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On the equivalence between Stein and De Bruijn
identities

Sangwoo Park, Erchin Serpedin, and Khalid Qaraqe

Abstract—This paper focuses on illustrating 1) the equivalence
between Stein’s identity and De Bruijn’s identity, and 2) two
extensions of De Bruijn’s identity. First, it is shown that Stein’s
identity is equivalent to De Bruijn’s identity under additi ve noise
channels with specific conditions. Second, for arbitrary but fixed
input and noise distributions under additive noise channels, the
first derivative of the differential entropy is expressed by a
function of the posterior mean, and the second derivative of
the differential entropy is expressed in terms of a functionof
Fisher information. Several applications over a number of fields
such as signal processing and information theory, are presented
to support the usefulness of the developed results in this paper.

Index Terms—Stein’s identity, De Bruijn’s identity, entropy
power inequality (EPI), Costa’s EPI, Fisher information inequal-
ity (FII), Cram ér-Rao lower bound (CRLB), Bayesian Craḿer-
Rao lower bound (BCRLB)

I. I NTRODUCTION

STEIN’S identity (or lemma) was first established in 1956
[1], and since then it has been widely used by many

researchers (e.g., [2], [3], [4]). Due to its applications in the
James-Stein estimation technique, empirical Bayes methods,
and numerous other fields, Stein’s identity has attracted a lot
of interest (see e.g., [5], [6], [7]).

Recently, another identity, De Bruijn’s identity, has attracted
increased interest due to its applications in estimation and
turbo (iterative) decoding schemes. De Bruijn’s identity shows
a link between two fundamental concepts in information the-
ory: entropy and Fisher information [8], [9], [10]. Verdú and
his collaborators conducted a series of studies [11], [12],[13]
to analyze the relationship between the input-output mutual
information and the minimum mean-square error (MMSE), a
result referred to as the I-MMSE identity for additive Gaussian
noise channels, studies which were later extended to non-
Gaussian channels in [14], [15]. Also, the equivalence between
De Bruijn’s identity and I-MMSE identity was shown in [11].

The main theme of this paper is to study how Stein’s identity
(Theorem 2) is related to De Bruijn’s identity (Theorem 1).
To compare Stein’s identity with De Bruijn’s identity, additive
noise channels of the following form are considered in this
paper:

Y = X +
√
aW, (1)

where input signalX and additive noiseW are arbitrary
random variables,X and W are independent of each other,
and parametera is assumed nonnegative. First, when additive
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noiseW is Gaussian with zero mean and unit variance, the
equivalence between the generalized Stein’s identity (Theorem
2) and De Bruijn’s identity (Theorem 1) is proved. Since the
standard-form Stein’s identity in (13) requires both random
variablesX andW to be Gaussian, instead of the standard-
form Stein’s identity, the generalized version of Stein’s identity
in (12) is used. If we further assume that input signalX is also
Gaussian, then both random variablesX andW are Gaussian,
and the output signalY is Gaussian. In this case, not only
Stein’s and De Bruijn’s identities are equivalent, but alsothey
are equivalent to the heat equation identity, proposed in [2].

The second major question that we will address in this paper
is how De Bruijn’s identity could be extended. De Bruijn’s
identity shows the relationship between the differential entropy
and the Fisher information of the output signalY under
additive Gaussian noise channels. Therefore, under additive
non-Gaussian noise channels, we cannot use De Bruijn’s
identity. However, we will derive a similar form of De Bruijn’s
identity for additive non-Gaussian noise channels. Considering
additive arbitrary noise channels, the first derivative of the
differential entropy of output signalY will be expressed
by the posterior mean, while the second derivative of the
differential entropy of output signalY will be represented
by a function of Fisher information. Even though some of
these relationships do not include the Fisher information,they
still show relationships among basic concepts in information
theory and estimation theory, and these relationships holdfor
arbitrary noise channels.

Based on the results mentioned above, we introduce several
applications dealing with both estimation theoretic and infor-
mation theoretic aspects. In the estimation theory field, the
Fisher information inequality, the Bayesian Cramér-Rao lower
bound (BCRLB), and a new lower bound for the mean square
error (MSE) in Bayesian estimation are derived. The surprising
result is that the newly derived lower bound for MSE is tighter
than the BCRLB. The proposed new bound overcomes the
main drawback of BCRLB, i.e., its looseness in the low Signal-
to-Noise Ratio (SNR) regime, since it provides a tighter bound
than BCRLB especially at low SNRs. Even though some of
the proposed applications have already been proved before,in
this paper we show not only alternative ways to prove them,
but also new relationships among them. In the information
theory realm, Costa’s entropy power inequality- previously
proved in [16], [17]- is derived in two different ways based on
our results. Both proposed methods show novel, simple, and
alternative ways to prove Costa’s entropy power inequality.
Finally, applications in other areas are briefly mentioned.

The rest of this paper is organized as follows. Various
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relationships between Stein’s identity and De Bruijn’s identity
are established in Section III. Some extensions of De Bruijn’s
identity are provided in Section IV. In Section V, several
applications based on the proposed novel results are supplied.
Finally, conclusions are mentioned in Section VI. All the
detailed mathematical derivations for the proposed results are
given in appendices.

II. PRELIMINARY RESULTS

In this section, several definitions and preliminary theorems
are provided. First, the concept of Fisher information is defined
as follows.

Fisher information of a deterministic parameterθ is defined
as

Jθ(Y ) =

∫ ∞

−∞
fY (y; θ)

(
d

dθ
log fY (y; θ)

)2

dy

= EY

[
SYθ

(Y )2
]
, (2)

where SYθ
(Y ) denotes a score function and is defined as

(d/dθ) log fY (y; θ). Under a regularity condition,

EY [SYθ
(Y )] =

∫ ∞

−∞

d

dθ
fY (y; θ)dy

= 0,

the Fisher information in (2) is equivalently expressed as

Jθ(Y ) = −
∫ ∞

−∞
fY (y; θ)

d2

dθ2
log fY (y; θ)dy

= −EY

[
d

dθ
SYθ

(Y )

]

. (3)

This is a general definition of Fisher information in signal
processing, and Fisher information provides a lower bound,
called the Cramér-Rao lower bound, for mean square error of
any unbiased estimator. Like other concepts, such as entropy
and mutual information, in information theory, Fisher informa-
tion also shows information about uncertainty. However, itis
difficult to directly adopt the definition of Fisher information in
information theory despite the fact that it has been commonly
used in statistics. Instead, a more specific definition of Fisher
information is proposed as follows.

If θ is assumed to be a location parameter, then

d

dθ
fY (y; θ) = − d

dy
fY (y − θ; θ). (4)

Therefore, the definition of Fisher information in (2) is
changed as follows:

Jθ(Y ) =

∫ ∞

−∞
fY (y; θ)

(
d

dθ
log fY (y; θ)

)2

dy

=

∫ ∞

−∞
fY (y − θ; θ)

(

− d

dy
log fY (y − θ; θ)

)2

dy

=

∫ ∞

−∞
fỸ (ỹ; θ)

(

− d

dỹ
log fỸ (ỹ; θ)

)2

dỹ

= EỸ

[

S(Ỹ )2
]

, (5)

where S(Ỹ ) denotes a score function, and it is defined as
(d/dỹ) log fỸ (ỹ; θ). In equation (5), since we only consider

a location parameter, we refer to Fisher information in (5) as
Fisher information with respect to a location (or translation)
parameter, and it is denoted asJ(Ỹ ) (even though the defini-
tion of Fisher information with respect to a location parameter
in (5) is derived from the definition of Fisher information in
(2), the definition in (5) is more commonly used in information
theory, and we do not distinguish random variableỸ = Y − θ
from random variableY ).

Given the channel model in (1), by substituting the param-
etera for the unknown parameterθ, the expressions of Fisher
information in (2) and (5) are respectively given by

J(Y ) =

∫ ∞

−∞
fY (y; a)

(
d

dy
log fY (y; a)

)2

dy

= EY

[
SY (Y )2

]
, (6)

and

Ja(Y ) =

∫ ∞

−∞
fY (y; a)

(
d

da
log fY (y; a)

)2

dy

= EY

[
SYa

(Y )2
]
. (7)

Second, two fundamental concepts, differential entropy and
entropy power, are defined as follows. Differential entropyof
random variableY , h(Y ), is defined as

h(Y ) = −
∫ ∞

−∞
fY (y; a) log fY (y; a)dy, (8)

wherefY (y; a) denotes the probability density function (pdf)
of random variableY , log denotes the natural logarithm,
and a is a deterministic parameter in the pdf. Similarly,
the conditional entropy of random variableY given random
variableX , h(Y |X) is defined as

h(Y |X) = −
∫ ∞

−∞

∫ ∞

−∞
fX,Y (x, y; a) logfY |X(y|x; a)dxdy, (9)

wherefX,Y (x, y; a) denotes the joint pdf of random variables
X and Y , fY |X(y|x; a) is the conditional pdf of random
variableY given random variableX .

Entropy power of random variableY , N(Y ), and (condi-
tional) entropy power of random variableY given random
variableX , N(Y |X) are respectively defined as

N(Y ) =
1

2πe
exp(2h(Y )),

N(Y |X) =
1

2πe
exp(2h(Y |X)). (10)

Based on the definitions mentioned above, three preliminary
theorems- De Bruijn’s, Stein’s, and heat equation identities-
are introduced next.

Theorem 1 (De Bruijn’s Identity [10], [18]):Given the
additive noise channelY = X +

√
aW , let X be an arbitrary

random variable with a finite second-order moment, andW
be independent normally distributed with zero mean and unit
variance. Then,

d

da
h(Y ) =

1

2
J(Y ). (11)

Proof: See [10].



3

Theorem 2 (Generalized Stein’s Identity [3]):Let Y be an
absolutely continuous random variable. If the probabilityden-
sity functionfY (y) satisfies the following equations,

lim
y→±∞

k(y)fY (y) = 0,

and
d
dyfY (y)

fY (y)
= −

d
dyk(y)

k(y)
+

(ν − t(y))

k(y)

for some functionk(y), then

EY [r(Y ) (t(Y )− ν)] = EY

[
d
dY r(Y )k(Y )

]
, (12)

for any functionr(Y ) which satisfiesEY [|r(Y )t(Y )|] < ∞,
EY

[
r(Y )2

]
< ∞, and EY

[∣
∣k(Y ) d

dY r(Y )
∣
∣
]

< ∞. EY [·]
denotes the expectation with respect to the pdf of random
variableY . In particular, when random variableY is normally
distributed with meanµy and varianceσ2

y , equation (12)
simplifies to

EY [r(Y ) (Y − µy)] = σ2
yEY

[
d
dY r(Y )

]
. (13)

Equation (13) is the well-known classic Stein’s identity.
Proof: See [3].

Theorem 3 (Heat Equation Identity [2]):Let Y be nor-
mally distributed with meanµ and variance1 + a. Assume
g(y) is a twice continuously differentiable function, and both
g(y) and | d

dyg(y)| are1 O(ec|y|) for some0 ≤ c < ∞. Then,

d

da
EY [g(Y )] =

1

2
EY

[
d2

dY 2
g(Y )

]

. (14)

Proof: See [2].

III. R ELATIONSHIPS BETWEENSTEIN’ S IDENTITY AND DE

BRUIJN’ S IDENTITY

In Section II, Theorems 1, 2, and 3 share an analogy:
an identity between expectations of functions, which include
derivatives. Especially, the heat equation identity admits the
same form as De Bruijn’s identity by choosing functiong(y)
as− log fY (y; a). If De Bruijn’s identity is equivalent to the
heat equation identity, it is also equivalent to Stein’s identity,
since the equivalence between the heat equation identity and
Stein’s identity was proved in [2]. However, there are two
critical issues that stand in the way of the equivalence between
Stein’s and De Bruijn’s identities: first, the functiong(y) in
Theorem 3 must be independent of the parametera, which
is not true wheng(y) = − log fY (y; a). Second, in the heat
equation identity, random variableY must be Gaussian, which
may not be true in De Bruijn’s identity.

Due to the difficulties mentioned above, we will directly
compare De Bruijn’s identity (Theorem 1) with the generalized
Stein’s identity (Theorem 2).

Theorem 4:Given the channel model (1), letX be an
arbitrary random variable with a finite second-order moment,
and letW be normally distributed with zero mean and unit
variance. Independence between random variablesX andW

1O(·) denotes the limiting behavior of the function, i.e.,g(y) = O(q(y))
if and only if there exist positive real numbersK and y∗ such thatg(y) ≤
K|q(y)| for any y which is greater thany∗.

is also assumed. Then, De Bruijn’s identity (11) is equivalent
to the generalized Stein’s identity in (12) under specific
conditions, i.e.,

d

da
h(Y ) =

1

2
J(Y )

⇐⇒ EY [r(Y ; a) (t(Y ; a)− ν)] = EY

[
d
dY r(Y ; a)k(Y ; a)

]
,

with

r(y; a) = − d

dy
log fY (y; a), k(y) = 1,

t(y; a) = −
d
dyfY (y; a)

fY (y; a)
, and ν = 0, (15)

where⇐⇒ denotes the equivalence between before and after
the notation.

Proof: See Appendix A.
Now, when random variableY is Gaussian, i.e., both

random variablesX and W are Gaussian, we can derive
relationships among three identities, De Bruijn, Stein, and heat
equation, as a special case of Theorem 4.

