
ar
X

iv
:1

10
8.

55
41

v3
  [

qu
an

t-
ph

]  
7 

Ju
n 

20
12

1

Reducing the quantum communication cost of
quantum secret sharing

Ben Fortescue, Gilad Gour

Abstract—We demonstrate a new construction for perfect
quantum secret sharing (QSS) schemes based on imperfect
“ramp” secret sharing combined with classical encryption, in
which the individual parties’ shares are split into quantum and
classical components, allowing the former to be of lower dimen-
sion than the secret itself. We show that such schemes can be
performed with smaller quantum components and lower overall
quantum communication than required for existing methods.
We further demonstrate that one may combine both imperfect
quantum and imperfect classical secret sharing to produce an
overall perfect QSS scheme, and that examples of such schemes
(which we construct) can have the smallest quantum and classical
share components possible for their access structures, something
provably not achievable using perfect underlying schemes.Our
construction has significant potential for being adapted toother
QSS schemes based on stabiliser codes.

I. I NTRODUCTION

Quantum secret sharing (QSS) is a cryptographic protocol
in which a dealer encodes a quantum state (the secret) into
multiple shares and distributes the shares to various players.
Certain subsets of the players (denoted “authorised” sets,and
collectively known as the access structure) can collaboratively
reconstruct the secret from their shares while other subsets
(denoted “forbidden” sets, and collectively known as the
adversary structure) can obtain no information about the secret
from their shares. An example would be ann-player protocol
where the access structure consists of all sets ofk or more
players and the adversary structure of all sets ofk − 1 or
fewer players. Such protocols are known as(k, n) threshold
schemes. Analogous classical secret sharing (CSS) protocols
(involving classical secrets and shares) were introduced by
Shamir [1] and independently by Blakley [2]. QSS protocols
were originally described by Hillery, Buẑek and Berthiaume
[3] and Cleve, Gottesman and Lo [4], with the latter giving
a means to construct a threshold scheme for any allowable1

access structure.
Threshold schemes are examples of “perfect” access struc-

tures, i.e. those in which every subset of players is either au-
thorised or forbidden, with no subsets able to reconstruct only
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1QSS protocols must satisfy the two criteria of monotonicity(an authorised
subset remains authorised if shares are added) and the no-cloning theorem
(two disjoint subsets cannot both be authorised, since thenthe players could
separately reconstruct two copies of the secret, violatingno-cloning)

partial information about the secret. As proven by Gottesman
[5], perfect QSS requires that all player shares (aside from
trivial shares whose presence never affects whether or not a
subset is authorised) be at least as large as the secret. That
is, for a secret of dimensionds, and playersi each receiving
a share of dimensiondi, perfect QSS requiresmini di ≥ ds,
with “optimal” schemes achievingdi = ds for all i.

This bound imposes a large potential cost on the communi-
cation and storage of shares in perfect QSS. For example,
sharing a 1-qubit secret by distributing quantum shares to
100 players in a threshold scheme will require at least 100
qubits to be communicated by the dealer and (due to the
no-cloning bound) at least 51 qubits to be used by the
players for reconstruction. This may well not be practical
given noisy quantum communication channels, unreliable joint
quantum operations, and short storage times. Furthermore,no
optimal general construction for schemes with non-threshold
perfect access structures is known (they may be non-optimally
constructed by concatenating threshold schemes [5]), so the
costs for such schemes may be larger still.

In this paper we demonstrate a new class of protocols
which reduce the cost of quantum communication and storage
in implementing perfect QSS schemes, by combining two
existing ideas for doing so: ramp (i.e. non-perfect) secret
sharing [6] and hybrid secret sharing [7], [8]. Our protocols,
involving both classical and quantum shares, require a smaller
amount of total quantum communication than either approach
taken in isolation. Moreover, we describe protocols that are
provably optimal in minimising both the size of the quantum
shares and, given this minimisation, the size of the classical
shares required.

II. RAMP SECRET SHARING

The derivation of the share size bound in [5] (which we dis-
cuss in more detail in Section V) depends on the observation
that, for aperfect QSS, there must exist some forbidden subset
which can be made authorised by adding a single additional
share. Thus complete information about the secret of sizeds
may be transferred via a share of sizedi, from which the
bound follows.

Consider now an access structure in which every forbidden
subset instead requires a minimum ofL shares to be added to
become authorised: the corresponding bound would be (in the
simplified case where all shares are of the same dimensiondi)
that L log2 di ≥ log2 ds. There would also now exist certain
intermediate subsets (consisting of some forbidden subset with
l < L shares added) who could reconstruct somepartial
information about the secret. Thus, one could potentially have
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smaller shares (encoding e.g. ans-qudit secret into shares of
sizes/L qudits), but at the cost of some security; there will be
some information leakage to subsets who are not authorised.

