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Reducing the quantum communication cost of
guantum secret sharing

Ben Fortescue, Gilad Gour

Abstract—We demonstrate a new construction for perfect

partial information about the secret. As proven by Gottesma

quantum secret sharing (QSS) schemes based on imperfect[5] perfect QSS requires that all player shares (aside from

“ramp” secret sharing combined with classical encryption, in
which the individual parties’ shares are split into quantum and
classical components, allowing the former to be of lower dirn-

trivial shares whose presence never affects whether or not a
subset is authorised) be at least as large as the secret. That

sion than the secret itself. We show that such schemes can bd$S, for a secret of dimensiod,, and players each receiving

performed with smaller quantum components and lower overdl
guantum communication than required for existing methods.
We further demonstrate that one may combine both imperfect
guantum and imperfect classical secret sharing to produce ra
overall perfect QSS scheme, and that examples of such schesne
(which we construct) can have the smallest quantum and clagsl
share components possible for their access structures, sething
provably not achievable using perfect underlying schemesOur
construction has significant potential for being adapted toother
QSS schemes based on stabiliser codes.

I. INTRODUCTION

a share of dimensiod;, perfect QSS requiresin; d; > ds,
with “optimal” schemes achievingd; = d, for all i.

This bound imposes a large potential cost on the communi-
cation and storage of shares in perfect QSS. For example,
sharing a 1-qubit secret by distributing quantum shares to
100 players in a threshold scheme will require at least 100
qubits to be communicated by the dealer and (due to the
no-cloning bound) at least 51 qubits to be used by the
players for reconstruction. This may well not be practical
given noisy quantum communication channels, unreliabidg jo
guantum operations, and short storage times. Furthermore,

Quantum secret sharing (QSS) is a cryptographic proto&ﬂtima| general construct?on for schemes with non—thrtd_sho
in which a dealer encodes a quantum state (the secret) iRRJfeCt access structures is known (they may be non-ogyimal
multiple shares and distributes the shares to various payé&onstructed by concatenating threshold schemes [5]), &0 th

Certain subsets of the players (denoted “authorised” aets,
collectively known as the access structure) can collabeist

costs for such schemes may be larger still.
In this paper we demonstrate a new class of protocols

reconstruct the secret from their shares while other sabs@fhich reduce the cost of quantum communication and storage
(denoted “forbidden” sets, and collectively known as th@ implementing perfect QSS schemes, by combining two

adversary structure) can obtain no information about theese
from their shares. An example would be asplayer protocol
where the access structure consists of all sets of more
players and the adversary structure of all setskof 1 or
fewer players. Such protocols are known (asn) threshold

existing ideas for doing so: ramp (i.e. non-perfect) secret
sharing [6] and hybrid secret sharirid [7]] [8]. Our protagol
involving both classical and quantum shares, require alesmal
amount of total quantum communication than either approach
taken in isolation. Moreover, we describe protocols that ar

schemes. Analogous classical secret sharing (CSS) pisto@jovably optimal in minimising both the size of the quantum

(involving classical secrets and shares) were introduged

ghares and, given this minimisation, the size of the clabsic

Shamir [1] and independently by Blakleyl [2]. QSS protocoighares required.

were originally described by Hillery, BuZzek and Berthiaaim

[3] and Cleve, Gottesman and Lol [4], with the latter giving 0

. RAMP SECRET SHARING

a means to construct a threshold scheme for any allovble

access structure.

Threshold schemes are examples of “perfect
tures, i.e. those in which every subset of players is either
thorised or forbidden, with no subsets able to reconstralst o
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1Qss protocols must satisfy the two criteria of monotoni¢ity authorised
subset remains authorised if shares are added) and theomogltheorem
(two disjoint subsets cannot both be authorised, since themlayers could
separately reconstruct two copies of the secret, violatiogloning)

The derivation of the share size bound|in [5] (which we dis-

" access strGHSS in more detail in Sectidn] V) depends on the observation
4hat, for aperfect QSS, there must exist some forbidden subset

which can be made authorised by adding a single additional
share. Thus complete information about the secret of gize
may be transferred via a share of sidg from which the
bound follows.