Theorem 5:Given the channel model (1), let random vari-
ableX be normally distributed with meanµ and unit variance.
AssumeW is independent normally distributed with zero
mean and unit variance. If we define the functions in (12)
as follows:

r(y; a) = − d

dy
log fY (y; a), k(y; a) =

1

a
,

t(y; a) = y, and ν = µ,

then Stein’s identity is equivalent to De Bruijn’s identity.
Moreover, if we defineg(y; a) as

g(y; a) = − log fY (y; a)

in (14), then De Bruijn’s identity is also equivalent to the heat
equation identity.

Proof: In Theorem 4, given the channel model (1) with an
arbitrary but fixed random variableX and a Gaussian random
variable W , the equivalence between De Bruijn’s identity
and the generalized Stein’s identity was proved (cf. Appendix
A). Here, by choosing random variableX as Gaussian, this
is a special case of Theorem 4. Therefore, the equivalence
between the two identities is trivial, and the details of the
proof is omitted in this paper. The only thing to prove is the
second part of this theorem, namely, the equivalence between
De Bruijn’s identity and the heat equation identity. Since the
equivalence between Stein’s identity and the heat equation
identity is proved in [2], this also proves the second part of
the theorem, and the proof is completed.

The functionsk(y; a), r(y; a), t(y; a), and g(y; a) are the
same ask(y), r(y), andt(y) in Theorem 2 andg(y) in The-
orem 3, respectively. To show the dependence on parameter
a, the functionsk(y; a), r(y; a), t(y; a), andg(y; a) are used
instead ofk(y), r(y), t(y), andg(y), respectively.

IV. EXTENSION OFDE BRUIJN’ S IDENTITY

De Bruijn’s identity is derived from the attribute of Gaussian
density functions, which satisfy the heat equation. However,
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in general, probability density functions do not satisfy the heat
equation. Therefore, to extend De Bruijn’s identity to additive
non-Gaussian noise channels, a general relationship between
differentials of a probability density function with respect to
y anda of the form:

d

da
fY |X(y|x; a) = − 1

2a

d

dy

(
(y − x)fY |X(y|x; a)

)
, (16)

is required, a result that it is obtained in Appendix H by
exploiting the assumptions (17). The relationship (16) rep-
resents the key ingredient in establishing the link between
the derivative of differential entropy and posterior mean,as
described by the following theorem.

Theorem 6:Consider the channel model (1), whereX and
W are arbitrary random variables independent of each other.
Given the following assumptions:

d

dy
EX

[
fY |X(y|X ; a)

]
= EX

[
d

dy
fY |X(y|X ; a)

]

,

d

da
EX

[
fY |X(y|X ; a)

]
= EX

[
d

da
fY |X(y|X ; a)

]

, (17a)

d

da

∫ ∞

−∞
fY (y; a) log fY (y; a)dy

=

∫ ∞

−∞

d

da

(

fY (y; a) log fY (y; a)
)

dy, (17b)

lim
y→±∞

EX

[
XfY |X(y|X ; a)

]
= EX

[

lim
y→±∞

XfY |X(y|X ; a)

]

,

lim
y→±∞

EX

[
fY |X(y|X ; a)

]
= EX

[

lim
y→±∞

fY |X(y|X ; a)

]

,

lim
y→±∞

y2fY (y; a) = 0, (17c)
∣
∣
∣
∣
∣

EX

[
XfY |X(y|X ; a)

]

√

fY (y; a)

∣
∣
∣
∣
∣
< ∞, (17d)

whereEX|Y [·|·] denotes the posterior mean, the first derivative
of the differential entropy is expressed as

d

da
h(Y ) =

1

2a

{

1− EY

[
d

dY
EX|Y [X |Y ]

]}

. (18)

Proof: See Appendix B.
Remark 1:This is equivalent to the results in [14].

It can be observed that the conditions (17) are required
in the dominated convergence theorem and Fubini’s theo-
rem to ensure the interchangeability between a limit and
an integral, and are not that restrictive. Also, the condition
limy→±∞ y2fY (y; a) = 0 is not restrictive at all, and it is
satisfied by all noise distributions of interest in practice.

Corollary 1 (De Bruijn’s identity): Given the channel
model in (1) with an arbitrary but fixed random variableX
with a finite second moment and a Gaussian random variable
W with zero mean and unit variance,

d

da
h(Y ) =

1

2
J(Y ).

Remark 2:This is the well-known De Bruijn’s identity [18].
Therefore, De Bruijn’s identity is a special case of Theorem

6 when random variableW is normally distributed. When
random variableW is Gaussian, assumptions in (17) are
simplified to the existence of a finite second-order moment.

Corollary 2: Given the channel model in (1) with an ar-
bitrary but fixed non-negative random variableX whose
moment generating function exists and its pdf is bounded,
and an exponential random variableW with unit value of the
parameter (i.e.,fW (w) = exp(−w)U(w), whereU(·) denotes
the unit step function),

d

da
h(Y )=

1

2a
√
a

{√
a− EX[X ] + EX

[
EX|Y [X |Y ] |Y =X

]}
.

When the random variableW is exponentially distributed,
assumptions in (17) are reduced to the existence of the
moment generating function ofX , as explained in Appendix I.
Therefore, the assumptions in (17) for an exponential random
variable are as simple as the assumptions (17) for a Gaussian
random variable.

Corollary 3: Given the channel model in (1) with an arbi-
trary but fixed non-negative random variableX whose moment
generating function exists and a gamma random variableW
with a shape parameterα (α ≥ 2) and an inverse scale
parameterβ (β = 1),

d

da
h(Y ) =

1

2a
√
a

{√
a− EX [X ]

+EYα−1

[
EX|Y [X |Y ] |Y = Yα−1

] }

,

whereYk = X +
√
aWk, andWk denotes a gamma random

variable with shape parameterk. NotationYα stands forY .
As explained in Appendix I, the assumptions (17) are quite
simplified in the presence of the moment generating function
of random variableX .

For additive non-Gaussian noise channels, the differential
entropy cannot be expressed in terms of the Fisher infor-
mation. Instead, the differential entropy is expressed by the
posterior mean as shown in Theorem 6. Fortunately, several
noise distributions of interest in communication problems
satisfy the required assumptions (17) in Theorem 6 (e.g.,
Gaussian, gamma, exponential, chi-square with restrictions on
parameters, Rayleigh, etc.). Therefore, Theorem 6 is quite
powerful. If the posterior meanEX|Y [X |Y ] is expressed by
a polynomial function ofY , e.g.,X andW are independent
Gaussian random variables in equation (1) or random variables
belonging to the natural exponential family of distributions
[19], then equation (18) can be expressed in simpler forms.

Example 1:Consider an additive white Gaussian noise
(AWGN) channel. Given the channel model (1), letX and
W be normally distributed with zero mean and unit variance.
AssumeX andW are independent of each other. Then, the
posterior mean is expressed as

EX|Y [X |Y = y] =
1

1 + a
y,

which is linear toy. Therefore, equation (18) is expressed as

d

da
h(Y ) =

1

2a

{

1− EY

[
d

dY
EX|Y [X |Y ]

]}

=
1

2(1 + a)
.
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Now, we consider the second derivative of the differential
entropy. One interesting property of the second derivativeof
the differential entropy is that it can always be expressed as a
function of the Fisher information (7).

Theorem 7:Given the channel model (1), letX andW be
arbitrary random variables, independent of each other. Given
the following assumptions:

d2

dy2
EX

[
fY |X(y|X ; a)

]
=EX

[
d2

dy2
fY |X(y|X ; a)

]

,

d2

da2
EX

[
fY |X(y|X ; a)

]
=EX

[
d2

da2
fY |X(y|X ; a)

]

, (19a)

d2

da2

∫ ∞

−∞
fY (y; a) log fY (y; a)dy

=

∫ ∞

−∞

d2

da2

(

fY (y; a) log fY (y; a)

)

dy, (19b)

lim
y→±∞

EX

[

X2
d
dyfY |X(y|X ; a)
√

fY (y; a)

]

= EX

[

lim
y→±∞

X2
d
dyfY |X(y|X ; a)
√

fY (y; a)

]

,

lim
y→±∞

EX

[
XfY |X(y|X ; a)

]

= EX

[

lim
y→±∞

XfY |X(y|X ; a)

]

, (19c)

lim
y→±∞

EX

[
fY |X(y|X ; a)

]
= EX

[

lim
y→±∞

fY |X(y|X ; a)

]

,

lim
y→±∞

y8fY (y; a) = 0, (19d)
∣
∣
∣
∣
∣

EX

[
X2fY |X(y|X ; a)

]

(fY (y; a))3/4

∣
∣
∣
∣
∣
< ∞, (19e)

where EX|Y [·|·] denotes the posterior mean, the following
identity holds:

d2

da2
h(Y ) = −Ja(Y )− 1

2a

d

da
h(Y )

− 1

4a2
EY

[
d

dY
SY (Y )EX|Y

[
(Y −X)2|Y

]
]

,

or equivalently,

d2

da2
h(Y )= −Ja(Y )− 1

4a2
EY

[
d

dY
EX|Y [(Y −X)|Y ]

]

− 1

4a2
EY

[
d

dY
S(Y )EX|Y

[
(Y −X)2|Y

]
]

.(20)

Proof: See Appendix C.
Similar to the corollaries of Theorem 6, by specifying a

noise distribution and manipulating equation (20) in Theorem
7, we derive the following corollaries.

Corollary 4: Given the channel (1), letX be an arbitrary
but fixed random variable with a finite second-order moment,
and letW be independent normally distributed with zero mean

and unit variance. Then,

d2

da2
h(Y ) = −Ja(Y )− 1

4a
J(Y )

− 1

4a2
EY

[
d

dY
SY (Y )EX|Y

[
(Y −X)2|Y

]
]

= −1

2
EY

[(
d

dY
SY (Y )

)2
]

.

Remark 3:This result is a scalar version of the result
reported in [13]. At the same time, this result is a special
case, whenX is a Gaussian random variable, of the general
result in Theorem 7.

Corollary 5: Under the channel (1), letX be an arbitrary
but fixed non-negative random variable with a finite moment
generating function, and its pdf is bounded. LetW be indepen-
dent exponentially distributed with unit value as the parameter
(λ) of the distribution. Namely,fW (w) = exp(−w)U(w),
whereU(·) denotes the unit step function. Then,

d2

da2
h(Y )=−Ja(Y ) +

3

4a2
√
a
EX

[
EX|Y [Y −X |Y ] |Y=X

]

+
1

4a2
− 1

4a3
EX

[
EX|Y

[
(Y −X)2|Y

]
|Y=X

]
.

Corollary 6: Under the channel (1), letX be an arbitrary
but fixed non-negative random variable with a finite moment
generating function, andW be an independent gamma random
variable with parametersα (α ≥ 3) and β (β = 1),
i.e., fW (w) = βαwα−1 exp(−βw)U(w)/Γ(α), whereU(·)
denotes the unit step function andΓ(·) stands for the gamma
function. Then,

d2

da2
h(Y ) = − 1

4a3
EYα−2

[
EX|Y

[
(Y −X)2|Y

]
|Y = Yα−2

]

− 1

4a2
√
a
EYα−1

[EX|Y [X |Y ] |Y = Yα−1]

+
(α− 1)

4a2
√
a
EYα−1

[

EX|Y
[
(Y −X)2|Y

]

EX|Yα−1
[Yα−1 −X |Yα−1]

∣
∣
∣
∣
∣
Y = Yα−1

]

−Ja(Y )− 1

4a2
√
a

(√
a− EX [X ]

)
,

whereYα = X +
√
aWα, andWα denotes a gamma random

variable with a shape parameterα.
Like Corollaries 1, 2, and 3, the assumptions (19) reduce to

simplified forms in Corollaries 4, 5, and 6. Even though we
have not enumerated all possible probability density functions
for Theorem 6 and Theorem 7, many of the probability
density functions that present an exponential term satisfythe
assumptions (17) and (19), since such a condition proves to
be sufficient for the required interchange between a limit and
a integral.

V. A PPLICATIONS

As mentioned in [11] and [20], De Bruijn’s identity has
been widely used in a variety of areas such as information
theory, estimation theory, and so on. Similarly, De Bruijn-type
identities mentioned in this paper can be adopted in many
applications. Here, we introduce several applications from the
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estimation theory realm as well as from the information theory
field.

A. Applications in Estimation Theory

In estimation theory, there exist two fundamental lower
bounds: Cramér-Rao lower bound (CRLB) and Bayesian
Cramér-Rao lower bound (BCRLB). CRLB is a lower bound
for the estimation error of any unbiased estimator, and it is
derived from a frequentist perspective. This lower bound is
tight when the output distribution of the channel is Gaus-
sian. CRLB and its tightness can be justified using Cauchy-
Schwarz inequality [21]. On the other hand, BCRLB is a
lower bound for the estimation error of any estimator, and
it is calculated from a Bayesian perspective. BCRLB does
not require unbiasedness of estimators unlike CRLB; however,
BCRLB requires prior knowledge (i.e., distribution) of random
parameters. BCRLB is also tight when all random variables
are Gaussian [22].

Surprisingly, assuming a Gaussian additive noise channel,
both of these lower bounds can be derived using De Bruijn-
type identities, and there exist counterparts both in information
theory and estimation theory. Since CRLB and its counterpart,
the worst additive noise lemma, are derived in [20], we will
only show the derivation of BCRLB and its counterpart in this
paper.