Such schemes are known as “ramp” secret sharing and
were originally proposed for CSS [9], [10] for which an
analogous share size bound exists (and can lead to very
large data storage requirements for perfect schemes), and one
can formalise whether or not such leakage is tolerable by
considering a computationally-bounded adversary. Ramp QSS
(RQSS) schemes have received relatively little attention in the
literature, but a construction has been given by Ogawa et al.
[6] for all allowable (k, L, n) threshold access structures i.e.
where subsets ofk or more players are authorised, those of
k − L or fewer are forbidden, and those ofk − l (l < L) are
intermediate (so a perfect threshold scheme in this notation
hasL = 1). Furthermore, the construction of [6] is optimal in
that it encodes a secret ofL qudits into shares of a single qudit
(though we note that, like the protocol of [4] upon which it is
based, this protocol additionally requires the qudit shares to be
of prime dimensiond ≥ n, and hence not all ramp threshold
schemes are covered by this construction).

III. H YBRID SECRET SHARING

In addition to being applicable to perfect schemes only,
the share size bound for QSS does not require that every
share be a quantum system i.e. some shares can potentially
consist partly or solely ofclassical information. While strictly
speaking such shares can still be regarded as quantum systems
and must still obey the size bound, they would clearly have
great practical advantages, since classical information is far
easier to communicate, store and process, and they would
allow QSS schemes to involve players with no ability to handle
quantum states. Such schemes can be implemented through
combining QSS with classical encryption.

In the well-known quantum teleportation protocol [11],
Alice transmits an unknown quantum stateψ to Bob (with
whom she shares a maximally-entangled state) via a local
measurement on her joint quantum system followed by the
transmission of some classical informationC to Bob (who then
performs a state reconstruction conditioned onC). Bob’s local
quantum system can therefore, immediately prior to receiving
the information, be represented as being in some mixed state
ρB which must be independent ofψ due to the no-signalling
theorem, but from which, in combination withC, ψ can be
reliably obtained. In other words, one can considerρB as
being the stateψ securely encrypted using a classical keyC.
Specifically, it follows from the teleportation protocol that one
can securely encrypt a quantum state of dimensiond using
a classical key of 2log2 d bits (which has also been shown
[12] to be the minimum key size required), via the basis-state
encryption:

|j〉 → ωjl|j + k mod d〉 (1)

whereω = e
2iπ
d and the two values{k, l} ∈ {0 . . . d} (chosen

at random and thus independent of the original state) constitute
the classical key (CK) for the encrypted quantum secret (EQS).

Such encryption can be exploited in QSS, as demonstrated
in [3], which effectively described (in terms of teleportation)

a scheme in which the dealer sends one player the EQS and
the other the CK. Neither player alone has any information
about the secret but together they may reconstruct it, thus
constituting a perfect(2, 2) threshold scheme in which one
share is the size of the secret but the other is wholly classical.
Though not discussed in terms of communication cost in [3],
this halves the amount of quantum communication required
vs. a standard optimal QSS.

This idea was generalised by Nascimento, Mueller-Quade
and Imai [7], who considered the case of such “hybrid” QSS
(HQSS) schemes where the EQS and CK are separately en-
coded using QSS and CSS schemes respectively, and then the
classical and quantum shares distributed to the players. They
gave a general construction for hybrid schemes; we rephrase
its specific application to the case of threshold schemes in the
following lemma.

Lemma 1. [7] A hybrid (k, n) threshold QSS can be con-
structed using only(2n − 2k + 1) fully- or partly-quantum
shares with the remaining shares fully classical.

Proof: The construction consists of the dealer classically
encrypting the secret, dividing the EQS among a subset of
nq ≤ n players using a(kq, nq) QSS, and the CK among
all n players using a(k, n) CSS (so some players have both
classical and quantum shares). Thusk − 1 or fewer players
will have no information about the CK and hence none about
the secret (irrespective of any quantum shares they may also
have).k or more players will be able to reconstruct the CK but
we further require that they be able to reconstruct the EQS,
and hence havekq or more quantum shares.k players will
have a minimum ofk − (n − nq) quantum shares, hence we
require

nq − kq ≥ n− k. (2)

To satisfy no-cloning, we additionally require

nq ≤ 2kq − 1. (3)

From (2) and (3) we obtain

nq ≥ 2n− 2k + 1 (4)

and minimisingnq by settingnq = 2n− 2k + 1 we achieve
the result. Note that due to no-cloningn ≥ (2n − 2k + 1)
and hence in general this construction reduces the number of
quantum shares required vs. a non-hybrid scheme.

Some observations about this protocol: we note that for
nq = 2n− 2k + 1, it follows from (2) and (3) that

nq = 2kq − 1 and (5)

nq − kq = n− k. (6)

for which there is only one solution for given(k, n). That
is, in this construction, the optimal underlying QSS schemeis
that with the unique access structure that both saturates the no-
cloning bound (we will refer to such schemes as “boundary”
schemes) and satisfies (6). For an initial(k, n) boundary
scheme, then, the optimal underlying QSS scheme will simply
have a(kq = k, nq = n) structure. Hence the construction
of Lemma 1 can only reduce the number of quantum shares
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Fig. 1. An example (6,7) HQSS protocol. A quantum secretψ is encrypted
to an EQS using a CK, then the EQS is split among the first 3 of 7 players
using a (2,3) QSS and the CK among all 7 players using a (6,7) CSS. Any
fewer than 6 players have no information about the CK, hence none about the
secret. A subset of 6 or more players, however, can recover the CK and will
also contain at least 2 of the 3 players with quantum shares, hence can also
recover the EQS and decrypt to obtain the secret. Thus the overall scheme is
a perfect (6,7) QSS scheme, but requiring only 3 quantum shares.

for non-boundary threshold schemes. An example of such an
HQSS scheme is shown in Figure 1.

