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Caching in Wireless Networks
Urs Niesen, Devavrat Shah, Gregory W. Wornell

Abstract

We consider the problem of delivering content cached in a wireless network ofn nodes randomly located on a
square of arean. The network performance is described by the2n ×n-dimensional caching capacity region of the
wireless network. We provide an inner bound on this caching capacity region, and, in the high path-loss regime, a
matching (in the scaling sense) outer bound. For large path-loss exponent, this provides an information-theoretic
scaling characterization of the entire caching capacity region. The proposed communication scheme achieving the
inner bound shows that the problems of cache selection and channel coding can be solved separately without loss
of order-optimality. On the other hand, our results show that the common architecture of nearest-neighbor cache
selection can be arbitrarily bad, implying that cache selection and load balancing need to be performed jointly.

I. INTRODUCTION

Wireless networks are an attractive communication architecture in many applications as they require
only minimal fixed infrastructure. While unicast and multicast traffic in wireless networks has been widely
studied, the influence of caches on the network performance has received considerably less attention.
Nevertheless, the ability to replicate data at several places in the network is likely to significantly increase
supportable rates. In this paper, we consider the problem ofcharacterizing achievable rates with caching
in large wireless networks.

In a rather general form, this problem can be formulated as follows. Consider a wireless network with
n nodes, and assume a nodew in the network requests a message available at the set of caches U (a
subset of the nodes) at a certain rateλU,w. The collection of allλU,w can be represented as a caching
traffic matrixλ ∈ R

2n×n
+ . The question is then to characterize the set of achievable caching traffic matrices

Λ(n) ⊂ R
2n×n
+ .

A. Related Work

Several aspects of caching in wireless networks have been investigated in prior work. In the computer
science literature, the wireless network is usually modeled as a graph induced by the geometry of the
node placement. This is tantamount to making a protocol model assumption (as proposed in [1]) about the
communication scheme used. By definition, such an approach assumes separation of source and channel
coding. The quantity of interest involves the distance fromeach node to the closest cache that holds the
requested message. The problem of optimal cache location for multicasting from a single source has been
investigated in [2], [3]. Optimal caching densities under uniform random demand have been considered
in [4], [5]. Several cache replacement strategies are proposed, for example, in [6].

To the best of our knowledge, caching has not been directly considered in the information theory
literature. However, the more general problem of transmitting correlated sources over a network has
been studied. Caching is a special case of this problem, in which sources are either independent or
identical. While for a single point-to-point channel separation of source and channel coding was shown
to be optimal by Shannon [7], the work by Cover, El Gamal, and Salehi [8] established that separation
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is strictly suboptimal for the transmission of correlated sources over a multiple access channel. Hence,
even for simple networks, source and channel coding have to be considered jointly. We note that for
some special cases separate source and channel coding is optimal, for example for transmitting arbitrarily
correlated sources over a network consisting of independent point-to-point links [9]–[11]. The general
problem of joint source-channel coding for noisy networks is unsolved.

Finally, it is worth mentioning the problem of transmittingunicast traffic over a wireless network, which
is a special case of the caching problem with each message being available at only a single cache. This
problem has been widely studied. Approximate characterizations of the unicast capacity region of large
wireless networks (also known as scaling laws) were derived, for example, in [1], [12]–[22].

B. Summary of Results

We consider the general caching problem from an information-theoretic point of view. Compared to
the prior work mentioned in the last section, there are several key differences. First, we do not make a
protocol channel model assumption, and instead allow the use of arbitrary communication protocols over
the wireless network including joint source-channel coding. Second, we allow for general traffic demands,
i.e., arbitrary number of caches, and arbitrary demands at each destination. Third, we do not impose that
each destination requests the desired message from only theclosest cache, nor do we impose that the
entire message be requested from the same cache. Rather, we allow parts of the same message to be
requested from different caches.

We present a communication scheme for the caching problem, yielding an inner bound on the caching
capacity regionΛ(n). This communication scheme performs separate source and channel coding. For
large values of path-loss exponent, we provide a matching (in the scaling sense) outer bound, proving the
approximate optimality of our proposed scheme for large values ofn. Together, this provides a scaling
description of the entire caching capacity region of the wireless network in the large path-loss regime. This
result further implies that for caching traffic the loss due to source-channel separation is small (again in the
scaling sense) in the large path-loss regime. Since cachingtraffic is a special case of correlated sources,
in which two sources are either identical or independent, this result is a step towards understanding the
loss incurred due to source-channel separation for the transmission of arbitrarily correlated sources.

C. Organization

The remainder of this paper is organized as follows. SectionII introduces the channel model and nota-
tion. Section III presents the main results of the paper. Section IV analyzes the proposed communication
scheme and establishes its optimality (up to scaling) for large path-loss exponent. Section V contains
concluding remarks.

II. NETWORK MODEL AND NOTATION

Consider a square of arean, denoted by

A(n) , [0,
√
n]2.

Let V (n) ⊂ A(n) be a set of|V (n)| = n nodes placed independently and uniformly at random onA(n).
We assume the following complex baseband-equivalent channel model. The received signal at nodev and
time t is

yv[t] ,
∑

u∈V (n)\{v}

hu,v[t]xu[t] + zv[t]

for all v ∈ V (n), t ∈ N, and wherexu[t] is the channel input at nodeu at time t. Here (zv[t])v,t are
independent and identically distributed (i.i.d.) circularly symmetric complex Gaussian random variables
with mean0 and variance1, and

hu,v[t] , r−α/2
u,v exp(

√
−1θu,v[t]),
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for path-loss exponentα > 2, and whereru,v is the Euclidean distance betweenu andv. Due to physical
constraints, the path-loss exponentα satisfiesα ≥ 2; we adopt the slightly stronger assumptionα > 2
because it simplifies the statements and derivations of someof the results. The phase terms(θu,v[t])u,v
are assumed to be i.i.d. with uniform distribution on[0, 2π).1 We either assume that(θu,v[t])t is stationary
and ergodic as a function oft, which is calledfast fadingin the following, or we assume that(θu,v[t])t is
constant as a function oft, which is calledslow fadingin the following. In either case, we assume full
channel state information (CSI) is available at all nodes, i.e., each node knows all(hu,v[t])u,v at time t.2

We also impose an average unit power constraint on the channel inputs (xu[t])t for every nodeu ∈ V (n).
A caching traffic matrixis an elementλ ∈ R

2n×n
+ . Considerw ∈ V (n) and U ⊂ V (n). Assume a

message that is requested at destination nodew is available at all of the cachesU . λU,w denotes then the
rate at which nodew requests the message from the cachesU .3 Note that we do not impose that any
particular cacheu ∈ U providesw with the desired message, rather multiple nodes inU could provide
parts of the message. Note also thatλU,w and λŨ ,w could both be strictly positive forU 6= Ũ , i.e., the
same destination could request more than one message from different collection of caches. We assume
that messages for different(U,w) pairs are independent. Thecaching capacity regionΛ(n) of the wireless
networkV (n) is the closure of the set of all achievable caching traffic matricesλ ∈ R

2n×n
+ .

Example 1. ConsiderV (n) = {vi}4i=1 with n = 4. Assume thatv1 requests a messagem{v3,v4},v1 available
at the cachesv3, andv4 at rate1 bit per channel use, and an independent messagem{v3},v1 available only
at v3 at a rate of2 bits per channel use. Nodev2 requests a messagem{v3,v4},v2 available at the cachesv3
andv4 at a rate of4 bits per channel use. The messagesm{v3,v4},v1 , m{v3},v1 , andm{v3,v4},v2 are assumed
to be independent. This traffic pattern can be described by a caching traffic matrixλ ∈ R

16×4
+ with

λ{v3,v4},v1 = 1, λ{v3},v1 = 2, λ{v3,v4},v2 = 4, andλU,w = 0 otherwise. Note that in this example nodev1 is
destination for two (independent) caching messages, and node v3 and v4 serve as caches for more than
one message (but these messages are again assumed independent). ♦

To simplify notation, we assume when necessary that large reals are integers and omit⌈·⌉ and ⌊·⌋
operators. For the same reason, we suppress dependence onn within proofs whenever this dependence is
clear from the context. We use bold font to denote matrices whenever the matrix structure is of importance.
We use the† symbol to denote the conjugate transpose of a matrix. Finally, log and ln represent the
logarithms with respect to base2 ande, respectively.

III. M AIN RESULTS

The main results of this paper are an achievable scheme and anouter bound for the caching capacity
regionΛ(n). Section III-A describes a construction used in Section III-B to establish an inner bound for
Λ(n). The communication scheme achieving this inner bound respects source-channel separation and is
valid for any value of path-loss exponentα > 2. In Section III-C, we provide an outer bound that matches
(in the scaling sense) the inner bound for large values of path-loss exponentα > 6. This leads to an
approximate characterization ofΛ(n) for α > 6. This characterization is given in terms of a linear program
and is hence computationally tractable as is discussed in Section III-D. The communication architecture
achieving the inner bound on the caching capacity region is presented in Section III-E. Various example
scenarios are presented in Section III-F.

1It is worth pointing out that the i.i.d. assumption on the phase terms has to be made with some care. In particular, it is shown in [21],
[23], [24] that this assumption is valid only if the wavelength of the carrier frequency is less than|A(n)|1/2/n. For a wide range of scenarios
this is the case, and we assume throughout this paper that this assumption holds.

2We make the full CSI assumption in all the converse results inthis paper. Achievability can be shown to hold under weaker assumptions
on the availability of CSI. In particular, forα ≥ 3, no CSI is necessary, and forα ∈ (2, 3), a 2-bit quantization of the channel state
(θu,v[t])u,v available at all nodes at timet is sufficient.