Lemma 1 (Bayesian Craḿer-Rao Lower Bound):Given
the channel (1), letX̂ be an arbitrary estimator ofX in a
Bayesian estimation framework. Then, the mean square error
(MSE) of X̂ is lower bounded as follows:

MSE(X̂) ≥ 1

EX [J(Y |X)] + J(X)
,

whereX is an arbitrary but fixed random variable with a finite
second-order moment,W is a Gaussian random variable with
zero mean and unit variance, and

J(Y |X) =

∫ ∞

−∞

(
d

dx
log fY |X(y|x)

)2

fY |X(y|x)dy.(21)

Proof: See Appendix D.
Interestingly, there exists a counterpart, based on differential

entropies, of BCRLB in information theory, and this counter-
part is a tighter lower bound than BCRLB.

Lemma 2:Under the same conditions as in Lemma 1,

MSE(X̂) ≥ N(X |Y ), (22)

whereN(X |Y ) = (1/2πe) exp(2h(X |Y )), Y = X +
√
aW ,

a ≥ 0, andX andW are independent of each other.
Proof: See Appendix E.

Remark 4:Lemma 2 seems to be similar to the estimation
counterpart of Fano’s inequality [10, p. 255, Theorem 8.6.6].
However, the current result is completely different than [10,
p. 255, Theorem 8.6.6]. In [10], to satisfy the inequality (22),
the hidden assumption is

V ar(X |Y ) = V ar(XG|YG), (23)

where V ar(X |Y ) and V ar(XG|YG) denote posterior vari-
ances for random variablesX andY , and Gaussian random

variablesXG andYG, respectively. With the assumption (23),
the following relations hold:

EX,Y

[(
X − EX|Y [X |Y ]

)2
]

= V ar(X |Y )

= V ar(XG|YG)

=
1

2πe
exp(2h(XG|YG))

≥ 1

2πe
exp(2h(X |Y ))

= N(X |Y ).

This is nothing but the entropy maximizing theorem, i.e., the
Gaussian random variable being the one that maximizes the
entropy among all real-valued distributions with fixed mean
and variance.

However, under the assumptionsV ar(X) = V ar(XG) and
V ar(Y ) = V ar(YG), which are common assumptions in
signal processing problems, (23) may not be always true due to
the following fact. Given the additive Gaussian noise channel,
Y = X +

√
aWG, where X is an arbitrary non-Gaussian

random variable whose variance is identical to that of Gaussian
random variableXG, andWG is a Gaussian random variable
with zero mean and unit variance,

V ar(X |Y ) < V ar(XG|YG), (24)

whereYG is a Gaussian random variable whose variance is
identical to that ofY . Equation (24) violates the assumption
(23). Therefore, the result in [10, p. 255, Theorem 8.6.6] can-
not be adopted under the assumptions,V ar(X) = V ar(XG)
and V ar(Y ) = V ar(YG), which are common in signal
processing problems.

On the other hand, the inequality in Lemma 2 is obtained
not by imposing identical posterior variances but by assuming
identical second-order moments. Thus, (22) represents a lower
bound on the mean square error similar to BCRLB. Therefore,
Lemma 2 illustrates a novel lower bound on the mean square
error from an information theoretic perspective.

Surprisingly, this lower bound is tighter than BCRLB as the
following lemma indicates.

Lemma 3:Under the same conditions as in Lemma 2,

N(X |Y ) ≥ 1

EX [J(Y |X)] + J(X)
, (25)

whereY = X+
√
aW , a is nonnegative,X is an arbitrary but

fixed random variable with a finite second-order moment,W is
a Gaussian random variable with zero mean and unit variance,
and J(Y |X) is defined as equation (21). The equality holds
if the random variableX is Gaussian.

Proof: See Appendix F.
Figure 1 illustrates how tighter the new lower bound (22) is
compared to BCRLB whenX is a student-t random variable,
andW is a Gaussian random variable. The degrees of freedom
of X is 3, and the variance ofW is 1. As shown in Figure 1,
the new lower bound is much tighter than BCRLB especially in
low SNRs where the BCRLB is generally loose. Also, Figure
1 shows how tight the new lower bound is with respect to the
minimum mean square error.
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B. Applications in Information Theory

In information theory, the entropy power inequality (EPI) is
one of the most important inequalities since it is helps to prove
the channel capacity under several different circumstances,
e.g., the capacity of scalar Gaussian broadcast channel [23],
the capacity of Gaussian MIMO broadcast channel [24], [25],
the secrecy capacity of Gaussian wire-tap channel [26], [27]
and so on. The channel capacity can be proved not by
EPI alone but by EPI in conjunction with Fano’s inequality.
Depending on the channel model, an additional technique,
channel enhancement technique [24], is required. Therefore,
various versions of the EPI such as a classical EPI [18], [28],
[29], Costa’s EPI [16], and an extremal inequality [25] were
proposed by several different authors. In this section, we will
prove Costa’s entropy power inequality, a stronger versionof
a classical EPI using Theorem 7.

Lemma 4 (Costa’s EPI):For a Gaussian random variable
W with zero mean and unit variance,

N(X +
√
aW ) ≥ (1− a)N(X) + aN(X +W ), (26)

where 0 ≤ a ≤ 1, X and W are independent of each
other, and the entropy powerN(X) is defined asN(X) =
(1/2πe) exp(2h(X)). Alternatively, the inequality (26) is ex-
pressed as

d2

da2
N(X +

√
aW ) ≤ 0, (27)

i.e., N(X +
√
aW ) is a concave function ofa [16].

Proof: See Appendix G.

C. Applications in Other Areas

There are many other applications of the proposed results.
First, since Theorem 6 is equivalent to Theorem 1 in [14],
Theorem 6 can be used for applications such as generalized
EXIT charts and power allocation in systems with parallel
non-Gaussian noise channels as mentioned in [14]. Second,
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Fig. 1. Comparison of MMSE, BCRLB, and new lower bound (New LB)
in (22) with respect to SNR.

by Theorem 4, we showed the equivalence among Stein, De
Bruijn, and heat equation identities. Therefore, a broad range
of problems (in probability, decision theory, Bayesian statistics
and graph theory) as described in [2] could be considered as
additional potential applications of Theorems 4 and 6.

VI. CONCLUSIONS

This paper mainly disclosed three information-estimation
relationships. First, the equivalence between Stein identity and
De Bruijn identity was proved. Second, it was proved that
the first derivative of the differential entropy with respect to
the parametera can be expressed in terms of the posterior
mean. Second, this paper showed that the second derivative
of the differential entropy with respect to the parametera
can be expressed in terms of the Fisher information. Finally,
several applications based on the three main results listed
above were provided. The suggested applications illustrate that
the proposed results are useful not only in information theory
but also in the estimation theory field and other fields.

APPENDIX A
A PROOF OFTHEOREM 4

Since Theorem 5 is considered as a special case of Theorem
4, we only show the proof of Theorem 4 in this paper.

Proof: [Theorem 4]
Prior to proving Theorem 4, we first introduce the following

relationships in Lemma 5, which are required for the proof.
Lemma 5:For random variablesW , X and Y defined in

equation (1) when Gaussian random variableW has zero mean
and unit variance and random variableX has finite second-
order moment, the following identities are satisfied:

i)
d

da
log fY (y; a)

∣
∣
∣
∣
∣
y=u+

√
aw

=
1

2a2

(

EX

[
(y −X)2fY |X(y|X ; a)

]

fY (y; a)
− a

) ∣
∣
∣
∣
∣
y=u+

√
aw

,

ii)
d

da
log fY (u+

√
aw; a)

=
1

2a2

(
EX[(u−X)(y−X)fY |X(y|X ; a)]

fY (y; a)
− a

)
∣
∣
∣
∣
∣
y=u+

√
aw

,

iii)
d

dy
log fY (y; a)

∣
∣
∣
∣
∣
y=u+

√
aw

= −EX [(y −X)fY |X(y|X ; a)]

afY (y; a)

∣
∣
∣
∣
∣
y=u+

√
aw

,

iv)
w

2
√
a

d

dy
log fY (y; a)

∣
∣
∣
∣
∣
y=u+

√
aw

=
d

da
log fY (u+

√
aw; a)−

[
d

da
log fY (y; a)

]

y=u+
√

aw

,

wheref(y)|y=a denoteslimy→a f(y). In some cases, to avoid
confusion,[f(y)]y=a is used instead off(y)|y=a.
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Proof: Since fY |X(y|x; a) is normally distributed with
meanx and variancea, the following relationships hold:

fY |X(y|x; a) =
1√
2πa

exp

(

− (y − x)2

2a

)

, (28)

d

dy
fY |X(y|x; a) = −1

a
(y − x)fY |X(y|x; a), (29)

d

da
fY |X(y|x; a) =

(

− 1

2a
+

1

2a2
(y − x)2

)

fY |X(y|x; a), (30)

d

da
fY |X(u+

√
aw|x; a) = fY |X(u+

√
aw|x; a)

×
(

− 1

2a
+

1

2a2
(u +

√
aw − x)(u − x)

)

. (31)

Equation (31) is true since

d

da
fY |X(u +

√
aw|x; a)

=
d

da

[
1√
2πa

exp

(

− 1

2a
(u+

√
aw − x)2

)]

=− 1

2a

(
1√
2πa

exp

(

− 1

2a
(u+

√
aw − x)2

))

+

(
1√
2πa

exp

(

− 1

2a
(u +

√
aw − x)2

))

×
(

−
2(u+

√
aw − x)( w

2
√
a
)a− (u +

√
aw − x)2

2a2

)

=− 1

2a
fY |X(u +

√
aw|x; a)

+fY |X(u+
√
aw|x; a)

(

− (u+
√
aw − x)(u − x)

2a2

)

.

Based on equation (30), i) is proved by following these
calculations:

d

da
log fY (y; a)

∣
∣
∣
∣
∣
y=u+

√
aw

=
EX

[
d
dafY |X(y|X ; a)

]

fY (y; a)

∣
∣
∣
∣
∣
y=u+

√
aw

=
1

2a2

(

EX

[
(y −X)2fY |X(y|X ; a)

]

fY (y; a)
− a

) ∣
∣
∣
∣
∣
y=u+

√
aw

.(32)

Second, equation ii) is proved by the following calculations:

d

da
log fY (u+

√
aw; a)

=
EX

[
d
dafY |X(u+

√
aw|X ; a)

]

fY (u +
√
aw; a)

=
EX

[
− 1

2afY |X(u+
√
aw|X ; a)

]

fY (u+
√
aw; a)

+
EX

[
1

2a2 (u+
√
aw−X)(u−X)fY |X(u+

√
aw|X ; a)

]

fY (u+
√
aw; a)

(33)

=
−afY (u +

√
aw; a)

2a2fY (u +
√
aw; a)

+
EX [(u+

√
aw−X)(u−X)fY |X(u+

√
aw|X ; a)]

2a2fY (u+
√
aw; a)

=
1

2a2

(
EX[(u+

√
aw−X)(u−X)fY |X(u+

√
aw|X ; a)]

fY (u +
√
aw; a)

−a

)

=
1

2a2

(
EX[(y−X)(u−X)fY |X(y|X ; a)]

fY (y; a)
− a

)
∣
∣
∣
∣
∣
y=u+

√
aw

. (34)

The equality in (33) is due to equation (31).

Third, equation iii) is proved based on equation (29) as
follows:

d

dy
log fY (y; a)

∣
∣
∣
∣
∣
y=u+

√
aw

=
EX

[
d
dyfY |X(y|X ; a)

]

fY (y; a)

∣
∣
∣
∣
∣
y=u+

√
aw

=
−EX

[
(y −X)fY |X(y|X ; a)

]

afY (y; a)

∣
∣
∣
∣
∣
y=u+

√
aw

. (35)

The equality in (35) is due to equation (29).

Equation iv) is trivial since equation (35) multiplied by
w/2

√
a is equal to equation (34) minus equation (32), and

the proof is completed.

Like the proof of Theorem 3 in [2], the equivalence is
proved by showing that each identity is derived from the other
one, using Lemma 5.

First, in the generalized Stein’s identity, all necessary func-
tions are defined as follows:

r(y; a) = − d

dy
log fY (y; a), k(y) = 1,

t(y; a) = −
d
dyfY (y; a)

fY (y; a)
, and ν = 0. (36)

Then, De Bruijn’s identity is derived from the generalized
Stein’s identity as follows.

1

2
EY

[
d

dY
r(Y ; a)

]

=
1

2
EY [r(Y ; a)t(Y ; a)] (generalized Stein’s identity) (37)

=−1

2

∫ ∞

−∞

d

dy
EX

[
fY |X(y|X ; a)

]
r(y; a)dy

=−EX

[∫ ∞

−∞

(y −X)

2a
fY |X(y|X ; a)

d

dy
log fY (y; a)dy

]

=−
∫ ∞

−∞
fX(u)

∫ ∞

−∞

(y−u)

2a
fY |X(y|u; a)

d

dy
log fY (y; a)dy

︸ ︷︷ ︸

(A)

du.

(38)

The interchangeability among integrals and derivatives are due
to the dominated convergence theorem and Fubini’s theorem.