Assuming then that anoptimal threshold QSS construction
exists for the underlying(kq, nq) scheme with a secret of
size ds (as is always the case [4] for primeds ≥ nq), we
can implement a(k, n) scheme with total dealer quantum
communication, in qubits, of

QHQSS = (2n− 2k + 1) log2(ds). (7)

All of the perfect hybrid schemes described in [7] and later
work by Singh and Srikanth [8] are based on distributing the
EQS using perfect QSS, which reduces the number of quantum
shares but not their individual sizes. In the next section we
demonstrate that one may reduce both.

IV. H YBRID RAMP QSSSCHEMES

The above scheme combines perfect QSS and CSS schemes
to create a perfect hybrid QSS. We note that, if one instead
combines aramp QSS scheme with a perfect CSS scheme,
one can potentially also create a perfect hybrid ramp QSS
(HRQSS) scheme, despite the presence of intermediate sets
with respect to the underlying RQSS scheme. If the shares
are distributed in such a way that any subset of players with
partial information on the EQS has no information on the CK,
then overall the subset has no information about the original
secret and hence is forbidden. In this case there are no longer
any intermediate sets and the scheme is perfect.

To this end, the same general construction used in Lemma
1 can be used, but with a(kqr , Lqr, nqr) underlying RQSS
instead of a(kq, nq) QSS. By the same reasoning as (2) we
have the requirement

nqr − kqr ≥ n− k (8)

Since clearlynqr ≤ n, it follows from (8) thatkqr ≤ k, and
hence any intermediate subset of the RQSS will be forbidden

with respect to the CK and hence the secret, as required. There
is, however, one important difference from the previous case:
Since gaining information about an unknown quantum state
implies disturbance of that state [13], for anykqr players
to have complete knowledge of the secret requires that the
complementary sets ofnqr − kqr players have no knowledge
of the secret. In a(kqr , Lqr, nqr) RQSS scheme a subset of
more thankqr−Lqr players has some knowledge of the secret,
hence we require for such a scheme that

nqr − kqr ≤ kqr − Lqr, thus

nqr ≤ 2kqr − Lqr. (9)

Hence we cannot havenqr = 2kqr − 1 (except in the trivial
Lqr = 1 case) and simply replace the underlying boundary
QSS with an RQSS. Instead we must use an RQSS which, we
will see, in general has more quantum shares than the QSS in
our previous construction (though still fewer than a standard
(k, n) QSS), but the quantum shares are smaller. We find the
following result:

Theorem 2. One may construct a perfect(k, n) threshold
scheme with secret sizelog2 ds qubits andnqr partly- or fully-
quantum shares (where2n−2k+1 ≤ nqr ≤ n) with shares of
size log

2
ds

1−2n−k

nqr

qubits, for a total dealer quantum communication

cost, in qubits, of

QHQRSS =
log2 ds

1− 2n−k
nqr

, (10)

provided that an optimal(kqr, Lqr, nqr) RQSS exists for a
secret of sizeds, wherekqr = nqr − (n − k) and Lqr =
2kqr − nqr.

Proof: An optimal (kqr, Lqr, nqr) RQSS protocol has
share sizenqr

Lqr
log2 ds qubits, (we can always, though not

exclusively, construct such protocols [6] for shares of prime
dimension≥ nqr). For givennqr, we wish to minimise

nqr

Lqr

≥
1

2
kqr

nqr
− 1

(11)

subject to (9) and (8). We can do this by setting

kqr = nqr − (n− k) (12)

Lqr = 2kqr − nqr . (13)

We therefore, as in the HQSS case, encrypt the secret using
a CK of 2 log2 ds bits and distribute the CK among the
players using a(k, n) threshold CSS scheme, then distribute
the corresponding EQS amongnqr of the players using an
optimal (kqr , Lqr, nqr) RQSS scheme satisfying the above
parameters.

As seen from (10), the dealer’s quantum communication
costQHQRSS decreases asnqr increases and hence is at its
lowest whennqr = n i.e. when alln shares have a small
quantum element of size(log2 ds)/nqr, in which case the total
quantum communication cost is

QminHQRSS =
n log2 ds
2k − n

. (14)
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The minimum number of quantum shares (and hence the
largest cost) occurs whennqr = 2n − 2k + 1 andLqr = 1
i.e. the HQSS case of Lemma 1, with a cost given by (7). In
general, then, this scheme has a lower cost than the HQSS
construction.

