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Abstract—The noncoherent capacity of stationary discrete-time
fading channels is known to be very sensitive to the fine details of
the channel model. More specifically, the measure of the support
of the fading-process power spectral density (PSD) determines if
noncoherent capacity grows logarithmically in SNR or slower than
logarithmically. Such a result is unsatisfactory from an engineer-
ing point of view, as the support of the PSD cannot be determined
through measurements. The aim of this paper is to assess whether,
for general continuous-time Rayleigh-fading channels, this sensi-
tivity has a noticeable impact on capacity at SNR values of prac-
tical interest.

To this end, we consider the general class of band-limited
continuous-time Rayleigh-fading channels that satisfy the wide-
sense stationary uncorrelated-scattering (WSSUS) assumption
and are, in addition, underspread. We show that, for all SNR
values of practical interest, the noncoherent capacity of every
channel in this class is close to the capacity of an AWGN
channel with the same SNR and bandwidth, independently
of the measure of the support of the scattering function (the
two-dimensional channel PSD). Our result is based on a lower
bound on noncoherent capacity, which is built on a discretization
of the channel input-output relation induced by projecting onto
Weyl-Heisenberg (WH) sets. This approach is interesting in its
own right as it yields a mathematically tractable way of dealing
with the mutual information between certain continuous-time
random signals.

Index Terms—Continuous-time, ergodic capacity, fading chan-
nels, Weyl-Heisenberg sets, wide-sense stationary uncorrelated-
scattering, underspread property.

I. INTRODUCTION AND SUMMARY OF RESULTS

The capacity of fading channels in the noncoherent setting
where neither transmitter nor receiver are aware of the real-
izations of the fading process, but both know its statistics,1 is
notoriously difficult to analyze, even for simple channel models.
Most of the results available in the literature pertain to either low
or high signal-to-noise ratio (SNR) asymptotics. While in the
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1Capacity in the noncoherent setting is sometimes called noncoherent capacity;
in the remainder of this paper, it will be referred to simply as capacity. We will
use the adjective coherent to denote the setting where the channel realizations
are perfectly known at the receiver but unknown at the transmitter, which is
assumed to know the channel statistics only.
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Fig. 1. Two channels with similar PSD c(✓), but drastically different high-SNR
capacity behavior.

low-SNR regime the capacity behavior is robust with respect to
the underlying channel model (see for example [1], [2]), this is
not the case in the high-SNR regime, where—as we are going to
argue next—capacity is very sensitive to the fine details of the
channel model.

Consider, e.g., a discrete-time stationary frequency-flat time-
selective Rayleigh-fading channel subject to additive white Gaus-
sian noise (AWGN). Here, the channel statistics are fully spec-
ified by the fading-process power spectral density (PSD) c(✓),
✓ 2 [�1/2, 1/2), and by the noise variance. The high-SNR
capacity of this channel turns out to depend on the measure µ

of the support of the PSD. More specifically, let ⇢ denote the
SNR; if µ < 1, capacity behaves as (1 � µ) log ⇢ in the high-
SNR regime [3]. The pre-log factor (1 � µ) quantifies the loss
in signal-space dimensions (relative to coherent capacity [4],
which behaves as log ⇢) due to the lack of channel knowledge
at the receiver.2 For µ ⌧ 1 this loss is negligible, suggest-
ing that, in this case, the realizations of the fading channel
can be learned at the receiver (at high SNR) by sacrificing a
negligible fraction of the signal-space dimensions available for
communication. If µ = 1 and the fading process is regular,
i.e.,

R 1/2

�1/2
log c(✓)d✓ > �1, the high-SNR capacity behaves

as log log ⇢ [7]. This double-logarithmic growth behavior of
capacity with SNR renders communication in the high-SNR
regime extremely power inefficient.

As a consequence of the results just mentioned, we have
the following: consider two discrete-time stationary Rayleigh-
fading channels, the first one with PSD equal to 1/� for ✓ 2
[��/2, �/2] and 0 else (0 < � < 1), and the second one with
PSD equal to (1 � ✏)/� for ✓ 2 [��/2, �/2] and ✏/(1 � �)
else (0 < ✏ < 1, see Fig. 1). These two channels will have
completely different high-SNR capacity behavior, no matter how
small ✏ is. Specifically, the capacity of the first channel behaves

2Results of the same nature as those reported in [3] were obtained previously
for the block-fading channel model (a non-stationary channel model) in [5], [6].
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as (1 � �) log ⇢, whereas the capacity of the second one grows
as log log ⇢. A result like this is clearly unsatisfactory from an
engineering point of view, as the measure of the support of a
PSD cannot be determined through channel measurements. Such
a sensitive dependency of the (high-SNR) capacity behavior
on the fine details of the channel model (by fine details we
mean details that, in the words of Slepian [8], have “. . . no direct
meaningful counterparts in the real world . . . ”), should make one
question the usefulness of the discrete-time stationary channel
model itself, at least for high-SNR analyses. In the light of
this observation, an engineering-relevant problem is to assess
whether this sensitivity has a noticeable impact on capacity at
SNR values of practical interest. Unfortunately, this problem
is still largely open. For the stationary discrete-time case, an
attempt to characterize the capacity sensitivity was made in [9],
where, for a first-order Gauss-Markov channel process (a regular
process), the SNR beyond which capacity starts exhibiting a sub-
logarithmic growth in SNR is computed as a function of the
innovation variance � of the process. More specifically, it is
shown in [9] that for ⇢ � 1 and � ⌧ 1 capacity grows as log ⇢

as long as ⇢ < 1/�. In words, when the innovation variance is
small, the high-SNR capacity grows logarithmically in SNR up
to SNR values not exceeding 1/�. The main limitation of this
result lies in the fact that it is based on a highly specific channel
model, namely a first-order Gauss-Markov process, which is
fully described by a single parameter, the innovation variance.
Furthermore, it is difficult to relate this parameter to physical
channel quantities such as the channel Doppler spread.

A more general approach is presented in [7], where the fading
number, defined as the second term in the high-SNR expansion of
capacity, is characterized for arbitrary discrete-time, stationary,
regular fading channels. The fading number determines the rate
after which the log log regime kicks in, and communication be-
comes extremely power inefficient. Unfortunately, as illustrated
in [10], it is, in general, not possible to relate the fading number
to the SNR value at which the log log behavior comes into effect.

The purpose of this paper is to characterize the sensitivity
of capacity with respect to the channel model for the general
class of continuous-time Rayleigh-fading linear time-varying
(LTV) channels that satisfy the wide-sense stationary (WSS)
and uncorrelated scattering (US) assumptions [11] and that
are, in addition, underspread [12]. The Rayleigh-fading and the
WSSUS assumptions imply that the statistics of the channel are
fully characterized by its two-dimensional PSD, often referred
to as the scattering function [11]; the underspread assumption is
satisfied if the scattering function is “highly concentrated” in the
delay-Doppler plane. Different definitions of the underspread
property are available in the literature (e.g., in terms of the
support area of the scattering function [1], [13] or in terms of its
moments [14]). For the problem considered in this paper, it is
crucial to adopt a novel definition of the underspread property
(see Definition 1 in Section II-B), inspired by Slepian’s treatment
of finite-energy signals that are approximately time- and band-
limited [8]. Specifically, we shall say that a WSSUS channel is
underspread if its scattering function has only a fraction ✏ ⌧ 1
of its volume outside a rectangle of area �H ⌧ 1 . This
novel definition of the underspread property encompasses the
underspread definitions previously proposed in the literature [13],

[1], [14] and generalizes them.
When ✏ = 0, i.e., when the scattering function is compactly

supported, and �H ⌧ 1 we expect—on the basis of the results
obtained in [7], [3] in the context of the stationary discrete-time
fading channel model—capacity to grow logarithmically in SNR.
Unfortunately, it is not possible to determine through channel
measurements whether a scattering function is compactly sup-
ported or not, which motivates our novel underspread definition.
For the practically more relevant case 0 < ✏ ⌧ 1, we show that
the sub-logarithmic growth behavior kicks in only at very large
SNR. Our result is built on a lower bound on the capacity of
band-limited continuous-time WSSUS underspread Rayleigh-
fading channels that is explicit in the channel parameters �H
and ✏. By comparing this lower bound to a trivial capacity upper
bound, namely, the capacity of a nonfading AWGN channel with
the same SNR and bandwidth, we find that, for all SNR values
of practical interest, the fading channel capacity is close3 to the
capacity of a nonfading AWGN channel (with the same SNR
and bandwidth). As a rule of thumb, this statement is true for
all SNR values in the range

p
�H ⌧ ⇢ ⌧ 1/(�H + ✏). Hence,

we conclude that the fading channel capacity essentially grows
logarithmically in SNR for all SNR values of practical interest.

Information theoretic analyses of continuous-time channels
are notoriously difficult. The standard approach is to discretize
the continuous-time channel input-output (I/O) relation by pro-
jecting the input and output signals onto the singular functions
of the channel operator [15], [16]. This yields a diagonalized
discretized I/O relation consisting of countably many scalar,
non-interacting I/O relations. Unfortunately, this approach is
not viable in our setting because random LTV channels have
random singular functions, which are not known to transmit-
ter and receiver in the noncoherent setting [1], [2]. We will
nevertheless discretize the channel by constraining the input
signal to lie in the span of an orthonormal Weyl-Heisenberg
(WH) set, i.e., a set of time-frequency shifted versions of a
given function, and by projecting the receive signal on the same
set of functions. This guarantees that the resulting discretized
channel inherits the (two-dimensional) stationarity property of
the underlying continuous-time channel, a fact that is essential
for our analysis. This approach is interesting in its own right,
as it yields a mathematically tractable way of dealing with the
mutual information between certain continuous-time random
signals.

In [1] a similar approach was used to obtain bounds on the
capacity of continuous-time Rayleigh-fading WSSUS under-
spread channels at low SNR. These bounds are derived under
the assumption that the off-diagonal terms in the discretized I/O
relation can be neglected, which greatly simplifies the capacity
analysis. Whereas this simplification was shown in [2] to be
admissible at low SNR, it is unclear whether the off-diagonal
terms can be neglected at high SNR. We will therefore explic-
itly account for the off-diagonal terms in the discretized I/O
relation by treating them as (signal-dependent) additive noise,
and thus obtain a firm lower bound on the capacity of the
underlying continuous-time channel. This lower bound yields

3“Close” here means that the ratio between the capacity lower bound and the
capacity of a nonfading AWGN channel (with the same SNR and bandwidth)
exceeds 0.75.
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an information-theoretic criterion for the design of WH sets to
be used for pulse-shaped (PS) orthogonal frequency-division
multiplexing (OFDM) communication systems operating over
Rayleigh-fading WSSUS underspread fading channels. In partic-
ular, the lower bound suggests that the WH set should be chosen
so as to optimally trade signal-space dimensions (available
for communication) for minimization of the power of the off-
diagonal terms in the resulting discretized I/O relation.