Changing the variable asy = u +
√
aw, equation(A) is
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expressed as
∫ ∞

−∞

(y − u)

2a
fY |X(y|u; a)

d

dy
log fY (y; a)dy

=

∫ ∞

−∞

√
aw

2a
fY |X(u+

√
aw|u; a)

[
d

dy
logfY (y; a)

]

y=u+
√

aw

√
adw

=

∫ ∞

−∞
fY |X(u+

√
aw|u; a)

(

d

da
log fY (u +

√
aw; a)

−
[
d

da
log fY (y; a)

]

y=u+
√

aw

)

√
adw

(39)

=

∫ ∞

−∞

1√
2π

exp

(

−1

2
w2

)
d

da
log fY (u+

√
aw; a)dw

−
∫ ∞

−∞

1√
2π

exp

(

−1

2
w2

)[
d

da
log fY (y; a)

]

y=u+
√

aw

dw

=
d

da

∫ ∞

−∞

1√
2π

exp

(

−w2

2

)

log fY (u+
√
aw; a)dw

−
∫ ∞

−∞

1√
2π

exp

(

−w2

2

)[
d

da
log fY (y; a)

]

y=u+
√

aw

dw.

(40)

The equality in equation (39) is due to Lemma 5, iv).
Re-defining the variablew = (y− u)/

√
a, equation (38) is

expressed as

−
∫ ∞

−∞
fX(u)

(∫ ∞

−∞

(y−u)

2a
fY |X(y|u; a)

d

dy
logfY(y; a)dy

)

du

=

∫ ∞

−∞
fX(u)

(
∫ ∞

−∞
fY |X(y|u; a)

d

da
log fY (y; a)dy

− d

da

∫ ∞

−∞
fY |X(y|u; a) log fY (y; a)dy

)

du

(41)

=

∫ ∞

−∞
fY (y; a)

d

da
log fY (y; a)dy

− d

da

∫ ∞

−∞
fY (y; a) log fY (y; a)dy (42)

=

∫ ∞

−∞

d

da
fY (y; a)dy −

d

da

∫ ∞

−∞
fY (y; a) log fY (y; a)dy

=
d

da

∫ ∞

−∞
fY (y; a)dy −

d

da

∫ ∞

−∞
fY (y; a) log fY (y; a)dy

=− d

da

∫ ∞

−∞
fY (y; a) log fY (y; a)dy

=
d

da
h(Y ).

The equality in (41) is due to the change of variable, and the
equality in (42) is because of the independence offX(u) with
respect toa.

Since the left-hand side of equation (37) is equal toJ(Y )/2,
we obtain De Bruijn’s identity:

1

2
J(Y ) =

d

da
h(Y ),

from the generalized Stein’s identity.

Second, the generalized Stein’s identity is derived from De
Bruijn’s identity. We define the function

g(y; a) =

∫ y

0

r(u; a)du + q(a), (43)

whereq(a) = − log fY (y; a)|y=0. Here,q(a) is always real-
valued due to the following:

fY (y; a)
∣
∣
∣
y=0

= lim
y→0

EX [fY |X(y|X ; a)]

= EX

[

lim
y→0

1√
2πa

exp

(

− 1

2a
(y −X)2

)]

= EX

[
1√
2πa

exp

(

− 1

2a
X2

)]

≤ 1√
2πa

. (44)

The last inequality is due toexp(− 1
2aX

2) ≤ 1. In addition,
equation (44) is always greater than zero unlessfX(x) is
identical to zero ora is infinite. However, neither case holds.
Therefore,q(a) is always mapping to a real-valued number.

Then, the expectation ofg(y; a) is expressed as

EY [g(Y ; a)]

=

∫ ∞

−∞
fY (y; a)

(∫ y

0

r(u; a)du + q(a)

)

dy

=

∫ ∞

0

∫ y

0

fY (y; a)r(u; a)dudy

+

∫ 0

−∞

∫ y

0

fY (y; a)r(u; a)dudy + q(a)

=

∫ ∞

0

∫ y

0

fY (y; a)r(u; a)dudy

−
∫ 0

−∞

∫ 0

y

fY (y; a)r(u; a)dudy + q(a)

=

∫ ∞

0

(∫ ∞

u

fY (y; a)dy

)

r(u; a)du

−
∫ 0

−∞

(∫ u

−∞
fY (y; a)dy

)

r(u; a)du + q(a)

= EX

[∫ ∞

0

(∫ ∞

u

fY |X(y|X ; a)dy

)

r(u; a)du

]

−EX

[∫ 0

−∞

(∫ u

−∞
fY |X(y|X ; a)dy

)

r(u; a)du

]

+ q(a)

= EX

[∫ ∞

0

(

1− Φ

(
u−X√

a

))

r(u; a)du

]

−EX

[∫ 0

−∞
Φ

(
u−X√

a

)

r(u; a)du

]

+ q(a), (45)

whereΦ(·) denotes the standard normal cumulative density
function.

We differentiate both sides of equation (45) with respect to
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parametera as follows.

d

da
EY [g(Y ; a)]

=
d

da
EX

[∫ ∞

0

(

1− Φ

(
u−X√

a

))

r(u; a)du

]

−EX

[∫ 0

−∞
Φ

(
u−X√

a

)

r(u; a)du

]

+
d

da
q(a)

= −EX

[∫ ∞

0

(
d

da
Φ

(
u−X√

a

))

r(u; a)du

]

+EX

[∫ ∞

0

(

1− Φ

(
u−X√

a

))
d

da
r(u; a)du

]

−EX

[∫ 0

−∞

(
d

da
Φ

(
u−X√

a

))

r(u; a)du

]

−EX

[∫ 0

−∞
Φ

(
u−X√

a

)
d

da
r(u; a)du

]

+
d

da
q(a)

= −EX

[∫ ∞

−∞

d

da
Φ

(
u−X√

a

)

r(u; a)du

]

+EX

[∫ ∞

0

(

1− Φ

(
u−X√

a

))
d

da
r(u; a)du

]

︸ ︷︷ ︸

(B)

−EX

[∫ 0

−∞
Φ

(
u−X√

a

)
d

da
r(u; a)du

]

︸ ︷︷ ︸

(C)

+
d

da
q(a). (46)

Equations (B) and (C) are further processed as

EX

[∫ ∞

0

(

1− Φ

(
u−X√

a

))
d

da
r(u; a)du

]

−EX

[∫ 0

−∞
Φ

(
u−X√

a

)
d

da
r(u; a)du

]

= EX

[∫ ∞

0

∫ ∞

u

fY |X(y|X ; a)dy
d

da
r(u; a)du

]

−EX

[∫ 0

−∞

∫ u

−∞
fY |X(y|X ; a)dy

d

da
r(u; a)du

]

= EX

[∫ ∞

0

∫ y

0

d

da
r(u; a)dufY |X(y|X ; a)dy

]

−EX

[∫ 0

−∞

∫ 0

y

d

da
r(u; a)dufY |X(y|X ; a)dy

]

= EX

[∫ ∞

0

∫ y

0

d

da
r(u; a)dufY |X(y|X ; a)dy

]

+EX

[∫ 0

−∞

∫ y

0

d

da
r(u; a)dufY |X(y|X ; a)dy

]

= EX

[∫ ∞

−∞

∫ y

0

d

da
r(u; a)dufY |X(y|X ; a)dy

]

. (47)

The interchangeability among integrals is due to Fubini’s
theorem and dominated convergence theorem.

Due to equation (43),

d

da
g(y; a) =

d

da

∫ y

0

r(u; a)du +
d

da
q(a),

equation (47) is further simplified as follows:

EX

[∫ ∞

−∞

∫ y

0

d

da
r(u; a)dufY |X(y|X ; a)dy

]

=

∫ ∞

−∞

(
d

da

∫ y

0

r(u; a)du

)

fY (y; a)dy

=

∫ ∞

−∞
fY (y; a)

d

da
g(y; a)dy − d

da
q(a)

= −
∫ ∞

−∞
fY (y; a)

d

da
log fY (y; a)dy −

d

da
q(a) (48)

= − d

da
q(a).

The equality in (48) holds becauseg(y; a) = − log fY (y; a).
Therefore, the last three terms in equation (46) vanish, and

equation (46) is expressed as

−EX

[∫ ∞

−∞

d

da
Φ

(
u−X√

a

)

r(u; a)du

]

=EX

[
∫ ∞

−∞

(u−X)

2a
√
a

[
d

dy
Φ (y)

]

y=u−X√
a

r(u; a)du

]

=EX

[∫ ∞

−∞

(u−X)

2a
√
a

φ

(
u−X√

a

)

r(u; a)du

]

=
1

2

∫ ∞

−∞
EX

[
(u−X)

a

1√
2πa

exp

(

− (u−X)2

2a

)]

r(u; a)du

=−1

2

∫ ∞

−∞
EX

[
d

dy
fY |X(y|X ; a)

]

r(u; a)du

=−1

2

∫ ∞

−∞

d
dufY (u; a)

fY (u; a)
r(u; a)fY (u; a)du

=
1

2
EY [t(Y ; a)r(Y ; a)] ,

where φ(·) denotes the standard normal probability density
function, andt(y; a) = −( d

dyfY (y; a))/fY (y; a).
Since

d

da
h(Y ) =

d

da
EY [g(Y ; a)]

=
1

2
EY [t(Y ; a)r(Y ; a)] ,

and

1

2
J(Y ) =

1

2
EY

[
d

dY
r(Y ; a)

]

,

from De Bruijn’s identity, we derive the generalized Stein’s
identity:

d

da
h(Y ) =

1

2
J(Y )

⇐⇒ EY [t(Y ; a)r(Y ; a)] = EY

[
d

dY
r(Y ; a)

]

,

where⇐⇒ denotes equivalence between before and after the
notation.

APPENDIX B
A PROOF OFTHEOREM 6

Based on equation (16), Theorem 6 is proved next using
integration by parts and the dominated convergence theorem.
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Proof: [Theorem 6]

d

da
h(Y )

=−
∫ ∞

−∞
(1 + log fY (y; a))

d

da
fY (y; a)dy

=−
∫ ∞

−∞

d

da
fY (y; a)dy −

∫ ∞

−∞
log fY (y; a)

d

da
fY (y; a)dy (49)

=−
∫ ∞

−∞
log fY (y; a)

d

da
EX [fY |X(y|X ; a)] dy

=−
∫ ∞

−∞
log fY (y; a)EX

[
d

da
fY |X(y|X ; a)

]

dy. (50)

The interchangeability between integral and derivative isdue
to assumptions (17a) and (17b).

Using equation (16), equation (50) is expressed as

−
∫ ∞

−∞
log fY (y; a)EX

[
d

da
fY |X(y|X ; a)

]

dy

=
1

2a

∫ ∞

−∞
log fY (y; a)EX

[
d

dy
((y −X)fY |X(y|X ; a))

]

dy

=
1

2a

∫ ∞

−∞
log fY (y; a)

d

dy
EX [(y −X)fY |X(y|X ; a)] dy (51)

=
1

2a
log fY (y; a)EX [(y −X)fY |X(y|X ; a)]

∣
∣
∣
∣
∣

∞

y=−∞

− 1

2a

∫ ∞

−∞

d

dy
log fY (y; a)EX [(y −X)fY |X(y|X ; a)] dy (52)

=− 1

2a

∫ ∞

−∞

d

dy
log fY (y; a)EX [(y −X)fY |X(y|X ; a)] dy (53)

=− 1

2a

∫ ∞

−∞

d

dy
fY (y; a)EX

[

(y −X)
fY |X(y|X ; a)

fY (y; a)

]

dy, (54)

wheref(y)|a2
y=a1

denotes lim
y→a2

f(y)− lim
y→a1

f(y).

The first term in equation (52) vanishes due to the following
relationship:

log fY (y; a)EX

[
(y −X)fY |X(y|X ; a)

]
∣
∣
∣

∞

y=−∞

= yfY (y; a) log fY (y; a)
∣
∣
∣

∞

y=−∞

−EX

[
XfY |X(y|X ; a)

]
log fY (y; a)

∣
∣
∣

∞

y=−∞
. (55)

The first term in (55) is expressed as

yfY (y; a) log fY (y; a)
∣
∣
∣

∞

y=−∞

= 2y
√

fY (y; a)
√

fY (y; a) log
√

fY (y; a)
∣
∣
∣

∞

y=−∞
. (56)

Due to assumptions (17d),y
√

fY (y; a) converges to zero
as y goes to±∞. Since x log x becomes zero asx goes
to zero andfY (y; a) converges to zero asy goes to±∞,
√

fY (y; a) log
√

fY (y; a) in (56) also becomes zero asy
approaches±∞.

Similarly, the second term in (55) is re-written as

EX [XfY |X(y|X ; a)] log fY (y; a)
∣
∣
∣

∞

y=−∞

=
EX [XfY |X(y|X ; a)]

√

fY (y; a)
︸ ︷︷ ︸

(a1)

2
√

fY (y; a) log
√

fY (y; a)
︸ ︷︷ ︸

(a2)

∣
∣
∣
∣
∣

∞

y=−∞

.(57)

Since factor(a2) tends to zero asy approaches±∞, and factor
(a1) is bounded due to assumption (17d), the right-hand side
of equation (57) approaches zero asy goes to±∞. Therefore,
the first term in equation (52) is zero, and the equality in (53)
is verified.