Hence we have a range of possible protocols; we can use
fewer, larger quantum shares (as would be suitable when e.g.
many players can only process classical information) or more,
smaller quantum shares (suitable when e.g. more players can
process quantum information, but with small communication
or storage capacities), with the latter option giving the smallest
overall quantum system distributed by the dealer.

V. BOUNDS ON QUANTUM AND CLASSICAL SHARE SIZE

In our above constructions of perfect QSS schemes, in-
volving both quantum and classical elements to the player
shares, we have only considered optimisation with respect
to the quantum communication cost. It is straightforward,
however, to derive a joint bound on both quantum and classical
share sizes, by a simple generalisation of the proof of the
quantum share size bound given in [5] (since that bound was
ultimately established by referring to classical communication
cost), which we give below, using much of the same reasoning
as [5].

Theorem 3. A perfect QSS scheme sharing an arbitrary
quantum secret of dimensionds requires shares with quantum
elements of dimensiondq and classical elements of dimension
dc such that, for every important share (those which can affect
whether or not a subset is authorised),2 log2 dq + log2 dc ≥
2 log2 ds.

Proof: As shown in [5], if an arbitraryd-dimensional
quantum secretψ is encoded into a state ofn sharesφp1p2...pn

,
such that a subset of sharesP can fully recoverψ in the
absence of any assistance from the complementary subset
P , then the subsetP can also, without assistance,alter the
secretψ to a new arbitraryd-dimensional stateψ′, such that
a recovery procedure that would originally have recoveredψ
will now recoverψ′.

Consider now a perfect pure-state QSS (i.e. the combined
state of all players for a given secret is pure), for ads-
dimensional secretψds

, and a forbidden subset of playersF
such thatF can be made authorised by adding one additional
player. For a perfect scheme, it is clear that such a subset
must always exist (and can be found for any given player
with an important share). Additionally, in a pure-state QSS, it
is known [4] that the complement of any unauthorised subset
is authorised, so the complementary subsetF of F will be
authorised.

The subsetF can therefore replaceψds
with an arbitraryds-

dimensional secretψd′

s
. They can then choose an appropriate

player pa and pass that player’s share (which we will take
to be a quantum share of dimensiondq and a classical share
of dimensiondc, abbreviated(dq, dc)) to the subsetF , such
that the resultant subsetFpa will be authorised and able to
recover the new secretψd′

s
. Consequently, this construction

provides a mechanism to transfer an arbitrary quantum state

ψd′

s
of dimensionds between parties by transferring a share

of dimension(dq, dc) (note though that this mechanism may
require the parties to additionally share some pre-existing
entanglement). Since any perfect mixed-state QSS can be
represented as a perfect pure-state QSS with some shares dis-
carded [4], mixed-state QSS schemes also imply the existence
of such a mechanism.

Consider now the case of two parties, Alice and Bob, who
share a cat state

∑ds

i=0|i〉A|i〉B. By the simple generalisation of
superdense coding [14], Alice may locally encode one ofds

2

classical states into this state, and thus communicate2 log2 ds
classical bits to Bob by transferring herds-dimensional half of
the state to him. Hence if Alice and Bob possess appropriate
states to make use of the QSS mechanism above, Alice can
transfer to Bob a state of dimension(dq, dc) and thereby
transfer a state of dimensionds and hence communicate
2 log2 ds classical bits.

However, it has been proven [15] that to communicate
2 log2 d classic bits using quantum states, even in the presence
of pre-existing entanglement, requires the communicationof a
quantum state of dimension≥ d. Hence transferring a quantum
state of dimensiondq can communicate at most2 log2 dq
bits. Since the entanglement-assisted classical capacityof a
channel is additive (and the entanglement-assisted capacity of
a perfect classical channel is simply its classical capacity) [16],
transferring a statedq andlog2 dc classical bits can transfer at
most2 log2 dq + log2 dc bits. Hence communicating2 log2 ds
bits in total via this method (as we have shown can be achieved
given the existence of a perfect QSS with this share size)
requires that

log2 dc + 2 log2 dq ≥ 2 log2 ds (15)

and hence this bound must be satisfied by all important shares
of any perfect QSS.

We require a CK of2 log2 ds bits to classically encrypt a
secret of sizeds, and a perfect CSS requires classical share
sizes log2 dc to be at least as large as the classical secret.
Hence (since we clearly requiredq > 0 for a quantum secret),
if using a hybrid construction in which the quantum secret is
securely classically encrypted, we cannot saturate the bound
(15) using a perfect CSS. We show in the next section that,
however, we can saturate this bound, and produce a perfect
overall QSS, using a hybrid scheme in which both underlying
QSS and CSS schemes are ramp schemes.

VI. D OUBLY-RAMP OPTIMAL HRQSS

Our construction for such a hybrid scheme will be much as
before: encrypt the quantum secret using a CK, then distribute
the EQS and CK using a QSS and CSS respectively. In general,
however, if both underlying schemes are ramp schemes, certain
subsets of players will be intermediate subsets with respect
to both the EQS and CK i.e. they will have some partial
information about both, and hence in general be able to
construct some partial information about the secret, making
the scheme imperfect.