Notation: Uppercase boldface letters denote matrices, and
lowercase boldface letters designate vectors. The Hilbert space
of complex-valued finite-energy signals is denoted as L2(R);
furthermore, h·, ·i and k·k stand for the inner product and the
norm in L2(R), respectively. The set of positive real numbers is
denoted as R+ and the set of integers as Z; E[·] is the expectation
operator, h(·) denotes differential entropy, and F[·] stands for the
Fourier transform. For two vectors a and b of equal dimension,
the Hadamard (element-wise) product is denoted as a�b. We
write diag{x} for the diagonal matrix that has the elements of
the vector x on its main diagonal. The superscripts T , ⇤, and H

stand for transposition, element-wise conjugation, and Hermitian
transposition, respectively. The largest eigenvalue of a Hermi-
tian matrix A is denoted as �max{A}. For two functions f(x)
and g(x), the notation f(x) = O(g(x)), x ! 1, means
that lim supx!1 |f(x)/g(x)| < 1. Finally, �[k] is defined
as �[0] = 1 and �[k] = 0 for k 6= 0. Throughout the paper,
we shall make use of the following projection operators acting
on L2(R): the time-limiting operator TD, defined as

(TDx)(t) =

(

x(t), if |t|  D/2

0, otherwise

which limits x(t) to the interval [�D/2, D/2], and the frequency-
limiting operator defined as

(BW x)(t) =

Z

t0

sin[⇡W (t � t

0)]

⇡(t � t

0)
x(t0)dt

0

which limits the Fourier transform of x(t) to the interval
[�W/2, W/2].

II. SYSTEM MODEL

A. Channel and Signal Model

The I/O relation of a continuous-time random LTV channel H
can be written as [17]

y(t) = (Hx)(t)
| {z }

, r(t)

+ w(t)

=

Z

⌧

hH(t, ⌧)x(t � ⌧)d⌧ + w(t). (1)

Here, r(t) is the output signal in the absence of additive noise.
Following [15, Model 2], we assume that the stochastic input
signal x(t):

i) is strictly band-limited to W Hz according to

X(f) = 0, for |f | > W/2 (2)

with probability one, where X(f) , F[x(t)];

ii) is approximately time-limited to a duration of D sec accord-
ing to

E
⇥

kTDx(t)k2
⇤

� (1 � ⌘)E
⇥

kx(t)k2
⇤

(3)

where 0 < ⌘ ⌧ 1;
iii) satisfies the average-power constraint

(1/D)E
⇥

kx(t)k2
⇤

 P. (4)

The constraints (2) and (3) capture the fact that we are dealing
with input signals that are strictly band-limited and essentially
time-limited. As pointed out in [15, p. 364], time limitation is
important as this allows for a physically meaningful definition
of transmission rate. Note that the strict bandwidth constraint (2)
implies that any nonzero x(t) can be limited in time only in an
approximate sense [8], a consideration that justifies the form of
the constraint expressed in (3).

The signal w(t) is a zero-mean proper AWGN process with
double-sided PSD equal to 1. Finally, the time-varying channel
impulse response hH(t, ⌧) is a zero-mean jointly proper Gaussian
(JPG) process in time t and delay ⌧ that satisfies the WSSUS
assumption

E[hH(t, ⌧)h⇤
H(t0, ⌧ 0)] = RH(t � t

0
, ⌧)�(⌧ � ⌧

0) (5)

and is independent of w(t) and x(t). As a consequence of the
JPG and the WSSUS assumptions, the time-delay correlation
function RH(t, ⌧) fully characterizes the channel statistics.

Often, it is convenient to describe the action of the channel H
in domains other than the time-delay domain used in (1). Specifi-
cally, we shall frequently work with the following alternative I/O
relation [cf. (1)], which is explicit in the channel delay-Doppler
spreading function SH(⌧, ⌫) =

R

t
hH(t, ⌧)e�j2⇡⌫t

dt according
to

y(t) =

ZZ

⌫ ⌧

SH(⌧, ⌫)x(t � ⌧)ej2⇡⌫t
d⌧d⌫

| {z }

= r(t)

+w(t).

This alternative I/O relation leads to the following physical
interpretation: the noiseless output signal r(t) = (Hx)(t) is
a weighted superposition of copies of the input signal x(t) that
are shifted in time by the delay ⌧ and in frequency by the Doppler
shift ⌫. The spreading function is the corresponding weighting
function. In other words, the channel operator H can be repre-
sented as a continuous weighted superposition of time-frequency
shift operators. Note that every “reasonable” linear operator
admits such a representation (see [18, Thm. 14.3.5] for a precise
mathematical formulation of this statement). As a consequence
of the WSSUS assumption, the spreading function SH(⌧, ⌫) is
uncorrelated in ⌧ and ⌫, i.e., we have

E[SH(⌧, ⌫)S⇤
H(⌧ 0

, ⌫

0)] = CH(⌧, ⌫)�(⌧ � ⌧

0)�(⌫ � ⌫

0) (6)

where CH(⌧, ⌫) is the two-dimensional PSD of the channel
process, usually referred to as scattering function [17]. In the
remainder of the paper, we let the scattering function be normal-
ized in volume according to

ZZ

⌫ ⌧

CH(⌧, ⌫)d⌧d⌫ = 1. (7)
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Another system function we shall need is the time-varying
transfer function

LH(t, f) ,
Z

⌧

hH(t, ⌧)e�j2⇡f⌧
d⌧

which, as a consequence of (5), is stationary in both time and
frequency:

E[LH(t, f)L⇤
H(t0, f 0)] = BH(t � t

0
, f � f

0). (8)

Here, BH(t, f) denotes the time-frequency correlation function
of the channel process, which is related to the scattering function
through a two-dimensional Fourier transform

BH(t, f) =

ZZ

⌫ ⌧

CH(⌧, ⌫)ej2⇡(⌫t�⌧f)
d⌧d⌫.

For a more complete description of the WSSUS channel model,
the interested reader is referred to [17], [1].

B. A Robust Definition of Underspread Channels
Qualitatively speaking, WSSUS underspread channels are

WSSUS channels with a scattering function that is highly
concentrated in the delay-Doppler plane [11]. For the case
where CH(⌧, ⌫) is compactly supported, the channel is said to
be underspread if the support area of CH(⌧, ⌫) is smaller than 1
(see for example [13], [1]). The compact-support assumption
on CH(⌧, ⌫), albeit mathematically convenient, is a fine detail
of the channel model in the terminology introduced in Sec-
tion I, because it is not possible to determine through channel
measurements whether CH(⌧, ⌫) is compactly supported or not.
However, the results discussed in Section I, in the context of
the stationary discrete-time fading channel model, imply a high
capacity sensitivity to whether the measure of the support of the
PSD is smaller than 1 or not. A similar sensitivity can be expected
for the continuous-time WSSUS channel model. To quantify this
sensitivity, we need to work with a more general underspread
definition. Specifically, we replace the underspread definition
based on the compact-support assumption by the following, more
robust and physically meaningful, assumption: we say that H is
underspread if CH(⌧, ⌫) has a small fraction of its total volume
outside a rectangle of area much smaller than 1. More precisely,
we have the following definition.

Definition 1: Let ⌧0, ⌫0 2 R+, ✏ 2 [0, 1], and let H(⌧0, ⌫0, ✏)
be the set of all Rayleigh-fading WSSUS channels H with
scattering function CH(⌧, ⌫) satisfying

⌫0
Z

�⌫0

⌧0
Z

�⌧0

CH(⌧, ⌫)d⌧d⌫ � 1 � ✏. (9)

We say that the channels in H(⌧0, ⌫0, ✏) are underspread if �H ,
4⌧0⌫0 ⌧ 1 and ✏ ⌧ 1.

Note that it is possible to verify, through channel measure-
ments, whether a fading channel is underspread according to
Definition 1. Typical wireless channels are (highly) underspread,
with most of the volume of CH(⌧, ⌫) supported over a rectan-
gle of area �H  10�3 for land-mobile channels, and �H
as small as 10�7 for certain indoor channels with restricted

terminal mobility. Note that setting ✏ = 0 in Definition 1
yields the compact-support underspread definition of [13], [1].
The moment-based underspread definition proposed in [14] is
subsumed by Definition 1 as well.

C. Band-Limitation at the Receiver

Even though x(t) has bandwidth no larger than W , the signal
r(t) = (Hx)(t) is, in general, not strictly band-limited, because
H can introduce arbitrarily large frequency dispersion. However,
if H is underspread in the sense of Definition 1, most of the
energy of r(t) will be supported on a frequency band of size
(W + 2⌫0) Hz. We therefore assume that the output signal y(t)
is passed through an ideal low-pass filter of bandwidth (W +
2⌫0) Hz, resulting in the filtered output signal

yf (t) = (BW+2⌫0y)(t). (10)

This filtering operation yields a band-limited WSSUS fading
channel.

III. CHANNEL CAPACITY

A. Outline of the Information-Theoretic Analysis

We are interested in characterizing the ultimate limit on the
rate of reliable communication over the continuous-time fading
channel (1) in the noncoherent setting (i.e., the setting where
neither the transmitter nor the receiver know the realization
of H, but both know the statistics of H). Two main difficulties
need to be overcome to obtain such a characterization. First, we
need to deal with continuous-time channels and signals, which
are notoriously difficult to analyze information-theoretically.
Second, our focus is on the noncoherent setting, for which,
even for simple discrete-time channel models, analytic capacity
characterizations are not available.

To overcome these difficulties we resort to bounds on capacity.
As (trivial) capacity upper bound, we take in Section III-C the
capacity of a band-limited Gaussian channel [15] with the same
average-power constraint as in (4) and bandwidth equal to (W +
2⌫0). A capacity lower bound is obtained in Section IV through
the following two steps: first, we construct a discretized channel
whose capacity is proven to be a lower bound on the capacity
of the underlying continuous-time channel (1); then, we derive
a lower bound on the capacity of this discretized channel that
is explicit in the channel parameters �H and ✏. In Section V,
we then show that, for channels that are underspread according
to Definition 1, this lower bound is close to the AWGN-channel
capacity upper bound for all SNR values of practical interest,
thereby sandwiching the capacity of the band-limited continuous-
time fading channel tightly.

B. Mutual Information and Capacity for the Continuous-Time
Channel

Dealing with continuous-time channels requires a suitable
generalization of the definitions of mutual information and
capacity [19] to the continuous-time case. Such a generalization
can be found, e.g., in [20], [16, Ch. 8], and is reviewed here for
completeness.
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To define capacity of the channel (1), we represent the complex
signals at the input and output of H in terms of projections onto
complete orthonormal sets for the underlying signal spaces. More
specifically, let {�m(t)}1

m=0 be a complete orthonormal set for
the space L2(W ) of signals with bandwidth no larger than W .
We can then describe x(t) 2 L2(W ) uniquely in terms of the
projections

xm , hx(t), �m(t)i, m = 0, 1, . . . (11)

as x(t) =
P

m xm�m(t). Similarly, let {�

0
m(t)}1

m=0 be a
complete orthonormal set for L2(W+2⌫0). The low-pass filtered
output signal yf (t) 2 L2(W + 2⌫0) in (10) can be described
uniquely in terms of the projections

ym , hyf (t), �0
m(t)i, m = 0, 1, . . . (12)

as yf (t) =
P

m ym�

0
m(t). To define the mutual information

between x(t) and yf (t), we need to impose a probability measure
on x(t).4 Concretely, let Q(W, D, ⌘, P ) be the set of probability
measures on x(t) that satisfy the bandwidth constraint (2),
the time-limitation constraint (3), and the average-power con-
straint (4). Every probability measure in Q(W, D, ⌘, P ) induces
a corresponding probability measure on {xm}1

m=0. For a given
probability measure in Q(W, D, ⌘, P ), the mutual information
between x(t) and yf (t) is defined as [16, Eq. (8.151)], [20, Def. 3,
Thm. 1.5]

I(yf (t); x(t)) , lim
M!1

I(yM ;xM )

where x

M = [x0 x1 . . . xM ]T , and, similarly, y

M =
[y0 y1 . . . yM ]T . This definition turns out to be independent of
the complete orthonormal sets {�m(t)}1

m=0 and {�

0
m(t)}1

m=0

used [20, Thm. 1.5]. The capacity C of the channel (1) can now
be defined as follows [16, Eq. (8.1.55)]:

C , lim
D!1

1

D

sup
Q(W,D,⌘,P )

I(yf (t); x(t)). (13)

We conclude this section by noting that, by Fano’s inequality, no
rate above C is achievable [22]. However, whether the channel
coding theorem applies to the general class of time-frequency
selective fading channels considered in this paper is an open
problem, even for the discrete-time case [23].