Again, using integration by parts, equation (54) is expressed
as

− 1

2a

∫ ∞

−∞

d

dy
fY (y; a)EX

[

(y −X)
fY |X(y|X ; a)

fY (y; a)

]

dy

=− 1

2a
fY (y; a)EX

[

(y −X)
fY |X(y|X ; a)

fY (y; a)

]
∣
∣
∣
∣
∣

∞

y=−∞

+
1

2a

∫ ∞

−∞
fY (y; a)

d

dy
EX

[

(y −X)
fY |X(y|X ; a)

fY (y; a)

]

dy(58)

=
1

2a

∫ ∞

−∞
fY (y; a)

d

dy
EX

[

(y −X)
fY |X(y|X ; a)

fY (y; a)

]

dy (59)

=
1

2a

∫ ∞

−∞
fY (y; a)

d

dy

(

y − EX

[

X
fY |X(y|X ; a)

fY (y; a)

])

dy

=
1

2a

{

1− EY

[
d

dY
EX|Y [X |Y ]

]}

. (60)

The equality in (59) is verified by the following procedure:
the first part of equation (58) is re-written as

− 1

2a
fY (y; a)EX

[

(y −X)
fY |X(y|X ; a)

fY (y; a)

]
∣
∣
∣
∣
∣

∞

y=−∞

= − 1

2a

(
yfY (y; a)− EX

[
XfY |X(y|X ; a)

])

∣
∣
∣
∣
∣

∞

y=−∞
(61)

= 0.

Due to assumptions (17c) and (17d), both termsyfY (y; a)
andEX [XfY |X(y|X ; a)] become zero asy goes to±∞, and
equation (61) is zero.

Therefore,

d

da
h(Y ) =

1

2a

{

1− EY

[
d

dY
EX|Y [X |Y ]

]}

,

and the proof is completed.

APPENDIX C
A PROOF OFTHEOREM 7

Proof: [Theorem 7]
From equation (49), we know

d

da
h(Y )

=−
∫ ∞

−∞

d

da
fY (y; a)dy −

∫ ∞

−∞
log fY (y; a)

d

da
fY (y; a)dy

=−
∫ ∞

−∞
log fY (y; a)

d

da
fY (y; a)dy.
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Therefore, the second derivative of differential entropy is
expressed as

d2

da2
h(Y )=−

∫ ∞

−∞

d

da
log fY (y; a)

d

da
fY (y; a)dy

−
∫ ∞

−∞
log fY (y; a)

d2

da2
fY (y; a)dy,

=−Ja(Y )−
∫ ∞

−∞
log fY (y; a)

d2

da2
fY (y; a)dy. (62)

The last equality is due to the definition of Fisher information
with respect to parametera in (7).

From equation (16), we derive an additional relationship
between the second order differentials with respect toy and
a:

d2

da2
fY |X(y|x; a)

=
d

da

(

− 1

2a

d

dy

(
(y − x)fY |X(y|x; a)

)
)

=
1

2a2
d

dy

(
(y − x)fY |X(y|x; a)

)

+
1

4a2
d

dy

(

(y − x)

(
d

dy

(
(y − x)fY |X(y|x; a)

)
))

.

Since

d2

dy2
(
(y − x)2fY |X(y|x; a)

)

=
d2

dy2
[(y − x) ((y − x)fY |X(y|x; a))]

=
d

dy
((y−x)fY|X(y|x; a))+

d

dy

(

(y−x)
d

dy
((y−x)fY|X(y|x; a))

)

,

we obtain the following relationship:

d2

da2
fY |X(y|x; a) =

1

4a2
d2

dy2
(
(y − x)2fY |X(y|x; a)

)

+
1

4a2
d

dy

(
(y − x)fY |X(y|x; a)

)
.(63)

Taking the expected value of both sides of (63),

d2

da2
fY (y; a)=

1

4a2

{

d2

dy2
EX

[
(y −X)2fY |X(y|X ; a)

]

+
d

dy
EX

[
(y −X)fY |X(y|X ; a)

]

}

. (64)

After substituting (d2fY (y; a)/da2), from equation (64),
into equation (62), the second term of (62) takes the expres-
sion:

−
∫ ∞

−∞
log fY (y; a)

d2

da2
fY (y; a)dy

=− 1

4a2

∫ ∞

−∞
log fY (y; a)

d2

dy2
EX

[
(y −X)2fY |X(y|X ; a)

]
dy

︸ ︷︷ ︸

(D)

− 1

4a2

∫ ∞

−∞
log fY (y; a)

d

dy
EX[(y −X)fY |X(y|X ; a)] dy

︸ ︷︷ ︸

(E)

.

Term (E) is exactly of the same form as (51), and therefore,

− 1

4a2

∫ ∞

−∞
log fY (y; a)

d

dy
EX [(y −X)fY |X(y|X ; a)] dy

=− 1

4a2
EY

[
d

dY
EX|Y [Y −X |Y ]

]

=− 1

2a

d

da
h(Y ). (65)

Term(D) is further simplified by the following procedures:

− 1

4a2

∫ ∞

−∞
log fY (y; a)

d2

dy2
EX[(y−X)2fY |X(y|X ; a)] dy

=− 1

4a2
log fY (y; a)

d

dy
EX[(y −X)2fY |X(y|X ; a)]

∣
∣
∣
∣
∣

∞

y=−∞

+
1

4a2

∫ ∞

−∞

d

dy
logfY (y; a)

d

dy
EX[(y−X)2fY|X(y|X ; a)] dy.

(66)

The first part of (66) is expressed as

− 1

4a2
log fY (y; a)

d

dy
EX

[
(y−X)2fY |X(y|X ; a)

]

∣
∣
∣
∣
∣

∞

y=−∞

=− 1

4a2
log fY (y; a)

(

EX[2(y −X)fY |X(y|X ; a)]

+EX

[

(y2 − 2Xy +X2)
d

dy
fY |X(y|X ; a)

])
∣
∣
∣
∣
∣

∞

y=−∞

=− 1

4a2
log fY (y; a)

(

2yfY (y; a)− 2EX[XfY |X(y|X ; a)]

+y2
d

dy
fY (y; a)− 2yEX

[

X
d

dy
fY |X(y|X ; a)

]

+EX

[

X2 d

dy
fY |X(y|X ; a)

])
∣
∣
∣
∣
∣

∞

y=−∞

=− 1

2a2

√

fY (y; a) log
√

fY (y; a)
︸ ︷︷ ︸

(b1)

×
(

2 y
√

fY (y; a)
︸ ︷︷ ︸

(b2)

+EX

[

X2
d
dyfY |X(y|X ; a)
√

fY (y; a)
︸ ︷︷ ︸

(b3)

])

− 1

a2
4
√

fY (y; a) log
4
√

fY (y; a)
︸ ︷︷ ︸

(b1)

×
(

y2 4
√

fY (y; a)
︸ ︷︷ ︸

(b2)

EX

[
d
dyfY |X(y|X ; a)
√

fY (y; a)

]

︸ ︷︷ ︸

(b3)

−2 y 4
√

fY (y; a)
︸ ︷︷ ︸

(b2)

EX

[

X

d
dyfY |X(y|X ; a)
√

fY (y; a)
︸ ︷︷ ︸

(b3)

])

+
1

a2

√

fY (y; a) log
√

fY (y; a)
︸ ︷︷ ︸

(b1)

EX[XfY |X(y|X ; a)]
√

fY (y; a)
︸ ︷︷ ︸

(b4)

∣
∣
∣
∣
∣

∞

y=−∞

.
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Sincex log x becomes zero asx approaches zero andfY (y; a)
converges to zero asy goes to±∞, factor(b1) is zero asy →
±∞. Due to assumptions (19c) and (19d), term(b2) becomes
zero asy → ±∞ and term(b3) is bounded. Also, factor
(b4) must be bounded due to assumption (19e). Therefore, as
y → ±∞, the first part of equation (66) vanishes.

Then, equation (66) is further processed using integration
by parts as follows:

1

4a2

∫ ∞

−∞

d

dy
logfY(y; a)

d

dy
EX[(y−X)2fY |X(y|X ; a)] dy

=
1

4a2
d

dy
logfY(y; a)EX[(y−X)2fY |X(y|X ; a)]

∣
∣
∣

∞

y=−∞

− 1

4a2

∫ ∞

−∞

d2

dy2
logfY(y; a)EX[(y−X)2fY |X(y|X ; a)] dy.

(67)

Again, the first part of equation (67) is re-written as

1

4a2
d

dy
log fY (y; a)EX[(y−X)2fY |X(y|X ; a)]

∣
∣
∣

∞

y=−∞

=
1

4a2
EX

[
d
dy fY |X(y|X ; a)
√

fY (y; a)

]

EX

[

(y−X)2
fY |X(y|X ; a)
√

fY (y; a)

]∣
∣
∣
∣
∣

∞

y=−∞

=
1

4a2
EX

[
d
dyfY |X(y|X ; a)
√

fY (y; a)

]

︸ ︷︷ ︸

(c1)

y2
√

fY (y; a)
︸ ︷︷ ︸

(c2)

−2
1

4a2
EX

[
d
dyfY |X(y|X ; a)
√

fY (y; a)

]

︸ ︷︷ ︸

(c1)

y 4
√

fY (y; a)
︸ ︷︷ ︸

(c2)

×EX

[

X
fY |X(y|X ; a)

(fY (y; a))3/4

]

︸ ︷︷ ︸

(c3)

+
1

4a2
EX

[
d
dyfY |X(y|X ; a)
√

fY (y; a)

]

︸ ︷︷ ︸

(c1)

4
√

fY (y; a)
︸ ︷︷ ︸

(c2)

×EX

[

X2 fY |X(y|X ; a)

(fY (y; a))3/4

]

︸ ︷︷ ︸

(c3)

∣
∣
∣
∣
∣

∞

y=−∞

. (68)

Factors(c1) and (c3) are bounded due to assumptions (19c)
and (19e), and, by assumption (19d), factor(c2) approaches
zero asy → ±∞. Then, equation (67) is expressed as

1

4a2

∫ ∞

−∞

d

dy
log fY (y; a)

d

dy
EX

[
(y−X)2fY |X(y|X ; a)

]
dy

=− 1

4a2

∫ ∞

−∞

d2

dy2
log fY (y; a)EX

[
(y−X)2fY |X(y|X ; a)

]
dy.

(69)

Using equations (65) and (69), equation (62) is expressed

as

d2

da2
h(Y )

=−Ja(Y )−
∫ ∞

−∞
log fY (y; a)

d2

da2
fY (y; a)dy

=−Ja(Y )− 1

2a

d

da
h(Y )

− 1

4a2
EY

[
d

dY
SY (Y )EX|Y

[
(Y −X)2|Y

]
]

=−Ja(Y )− 1

4a2
EY

[
d

dY
EX|Y [(Y −X)|Y ]

]

− 1

4a2
EY

[
d

dY
SY (Y )EX|Y

[
(Y −X)2|Y

]
]

,

and the proof is completed.

APPENDIX D
A PROOF OFLEMMA 1

Proof: [Lemma 1]
Before we prove this lemma, we first introduce two lemmas

which are necessary to prove Lemma 1.
Lemma 6:Given the channelY = X +

√
aW in (1), the

following identity holds:

d

da
J(Y ) = −EY

[(
d

dY
SY (Y )

)2
]

, (70)

whereX is an arbitrary but fixed random variable with a finite
second-order moment, andW is a Gaussian random variable
with zero mean and unit variance.

Proof: In Theorems 4, 5, we showed the equivalence
among De Bruijn, generalized Stein, and heat equation iden-
tities for specific conditions. Therefore, using one of the
identities, this lemma can be proved. In this proof, Theorem3
(the heat equation identity) will be used withg(y) = SY (y)

2.
Unlike the definition ofg(y) in Theorem 3,g(y) is dependent
on the parametera. Therefore, we use the notationg(y; a)
instead ofg(y). Since J(Y ) = E[SY (Y )2], the right-hand
side of (70) is expressed as

d

da
J(Y )=

d

da
EY

[
SY (Y )2

]

=

∫ ∞

−∞

d

da
fY (y; a)g(y; a)dy + EY

[
d

da
g(Y ; a)

]

.(71)

By the heat equation identity, the first term in equation (71)
is expressed as
∫ ∞

−∞

d

da
fY (y; a)g(y; a)dy =

1

2
EY

[
d2

dY 2
g(Y ; a)

]

.

Using integration by parts, the second term in equation (71)
is expressed as

EY

[
d

da
g(Y ; a)

]

=
1

2
EY

[
d2

dY 2
g(Y ; a)

]

−EY

[(
d

dY
SY (Y )

)2
]

+2EY

[

SY (Y )2
d

dY
SY (Y )

]

.
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Therefore, equation (71) takes the form:
∫ ∞

−∞

d

da
fY (y; a)g(y; a)dy + EY

[
d

da
g(Y ; a)

]

= −EY

[(
d

dY
SY (Y )

)2
]

+EY

[
d2

dY 2
g(Y ; a)

]

+ 2EY

[

SY (Y )2
d

dY
SY (Y )

]

︸ ︷︷ ︸

(F )

.

Performing an integration by parts, the term(F ) is shown to
be equal to zero, and the proof is completed.

Remark 5:A vector version of this lemma was reported
in [13]. The reasons why we introduce both this lemma and
its proof are not only to present alternative proofs, but also
to explain the usefulness of our novel results. For example,
Lemma 6 was proved based on the heat equation identity,
which is a novel approach to prove this lemma. At the
same time, this lemma can also be alternatively proved using
Theorem 7 or Corollary 4.