3Note that several ratesλU,w are trivial. For example for pairs(U,w) with w ∈ U , or for pairs(U,w) with U = ∅. We allow these trivial
choices for notational convenience. For(U,w) such thatw ∈ U , the results will show thatλU,w = ∞ is achievable; forU = ∅, they will
show that onlyλU,w = 0 is achievable, as would be expected.
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Fig. 1. Subsquares{Aℓ,i(n)} with 0 ≤ ℓ ≤ 2, i.e., withL(n) = 2. The subsquare at levelℓ = 0 is the areaA(n) itself. The subsquares at
level ℓ = 1 are indicated by dashed lines, the subsquares at levelℓ = 2 by dotted lines. Assume for the sake of example that the subsquares
are numbered from left to right and then from bottom to top (the precise order of numbering is immaterial). ThenV0,1(n) are all the nodes
V (n), V1,1(n) are the nine nodes in the lower left corner (delineated by dashed lines), andV2,1(n) are the three nodes in the lower left
corner (delineated by dotted lines).

Fig. 2. Construction of the tree graphG. We consider the same nodes as in Fig. 1 withL(n) = 2. The leaves ofG are the nodesV (n)
of the wireless network. They are always at levelℓ = L(n) + 1 (i.e., 3 in this example). At level0 ≤ ℓ ≤ L(n) in G, there are4ℓ nodes.
The tree structure is induced by the decomposition ofV (n) into subsquares{Vℓ,i(n)}ℓ,i, delineated by dashed and dotted lines. Level0
contains the root node ofG.

A. Tree Graph and Linear Program

We describe the construction of a capacitated tree graph induced by the wireless network and a
corresponding linear program. These will be needed for the communication scheme achieving the inner
bound. This tree graph construction was introduced first in [22].

Partition the squareA(n) into 4ℓ subsquares{Aℓ,i(n)}4
ℓ

i=1 of sidelength2−ℓ
√
n, and letVℓ,i(n) be the

nodes inAℓ,i(n). The integer parameterℓ varies between0 and

L(n) ,
1

2
log(n)

(
1− log−1/2(n)

)
.

The partitions at various levelsℓ form a dyadic decomposition ofA(n) as illustrated in Fig. 1. The choice
of L(n) is made such that with high probability the number of nodes ineach setVL(n),i at the finest grid
level is growing to infinity, but not too quickly. See [22] fora detailed discussion.

We now construct an undirected, capacitated tree graphG = (VG, EG) as depicted in Fig. 2. The vertex
set VG of G consists of the nodesV (n) in the wireless network plus some additional nodes. The tree
G hasL(n) + 2 levels numbered0 to L(n) + 1: the root node is at level0 and leaf nodes are at level
L(n) + 1. The leaf nodes ofG are then nodesV (n) in the wireless network. The nodes ofG at levelℓ
with 1 ≤ ℓ ≤ L(n) are elements ofVG \ V (n) and correspond to subsets{Vℓ,i(n)}4

ℓ

i=1 of the nodesV (n)
in the wireless network. The root node ofG at level0 corresponds to all the nodesV (n) in the wireless
network. A child node at levelℓ+ 1 is connected to a parent node at levelℓ as follows. Forℓ = L(n), a
nodev at levelL(n)+1 (which is a leaf node ofG and hence also an element of the nodesV (n) ⊂ VG in
the wireless network) is connected to the node inG corresponding toVL(n),i(n) if v belongs toVL(n),i(n).
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For 0 ≤ ℓ < L(n), a node inG at level ℓ + 1 corresponding toVℓ+1,i(n) is connected to the node inG
corresponding toVℓ,j(n) if Vℓ+1,i(n) ⊂ Vℓ,j(n).

Note that through this construction, each setVℓ,i(n) for ℓ ∈ {0, . . . , L(n)}, i ∈ 4ℓ is represented by
exactly one internal node inG. Thus, the cardinality ofVG is

|VG| = |V (n)|+
L(n)∑

ℓ=0

4ℓ

= n+
1

3

(
4L(n)+1 − 1

)

≤ 2n. (1)

We assign to each edgee ∈ EG at levelℓ in G (i.e., between nodes at levelsℓ andℓ− 1) a capacity

ce ,

{
(4−ℓn)2−min{3,α}/2 if 1 ≤ ℓ ≤ L(n),
1 if ℓ = L(n) + 1.

With slight abuse of notation, we let for(u, v) = e ∈ EG

cu,v , ce.

The capacityce associated with an edgee = (u, v) is to be interpreted as follows. Recall that the
nodesu and v in G correspond to a subset of nodes in the wireless network. Let nodesu and v in G
be at levelsℓ− 1 and ℓ with 1 ≤ ℓ ≤ L(n). The corresponding subsetsVℓ−1,i(n) andVℓ,j(n) (for somei
andj) have approximately4−ℓ+1n and4−ℓn nodes with high probability. Assume we could cooperatively
communicate fromVℓ−1,i(n) to the nodesVℓ,j(n) in the wireless network. This results in a large multiple-
input multiple-output (MIMO) channel with approximately4−ℓ+1n transmit and3

4
4−ℓn receive antennas.

The capacity of this MIMO channel can be evaluated to be approximately (4−ℓn)2−min{3,α}/2. Similarly,
for a nodeu at levelL(n) + 1, the capacity fromu to the setVL(n),i it is contained in is approximately
equal to one. Thus, we see that the edge capacityce is approximately equal to the MIMO capacity between
the subsets in the wireless network corresponding to the nodes inG connected bye.

Recall that the leaf nodes ofG are equal to the nodesV (n) in of the wireless network. Hence, any
caching traffic matrixλ ∈ R

2n×n
+ for the wireless network is also a valid traffic matrix between leave

nodes ofG. Assume the leaf nodes ofG request messages according to the caching traffic matrixλ.
Specifically, we wish to route data from caches inU ⊂ V (n) to a nodew ∈ V (n) overG at rateλU,w.
We say thatλ is supportable onG if this is possible. LetΛG(n) denote the collection of all caching
traffic matricesλ ∈ R

2n×n
+ that are supportable onG. It can be verified thatΛG(n) is a closed convex set

containing the origin.
Given the tree structure ofG, there is unique path connecting any two of its nodes. The only way to

satisfy the rate demandλU,w by routing is to split it amongst different(u, w) pairs withu ∈ U . Specifically,
let PU,w denote the set of|U | unique paths inG between nodes ofU andw. For a pathp ∈ PU,w between
u ∈ U andw, let fp,U be the rate at which demand is routed from nodeu ∈ U to w along pathp for
request(U,w). A caching traffic matrixλ is supportable on the capacitated graphG if and only if for
each of the2n × n pairs (U,w) there exists a decomposition

λU,w =
∑

p∈PU,w

fp,U

so that the resulting load on each edge ofG is no more than its capacity. Formally, consider the following
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linear program
max φ

s.t.
∑

p∈PU,w

fp,U ≥ φλU,w ∀U ⊂ V, w ∈ V,

∑

U⊂V

∑

w∈V

∑

p∈PU,w:
e∈p

fp,U ≤ ce ∀e ∈ EG,

fp,U ≥ 0 ∀U ⊂ V, w ∈ V, p ∈ PU,w,

(2)

with V = V (n), and where the maximization is over the variablesφ andfp,U . Denote the maximum value
of φ by φ(λ). The caching traffic matrixλ is supportable on the graphG, if and only if φ(λ) ≥ 1.

Note that for anyλ ∈ R
2n×n
+ , the caching traffic matrixφ(λ)λ is supportable onG, i.e.,φ(λ)λ ∈ ΛG(n).

Thus,
φ(λ) = max

{
φ ≥ 0 : φλ ∈ ΛG(n)

}
.

In words,φ(λ) is the largest multiple such that the scaled traffic matrixφ(λ)λ is supportable onG. Since
ΛG(n) is a closed convex set containing the origin, knowledge ofφ(λ) for all λ ∈ R

2n×n
+ completely

specifiesΛG(n). We can think ofφ(λ), evaluated for allλ, as an equivalent description of the region
ΛG(n).

B. Inner Bound

The first result provides an inner bound for the caching capacity regionΛ(n) in terms of the setΛG(n)
of supportable caching traffic matrices over the graphG. This result is valid for allα > 2, i.e., for all
values of the path-loss exponentα of interest (excluding the boundary pointα = 2 as discussed in Section
II).

For λ ∈ R
2n×n
+ , define

ρ(λ) , max
{
ρ ≥ 0 : ρλ ∈ Λ(n)

}
.

In words, ρ(λ) is the largest multiple such that the scaled traffic matrixρ(λ)λ is achievable over the
wireless network. The caching capacity regionΛ(n) is a closed convex set containing the origin, and
henceρ(λ) is an equivalent description ofΛ(n).

Theorem 1. Under either fast or slow fading, for anyα > 2, there existsb1(n) ≥ n−o(1) such that

ρ(λ) ≥ b1(n)φ(λ)

for all λ ∈ R
2n×n
+ with probability 1− o(1) as n → ∞.

The proof of Theorem 1 is provided in Section IV-A. We point out that Theorem 1 holds only with
probability1−o(1) for different reasons in the fast and slow fading case. For fast fading, the theorem holds
only for node placements that are “regular” enough. A randomnode placement satisfies these regularity
conditions with high probability asn → ∞. For slow fading, Theorem 1 holds under the same regularity
conditions on the node placement, but additionally only holds with probability1−o(1) for the realization
of the channel gains.

Given the equivalence ofρ(λ), φ(λ) and Λ(n),ΛG(n) as mentioned above, Theorem 1 states that
b1(n)ΛG(n) ⊂ Λ(n) with high probability. This links the tree graphG to the wireless network: Every
caching traffic matrix that can be routed over the graphG can also (up to a small, in the scaling sense,
factor) be transmitted reliably over the wireless network.

