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On the equivalence between Stein and De Bruijn
identities

Sangwoo Park, Erchin Serpedin, and Khalid Qaraqe

Abstract—This paper focuses on illustrating 1) the equivalence noise W is Gaussian with zero mean and unit variance, the
between Stein’s identity and De Bruijn's identity, and 2) two  equivalence between the generalized Stein’s identity ¢Tdra
extensions of De Bruijn’s identity. First, it is shown that Sein’s ) and De Bruijn’s identity (Theorefd 1) is proved. Since the
identity is equivalent to De Bruijn’s identity under additi ve noise S L .
channels with specific conditions. Second, for arbitrary btifixed standard-form Stein’s identity "m?,_) requires both ramdo
input and noise distributions under additive noise channed, the VariablesX and W to be Gaussian, instead of the standard-
first derivative of the differential entropy is expressed by a form Stein’s identity, the generalized version of Steidsritity
function of the posterior mean, and the second derivative of jn (12) is used. If we further assume that input sigiais also
the differential entropy is expressed in terms of a functionof Gaussian, then both random variab¥sand W are Gaussian,

Fisher information. Several applications over a number of felds d th tout sianal” is G . In thi t onl
such as signal processing and information theory, are pres¢ed an € output sign IS saussian. In this case, not only

to support the usefulness of the developed results in this per.  Stein’s &_md De Bruijn’s identities_are_equiyalent, but ahﬂ’
Index Terms—Stein’s identity, De Bruijn’s identity, entropy are r?quwaler(]jt to Fhe heat.equﬁtlon Ide.rl]ltltﬁdpmpqseﬁ.]m [2
power inequality (EPI), Costa’s EPI, Fisher information inequal- | N€ Sécond major question that we will address in this paper

ity (FIl), Cram ér-Rao lower bound (CRLB), Bayesian Cranér- 1S how De Bruijn’s identity could be extended. De Bruijn’s
Rao lower bound (BCRLB) identity shows the relationship between the differentiaf@py

and the Fisher information of the output signgl under
additive Gaussian noise channels. Therefore, under aediti

) ) ) ) ) non-Gaussian noise channels, we cannot use De Bruijn’s
STEIN’S identity (or lemma) was first established in 195646ty However, we will derive a similar form of De Bruiin

[1], and since then it has been widely used by manyentity for additive non-Gaussian noise channels. Cansid
researchers (e.gLJ[2].1[3].][4]). Due to its applicationsthe ,qqitive arbitrary noise channels, the first derivative fu t

James-Stein estimation technique, empirical Bayes methogiterential entropy of output signal’ will be expressed
an(_j numerous other fields, Stein’s identity has attractest a by the posterior mean, while the second derivative of the
of interest (see e.gL[SLI6lI7D. differential entropy of output signat’ will be represented
Recently, another identity, De Bruijn's identity, hasatted 1, 5 function of Fisher information. Even though some of
increased interest due to its applications in estimatiod afhese relationships do not include the Fisher informatioey
turbo (iterative) decoding schemes. De Bruijn’s identip®s i)l show relationships among basic concepts in infororati

a link between two fundamental concepts in information thﬂﬁeory and estimation theory, and these relationships fold
ory: entropy and Fisher information![8],1[9],_[10]. Vetcand arbitrary noise channels.
his collaborators conducted a series of studies [L1], @]  pased on the results mentioned above, we introduce several
to analyze the relationship between the input-output Mutug)sjications dealing with both estimation theoretic arfdrin
information and the minimum mean-square error (MMSE), @ation theoretic aspects. In the estimation theory field, th
result referred to as the I-MMSE identity for additive Gaess Eisher information inequality, the Bayesian Cramér-Raodr
noise channels, studies which were later extended to N@Rsng (BCRLB), and a new ’Iower bound for the mean square
Gau55|§_1n’cr_1anngls in [14]. [15]. Also, the equivalence BetW o (MSE) in Bayesian estimation are derived. The stinmis
De Bruijn's identity and I-MMSE identity was shovv_n’m_ [11]- result is that the newly derived lower bound for MSE is tighte
The main th_eme of this paper is t_(_) stu_dy hqw Stein's identithan the BCRLB. The proposed new bound overcomes the
(Theorenl2) is related to De Bruijn’s identity (Theoréin 1)main drawback of BCRLB, i.e., its looseness in the low Signal
To compare Stein’s identity with De Bruijn’s identity, atide  5_Noise Ratio (SNR) regime, since it provides a tighterrizbu
noise channels of the following form are considered in this 5, BCRLB especially at low SNRs. Even though some of
paper: the proposed applications have already been proved béfore,
Y = X+.aW, (1) this paper we shov_v not _only alternative ways to prove the_m,
_ . N _ . but also new relationships among them. In the information
where input signalX and additive noisell” are arbitrary theory realm, Costa’s entropy power inequality- previgusl
random variablesX and W' are independent of each otherproved in [16], [17]- is derived in two different ways baset o
and parameted is assumed nonnegative. First, when additiveur results. Both proposed methods show novel, simple, and

_ o _ alternative ways to prove Costa’s entropy power inequality
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relationships between Stein’s identity and De Bruijn’snitiiy  a location parameter, we refer to Fisher information[ih (§) a
are established in Sectign]lll. Some extensions of De BruijnFisher information with respect to a location (or transiaji
identity are provided in Section ]V. In Sectidnl V, severgbarameter, and it is denoted 4§Y") (even though the defini-
applications based on the proposed novel results are sdppltion of Fisher information with respect to a location parsene
Finally, conclusions are mentioned in Sectionl VI. All then (B) is derived from the definition of Fisher information in
detailed mathematical derivations for the proposed resuk (2), the definition in[(b) is more commonly used in informatio

given in appendices. theory, and we do not distinguish random variable= ¥ — 6
from random variabl&”).
Il. PRELIMINARY RESULTS Given the channel model (1), by substituting the param-

In this section, several definitions and preliminary thewse €tera for the unknown parameté, the expressions of Fisher
are provided. First, the concept of Fisher information il information in [2) and[(5) are respectively given by
as follows. 0o d 2
Fisher information of a deterministic paramefeis defined JY) = / fy(y;a) <d_y log fy (y; a)) dy

= Ey [Sv(Y)?], (6)

as

Jo(Y)

/_OO fy(y;0) <d%10gfy(y;9)> dy
Ey [Sy,(Y)?], (2

where Sy, (Y) denotes a score function and is defined as

and

Jo(Y) = /Z fy(y;a) <% log fv (y; a))2 dy

(d/do)log fy (y;6). Under a regularity condition, = Ey [Sy.(Y)?]. (7)
Ey [Sy,(Y)] = / d%fy(y; 0)dy Second, two fundam_ental concepts, dif_ferentigl entropy an
entropy power, are defined as follows. Differential entrapy
= 0, random variablé”, h(Y), is defined as
the Fisher information in({2) is equivalently expressed as oo
) = - [ mwdlshwad.  ©)