Lemma 7 (Fisher Information Inequality):Consider the
channelY = X +

√
aW in (1), where the random variable

X is assumed to have an arbitrary distribution but a fixed
second-order moment andW is normally distributed with
zero mean and unit variance. Then, the following inequality
is always satisfied:

1

J(Y )
≥ 1

J(X)
+

1

J(
√
aW )

,

where the equality holds if and only ifX is normally dis-
tributed.

Proof: Using Lemma 6 (equivalently, Theorem 7 or
Corollary 4 can be used),

− d

da
J(Y ) = EY

[(
d

dY
SY (Y )

)2
]

≥ EY

[(
d

dY
SY (Y )

)]2

= J(Y )2. (72)

Equation (72) is expressed as

− d

da
J(Y ) ≥ J(Y )2,

and it is equivalent to

−
d
daJ(Y )

J(Y )2
≥ 1

⇐⇒ d

da

(
1

J(Y )

)

≥ 1. (73)

Since inequality (73) is satisfied for anya,
∫ a

0

d

dt

(
1

J(Y )

)

dt ≥
∫ a

0

1dt,

⇐⇒ 1

J(Y )
− 1

J(X)
≥ a,

⇐⇒ 1

J(Y )
≥ 1

J(X)
+

1

J(
√
aW )

. (74)

Since W is normally distributed with unit variance,a =
1/J(

√
aW ), and the last equivalence holds. The last equation

in (74) denotes the Fisher information inequality, and the proof
is completed.

Remark 6:This proof uses neither the convolutional in-
equality, the data processing inequality, nor the EPI, unlike
previous proofs. The proof only relies on De Bruijn’s identity,
Stein’s identity, or the heat equation identity. Namely, Theorem
1, 2, 3, or 7 is the only adopted result, and Theorems 4, 5
ensure Theorem 1, 2, 3, or 7 can be equivalently adopted to the
proof. Even though Lemma 6 was used in this proof, Lemma
6 itself was also proved using one of the above identities.
Therefore, this proof only uses our results.

Now, based on Lemma 7, the proof of Lemma 1 is straight-
forward. From Lemma 7,

1

J(Y )
≥ 1

J(X)
+

1

J(
√
aW )

,

⇐⇒ J(Y ) ≤ J(X)J(
√
aW )

J(X) + J(
√
aW )

. (75)

Since X and W are independent, andW is normally dis-
tributed,

EX [J(Y |X)]

=

∫ ∞

−∞
fX(x)

∫ ∞

−∞

(
d

dx
log fY |X(y|x; a)

)2

fY |X(y|x; a)dydx

=

∫ ∞

−∞
fX(x)

∫ ∞

−∞

1

a2
(y − x)2 fY |X(y|x; a)dydx

=
1

a
(76)

=J(
√
aW ).

The equality in (76) is due toEY |X [(Y −X)2|X = x] = a.
For a Gaussian random variableW ,

J(Y ) =
1

a
− 1

a2
V ar(X |Y ), (77)

whereV ar(X |Y ) stands forEX,Y [(X−EX|Y [X |Y ])2] ([11],
[20]).

SubstitutingV ar(X |Y ) and EX [J(Y |X)] for J(Y ) and
J(

√
aW ), respectively, equation (75) is expressed as

J(Y ) ≤ J(X)J(
√
aW )

J(X) + J(
√
aW )

,

⇐⇒ 1

a
− 1

a2
V ar(X |Y ) ≤ J(X)J(

√
aW )

J(X) + J(
√
aW )

,

⇐⇒ V ar(X |Y ) ≥ 1

J(X) + J(
√
aW )

,

⇐⇒ V ar(X |Y ) ≥ 1

J(X) + EX [J(Y |X)]
.

SinceV ar(X |Y ) is equal to the minimum mean square error,

MSE(X̂) ≥ MMSE(X̂)

= V ar(X |Y )

≥ 1

J(X) + EX [J(Y |X)]
,
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where X̂ denotes a Bayesian estimator, and the obtained
inequality is the Bayesian Cramér-Rao lower bound (BCRLB).

APPENDIX E
A PROOF OFLEMMA 2

Proof: [Lemma 2]
Whena is zero, the right-hand side of (22) is zero due to

the following relations:

N(X |Y ) =
1

2πe
exp(2h(X |Y ))

=
1

2πe
exp(2(h(X) + h(Y |X)− h(Y )))

=
1

2πe
exp(2(h(X) + h(

√
aW )− h(Y )))

=
N(X)N(

√
aW )

N(Y )

=
aN(X)N(W )

N(X +
√
aW )

.

Therefore, whena goes to zero,

lim
a→0

N(X |Y ) = lim
a→0

aN(X)N(W )

N(X +
√
aW )

= 0. (78)

The equality is due to the fact thatlim
a→0

N(X +
√
aW ) =

N(X). Since the left-hand side of (22) is always greater than
or equal to zero, the inequality in (22) is satisfied whena is
zero.

Without loss of generality, from now on, we assume that
a > 0.

Sinceh(X |Y ) = h(X) + h(Y |X) − h(Y ), by Theorem 1
(De Bruijn’s identity),

d

da
N(X |Y )

=
d

da

(
1

2πe
exp (2h(X |Y ))

)

= 2N(X |Y )

{
d

da
h(X) +

d

da
h(Y |X)− d

da
h(Y )

}

= 2N(X |Y )

{
1

2a
− 1

2
J(Y )

}

(79)

= N(X |Y )
1

a2
V ar(X |Y ). (80)

Since h(X) is independent ofa and h(Y |X) = h(
√
aW ),

(d/da)h(X) is zero, and(d/da)h(Y |X) = 1/2a. Therefore,
the equality in (79) is satisfied. The equality in (80) is due to
equation (77).

Based on equation (77),

d

da
V ar(X |Y ) =

d

da

[
a− a2J(Y )

]

=
d

da

[

a− a2
(

2
d

da
h(Y )

)]

. (81)

The equality in (81) is due to Theorem 1.

Using Corollary 4 and equation (77), equation (81) is further
processed as

d

da

[

a− a2
(

2
d

da
h(Y )

)]

= 1− 2a

(

2
d

da
h(Y )

)

+ a2
(

−2
d2

da2
h(Y )

)

= 1− 2aJ(Y ) + a2EY

[(
d

dY
SY (Y )

)2
]

(82)

≥ 1− 2aJ(Y ) + a2J(Y )2 (83)

= (1− aJ(Y ))2

=
1

a2
V ar(X |Y )2.

The equality in (82) is due to Theorem 1 and Corollary 4, and
the inequality in (83) holds because

EY

[(
d

dY
SY (Y )

)2
]

≥
(

EY

[
d

dY
SY (Y )

])2

= J(Y )2.

Therefore,

d

da
V ar(X |Y ) ≥ 1

a2
V ar(X |Y )2. (84)

Using equations (80) and (84), we obtain the following in-
equality:

d

da
logN(X |Y ) ≤ d

da
logV ar(X |Y ).

SinceN(XG|YG) = V ar(XG|YG), whereXG andYG denote
Gaussian random variables whose variances are equal toX
andY , respectively, the following inequality also holds:

d

da
(logN(XG|YG)− logN(X |Y ))

≥ d

da
(logV ar(XG|YG)− logV ar(X |Y )) . (85)

By performing an integration, from0 to a, of both sides in
(85), equation (85) is expressed as

∫ a

0

d

dt
(logNt(XG|YG)− logNt(X |Y )) dt

≥
∫ a

0

d

dt
(logV art(XG|YG)− logV art(X |Y )) dt

⇔ logNt(XG|YG)− logNt(X |Y )

∣
∣
∣
∣
∣

a

t=0

≥ logV art(XG|YG)− logV art(X |Y )

∣
∣
∣
∣
∣

a

t=0

⇔ logNa(XG|YG)− logNa(X |Y )

− lim
t→0

(logNt(XG|YG)− logNt(X |Y ))

≥ logV ara(XG|YG)− logV ara(X |Y )

− lim
t→0

(logV art(X |Y )− logV art(XG|YG)) (86)

⇔ logNa(X |Y ) ≤ logV ara(X |Y ), (87)

where⇔ stands for equivalence between before and after the
notation, subscriptt or a denotes that a function depends on
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a parametert or a, respectively (the subscript is only used
when there may be a confusion between an actual parameter
variable and a dummy variable).

The equivalence in (87) is due to the following:
Na(XG|YG) = V ara(XG|YG),

lim
t→0

(logNt(XG|YG)− logNt(X |Y ))

= lim
t→0

log
Nt(XG|YG)

Nt(X |Y )

= lim
t→0

log

(

N(XG)Nt(YG|XG)

Nt(YG)

/

N(X)Nt(Y |X)

Nt(Y )

)

= lim
t→0

log

(

N(XG)N(
√
tW )

N(XG +
√
tW )

/

N(X)N(
√
tW )

N(X +
√
tW )

)

= lim
t→0

log

(
N(XG)N(X +

√
tW )

N(X)N(XG +
√
tW )

)

= log

(
N(XG)N(X)

N(X)N(XG)

)

= 0, (88)

and

lim
t→0

(logV art(XG|YG)− logV art(X |Y ))

= lim
t→0

(

log
(

t−t2J(XG+
√
tW )

)

−log
(

t−t2J(X+
√
tW )

))

(89)

=lim
t→0

(

log
(

1−tJ(XG+
√
tW )

)

−log
(

1−tJ(X+
√
tW )

))

=log(1)− log(1)

=0,

whereW is a Gaussian random variable. The equality in (89)
is due to equation (77).

Since log x is an increasing function with respect tox,
equation (87) is equivalent to

N(X |Y ) ≤ V ar(X |Y ),

and the proof is completed.

APPENDIX F
A PROOF OFLEMMA 3

Proof: [Lemma 3]
Whena = 0, both sides of the inequality in (25) are zero,

and the inequality in (25) is satisfied. Therefore, without loss
of generality, we assume thata > 0.

d

da
logN(X |Y ) =

1

N(X |Y )

d

da
N(X |Y )

=
1

a2
V ar(X |Y ) (90)

≥ 1

a2
1

J(X) + J(
√
aW )

(91)

=
d

da
log

(
1

J(X) + J(
√
aW )

)

,

whereW is a Gaussian random variable with zero mean and
unit variance. The equality in (90) is due to equation (80), the
inequality in (91) is because of BCRLB.

SinceN(XG|YG) is equal to1/(J(XG)+J(
√
aW )), where

XG andYG are Gaussian random variables whose variances
are equal toX andY , respectively, the following inequality
is satisfied:

d

da
(logN(XG|YG)− logN(X |Y )))

≤ d

da

(

log
1

J(XG) + J(
√
aW )

− log
1

J(X) + J(
√
aW )

)

.(92)

By integrating both sides in (92), equation (92) is equivalent
to the following:
∫

a

0

d

dt
(logNt(XG|YG)− logNt(X |Y ))) dt

≤
∫

a

0

d

dt

(

log
1

J(XG)+J(
√
tW)

−log
1

J(X)+J(
√
tW)

)

dt

⇔ logNa(XG|YG)− logNa(X |Y )

− lim
t→0

(logNt(XG|YG)− logNt(X |Y ))

≤ log
1

J(XG) + J(
√
aW )

− log
1

J(X) + J(
√
aW )

− lim
t→0

(

log
1

J(XG)+J(
√
tW )

− log
1

J(X)+J(
√
tW )

)

⇔ logN(X |Y ) ≥ log
1

J(X) + J(
√
aW )

, (93)

where⇔ denotes the equivalence between before and after the
notation, and subscripta or t of a function means dependency
of the function with respect toa or t, respectively. The
equivalence in (93) is due to the following:N(XG|YG) is
equal to1/(J(XG) + J(

√
aW )), and

lim
t→0

(

log
1

J(XG) + J(
√
tW )

− log
1

J(X) + J(
√
tW )

)

= lim
t→0

(

log
t

tJ(XG) + J(W )
− log

t

tJ(X) + J(W )

)

= lim
t→0

log
tJ(X) + J(W )

tJ(XG) + J(W )

= log
J(W )

J(W )
= 0, (94)

and

lim
t→0

(logNt(XG|YG)− logNt(X |Y )) = 0

due to equation (88).
Since log x is a increasing function with respect tox, the

inequality in (93) is equivalent to

N(X |Y ) ≥ 1

J(X) + J(
√
aW )

. (95)

Since we have already proved thatN(X |Y ) is a lower bound
for any Bayesian estimator in Lemma 2, the inequality in (95)
means that the lower boundN(X |Y ), the left-hand side of
(95), is tighter than BCRLB, the right-hand side of (95).
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APPENDIX G
A PROOF OFLEMMA 4 (COSTA’ S EPI)

Proof: [Lemma 4]
The proof will be conducted in two different ways.