C. An Upper Bound on Capacity

For underspread channels in H(⌧0, ⌫0, ✏) (see Definition 1)
and input signals satisfying (2)–(4), we take as simple (yet tight,
in a sense to be specified in Section V) upper bound on (13) the
capacity of a (nonfading) band-limited AWGN channel with the
same average-power constraint as in (4) and bandwidth (W +
2⌫0). More precisely, we show in Appendix A that C  CAWGN,
where

CAWGN , (W + 2⌫0) log

✓

1 + (1 � ⌘)(1 � ✏)
P

W + 2⌫0

◆

+(⌘ + ✏ � ⌘✏)P. (14)

4A probability measure on x(t) is specified through the joint probability
measure of the n-tuples (x(t1), . . . , x(tn)) for every n 2 N and for every
choice of t1, . . . , tn 2 R [21, Sec. 25.2].

This result is based on [15, Thm. 2]. Differently from [15,
Eq. (20)], the second term on the right-hand side (RHS) of (14)
accounts not only for the approximate time-limitation of x(t),
but also for the dispersive nature of H.

It is now appropriate to provide a preview of the nature
of the results we are going to obtain. We will show that, as
long as �H ⌧ 1 and ✏ ⌧ 1, the capacity of every channel
in H(⌧0, ⌫0, ✏), independently of whether its scattering function
is compactly supported or not, is close to the AWGN-channel
capacity CAWGN for all SNR values typically encountered in
practical wireless communication systems. To establish this
result, we derive, in the next section, a lower bound on (13).

IV. A LOWER BOUND ON CAPACITY

A. Outline

As the derivation of the capacity lower bound presented in this
section consists of several steps, we start by providing an outline
of our proof strategy. The first step entails restricting the set
of input distributions in (13) to a subset of Q(W, D, ⌘, P ); this
clearly yields a lower bound on C. The subset of Q(W, D, ⌘, P )
we consider is described in Section IV-B and is obtained by
constraining the input signal x(t) to lie in the span of an or-
thonormal WH set (that is not necessarily complete for L2(W )).
The second step (see Section IV-C) consists of projecting the
corresponding output signal yf (t) onto the same orthonormal
WH set, an operation that further lower-bounds mutual informa-
tion, as seen by application of the data-processing inequality [20,
Thm. 1.4] (the orthonormal WH set is not necessarily complete
for L2(W +2⌫0)). As a result of these two steps, we obtain a dis-
cretization of the I/O relation. The capacity of the corresponding
discretized channel, which is a lower bound on the capacity of the
underlying continuous-time channel, is further lower-bounded
in Section IV-E by treating the off-diagonal terms in the I/O
relation as (signal-dependent) additive noise. This finally yields
a lower bound on the capacity of the underlying continuous-time
channel that is explicit in the channel parameters �H and ✏.

B. A Smaller Set of Input Distributions

Let gk,n(t) , g(t � kT )ej2⇡nFt and

(g, T, F ) ,
�

gk,n(t)
 

k,n2Z

be an orthonormal WH set, i.e., a set consisting of time-frequency
shifts (on a rectangular lattice) of a given pulse g(t) 2 L2(R).
Orthonormality of the WH set implies TF � 1, as a consequence
of [18, Cor. 7.5.1, Cor. 7.3.2]. We lower-bound C by restricting
the input signals to be of the form

x(t) =

K
X

k=�K

N
X

n=�N

x[k, n]gk,n(t) (15)

where {x[k, n]} are random coefficients. To guarantee that x(t)
in (15) satisfies (2)–(4), we impose the following constraints on
(g, T, F ), K, N , and {x[k, n]}.
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0�D/2 D/2KxT/2�KxT/2

KgT

| {z }

KgT

| {z }

Fig. 2. Insertion of guard intervals.

1) Average-power constraint: To ensure that x(t) in (15)
satisfies (4), it is sufficient to choose K such that (2K+1)T  D

(further restrictions on the choice of K will be imposed in Sec-
tion IV-B3), and to require that the random variables {x[k, n]}
satisfy

K
X

k=�K

N
X

n=�N

E
h

|x[k, n]|2
i

 (2K + 1)TP. (16)

The constraint (16), together with the orthonormality of the set
(g, T, F ), implies that (4) is satisfied.

2) Bandwidth limitation: To ensure that x(t) in (15) satis-
fies (2), we require that g(t) fulfills the following property.

Property 1: The function g(t) is strictly band-limited with
bandwidth F  W .

Furthermore, we take N = (Nx � 1)/2 where Nx , W/F .
For simplicity of exposition, we shall assume, in the remainder
of the paper, that Nx is an odd integer.

3) Time limitation: To ensure that x(t) in (15) satisfies (3),
we impose two additional constraints. First, we require that g(t)
satisfies the following property.

Property 2: The function g(t) is even and decays faster than
1/t, i.e.,

g(t) = O(1/t

1+µ), t ! 1 (17)

for some µ > 0.
Second, we insert, in the interval [�D/2, D/2], two guard

intervals. More specifically, for a given approximate duration
D of the input signal x(t) [we will later take D ! 1 ac-
cording to (13)], the interval [�D/2, D/2] is divided up into
three parts (see Fig. 2): the interval [�KxT/2, KxT/2], with
K = (Kx�1)/2 in (15),5 supporting most of the energy of x(t),
and two guard intervals [�D/2, �KxT/2] and [KxT/2, D/2],
each of length KgT = D/2 � KxT/2. This will ensure that (3)
is satisfied. We will let Kx ! 1 as D ! 1, with Kg kept
constant. This guarantees that the fraction of time allocated to the
guard intervals vanishes as D ! 1. For simplicity of notation,
we shall assume in the remainder of the paper that Kg is an
integer. For fixed ⌘ in (3), the decay property of g(t) expressed
in (17) implies that one can choose Kg (independent of K) so that
x(t) in (15) satisfies (3). This statement is proven in Appendix B.

We next show formally that our construction results in a
capacity lower bound. Fix an orthonormal WH set (g, T, F )
satisfying Properties 1 and 2. Furthermore, let Qd be the set
of probability measures on {x[k, n]} that satisfy (16). Every
probability measure in Qd induces a probability measure on x(t)
in (15). We denote the corresponding set of probability measures
on x(t) by QWH(W, D, ⌘, P ). As just shown, x(t) satisfies (2)–
(4). Hence, QWH(W, D, ⌘, P ) ✓ Q(W, D, ⌘, P ) [recall that

5We assume that K
x

is an odd integer.

Q(W, D, ⌘, P ) is the set of all probability measures that satisfy
(2)–(4)]. We can then lower-bound C in (13) as follows:

C = lim
D!1

1

D

sup
Q(W,D,⌘,P )

I(yf (t); x(t))

� lim
D!1

1

D

sup
QWH(W,D,⌘,P )

I(yf (t); x(t)). (18)

Here, the inequality follows by restricting the supremization to
the smaller set QWH(W, D, ⌘, P ).

C. The Discretized I/O Relation
The second step in our approach is to project the output

signal yf (t) [resulting from the transmission of x(t) in (15)]
onto the signal set {gk,n(t)} to obtain

y[k, n] , hyf , gk,ni
(a)
= hy, gk,ni
= hH gk,n, gk,ni
| {z }

,h[k,n]

x[k, n]

+

K
X

l=�K

N
X

m=�N

(l,m) 6=(k,n)

hH gl,m, gk,ni
| {z }

, p[l,m,k,n]

x[l,m] + hw, gk,ni
| {z }

,w[k,n]

= h[k, n]x[k, n]

+

K
X

l=�K

N
X

m=�N

(l,m) 6=(k,n)

p[l, m, k, n]x[l,m] + w[k, n] (19)

for each time-frequency slot (k, n), k = �K, �K + 1, . . . , K,
n = �N, �N + 1, . . . , N . Here, (a) is a consequence of Prop-
erty 1, which implies that the Fourier transform of gk,n(t) (with
k = �K, �K +1, . . . , K, n = �N, �N +1, . . . , N ) is strictly
supported in the interval [�W/2, W/2]. We refer to the channel
with I/O relation (19) as the discretized channel induced by the
WH set (g, T, F ). As we assumed that hH(t, ⌧) in (1) is a zero-
mean JPG random process in t and ⌧ , the random variables
h[k, n] and p[l, m, k, n] are zero-mean JPG. Furthermore, the
orthonormality of the WH set (g, T, F ) implies that the w[k, n]
in (19) are i.i.d. CN (0, 1).

For each time slot k 2 {�K, �K + 1, . . . , K}, we arrange
the data symbols x[k, n], the output signal samples y[k, n], the
channel coefficients h[k, n], and the noise samples w[k, n] in
corresponding Nx-dimensional vectors.6 For example, the Nx-
dimensional vector that contains the input symbols in the kth
time slot is defined as

x[k] ,
⇥

x[k, �N ] x[k, �N + 1] . . . x[k, N ]
⇤T

.

The output vector y[k], the channel vector h[k], and the noise
vector w[k] are defined analogously. To get a compact notation,
we further stack Kx contiguous input, output, channel, and
noise vectors, into corresponding KxNx-dimensional vectors.
For example, for the channel input this results in the KxNx-
dimensional vector

x ,
⇥

x

T [�K] x

T [�K + 1] . . . x

T [K]
⇤T

. (20)

6Recall that K
x

= 2K + 1 and N

x

= 2N + 1.
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Again, the stacked vectors y, h, and w are defined analogously.
Finally, we arrange the self-interference terms p[l, m, k, n] in
a KxNx ⇥ KxNx matrix P with entries

[P]n+kN
x

,m+lN
x

=

(

p[l � K, m � N, k � K, n � N ], if (l,m) 6= (k, n)

0, otherwise

for l, k = 0, 1, . . . , Kx � 1 and m, n = 0, 1, . . . , Nx � 1.
With these definitions, we can now compactly express the I/O
relation (19) as

y = h�x + Px + w. (21)

Let now Cd be the capacity of the discretized channel (21)
[induced by the WH set (g, T, F )] with x subject to the average-
power constraint (16). We can lower-bound the RHS of (18) by
Cd as follows

C

(a)

� lim
D!1

1

D

sup
QWH(W,D,⌘,P )

I(yf (t); x(t))

(b)

� lim
K

x

!1

1

(Kx + 2Kg)T
sup
Q

d

I(y;x)

, Cd. (22)

Here, in (a) we used (18), and (b) is a consequence of [20, Thm.
1.4], which extends the data processing inequality to continuous-
time signals. To summarize, we showed that the capacity of the
discretized channel (21) induced by the WH set (g, T, F ) is a
lower bound on the capacity of the underlying continuous-time
channel (1).

D. Why Weyl-Heisenberg Sets?
The choice of constraining x(t) to lie in the span of an

orthonormal WH set according to (15) results in a signaling
scheme that can be interpreted as PS-OFDM [24], where the
data symbols x[k, n] are modulated onto a set of orthogonal
signals indexed by discrete time (symbol index) k, and discrete
frequency (subcarrier index) n. From this perspective, the self-
interference term (the second term on the RHS of (19), which
is made up of the off-diagonal terms in the I/O relation) can
be interpreted as intersymbol and intercarrier interference. Dis-
cretization through WH sets is sensible for the following two
reasons.