0o 2
V) = = [ he(0) G og (i)
—o0 where fy (y; a) denotes the probability density function (pdf)
— _Ey {isy (Y)] _ ©) of random variableY, log denotes the natural logarithm,
g "¢ and a is a deterministic parameter in the pdf. Similarly,
This is a general definition of Fisher information in signaihe conditional entropy of random variable given random
processing, and Fisher information provides a lower boun¢friable X, h(Y|X) is defined as
called the Cramér-Rao lower bound, for mean square error of o oo
any unbiased estimator. Like other concepts, such as gntrpY |X) = —/ / fxy (@,y; a) logfy | x (y|z; a)dzdy, (9)
and mutual information, in information theory, Fisher infm- T
tion also shows information about uncertainty. Howeveis it where fx vy (z,y; a) denotes the joint pdf of random variables
difficult to directly adopt the definition of Fisher informianin X and Y, fy|x(ylz;a) is the conditional pdf of random
information theory despite the fact that it has been comgnor¥ariableY” given random variablex'.
used in statistics. Instead, a more specific definition dfi¢iis ~ Entropy power of random variablg, N(Y’), and (condi-

information is proposed as follows. tional) entropy power of random variablg given random
If 6 is assumed to be a location parameter, then variable X, N(Y'|X) are respectively defined as
d d 1
— 0) = —— —0;0). 4 = —
do fY(y7 ) dny (y 3 ) ( ) N(Y) e exp(?h(Y)),
Therefore, the definition of Fisher information il (2) is NYI|X) = 1 exp(2h(Y]X)). (10)
changed as follows: 2me
o d 2 Based on the definitions mentioned above, three preliminary
Jo(Y) = / Ty (y; 0) <_1ngy(y;9)) dy theorems- De Bruijn’s, Stein’s, and heat equation idergtiti
—oo df are introduced next.

e 0:9 d ) 9-0 2d Theorem 1 (De Bruijn’s Identity [10],.[18]):Given  the
- ) Fr(y —6:9) Ty Fr(y=0:9) | dy  ,qditive noise channal = X + \/aWV’, let X be an arbitrary

00 d 2 random variable with a finite second-order moment, &id

= / f3(9;0) (—? log f?(g;e)) dy be independent normally distributed with zero mean and unit
—o0 Y variance. Then,

= E; [S(Y)Q] ; (®) d 1

where S(Y) denotes a score function, and it is defined as
(d/djy)log f+(7;6). In equation[(5), since we only consider ~ Proof: See [10]. ]



Theorem 2 (Generalized Stein’s Identity [3])et Y be an is also assumed. Then, De Bruijn’s identify](11) is equinale
absolutely continuous random variable. If the probabilign- to the generalized Stein's identity if_(12) under specific

sity function fy (y) satisfies the following equations, conditions, i.e.,
m ki) = 0, Lhyy = L)
and <« Ey [r(Y;a)(t(Y;a) —v)] = Ey [5%r(Y;a)k(Y;a)],
@) &) i) with
fy(v) k(y) k(y d
for some functiork(y), then r(y;a) = T dy log fy(y;a), k(y) =1,
Ey [r(Y) (((Y) = v)] = By [f&r(V)k(Y)], (12) )= —BED 1s)

v fy(y;a) ’ ’

for any functionr(Y) which satisfiesEy [|7(Y)t(Y)|] < oo,
Ey [T(Y)Q} < oo, and Ey Hkm%”m!] < oo. Ey[] where<=- denotes the equivalence between before and after

denotes the expectation with respect to the pdf of randdhf notation.

variableY'. In particular, when random variablé is normally Proof: See AppendiX A. u
distributed with meany, and variances?, equation [I2) ~ Now, when random variabl&” is Gaussian, i.e., both
simplifies to random variablesX and W are Gaussian, we can derive
) 4 relationships among three identities, De Bruijn, Steird heat
Ey [r(Y) (Y —py)] = ojEy [7pr(Y)]. (1) equation, as a special case of Theofém 4.
Equation [IB) is the well-known classic Stein’s identity. Theorem 5:Given the channel mode[l(1), let random vari-
Proof: See [3]. m ableX be normally distributed with megm and unit variance.

Theorem 3 (Heat Equation Identity|[2]).et Y be nor- Assume W is independent normally distributed with zero
mally distributed with mean: and variancel + a. Assume Mean and unit variance. If we define the functions[inl (12)

g(y) is a twice continuously differentiable function, and bot@s follows:

and |4 ardl O(eclvl) for some0 < ¢ < 0. Then, d 1
9(y) and|77g(y)| () = rlyia) =~z log fy(y;a),  k(ya) =,
d 1 d?
%EY (V)] = EEY {mg(y)} : (14) ty;a) =y, and v=np,
Proof: See [2]. m then Stein's identity is equivalent to De Bruijn’s identity

Moreover, if we defing(y; a) as

I1l. RELATIONSHIPS BETWEENSTEIN'S IDENTITY AND DE gy;a) = —log fy(y;a)
BRUIJN' S IDENTITY
In Section[l), Theorem§l1[]12, arld 3 share an analo | QEP th%n Dt? Bruijn’s identity is also equivalent to thealt

an identity between expectations of functions, which idely €duaton aentty. ) .
derivative)s/. Especially, pthe heat equation identity adnttite ) Proof. In Theoren[h, given the channel mod§| (1) with an
same form as De Bruijn’s identity by choosing functigfy) arb_ltrary but fixed raqdom variabl¥ and a Gausg!ar\ rgndo_m
as —log fy (y; a). If De Bruijn’s identity is equivalent to the variable W, the. equwal_el?cg bet[ween De Bruin's |d(_ant|ty
heat equation identity, it is also equivalent to Stein'sniitg, and the generalized Stein's identity was proved (cf. Append

since the equivalence between the heat equation identity @ Here, _bly Choos'?gr;andgg Zar_'r?]bpé fs G?ﬁss'an'.th;s
Stein’s identity was proved in_[2]. However, there are tw a special case o eor - | herelore, e equivaience

critical issues that stand in the way of the equivalence betw etwegn thg tW(.) ide_ntities is trivial, and_the details (.)f the
Stein's and De Bruijn’s identities: first, the functigrfy) in proof is omitted in this paper. The only thing to prove is the
Theorem® must be independent of t,he parametehhich second part of this theorem, namely, the equivalence betwee
is not true wheny(y) = — log fy (y; a). Second, in the heat De Bruijn’s identity and the heat equation identity. Sinbe t

equation identity, random variablé must be Gaussian Whichequivalence between Stein’s identity and the heat equation
may not be true,in De Bruijn's identity ’ identity is proved in[[2], this also proves the second part of

Due to the difficulties mentioned above, we will directl)}he theorem, and the proof is completed. u

G . ; The functionsk(y; a), r(y; a), t(y;a), andg(y;a) are the
compare De Bruijn’s identity (Theorem 1) with the generdiz 7 77 ’ S
Stein’s identity (Theorerfl2). same as:(y), r(y), andt(y) in Theoren 2 andi(y) in The-

Theorem 4:Given the channel mode[](1), leX be an orem[3, respectively. To show the dependence on parameter

arbitrary random variable with a finite second-order moment the(;unfctionsk(y; a), r(y; a?j’ ty; a), andg(y;la) are used
and letW be normally distributed with zero mean and unit'Stéad ofk(y), r(y), t(y), andg(y), respectively.