1) Instead of proving equation (26), we are going to prove
the inequality in (27).
Using De Bruijn’s identity,

d2

da2
N(Y ) = 2

d

da
N(Y )

d

da
h(Y ) + 2N(Y )

d2

da2
h(Y ),

= N(Y )

(

J(Y )2 + 2
d2

da2
h(Y )

)

,

whereY = X +
√
aW . SinceN(Y ) ≥ 0, proving the

inequality in (27) is equivalent to proving the following
inequality:

J(Y )2 + 2
d2

da2
h(Y ) ≤ 0. (96)

Using Theorem 7, the inequality in (96) is expressed as

J(Y )2 − 2Ja(Y )− 1

2a2
EY

[
d

dY
EX|Y [Y −X |Y ]

]

− 1

2a2
EY

[
d

dY
SY (Y )EX|Y

[
(Y −X)2|Y

]
]

≤ 0. (97)

By Corollary 4, equation (97) is equivalent to

J(Y )2−2Ja(Y )− 1

2a2
EY

[
d

dY
EX|Y [Y −X |Y ]

]

− 1

2a2
EY

[
d

dY
SY (Y )EX|Y

[
(Y −X)2|Y

]
]

=J(Y )2 − EY

[(
d

dY
SY (Y )

)2
]

=−EY

[(

J(Y ) +
d

dY
SY (Y )

)2
]

(98)

≤0.

SinceJ(Y ) = −E[(d/dY )SY (Y )] andE[SY (Y )] = 0,
the equality holds in (98). Therefore,

d2

da2
N(Y ) = −EY

[(

J(Y ) +
d

dY
SY (Y )

)2
]

,

≤ 0,

and the proof is completed.
Remark 7: This proof mostly follows the proof in [30].
However, by using Theorem 7 to prove Costa’s EPI, we
show that Costa’s EPI can be proved by De Bruijn-like
identity without using the Fisher information inequality.

2) In the second proof, the inequality (27) is proved by a
slightly different method.
First, define a functionl(a) as follows:

l(a) = − J(X)

1 + aJ(X)
+ J(Y ), (99)

where Y = X +
√
aW , X is an arbitrary but fixed

random variable,W is a Gaussian random variable, and
X andW are independent of each other.

For arbitrary non-negative real-valueda, l(a) ≤ 0, and
it is proved by the following procedure; using Lemma
6 (Theorem 7 or Corollary 4 can be used instead of
Lemma 6),

− d

da
J(Y ) = EY

[(
d

dY
SY (Y )

)2
]

≥ EY

[(
d

dY
SY (Y )

)]2

= J(Y )2. (100)

Equation (100) is equivalent to the following inequali-
ties:

−
d
daJ(Y )

J(Y )2
≥ 1

⇐⇒ d

da

(
1

J(Y )

)

≥ 1. (101)

Since inequality (101) is satisfied for arbitrary non-
negative real-valueda,

∫ a

0

d

dt

(
1

J(Y )

)

dt ≥
∫ a

0

1dt

⇐⇒ 1

J(Y )
− 1

J(X)
≥ a

⇐⇒ J(Y ) ≤ J(X)

1 + aJ(X)
, (102)

and therefore, equation (99) is always non-positive.
SinceJ(Y ) converges toJ(X) as a approaches zero,
l(0) = 0, and the following inequality holds for an
arbitrary but fixed random variableX and arbitrary small
non-negative real-valuedǫ:

l(ǫ)− l(0) = − J(X)

1 + ǫJ(X)
+ J(X +

√
ǫW ) (103)

≤ 0. (104)

Therefore,
d

dǫ
l(ǫ)
∣
∣
∣
ǫ=0

≤ 0, (105)

for an arbitrary but fixed random variableX .
Since the inequality in (105) holds for an arbitrary
random variableX , we defineX asX̃ +

√
aW̃ , where

X̃ is an arbitrary but fixed random variable,̃W is a
Gaussian random variable whose variance is identical to
the variance ofW , andX̃, W̃ , andW are independent of
one another. Then, the inequality in (105) is equivalent
to the following inequalities:

0 ≥
(

J(X̃ +
√
aW̃ )

1 + ǫJ(X̃ +
√
aW̃ )

)2 ∣
∣
∣
∣
∣
ǫ=0

+
d

dǫ
J(X̃ +

√
aW̃ +

√
ǫW )

∣
∣
∣
∣
∣
ǫ=0

⇔ 0 ≥
(

J(X̃ +
√
aW̃ )

1 + ǫJ(X̃ +
√
aW̃ )

)2 ∣
∣
∣
∣
∣
ǫ=0

+
d

dǫ
J(X̃ +

√
a+ ǫW̃ )

∣
∣
∣
∣
∣
ǫ=0

(106)
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⇔ 0 ≥
(

J(X̃ +
√
aW̃ )

1 + ǫJ(X̃ +
√
aW̃ )

)2 ∣
∣
∣
∣
∣
ǫ=0

+
d

da
J(X̃ +

√
a+ ǫW̃ )

∣
∣
∣
∣
∣
ǫ=0

(107)

⇔ 0 ≥ J(X̃ +
√
aW̃ )2 +

d

da
J(X̃ +

√
aW̃ ), (108)

where⇔ denotes the equivalence between before and
after the notation. The equivalence in (106) is due to the
fact thatJ(X̃ +

√
aW̃ +

√
ǫW ) = J(X̃ +

√
a+ ǫW̃ )

for independent Gaussian random variablesW and W̃
whose variances are identical to each other. The inequal-
ity in (107) holds due to the following procedure: first,
the Fisher informationJ(X̃ +

√
a+ ǫW̃ ) is expressed

as

J(X̃ +
√
a+ ǫW̃ )

=

∫ ∞

−∞

d

dy
fY (y; a, ǫ)

d

dy
log fY (y; a, ǫ)dy

=

∫ ∞

−∞

d

dy
EX̃

[

fY|X̃(y|X̃;a,ǫ)
] d

dy
logEX̃

[

fY|X̃(y|X̃ ;a,ǫ)
]

dy

=

∫ ∞

−∞

d

dy
EX̃

[

1
√

2π(a+ǫ)
exp

(

− 1

2(a+ǫ)
(y−X̃)2

)]

× d

dy
logEX̃

[

1
√

2π(a+ǫ)
exp

(

− 1

2(a+ǫ)
(y−X̃)2

)]

dy,

(109)

where Y = X̃ +
√
a+ ǫW̃ . Since fY |X̃(y|x̃; a, ǫ) is

a Gaussian density function with meanx̃ and variance
a+ ǫ, the equality in (109) holds. In equation (109),a
and ǫ are symmetrically included in the equation, and
therefore,

d

dǫ
J(X̃ +

√
a+ ǫW̃ ) =

d

da
J(X̃ +

√
a+ ǫW̃ ).

Since random variableX̃ is arbitrary anda is an
arbitrary non-negative real-valued number in equation
(108), the proof is completed.

APPENDIX H
DERIVATION OF EQUATION (16)

Given the channel model (1), random variablesX andW
are independent of each other,a is a deterministic parameter,
and random variableY is the summation ofX and

√
aW .

Therefore, between the two probability density functions
fY |X(y|x; a) andfW (w), there exists a relationship that can
be established as follows.

fY |X(y|x; a) =
1√
a
fW (w)

∣
∣
∣
∣
∣
w=y−x√

a

=
1√
a
fW

(
y − x√

a

)

.

Therefore,

d

dy
fY |X(y|x; a) =

1√
a

(
d

dy
fW

(
y − x√

a

))

=
1√
a

(
1√
a

d

dw
fW (w)

)
∣
∣
∣
∣
∣
w= y−x√

a

,

and

d

da
fY |X(y|x; a)

=
d

da

(
1√
a
fW

(
y − x√

a

))

= − 1

2a
√
a
fW

(
y − x√

a

)

+
1√
a

d

da
fW

(
y − x√

a

)

= − 1

2a
√
a
fW

(
y − x√

a

)

+
1√
a



− 1

2a
√
a
(y − x)

d

dw
fW (w)

∣
∣
∣
∣
∣
w=y−x√

a



 . (110)

Equation (110) is further processed as

− 1

2a
√
a
fW

(
y−x√

a

)

+
1√
a



− 1

2a
√
a
(y−x)

d

dw
fW(w)

∣
∣
∣
∣
∣
w=

y−x√
a





=− 1

2a




1√
a
fW

(
y−x√

a

)

+
y−x√

a




1√
a

d

dw
fW(w)

∣
∣
∣
∣
∣
w=

y−x√
a









=− 1

2a

[(
d

dy
(y−x)

)

fY |X(y|x; a)+(y−x)
d

dy
fY |X(y|x; a)

]

=− 1

2a

d

dy
[(y − x)fY |X(y|x; a)] ,

and therefore,

d

da
fY |X(y|x; a) = − 1

2a

d

dy

[
(y − x)fY |X(y|x; a)

]
.

APPENDIX I
EXPLANATION OF ASSUMPTIONS(17) IN COROLLARIES 2,

3

1) Corollary 2
Given the channelY = X+

√
aW in (1),W is assumed

to be exponentially distributed with unit parameter, i.e.,
its pdf fW (w) is defined asexp(−w)U(w), whereU(·)
denotes a unit step function. Since random variables
X and W are independent of each other, conditional
density functionfY |X(y|x; a) is expressed as

fY |X(y|x; a) = 1√
a
exp

(
y − x√

a

)

U(y − x), (111)

and its derivatives with respect toy and a are respec-
tively denoted as

d

dy
fY |X(y|x; a)

=− 1√
a
fY |X(y|x; a)+

1√
a
exp

(
y − x√

a

)

δ(y − x),(112)
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d

da
fY |X(y|x; a)

=− 1

2a
fY |X(y|x; a) +

(y − x)

2a
√
a
fY |X(y|x; a), (113)

whereδ(·) is a Dirac delta function.
The absolute values of equations (112), (113) are
bounded as

∣
∣
∣
∣

d

dy
fY |X(y|x; a)

∣
∣
∣
∣

=

∣
∣
∣
∣
− 1√

a
fY |X(y|x; a) + 1√

a
exp

(
y − x√

a

)

δ(y − x)

∣
∣
∣
∣

≤
∣
∣
∣
∣

1√
a
fY |X(y|x; a)

∣
∣
∣
∣
+

∣
∣
∣
∣

1√
a
exp

(
y − x√

a

)

δ(y − x)

∣
∣
∣
∣

≤ 1

a
+

1√
a
exp

(
y − x√

a

)

δ(y − x), (114)

and

∣
∣
∣
∣

d

da
fY |X(y|x; a)

∣
∣
∣
∣

=

∣
∣
∣
∣
− 1

2a
fY |X(y|x; a) + (y − x)

2a
√
a
fY |X(y|x; a)

∣
∣
∣
∣

≤
∣
∣
∣
∣

1

2a
fY |X(y|x; a)

∣
∣
∣
∣
+

∣
∣
∣
∣

(y − x)

2a
√
a
fY |X(y|x; a)

∣
∣
∣
∣

(115)

≤ 1

2a
√
a
+ E, (116)

where E = maxy[(y − x)fY |X(y|x; a)]. Since
fY |X(y|x; a) is exponentially decreasing asy ap-
proaches∞, the real valuedE always exists. Also,
maxy f(Y |X)(y|x; a) = 1/

√
a, and therefore, the in-

equalities in (114) and (116) are satisfied.
The right-hand side of (114) and (116) are now inte-
grable as follows:

EX

[
1

a
+

1√
a
exp

(
y −X√

a

)

δ(y −X)

]

=
1

a
+ fX(y),

EX

[
1

2a
√
a
+ E

]

=
1

2a
√
a
+ E. (117)

If a function fX(x) is bounded, by dominated conver-
gence theorem, assumption (17a) is verified.
Second, assumption (17b) is verified as follows.

∣
∣
∣
∣

d

da
(fY (y; a) log fY (y; a))

∣
∣
∣
∣

(118)

≤
∣
∣
∣
∣
log fY (y; a)

d

da
fY (y; a)

∣
∣
∣
∣
+

∣
∣
∣
∣

d

da
fY (y; a)

∣
∣
∣
∣

=

∣
∣
∣
∣
∣
log fY (y; a)EX

[

− 1

2a
fY |X(y|X ; a)

+
(y −X)

2a
√
a

fY |X(y|X ; a)

]∣
∣
∣
∣
∣
+

∣
∣
∣
∣

d

da
fY (y; a)

∣
∣
∣
∣

=

∣
∣
∣
∣
∣

√

fY (y; a) log fY (y; a)

(

− 1

2a

√

fY (y; a)

+
y

2a
√
a

√

fY (y; a)−
EX [XfY |X(y|X ; a)]

2a
√
a
√

fY (y; a)

)∣
∣
∣
∣
∣

+

∣
∣
∣
∣

d

da
fY (y; a)

∣
∣
∣
∣

=
∣
∣
∣2
√

fY (y; a) log
√

fY (y; a)
∣
∣
∣

︸ ︷︷ ︸

(d1)

×
∣
∣
∣
∣
∣
− 1

2a

√

fY (y; a)+
y

2a
√
a

√

fY (y; a)

−EX[XfY |X(y|X ; a)]

2a
√
a
√

fY (y; a)

∣
∣
∣
∣
∣

︸ ︷︷ ︸

(d2)

+

∣
∣
∣
∣

d

da
fY (y; a)

∣
∣
∣
∣

︸ ︷︷ ︸

(d3)

(119)

≤K
∣
∣
∣2
√

fY (y; a) log
√

fY (y; a)
∣
∣
∣+

∣
∣
∣
∣

d

da
fY (y; a)

∣
∣
∣
∣
.