Stationarity: The structure of WH sets preserves the sta-
tionarity of the channel in the discretization. More precisely,
the channel gains h[k, n] in (19) inherit the two-dimensional
stationarity property of the underlying continuous-time channel
[see (8)], a fact that is crucial for the ensuing analysis. We prove
this result in Appendix C, where we also establish properties of
the statistics of p[l, m, k, n] in (19) that will be needed in the
remainder of the paper.

Approximate diagonalization: The presence of the self-
interference term in (19) makes the computation of Cd in (22)
involved. A classic approach to eliminate self-interference is to
discretize the channel by projecting the input and output signals
onto the channel-operator singular functions [15], [16]. This
choice is convenient, as it leads to a diagonal discretized I/O rela-
tion, i.e., to countably many scalar, non-interacting I/O relations

(see [2] for more details). Unfortunately, this approach is not
viable in our setup, because in the LTV case the channel-operator
singular functions are, in general, random and not known to
transmitter and receiver (recall that we consider the noncoherent
setting). Discretizing using deterministic orthonormal functions,
as done in the previous section, yields self-interference, which we
will need to take into account. This will be accomplished by treat-
ing self-interference as additive noise, which will further lower-
bound capacity. The main technical difficulty in this context
arises from the self-interference term being signal-dependent.
Moreover, as our capacity lower bound is obtained by treating
self-interference as noise, ensuring that the power in the self-
interference term is small (and, hence, that the discretized I/O
relation is approximately diagonal) is crucial to get a good
capacity lower bound. This can be accomplished by choosing
the pulse g(t) to be well localized in time and frequency. In fact,
it was shown in [13], [25], [14], [1] that the singular functions
of random underspread operators can be well approximated by
orthonormal WH sets generated by pulses that are well localized
in time and frequency.

E. A Lower Bound on the Capacity of the Discretized Channel
We next derive a lower bound on Cd [and, hence, on C in (13)]

by using a Gaussian input distribution, and by treating self-
interference as (signal-dependent) noise. This lower bound—
evaluated for an appropriately chosen WH set—will then be
shown to be close (for all SNR values of practical interest) to the
AWGN-channel capacity upper bound CAWGN in (14), whenever
the channel is underspread according to Definition 1, thereby
sandwiching the capacity of the underlying continuous-time
channel tightly.

Our first result is a lower bound on Cd, which we indicate as
L1, that is explicit in the power spectral density C(✓) of the mul-
tivariate stationary channel process {h[k]} with autocorrelation
function R[k0 � k] , E

⇥

h[k0]hH [k]
⇤

, where

C(✓) ,
1
X

k=�1
R[k]e�j2⇡k✓

, |✓|  1

2
. (23)

We then show in Corollary 3, Section IV-F that L1 can be further
lower-bounded by an expression that is explicit in the channel
parameters �H and ✏ introduced in Definition 1.

Theorem 2: Let (g, T, F ) be an orthonormal WH set sat-
isfying Properties 1 and 2 in Section IV-B and consider a
Rayleigh-fading WSSUS channel (not necessarily underspread)
with scattering function CH(⌧, ⌫). For a given bandwidth W

and a given SNR ⇢ , P/W , the capacity of the discretized
channel (21) induced by (g, T, F ) is lower-bounded according
to Cd(⇢) � L1(⇢), where

L1(⇢) =
W

TF

Eh

"

log

 

1 +
r[0, 0]TF⇢ |h|2

1 + TF⇢ �

2
I

!#

� inf
0<↵<1

(

1

T

1/2
Z

�1/2

log det

✓

I +
TF⇢

↵

C(✓)

◆

d✓

+
W

TF

log

✓

1 +
TF⇢

1 � ↵

�

2
I

◆

)

. (24)
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Here,

h ⇠ CN (0, 1)

r[0, 0] ,
ZZ

⌫ ⌧

CH(⌧, ⌫) |Ag(⌧, ⌫)|2 d⌧d⌫

�

2
I ,

1
X

k=�1

1
X

n=�1
(k,n) 6=(0,0)

ZZ

⌫ ⌧

CH(⌧, ⌫) |Ag(⌧ � kT, ⌫ � nF )|2 d⌧d⌫

where Ag(⌧, ⌫) denotes the ambiguity function of g(t) (see
Appendix C) and C(✓), defined in (23), denotes the matrix-
valued power spectral density of the discretized channel induced
by (g, T, F ).

Proof: See Appendix E.

F. A Lower Bound that is Explicit in the Channel Parameters
�H and ✏

For the purposes of our analysis, it is convenient to further
lower-bound L1 to get an expression that is explicit in the channel
parameters �H and ✏ introduced in Definition 1. The resulting
lower bound, presented in the next corollary, will allow us to
assess how sensitive capacity is to whether CH(⌧, ⌫) is compactly
supported or not.

Corollary 3: Let (g, T, F ) be an orthonormal WH set satisfy-
ing Properties 1 and 2 in Section IV-B and consider a Rayleigh-
fading WSSUS channel (not necessarily underspread) in the
set H(⌧0, ⌫0, ✏) with scattering function CH(⌧, ⌫). For a given
bandwidth W and a given SNR ⇢ = P/W , and under the
technical condition e�H , 2⌫0T < 1, the capacity of the
discretized channel (21) induced by (g, T, F ) is lower-bounded
as Cd(⇢) � L2(⇢), where

L2(⇢) , W

TF

(

Eh

"

log

 

1 +
TF⇢(1 � ✏)mg|h|2

1 + TF⇢(Mg + ✏)

!#

� inf
0<↵<1

"

e�H log

✓

1 +
TF⇢

↵

e�H

◆

+ (1 � e�H) log

 

1 +
TF⇢ ✏

↵(1 � e�H)

!

+ log

✓

1 +
TF⇢

1 � ↵

(Mg + ✏)

◆

#)

. (25)

Here, h ⇠ CN (0, 1), mg , min
(⌧,⌫)2D

|Ag(⌧, ⌫)|2, and

Mg , max
(⌧,⌫)2D

1
X

k=�1

1
X

n=�1
(k,n) 6=(0,0)

|Ag(⌧ � kT, ⌫ � nF )|2

with D , [�⌧0, ⌧0] ⇥ [�⌫0, ⌫0].
Proof: See Appendix F.

The lower bound L2 in (25) depends on the seven quantities
(⇢, g(t), T, F, ⌧0, ⌫0, ✏) and is therefore difficult to analyze. We
show next that if T and F are chosen so that ⌫0T = ⌧0F , a
condition often referred to as the grid matching rule [13, Eq.
(2.75)], two of these seven quantities can be dropped without
loss of generality.

Lemma 4: Let (g, T, F ) be an orthonormal WH set satisfying
Properties 1 and 2 in Section IV-B. Then, for any � > 0, we
have

L2(⇢, g(t), T, F, ⌧0, ⌫0, ✏)

= L2

✓

⇢,

p

�g(�t),
T

�

, �F,

⌧0

�

, �⌫0, ✏

◆

.

In particular, assume that ⌫0T = ⌧0F and let � =
p

T/F =
p

⌧0/⌫0 and eg(t) =
p

�g(�t). Then,

L2(⇢, g(t), T, F, ⌧0, ⌫0, ✏)

= L2

⇣

⇢, eg(t),
p

TF ,

p
TF ,

p

�H/2,

p

�H/2, ✏

⌘

, L

(s)
2 (⇢, eg(t), TF, �H, ✏) . (26)

Proof: See Appendix G.
In (26), the superscript (s) indicates that the scattering func-

tion is supported on a square (with sidelength
p

�H). In the re-
mainder of the paper, for the sake of simplicity of exposition, we
will choose T and F such that the grid matching rule ⌫0T = ⌧0F

is satisfied. Then, as a consequence of Lemma 4, we can (and
will) only consider WH sets of the form (g,

p
TF ,

p
TF ) and

WSSUS channels in the set H(
p

�H/2,

p
�H/2, ✏).

The lower bound L

(s)
2 in (26) can be tightened by maximizing

it over all WH sets (g,

p
TF ,

p
TF ) satisfying Properties 1

and 2 in Section IV-B. This maximization implicitly provides an
information-theoretic criterion for choosing g(t) and TF . Unfor-
tunately, an analytic maximization of L

(s)
2 seems complicated as

the dependency of mg and Mg on (g,

p
TF ,

p
TF ) is difficult

to characterize analytically. We shall therefore choose a specific
g(t), detailed in the next section, and numerically maximize L

(s)
2

as a function of TF .

G. A Simple WH Set
We next construct a family of WH sets (g,

p
TF ,

p
TF ) that

satisfy Properties 1 and 2 in Section IV-B, and has g(t) real-
valued. Take 1 < TF < 2, let ⇣ ,

p
TF , � , TF � 1,

and G(f) , F{g(t)}. We choose G(f) as the (positive) square
root of a raised-cosine pulse:

G(f) =

8

>

>

<

>

>

:

p
⇣, if |f |  1��

2⇣
q

⇣
2 (1 + S(f)), if 1��

2⇣  |f |  1+�
2⇣

0, otherwise

(27)

where S(f) , cos
h

⇡⇣
�

⇣

|f | � 1��
2⇣

⌘i

. As (1 + �)/(2⇣) = ⇣/2,
the function G(f) is supported on an interval of length ⇣ =p

TF . Furthermore, G(f) has unit norm, is real-valued and even,
and satisfies

1
X

n=�1
G(f � n/⇣)G(f � n/⇣ � k⇣) = ⇣�[k].

By [26, Thm. 8.7.2], we can therefore conclude that the WH
set (g(t), 1/

p
TF , 1/

p
TF ) is a tight WH frame for L2(R),

and, by duality [27]–[29], the WH set (g(t),
p

TF ,

p
TF ) is

orthonormal. Finally, it can be shown that g(t) = O(1/t

2)
whenever TF > 1.
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Fig. 3. Lower bounds L(s)
2 normalized with respect to the upper bound CAWGN.

The bounds are computed for WH sets based on the root-raised-cosine pulse (27),
for different values of the grid-parameter product TF . �H = 10�4 in (a) and
�H = 10�6 in (b). In both cases, ✏ = 10�6.

V. FINITE-SNR ANALYSIS OF THE LOWER BOUND L

(s)
2

We now study the behavior of the lower bound L

(s)
2 in (26)

evaluated for the WH set constructed in the previous section,
under the assumption that the underlying channel is underspread
according to Definition 1, i.e., �H ⌧ 1 and ✏ ⌧ 1. Specifically,
we compare L

(s)
2 to the upper bound CAWGN in (14). To simplify

the comparison, we assume throughout this section that W �
⌫0 (a reasonable assumption for most wireless communication
systems of practical interest). Furthermore, in (3) we take ⌘ ⌧ 1.
Under these assumptions, we have

CAWGN(⇢) ⇡ W

⇥

log(1 + (1 � ✏)⇢) + ✏⇢

⇤

. (28)

A. Trade-off between Self-Interference and Signal-Space Dimen-
sions

In Fig. 3, we plot L

(s)
2 /CAWGN for �H = 10�4 and for �H =

10�6. In both cases, we take ✏ = 10�6. The different curves
correspond to different values of TF . We observe that the choice
TF = 1 is highly suboptimal. The reason for this suboptimality
is the poor time-frequency localization of g(t) this choice entails.
In fact, when TF = 1, the pulse g(t) reduces to a (sin t)/t

function, which has poor time localization. This, in turn, yields
an ambiguity function Ag(⌧, ⌫) that is poorly localized in ⌧ , and,
hence to a small value for mg and a large value for Mg, i.e.,

1 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45 1.5
20

25

30

35

40

45

50

55

60

65

70

m

g
/
M

g
[d

B
]

TF

�H = 10�6

�H = 10�4

Fig. 4. Trade-off between the product TF , and the signal-to-interference ratio
m

g

/M

g

for the root-raised-cosine WH set constructed in Section IV-G.

to small signal-to-interference ratio (SIR) mg/Mg; this leads
to a loose lower bound L

(s)
2 (recall that L

(s)
2 was obtained by

treating self-interference as noise). A value of TF slightly larger
than 1 results in a significant improvement in the SIR mg/Mg

(see Fig. 4), which is caused by the improved time localization
of g(t). This, in turn, yields an improved lower bound L

(s)
2 for

all SNR values of practical interest, as shown in Fig. 3. A further
increase of the product TF seems to be detrimental for all but
very high SNR values, where the ratio L

(s)
2 /CAWGN is much

smaller than 1 anyways. The reason underlying this behavior
is as follows: in the regime where L

(s)
2 is close to CAWGN, the

first term on the RHS of (25) dominates the other terms. But
in this regime, the first term on the RHS of (25) is essentially
linear7 in W/(TF ), which can be interpreted as the number
of signal-space dimensions available for communication. The
loss of signal-space dimensions incurred by choosing TF much
larger than 1 quickly outweighs the SIR gain resulting from
improved time-frequency localization. Our numerical results
suggest that a value of TF slightly larger than 1 optimally trades
signal-space dimensions for SIR maximization. We hasten to
add that this trade-off is a consequence of self-interference being
treated as (signal-dependent) noise in deriving our lower bound.