We find, though, that one can construct schemes which
distribute the information in such a way that such subsets,



5

despite having partial information on both EQS and CK, have
no information about the original quantum secret. Hence we
can use both quantum and classical ramp schemes in a hybrid
scheme, reducing the amount of classical communication
required by the dealer and the size of the classical element
of individual shares.

We will describe such schemes as optimal if the size of
the largest quantum share element is the smallest possible and
all shares saturate the bound (15) i.e. given the size of the
quantum elements, the classical elements are also the smallest
possible. (In our examples below, all of the quantum elements
are of equal size, likewise the classical elements).

A. (n, n) protocols

A relatively simple example occurs for the(n, n) access
structure, for which we find the following result:

Theorem 4. One can construct an optimal perfect(n, n)
hybrid threshold QSS encoding ann-qudit secret (where the
qudits are of equal but arbitrary dimension).

Proof: Separately encrypt each quditqi using a 2-dit CK
ki via the standard classical encryption protocol (1). Distribute
each encrypted qudit to a different playeri, and distribute the
correspondingKi to the remainingn − 1 players using an
(n − 1, n − 1) threshold CSS2. Thusn players will have all
qudits and the corresponding CK for each qudit, hence be
able to recover the secret. Any fewer thann players will, for
any givenqi, lack either the encrypted qudit and/or sufficient
shares to have any information about the correspondingKi,
and hence have no information about the secret.

The total quantum communication is simply the size of the
secret and hence can be no smaller, and since every quantum
share is of equal size, this also minimises the size of the
largest quantum share. The share sizes (each player receives
2 classical dits forn − 1 of the Ki for a total of 2(n − 1)
dits and 1 qudit per share, for ann-qudit secret) saturate the
bound 15, hence the scheme is optimal.

We note that in the above construction (for which the
(2, 2) case with a 1-qubit secret is simply the teleportation
scheme of [3]), even though eachindividual CSS for a given
CK Ki is perfect (as is the overall HRQSS), the overall
CSS scheme for the complete CK (consisting of allKi) is
a (k, L, n) = (n, 2, n) ramp scheme. Any set ofn− 2 players
has no information about anyKi, while n − 1 players will
have complete information about a singleKi and none about
any of the others i.e. they will have partial information about
the complete CK. Interestingly, the overall scheme is optimal
despite this ramp CSS (RCSS) scheme not being optimal, in
the sense that the classical share size of2(n−1) dits is greater
than the secret size of2n dits divided byL = 2.

B. (n− 1, n) protocols

The (n, n) access structure allows for a relatively simple
construction which does not readily extend to other access

2An (n, n) CSS with ad-dimensional secret can be constructed usingd-
dimensional shares for anyn andd, by randomly choosing the values of any
n− 1 shares, and choosing the value of the final share such that summation
of all the shares modulod is equal to the secret.

structures. As discussed below, however, we have found a more
complex approach which can be used to generate various cases
of (n, n− 1) protocols. The underlying reasoning does share
a common idea with the(n, n) protocol: since, as discussed
above, we can perform a 2-bit classical encryption of a qubit
(which can also be thought of as applying one of the four
Pauli operations{I,X, Y, Z} to that qubit at random), then we
can construct a classical key for an encrypted multi-qubit state
from the keys for the individual encrypted qubits. If the qubits
and information about the key are distributed in an HRQSS
such a way that a subset of players only receives classical
information pertaining to the qubits they do not possess, then
overall they have no information on the quantum secret.

We first define the code space we will be be using for our
underlying QSS scheme. Let|s; t〉 with {s, t} ∈ {0, 1} be the
2-qubit eigenstates satisfying

X ⊗X |s; t〉 = (−1)s|s; t〉, and (16)

Z ⊗ Z|s; t〉 = (−1)t|s; t〉. (17)

(These are also the four Bell states:|0, 0〉 = |Φ+〉, |1, 0〉 =
|Φ−〉, |0, 1〉 = |Ψ+〉 and |1, 1〉 = |Ψ−〉). Define a state of
n = 2m qubits

|s; t〉 ≡ |s1; t1〉 ⊗ |s2; t2〉 ⊗ · · · ⊗ |sm; tm〉 (18)

where s = (s1, s2, ..., sm) and t = (t1, t2, ..., tm) are two
sequences ofm bits each.

Consider now the stabiliser groupGs acting onn = 2m
qubits, with two generators:

Gs = 〈X⊗n, Z⊗n〉. (19)

Our code spaceC, in which we encode our quantum secret,
will be then-qubit subspace stabilised byGs. It can easily be
verified thatg|s; t〉 = |s; t〉 for all four elementsg ∈ Gs if and
only if

∑m
k=1 sk = 0 and

∑m
k=1 tk = 0 (with all summations

done mod 2 here and henceforth), thus we can writeC as

C = span

{

|s; t〉
∣

∣

∣

m
∑

k=1

sk = 0 ,

m
∑

k=1

tk = 0

}

. (20)

We see that this code can correct 1 erasure error: should a
qubit go missing, the remaining players can replace it with a
new qubit in some arbitrary state, then collectively measure
the values of the stabilisersX⊗n and Z⊗n on the new set
of n qubits, projecting the state back into the code space up
to an error on the replacement qubit. Any error (indicated by
the measured stabiliser values) can be corrected by applying
a Z and/orX operation to the new qubit, thus recovering the
original state.