variance. Independence between random variakleend W/
IV. EXTENSION OFDE BRUIJN'S IDENTITY

10(-) denotes the limiting behavior of the function, i.e(y) = O(q(y)) . Lo . . .
if and only if there exist positive real numbefs andy* such thatg(y) < De Bruijn’s identity is derived from the attribute of Galesi

K|q(y)| for any y which is greater tham*. density functions, which satisfy the heat equation. Howgeve



in general, probability density functions do not satisfg treat [6 when random variablé) is normally distributed. When

equation. Therefore, to extend De Bruijn’s identity to divéi random variableW is Gaussian, assumptions ih [17) are
non-Gaussian noise channels, a general relationship betwsimplified to the existence of a finite second-order moment.
differentials of a probability density function with respeo Corollary 2: Given the channel model (1) with an ar-

y anda of the form: bitrary but fixed non-negative random variablé whose
d 1 d moment generating function exists and its pdf is bounded,
Efy|x(y|f€; a) = “ady ((y — =) fy|x(ylz;a)), (16) and an exponential random variabilé with unit value of the

parameter (i.e.fyy (w) = exp(—w)U(w), whereU(-) denotes
is required, a result that it is obtained in AppendiX H byhe unit step function),

exploiting the assumption$ ({L7). The relationsHipl (16)- rep, 1
resents the key ingredient in establishing the link betweecfrh(Y):—{
the derivative of differential entropy and posterior meas, a 2ay/a
described by the following theorem. When the random variablBd’ is exponentially distributed,

Theorem 6:Consider the channel modél (1), wheXeand assumptions in[{17) are reduced to the existence of the
W are arbitrary random variables independent of each oth@&oment generating function of, as explained in Appendix I.

Va—ExX] +Ex[Expy[X|Y]Y=X]}.

Given the following assumptions: Therefore, the assumptions [0 {17) for an exponential rando

4 J variable are as simple as the assumptions (17) for a Gaussian
—Ex |fyix(|X;a)| =Ex [_f Y| X:a } , random variable.

dy rixto ) dy vixl ) Corollary 3: Given the channel model if](1) with an arbi-

d I d ) trary but fixed non-negative random variablewhose moment
%EX [fY|X(y|X’a)} =Ex [%fYX(mX’a)} ’ (173) generating function exists and a gamma random variélble
d [ with a shape parameter (« > 2) and an inverse scale
da [m fy(y;a)log fy (y; a)dy parameters (8 = 1),
© d d 1
=/_OO%(fy(y;a)logfy(y;a))d% 170) S h(Y) = —2a\/5{f—EX [X]
yEriIlm Ex [XfY|X(y|X7 a/)} =Ex |:1 Erinoo XfY|X(y|X7 a):| , +EYQ71 [EX|Y [X|Y] |Y = Yafl} }7
whereY, = X + /aW}, and W, denotes a gamma random
lim Ex [fyx(y|X;a)] =Ex [ lim fy|X(y|X;0/):| , variable with shape parametgr NotationY,, stands forY.
e ) yee As explained in Appendikl |, the assumptiofis](17) are quite
ygffmy fy(y;a) =0, (17¢) simplified in the presence of the moment generating function
of random variableX.
Ex [XfY|X(y|X’aﬂ 0, (17d) For additive non-Gaussian noise channels, the diffedentia
fy(y;a) entropy cannot be expressed in terms of the Fisher infor-

\)gation. Instead, the differential entropy is expressedHsy t
posterior mean as shown in Theoréin 6. Fortunately, several
noise distributions of interest in communication problems

whereE x|y [-|-] denotes the posterior mean, the first derivati
of the differential entropy is expressed as

d 1 d satisfy the required assumptiorls(17) in Theorfem 6 (e.g.
—h(Y) = —<1—-Ey |—E XY . (18 ’
da ¥) 2a { Y {dY xpy [X] ]]} (18) Gaussian, gamma, exponential, chi-square with restniston
Proof: See AppendigB. parameters, Rayleigh, etc.). Therefore, Theotdm 6 is quite

powerful. If the posterior meafl x|y [X|Y] is expressed by
a polynomial function ofY’, e.g.,X andW are independent

It can be observed that the conditioris](17) are requir§1aUSSian random variables in equation (1) or random vasabl
el

in the dominated convergence theorem and Fubini’s thet onging to th? natural exponential family Of. distributso
rem to ensure the interchangeability between a limit ar{a?zl' thenl e?-l..lgnori;((j]B) can bded.?.xpresigtd |r(133|mpl_er fo“”‘.‘s-
an integral, and are not that restrictive. Also, the conditi xample L.Lonsider an additive white aussian noise

lim, 100 ¥?fy (y;a) = 0 is not restrictive at all, and it is %A/V\éGN) chalrlmzl_. t(s_kl;/etndthe_tr(]:hannel modé] él)’ .Ift ar_ld
satisfied by all noise distributions of interest in practice A € n(;r(ma gW'S ribute q Wi dzerto Teanhan thum T\%anant(;]e.
Corollary 1 (De Bruijn’s identity): Given the channel SsumeA an are independent of each other. then, the

model in [1) with an arbitrary but fixed random variabte posterior mean is expressed as

Remark 1:This is equivalent to the results in [14].

with a finite second moment and a Gaussian random variable E XY = _ 1
. el xly [X[Y =y] = Y,
W with zero mean and unit variance, 1+a
d 1 which is linear toy. Therefore, equatiori (18) is expressed as
Remark 2:This is the well-known De Bruijn’s identity [18]. 1

Therefore, De Bruijn’s identity is a special case of Theorem 2(1+a)



Now, we consider the second derivative of the differentiand unit variance. Then,

entropy. One interesting property of the second derivative ;2 1
the differential entropy is that it can always be expressed a —h(Y) = —J.(Y)—-—J()
X . . . da? 4a
function of the Fisher informatiori 7). 1 d
Theorem 7:Given the channel moddIl(1), I&f andW be T {WSY(Y)EXY (Y - X)?Y]
arbitrary random variables, independent of each othereiGiv ) g 9
the following assumptions: _ _§EY (WSY(Y))

d2

d?
d2

| saos sy

o0 d2
= /700 el (fy(y;a) logfy(y;a)> dy,

lim EX

y—+oo

fy(y;a)
=Ey | lim XQM] ;
vrkoo fy(y;a)
lim Ex [X fy|x(yX;a)]

y— oo

~ By [ 1m XfrixGixia)

lim Ex [fy)x(y|X;a)] =Ex

y—+oo

lim y 8 fy(y;a) =0,

Ex [X?fyx(ylX;a)]
(fy (y;a))3/4

|<oo,

where Ex|y[-|-] denotes the posterior mean, the following

identity holds:

d? 1 d
TaY) = =Ju(Y) = o= —=h(Y)

ay

or equivalently,

L hY)= —Ju(¥) - LBy
da? e 4qa? dY
d
- 1B [W

Proof: See AppendiXC.

Similar to the corollaries of Theorefd 6, by specifying a
noise distribution and manipulating equatién](20) in Tiesor

[, we derive the following corollaries.