B. Sensitivity of Capacity to the Channel Parameters �H and ✏

The results presented in Fig. 3 suggest that, for TF = 1.02,
the lower bound L

(s)
2 is close to the AWGN-channel capacity

upper bound CAWGN over a large range of SNR values. To further
quantify this statement, we identify the SNR interval [⇢min, ⇢max]
over which

L

(s)
2 (⇢) � 0.75 CAWGN(⇢). (29)

The corresponding interval end points ⇢min and ⇢max, as a func-
tion of �H and ✏, can easily be obtained numerically and are
plotted in Figs. 5 and 6, respectively, for TF = 1.02. For the WH
set and WSSUS underspread channels considered in this section,
we have ⇢min 2 [�25 dB, �7 dB] and ⇢max 2 [30 dB, 68 dB].
Hence, the interval (⇢min, ⇢max) covers all SNR values of practi-
cal interest. An analytic characterization of ⇢min and ⇢max seems

7Recall that ⇢ = P/W .
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10−7

10−6

10−5

10−4

10−7

10−6

10−5

10−4

20

30

40

50

60

70

⇢

m
a
x

[d
B

]

✏�H

Fig. 6. Maximum SNR value ⇢max for which (29) holds, as a function of �H
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2 is evaluated for a WH set based on the root-raised-

cosine pulse (27); furthermore, TF = 1.02.

difficult. Insights on how these two quantities are related to the
channel parameters �H and ✏ can be obtained by the following
“back-of-the-envelope” analysis of L

(s)
2 (for TF = 1.02). We

first approximate L

(s)
2 by replacing mg and Mg (whose depen-

dency on �H is difficult to characterize analytically) with simpler
expressions that are accurate when �H ⌧ 1. Then, we determine
the SNR values for which the resulting approximate lower bound
is close to (28). We start by noting that, when �H ⌧ 1, we can
approximate mg by its first-order Taylor-series expansion around
�H = 0. This yields

mg = min
(⌧,⌫)2 eD

|Ag(⌧, ⌫)|2

⇡ 1 � cm�H (30)

where eD , [�
p

�H/2,

p
�H/2] ⇥ [�

p
�H/2,

p
�H/2],

and cm , ⇡

2(T 2
0 + F

2
0 ) with

T

2
0 ,

Z

t

2 |g(t)|2 dt, F

2
0 ,

Z

f

2 |G(f)|2 df.

To get (30), we used the Taylor-series expansion of |Ag(⌧, ⌫)|2
reported in [30, Sec. 6]. Similarly, for �H ⌧ 1 we can approxi-
mate Mg as follows:

Mg = max
(⌧,⌫)2 eD

1
X

k=�1

1
X

n=�1
(k,n) 6=(0,0)

�

�

�

Ag(⌧ � k

p
TF , ⌫ � n

p
TF )

�

�

�

2

⇡ cM�H (31)

where

cM ,
1
X

k=�1

1
X

n=�1
(k,n) 6=(0,0)

h

|ak,n|2 + |bk,n|2
i

/4

with ak,n and bk,n being the first partial derivatives of Ag(⌧, ⌫)
(with respect to ⌫ and ⌧ , respectively) calculated at the points
(�k

p
TF , �n

p
TF ):

ak,n , �j2⇡

Z

t

tg(t)g(t + k

p
TF )ej2⇡n

p
TFt

dt

bk,n , j2⇡

Z

f

fG(f � n

p
TF )G(f)e�j2⇡k

p
TFf

df.

Here, (31) is obtained by performing a Taylor-series expansion of
Ag(⌧ �k

p
TF , ⌫�n

p
TF ) around the point (⌧, ⌫) = (0, 0) for

all k and n, and by using that g(t) is real and even. For our choice
of TF = 1.02 we have cm ⇡ 25.87 and cM ⇡ 0.77. Hence, (30)
and (31) suggest that when �H ⌧ 1, we can approximate mg

by 1 and Mg by �H. On the basis of these two approximations,
which are in good agreement with the numerical results reported
in Fig. 4, and the assumption that ✏ ⌧ 1 and TF = 1.02 ⇡ 1,
we can approximate the lower bound L

(s)
2 for all SNR values

satisfying ⇢(�H + ✏) ⌧ 1 as follows

L

(s)
2 (⇢) ⇡ W

(

Eh

h

log
⇣

1 + ⇢|h|2
⌘i

�
p

�H log

✓

1 +
⇢p
�H

◆

)

. (32)

The RHS of (32) is close to the AWGN-channel capacity upper
bound (apart from the Jensen penalty in the first term) for all
SNR values that satisfy ⇢ �

p
�H. In fact, when ⇢ �

p
�H

(and �H ⌧ 1), the second term on the RHS of (32) can be
approximated as

p

�H log

✓

1 +
⇢p
�H

◆

⇡
p

�H log ⇢ �
p

�H log
p

�H

⇡
p

�H log ⇢

⌧ log ⇢

which implies that, when ⇢ �
p

�H (and �H ⌧ 1), the first
term on the RHS of (32) dominates the second term on the RHS
of (32).

We can therefore summarize our findings in the following rule
of thumb: the capacity of a Rayleigh-fading WSSUS underspread
channel with scattering function CH(⌧, ⌫) and parameters �H
and ✏ in Definition 1, is close to CAWGN for all ⇢ that satisfyp

�H ⌧ ⇢ ⌧ 1/(�H + ✏), independently of whether CH(⌧, ⌫)
is compactly supported or not, and independently of its shape.
In particular, this implies that capacity essentially grows loga-
rithmically with SNR up to SNR values ⇢ ⌧ 1/(�H + ✏). We
conclude by noting that the condition

p
�H ⌧ ⇢ ⌧ 1/(�H + ✏)

holds for all channels and SNR values of practical interest.
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VI. CONCLUSIONS

We studied the noncoherent capacity of continuous-time
Rayleigh-fading channels that satisfy the WSSUS and the under-
spread assumptions. Our main result is a capacity lower bound
obtained by (i) discretizing the continuous-time I/O relation
and (ii) treating the (signal-dependent) self-interference term
in the resulting discretized I/O relation as noise. Discretization
is performed by constraining the input signal to lie in the span
of an orthonormal WH set and by projecting the output signal
onto the same orthonormal set. The resulting lower bound was
shown to be close to the AWGN-channel capacity upper bound
CAWGN for all SNR values of practical interest, as long as the
underlying channel is underspread according to Definition 1. In
particular, this result implies that—for all SNR values typically
encountered in real-world systems—the capacity of Rayleigh-
fading underspread WSSUS channels is not sensitive to whether
the channel scattering function is compactly supported or not.
It also shows that—for all SNR values of practical interest—
lack of channel knowledge at the receiver has little impact on
the capacity of this class of channels. From a practical point of
view, the underspread assumption is not restrictive as the fading
channels commonly encountered in wireless communications
are, in fact, highly underspread.

On the basis of our capacity lower bound, we derived
an information-theoretic criterion for the design of capacity-
approaching WH sets to be used in PS-OFDM schemes. This
criterion is more fundamental than criteria based on SIR maxi-
mization (see [31] and references therein), because it sheds light
on the trade-off between self-interference reduction and maxi-
mization of the number of signal-space dimensions available for
communication. Unfortunately, the corresponding optimization
problem is hard to solve, analytically as well as numerically. It
turns out, however, that the simple choice of taking g(t) to be a
root-raised-cosine pulse and letting the grid-parameter product
TF be close to 1 (but strictly larger than 1) yields a lower bound
that is close to CAWGN for all SNR values of practical interest.
In particular, this result suggests that—when self-interference
is treated as (signal-dependent) noise—the maximization of the
number of signal-space dimensions available for communication
should be privileged over SIR maximization.

An interesting open problem, the solution of which would
strengthen our results, is to compute an upper bound on the
capacity of (1) by assuming perfect channel state information
at the receiver. The main difficulty here lies in dealing with
self-interference. In particular, we expect that nonstandard tools
from large random matrix theory will be needed for this analysis.
Recent results along these lines, for a specific channel model,
can be found in [32].

APPENDIX A
AWGN CAPACITY UPPER BOUND

Let H 2 H(⌧0, ⌫0, ✏). To establish that C  CAWGN, where
CAWGN is defined in (14), we start by upper-bounding the mutual
information on the RHS of (13) as follows:

I(yf (t); x(t))  I(yf (t); rf (t)). (33)

Here, rf (t) , (BW+2⌫0r)(t), and the inequality follows by
noting that x(t) and yf (t) are conditionally independent given

rf (t) and by using the data-processing inequality for continuous-
time random signals [20, Thm. 1.4]. If we now substitute (33)
into (13), we obtain

C  lim
D!1

1

D

sup
Q(W,D,⌘,P )

I(yf (t); rf (t)). (34)

The mutual information in (34) is between the input and the out-
put of a continuous-time band-limited AWGN channel. Hence,
we can establish an upper bound on the RHS of (34) by in-
voking [15, Thm. 2], provided that an inequality, in the spirit
of (3), on the energy of the restriction of rf (t) to a certain time
interval can be established. More specifically, we shall show
next that the energy of the restriction of rf (t) to the interval
[�D/2 � ⌧0, D/2 + ⌧0], i.e., the energy of (TD+2⌧0rf )(t), is
bounded from below by (1 � ⌘)(1 � ✏)E

⇥

kx(t)k2
⇤

. Let

x

(⌧,⌫)
f (t) , BW+2⌫0

�

x(t � ⌧)ej2⇡t⌫
�

.

