w) € F and the corresponding pait/, w), M separatesv from
all the nodes inJ. Therefore, for each sucft/, w) pair, there exists a se&t; such thatw € S;, U C S¢.

This shows that .
A <N e (32)

Equations[(30),[(31), and (B2) imply that there exigtsuch that

Op o 12 Cspxsone
D Yy
1 ¢(ssx85)nEe

C(SXSC)QEG
SCVa )\S

where in the last equality we have usédl (4). This completegptbof of Lemmad_T0. [ |

V. CONCLUSIONS

We have analyzed the influence of caching on the performahedreless networks. Our approach
is information-theoretic, yielding an inner bound on thelaag capacity region for all values > 2 of
path-loss exponent, and a matching (in the scaling senge) baund fora: > 6. Thus, in the high path-
loss regimex > 6, this provides a scaling characterization of the complathing capacity region. Even
though this region i8" x n-dimensional, i.e., exponential in the number of nod&s the wireless network,
we have presented an algorithm that checks approximateil@gsof a particular caching traffic matrix
efficiently, namely in polynomial time in the descriptiomtgh of the caching traffic matrix. Achievability
is proved using a three-layer communication architectlitee three layers deal with optimal selection
of caches, choice of amount of necessary cooperation, aodenterference, respectively. The matching
(again in the scaling sense) converse proves that addgesse questions separately is without loss of
order-optimality in the high path-loss regime. That is, reeschannel separation is close to optimal for
caching traffic in this regime.

We view this result as a step towards understanding the npeaface loss incurred due to source-channel
separation for the transmission of arbitrarily correlagedrces. Determining the performance loss for such
a separation based strategy for all valuesxof 2 for caching traffic, and more generally for sources
with arbitrary correlation are interesting questions fotufe research.
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