We wish to classically encrypt our encoded secret within
this code space, and so introduce further notation to describe
our classical encryption. Denote the four Pauli operationsby
Bpq (p, q ∈ {0, 1}) as follows:

B00 ≡ I, B01 ≡ X, B10 ≡ Z B11 ≡ ZX = −iY.
(21)

Then the 2-qubit states|s, t〉 satisfy

Bpq ⊗ I|s; t〉 = (−1)sq|s+ p; t+ q〉 (22)

I ⊗Bpq|s; t〉 = (−1)p(q+t)|s+ p; t+ q〉. (23)
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Given two n-bit strings p = (p1, p2, ..., pn) and q =
(q1, q2, ..., qn), we denote

Bpq = Bp1q1 ⊗Bp2q2 ⊗ · · · ⊗Bpnqn . (24)

It follows from (24), (22) and (23) thatBpq|ψ〉 ∈ C for all
|ψ〉 ∈ C if and only if

∑n

k=1 pk =
∑n

k=1 qk = 0.
Consider now a quantum secret|ψ〉 ∈ C. The dealer picks,

with uniform probability, twon-bit stringsp = (p1, p2, ..., pn)
and q = (q1, q2, ..., qn) (to remain within the code space,
we require that

∑n

k=1 pk =
∑n

k=1 qk = 0, thus there are
only 22(n−1) possibilities for the two strings) and applies the
operatorBpq to produce the EQS

|ψpq〉 = Bpq|ψ〉. (25)

Note also, however, that the stabiliser generatorsX⊗n and
Z⊗n (which leave the secret unchanged) can be expressed as
operatorsBp′q′ , and that, up to an irrelevant overall phase,
products ofB operators areB operators themselves i.e.

BpqBp′q′ = ±B(p+p′)(q+q′). (26)

Thus, up to an overall phase, there are four equivalent op-
eratorsBpq for a given transformation of the secret (the
original Bpq combined with one, both, or neither of the two
stabiliser generators), for a total of22(n−1)−2 = 22(n−2)

distinct transformations of the secret. Hence our CK consists
of 2(n− 2) bits of information, as is required for an(n− 2)-
qubit secret. Similarly, defininḡp = (p1+1, p2+1, . . . , pn+1)
and similarly forq̄ we have that

|ψpq〉 = ±|ψpq̄〉 = ±|ψp̄q〉 = ±|ψp̄q̄〉 . (27)

The dealer distributes the EQS by sending each player a
qubit; since the EQS is within the code space, anyn − 1
players will be able to recover it. The overall quantum secret
is of sizen− 2 qubits and each player receives 1 qubit, thus
the scheme is optimal with respect to the quantum share size
(since player shares are the smallest possible quantum system:
1 qubit). From the share size bound for perfect QSS schemes
it is implicitly clear that the distribution of the EQS constitutes
an RQSS (since the quantum shares are smaller than the EQS).

To have an optimal overall HRQSS scheme for this quantum
secret we see from (15) that the classical share size must be
2((n − 2) − 1) = 2(n − 3) bits. We therefore require an
RCSS scheme distributing the the2(n − 2) classical bits of
information in the CK (stringsp andq, up to the equivalency
relations discussed above which mean that the strings are each
n bits long but carryn−2 bits of information about the EQS)
to the players using shares of this size. A convenient feature
of our construction is that a scheme which works for one of
p andq can also be used to distribute the other, so we will
consider only a scheme for distributing the information inp,
with each player receivingn− 3 bits.

We now describe, in terms of the distribution ofp, the
classical schemes we have found for specific player numbers
n. These are all of the form that subsets ofn − 1 players
receive complete information (as required), those ofn − 2
players receive one (useless) bit of information on the CK, and
fewer thann−2 players receive no information. For a subset of

Player1 x1 y1 x2 + x3 + y3 + y4 + p4 + p5
Player2 x2 y2 x3 + x4 + y4 + y5 + p5 + p1
Player3 x3 y3 x4 + x5 + y5 + y6 + p6 + p1
Player4 x4 y4 x5 + x6 + y6 + y1 + p1 + p3
Player5 x5 y5 x6 + x1 + y1 + y2 + p2 + p3
Player6 x6 y6 x1 + x2 + y2 + y3 + p3 + p5

TABLE I
L ISTING OF BITS RECEIVED BY PLAYERS IN THE6-PLAYER RCSSSCHEME

players to possess useful classical information on the quantum
secret, they must have some information corresponding to the
qubits they also possess (e.g. a subset of players 1,2 and 3 must
have some information on the bitsp1, p2 and/orp3. Note that
since

∑

k pk = 0, knowing the complement of such bits can
provide such information (e.g. if there were 4 bits in total,
knowingp4 + p1 would also givep2 + p3).