Using

(TD+2⌧0rf )(t)

=

8

>

<

>

:

ZZ

⌫ ⌧

SH(⌧, ⌫)x
(⌧,⌫)
f (t)d⌧d⌫, if |t|  D/2 + ⌧0

0, otherwise

we get

E
⇥

k(TD+2⌧0rf )(t)k2
⇤

(a)
=

ZZ

⌫ ⌧

CH(⌧, ⌫)E

2

6

4

D/2+⌧0
Z

�D/2�⌧0

�

�

�

x

(⌧,⌫)
f (t)

�

�

�

2

dt

3

7

5

d⌧d⌫

(b)

�
⌫0
Z

�⌫0

⌧0
Z

�⌧0

CH(⌧, ⌫)E

2

6

4

D/2+⌧0
Z

�D/2�⌧0

�

�

�

x

(⌧,⌫)
f (t)

�

�

�

2

dt

3

7

5

d⌧d⌫ (35)

where (a) follows from the WSSUS property of H [see (6)], and
(b) follows from the non-negativity of the integrand. Because
x(t) is subject to the bandwidth constraint (2) and to the time-
concentration constraint (3), we have that, for every (⌧, ⌫) 2
[�⌧0, ⌧0] ⇥ [�⌫0, ⌫0],

E

2

6

4

D/2+⌧0
Z

�D/2�⌧0

�

�

�

x

(⌧,⌫)
f (t)

�

�

�

2

dt

3

7

5

� (1 � ⌘)E
⇥

kx(t)k2
⇤

. (36)

Substituting (36) into (35), we get

E
⇥

k(TD+2⌧0rf )(t)k2
⇤

� (1 � ⌘)E
⇥

kx(t)k2
⇤

⌫0
Z

�⌫0

⌧0
Z

�⌧0

CH(⌧, ⌫)d⌧d⌫

� (1 � ⌘)(1 � ✏)E
⇥

kx(t)k2
⇤

(37)
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where the last step follows from Definition 1. We now observe
that

E
⇥

krf (t)k2
⇤

 E
⇥

kr(t)k2
⇤

=

ZZ

⌫ ⌧

CH(⌧, ⌫)E
⇥

kx(t � ⌧)ej2⇡⌫tk2
⇤

d⌧d⌫

=

ZZ

⌫ ⌧

CH(⌧, ⌫)E
⇥

kx(t)k2
⇤

d⌧d⌫

= E
⇥

kx(t)k2
⇤

. (38)

Here, the last step follows from the normalization (7). The
inequality (38), combined with (37), yields the following time-
concentration inequality for rf (t) [cf. (3)]

E
⇥

kTD+2⌧0rf (t)k2
⇤

� (1 � ⌘)(1 � ✏)E
⇥

krf (t)k2
⇤

. (39)

To obtain the desired upper bound (14), we now note that
every probability measure on x(t) in the set Q(W, D, ⌘, P )
induces a probability measure on rf (t) (through the map rf (t) =
(BW+2⌫0

Hx)(t)) that satisfies the following constraints [cf. (2)–
(4)]:

i) the bandwidth of rf (t) is no larger than (W + 2⌫0),
ii) E

⇥

krf (t)k2
⇤

 DP , which follows from (38) and (4), and
iii) (39) holds.
Let eQ be the set of all probability measures on rf (t) satisfying
i)–iii). Note that the set of probability measures on rf (t) induced
by probability measures on x(t) in Q(W, D, ⌘, P ) through the
map rf (t) = (BW+2⌫0 Hx)(t) is contained in eQ, as shown
above. This property can be used to upper-bound the RHS of (34)
according to

lim
D!1

1

D

sup
Q(W,D,⌘,P )

I(yf (t); rf (t))

 lim
D!1

1

D

sup
eQ

I(yf (t); rf (t)).

A direct application of [15, Thm. 2] yields (14).

APPENDIX B
THE INPUT SIGNAL (15) SATISFIES (3)

We show that for every orthonormal WH set satisfying Prop-
erties 1 and 2 in Section IV-B and for every ⌘ > 0, and D > 0,
one can find a Kg > 0 such that the corresponding x(t) in (15)
(with K chosen as specified in Section IV-B3) satisfies (3). To
this end, it will turn out convenient to reformulate (3) as follows:

E
⇥

k(I � TD)x(t)k2
⇤

 ⌘ E
⇥

kx(t)k2
⇤

(40)

where I denotes the identity operator. Let x be the vector of
dimension KxNx obtained by stacking the data symbols x[k, n]
as in (20). Furthermore, let

d[k, n, l, m] ,
Z

|t|>D/2

gk,n(t)g⇤
l,m(t)dt

and define D to be the square matrix of dimension KxNx ⇥
KxNx with entries

[D]ñ+k̃N
x

,m̃+l̃N
x

, d[k̃ � K, ñ � N, l̃ � K, m̃ � N ]

for k̃, l̃ = 0, 1, . . . , Kx � 1 and ñ, m̃ = 0, 1, . . . , Nx � 1. Note
that D is Hermitian, by construction. We have that

E
⇥

k(I � TD)x(t)k2
⇤

= E
⇥

x

H
Dx

⇤

 �max{D}E
⇥

kxk2
⇤

.

Here, the first equality follows by definition, and the inequal-
ity follows by application of the Rayleigh-Ritz theorem [33,
Thm. 4.2.2].8 We next use the Geršgorin disc theorem [33,
Cor. 6.1.5] to derive an upper bound on �max{D} that is explicit
in the entries of D:

�max{D}  max
k2[�K,K],n2[�N,N ]

"

K
X

l=�K

N
X

m=�N

|d[k, n, l, m]|
#

.

(41)
Each term on the RHS of (41) can be bounded as follows

|d[k, n, l, m]| =

�

�

�

�

�

�

�

Z

|t|>D/2

gk,n(t)g⇤
l,m(t)dt

�

�

�

�

�

�

�


Z

|t|>D/2

�

�

gk,n(t)g⇤
l,m(t)

�

�

dt

=

Z

|t|>D/2

|g(t � kT )g⇤(t � lT )| dt.

Recall that D/2 = (K + Kg + 1/2)T , by construction. As, by
assumption, g(t) is even and satisfies g(t) = O(1/t

1+µ), there
exist constants � > 0, and t0 > 0 such that |g(t)| < �/ |t|1+µ

for |t| � t0. Hence, if we choose Kg such that KgT > t0, we
get9

|d[k, n, l, m]|

 �

2

Z

|t|>(K+K
g

+1/2)T

1

|t � kT |1+µ

1

|t � lT |1+µ dt

= �

2

1
Z

(K+K
g

+1/2)T

1

|t � kT |1+µ

1

|t � lT |1+µ dt

+ �

2

�(K+K
g

+1/2)T
Z

�1

1

|t � kT |1+µ

1

|t � lT |1+µ dt

(a)

 �

2

1
Z

(K+K
g

+1/2)T

1

|t � KT |1+µ

1

|t � lT |1+µ dt

+ �

2

�(K+K
g

+1/2)T
Z

�1

1

|t + KT |1+µ

1

|t � lT |1+µ dt

(b)
= �

2

1
Z

(K
g

+1/2)T

1

|t|1+µ

1

|t � (l � K)T |1+µ dt

8With slight abuse of notation, we used k·k, a symbol which we reserved for
the norm in L2(R), to denote the Euclidean norm in a finite-dimensional vector
space.

9If t0 > D/2, we let the guard-interval cover the whole transmission time
[�D/2, D/2]. In this case (40) is trivially satisfied.
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+ �

2

�(K
g

+1/2)T
Z

�1

1

|t|1+µ

1

|t � (l + K)T |1+µ dt. (42)

Here, (a) follows by replacing k by K in the first term of the sum
and k by �K in the second term of the sum; these substitutions
lead to an upper bound; (b) follows by a simple change of
variables. Note now that, for t � KgT , we have

K
X

l=�K

1

|t � (l � K)T |1+µ =

2K
X

l=0

1

|t + lT |1+µ


2K
X

l=0

1

[(Kg + l)T ]1+µ


1
X

l=1

1

(lT )1+µ

, �

0
< 1 (43)

where in the last step we used that µ > 0 and, hence, the series
converges. Similarly, for t  �KgT , we have

K
X

l=�K

1

|t � (l + K)T |1+µ =

2K
X

l=0

1

|t � lT |1+µ


2K
X

l=0

1

[(Kg + l)T ]1+µ

 �

0
. (44)

Inserting (42) into (41) and using (43) and (44), we get
K
X

l=�K

N
X

m=�N

|d[k, n, l, m]|


K
X

l=�K

N
X

m=�N

"

�

2

1
Z

(K
g

+1/2)T

1

|t|1+µ

1

|t � (l � K)T |1+µ dt

+�

2

�(K
g

+1/2)T
Z

�1

1

|t|1+µ

1

|t � (l + K)T |1+µ dt

#

 2(2N + 1)�2
�

0
1
Z

(K
g

+1/2)T

1

t

1+µ
dt.

To summarize, we have the following upper bound on the RHS
of (41):

�max{D}  2(2N + 1)�2
�

0
1
Z

(K
g

+1/2)T

1

t

1+µ
dt. (45)

The RHS of (45) can be made arbitrarily small by choosing Kg

sufficiently large. In other words, we can find a finite Kg for
which the RHS of (45) is smaller than ⌘. This concludes the
proof.

APPENDIX C
STATISTICAL PROPERTIES OF THE CHANNEL COEFFICIENTS

IN (19)
We establish basic properties of the statistics of h[k, n]

and p[l, m, k, n] in (19) that will be needed in the proof of the

capacity lower bound in Theorem 2. The first property concerns
the autocorrelation function of h[k, n]. Let the cross-ambiguity
function of two signals f(t) and g(t) be defined as [34]

Af,g(⌧, ⌫) ,
Z

t

f(t)g⇤(t � ⌧)e�j2⇡⌫t
dt (46)

and let the ambiguity function of g(t) be defined as Ag(⌧, ⌫) ,
Ag,g(⌧, ⌫).10 The autocorrelation function of h[k, n] turns out
to be explicit in the ambiguity function of g(t), as the following
calculation reveals:

E[h[k, n]h⇤[l,m]]

= E[hH gk,n, gk,nihH gl,m, gl,mi⇤]

(a)
=

ZZ

⌫ ⌧

CH(⌧, ⌫)A⇤
g
k,n

(⌧, ⌫)Ag
l,m

(⌧, ⌫)d⌧d⌫

(b)
=

ZZ

⌫ ⌧

CH(⌧, ⌫) |Ag(⌧, ⌫)|2 e

j2⇡[(k�l)T⌫�(n�m)F⌧ ]
d⌧d⌫

, r[k � l, n � m]. (47)

Here, (a) follows from Property 6 in Appendix D and because H
is WSSUS [see (6)], while (b) follows from Property 5 in Ap-
pendix D [see in particular (52)]. As a consequence of (47), we
have that {h[k, n]} is stationary both in discrete time k and in
discrete frequency n. The corresponding power spectral density
function is given by

c(', ✓) ,
1
X

k=�1

1
X

n=�1
r[k, n]e�j2⇡(k✓�n')

, |'| , |✓|  1/2.

(48)

The Fourier transform relation (48) together with the Poisson
summation formula allow us to relate c(', ✓) to the channel
scattering function CH(⌧, ⌫) as follows

c(', ✓) =

1
X

k=�1

1
X

n=�1
e

�j2⇡(k✓�n')

⇥
ZZ

⌫ ⌧

CH(⌧, ⌫) |Ag(⌧, ⌫)|2 e

j2⇡(kT⌫�nF⌧)
d⌧d⌫

=
1

TF

1
X

k=�1

1
X

n=�1
CH

✓

' � n

F

,

✓ � k

T

◆

⇥
�

�

�

�

Ag

✓

' � n

F

,

✓ � k

T

◆

�

�

�

�

2

. (49)

Another property we shall often use is

r[0, 0] =

1/2
Z

�1/2

1/2
Z

�1/2

c(', ✓)d'd✓

=

ZZ

⌫ ⌧

CH(⌧, ⌫) |Ag(⌧, ⌫)|2 d⌧d⌫

 1

10Basic results on the ambiguity function that will be needed in our analysis
are reviewed in Appendix D.
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where the last step follows from Property 3 in Appendix D,
from the assumption that g(t) has unit norm, and from the
normalization (7).