Consider now an access structure in which every forbidden
subset instead requires a minimumloghares to be added to
become authorised: the corresponding bound would be (in the
simplified case where all shares are of the same dimeisjon
that L log, d; > log, ds. There would also now exist certain
intermediate subsets (consisting of some forbidden subset with
l < L shares added) who could reconstruct sopaetial
information about the secret. Thus, one could potentialyeh
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smaller shares (encoding e.g. amudit secret into shares ofa scheme in which the dealer sends one player the EQS and
sizes/L qudits), but at the cost of some security; there will bthe other the CK. Neither player alone has any information
some information leakage to subsets who are not authorisedhout the secret but together they may reconstruct it, thus
Such schemes are known as “ramp” secret sharing atwhstituting a perfect2,2) threshold scheme in which one
were originally proposed for CSS|[9]._[10] for which anshare is the size of the secret but the other is wholly claksic
analogous share size bound exists (and can lead to v@&hough not discussed in terms of communication costin [3],
large data storage requirements for perfect schemes), rand this halves the amount of quantum communication required
can formalise whether or not such leakage is tolerable kbg. a standard optimal QSS.
considering a computationally-bounded adversary. Ram$ QS This idea was generalised by Nascimento, Mueller-Quade
(RQSS) schemes have received relatively little attentiothé and Imai [7], who considered the case of such “hybrid” QSS
literature, but a construction has been given by Ogawa et @iQSS) schemes where the EQS and CK are separately en-
[6] for all allowable (k, L,n) threshold access structures i.ecoded using QSS and CSS schemes respectively, and then the
where subsets of or more players are authorised, those daflassical and quantum shares distributed to the playemsy Th
k — L or fewer are forbidden, and those bf- [ (I < L) are gave a general construction for hybrid schemes; we rephrase
intermediate (so a perfect threshold scheme in this neotatiibs specific application to the case of threshold schemesan t
hasL = 1). Furthermore, the construction 6fi [6] is optimal infollowing lemma.
that it encodesasecre;bfqudlts into shares ofasmglt_e qu.dl.tLemma 1. [7] A hybrid (k,n) threshold QSS can be con-
(though we note that, like the protocol 6f [4] upon which it is ;
based, this protocol additionally requires the qudit sh#mebe structed using onI)(27_z N 2k + 1) fully- or pgrtly-quantum
of prime dimensiond > n, and hence not all ramp threshoIdSh"’lres with the remaining shares fully classical.

schemes are covered by this construction). Proof: The construction consists of the dealer classically
encrypting the secret, dividing the EQS among a subset of
I1l. HYBRID SECRET SHARING ne < n players using akq,ny) QSS, and the CK among

In addition to being applicable to perfect schemes oni@!l 7 Players using &k, n) CSS (so some players have both
ssical and quantum shares). Thus- 1 or fewer players

the share size bound for QSS does not require that ev@ll? . 5
share be a quantum system i.e. some shares can potentl‘é{wha"e no information about the CK and hence none about

consist partly or solely oflassical information. While strictly € Secret (irespective of any quantum shares they may also
speaking such shares can still be regarded as quantum sys rfwe).k or more_players will be able to reconstruct the CK but
and must still obey the size bound, they would clearly havke further require that they be able to reconstruct the_EQS,
great practical advantages, since classical informasofaii @nd hence havé, or more quantum shares. players will
easier to communicate, store and process, and they wolifY® @ minimum of — (n —n,) quantum shares, hence we
allow QSS schemes to involve players with no ability to hand[®dU'T€
guantum states. Such schemes can be implemented through ng —kq =n—k. )
combining QSS with classical encrypnon.. To satisfy no-cloning, we additionally require

In the well-known quantum teleportation protocél [11],
Alice transmits an unknown quantum stateto Bob (with ng < 2k; — 1. (3)
whom she shares a maximally-entangled state) via a local )
measurement on her joint quantum system followed by th&om [2) and[(B) we obtain
transmission of some classic.al inform.e}tiﬁrto Bob (who then ng>2n—2k+1 (4)
performs a state reconstruction conditioned’ynBob’s local
guantum system can therefore, immediately prior to reagiviand minimisingn, by settingn, = 2n — 2k + 1 we achieve
the information, be represented as being in some mixed stite result. Note that due to no-cloning > (2n — 2k + 1)
pp Which must be independent ¢f due to the no-signalling and hence in general this construction reduces the number of
theorem, but from which, in combination witfi, ¢» can be quantum shares required vs. a non-hybrid scheme. =
reliably obtained. In other words, one can consiger as Some observations about this protocol: we note that for
being the state) securely encrypted using a classical K&y n, = 2n — 2k + 1, it follows from (2) and[(8) that
Specifically, it follows from the teleportation protocokthone

can securely encrypt a quantum state of dimensiamsing ng = 2k, — 1 and ©)
a classical key of Bg, d bits (which has also been shown ng—kg=n—=k. (6)
12] to be the minimum key size required), via the basisesta] _ . . .