1) 4 players: In this case the dealer generates a single
additional random bitz, and distributes to each playerk the
bit pσ(k) + z using the permutation

σ =

(

1 2 3 4

1 4 2 3

)

. (28)

so e.g. player 1 receivesp1 + z, player 2 receivesp4 + z etc.
Since they do not knowz, no player alone has any information
on the secretp. Since

∑

k pk = 0 and4z = 0 mod 2, 3 players
know that the missing player’s bit is equal to the sum of their
bits, and can thus determine all 4 bits (not knowingz, they
could have eitherp or p̄ but these are equivalent as per (27).

Two players can find outpσ(i) + pσ(j) = p5−σ(i) + p5−σ(j),
but the construction ofσ is such that no pair(σ(i), σ(j)) is
(i, j) or (5 − i, 5 − j) for any i 6= j. E.g. players 1 and
4 can obtainp1 + p4 = p2 + p3 but since they only possess
qubits 1 and 2 this gives no overall information on the quantum
secret. Thus by applying this scheme to the distribution ofp

andq (with independently generated values ofz for each) we
produce an optimal(3, 4) HRQSS.

2) 6 players: For 6 players the classical secret size (forp

alone) isn− 2 = 4 bits, and each player receivesn− 3 = 3
bits of information. The dealer generates additional random
variablesx1, x2, . . . , x6 andy1, y2, . . . , y6, requiring that

6
∑

i=1

xi = 0 (29)

(but with no such constraint on theyi). Each playerk receives
the following 3 bits:xk, yk and

sk = xk+1 + xk+2 + yk+2 + yk+3 + pk+3

+ (pk−1 (if k even) orpk−2 (if k odd)). (30)

The complete set of received bits is given in Table I. We
now consider key examples, which suffice to show the scheme
works in all cases.

a) Example 1: 4 adjacent players: If players 1,2,3 and 4
collaborate, they knowx1 to x4 andy1 to y4 and can subtract
these (and the complementx5+x6 = x1+x2+x3+x4, using
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(29) from theirsk bits, leaving knowledge of:

1 :p4 + p5

2 :y5 + p5 + p1

3 :x5 + y5 + y6 + p6 + p1

4 :y6 + p1 + p3.

Variable y6 appears only in bit 4, so cannot be eliminated,
making bit 4 useless to the players. The same occurs with
x5 (sincex6 does not appear) and bit 3. With bits 3 and 4
excluded,y5 appears only in bit 2, rendering it useless, and
the only information the players have is the value ofp4+p5 =
p1 + p2 + p3 + p6, which doesn’t help them since they don’t
have qubit 5 or qubit 6.

If instead we have players 2 to 5 (we require a second
example due to the odd/even dependence in the distributed
bits), they know the correspondingx andy values and hence
from their sk bits they know:

2 :p5 + p1

3 :y6 + p6 + p1

4 :x6 + y6 + y1 + p1 + p3

5 :y1 + p2 + p3.

Bit 4 is useless due tox6, making bits 3 and 5 also useless
due toy6 andy1 respectively and leaving the players with only
p5+p1 = p2+p3+p4+p6, but lacking qubits 1 or 6 means the
players have no knowledge of the secret. By cyclic permutation
these examples cover all cases of 4 adjacent players.

b) Example 2: 4 players, 3 adjacent: If players 1,2,3 and
5 collaborate, by analogous reasoning to the above they know:

1 :y4 + p4 + p5

2 :x4 + y4 + p5 + p1

3 :x4 + y6 + p6 + p1

5 :x6 + p2 + p3

Bit 3 is useless due toy6. The players can sum bits 2 and 5 and
eliminatex4+x6 = x1+x2+x3+x5 to gety4+p1+p2+p3+
p5, then sum with bit 1 to getp1+p2+p3+p4 = p5+p6 which
is their only bit of information, and useless without qubits4
or 6.

If players 2,3,4 and 6 collaborate they know from their
additional bits:

2 :y5 + p5 + p1

3 :x5 + y5 + p6 + p1

4 :x5 + y1 + p1 + p3

6 :x1 + p3 + p5

Bit 4 is useless due toy1. Eliminatingy5 between bits 1 and
2 givesx5+p5+p6, then eliminatingx5+x1 with bit 6 gives
p1+p3 = p2+p2+p5+p6, useless without qubits 3 or 5. By
cyclic permutation these examples cover all cases of 4 players
with 3 adjacent.

c) Example 3: 4 players, 2 adjacent: If players 1,2,4 and
5 collaborate they have

1 :x3 + y3 + p4 + p5

2 :x3 + p5 + p1

4 :x6 + y6 + p1 + p3

5 :x6 + p2 + p3

Bits 1 and 4 are useless due toy3 andy6. Eliminatingx3+x6
between bits 2 and 4 givesp1+p2+p3+p5 = p4+p6, useless
without qubits 3 or 6.