The communication scheme achieving the inner bound in Theorem 1 consists of three layers. The lower
two layers handle channel coding and load balancing, and effectively transform the wireless network into
the tree graphG. The top layer assigns caches to destination nodes and routes data overG. Thus, this
scheme performs separate source coding (in the top layer) and channel coding (in the two bottom layers).
See Section III-E for a detailed description of this communication architecture.
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Λ(n)

b2(n)ΛG(n)

b1(n)ΛG(n)

λ
{
v
1
,v

2
}
,v

3

λ{v1},v2

Fig. 3. Forα > 6, the setΛG(n) approximates the caching capacity regionΛ(n) of the wireless network in the sense thatb1(n)ΛG(n)
(with b1(n) ≥ n−o(1)) provides an inner bound toΛ(n) andb2(n)ΛG(n) (with b2(n) ≤ no(1)) provides an outer bound toΛ(n). The figure
shows two dimensions (namelyλ{v1},v2 andλ{v1,v2},v3 ) of the 2n × n-dimensional setsΛ(n) andΛG(n).

C. Outer Bound

The next result provides an outer bound for the caching capacity regionΛ(n) in terms of theΛG(n).
This result is valid forα > 6, i.e., for large path-loss exponents.

Theorem 2. Under either fast or slow fading, for anyα > 6, there existsb2(n) ≤ no(1) such that

ρ(λ) ≤ b2(n)φ(λ)

for all λ ∈ R
2n×n
+ with probability 1− o(1) as n → ∞.

The proof of Theorem 2 is provided in Section IV-B. As with Theorem 1, Theorem 2 holds with
probability1− o(1) for the realization of the node placement and, in the slow fading case, the realization
of the channel gains.

Using again the equivalence ofρ(λ), φ(λ) andΛ(n),ΛG(n), Theorem 2 states thatΛ(n) ⊂ b2(n)ΛG(n)
with high probability. Comparing Theorems 1 and 2, we see that, for α > 6 and with high probability,

n−o(1)φ(λ) ≤ ρ(λ) ≤ no(1)φ(λ)

for all λ ∈ R
2n×n
+ or, equivalently,

n−o(1)ΛG(n) ⊂ Λ(n) ⊂ no(1)ΛG(n).

In other words, forα > 6, the set of caching traffic matricesΛG(n) supportable by routing over the tree
graphG scales as the caching capacity regionΛ(n). This is illustrated in Fig. 3.

D. Computational Aspects

Theorems 1 and 2 show that, for largeα, ΛG(n) ≈ Λ(n). Computationally, the question of interest is
that of membership, i.e., determining if a givenλ ∈ R

2n×n
+ belongs toΛ(n) or, equivalently, determining

if ρ(λ) ≥ 1. Sinceρ(λ) ≈ φ(λ), computation ofφ(λ) answers the membership question approximately
(up to a multiplicative error ofno(1)).

The linear program (2) definingφ(λ) can be solved in polynomial time in the number of its constraints
and variables [25]. Define

‖λ‖0 , |{(U,w) : λU,w > 0}|
as the number of(U,w) pairs with positive demandλU,w > 0. The number of constraints in the linear
program (2) scales linearly in|EG| + ‖λ‖0. And the number of variables scales asn‖λ‖0. Noting that
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|EG| is polynomial inn by (1), this implies that the approximate membership of anyλ in Λ(n) can be
checked in time polynomial inn and‖λ‖0.

Note that this need not be polynomial inn, since‖λ‖0 could be exponential inn. However, even
just to ask the membership query, one needs to specify‖λ‖0 distinct numbers. Therefore, the above
discussion shows that the computational cost of approximate membership testing takes time polynomial
in the effective problem statement, which is the best one canhope for. Moreover, in many situations of
practical interest, the number of pairs(U,w) with positive demand can be expected to be only polynomial
in the network sizen. In these cases, approximate membership can be tested in polynomial time also in
n.

E. A Content Delivery Protocol

Theorem 1 provides an inner bound for the caching capacity region of a wireless network. We now
describe the communication scheme achieving this inner bound. The matching outer bound shows that,
for α > 6, this scheme is optimal in the scaling sense.

Our proposed communication scheme consists of three layers, similar to a protocol stack. From the
highest to lowest level of abstraction, these three layers are thedata layer, thecooperation layer, and the
physical layer.

From the view of the data layer, the wireless network is treated as the abstract capacitated tree graph
G, up to a loss of a factorb1(n) in the capacity of each link. Let us assume that1

b1(n)
λ ∈ ΛG(n). Solve

the corresponding linear program (2), and letf = (fp,U) be its solution. Since 1
b1(n)

λ ∈ ΛG(n), routing
traffic according to this solutionf allows to support the caching traffic matrixλ in this layer. The next
two layers transform this routing solutionf for λ over the graphG into a communication strategy for the
wireless network.

The cooperation layer provides this tree graph abstractionto the data layer. Recall that the leaf nodes
of G are the nodesV (n) of the wireless network and that each internal node ofG represents a subset of
nodesVℓ,i(n) ⊂ V (n) within the subsquareAℓ,i(n) in the wireless network. The cooperation layer provides
the tree abstractionG by ensuring that, whenever a message is located in the data layer at a particular
nodev, the message is evenly distributed in the wireless network among the nodesVℓ,i(n) represented by
the nodev. Recall that the sets{Vℓ,i(n)} are nested and increasing asℓ decreases. Hence, as a message
travels towards the root node inG in the data layer, it is distributed over a larger area in the wireless
network by the cooperation layer. Similarly, as a message travels away from the root node inG in the
data layer, it is concentrated on a smaller area in the wireless network by the cooperation layer. Thus,
sending a message up or down an edge in the treeG in the data layer corresponds in the cooperation
layer to distributing or concentrating the same message in the wireless network (see also Fig. 4 below).

Formally, this distribution and concentrating of messagesis performed as follows. To send a message
from a child node to its parent inG (i.e., towards the root node ofG), the message at the wireless nodes in
V (n) represented by the child node inG is evenly distributed over the wireless channel among all nodes
in V (n) represented by the parent node inG. This distribution is performed by splitting the message at
each node inV (n) represented by the child node inG into equal sized parts and by transmitting one
part to each node inV (n) represented by the parent node inG. To send a message from a parent node
to a child node inG (i.e., away from the root node ofG), the message at the wireless nodes inV (n)
represented by the parent node inG is concentrated on the wireless nodes inV (n) represented by the
child node inG. This concentration is performed be collecting at each nodein V (n) corresponding to
the child node inG the message parts of the previously split up message locatedat the nodes inV (n)
corresponding to the parent node inG.

Finally, the physical layer performs this concentration and distribution of messages induced by the
cooperation layer over the physical wireless channel. Notethat the kind of traffic resulting from the
operation of the distribution or cooperation is highly uniform in the sense that within each subsquare
all nodes receive data at the same rate. Uniform traffic of this sort is well understood. Depending on
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the path-loss exponentα, we use either hierarchical cooperation [19], [20] (forα ∈ (2, 3]) or multi-hop
communication (forα > 3). It is this operation of each edge in the physical layer thatdetermines the
edge capacity of the graphG as seen from the data layer.

Note that the value of the path-loss exponentα only significantly affects the operation of the physical
layer. The cooperation layer is completely invariant underchanges inα, and the data layer is only affected
through the value of the edge capacities of the graphG. In particular, even whenα > 3 so that the physical
layer performs multi-hop communication, the constructionof the tree structureG is still necessary. In
fact, the role of routing overG can be understood as load balancing of traffic, which is required no matter
how the physical layer operates.

We point out that this scheme respects source-channel separation. In fact, source coding is only
performed at the data layer (through the selection of message parts from the various available caches).
Channel coding is only performed in the cooperation and physical layers.

The next example illustrates the operation of this scheme. For more details on this architecture, see
[22].

Example 2. Consider the three layers of the proposed communication architecture depicted in Fig. 4.
From top to bottom in the figure, these are the data layer, the cooperation layer, and the physical layer.
In this example, we consider a single(U,w) pair. The set of cachesU consists of two nodes{u1, u2} in
the wireless network shown at the bottom left, and the corresponding destinationw is in the top right of
the network.

At the data layer, traffic is balanced by choosing which fraction of the message requested atw and
available atU is delivered from each nodeu1 andu2 in U . This load balancing is performed by solving
the linear program (2). In this simple example, a reasonablechoice is to deliver half the message from
u1 and half fromu2. The routes between{u1, u2} andw chosen at the data layer are indicated in black
dashed lines.

Consider now the second edge along the path inG from u1 to w labeled bye = (v2, v1) in the figure.
The middle plane in the figure shows the induced behavior in the cooperation layer from using this edge
in the data layer. Note thatv2 andv1 are not leaf nodes ofG, and hence correspond to subsets ofV (n)
through the construction ofG. Let V2,i(n) andV1,j(n) be the subsets ofV (n) corresponding tov2, and
v1, respectively. Sincev2 is a child node ofv1, we must haveV2,j ⊂ V1,i. When a message is present atv2
in the data layer, it is distributed evenly over the three nodes inV2,i(n) in the cooperation layer; in other
words, each of the three nodes inV2,i(n) has access to a distinct third of the original message. To send
the message over edgee from v2 to v1 in the data layer, the cooperation layer splits the message part at
each node inV2,i(n) into smaller parts and distributes these subparts evenly over the nodes inV1,j(n).
Thus, when the message reachesv1 in the data layer, each of the nine nodes inV1,j(n) has access to a
distinct ninth of the original message in the cooperation layer.

The bottom plane in the figure shows part of the correspondingactions induced in the physical layer.
The distribution of message parts fromV2,i(n) to V1,j(n) is properly scheduled to minimize interference,
and channel coding is performed. The precise nature of the operation of this layer depends on the path-loss
exponentα, as explained above.

♦

F. Example Scenarios

We provide two examples illustrating various aspects of thecaching capacity region. Example 3 shows
that the strategy of always selecting the nearest cache can be arbitrarily bad. Example 4 illustrates the
potential benefit of caching on achievable rates in the wireless network.