Lngryption' nimd y size required), vi ! gor which there is only one solution for givefk,n). That

1) is, in this construction, the optimal underlying QSS schésne

‘ that with the unique access structure that both saturagescth

wherew = ¢*7 and the two valuegk, 1} € {0...d} (chosen cloning bound (we will refer to such schemes as “boundary”

at random and thus independent of the original state) datesti schemes) and satisfieE] (6). For an initigl, n) boundary

the classical key (CK) for the encrypted quantum secret EQScheme, then, the optimal underlying QSS scheme will simply
Such encryption can be exploited in QSS, as demonstrateve a(k, = k,n, = n) structure. Hence the construction

in [3], which effectively described (in terms of telepoitet) of Lemmall can only reduce the number of quantum shares

l7) = w'|j + k mod d)



Q 1 with respect to the CK and hence the secret, as requiredeTher
is, however, one important difference from the previousecas

(2,3) QSS 2 Since gaining information about an unknown quantum state
implies disturbance of that state [13], for amy, players
3 to have complete knowledge of the secret requires that the
Encrypt complementary sets of,. — k,, players have no knowledge
of the secret. In dkqr, Lgr, ngr) RQSS scheme a subset of
> 4
more thark,, — L, players has some knowledge of the secret,
T 5 hence we require for such a scheme that
Ngr — kgr < kgr — Lgr, thus
6
CK nqr S 2qu - Lqr- (9)
(6,7) CSS 7 Hence we cannot have,, = 2k, — 1 (except in the trivial

L, = 1 case) and simply replace the underlying boundary
Fig. 1. An example (6,7) HQSS protocol. A quantum segras encrypted QSS with an RQSS. Instead we must use an RQSS which, we
to an E(%ngtisggsa C*éy tr?efghe EQS iS”SP"t lamong the fifSt(ggfa%gﬂk will see, in general has more quantum shares than the QSS in
using a (2, and the CK among all 7 players using a (6,B. @8y : . :

fewer than 6 players have no information about the CK, hence mbout the our previous construction (thOUQh still fewer than a Sta}dda
secret. A subset of 6 or more players, however, can recoeeCtiand will  (k,7) QSS), but the quantum shares are smaller. We find the
also contain at least 2 of the 3 players with quantum shamsscehcan also following result:

recover the EQS and decrypt to obtain the secret. Thus thalbgeheme is

a perfect (6,7) QSS scheme, but requiring only 3 quantumeshar Theorem 2. One may construct a perfe¢t,n) threshold
scheme with secret sizeg, d, qubits andr,,,. partly- or fully-

uantum shares (whee — 2k +1 < < n) with shares of
for non-boundary threshold schemes. An example of such %n log, ds .( +1<ng <) o
size - qubits, for a total dealer quantum communication

HQSS scheme is shown in Figure 1. -2k
Assuming then that anptimal threshold QSS constructionCost, in qubits, of
exists for the underlyingk,,n,) scheme with a secret of

log, d
size d, (as is always the casél[4] for prim& > n,), we QHQRSS = %, (10)
: . 1—9on=k
can implement ak,n) scheme with total dealer quantum ngr
communication, in qubits, of provided that an optimalk,,, Lgr, ngr) RQSS exists for a
Quoss = (2n — 2k + 1) logy(ds). (7) secret of sized,, whereky, = ng — (n — k) and Ly, =

2kgr — Ngr-
All of the perfect hybrid schemes described in [7] and later ! !

work by Singh and Srikantfi[8] are based on distributing the ~Proof: An optimal (kg Lgr, nqr) RQSS protocol has
EQS using perfect QSS, which reduces the number of quant8fi@re sizez!-log, d; qubits, (we can always, though not
shares but not their individual sizes. In the next section v@clusively, construct such protocols [6] for shares ofrri
demonstrate that one may reduce both. dimension> ng,). For givenng,, we wish to minimise

Ngr 1

IV. HYBRID RAMP QSSSCHEMES > (11)
Lo = 23 _q

The above scheme combines perfect QSS and CSS schemes Tar
to create a perfect hybrid QSS. We note that, if one insteadbject to[(®) and {8). We can do this by setting
combines aramp QSS scheme with a perfect CSS scheme,
one can potentially also create a perfect hybrid ramp QSS kqr = ngr — (n — k) (12)
(HRQSS) scheme, despite the presence of intermediate sets Ly = 2kgr — nigr. (13)
with respect to the underlying RQSS scheme. If the shares i i
are distributed in such a way that any subset of players withe therefore, as in the HQSS case, encrypt the secret using
partial information on the EQS has no information on the Ct& CK of 2log, d; bits and distribute the CK among the
then overall the subset has no information about the origiff@yers using &k, n) threshold CSS scheme, then distribute
secret and hence is forbidden. In this case there are nodonf§_ corresponding EQS among,, of the players using an
any intermediate sets and the scheme is perfect. optimal (kgr, Lqr,nqr) RQSS scheme satisfying the above
To this end, the same general construction used in LemM@ameters. -
@ can be used, but with &,,, Ly, ng) underlying RQSS As seen from[(JJ0), the degler’s quantum commgmca.tlon
instead of a(k,,n,) QSS. By the same reasoning & (2) WEOStQrgrss decreases ag,, increases and hence is at its