2
a —Ex [fyix(y|X;a)]=Ex [j—nyyx(y|X;a)]7

d2
—Ex [fyx(y|X;a)|=Ex {nyx(yIX;a)], (19a)

(19b)

(19c¢)

i Frixiia)

Remark 3:This result is a scalar version of the result
reported in [[13]. At the same time, this result is a special
case, whenX is a Gaussian random variable, of the general
result in Theorenl?.

Corollary 5: Under the channe[]1), leX be an arbitrary
but fixed non-negative random variable with a finite moment
generating function, and its pdf is bounded. étbe indepen-
dent exponentially distributed with unit value as the paztan
(A) of the distribution. Namely,fw (w) = exp(—w)U(w),
whereU(-) denotes the unit step function. Then,

2
%h(y) =—Jo(Y) + %Ex [Expy [Y - X|Y][Y=X]
+$ - 3EX Exy [(Y - X)’lY] [y=X].

Corollary 6: Under the channe[]1), leX be an arbitrary
but fixed non-negative random variable with a finite moment
generating function, and’ be an independent gamma random
variable with parametersy (« > 3) and 5 (8 = 1),
ie., fw(w) = Fow" exp(—pw)U(w)/T(a), where U()
denotes the unit step function ahd-) stands for the gamma

(19d) function. Then,
2
(19e) %h(Y} = —471'3]EYQ72 [Exy [ = X))Y]|Y =Yoo
4(12\/— Ya-1 [EX\Y [X|Y] |Y = Yafl]
(a—1) Evy [(Y — X)2Y] B
a0 B, Yoo - X
_Ja(y) (\/_ EX[ ])7

g, [isy(y)EXy (Y —X)QIY]} ;

L Ey (V- X>|Y]]

SWEx)y [(Y — X)2|Y}] .(20)

4a 2\/_
whereY, = X + /aW,, andW, denotes a gamma random
variable with a shape parameter

Like Corollaried1[R2, andl3, the assumptions (19) reduce to
simplified forms in Corollarie§l4,]15, arid 6. Even though we
have not enumerated all possible probability density fionst
for Theorem[b and Theorerml 7, many of the probability
density functions that present an exponential term satrsdy
assumptions[{17) and {{19), since such a condition proves to
be sufficient for the required interchange between a limit an
a integral.

V. APPLICATIONS

As mentioned in[[11] and [20], De Bruijn’s identity has
been widely used in a variety of areas such as information

Corollary 4: Given the channel[{1), leX be an arbitrary theory, estimation theory, and so on. Similarly, De Bruijpe
but fixed random variable with a finite second-order momeritlentities mentioned in this paper can be adopted in many
and letlV be independent normally distributed with zero meaapplications. Here, we introduce several applicationsiftbe



estimation theory realm as well as from the information tigeovariablesX andYg, respectively. With the assumptidn {23),
field. the following relations hold:

Exy {(X—EX‘Y[X|Y])2} — Var(X|Y)

In estimation theory, there exist two fundamental lower a VfT(XGWG)
bounds: Cramér-Rao lower bound (CRLB) and Bayesian = —exp(2h(X¢|Ye))
Cramér-Rao lower bound (BCRLB). CRLB is a lower bound 2me
for the estimation error of any unbiased estimator, and it is
derived from a frequentist perspective. This lower bound is
tight when the output distribution of the channel is Gaus-
sian. CRLB and its tightness can be justified using Cauchyhis is nothing but the entropy maximizing theorem, i.eg th
Schwarz inequality[[21]. On the other hand, BCRLB is &aussian random variable being the one that maximizes the
lower bound for the estimation error of any estimator, anehtropy among all real-valued distributions with fixed mean
it is calculated from a Bayesian perspective. BCRLB doesd variance.
not require unbiasedness of estimators unlike CRLB; howeve However, under the assumptiol@r(X) = Var(Xg) and
BCRLB requires prior knowledge (i.e., distribution) of tom  Var(Y) = Var(Ys), which are common assumptions in
parameters. BCRLB is also tight when all random variablgggnal processing problemB_{23) may not be always trueaue t
are Gaussiari [22]. the following fact. Given the additive Gaussian noise clenn

Surprisingly, assuming a Gaussian additive noise channgl,= X + \/aWs, where X is an arbitrary non-Gaussian
both of these lower bounds can be derived using De Bruijrandom variable whose variance is identical to that of Ganss
type identities, and there exist counterparts both in imfttion random variableX, and W is a Gaussian random variable
theory and estimation theory. Since CRLB and its countérpawith zero mean and unit variance,
the worst additive noise lemma, are derived[in![20], we will
only show the derivation of BCRLB and its counterpart in this Var(X[Y) < Var(Xg|Ye), (24)

paper. , ] , where Y is a Gaussian random variable whose variance is
Lemma 1 (Bayesian Cra&m-Rao Lower Bound)Given identical to that ofY’. Equation [24) violates the assumption
the channel[(1), letX be an arbitrary estimator ok in & @3 Therefore, the result in [LO, p. 255, Theorem 8.6.6}-ca

Bayesian estimation framework. Then, the mean square erggf pe adopted under the assumptiorisy(X) = Var(Xc)
(MSE) of X is lower bounded as follows:

A. Applications in Estimation Theory

5 exp(2h(X[Y)

= N(X|Y).

and Var(Y) = Var(Yg), which are common in signal
- 1 processing problems.
MSE(X) = Ex [J(Y|X)]+ J(X)’ On the other hand, the inequality in Lemia 2 is obtained

where X is an arbitrary but fixed random variable with a finitenOt by imposing identical posterior variances but by assgmi

. . . .. identical second-order moments. Thls] (22) representser lo
second-order momenty is a Gaussian random variable Wlthb I
. . ound on the mean square error similar to BCRLB. Therefore,
zero mean and unit variance, and -
Lemma2 illustrates a novel lower bound on the mean square
error from an information theoretic perspective.

sx) = [ (o)) frixlolodnen .

— 00

Surprisingly, this lower bound is tighter than BCRLB as the
following lemma indicates.
Lemma 3:Under the same conditions as in Lemiia 2,

Proof: See AppendiXD. [ |
Interestingly, there exists a counterpart, based on éifiigal
entropies, of BCRLB in information theory, and this counter
part is a tighter lower bound than BCRLB. N(XIY) > 1 25
Lemma 2:Under the same conditions as in Lemia 1, &y) = Ex [J(Y|X)] +J(X)’ (@3)

MSE(X) > N(X|Y), (22) WhereY = X +,/aW, a is nonnegativeX is an arbitrary but
fixed random variable with a finite second-order mom@nts
where N (XY) = (1/2me) exp(2h(X[Y)), Y = X +/aW, a Gaussian random variable with zero mean and unit variance,

a >0, andX andW are independent of each other. and J(Y'|X) is defined as equatiof (21). The equality holds
Proof: See AppendiXE. if the random variableX is Gaussian.
Remark 4:Lemmal2 seems to be similar to the estimation  proof: See AppendiXF. [

counterpart of Fano’s inequality [10, p. 255, Theorem §.6.6igure[] illustrates how tighter the new lower boufd] (22) is
However, the current result is completely different thaf, [1 compared to BCRLB wheiX is a student-t random variable,
p. 255, Theorem 8.6.6]. In_[10], to satisfy the inequalifZ\2 and is a Gaussian random variable. The degrees of freedom
the hidden assumption is of X is 3, and the variance d¥ is 1. As shown in Figurgl1,
_ the new lower bound is much tighter than BCRLB especially in

Var(X[Y) = Var(XalYe), (23) low SNRs where the BCRLB is generally loose. Also, Figure
where Var(X|Y) and Var(Xg|Ye) denote posterior vari- Il shows how tight the new lower bound is with respect to the
ances for random variable¥ andY, and Gaussian randomminimum mean square error.