Example 3. (Nearest-neighbor cache selection)
A simple and intuitive strategy for selecting caches is to request the entire message from the nearest

available cache. In fact, this is the strategy implicitly assumed in most of the prior work on caching in
wireless networks cited in Section I-A. This example shows that this strategy can be arbitrarily bad.
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u1

w

u2

v2

v1

e

Fig. 4. Example operation of the three-layer architecture.A message available at the cachesU = {u1, u2} is requested at the destination
nodew. The figure shows the induced actions by this request in the data layer (top plane), cooperation layer (middle plane), andphysical
layer (bottom plane).

We consider the scenario illustrated in Fig. 5. AssumeV2,1(n) andV2,3(n) are subsets ofV1,1(n), and
V2,16(n) is a subset ofV1,4(n). Consider a nodeu⋆ ∈ V2,3(n) geographically close toV2,1(n), and label
the nodes inV2,1(n) = {w1, w2, . . .} and inV2,16(n) = {u1, u2, . . .}. Construct the traffic matrix

λU,w ,

{
1 if U = {u⋆, ui}, w = wi for somei,

0 otherwise.

In words, each node inwi ∈ V2,1(n) requests a message available at a dedicated cacheui ∈ V2,16 and at
a shared cacheu⋆ ∈ V2,3. We want to determineρ(λ), the largest multiple ofλ such that the resulting
traffic matrix is achievable in the wireless network. In thissetting with unit demands,ρ(λ) can also be
interpreted as the largest uniformly achievable per-node rate.

uiu⋆wi

︸ ︷︷ ︸
V1,1(n)

︸ ︷︷ ︸
V1,4(n)

︸ ︷︷ ︸
V2,16(n)

︸ ︷︷ ︸
V2,3(n)

︸ ︷︷ ︸
V2,1(n)

Fig. 5. Caching traffic pattern for Example 3. Each destination nodewi ∈ V2,1(n) requests a message available at a dedicated cache
ui ∈ V2,16(n) and at a shared cacheu⋆ ∈ V2,3(n).

For every destination nodewi, the nearest cache (both in terms of geographic as well as graph distance)
is u⋆. Assume each nodewi requests the entire message from its nearest cacheu⋆. It is easy to show
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that each node in the wireless network, and, in particular, nodeu⋆, can reliably transmit information at a
sum rate of at mostno(1). With high probability there will beΘ(n) nodes inV2,1(n) requesting a message
at equal rate fromu⋆. Hence this strategy achieves a per-node rate of at mostn−1+o(1) regardless of the
value of the path-loss exponentα > 2.

Assume now eachwi uses only the more distant cacheui. The routes fromui to wi for different values
of i intersect only at the four edges closest to the root node ofG. These four edges have a capacity of
orderΘ(n2−min{3,α}/2), and hence it can be seen that over the graphG these messages can be routed at
a per-node rate ofΘ(n1−min{3,α}/2). Together with Theorem 1, this shows that

ρ(λ) ≥ n1−min{3,α}/2−o(1) ≫ n−1+o(1)

is achievable in the wireless network with high probability. For this simple example, it is easily checked
that this strategy is order-optimal for routing over the graph G. Together with Theorem 2, this confirms
that, forα > 6, no scheme can achieve a better scaling in the wireless network. Hence

ρ(λ) = n1−min{3,α}/2±o(1)

for α > 6.4 With some additional work, it can be shown that this is the correct scaling ofρ(λ) also
for α ∈ (2, 6]. This shows that the strategy of always selecting the nearest cache can result in a scaling
exponent that is considerably worse than what is achievablewith optimal cache selection. ♦

Example 4. (Complete caches)
Assume we randomly picknβ caches forβ ∈ (0, 1), each holding a complete copy of all the messages.

More precisely, lettingU⋆ = {ui}nβ

i=1 be the collection of caches, we consider a caching traffic matrix
λ ∈ R

2n×n
+ of the form

λU,w =

{
1 if U = U⋆,

0 otherwise,

for every(U,w). In other words, every nodew ∈ V (n) requests a message that is available at a common
set of cachesU⋆. As before,ρ(λ) can in this setting with uniform demands be interpreted as the largest
uniformly achievable per-node rate.

Assume every node chooses the nearest cache (as discussed inExample 3). With high probability, there
will be Θ(n1−β) nodes accessing the same cache. The bottleneck limiting theflows from this cache to
the destination nodes is the edge with capacity one connecting the cache to the tree. Hence, with this
strategy, we can achieve a per-node rate ofΘ(nβ−1) over the graphG with high probability. By Theorem
1, this implies that a per-node rate of

ρ(λ) ≥ nβ−1−o(1)

is achievable with probability1 − o(1) as n → ∞ in the wireless network. A short calculation reveals
that this is an order-optimal routing strategy overG, which, by Theorem 2, shows that

ρ(λ) ≤ nβ−1+o(1)

for α > 6. Hence, forα > 6,
ρ(λ) = nβ−1±o(1).

Moreover, it can be shown that this is the correct scaling ofρ(λ) also forα ∈ (2, 6].
This example illustrates that in situations in which the traffic demand and location of caches are regular

enough, the strategy of selecting the nearest cache (as analyzed also in Example 3, and which is shown
there to be arbitrarily bad in general) can actually be closeto optimal. ♦

4The notationn±o(1) is used to indicate thatno(1) is an upper andn−o(1) is a lower bound.
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IV. PROOFS

In Section IV-A, we provide the proof of the inner bound in Theorem 1. The proof relies on the
communication scheme presented earlier in Section III-E. The outer bound in Theorem 2 is proved in
Section IV-B. It consists of two key steps, summarized by Lemmas 4 and 5 below. The first step is
information-theoretic, outer bounding the caching capacity region in terms of cuts in the wireless network
and then relating these cuts to cuts in the graphG. The details of this first step are provided in Section
IV-C. The second step relates these cuts in the graphG to supportable flows overG. The details of this
second step are provided in Section IV-D.

A. Proof of Theorem 1 (Inner Bound)

We wish to show thatρ(λ) ≥ b1(n)φ(λ) for someb1(n) ≥ n−o(1) uniform in λ. Equivalently, we will
argue thatλ ∈ ΛG(n) implies b1(n)λ ∈ Λ(n). Assumeλ ∈ ΛG(n); thenφ(λ) ≥ 1. Let

f , (fp,U)

be the corresponding solution of the linear program (2). By definition of (2), the load induced byf on
each edge ofG is no more than its capacity.

We now use this solutionf to construct aunicasttraffic matrix solving the caching problem. Formally,
a unicast traffic matrixis an elementλUC ∈ R

n×n
+ associating with each source-destination pair(u, w) ∈

V (n) × V (n) the rateλUC
u,w at which destination nodew requests data from source nodeu. The unicast

capacity regionΛ(n) ⊂ R
n×n
+ is the closure of the collection of all achievable unicast traffic matrices

in the wireless network. In analogy to caching traffic, everyunicast traffic matrixλUC for the wireless
network induces a unicast traffic matrix between the leaf nodes of the graphG, and we can defineΛUC

G (n)
as the collection of unicast traffic matrices that can be routed (i.e., are supportable) overG.

Consider again the flowsf as defined above. Construct the unicast traffic matrixλUC = λUC(f) as

λUC
u,w ,

∑

U⊂V (n):
u∈U

fpu,w,U ,

wherepu,w is the unique path in the tree graphG betweenu andw. In words,λUC
u,w is the sum of the flows

fpu,w,U for the caching problem fromu to w. The load induced by this unicast trafficλUC(f) on the edges
of G is the same as that due tof . In particular, the total demand ofλUC(f) across each edge is at most
its capacity. SinceG is a tree, this implies thatλUC(f) is supportable overG, i.e., λUC(f) ∈ ΛUC

G (n).
We have thus transformed the problem of routingcaching traffic overG into one of routingunicast

traffic overG. The following result, established in [22], links the set ofsupportable unicast traffic matrices
ΛUC

G (n) overG to the unicast capacity regionΛUC(n) of the wireless network.

Proposition 3. Under either fast or slow fading, for anyα > 2, there existsb′1(n) ≥ n−o(1) such that

b′1(n)Λ
UC
G (n) ⊂ ΛUC(n)

with probability 1− o(1) as n → ∞.

Proof: See [22, Lemma 10].
Proposition 3 is established by means of an explicit communication architecture, consisting of the three

layers (data layer, cooperation layer, physical layer) as described in detail in Section III-E.
Proposition 3 implies thatb′1(n)λ

UC(f) ∈ ΛUC(n). Given that the unicast traffic matrixλUC(f) was
created through decomposing the caching traffic matrixλ, it follows that b′1(n)λ can be supported using
these unicast transmissions over the wireless network. That is, b1(n)λ ∈ Λ(n) for

b1(n) , b′1(n) ≥ n−o(1).

This shows that
b1(n)ΛG(n) ⊂ Λ(n),

completing the proof of Theorem 1.
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B. Proof of Theorem 2 (Outer Bound)

We aim to show that
ρ(λ) ≤ b2(n)φ(λ)

for someb2(n) ≤ no(1) uniform in λ. The proof proceeds in two steps. First, we relate achievable traffic
in the wireless network (characterized byρ(λ)) to cuts in the graphG (characterized bŷρ(λ) defined
below). Second, we relate these cuts inG to supportable flows overG (characterized byφ(λ)).

Define

Λ̂(n) ,

{
λ ∈ R

2n×n
+ :

∑

U⊂S∩V

∑

w∈V \S

λU,w ≤
∑

(u,v)∈EG:
u∈S,v/∈S

cu,v ∀S ⊂ VG

}
,

with V = V (n) andVG = VG(n). Furthermore, let, for any caching traffic matrixλ ∈ R
2n×n
+ ,

ρ̂(λ) , max
{
ρ ≥ 0 : ρλ ∈ Λ̂(n)

}
. (3)

The setΛ̂(n) corresponds to the restrictions on the set of supportable caching traffic matrices on the graph
G by all possible cutsS in VG(n). Consider one such cutS ⊂ VG(n). For any caching traffic matrixλ
that can be routed overG, the total flow

∑

U⊂S∩V (n)

∑

w∈V (n)\S

λU,w

across this cut can not be larger than the capacity of the cut
∑

(u,v)∈EG:
u∈S,v/∈S

cu,v.