have the requirement lowest whenng, = n_i.e. when alln_ shares have a small
quantum element of sizigog, d)/ng-, in which case the total
ngr — kgr 2n —k (8) quantum communication cost is
Since clearlyny, < n, it follows from (8) thatk,, < k, and nlog, ds

hence any intermediate subset of the RQSS will be forbidden QminuQrss = 5 — (14)



The minimum number of quantum shares (and hence thg of dimensiond, between parties by transferring a share
largest cost) occurs whem,,, = 2n —2k+ 1 and L, = 1 of dimension(d,, d.) (note though that this mechanism may
i.e. the HQSS case of Lemrha 1, with a cost given[By (7). lequire the parties to additionally share some pre-exjstin
general, then, this scheme has a lower cost than the HQS88anglement). Since any perfect mixed-state QSS can be
construction. represented as a perfect pure-state QSS with some shares dis
Hence we have a range of possible protocols; we can useded[[4], mixed-state QSS schemes also imply the existenc
fewer, larger quantum shares (as would be suitable when efjsuch a mechanism.
many players can only process classical information) oremor Consider now the case of two parties, Alice and Bob, who
smaller quantum shares (suitable when e.g. more players share a cat sta@:?;0|i>,4|i>3. By the simple generalisation of
process quantum information, but with small communicatisuperdense coding [14], Alice may locally encode oné gf
or storage capacities), with the latter option giving th@Best classical states into this state, and thus communizhtg, d,
overall quantum system distributed by the dealer. classical bits to Bob by transferring hés-dimensional half of
the state to him. Hence if Alice and Bob possess appropriate
states to make use of the QSS mechanism above, Alice can
transfer to Bob a state of dimensidd,,d.) and thereby
In our above constructions of perfect QSS schemes, ifansfer a state of dimensiod, and hence communicate
volving both quantum and classical elements to the play@[Og2 d classical bits.
shares, we have only considered optimisation with respectHowever, it has been proven [15] that to communicate
to the quantum communication cost. It is straightforward,jog, d classic bits using quantum states, even in the presence
however, to derive a joint bound on both quantum and clalssigd pre-existing entanglement, requires the communicaifcn
share sizes, by a simple generalisation of the proof of tg@antum state of dimension d. Hence transferring a quantum
quantum share size bound given|in [5] (since that bound wegte of dimensiond, can communicate at mostlog, d,
ultimately established by referring to classical commatian bits. Since the entanglement-assisted classical capatity
cost), which we give below, using much of the same reasoniBBannel is additive (and the entanglement-assisted dgpzci
as [3]. a perfect classical channel is simply its classical cappfd6],
g;ansferring a statd, andlog, d. classical bits can transfer at

Theorem 3. A perfect QSS scheme sharing an arbitrar , >~
quantum secret of dimensiah requires shares with quantum"0St2 108 dq + logs d.. bits. Hence communicatinglog, d;

elements of dimensiod, and classical elements of dimensiorPItS In total via this method (as we have shown can be achieved
d. such that, for every important share (those which can afféiyen the existence of a perfect QSS with this share size)

whether or not a subset is authorise®l)og, d, + log, d. > requires that
2log, ds. log, d. + 2log, dy > 21og, ds (15)

Proof: As shown in [5]_’ if an arbitraryd-dimensional and hence this bound must be satisfied by all important shares
quantum secrap is encoded into a state efsharesp,, ,,.. .., of any perfect QSS -

such that a subset of sharés can fully recovery in the We require a CK of2log, d, bits to classically encrypt a

%bsince r? f an%/ ngstancle fromhthe complemcgntaryh Subsseeéret of sizeds, and a perfect CSS requires classical share
» then the subsep can also, without assistancaer the sizeslog, d. to be at least as large as the classical secret.

secrety to a new arbitrarw-dimensi_or_wal state)’, such that Hence (since we clearly requig > 0 for a quantum secret),
a recovery procedure that would originally have recoveped if using a hybrid construction in which the quantum secret is