B. Applications in Information Theory by Theoreni#, we showed the equivalence among Stein, De

In information theory, the entropy power inequality (ERY) i Bruiin, and heat equation identities. Therefore, a broagea
one of the most important inequalities since it is helps tvpr Of Problems (in probability, decision theory, Bayesiartistas
the channel capacity under several different circumstgnc8nd graph theory) as described in [2] could be considered as
e.g., the capacity of scalar Gaussian broadcast channl [£§ditional potential applications of Theorefrls 4 and 6.

the capacity of Gaussian MIMO broadcast channel [24], [25],

the secrecy capacity of Gaussian wire-tap charinel [26], [27 VI. CONCLUSIONS

and so on. The channel capacity can be proved not by

EPI alone but by EPI in conjunction with Fano’s inequality. This paper mainly disclosed three information-estimation
Depending on the channel model, an additional techniqiglationships. First, the equivalence between Stein ijeaid
channel enhancement techniqlie] [24], is required. ThezefdPe Bruijn identity was proved. Second, it was proved that
various versions of the EPI such as a classical EPI [18], [28]€ first derivative of the differential entropy with respéa
[29], Costa’s EPI[[16], and an extremal inequality[25] werél€ parameter. can be expressed in terms of the posterior
proposed by several different authors. In this section, \ile wmean. Second, this paper showed that the second derivative
prove Costa’s entropy power inequality, a stronger versibn of the differential entropy with respect to the parameter

a classical EPI using Theordrh 7. can be expressed in terms of the Fisher information. Finpally
Lemma 4 (Costa’s EPI)For a Gaussian random variableseveral applications based on the three main results listed
W with zero mean and unit variance, above were provided. The suggested applications illuesthat

the proposed results are useful not only in information theo
N(X ++vaW) > (1-a)N(X)+aN(X +W),(26) but also in the estimation theory field and other fields.

where0 < a < 1, X and W are independent of each

other, and the entropy powéy (X) is defined asV(X) = APPENDIXA
(1/2me) exp(2h(X)). Alternatively, the inequality[(26) is ex- A PROOF OFTHEOREM[4
pressed as

Since Theorerl5 is considered as a special case of Theorem

&? we only show the proof of Theorenh 4 in this paper
—N(X W) < 0 27 ' :
da? (X4 valW) < 0, 27) Proof: [Theoren{%]

i.e., N(X 4+ /aW) is a concave function of [18]. Prior to proving Theoreml4, we first introduce the following
Proof: See AppendiX 6. m relationships in Lemmhl5, which are required for the proof.

Lemma 5:For random variable$/, X andY defined in
L . equation[(ll) when Gaussian random varidiléehas zero mean
C. Applications in Other Areas and unit variance and random variab{e has finite second-

There are many other applications of the proposed resuigder moment, the following identities are satisfied:
First, since Theorerh] 6 is equivalent to Theorem 1[in| [14],

Theorem 6 can be used for applications such as generalizeid d 1 .
EXIT charts and power allocation in systems with parallel g 108 /v (¥ @)

non-Gaussian noise channels as mentioned_ih [14]. Second, vt Vaw
1 [Ex [(y—X)QfY\x(MX;a)}
= —2 - —Qa 5
2a fy(y;a)
y=utvaw
16 ; o d
—o— MMSE i) Ta log fy(u + Vaw; a)
Lal % BCRLB| | a
NewLB _ L(Ex[(U_X)(y_X)fYx(y|X§a)] —a)
1.2; 1 2a? fr(y;a) y:u+\/3w7
1t i . d
w iii) — log fyv(y;a)
%] dy
S| | y=utvaw
_ _EX (v = X) frix (Y| X;a)]
0.6 1 afy(y;a) v
0.4f : 1 ; w d
v) ——1 ;
) 2\/ady ngY(yva)
02 ‘ ‘ ‘ ‘ y=u+tvaw
0 2 4 6 8 10 d d
SNR(dB) = —log fv(u + Vaw;a) — {— log fy (v a)} ,
da da y=u++aw

Fig. 1. Comparison of MMSE, BCRLB, and new lower bound (New)LB

in (22) with respect to SNR. wheref(y)|y=, denotedim,_,, f(y). In some cases, to avoid

confusion,[f(y)]y=. is used instead of (y)|y=q-



Proof: Since fy|x (y|z;a) is normally distributed with _ 1 ( X[(“"‘\/aw_X)(“_X)f‘/X(“+\/5w|X§a)]_a)

meanz and variance:, the following relationships hold: 2a? fy(u+ Vaw; a)
1 (y — x)2> _ 1 (IEX[(y—X)(u—X)fYX(y|X; a)l ) 34
‘q) = - , 28 ; a - (34)
Jyix(ylz; a) mexp ( 2 (28) 2a? fr(y;a) y=utaw

= Frx(oles @) = = (5= ) (ol (29)

d
@fwx(yl:v;a) = ( .

2

The equality in[(3B) is due to equatidn (31).
%(y_x)z) Frix(ylz; a), (30) Third, equation iii) is proved based on equati¢n](29) as
2a follows:

%fy\x(u + \/aw|l', a) = fy\x(u + \/a'lle; a)

1 1 —log fy (y; a)
-+ — — d
X ( 52+ 52 (u+vaw — x)(u x)) . (31) Yy et vEw
Equation [[31) is true since Ex [%fY\x(le; G)}
L pyix et Vawlr; ) A
a
d 1 1 v , . —Ex [(y - X) fy1x (Y| X5 a)} (35)
iz [T (st v =) ETO
1 1 1 )
2 (,/QM P < 2a (u+Vaw —2) >) The equality in[(3b) is due to equatidn {29).
1 1 a2 Equation iv) is trivial since equatiori (B5) multiplied by
+ («/27m eXp< 2a(u+ Vaw —z) )) w/2+/a is equal to equatiol (34) minus equatignl(32), and
2(u + aw — x)(%)a — (u+ aw — x)? the proof is completed. ]
x|~ 2a2 Like the proof of Theoreni]3 in[]2], the equivalence is
1 proved by showing that each identity is derived from the pthe
:_2_.fY|X(u+ Vaw|z;a) one, using LemmAl5.
a . . . . . .
B _ First, in the generalized Stein’s identity, all necessanyct
+fyx (u+ Vawl|z;a) (— (ut \/Ew2 ZI)(U x)) tions are defined as follows:
a
Based on equatiori (B0), i) is proved by following these . d . B
calculations: r(y;a) = _d_y log fy (y;a), k(y) =1,
d
;v (y;a
di log fv (y;a) ty;a) = —%@a)), and v =0. (36)
a )
y—utfaw vy ¥y
Ex [£ X;
= =X [dafy\x'(yl )] Then, De Bruijn’s identity is derived from the generalized
fy(y:a) y=u-t/aw Stein’s identity as follows.
E — X)? X;
(S| e
) y=u-t+/aw 5 Y [WT(Yy (l):|