If players 2,3, 5 and 6 collaborate they have

2 :x4 + y4 + p5 + p1

3 :x4 + p6 + p1

4 :y1 + p1 + p3

6 :x1 + p3 + p5

Bits 2 and 4 are useless due toy4 andy1. Eliminatingx4+x1
between bits 3 and 6 givesp1 + p3 + p5 + p6 = p2 + p4,
useless without qubits 1 or 4. Cyclic permutation of the above
examples covers all remaining cases, thus we have shown that
no set of 4 players has any information on the quantum secret.

We still need to show that 5 players can recover all 4 bits of
the classical secret, for which it is sufficient to show that they
obtain 4 independent bits of information about the stringp.
Suppose players 1 to 5 collaborate. Using (29) they know all
values ofxk and allyk excepty6. They therefore have access
to the bitsp4+p5, p5+p1, y6+p6+p1, y6+p1+p3, p2+p3
andp3+p5. Eliminatingy6 between the two bits containing it
gives them access to the 4 independent bitsp4 + p5, p5 + p1,
p3 + p6 andp2 + p3. If players 2 to 6 collaborate, they have
access top4+ p5, p5+ p1, p6+ p1, y1+ p1+ p3, y1+ p2+ p3
andp3+p5, and can obtain 4 independent bitsp4+p5, p5+p1,
p6 + p1 andp1 + p2. Other cases are covered through cyclic
permutation. Hence all subsets of 5 players can recover the
secret.

We have therefore demonstrated optimal(3, 4) and (5, 6)
HRQSS schemes. We conjecture that one can construct such
(n− 1, n) schemes for2n qubits for any value ofn, however
we note that the relative advantage in doing so decreases asn
gets large: our ramp classical share size of2(n− 3) classical
bits, while optimal for the HRQSS, is only 2 bits less than the
lower bound for a perfect CSS scheme. Thus the(3, 4) case
is arguably the most important example, since the classical
shares are half of what an optimal perfect CSS scheme would
require in this case.

More significantly, this method of construction for HRQSS
schemes holds great promise for adapting other QECCs from
the wide class of stabiliser codes. By exploiting the structure of
the underlying code and formulating the CSS element in terms
of Pauli transformations on individual qubits, we reduced the
problem to a purely classical one of constructing a suitable
matching RCSS scheme for the underlying QSS scheme (we
note that we are not aware of our particular RCSS schemes
having appeared previously in the literature), for which we
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can use two separate, identical schemes for the stringsp

andq, further simplifying the problem. The properties of the
HRQSS could be established purely classically, without having
to generate density matrices for the combined classical and
quantum information for the various player subsets. Adopting
this approach with other stabiliser codes should make finding
additional HRQSS schemes much more straightforward.

VII. C ONCLUSION

We have shown that one can produce perfect threshold
QSS schemes with both quantum share sizes and total dealer
quantum communication below what has previously been
shown, for any allowable non-boundary threshold(k, n) access
structure (i.e. any scheme wheren < 2k−1). We have further
shown(n, n) and (for specific values ofn) (n− 1, n) access
structures for which one can optimise both the quantum and
classical share size i.e. our protocol gives the smallest possible
quantum shares and the smallest possible classical shares given
the quantum share size. These protocols allow one to find an
efficient scheme for situations where some variable number of
players can process quantum information, and one’s priorities
may vary from minimising the total quantum communication
to minimising the total number of quantum shares.

These results suggest various directions for further work.
Firstly, our optimal doubly-ramp schemes are currently only
known for specific access structures; it would be very desirable
to generalise this, and to know when and how an appropriate
RCSS scheme can be constructed for a given RQSS in order
to produce a perfect overall scheme. As discussed above, the
approach used appears very promising for adapting to other
stabiliser codes. We note that the RQSS schemes used do not
fall under the general construction of [6]; finding matching
RCSS schemes for this construction would produce a wide
range of optimal hybrid schemes.

We further note that our doubly-ramp schemes can be seen
to be optimal in the sense of having the smallest possible
quantum shares only due to special circumstances: for the
(n, n) schemes our total quantum communication is the size
of the secret and for the(n − 1, n) schemes the quantum
shares have the smallest non-trivial dimension of 2. In general,
however, we do not know what the smallest possible quantum
shares are for a given perfect hybrid scheme, or indeed how
large the overall quantum system communicated by the dealer
must be, beyond the obvious lower bound of the secret sizeds;
finding a tight bound would be an important step to identifying
optimal schemes.

We have only addressed the application of hybrid ramp
schemes to the construction of threshold schemes, rather than
more general access structures. Some results on non-ramp
hybridisation of such schemes were found in [7] and [8] and
it seems likely that hybrid ramp schemes could reduce share
sizes for these access structures as well. In general, though,
little is currently known about non-threshold QRSS schemes.

Fianlly we note, and thank an anonymous referee for point-
ing out, that for HRQSS schemes to be useful in a practical
insecure setting, without access to secure quantum channels
between individual players and players and dealer, will require

additional features to provide security against eavesdropping
in secret distribution and/or recovery. This is another important
direction for future work.
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