A characterization of the autocorrelation function
of p[l, m, k, n] is possible, but not particularly insightful.
For our purposes, it will be sufficient to study the variance of
p[l, m, k, n]. As p[l, m, k, n] has zero mean (see Section IV-C),
its variance is given by

E
h

|p[l, m, k, n]|2
i

= E
h

|hH gl,m, gk,ni|2
i

(a)
=

ZZ

⌫ ⌧

CH(⌧, ⌫)
�

�

Ag
k,n

,g
l,m

(⌧, ⌫)
�

�

2
d⌧d⌫

(b)
=

ZZ

⌫ ⌧

CH(⌧, ⌫) |Ag(⌧ + (l � k)T, ⌫ + (m � n)F )|2 d⌧d⌫

, �

2
p[l � k, m � n] (50)

where in (a) we used Property 6 in Appendix D together with
the WSSUS property of H, and (b) follows from Property 5
in Appendix D.

APPENDIX D
PROPERTIES OF THE AMBIGUITY FUNCTION

We summarize properties of the (cross-)ambiguity function
defined in (46) that are needed for our analysis.

Property 3: For every function g(t) 2 L2(R), the ambigu-
ity surface |Ag(⌧, ⌫)|2 attains its maximum at the origin, i.e.,
|Ag(⌧, ⌫)|2 

⇥

Ag(0, 0)
⇤2

= kg(t)k4, for all ⌧ and ⌫. This
property, as shown in [18, Lem. 4.2.1], follows directly from the
Cauchy-Schwarz inequality.

Property 4: Let g(t) 2 L2(R) and e(t) =
p

�g(�t). Then

Ae(⌧, ⌫) =

Z

t

e(t)e⇤(t � ⌧)e�j2⇡⌫t
dt

= �

Z

t

g(�t)g⇤(�(t � ⌧))e�j2⇡⌫t
dt

(a)
=

Z

z

g(z)g⇤(z � �⌧)e�j2⇡⌫z/�
dz

= Ag

✓

�⌧,

⌫

�

◆

where (a) follows from the change of variables z = �t.
Property 5: The cross-ambiguity function between the two

time- and frequency-shifted versions g(↵,�)(t) , g(t�↵)ej2⇡�t

and g(↵0,�0)(t) , g(t � ↵

0)ej2⇡�0t of g(t) 2 L2(R) is given by

Ag(↵,�),g(↵0
,�

0)(⌧, ⌫)

=

Z

t

g(t � ↵)ej2⇡�t
g

⇤(t � ↵

0 � ⌧)e�j2⇡�0(t�⌧)
e

�j2⇡⌫t
dt

(a)
= e

j2⇡�0⌧
e

�j2⇡(⌫+�0��)↵

⇥
Z

t0

g(t0)g⇤(t0 � (↵0 � ↵) � ⌧)e�j2⇡(⌫+�0��)t0
dt

0

= Ag(⌧ + ↵

0 � ↵, ⌫ + �

0 � �)

⇥ e

�j2⇡(⌫↵�⌧�0)
e

�j2⇡(�0��)↵
. (51)

Here, (a) follows from the change of variables t

0 = t � ↵. As a
direct consequence of (51), we have that

Ag(↵,�)
(⌧, ⌫) = Ag(⌧, ⌫)e�j2⇡(⌫↵�⌧�)

. (52)

Property 6: Let SH(⌧, ⌫) be the delay-Doppler spreading
function of the channel H. Then, for g(t) 2 L2(R), and
f(t) 2 L2(R), we have

hH g, fi =

ZZZ

t ⌫ ⌧

SH(⌧, ⌫)g(t � ⌧)ej2⇡t⌫
f

⇤(t)d⌧d⌫dt

=

ZZ

⌫ ⌧

SH(⌧, ⌫)

"

Z

t

f(t)g⇤(t � ⌧)e�j2⇡t⌫
dt

#⇤

d⌧d⌫

=

ZZ

⌫ ⌧

SH(⌧, ⌫)A⇤
f,g(⌧, ⌫)d⌧d⌫.

APPENDIX E
PROOF OF THEOREM 2

We obtain a lower bound on Cd in (22) by evaluating the
mutual information I(y;x) for a specific input distribution.
In particular, we take x[k, n] to be i.i.d. JPG with zero mean
and variance TF⇢ for all k, n, so that the average-power con-
straint (16) is satisfied. The corresponding input vector x is
independent of h, P, and w. We use the chain rule for mutual
information and the fact that mutual information is nonnegative
to obtain the following standard lower bound:

I(y;x) = I(y;x,h) � I(y;h |x)

= I(y;h) + I(y;x |h) � I(y;h |x)

� I(y;x |h) � I(y;h |x). (53)

The first term on the RHS of (53) can be interpreted as a
“coherent” mutual information term (i.e., the mutual informa-
tion between x and y under perfect knowledge of the channel
realization at the receiver), while the second term can be inter-
preted as quantifying the rate penalty due to the lack of channel
knowledge [1].

1) The “Coherent” Term: The first term can be further lower-
bounded as follows

I(y;x |h)

= h(x |h) � h(x |h,y)
(a)
= h(x) � h(x |h,y)

(b)
=

K
X

k=�K

N
X

n=�N

h

h
⇣

x[k, n] |x(k,n)
prec

⌘

�h
⇣

x[k, n] |h,y,x

(k,n)
prec

⌘i

(c)
=

K
X

k=�K

N
X

n=�N

h

h(x[k, n]) � h
⇣

x[k, n] |h,y,x

(k,n)
prec

⌘i

(d)

�
K
X

k=�K

N
X

n=�N

[h(x[k, n]) � h(x[k, n] | h[k, n], y[k, n])]

=

K
X

k=�K

N
X

n=�N

I(y[k, n]; x[k, n] | h[k, n]).
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Here, (a) follows because x and h are independent; (b) is a
consequence of the chain rule for differential entropy [x(k,n)

prec
denotes the vector containing all entries of x up to and including
the one before x[k, n]]. Next, (c) holds becausex has i.i.d. entries,
and (d) follows because conditioning reduces entropy.

We next seek a lower bound on I(y[k, n]; x[k, n] | h[k, n]) that
does not depend on [k, n]. Let ew[k, n] be the sum of the self-
interference and noise terms in y[k, n] [see (19)], i.e.,

ew[k, n] ,
K
X

l=�K

N
X

m=�N

(l,m) 6=(k,n)

p[l, m, k, n]x[l,m] + w[k, n].

Furthermore, let ewG[k, n] be a proper Gaussian random variable
that has the same variance as ew[k, n]. It follows from [35,
Lem. II.2] that I(y[k, n]; x[k, n] | h[k, n]) does not increase if
we replace w[k, n] by ewG[k, n]. Hence,

I(y[k, n]; x[k, n] | h[k, n])

= I(h[k, n]x[k, n] + ew[k, n]; x[k, n] | h[k, n])

� I(h[k, n]x[k, n] + ewG[k, n]; x[k, n] | h[k, n])

(a)
= Eh[k,n]

2

4log

0

@1 + TF⇢

|h[k, n]|2

E
h

| ewG[k, n]|2
i

1

A

3

5

(b)
= Eh

2

4log

0

@1 +
r[0, 0]TF⇢ |h|2

E
h

| ewG[k, n]|2
i

1

A

3

5 (54)

where (a) follows because x[k, n] ⇠ CN (0, TF⇢), and (b) fol-
lows because h[k, n] ⇠ CN (0, r[0, 0]) [see (47)], so that we can
replace h[k, n] by r[0, 0]h, where h ⇠ CN (0, 1). As the input
symbols x[k, n] are independent, and as E

h

|p[l, m, k, n]|2
i

=

�

2
p[l � k, m � n] [see (50)], we have that

E
h

| ewG[k, n]|2
i

= E
h

| ew[k, n]|2
i

= 1 + TF⇢

K
X

l=�K

N
X

m=�N

(l,m) 6=(k,n)

�

2
p[l � k, m � n].

(55)

The nonnegativity of �

2
p[k, n] allows us to upper-bound (55) as

follows

E
h

| ewG[k, n]|2
i

 1 + TF⇢

1
X

l=�1

1
X

m=�1
(l,m) 6=(k,n)

�

2
p[l � k, m � n]

= 1 + TF⇢

1
X

l=�1

1
X

m=�1
(l,m) 6=(0,0)

�

2
p[l,m]

= 1 + TF⇢ �

2
I (56)

where we set

�

2
I ,

1
X

l=�1

1
X

m=�1
(l,m) 6=(0,0)

�

2
p[l,m]. (57)

If we now substitute (56) into (54), we obtain

I(y[k, n]; x[k, n] | h[k, n]) � Eh

"

log

 

1 +
r[0, 0]TF⇢ |h|2

1 + TF⇢ �

2
I

!#

and, consequently,

I(y;x |h) � KxNx Eh

"

log

 

1 +
r[0, 0]TF⇢ |h|2

1 + TF⇢ �

2
I

!#

. (58)

2) The Penalty Term: We next seek an upper bound on
the penalty term I(y;h |x) in (53). The main difficulty lies
in the self-interference term being signal-dependent. Our ap-
proach is to split y into a self-interference-free part and a
self-interference-only part. Specifically, let w1 ⇠ CN (0, ↵I)
and w2 ⇠ CN (0, (1 � ↵)I), where 0 < ↵ < 1, be two KxNx-
dimensional independent JPG vectors.11 Then,

y = h�x + Px + w

= h�x + w1
| {z }

,y1

+Px + w2
| {z }

,y2

.

By the data-processing inequality [19, Thm. 2.8.1] and the chain
rule for mutual information, we have that

I(y;h |x)  I(y1,y2;h |x)

= I(y1;h |x) + I(y2;h |x,y1). (59)

As h is JPG, the first term on the RHS of (59) can be bounded
as follows:

I(y1;h |x)

= I(h�x + w1;h |x)

= E
x



log det

✓

I +
1

↵

diag{x}E
⇥

hh

H
⇤

diag{xH}
◆�

(a)
= E

x



log det

✓

I +
1

↵

diag{xH} diag{x}E
⇥

hh

H
⇤

◆�

(b)

 log det

✓

I +
TF⇢

↵

E
⇥

hh

H
⇤

◆

. (60)

Here, (a) follows from the identity det
�

I + AB

H
�

=
det
�

I + B

H
A

�

for any pair of matrices A and B of appropriate
dimensions [33, Thm. 1.3.20] and (b) is a consequence of
Jensen’s inequality.

For the second term on the RHS of (59) we note that

I(y2;h |x,y1) = h(y2 |x,y1) � h(y2 |x,y1,h)

(a)
= h(y2 |x,y1) � h(y2 |x,h)

(b)

 h(y2 |x) � h(y2 |x,h,P)

(c)
= h(y2 |x) � h(y2 |x,P)

= I(y2;P |x).

Here, (a) holds because y1 and y2 are conditionally independent
given x and h, in (b) we used twice that conditioning reduces
entropy, and (c) follows because y2 and h are conditionally
independent given P.