Second, equation ii) is proved by the following calculaton 1

p = EEY [r(Y;a)t(Y;a)] (generalized Stein's identity) (37)
— log fy (u + vaw;a) 1 [~ d
da Y =3 / S Ex [fyix WIX;a)] r(y; a)dy
_Ex [ frinu+ VaulX;a)] e 0 x d
fr(u+ aw; a) =—Ex [/ (y; )fY\X(y|X;(I)d—10ng(y;(l)dy
7]EX [—%fwx(u-l-\/audX;a)} i —o0 OOCL yd
fy (u+ Vaw; a) :—/ fx(u)/ (yQ_aU) fy‘x(y|u;a)d— log fy (y; a)dy du.
IEx[#(u—i—\/aw—X)(u—X)fy‘X(u+\/5w|X;a)] —ee il Y
| [y (u+ Vaw;a) ()
(33) (38)
_ —afy(u++/aw;a)
~ 2a2fy (u + vaw; a) The interchangeability among integrals and derivativesiare
Ex [(u+vaw—X)(u—X)fyx (u+aw| X; a)] to the dominated convergence theorem and Fubini's theorem.
+

202 fy (u + /aw; a) Changing the variable ag = u + /aw, equation(4) is



expressed as Second, the generalized Stein’s identity is derived from De

. (y — ) d Bruijn’s identity. We define the function
| ol S 10g fr 0 by
e ) y
/ \/_ ~— fv x(u+vaw|uy; a)[—logfy(y;a)} Vadw 9(y;a) = / r(u;a)du + q(a), (43)
2a dy y=utvaw 0
/ fyix (u+ Vaw|u; a)( d log fy (u + vaw; a) whereg(a) = —log fy (y; a)|y=0. Here,q(a) is always real-
valued due to the following:
d
- [% log fv (y; a)} )x/ﬁdw .
y=utvaw fy(y;a) = lim Ex[fyx(y|X;a)]
(39) v=0 v
1
d — —(y— X)2
[ s () ot [ e (- 7)]
1 1
= Ex |——exp —— X2
- —= exp <— w > [ log fv(y;a )] dw L/zm ( 2a )]
d/io\/? : s < — (44)
w ~ .
_4d _w V2
da/oomexp( 2>logfyu—|—\/_wa) Ta
/ L exp( ) [di log fyv (y;a } dw. The last inequality is due texp(—%XQ) < 1. In addition,
V21 a y=utvaw equation [(44) is always greater than zero unlgssz) is

(40) identical to zero ow is infinite. However, neither case holds.
The equality in equatioi (39) is due to Lemfiia 5, iv). Thereforeg(a) is always mapping to a real-valued number.

Re-defining the variables = (y — u)/+/a, equation[(3B) is Then, the expectation af(y; a) is expressed as
expressed as

—v) ua d ogfy(y;a u 9(¥3a)]
/ fx (/ fY\X(y| )d log fy(y )dy)d / folyia </ (u;a)du+q(a)> iy
/ fX (/ fY\X |U CL) 10ng(ya ) _ / / fy(y;a)r(u;a)dudy
0 0

d * 0 Yy
~da | frxlua)log fr(y;a)dy | du +/ / Jy (s a)r(u; a)dudy + q(a)
—oo0 J0
(42) oo ry
— [ [ v orusadudy
~ [ fma g tos iy o Jo o
- fy (y; a)r(u; a)dudy + q(a)
—%/ fv(y;a)log fv(y;a)dy  (42) /—oo/y
> d d [~ = / (/ fy(y;a)dy> r(u;a)du
=/ Zalyia)dy — d—/ fv(ysa)log fy (y; a)dy o \Ju
_s A a J_ 0 u
d [~ d [~ - ;a)d ;a)du +
:d—/ fr(y;a)dy — —/ fy(y;a)log fy (y; a)dy /_Oo (/_oo fryio) y) r(u;a)du +q(a)
a ) o da oo r roo oo
d [~ - . :
=—£/ fr(y; a)log fv (y; a)dy B /0 (/u fY'X(le’“)dy) T(u’a)d”}
o r r0 u
_ dd hY). —Ex / (/ fy|X(y|X;a)dy> r(u;a)du} + q(a)
a L/ —oo —0o0
The equality in[(41) is due to the change of variable, and the- [ /OO <1 —® <ﬂ)> r(u; a)du]
equality in [42) is because of the independencéefu) with LJo Va
respect toa. 0 u—X _
Since the left-hand side of equatiénl(37) is equal (®’) /2, —Ex _[m e < Va > r(w a)du] +ala), (45)
we obtain De Bruijn’s identity:
lj(y) _ d h(Y) where ®(-) denotes the standard normal cumulative density

2 da function.
from the generalized Stein’s identity. We differentiate both sides of equatidn(45) with respect to



parameter as follows.

d
—IEy [9(Y;a)]

- _Ey [/Z dci@ <”\/EX> r(u;a)du]

[0 (5) ot

(B)

10

equation[(4l7) is further simplified as follows:

Ex [/OO/O %T(Uw)dufy\x(mx;a)dy

/Z (d% /Oy T(“;“)du> fy (y;a)dy

/OO fy(y;a)dig(y;a)dy - %Q(a)

d
= / i (41:0) - o fy (3 @)y — ~-(a) (48)
= - q( )-
The equality in[(4B) holds becaugéy; a) = —log fy (y; a).

Therefore, the last three terms in equation (46) vanish, and
equation[(4b) is expressed as

[ (272
—Ey l/_(: (2;\/‘? [d%cp(y)] . r(u;a)du]
v="r

[0 () ]