The regionΛ̂(n) is the set of caching traffic matrices satisfying all these constraints. The scalar̂ρ(λ)
yields an equivalent description of̂Λ(n). Note that we can rewrite the definition ofρ̂(λ) as

ρ̂(λ) = min
S⊂VG(n)

∑
(u,v)∈EG:
u∈S,v/∈S

cu,v
∑

U⊂S∩V (n)

∑
w∈V (n)\S λU,w

. (4)

Recall thatΛG(n) is the set of supportable caching traffic matrices onG, and thatφ(λ) is its equivalent
description. From the discussion in the last paragraph, it is clear thatΛG(n) ⊂ Λ̂(n), or, equivalently,
thatφ(λ) ≤ ρ̂(λ). The next lemma shows thatρ̂(λ) is also an approximate upper bound on the equivalent
descriptionρ(λ) of the caching capacity regionΛ(n) of the wireless network.

Lemma 4. Under either fast or slow fading, for anyα > 6, there existsb3(n) ≤ no(1) such that

ρ(λ) ≤ b3(n)ρ̂(λ)

for all caching traffic matricesλ ∈ R
2n×n
+ with probability 1− o(1) as n → ∞.

The proof of Lemma 4 is presented in Section IV-C.
Lemma 4 shows that, forα > 6, Λ(n) ⊂ b3(n)Λ̂(n). This implication is much less obvious than the

statementΛG(n) ⊂ Λ̂(n). The proof of Lemma 4 first uses the information-theoretic cut-set bound to
upper bound achievable rates for caching traffic by cuts in the wireless network and then relates these
cuts in the wireless network to cuts in the graphG. We point out that it is this step that limits the
applicability of the outer bound in Theorem 2 to large path-loss exponentsα > 6. The reason for this
is that evaluation of the cut-set bound for the wireless network for small path-loss exponents is quite
difficult. While it is known how to evaluate “rectangular” cuts for smallα [19], these techniques do not
extend to the arbitrary cuts that are required for the analysis of caching traffic.
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Lemma 4 allows us to upper bound the equivalent descriptionρ(λ) of the caching capacity regionΛ(n)
by the equivalent description̂ρ(λ) of the setΛ̂(n) of caching traffic matrices satisfying all cut constraints
in the graphG. We now show that̂ρ(λ) can be upper bounded by the equivalent descriptionφ(λ) of the
setΛG(n) of supportable caching traffic matrices onG.

Lemma 5. For anyα > 2, there existsb4(n) ≥ n−o(1) such that

b4(n)ρ̂(λ) ≤ φ(λ)

for all caching traffic matricesλ ∈ R
2n×n
+ .

The proof of Lemma 5 is presented in Section IV-D.
Lemma 5 shows that, for anyα > 2, b4(n)Λ̂(n) ⊂ ΛG(n). From the above discussion, we already know

thatΛG(n) ⊂ Λ̂(n). Hence, we deduce from Lemma 5 thatΛG(n) ≈ Λ̂(n). This can be understood as an
approximate max-flow min-cut result for caching traffic on undirected capacitated graphs. Lemma 5 is,
in fact, valid for any tree graphG (with mild assumptions on the edge capacities, see the prooffor the
details) and might be of independent interest.

Combining Lemmas 4 and 5 shows that, for anyα > 6,

ρ(λ) ≤ b3(n)ρ̂(λ)

≤ b3(n)

b4(n)
φ(λ).

Setting
b2(n) , b3(n)/b4(n) ≤ no(1),

and noting thatb2(n) is uniform in λ, concludes the proof of Theorem 2.

C. Proof of Lemma 4

We start with several auxiliary results. We first introduce some regularity conditions that are satisfied
with high probability by a random node placement. DefineV(n) to be the collection of all node placements
V (n) that satisfy the following conditions:

ru,v > n−1 for all u, v ∈ V (n), u 6= v,
|Vℓ,i(n)| ≤ log(n) for ℓ = 1

2
log(n) and all i ∈ {1, . . . , 4ℓ},

|Vℓ,i(n)| ≥ 1 for ℓ = 1
2
log

(
n

2 log(n)

)
and all i ∈ {1, . . . , 4ℓ},

|Vℓ,i(n)| ∈ [4−ℓ−1n, 4−ℓ+1n] for all ℓ ∈
{
1, . . . , 1

2
log(n)

(
1− log−5/6(n)

)}
, i ∈ {1, . . . , 4ℓ}.

The first condition is that the minimum distance between nodepairs is not too small. The second condition
is that all squares of area1 contain at mostlog(n) nodes. The third condition is that all squares of area
2 log(n) contain at least one node. The fourth condition is that all squares up to level1

2
log(n)

(
1 −

log−5/6(n)
)

contain a number of nodes proportional to their area.
The next lemma, quoted from [22], states that a random node placement satisfies these conditions with

high probability.

Lemma 6.
P
(
V (n) ∈ V(n)

)
≥ 1− o(1)

as n → ∞.

Proof: See [22, Lemma 5].
We continue with results upper bounding the MIMO capacity between subsets of nodes inV (n).

Formally, for disjoint subsetsS1, S2 ⊂ V (n), denote byC(S1, S2) the MIMO capacity between the nodes
in S1 andS2. Let

HS1,S2 , (hu,v)u∈S1,v∈S2
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be the matrix of channel gains between the nodes inS1 andS2. Under fast fading,

C(S1, S2) , maxE
(
log det

(
I +H

†
S1,S2

Q(H)HS1,S2

))
,

where the maximization is over all positive semi-definite matricesQ(H) such thatE(qu,u) ≤ 1 for all
u ∈ S1. Under slow fading,

C(S1, S2) , max log det
(
I +H

†
S1,S2

QHS1,S2

)
,

where the maximization is over all positive semi-definite matricesQ such thatqu,u ≤ 1 for all u ∈ S1.
See, e.g., [26]. To simplify notation, define furthermore

rS,v , min
u∈S

ru,v

for S ⊂ V (n). The next lemma provides an upper bound on the MIMO capacityC(S, Sc) between the
nodes inS andSc in terms of the number of nodes close to the boundary between them.

Lemma 7. Under either fast or slow fading, for everyα > 6, there exists a constantK1 such that for
large enoughn and all V (n) ∈ V(n) andS ⊂ V (n)

C(S, Sc) ≤ K1 log
4(n)

∣∣{v ∈ Sc : rS,v < log(n) + 1}
∣∣.

Proof: SetS1 , S andS2 , Sc, and denote bySk
2 the nodes inS2 that are at distance betweenk

andk + 1 from S1, i.e.,
Sk
2 ,

{
v ∈ S2 : rS1,v ∈ [k, k + 1)

}
.

Note that

S2 =
∞⋃

k=0

Sk
2

and
∣∣{v ∈ S2 : rS1,v < log(n) + 1}

∣∣ =
log(n)∑

k=0

|Sk
2 |.

Applying the generalized Hadamard inequality, we obtain that under either fast or slow fading

C(S1, S2) ≤ C
(
S1,∪log(n)

k=0 Sk
2

)
+ C

(
S1,∪k>log(n)S

k
2

)
. (5)

For the first term in (5), using Hadamard’s inequality once more yields

C
(
S1,∪log(n)

k=0 Sk
2

)
≤

log(n)∑

k=0

∑

v∈Sk
2

C(S1, {v})

≤
log(n)∑

k=0

∑

v∈Sk
2

C({v}c, {v}).

By [22, Lemma 6],
C({v}c, {v}) ≤ K log(n)

for some constantK < ∞ depending only onα, and thus

C
(
S1,∪log(n)

k=0 Sk
2

)
≤ K log(n)

log(n)∑

k=0

|Sk
2 |. (6)
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For the second term in (5), we have the following upper bound from slightly adapting [13, Theorem 2.1]:
Under either fast or slow fading,

C
(
S1,∪k>log(n)S

k
2

)
≤

∑

k>log(n)

∑

v∈Sk
2

( ∑

u∈S1

r−α/2
u,v

)2

.

By definition of Sk
2 , for v ∈ Sk

2 , the (open) disk of radiusk aroundv does not contain any node inS1.
Moreover, sinceV ∈ V, there are at mostlog(n) nodes inside every subsquare ofA of sidelength one.5

Thus, given thatα > 6, we have for anyv ∈ Sk
2 ,

∑

u∈S1

r−α/2
u,v ≤ log(n)

∞∑

k̃=k

10π(k̃ + 3)k̃−α/2

≤ K̃ log(n)k2−α/2,

for some constant̃K < ∞ depending only onα. Therefore,

C
(
S1,∪k>log(n)S

k
2

)
≤

∑

k>log(n)

|Sk
2 |K̃2 log2(n)k4−α. (7)

Consider now somev ∈ Sk
2 with k > log(n), and letu be the closest node inS1 to v. Sincev ∈ Sk

2 ,
we must have

ru,v ∈ [k, k + 1).

Consider the (open) disk of radiusru,v aroundv and the disk of radiuslog(n) aroundu. Sinceu is the
closest node tov in S1, all nodes in the disk aroundv are inS2. Moreover, the intersection of the two
disks has an area of at leastπ

4
log2(n). SinceV ∈ V, this implies that, forn large enough, this intersection

must contain at least one point, sayṽ, and by construction

ṽ ∈
log(n)⋃

k̃=0

S k̃
2 .

This shows that for every nodev in Sk
2 there exists a nodẽv in ∪log(n)

k̃=0
S k̃
2 such that

rv,ṽ ∈ [k − log(n), k + 1).