11The role of ↵ will become clear later.
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Let K(x) , E
P

⇥

Pxx

H
P

H
⇤

be the KxNx ⇥ KxNx con-
ditional covariance matrix of the vector Px given x. We next
upper-bound I(y2;P |x) as follows:

I(y2;P |x)

= I(Px + w2;P |x)

(a)
= E

x



log det

✓

I +
1

1 � ↵

K(x)

◆�

(b)


K

x

�1
X

k̃=0

N
x

�1
X

ñ=0

E
x



log

✓

1 +
1

1 � ↵

[K(x)](ñ+k̃N
x

,ñ+k̃N
x

)

◆�

(c)


K

x

�1
X

k̃=0

N
x

�1
X

ñ=0

log

✓

1 +
1

1 � ↵

E
x

h

[K(x)](ñ+k̃N
x

,ñ+k̃N
x

)

i

◆

where (a) follows because, given x, the vector Px is JPG, in (b)
we used Hadamard’s inequality, and (c) follows from Jensen’s
inequality. As the entries of x are i.i.d. with zero mean, we have
that

E
x

h

[K(x)](ñ+k̃N
x

,ñ+k̃N
x

)

i

= E
x

h

E
P

h

⇥

Pxx

H
P

H
⇤

(ñ+k̃N
x

,ñ+k̃N
x

)

ii

= TF⇢

K
X

l=�K

N
X

m=�N

(l,m) 6=(k̃�K,ñ�N)

�

2
p[l � k̃ + K, m � ñ + N ]

 TF⇢ �

2
I

where �

2
I was defined in (57). Hence,

I(y2;P |x)  KxNx log

✓

1 +
TF⇢

1 � ↵

�

2
I

◆

. (61)

If we now substitute (60) and (61) into (59), we obtain

I(y;h |x)  log det

✓

I +
TF⇢

↵

E
⇥

hh

H
⇤

◆

+KxNx log

✓

1 +
TF⇢

1 � ↵

�

2
I

◆

. (62)

3) Putting the Pieces Together: We substitute (58) and (62)
into (53) and then (53) into (22) to get the following lower bound
on capacity:

C(⇢) � Nx

T

Eh

"

log

 

1 +
r[0, 0]TF⇢ |h|2

1 + TF⇢ �

2
I

!#

�
(

lim
K

x

!1

1

(Kx + 2Kg)T
log det

✓

I +
TF⇢

↵

E
⇥

hh

H
⇤

◆

+
Nx

T

log

✓

1 +
TF⇢

1 � ↵

�

2
I

◆

)

.

Furthermore, as the bound holds for all ↵ 2 (0, 1), we can tighten
it according to

C(⇢) � Nx

T

Eh

"

log

 

1 +
r[0, 0]TF⇢ |h|2

1 + TF⇢ �

2
I

!#

� inf
0<↵<1

(

lim
K

x

!1

1

(Kx + 2Kg)T
log det

✓

I +
TF⇢

↵

E
⇥

hh

H
⇤

◆

+
Nx

T

log

✓

1 +
TF⇢

1 � ↵

�

2
I

◆

)

. (63)

By direct application of [36, Thm. 3.4], an extension of Szegö’s
theorem (on the asymptotic eigenvalue distribution of Toeplitz
matrices) to two-level Toeplitz matrices, we obtain

lim
K

x

!1

1

(Kx + 2Kg)T
log det

✓

I +
TF⇢

↵

E
⇥

hh

H
⇤

◆

=
1

T

1/2
Z

�1/2

log det

✓

I +
TF⇢

↵

C(✓)

◆

d✓.

Substituting this expression into (63) and noting that [see (50)]

�

2
I =

1
X

k=�1

1
X

n=�1
(k,n) 6=(0,0)

�

2
p[k, n]

=

1
X

k=�1

1
X

n=�1
(k,n) 6=(0,0)

ZZ

⌫ ⌧

CH(⌧, ⌫) |Ag(⌧ � kT, ⌫ � nF )|2 d⌧d⌫

(64)

completes the proof.

APPENDIX F
PROOF OF COROLLARY 3

To prove the corollary we further bound each term in (24)
separately.

a) The “log det” term: We start with an upper bound on
the “log det” term on the RHS of (24). The matrix C(✓) is
Toeplitz [see (23)]. Hence, the entries on the main diagonal
of C(✓) are all equal. Let c0(✓) denote one such entry; then

c0(✓)
(a)
=

1
X

k=�1
r[k, 0]e�j2⇡k✓

(b)
=

1/2
Z

�1/2

c(', ✓)d', |✓|  1/2. (65)

Here, (a) follows from (23) and (47); (b) follows from (48) and
by applying the Poisson summation formula. By Hadamard’s
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inequality, we can upper-bound the “log det” term on the RHS
of (24) as follows:

1

T

1/2
Z

�1/2

log det

✓

I +
TF⇢

↵

C(✓)

◆

d✓

 Nx

T

1/2
Z

�1/2

log

✓

1 +
TF⇢

↵

c0(✓)

◆

d✓. (66)

Let B , {✓ : |✓| < ⌫0T} and B̄ , {✓ : ⌫0T < |✓| < 1/2}.
We next use that ⌫0T < 1/2, by assumption, to first split the
integral into two parts and then use Jensen’s inequality on both
terms to obtain

Nx

T

1/2
Z

�1/2

log

✓

1 +
TF⇢

↵

c0(✓)

◆

d✓

=
Nx

T

Z

✓2B

log

✓

1 +
TF⇢

↵

c0(✓)

◆

d✓

+
Nx

T

Z

✓2B̄

log

✓

1 +
TF⇢

↵

c0(✓)

◆

d✓

 2⌫0Nx log

0

@1 +
F⇢

2⌫0↵

Z

✓2B

c0(✓)d✓

1

A+
Nx

T

(1 � 2⌫0T )

⇥ log

0

B

@

1 +
TF⇢

(1 � 2⌫0T )↵

Z

✓2B̄

c0(✓)d✓

1

C

A

. (67)

Let F (⌧, ⌫) , CH(⌧, ⌫) |Ag(⌧, ⌫)|2. Note that
Z

✓2B

c0(✓)d✓

(a)
=

1/2
Z

�1/2

Z

✓2B

c(', ✓)d✓d'

(b)
=

1/2
Z

�1/2

Z

✓2B

1

TF

1
X

k=�1

1
X

n=�1
F

✓

' � n

F

,

✓ � k

T

◆

d✓d'

(c)

 1

TF

1/2
Z

�1/2

Z

✓2B

1
X

k=�1

1
X

n=�1
CH

✓

' � n

F

,

✓ � k

T

◆

d✓d'

 1

TF

1/2
Z

�1/2

1/2
Z

�1/2

1
X

k=�1

1
X

n=�1
CH

✓

' � n

F

,

✓ � k

T

◆

d✓d'

=

ZZ

⌫ ⌧

CH(⌧, ⌫)d⌧d⌫ = 1 (68)

where (a) follows from (65), (b) follows from (49), and (c)
follows from Property 3 in Appendix D. Similar steps lead to
Z

✓2B̄

c0(✓)d✓

 1

TF

1/2
Z

�1/2

Z

✓2B̄

1
X

k=�1

1
X

n=�1
CH

✓

' � n

F

,

✓ � k

T

◆

d✓d'


Z

|⌫|�⌫0

Z

⌧

CH(⌧, ⌫)d⌧d⌫  ✏ (69)

where the last step follows from (9). If we now substitute (68)
and (69) into (67), insert the result into (66), set e�H = 2⌫0T ,
and use W = NxF , we get

1

T

1/2
Z

�1/2

log det

✓

I +
TF⇢

↵

C(✓)

◆

d✓

 W

e�H
TF

log

✓

1 +
TF⇢

↵

e�H

◆

+
W

TF

(1 � e�H) log

 

1 +
TF⇢✏

↵(1 � e�H)

!

. (70)

b) Bounds on r[0, 0] and on �

2
I : To further lower-bound

the RHS of (24), we next derive a lower bound on r[0, 0] and
an upper bound on �

2
I ; the resulting bounds are explicit in �H

and ✏, and in the ambiguity function of g(t).
Let D = {(⌧, ⌫) 2 [�⌧0, ⌧0] ⇥ [�⌫0, ⌫0]} be the rectangular

area in the delay-Doppler plane that supports at least 1 � ✏ of
the volume of CH(⌧, ⌫) according to (9). The following chain
of inequalities holds:

r[0, 0] =

ZZ

⌫ ⌧

CH(⌧, ⌫) |Ag(⌧, ⌫)|2 d⌧d⌫

�
ZZ

D

CH(⌧, ⌫) |Ag(⌧, ⌫)|2 d⌧d⌫

� min
(⌧,⌫)2D

n

|Ag(⌧, ⌫)|2
o

ZZ

D

CH(⌧, ⌫)d⌧d⌫

� min
(⌧,⌫)2D

n

|Ag(⌧, ⌫)|2
o

(1 � ✏). (71)

We now seek an upper bound on �

2
I . Let

M(⌧, ⌫) =

1
X

k=�1

1
X

n=�1
(k,n) 6=(0,0)

|Ag(⌧ � kT, ⌫ � nF )|2

and note that

M(⌧, ⌫) 
1
X

k=�1

1
X

n=�1
|Ag(⌧ � kT, ⌫ � nF )|2

=

1
X

k=�1

1
X

n=�1

�

�hg(t + ⌧)e�j2⇡⌫t
, gk,n(t)i

�

�

2

(a)

 kg(t)k2 = 1 (72)
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where (a) follows from Bessel’s inequality [37, Thm. 3.4-6]. The
following chain of inequalities holds:

�

2
I =

ZZ

⌫ ⌧

CH(⌧, ⌫)M(⌧, ⌫)d⌧d⌫

=

ZZ

D

CH(⌧, ⌫)M(⌧, ⌫)d⌧d⌫ +

ZZ

R2\D

CH(⌧, ⌫)M(⌧, ⌫)d⌧d⌫

 max
(⌧,⌫)2D

n

M(⌧, ⌫)
o

ZZ

D

CH(⌧, ⌫)d⌧d⌫

+ max
(⌧,⌫)2R2\D

n

M(⌧, ⌫)
o

ZZ

R2\D

CH(⌧, ⌫)d⌧d⌫

(a)

 max
(⌧,⌫)2D

n

M(⌧, ⌫)
o

+ ✏ (73)

where (a) follows from (72), (7), and (9).
The proof is completed by substituting (70) into (24), and

using (71) and (73) in (24).

APPENDIX G
PROOF OF LEMMA 4

To prove the lemma, we verify that after the substitutions

e(t) =
p

�g(�t)

e

T = T/�

e

F = �F

e⌧0 = ⌧0/�

e⌫0 = �⌫0

the lower bound L2 in (25) does not change. Note first that eT eF =
TF and ⌫0T = e⌫0

e

T . Furthermore, ke(t)k = kg(t)k = 1 and,
by Property 4 in Appendix D, the orthonormality of {gk,n(t)}
implies the orthonormality of {e(t�k

e

T )ej2⇡n eFt}. Let now E =
[�e⌧0, e⌧0] ⇥ [�e⌫0, e⌫0]; we have that

mg = min
(⌧,⌫)2D

|Ag(⌧, ⌫)|2

= min
(⌧,⌫)2D

�

�

�

�

Ae

✓

⌧

�

, �⌫

◆

�

�

�

�

2

= min
(⌧,⌫)2E

|Ae(⌧, ⌫)|2 .

Similarly, we have

Mg = max
(⌧,⌫)2D

1
X

k=�1

1
X

n=�1
(k,n) 6=(0,0)

|Ag(⌧ � kT, ⌫ � nF )|2

= max
(⌧,⌫)2D

1
X

k=�1

1
X

n=�1
(k,n) 6=(0,0)

�

�

�

�

Ae

✓

⌧ � kT

�

, �(⌫ � nF )

◆

�

�

�

�

2

= max
(⌧,⌫)2D

1
X

k=�1

1
X

n=�1
(k,n) 6=(0,0)

�

�

�

�

Ae

✓

⌧

�

� k

e

T , �⌫ � n

e

F

◆

�

�

�

�

2

= max
(⌧,⌫)2E

1
X

k=�1

1
X

n=�1
(k,n) 6=(0,0)

�

�

�

Ae

⇣

⌧ � k

e

T , ⌫ � n

e

F

⌘

�

�

�

2

.

To conclude, we note that for � =
p

T/F and under the
assumption ⌫0T = ⌧0F , we get eT = e

F =
p

TF , and e⌧0 =
e⌫0 =

p
�H/2, which implies (26).
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