0 X L [w-X) 1 (w=X2\]
—Ex [/Ootb (7> y r(u,a)du} +——q(a).(46) =3 7EX a \/%GXP T o r(u; a)du
1 [ d
(C) __i/EX[d_nyIX(mX;a)} r(u;a)du
Equations (B) and (C) are further processed as 1 [~ dify(u; a)
:_—/ -~ Lr(u;a)fy (u;a)du
F oo X d - 2 —o00 fY(uva)
u—
Ex _/0 (1 -0 ( Ja )) %T(W a)du_ = %Ey [t(Y;a)r(Y;a),
_/0 ® (U - X) ir(u, a)du- where ¢(-) denotes the standard normal probability density
I va ) da function, andt(y; a) = — (7 fv (y; @)/ fv (y: a).
1 Since
= Ex / / frix (WX a)dyd r(u; a)d d d
o d @) = B
/ / frix(ylX;a) y (u a)du _ §EY ¥ (Y a)].
= EX / / U a dufy‘x( |X,CL) Y and
. - 1 d
0 0 d - - - .
B | [ [ A lXsady P00 = gy [gprtrial.
yijo Y 1 i from De Bruijn’s identity, we derive the generalized Stein’
=Ex / / r(u; a)dufyx (y| X; a)dy identity:
d 1
d - - =
mx [ [ rtwsaansyxtolX; iy w') = 37
d
[ [ — Ey [t(Y;a)r(Y;a)] = Ey |-——=rY;a)l,
= Ex / / %T(U;a)dewx(le;a)dy] : (47) v i3 a)r(; o) v [dY ( )]
Rmee 0 where<=- denotes equivalence between before and after the
The interchangeability among integrals is due to Fubinidotation. u

theorem and dominated convergence theorem.
Due to equation[{43),

d d [Y d
%g(y,a) = %/0 r(u,a)du—i—%q(a),

APPENDIXB
A PROOF OFTHEOREM[@

Based on equatiod (1L6), Theorér 6 is proved next using
integration by parts and the dominated convergence theorem



Proof: [Theorem ]

d
da

- /m (1 +1log fv(y;a)) %fy(y; a)dy

——h(Y)

>~ J o d
_[m%fy(y;a)dy—[xlogfy(%a)%fy(y;a)dy (49)

o0 d
- / log fy (y; a)%Ex [fyix (| X;a)] dy

(50)

_ / ngfy(y, a)Ex [ Frx WIX; a)} dy.

The interchangeability between integral and derivativdis
to assumptiond_(17a) and {17b).
Using equation[(16), equation_(50) is expressed as

—/xlogfy(y, a)Ey [ frix(y |X;a)} dy
%Kzlogfy(y;a)Ex [d% ((y —
:%121ogfy(y;a) Ex[(y —

2—1a log f+ (y; a)Ex [(y

X)fyx(le;a))] dy

X)fvix (| X5 a)] dy

oo

(51)

= X) fyix (Y| X5 a)]

y=—o00

/ D rog fy (4 0)Ex [y — X) fy 1 (41X )] dy (52)

= 2a o L 1og £, (g3 0)Ex [(y — X)fr1x (41X )] dy (53)
1 fxd frix(y|X;a)
=2 7wd_ny(y’a)EX [(y—X)m} dy, (54)
where f(y)[52,, denoteslim f(y)—ylim f(y).

The first termin equat|or[[(352) vanishes due to the foIIowmg

relationship:

- X)frixiXia)] |

Y=—00

log fy (y;a)Ex [(y

= yfy(y;a)log fy(y; a)‘oo

Y=—00

“Ex [Xfyix(lX:a)] log fr ()| . (55)
The first term in[(Gb) is expressed as
yfv(y;a)log fy(y;a)}i_oo
= 2y [y (y;a)V/ fy (y; 0) log \/fy(y;a)‘:im (56)

Due to assumptiond (L7dY+/ fy (y;a) converges to zero
as y goes to+oo. Since zlogz becomes zero as goes

to zero andfy (y;a) converges to zero ag goes to+oo,

V Iy (y;a)log\/fy(y;a) in (BB) also becomes zero as
approaches-oc.

11

Similarly, the second term i _(b5) is re-written as

Ey [X fyix (v X3 0)]Tog £y (y;0)|

y=—o0

a)log\/fv (y;a)
(a2)

X X;

Ex [X fyix(y|X;a)] 2\/fy
fY(y7 )

(a1)

Since factor(az) tends to zero ag approaches-co, and factor

(a1) is bounded due to assumptidn{17d), the right-hand side

of equation[(5lF) approaches zerojagoes totoco. Therefore,

the first term in equatio (52) is zero, and the equalityin) (53

is verified.

Again, using integration by parts, equatiénl(54) is exprdss

(57)

y=—o0

as

_21_@ _OO ifY(@h a)Ex [(y—X)%] dy
- AtmalEy [ - 0 D]

R o xixi)

+2a [m fy (v )dyEX {(y X) e ]dy(58)
:i/ fY(y;a)ilEx {(y—X)(%))] dy (59)
1 frix(ylXia)
=50 | ot (v Bx YRR o

d
o {i-m [WEW xiv]}- (60
The equality in[(BB) is verified by the following procedure:
the first part of equatiori (58) is re-written as

L h(ya g frxXo] |7
2q 7YV OB [(y x) fy(y;a) Hy_
= o () ~ Ex [Xfyx (513 a) (61)

0.

Due to assumptiond (IL7c) and [17d), both terpfs (y;a)
andEx [X fy|x (y|X;a)] become zero ag goes to+oo, and
equation[(6l) is zero.

Therefore,
d 1 d
%h(y) =3, {1 —Ey [dYEX|Y [X|Y]}}

and the proof is completed.

APPENDIXC
A PROOF OFTHEOREM[7]

Proof: [TheorentY]
From equation[{49), we know

d
da

~ g _ ]

:—[m %fY(y;a)dy—Kmlogfy(y;a)%fy(y;a)dy
~ d

:_[mlogfy(y;a)%fy(y;a)dy.

—h(Y)
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Therefore, the second derivative of differential entrogy iTerm (F) is exactly of the same form aE{51), and therefore,

expressed as 1 o d
2 ~ g d “ia2 | o8 fy(y;a)d—yEx [(y = X) frix (Yl X5 a)] dy
@h(y)——[m %lngy(y,a)%fy(y,a)dy I
) p —— B | Y - XIY]
= | logfy(yia) s fr(y;a)dy, 1 d
_ a
> , == (). (65)
1) = [ lowy ) e i)y 62 ot
oo . 8 IY Y5 a) gz Iy Wi a)ay. Term (D) is further simplified by the following procedures:
The last equality is due to the definition of Fisher inforroati 1 * . d? ) .
with respect to parameterin (7). T 1a? [mlogfy(y’a)d—yzEX[(y_X) Frix (I X; a)ldy
From equation[(1l6), we derive an additional relationship d %
ZIetween the second order differentials with respecy and — — 12 log fyv (y; a)d_yEX[(y - X)? fyix(ylX;a)]
2 1 [~d d ] .
@fmx(ybc;a) +@ 7ood_y10gfy(y’a)d_yEX[(y_X) fox(y| X5 a)] dy.
d 1 d 66
= 7 (_%d_ ((y— fC)fY|X(y|ff;a))> (66)
1 d y The first part of [(6B) is expressed as
= rdy ((y — o) fyx (yla; a)) ) 4 -
Y log fv (y; a)_Ex[(y_X)QfY\x(mX; a)]
i (=) (2 (- ) frix () e w
4a2 dy Yy dy Y Y\X Y\, . . y=—o0
Since :_EIngY(%a) <Ex[2(y _X)fY\X(y|X§a)]
d2 oo
— ((y = 2)° frx (yla; a) d
a7 ) HE (07 - 20+ X)L f i)
d =—00
a7 [(y — =) ((y — @) fyix (y|z; a))] . .
d d d =——log fy(y;a) <2yfy(y; a) = 2Ex[X fyix (y|X; a)]
— =D sl )+ 5 (-0 LD lsa) .
Y dy dy d d
we obtain the following relationship: +y2d_yfy (y3a) — 2yEx [Xd—yfyx(mX; a)}
d? 1 a2
dhixleia) = ggag (0= 0 frix(slesa) Y. [X% fyx<y|x;a)} )
1 d y=—o00
+——((y—2)f y|lz; a)) .(63) 1
4a? dy (= )frix(vlaia) =53 VI a)loegvi(ya)
Taking the expected value of both sides[of] (63), (b1)
4 X;a)
d2 1 d2 ) <2 TR LR X2 dyfy\x(y| ;
@f}/(y;a)_@{d_y?ﬂzx [(?J—X) fY\X(y|X§CL)] < \_.y J:Z_/()y’a) x fv(y;a)
L [0 X0 fyx 0IX:0)] |- (64) .
+—Ex |[(y—X)f y|X;a . (64 1, 4
dy : v ] —— V(i a)log V/f (y;.0)
After substituting (d2 fy (y; @) /da?), from equation [(64), (b1) -
. . . < X;a
into .equat|on [(6R), the second term Bf}(62) takes the expres | VT a) Ex dyfy\x(y| )
sion: —_— fy(y;a)
oo d2 (b2)
- [ o) Gz i )y e
o ¢ [ A (Yl X;a)
1 - d? —2yv/ fy(y;a) Ex Ay YT
=—— / log fv (y; @) Ex [(y — X)? frx (Y| X 0)] dy - vy a)
4a J_ dy (b2) -
" | ” W X;a) |
1 oo d 1 : — E[X fyx(y|X;a
—R[xlogfy(y;a)d—yEx[(y—X)fy‘x(le;a)] dy. +— VI (ysa)logVF (y;0) = ;Yx(y;a)