H /
will novydrecoverq/) ' ; _ h bi securely classically encrypted, we cannot saturate thadou
Cons; elrl n?W a pe]:r ect pure-state QSS (i.e. t efcom INGE) using a perfect CSS. We show in the next section that,
state of all players for a given secret is pure), forda |\, vever, we can saturate this bound, and produce a perfect

dimensional secrep;,, and a forbidden subset of playeFs o 0 0SS, using a hybrid scheme in which both underlyin
such thatF' can be made authorised by adding one addition@YSS anQd CéS sc%lemgs are ramp schemes. ying

player. For a perfect scheme, it is clear that such a subset
must always exist (and can be found for any given player
with an important share). Additionally, in a pure-state QBS
is known [4] that the complement of any unauthorised subsetOur construction for such a hybrid scheme will be much as
is authorised, so the complementary subBebf I will be before: encrypt the quantum secret using a CK, then dis&ribu
authorised. the EQS and CK using a QSS and CSS respectively. In general,
The subsef can therefore replacg;_ with an arbitraryd,- however, if both underlying schemes are ramp schemesircerta
dimensional secret,,. They can then choose an appropriatsubsets of players will be intermediate subsets with respec
player p, and pass that player's share (which we will takéo both the EQS and CK i.e. they will have some partial
to be a quantum share of dimensidp and a classical shareinformation about both, and hence in general be able to
of dimensiond., abbreviatedd,, d.)) to the subsef’, such construct some partial information about the secret, ngakin
that the resultant subsétp, will be authorised and able tothe scheme imperfect.
recover the new secret,, . Consequently, this construction We find, though, that one can construct schemes which
provides a mechanism to transfer an arbitrary quantum stdistribute the information in such a way that such subsets,

V. BOUNDS ON QUANTUM AND CLASSICAL SHARE SIZE

VI. DOUBLY-RAMP OPTIMAL HRQSS



despite having partial information on both EQS and CK, hawtructures. As discussed below, however, we have found a mor
no information about the original quantum secret. Hence veemplex approach which can be used to generate various cases
can use both quantum and classical ramp schemes in a hylbfidn,n — 1) protocols. The underlying reasoning does share
scheme, reducing the amount of classical communicatiancommon idea with thén,n) protocol: since, as discussed
required by the dealer and the size of the classical elematiove, we can perform a 2-bit classical encryption of a qubit
of individual shares. (which can also be thought of as applying one of the four
We will describe such schemes as optimal if the size ®fauli operation$, X,Y, Z} to that qubit at random), then we
the largest quantum share element is the smallest possitile ean construct a classical key for an encrypted multi-guhtes
all shares saturate the bourid](15) i.e. given the size of tiem the keys for the individual encrypted qubits. If the dab
guantum elements, the classical elements are also theestnalind information about the key are distributed in an HRQSS
possible. (In our examples below, all of the quantum elemersuch a way that a subset of players only receives classical

are of equal size, likewise the classical elements). information pertaining to the qubits they do not possessn th
overall they have no information on the quantum secret.
A. (n,n) protocols We first define the code space we will be be using for our
A relatively simple example occurs for the, n) access underlying QSS scheme. Let;¢) with {s,t} € {0,1} be the
structure, for which we find the following result: 2-qubit eigenstates satisfying
Theorem 4. One can construct an optimal perfegt, n) X ® X|s;t) = (—1)%]s;t), and (16)
hybrid threshold QSS encoding anqudit secret (where the Z @ Z|s;t) = (—1)"|s;t). (17)

qudits are of equal but arbitrary dimension). (These are also the four Bell statds: 0) — [&+), [1,0) —

Proof: Separately encrypt each qudijtusing a 2-dit CK |®-), |0,1) = |¥T) and|1,1) = |¥~)). Define a state of
k; via the standard classical encryption proto€ol (1). Distié 5, — 2/, qubits
each encrypted qudit to a different playerand distribute the
correspondingk; to the remainingn — 1 players using an [5:8) = [s15t1) @ [s23t2) @ -+ @ [$mi tm) (18)
(n —1,n — 1) threshold CcS% Thusn players will have all wheres = (sq,s2,...,5,) andt = (ti,to,...,t,,) are two
qudits and the corresponding CK for each qudit, hence bequences of bits each.
able to recover the secret. Any fewer tharplayers will, for Consider now the stabiliser grou@, acting onn = 2m
any giveng;, lack either the encrypted qudit and/or sufficiengubits, with two generators:
and hence have no information about he secret. Gy = (X9, 2%7), (19)
The total quantum communication is simply the size of theur code spac€, in which we encode our quantum secret,
secret and hence can be no smaller, and since every quaniiinbe the n-qubit subspace stabilised I6y,. It can easily be
share is of equal size, this also minimises the size of therified thatg|s;t) = |s; t) for all four elementg; € G, if and
largest quantum share. The share sizes (each player recepy if > 7" s, =0 and> ., t, = 0 (with all summations
2 classical dits fom — 1 of the K; for a total of2(n — 1) done mod 2 here and henceforth), thus we can witites
dits and 1 qudit per share, for annqudit secret) saturate the m m
boundI5, hence the scheme is optimal. [ ] C = span {|s;t> ‘ Zsk =0, Ztk - 0} ) (20)
We note that in the above construction (for which the 1 1