The term (d3) is bounded by an integrable function
due to equation (115), factor(d2) is bounded by a
constantK due to assumptions (17c) and (17d), which
will be proved later, and factor(d1) is bounded, and it
is integrable:
∫ ∞

0

∣
∣
∣

√

fY (y; a) log
√

fY (y; a)
∣
∣
∣ dy

=
1

2

∫ ∞

0

∣
∣
∣

√

fY (y; a) log fY (y; a)
∣
∣
∣ dy

=
1

2

∫ ∞

0

(

EX

[
1√
a
exp

(

− 1√
a
(y −X)

)

U(y −X)

]) 1
2

× logEX

[
1√
a
exp

(

− 1√
a
(y −X)

)

U(y −X)

]

dy

=
1

2

∫ ∞

0

1
4
√
a
exp

(

− 1

2
√
a
y

)

×
(

EX

[

exp

(
1√
a
X

)

U(y −X)

]) 1
2

×
∣
∣
∣
∣
∣
log

(

1√
a
exp

(

− 1√
a
y

)

EX

[

exp

(
1√
a
X

)

U(y −X)

])
∣
∣
∣
∣
∣
dy

≤ 1

2

∫ ∞

0

1
4
√
a
exp

(

− 1

2
√
a
y

)(

EX

[

exp

(
1√
a
X

)]) 1
2

×
∣
∣
∣
∣
log

(
1√
a
exp

(

− 1√
a
y

)

EX

[

exp

(
1√
a
X

)])∣
∣
∣
∣
dy

≤ 1

2

∫ ∞

0

1
4
√
a
exp

(

− 1

2
√
a
y

)(

MX

(
1√
a

)) 1
2

×
∣
∣
∣
∣
log

(
1√
a
exp

(

− 1√
a
y

)

MX

(
1√
a

))∣
∣
∣
∣
dy, (120)
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whereMX(·) denotes the moment generating function
of X . If the moment generating function ofX exists,
then equation (120) is bounded and integrable, and so
does the term(d1). Therefore, term(d1) is integrable
with respect toy, and assumption (17b) is verified by
dominated convergence theorem.
Similarly, assumption (17c) is verified as follows.

∣
∣fY |X(y|x; a)

∣
∣ =

∣
∣
∣
∣

1√
a
exp

(
y − x√

a

)

U(y − x)

∣
∣
∣
∣

≤ 1√
a
, (121)

∣
∣xfY |X(y|x; a)

∣
∣ =

∣
∣
∣
∣
x

1√
a
exp

(
y − x√

a

)

U(y − x)

∣
∣
∣
∣

≤ 1√
a
x, (122)

and the right hand-side terms of (121) and (122) are
integrable as

EX

[
1√
a

]

=
1√
a
,

EX

[
1√
a
X

]

=
1√
a
EX [X ], (123)

and if EX [X ] exists, assumption (17c) is satisfied.
Since fY |X(y|x; a) is exponentially decreasing,
lim
y→∞

y2fY (y; a) is zero. In addition,

lim
y→0

y2fY (y; a)

= lim
y→0

EX

[
y2fY |X(y|X ; a)

]

= lim
y→0

EX

[

y2
1√
a
exp

(
y − x√

a

)

U(y − x)

]

= EX

[

0× 1√
a
exp

(−x√
a

)

U(−x)

]

= 0. (124)

Assumption (17d) is expressed as

EX [XfY |X(y|X ; a)]
√

fY (y; a)

=
EX [XfY |X(y|X ; a)]

fY (y; a)

√

fY (y; a)

=

∫∞
0
xfX(x)

1√
a
exp
(
y−x√

a

)

U(y−x)dx

∫∞
0
fX(x)

1√
a
exp
(
y−x√

a

)

U(y−x)dx

√

fY (y; a)(125)

≤
y
∫ y

0 fX(x)
1√
a
exp

(
y−x√

a

)

dx

∫
y

0
fX(x)

1√
a
exp

(
y−x√

a

)

dx

√

fY (y; a) (126)

= y
√

fY (y; a).

The inequality in (126) is due to the fact that, in (125),
the term inside integral is non-negative,x is increasing,
and integration is performed from0 to y.
Therefore, the assumptions in (17) require the following
conditions: 1) existence ofEX [X ], 2) existence of
MX(·), 3) bounded pdffX(x), and these are further

simplified into the existence of the moment generating
function ofX and bounded pdffX(x).

2) Corollary 3
Given the channelY = X+

√
aW in (1),W is assumed

to be a gamma random variable, and its pdf is expressed
as

fW (w) =
1

Γ(α)
wα−1 exp(−w)U(w),

whereΓ(·) is a gamma function,U(·) denotes a unit
step function, andα ≥ 2. Since random variablesX
and W are independent of each other, the conditional
density functionfY |X(y|x; a) is expressed as

fY |X(y|x; a)

=
1√

aΓ(α)

(
y − x√

a

)α−1

exp

(

−y − x√
a

)

U(y − x),(127)

and its derivatives are denoted as

d

dy
fY |X(y|x; a)

=− 1√
a
fY |X(y|x; a)

+
1

aΓ(α−1)

(
y−x√

a

)α−2

exp

(

−y−x√
a

)

U(y−x), (128)

d

da
fY |X(y|x; a)

=− α

2a
fY |X(y|x; a)

+
α

2a

(
1√

aΓ(α+1)

(
y−x√

a

)α

exp

(

−y−x√
a

)

U(y−x)

)

.

(129)

The absolute values of equations (128), (129) are
bounded as
∣
∣
∣
∣

d

dy
fY |X(y|x; a)

∣
∣
∣
∣

=

∣
∣
∣
∣
∣
− 1√

a
fY |X(y|x; a)

+
1

aΓ(α− 1)

(
y − x√

a

)α−2

exp

(

−y − x√
a

)

U(y − x)

∣
∣
∣
∣
∣

≤
∣
∣
∣
∣

1√
a
fY |X(y|x; a)

∣
∣
∣
∣

+

∣
∣
∣
∣
∣

1

aΓ(α− 1)

(
y − x√

a

)α−2

exp

(

−y − x√
a

)

U(y − x)

∣
∣
∣
∣
∣

=

∣
∣
∣
∣

1√
a
fY |X(y|x; a)

∣
∣
∣
∣
+

∣
∣
∣
∣

1√
a
fYα−1|X(y|x; a)

∣
∣
∣
∣

=
1√
a
fY |X(y|x; a) + 1√

a
fYα−1|X(y|x; a), (130)

where

fYα−1|X(y|x; a)

=
1√

aΓ(α−1)

(
y−x√

a

)α−2

exp

(

−y−x√
a

)

U(y−x), (131)
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i.e., this is a gamma density function with two parame-
ters defined asα− 1 and1, and
∣
∣
∣
∣

d

da
fY |X(y|x; a)

∣
∣
∣
∣

=

∣
∣
∣
∣
∣
− α

2a
fY |X(y|x; a)

+
α

2a

(
1√

aΓ(α + 1)

(
y − x√

a

)α

exp

(

−y − x√
a

))
∣
∣
∣
∣
∣

≤
∣
∣
∣
α

2a
fY |X(y|x; a)

∣
∣
∣

+

∣
∣
∣
∣

α

2a

(
1√

aΓ(α+ 1)

(
y − x√

a

)α

exp

(

−y − x√
a

))∣
∣
∣
∣

=
∣
∣
∣
α

2a
fY |X(y|x; a)

∣
∣
∣+
∣
∣
∣
α

2a
fYα+1|X(y|x; a)

∣
∣
∣

=
α

2a
fY |X(y|x; a) +

α

2a
fYα+1|X(y|x; a), (132)

where

fYα+1|X(y|x; a)

=
1√

aΓ(α+1)

(
y−x√

a

)α

exp

(

−y−x√
a

)

U(y−x),(133)

i.e., this is a gamma density function with two parame-
ters defined asα+ 1 and1.
SincefYα−1|X(y|x; a), fY |X(y|x; a), andfYα+1|X(y|x; a)
are all integrable, the right-hand side of (130) and (132)
are integrable as

EX

[
1√
a
fY |X(y|X ; a) +

1√
a
fYα−1|X(y|X ; a)

]

=
1√
a
fY (y; a) +

1√
a
fYα−1

(y; a), (134)

EX

[ α

2a
fY |X(y|X ; a) +

α

2a
fYα+1|X(y|X ; a)

]

=
α

2a
fY (y; a) +

α

2a
fYα+1

(y; a), (135)

where fYα−1
(y; a) = EX[fYα−1|X(y|X ; a)], and

fYα+1
(y; a) = EX [fYα+1|X(y|X ; a)]. Therefore, assump-

tion (17a) is verified by dominated convergence theorem.
Second, assumption (17b) is verified as follows.
∣
∣
∣
∣

d

da
(fY (y; a) log fY (y;x))

∣
∣
∣
∣

(136)

≤
∣
∣
∣
∣
log fY (y;x)

d

da
fY (y; a)

∣
∣
∣
∣
+

∣
∣
∣
∣

d

da
fY (y; a)

∣
∣
∣
∣

=

∣
∣
∣
∣
∣
log fY (y;x)EX

[

− 1

2a
fY |X(y|X ; a)

+
(y −X)

2a
√
a

fY |X(y|X ; a)

]∣
∣
∣
∣
∣
+

∣
∣
∣
∣

d

da
fY (y; a)

∣
∣
∣
∣

=

∣
∣
∣
∣
∣
2
√

fY (y;x) log
√

fY (y;x)

(

− 1

2a

√

fY (y;x)

+
y

2a
√
a

√

fY (y;x)−
EX

[
XfY |X(y|X ; a)

]

2a
√
a
√

fY (y;x)

)∣
∣
∣
∣
∣

+

∣
∣
∣
∣

d

da
fY (y; a)

∣
∣
∣
∣

=
∣
∣
∣2
√

fY (y;x) log
√

fY (y;x)
∣
∣
∣

︸ ︷︷ ︸

(e1)

×
∣
∣
∣
∣
∣
− 1

2a

√

fY (y;x) +
y

2a
√
a

√

fY (y;x)

−EX

[
XfY |X(y|X ; a)

]

2a
√
a
√

fY (y;x)

∣
∣
∣
∣
∣

︸ ︷︷ ︸

(e2)

+

∣
∣
∣
∣

d

da
fY (y; a)

∣
∣
∣
∣

︸ ︷︷ ︸

(e3)

. (137)

The factors(e1), (e2), and(e3) can be verified using exactly
the same reasons as the factors(d1), (d2), and(d3), in (119),
respectively. Therefore, like equation (120), the existence of
moment generating function ofX is required.

Assumption (17c) is confirmed by the following procedures.
Since fY |X(y|x; a) is exponentially decreasing,

lim
y→∞

y2fY (y; a) is zero. By the same procedure as equation

(124), y2fY (y; a) becomes zero asy approaches zero. In
addition,

∣
∣fY |X(y|x; a)

∣
∣ ≤ fY |X(y|x; a)

∣
∣
∣
y=x+

√
a(α−1)

, (138)

∣
∣xfY |X(y|x; a)

∣
∣ ≤ xfY |X(y|x; a)

∣
∣
∣
y=x+

√
a(α−1)

. (139)

The inequalities above are due to the fact that the function
fY |X(y|x; a) is always nonnegative, and it is maximized at
y = x+

√
a(α − 1). Therefore, the right-hand sides of (138)

and (139) are integrable as

EX

[
1√

aΓ(α)
(α− 1)α−1 exp(−(α− 1))

]

=
1√

aΓ(α)
(α− 1)α−1 exp(−(α − 1)),

EX

[

X
1√

aΓ(α)
(α− 1)α−1 exp(−(α− 1))

]

=
1√

aΓ(α)
(α− 1)α−1 exp(−(α − 1))EX [X ], (140)

and, if EX [X ] exits, by dominated convergence theorem,
assumption (17c) is verified.

Finally, assumption (17d) is expressed as

EX [XfY |X(y|X ; a)]
√

fY (y; a)

=
EX [XfY |X(y|X ; a)]

fY (y; a)

√

fY (y; a)

=

∫∞
0
xfX(x)

1√
aΓ(α)

(
y−x√

a

)α−1

exp
(

− y−x√
a

)

U(y−x)dx

∫∞
0
fX(x)

1√
aΓ(α)

(
y−x√

a

)α−1

exp
(

− y−x√
a

)

U(y−x)dx

√

fY(y; a)

(141)

≤
y
∫

y

0
fX(x)

1√
aΓ(α)

(
y−x√

a

)α−1

exp
(

− y−x√
a

)

dx

∫
y

0
fX(x)

1√
aΓ(α)

(
y−x√

a

)α−1

exp
(

− y−x√
a

)

dx

√

fY(y; a) (142)

= y
√

fY (y; a).
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The inequality in (142) is due to the fact that, in (141), the
term inside integral is non-negative,x is increasing, and the
integration with respect tox is performed from0 to y.

Therefore, in this case, the assumptions in (17) require the
existence of the mean and moment generating function ofX ,
and these are further simplified to the existence of the moment
generating function ofX .
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[15] D. P. Palomar, and S. Verdú, “Representation of Mutual Information via
Input Estimates,”IEEE Trans. Inform. Theory, vol. 53, no. 2, pp. 453-470,
Feb. 2007.

[16] M. H. Costa, “A new entropy power inequality”,IEEE Trans. Inform.
Theory, vol. 31, pp. 751-760, Nov. 1985.

[17] D. Guo, S. Shamai (Shitz), and S. Verdú, “Proof of Entropy Power
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