Now, sinceV ∈ V, for every nodẽv, there are at most

2π(k + 3)(log(n) + 5) log(n) ≤ K ′k log2(n)

nodes at distance[k − log(n), k + 1) for some constantK ′ < ∞. Hence the number of nodes inSk
2 is at

most

|Sk
2 | ≤ K ′k log2(n)

log(n)∑

k̃=0

|S k̃
2 |. (8)

Combining (8) with (7) yields

C
(
S1,∪k>log(n)S

k
2

)
≤ K̃2 log2(n)

∑

k>log(n)

|Sk
2 |k4−α

≤ K ′K̃2 log4(n)
(∑log(n)

k̃=0
|S k̃

2 |
) ∑

k>log(n)

k5−α

= K ′′ log4(n)

log(n)∑

k̃=0

|S k̃
2 |, (9)

5To simplify notation, we suppress dependence ofV (n),V(n),Λ(n), . . . within proofs whenever this dependence is clear from the context.
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for some constantK ′′ < ∞ depending only onα, and where we have used thatα > 6. Finally, substituting
(6) and (9) into (5) shows that

C(S1, S2) ≤ K1 log
4(n)

log(n)∑

k=0

|Sk
2 |

= K1 log
4(n)

∣∣{v ∈ Sc : rS,v < log(n) + 1}
∣∣

with
K1 , K +K ′′.

The next lemma shows that, for large path-loss exponents (α > 6), every cut is approximately achievable,
i.e., for every cut there exists an achievable unicast traffic matrix that has a sum rate across the cut that
is not much smaller than the cut capacity.

Lemma 8. Under fast fading, for everyα > 6, there existsb5(n) ≤ no(1) and λUC ∈ ΛUC(n) such that
for any n, V (n) ∈ V(n), andS ⊂ V (n),

C(S, Sc) ≤ b5(n)
∑

u∈S

∑

w/∈S

λUC
u,w. (10)

Moreover, there exists a collection of channel gainsH(n) such that

P
(
(hu,v) ∈ H(n)

)
≥ 1− o(1)

as n → ∞, and such that, for(hu,v) ∈ H(n), (10) holds for slow fading as well.

Proof: By Lemma 7, forV ∈ V
C(S, Sc) ≤ K1 log

4(n)
∣∣{v ∈ Sc : rS,v < log(n) + 1}

∣∣. (11)

Construct a unicast traffic matrixλUC ∈ R
n×n
+ as

λUC
u,w ,

{
κ(n) if ru,w < log(n) + 1,

0 otherwise,

for some functionκ(n). We now argue that forκ(n) = Θ(log−3(n)) there exists̃b(n) ≥ n−o(1) such that
b̃(n)λUC ∈ ΛUC. This follows from [22, Theorem 1] (see also Section IX.C there), once we show that for
everyℓ ∈ {1, . . . , L(n)} and i ∈ {1, . . . , 4ℓ} we have

∑

u∈Vℓ,i

∑

w/∈Vℓ,i

λUC
u,w ≤ (4−ℓn)2−min{3,α}/2, (12a)

∑

u/∈Vℓ,i

∑

w∈Vℓ,i

λUC
u,w ≤ (4−ℓn)2−min{3,α}/2, (12b)

and, for allw ∈ V ,
∑

u 6=w

λUC
u,w ≤ 1,

∑

u 6=w

λUC
w,u ≤ 1.



18

Since we assume thatV ∈ V, we have for allw ∈ V
∑

u 6=w

λUC
u,w ≤ K log3(n)κ(n),

∑

u 6=w

λUC
w,u ≤ K log3(n)κ(n),

for some constantK < ∞. By the locality of the unicast traffic matrixλUC, it can be verified that this is
sufficient for (12) to hold with

κ(n) ,
1

K
log−3(n).

Hence [22, Theorem 1] applies, showing thatb̃(n)λUC ∈ ΛUC for fast fading, and the same holds for slow
fading forH with

P
(
(hu,v) ∈ H

)
≥ 1− o(1)

asn → ∞.
Now, by construction of the unicast traffic matrixλUC,

∑

u∈S

∑

w/∈S

λUC
u,w =

∣∣{(u, w) ∈ S × Sc : ru,w < log(n) + 1}
∣∣κ(n)

≥
∣∣{w ∈ Sc : rS,w < log(n) + 1}

∣∣κ(n).
Combined with (11), this implies that

C(S, Sc) ≤ K1 log
4(n)

∣∣{w ∈ Sc : rS,w < log(n) + 1}
∣∣

≤ K1 log
4(n)

κ(n)

∑

u∈S

∑

w/∈S

λUC
u,w.

Since b̃(n)λUC ∈ ΛUC, this proves the lemma with

b5(n) ,
K1 log

4(n)

κ(n)b̃(n)
≤ no(1).

We are now ready for the proof of Lemma 4.
Proof of Lemma 4: We wish to show that, forα > 6, there existsb3(n) ≤ no(1) such that

ρ(λ) ≤ b3(n)ρ̂(λ)

with ρ̂(λ) as defined in (3). Consider the traffic matrixρ(λ) · λ and a cutS ⊂ V in the wireless network.
Assume we allow the nodes on each side of the cut to cooperate without any restriction—this can only
increase achievable rates. The total amount of traffic that needs to be transmitted across the cut is at least

ρ(λ)
∑

U⊂S

∑

w/∈S

λU,w.

The maximum achievable sum rate (with the aforementioned node cooperation) is given byC(S, Sc), the
MIMO capacity between the nodes inS and inSc. Therefore,

ρ(λ) ≤ C(S, Sc)∑
U⊂S

∑
w/∈S λU,w

.

Since this is true for all cutsS ⊂ V , we may optimize over the choice ofS to obtain the bound

ρ(λ) ≤ min
S⊂V

C(S, Sc)∑
U⊂S

∑
w/∈S λU,w

. (13)
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We proceed by relating the cutS in the wireless network to a cut̃S in the graphG. By Lemma 8, for
V ∈ V, there existsλUC ∈ ΛUC such that for fast fading

C(S, Sc) ≤ b5(n)
∑

u∈S

∑

w/∈S

λUC
u,w, (14)

and (14) holds also for slow fading if(hu,v) ∈ H with H defined as in Lemma 8. By [22, Theorem 1] (see
also the discussion in Section IX.D there), forα > 6 andV ∈ V, there existsK such that ifλUC ∈ ΛUC

thenK log−6(n)λUC ∈ ΛUC
G , whereG is the tree graph defined in Section III-A.

Now, consider anỹS ⊂ VG such thatS̃ ∩ V = S. Note thatS̃ is a cut inG separatingS from V \ S.
SinceK log−6(n)λUC ∈ ΛUC

G , we thus have

K log−6(n)
∑

u∈S

∑

w/∈S

λUC
u,w ≤

∑

(u,v)∈EG:

u∈S̃,v /∈S̃

cu,v.

By minimizing over the choice of̃S such thatS̃ ∩ V = S, we obtain

K log−6(n)
∑

u∈S

∑

w/∈S

λUC
u,w ≤ min

S̃:S̃∩V=S

∑

(u,v)∈EG:

u∈S̃,v /∈S̃

cu,v. (15)

Combining (14) and (15) shows that

C(S, Sc) ≤ b5(n)

K
log6(n) min

S̃:S̃∩V=S

∑

(u,v)∈EG:

u∈S̃,v /∈S̃

cu,v.

Together with (13), and using Lemma 6, this yields that with probability

P((hu,v) ∈ H, V ∈ V) ≥ 1− o(1)

asn → ∞, we have for any caching traffic matrixλ

ρ(λ) ≤ min
S⊂V

C(S, Sc)∑
U⊂S

∑
w/∈S λU,w

≤ b3(n)min
S⊂V

min
S̃∈VG:S̃∩V=S

∑
(u,v)∈EG:

u∈S̃,v /∈S̃

cu,v

∑
U⊂S̃∩V

∑
w∈V \S̃ λU,w

= b3(n) min
S̃⊂VG

∑
(u,v)∈EG:

u∈S̃,v /∈S̃

cu,v

∑
U⊂S̃∩V

∑
w∈V \S̃ λU,w

= b3(n)ρ̂(λ),

with

b3(n) ,
b5(n)

K
log6(n) ≤ no(1),

and where we have used (4) for the last equality.
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. . .

=⇒

G̃G

Fig. 6. Construction of the directed graph̃G from the undirected graphG.

D. Proof of Lemma 5

We wish to show that there existsb4(n) ≥ n−o(1) such that for anyλ

φ(λ) ≥ b4(n)ρ̂(λ) (16)

with ρ̂(λ) as defined in (3). To this end, we need to argue that whenever a caching traffic matrix can be
supported over the graphG, then there exists at least one cut in the graph that is approximately saturated.
In other words, we need to argue that an approximate max-flow min-cut result holds for caching traffic
overG.

The proof of the lemma proceeds as follows. We first transformtheundirectedgraphG into andirected
graphG̃ such thatcachingtraffic can be supported overG if and only if a correspondingunicast traffic
can be supported over̃G. We then argue that for unicast traffic overG̃ an approximate max-flow min-cut
result holds. Finally, we map this result for unicast trafficon G̃ back toG to obtain the desired max-flow
min-cut result for caching traffic overG.

Pick anyλ ∈ R
2n×n
+ . Forλ = 0, φ(λ) andρ̂(λ) are both infinite, and the lemma trivially holds. Assume

then thatλ 6= 0. By rescalingλ if required, we can then assume without loss of generality that
∑

(U,w)

λU,w = 1. (17)

Furthermore, we can assume thatλU,w = 0 wheneverw ∈ U , since thenw already has access to the
message it requests.

Recall thatG is an undirectedcapacitated graph. We construct adirected capacitated graph̃G =
(VG̃, EG̃) as illustrated in Fig 6. Take the undirected graphG and turn it into a directed graph by splitting
each edgee ∈ EG into two directed edges each with the same capacity ase. Add 2n additional nodes to
VG, one for each subsetU ⊂ V (n). Connect the new nodẽu corresponding toU ⊂ V (n) to each node
u ∈ U by a directed edge(ũ, u) with infinite capacitycũ,u = ∞.