(2,2) case with a 1-qubit secret is simply the teleportation \ye see that this code can correct 1 erasure error: should a

scheme _Of [3]), even th(,)th eagfdividual CSS for a given g i go missing, the remaining players can replace it with a
CK K; is perfect (as is the overall HRQSS), the Oyeraﬁew qubit in some arbitrary state, then collectively measur
CSS scheme for the complete CK (consisting of &) is 6 yajyues of the stabiliser¥®” and Z&" on the new set
a(k,L,n) = (n,2,n) ramp scheme. Any set of —2 players ¢ . qunhits, projecting the state back into the code space up
has no mforma_tlon abqut ank;, Wh'l_e n — 1 players will 44 4n arror on the replacement qubit. Any error (indicated by
have complete information about a single and none about o measyred stabiliser values) can be corrected by agplyin

any of the others i.e. they will have partial information &bo , » 4q/0r X operation to the new qubit, thus recovering the
the complete CK. Interestingly, the overall scheme is oa”moriginal state

despite this ramp CSS (RCSS) scheme not being optimal, iNye \yish to classically encrypt our encoded secret within
the sense that the classical share siz&(af-1) dits is greater g ¢ode space, and so introduce further notation to descri
than the secret size af dits divided byL = 2. our classical encryption. Denote the four Pauli operations
By, (p,q € {0,1}) as follows:

BOQEI, BOI EX, BloEZ Bll =7X = —3Y.
(21)

B. (n —1,n) protocols

The (n,n) access structure allows for a relatively simple
construction which does not readily extend to other access ) )
Then the 2-qubit statels, t) satisfy
2An (n,n) CSS with ad-dimensional secret can be constructed using sq
dimensional shares for any andd, by randomly choosing the values of any Bpy @ I|S§ t> = (—1) |3 +pit+q) (22)
n — 1 shares, and choosing the value of the final share such thahatiom N p(g+t) .
of all the shares moduld is equal to the secret. I'® BP‘J|S7 t> - (_1) |S +pit+ q>‘ (23)



Playerl] [ z1 [ y1 | 22+ 23+ y3+ya+pa+ps

Given two n-bit strings p = (p1,pe,...pn) and q = Players | o [ vs | 73 T 21 Tus Fvs T s 5 b1
(91,92, -, qn), We denote Player3 | @3 | y3 | za+z5+ys + Y6 + p6 + p1
Player4 | @4 | ya | 25 + 26 +ys +y1 +p1 +p3
Bpq = Bpigy @ Bpyg, @ -+ @ Bp,q,- (24) Player5 | x5 | y5 | 26 + 71 +y1 +y2+p2 +p3
Player6 | z¢ | y6 | z1 + 22+ y2+y3s+p3+ps
It follows from (24), [22) and[(23) thaBpq|) € C for all
H H n n
|Y)y eCifandonly if > ) pr=> 1 q =0. TABLE |

Consider now a quantum secdel) € C. The dealer picks, LISTING OF BITS RECEIVED BY PLAYERS IN THEG-PLAYER RCSSSCHEME
with uniform probability, twon-bit stringsp = (p1, p2, ..., Pn)
andq = (q1,92,-.-,¢,) (to remain within the code space,
we require thaty "y, pr = 32, qx = 0, thus there are
only 22(»=1) possibilities for the two strings) and applies th
operatorBpq to produce the EQS

glayers to possess useful classical information on thetgoan
Secret, they must have some information correspondingeto th
qubits they also possess (e.g. a subset of players 1,2 andt3 mu
[¥pq) = BpqlV). (25) have some information on the bits, p» and/orps. Note that

- since), pr = 0, knowing the complement of such bits can
Note also, however, that the stabiliser generat§ts" and ,rovide such information (e.g. if there were 4 bits in total,
Z®™ (which leave the secret unchaqged) can be expressecEﬁ\g\,\,ing]D4 + p, would also giveps + ps).
operatorsBy o/, and that, up to an irrelevant overall phase, 1) 4 players In this case the dealer generates a single

products of 3 operators aré3 operators themselves i.e.  ,qgitional random bit, and distributes to each playérthe

BpaBoa' = £B(pip)(ata)- (26) bit po(r) + 2 using the permutation

erators Bpq for a given transformation of the secret (the {14 2 3 (28)

original Bpq combined with one, both, or neither of the two
stabiliser generators), for a total @f("~1)=2 = 22(n=2)  gg e g. player 1 receives + z, player 2 receives, + = etc.
distinct transformations of the secret. Hence our CK cdsisissince they do not know, no player alone has any information
of 2(n — 2) bits of information, as is required for gm — 2)-  on the secrep. Since}", p, = 0 and4z = 0 mod 2, 3 players
qubit secret. Similarly, defining = (p1+1,p2+1,...,p,+1) know that the missing player’s bit is equal to the sum of their
and similarly forg we have that bits, and can thus determine all 4 bits (not knowingthey
could have eithep or p but these are equivalent as perl(27).
[Vpa) = l¥pa) = FlVpa) = +lVpa) @1 qwo players can find oUt, ;) + Po(j) = P5—o(i) + P5—0(j)»
The dealer distributes the EQS by sending each playefbuat the construction o# is such that no paifo(i),o(j)) is
qubit; since the EQS is within the code space, any- 1 (i,j) or (5 — 4,5 — j) for anyi # j. E.g. players 1 and
players will be able to recover it. The overall quantum secré can obtainp: + ps = p2 + p3 but since they only possess
is of sizen — 2 qubits and each player receives 1 qubit, thugubits 1 and 2 this gives no overall information on the quantu
the scheme is optimal with respect to the quantum share sgggret. Thus by applying this scheme to the distributiom of
(since player shares are the smallest possible quantuensystandq (with independently generated values:ofor each) we
1 qubit). From the share size bound for perfect QSS schenfggduce an optima(3,4) HRQSS.
it is implicitly clear that the distribution of the EQS coitstes 2) 6 players. For 6 players the classical secret size (for
an RQSS (since the quantum shares are smaller than the EQ®ne) isn — 2 = 4 bits, and each player receives— 3 = 3
To have an optimal overall HRQSS scheme for this quantupits of information. The dealer generates additional ramdo

Thus, up to an overall phase, there are four equivalent op- < 1 2 3 4 )

secret we see fronf_(]L5) that the classical share size mustvbdablesz:, z2, ..., 26 andyi, yo, . .., ys, requiring that
2((n —2) — 1) = 2(n — 3) hits. We therefore require an s
RCSS scheme distributing the tRén — 2) classical bits of sz —0 (29)

information in the CK (stringe andq, up to the equivalency
relations discussed above which mean that the strings ate ea
n bits long but carryn — 2 bits of information about the EQS) (but with no such constraint on thg). Each player receives

to the players using shares of this size. A convenient featdhe following 3 bits:zy, v, and

of our construction is that a scheme which works for one of

p andq can also be used to distribute the other, so we will sk = Zk+1 + Zk+2 + Yk+2 + Yk+3 + Pr+3

consider only a scheme for distributing the informatiorpin + (pr_1 (if k even) orpy_o (if & odd). (30)

with each player receiving — 3 bits.

We now describe, in terms of the distribution pf the The complete set of received bits is given in Talle I. We
classical schemes we have found for specific player numbegw consider key examples, which suffice to show the scheme
n. These are all of the form that subsetsrof- 1 players works in all cases.
receive complete information (as required), thosenof 2 a) Example 1: 4 adjacent players: If players 1,2,3 and 4
players receive one (useless) bit of information on the Ctd, acollaborate, they know; to x4 andy; to y, and can subtract
fewer thamm—2 players receive no information. For a subset dhese (and the complemerg+x¢ = x1 + 22 + 23+ x4, USING



(29) from theirs,, bits, leaving knowledge of: c) Example 3: 4 players, 2 adjacent: If players 1,2,4 and
5 collaborate they have

1:pg + ps

1:x3+ys+ps+ps
25 +ps+p1 2 s+ ps +p
3 :T5 + Y5 + Y6 + D6 + D1 4:173—‘1- O+ 1_1,_
4y + p1 + p3. e

5 e + p2 + p3
Variable ys appears only in bit 4, so cannot be eliminated,

making bit 4 useless to the players. The same occurs with o
25 (sincexs does not appear) and bit 3. With bits 3 and its 1 and 4 are useless dueygpandys. Eliminatingzs + x¢

excluded,y; appears only in bit 2, rendering it useless, an@etWeen bits 2 and 4 gives +pz +p; +ps = pa+ps, useless
the only information the players have is the value o ps = W't?OlIJt qubits 3 or 6.d lab hew
D1 + po + ps + ps, which doesn't help them since they don't !f Players 2,3, 5 and 6 collaborate they have
have qubit 5 or qubit 6. 224 4 ys + ps + M1
If instead we have players 2 to 5 (we require a second