We call the directed version ofG that is contained iñG as a subgraph itscore. Note that if some flows
can be routed throughG then the same flows can be routed through the core ofG̃, and if some flows can
routed through the core of̃G then at least half of each flow can be routed throughG. Hence, for scaling
purposes, the two are equivalent.

Now, assume we are given a caching traffic matrixλ for G. Construct aunicasttraffic matrix λ̃UC for
G̃ by making for each(U,w) pair in G (i.e.,U ⊂ V (n), w ∈ V (n)) the nodeũ in G̃ corresponding toU
a source forw with rate

λ̃UC
ũ,w , λU,w.

For all other node pairs, the traffic demand is set to zero. Note that with this construction, all traffic over
G̃ originates at a node inVG̃ \ VG of G̃ and is destined for a node inV (n) ⊂ VG̃. Denote byΛUC

G̃
(n) the

set of such unicast traffic matrices that are supportable onG̃, and define

φ̃(λ̃UC) , max
{
φ ≥ 0 : φλ̃UC ∈ ΛUC

G̃
(n)

}
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to be the equivalent description ofΛUC
G̃

(n). By construction ofG̃ from G, and by the above argument
relatingG to the core ofG̃, we have

φ(λ) ≥ 1

2
φ̃(λ̃UC). (18)

We have thus related caching traffic in the undirected graphG to unicast traffic in the directed graph̃G.
We are then left with the problem of analyzing unicast trafficover G̃. Recall that we have seen earlier

that trivially ρ̂(λ) ≥ φ(λ) (since the total flow over each cut can be at most equal to the cut capacity).
By (18), this implies that̃φ(λ̃UC) ≤ 2ρ̂(λ). The goal here is to establish thatρ̂(λ) is also an approximate
lower bound toφ̃(λ̃UC). This is nontrivial because it requires showing that the polytopeΛ̂(n) with fewer
constraints is closely approximated by the polytopeΛUC

G̃
(n) with more constraints. Specifically, we are

looking for this approximation to be of the form

b(n)Λ̂(n) ⊂ ΛUC
G̃

(n) ⊂ 2Λ̂(n),

whereb(n) ≥ n−o(1).
In the recent literature on multicommodity flows, starting with works by Leighton and Rao [27], and

by Linial, London, and Rabinovich [28], such approximate max-flow min-cut results for unicast traffic for
undirected graphs have been studied. However, in our context, two difficulties arise. First,̃G is a directed
graph. While for undirected graphs withm nodesO(log(m)) approximation results for the unicast capacity
region of such graphs in terms of cut-set bounds are known [28], the best known approximation result for
general directed graphs isO(m11/23) up to polylog factors inm [29]. Second, the graph̃G is exponentially
big in n. More precisely,|VG̃| ≥ 2n. Hence even a logarithmic (in the sizem of the graph) approximation
result will only yield a polynomial approximation inn. We are interested here in an approximation ratio
that scales likeno(1), i.e., strictly sub-logarithmic in the size of|VG̃|. Nonetheless, as we shall see, the
special structure of̃G can be used to obtain anO(log(n)) ≤ no(1) approximation forΛUC

G̃
(n) in terms of

Λ̂(n).
We use an idea from [30], namely that the unicast traffic problem can be reduced to a maximum sum-

rate problem. More precisely, for a subsetF̃ ⊂ VG̃ × VG̃ of (u, w) pairs in G̃, define themaximum sum
rate as

σ̃F̃ , max
{
λ̃UC
F̃

: λ̃UC ∈ ΛUC
G̃

(n)
}
,

where here and in the following
λ̃UC
F̃

,
∑

(u,w)∈F̃

λ̃UC
u,w.

The quantityσ̃F̃ is the largest sum rate that can be supported between the source-destination pairs iñF
over the graphG̃.

We now argue that for every unicast traffic matrixλ̃UC there existsF̃ such that the ratiõσF̃/λ̃
UC
F̃

is not
too much bigger thañφ(λ̃UC).

Lemma 9. Given λ̃UC on G̃ as described above, there exists a setF̃ of (u, w) pairs with u ∈ VG̃ \ VG

andw ∈ V (n) ⊂ VG̃ so that

φ̃(λ̃UC) ≥ 1

2(1 + ln(2n4))

σ̃F̃

λ̃UC
F̃

. (19)

Recall that the unicast traffic matrix̃φ(λ̃UC)λ̃UC is the largest scalar multiple of̃λUC that is supportable
over G̃ by definition of φ̃(λ̃UC). Hence Lemma 9 shows that for a pointφ̃(λ̃UC)λ̃UC on the boundary of
the regionΛUC

G̃
(n) there exists a set of source-destination pairsF̃ such that the total demand̃φ(λ̃UC)λ̃UC

F̃

between the pairs iñF is almost as large as the maximum sum rate that is supportablebetweenF̃ . Thus,
for φ̃(λ̃UC)λ̃UC, the pairs inF̃ can be understood as the approximate bottleneck, limiting further scaling
of λ̃UC beyond the multiplẽφ(λ̃UC).
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The next lemma links the ratiõσF̃/λ̃
UC
F̃

appearing in the right-hand side of (19) to the equivalent
descriptionρ̂(λ) of the regionΛ̂(n).

Lemma 10. For any setF̃ of (u, w) pairs with u ∈ VG̃ \ VG andw ∈ V (n) ⊂ VG̃,

σ̃F̃

λ̃UC
F̃

≥ 1

4
ρ̂(λ).

Combining Lemmas 9 and 10 with (18) shows that

φ(λ) ≥ 1

2
φ̃(λ̃UC)

≥ 1

4(1 + ln(2n4))

σ̃F̃

λ̃UC
F̃

≥ 1

16(1 + ln(2n4))
ρ̂(λ).

This establishes Lemma 5 with

b4(n) ,
1

16(1 + ln(2n4))
≥ n−o(1).

It remains to prove Lemmas 9 and 10.
Proof of Lemma 9: Given a unicast traffic matrix̃λUC on G̃ as described above, we want to find a

set of node pairs̃F such thatφ̃(λ̃UC) is not too much smaller than the ratiõσF̃/λ̃
UC
F̃

.
First, note that̃φ(λ̃UC) is the solution to the following linear program

max φ

s.t.
∑

p∈P̃u,w
fp≥ φλ̃UC

u,w ∀u, w ∈ VG̃,∑
p∈P̃ :e∈p fp≤ ce ∀e ∈ EG̃,

fp≥ 0 ∀p ∈ P̃ ,

(20)

whereP̃u,w is the collection of all paths iñG from nodeu to nodew, and

P̃ ,
⋃

(u,w)∈VG̃×VG̃

P̃u,w.

The corresponding dual linear program is

min
∑

e∈EG̃
ceme

s.t.
∑

e∈pme ≥ du,w ∀u, w ∈ VG̃, p ∈ P̃u,w,∑
u,w∈VG̃

du,wλ̃
UC
u,w ≥ 1

me ≥ 0 ∀e ∈ EG̃,
du,w ≥ 0 ∀u, w ∈ VG̃.

(21)

Since the all-zero solution is feasible for the primal program (20), strong duality holds, i.e., the maximum
in the primal (20) is equal to the minimum in the dual (21). Moreover, by weak duality, any feasible
solution to the dual problem (21) yields an upper bound to themaximum in the primal (20).

Second,̃σF̃ is the solution to the linear program

max
∑

(u,w)∈F̃

∑
p∈P̃u,w

fp
s.t.

∑
p∈P̃ :e∈p fp≤ ce ∀e ∈ EG̃,

fp≥ 0 ∀p ∈ P̃ ,

(22)



23

and its dual is
min

∑
e∈EG̃

ceme

s.t.
∑

e∈pme ≥ du,w ∀u, w ∈ VG̃, p ∈ P̃u,w,

du,w ≥ 1 ∀(u, w) ∈ F̃ ,
me ≥ 0 ∀e ∈ EG̃,
du,w ≥ 0 ∀u, w ∈ VG̃.

(23)

Again strong and weak duality hold.
Let (m⋆

e)e∈EG̃
, (d⋆u,w)u,w∈VG̃

be a minimizer for the dual (21) of the unicast traffic problem. By strong
duality, the minimum of the dual (21) is equal to the maximum of the corresponding primal (20). We
now show how(m⋆

e), (d
⋆
u,w) can be used to construct a feasible solution to the dual (23) of the maximum

sum-rate problem for a specific choice of subsetF̃ . By weak duality, this feasible solution for the dual
(23) yields an upper bound on the maximum in the corresponding primal (22). This will allow us to lower
boundφ̃(λ̃UC) in terms of the ratiõσF̃/λ̃

UC
F̃

as required.
Note first that we can assume without loss of optimality that

d⋆u,w =

{
0 if λ̃UC

u,w = 0,

minp∈P̃u,w

∑
e∈pm

⋆
e otherwise.

(24)

Now, sincece = ∞ whenevere ∈ EG̃ \EG, we havem⋆
e = 0 for those edges. Since, in addition,λ̃UC

u,w > 0
only if u ∈ VG̃ \ VG and if w is a leaf node ofG, this implies that(d⋆u,w)u,w∈VG̃

can take at mostn2

different nonzero values, since there are at most that many distinct paths between leaf nodes in the tree
graphG. Order these values in decreasing order

d⋆1 > d⋆2 > . . . > d⋆K > d⋆K+1 = 0

with K ≤ n2, and define for1 ≤ k ≤ K

λ̃UC
k ,

∑

u,w∈VG̃:d⋆u,w=d⋆k

λ̃UC
u,w. (25)

We now argue thatd⋆k ≤ n2 for all k ∈ {1, . . . , K}. In fact, assumed⋆1 > n2, then by (24) there exists
at least one edgẽe such thatm⋆

ẽ > n, because in any pathPu,w, there are at mostn edges with non-zero
m⋆

ẽ value. Hence ∑

e∈EG̃

cem
⋆
e ≥ cẽm

⋆
ẽ > n

sincece ≥ 1 for all e ∈ EG̃. Due to strong duality, this implies that the solution of thelinear program
(20), i.e., the value of̃φ(λ̃UC), is strictly larger thann. But that is not possible. Indeed, due to the
normalization assumption (17), we have

∑
u,w∈VG̃

λ̃UC
u,w = 1. By construction, all destination nodesw in

ṼG are inV ⊂ VG̃, and hence there are at mostn nodesw with nonzeroλ̃UC
u,w. Together, this implies that

for at least one nodew the total traffic intow satisfies
∑

u∈VG̃

λ̃UC
u,w ≥ 1

n
.