example due to the odd/even dependence in the distributed 314+ Pt p
bits), they know the correspondingandy values and hence 41+ p1tps
from their s;, bits they know: 6:x1+p3+ps
2:p5s+p1 ) Lo
3 56 + pe + p1 Bits 2 and 4 are useless _duegpandyl. Eliminatingz4 + 1
between bits 3 and 6 gives, + ps + ps + ps = P2 + P4,
46+ Yo + Y1 +p1+pa useless without qubits 1 or 4. Cyclic permutation of the abov
5 y1 + p2 + ps3. examples covers all remaining cases, thus we have shown that

no set of 4 players has any information on the quantum secret.
Bit 4 is useless due teg, making bits 3 and 5 also useless e still need to show that 5 players can recover all 4 bits of
due toys andy, respectively and leaving the players with onlfthe classical secret, for which it is sufficient to show theeyt
p5+p1 = p2+p3+pa+ps, butlacking qubits 1 or 6 means thepptain 4 independent bits of information about the string
players have no knowledge of the secret. By cyclic permantatiSyppose players 1 to 5 collaborate. Usingl (29) they know all
these examples cover all cases of 4 adjacent players.  values ofz;, and ally; exceptys. They therefore have access

b) Example 2: 4 players, 3 adjacent: If players 1,2,3 and to the bitspy + ps, ps + p1, Y6 + ps + D1, Ys + 1+ P3, p2 +p3

5 collaborate, by analogous reasoning to the above they knawdyp; + ps. Eliminatingys between the two bits containing it

gives them access to the 4 independent hits- ps, ps + p1,

1:ys +pa+ps ps + pe andp, + ps. If players 2 to 6 collaborate, they have
2:wa+ys+ps+p aCCess @u + ps, p5 +p1, P6 +P1, Y1 +p1+Pps, Y1+ p2+ps
324 + Y6 + p6 + p1 andps +ps, and can obtain 4 independent hits+ ps, ps+p1, _

pe + p1 andp; + p. Other cases are covered through cyclic
5 g + p2 + P3

permutation. Hence all subsets of 5 players can recover the

Bit 3 is useless due tgs. The players can sum bits 2 and 5 an§€cret. _
eliminaters + ¢ = &1+ +a3 -+ x5 10 getys+p1 +po+p3+ We have therefore demc_mstrated optinia4) and (5,6)
ps, then sum with bit 1 to get; +pa+p3+ps = ps+pe Which HRQSS schemes. We conjecture that one can construct such

is their only bit of information, and useless without qublts (7 —1,7) schemes foen qubits for any value of;, however

or 6. we note that the relative advantage in doing so decreases as
If players 2,3,4 and 6 collaborate they know from thei©!S large: our ramp classical share size(f — 3) classical
additional bits: bits, while optimal for the HRQSS, is only 2 bits less than the
lower bound for a perfect CSS scheme. Thus (het) case
2 :ys + ps + p1 is arguably the most important example, since the classical
3125 + Us + po + p1 shares are half of what an optimal perfect CSS scheme would
require in this case.
45 +y1+p1tps More significantly, this method of construction for HRQSS
6 :x1 +p3 +ps schemes holds great promise for adapting other QECCs from

the wide class of stabiliser codes. By exploiting the strrebf

the underlying code and formulating the CSS element in terms
Bit 4 is useless due tg,. Eliminatingys between bits 1 and of Pauli transformations on individual qubits, we reducee t
2 giveszs + ps + pe, then eliminatinges 4+ 21 with bit 6 gives problem to a purely classical one of constructing a suitable
p1+p3 = p2 + p2 + ps + s, Useless without qubits 3 or 5. Bymatching RCSS scheme for the underlying QSS scheme (we
cyclic permutation these examples cover all cases of 4 pdayeote that we are not aware of our particular RCSS schemes
with 3 adjacent. having appeared previously in the literature), for which we



can use two separate, identical schemes for the stringsadditional features to provide security against eavesgngp
and q, further simplifying the problem. The properties of theén secret distribution and/or recovery. This is anotherantant
HRQSS could be established purely classically, withoutrdwav direction for future work.

to generate density matrices for the combined classical and
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We have only addressed the application of hybrid ramp
schemes to the construction of threshold schemes, ratasr th
more general access structures. Some results on non-ramp
hybridisation of such schemes were found[in [7] and [8] and
it seems likely that hybrid ramp schemes could reduce share
sizes for these access structures as well. In general, thoug
little is currently known about non-threshold QRSS schemes

Fianlly we note, and thank an anonymous referee for point-
ing out, that for HRQSS schemes to be useful in a practical
insecure setting, without access to secure quantum channel
between individual players and players and dealer, willinex|
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