By definition,φ̃(λ̃UC)λ̃UC must be supportable iñG. Sinceφ̃(λ̃UC) > 0, and since, by assumption,λ̃UC
U,w = 0

wheneverw ∈ U , this will induce a load strictly greater than one on the finite capacity edge incident on
w. As w ∈ V , this edge has unit capacity, which contradicts thatφ̃(λ̃UC)λ̃UC is supportable. Therefore,
φ̃(λ̃UC) must be no more thann and hence we obtain thatd⋆k ≤ d⋆1 ≤ n2 for all 1 ≤ k ≤ K.

We now argue that at least one ofd⋆k in 1 ≤ k ≤ K is not too small. To that end, letk1 < k2 < . . . < kI
be such that

{ki}Ii=1 =
{
k : λ̃UC

k ≥ 1

2n4

}
, (26)
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with λ̃UC
k as defined in (25). Note thatI ≥ 1 since otherwise

∑

u,w∈VG̃

λ̃UC
u,w =

K∑

k=1

λ̃UC
k

<
K

2n4

≤ 1,

contradicting the normalization assumption (17). Define

si ,
i∑

j=1

λ̃UC
kj

.

Using that(d⋆k) is feasible for the dual (21), thatd⋆k ≤ n2, and thatK ≤ n2, we have

I∑

i=1

d⋆kiλ̃
UC
ki

≥ 1−
∑

k:λ̃UC
k <1/2n4

d⋆kλ̃
UC
k

≥ 1−Kn2 1

2n4

≥ 1

2
. (27)

We argue that this implies existence ofi such that

d⋆ki ≥
1

2si(1 + ln(2n4))
. (28)

Indeed, assume (28) is false for alli. Then

I∑

i=1

d⋆kiλ̃
UC
ki

<
1

2(1 + ln(2n4))

I∑

i=1

λ̃UC
ki

si

(a)
=

1

2(1 + ln(2n4))

(
1 +

∑I
i=2

si − si−1

si

)

(b)

≤ 1

2(1 + ln(2n4))

(
1 +

∑I
i=2

(
ln(si)− ln(si−1)

))

=
1

2(1 + ln(2n4))

(
1 + ln

(
sI
/
λ̃UC
k1

))

(c)

≤ 1

2(1 + ln(2n4))

(
1 + ln(2n4)

)

=
1

2
,

where we have used thatI ≥ 1 in (a), that 1 − x ≤ − ln(x) for everyx ≥ 0 in (b), and thatsI ≤ 1 by
(17) andλ̃UC

k1
≥ 1

2n4 in (c). This contradicts (27), showing that (28) must hold for somei. Consider this
value of i in the following.

Now, consider the following set̃F of (u, w) pairs:

F̃ ,
{
(u, w) : d⋆u,w ≥ d⋆ki

}
.
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Note that, by (24),F̃ contains only pairs(u, w) such thatu ∈ VG̃ \ VG andw ∈ V ⊂ VG̃ (i.e., nodes in
G̃ corresponding to leaf nodes inG). Set

du,w ,
d⋆u,w
d⋆ki

,

me ,
m⋆

e

d⋆ki

for all u, w ∈ VG̃. Note that, for(u, w) ∈ F̃ ,

du,w =
d⋆u,w
d⋆ki

≥ 1,

and that for allu, w ∈ VG̃, p ∈ P̃u,w,
∑

e∈p

me =
1

d⋆ki

∑

e∈p

m⋆
e

≥ 1

d⋆ki
d⋆u,w

= du,w,

by feasibility of (d⋆u,w) and (m⋆
e) for the dual (21). Hence, for this̃F , the choice of(me) and (du,w) is

feasible for the dual (23). By weak duality, any feasible solution for the dual (23) yields an upper bound
for the corresponding primal (22). Therefore

σ̃F̃ ≤
∑

e∈EG̃

ceme

=
1

d⋆ki

∑

e∈EG̃

cem
⋆
e.

By (28),

d⋆ki ≥
1

2si(1 + ln(2n4))
,

and, sinced⋆kj ≥ d⋆ki for all j ≤ i,

si =

i∑

j=1

λ̃UC
kj

=
i∑

j=1

∑

(u,w):d⋆u,w=d⋆kj

λ̃UC
u,w

≤
∑

(u,w):d⋆u,w≥d⋆ki

λ̃UC
u,w

=
∑

(u,w)∈F̃

λ̃UC
u,w

= λ̃UC
F̃
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(note that the last equality is simply the definition ofλ̃UC
F̃

). Therefore,

σ̃F̃ ≤ 1

d⋆ki

∑

e∈EG̃

cem
⋆
e

≤ 2si(1 + ln(2n4))
∑

e∈EG̃

cem
⋆
e

≤ 2λ̃UC
F̃

(1 + ln(2n4))
∑

e∈EG̃

cem
⋆
e.

Since, by assumption,(m⋆
e) is optimal for the dual (21), and by strong duality, we have

∑

e∈EG̃

cem
⋆
e = φ̃(λ̃UC),

and hence
φ̃(λ̃UC) ≥ 1

2(1 + ln(2n4))

σ̃F̃

λ̃UC
F̃

.

Proof of Lemma 10: We wish to analyze maximum sum ratesσ̃F̃ in G̃ for setsF̃ such that for
(ũ, w) ∈ F̃ we haveũ ∈ VG̃ \VG andw ∈ V ⊂ VG ⊂ VG̃. Notice that, due to this form of̃F and since the
edges inEG̃\EG have infinite capacity, this analysis can be done by considering only the core ofG̃. More
precisely, for a collection of node pairs̃F in G̃ as above, we construct a collection of node pairsF in G
as follows. For each(ũ, w) ∈ F̃ , note that by constructioñu is connected to a subsetU ⊂ V ⊂ VG ⊂ VG̃

of nodes. For each(ũ, w) ∈ F̃ , add(u, w) to F for each suchu ∈ U . Denote byσF the maximum sum
rate forF in G. SinceG is the undirected version of the core ofG̃, we have

σ̃F̃ ≥ σF . (29)

For a collection of node pairsF in G, we call a set of edgesM a multicut for F if in the graph
(VG, EG \M) each pair inF is disconnected. For a subsetM ⊂ EG, define

cM ,
∑

e∈M

ce.

From the definition of a multicut, it follows directly thatσF ≤ cM . More surprisingly, it is shown in [31,
Theorem 8] that ifG is an undirected tree, then for everyF ∈ VG × VG there exists a multicutM for F
such that

σF ≥ 1

2
cM . (30)

Next, we show how the edge cutM ⊂ EG can be transformed into a node cutS ⊂ VG. Denote by
{Si} the connected components of(VG, EG \M). We can assume without loss of generality that

M =
⋃

i

(Si × Sc
i ) ∩ EG,

since otherwise we can remove the additional edges fromM to create a smaller multicut forF . We
therefore have

cM =
1

2

∑

i

c(Sc
i×Si)∩EG

, (31)

since every edge inM appears exactly twice in the sum on the right-hand side. Define for S ⊂ VG

λS ,
∑

U⊂S∩V

∑

w∈V \S

λU,w,
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as the total caching traffic that needs to be transmitted betweenS ∩ V andV \ S. M is a multicut forF
induced byF̃ , and hence for every(ũ, w) ∈ F̃ and the corresponding pair(U,w), M separatesw from
all the nodes inU . Therefore, for each such(U,w) pair, there exists a setSi such thatw ∈ Si, U ⊂ Sc

i .
This shows that

λ̃UC
F̃

≤
∑

i

λSc
i
. (32)

Equations (30), (31), and (32) imply that there existsj such that

σ̃F̃

λ̃UC
F̃

≥ 1

4

∑
i c(Sc

i×Si)∩EG∑
i λSc

i

≥ 1

4

c(Sc
j×Sj)∩EG

λSc
j

≥ 1

4
min
S⊂VG

c(S×Sc)∩EG

λS

=
1

4
ρ̂(λ),

where in the last equality we have used (4). This completes the proof of Lemma 10.

V. CONCLUSIONS

We have analyzed the influence of caching on the performance of wireless networks. Our approach
is information-theoretic, yielding an inner bound on the caching capacity region for all valuesα > 2 of
path-loss exponent, and a matching (in the scaling sense) outer bound forα > 6. Thus, in the high path-
loss regimeα > 6, this provides a scaling characterization of the complete caching capacity region. Even
though this region is2n×n-dimensional, i.e., exponential in the number of nodesn in the wireless network,
we have presented an algorithm that checks approximate feasibility of a particular caching traffic matrix
efficiently, namely in polynomial time in the description length of the caching traffic matrix. Achievability
is proved using a three-layer communication architecture.The three layers deal with optimal selection
of caches, choice of amount of necessary cooperation, noiseand interference, respectively. The matching
(again in the scaling sense) converse proves that addressing these questions separately is without loss of
order-optimality in the high path-loss regime. That is, source-channel separation is close to optimal for
caching traffic in this regime.

We view this result as a step towards understanding the performance loss incurred due to source-channel
separation for the transmission of arbitrarily correlatedsources. Determining the performance loss for such
a separation based strategy for all values ofα > 2 for caching traffic, and more generally for sources
with arbitrary correlation are interesting questions for future research.
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