y=—o00

(b1)
(E) (ba)
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Sincex log = becomes zero asapproaches zero anfd (y;a) as
converges to zero gsgoes totoo, factor (b;) is zero agy — a2
+oo. Due to assumption§ (119c) arid (19d), tefdm) becomes —
. da
zero asy — +oo and term(bs) is bounded. Also, factor o0 &2
(bs) must be bounded due to assumptibnl (19e). Therefore, as =—J,(Y) — / log fy (y; a)=— fy (y; a)dy

h(Y)

da2
y — Fo0, the first part of equatiod (66) vanishes. 1*02 da
Then, equation[(66) is further processed using integration =—.J,(Y) — ——h(Y)
by parts as follows: ) 2a ga -
~ 2By | 755y (V)Ex)y (Y — X)?|Y]
[ voapitgsa X0 o X ] d C ‘
T2 - l0gjy;a)— Yy— yiAsa)ay
w2 iy v =Tl (Y) - Ty [imw (v - X)|Y]
L L owfyly: B[y X fy (| X)) | T
= 7 logfy; a)Ex|(y— vixy|a;a 1 [ d |
4a? dy y=—oo _ el _X)2
— —1 1a)Ex[(y—X)* fyv (y|X; a)] dy. .
4a? /mdy2 ogf{y; )Bxl(y—X)"frix(yl X a)] dy and the proof is completed. [ |
(67)
APPENDIXD
Again, the first part of equation (67) is re-written as A PROOF OFLEMMA[T]
. Proof: [Lemmal[1]

14 log fy (y; A)Ex[(y— X )? fy x (y| X ; a)] Before we prove this lemma, we first introduce two lemmas

4a? dy V= which are necessary to prove Lempia 1.
1 [ lXsa) E efrix(@lX;a) Lemma 6:Given the channet’ = X + \/aWW in (@), the
“@ e (y—X) 0 following identity holds:
d o 2
1 d_ny\X(y|X§a) 9 - i _ i
(c2)
(c1) whereX is an arbitrary but fixed random variable with a finite
1 d%fwx(MX; a)l second—order moment, _arW _is a Gaussian random variable
2 x| T — Y fy(y;a) with zero mean and unit variance.
fy(y;a) %/—’(02) Proof: In Theoremd 4[]5, we showed the equivalence
(1) among De Bruijn, generalized Stein, and heat equation iden-
frix(y|X;a) tities for specific conditions. Therefore, using one of the
x Ex {XW} identities, this lemma can be proved. In this proof, ThedBm
l (the heat equation identity) will be used widtty) = Sy (y)?.
] (ca) Unlike the definition ofg(y) in TheoreniBg(y) is dependent
L . lrixlXsa) |, - on the parameten. Therefore, we use the notatigriy; a)
@5 e | W wa) instead ofg(y). Since J(Y) — E[Sy(Y)?], the right-hand
(e2) side of [70) is expressed as
(c1)
foxwlXs )| Liv)=LE, [$,(Y)]
xJEX[X2(;’Ey7))’3/4H (68) da da ¥ Y
Y y; a =—00 — = d . . d .
- — [ et ety + B oo (1)

Factors(c;) and (c3) are bounded due to assumptio(lQ(% ye;herer;iztdessuatlon identity, the first term in equation (71)
and [1%e), and, by assumptidn {19d), facter) approaches P

zero asy — +oo. Then, equation (67) is expressed as < d _ _ 1 d? .
/ %fy(yaa)g(yaa)dy = §EY mg(Y,a}
1 [>~d

d
— | —log fy (y;0)—Ex[(y—X)*fy x (y| X;a)] dy Using integration by parts, the second term in equatioh (71)

— 00

2
da ) *wi‘y ) dy is expressed as
- el . _ 2 .
- 4q2 ,oody2 1ngY(yaa)EX|:(y X) fY\X(y|Xaa)} dy & d (Y ) 71E d2 (Y ) E d g (Y) 2
69) |dad\ Y| T gy Y| T gy

2 d

Using equations[ (65) and _(69), equatidn](62) is expressed +2E, {SY(Y) v Y(Y)] .
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Therefore, equatiod {71) takes the form: Since W is normally distributed with unit variances =

S d 1/J(y/aW), and the last equivalence holds. The last equation
/ %fY(?J; a)g(y;a)dy + Ey [%g(y; a)] in (74) denotes the Fisher information inequality, and treop
- ) is completed.
- _Ey (iSy(Y)) Remark 6:This proof uses neither the convolutional in-
dy equality, the data processing inequality, nor the EPI, kenli
2 d previous proofs. The proof only relies on De Bruijn’s idépti
+Ey [mg(y;a)] + 2Ey [Sy(Y)ZWSy(Y)] . Stein’s identity, or the heat equation identity. Namelye@rem
[, 2,03, or[Y is the only adopted result, and Theoréins] 4, 5
(F) ensure Theorefd ] P] 3,[dr 7 can be equivalently adopted to the
Performing an integration by parts, the tef#) is shown to Proof. Even though Lemnid 6 was used in this proof, Lemma
be equal to zero, and the proof is completed. itself was also proved using one of the above identities.
Remark 5:A vector version of this lemma was reported herefore, this proof only uses our results.
in [13]. The reasons why we introduce both this lemma and u

its proof are not only to present alternative proofs, bubals Now, based on Lemnid 7, the proof of Lemima 1 is straight-
to explain the usefulness of our novel results. For exampferward. From Lemmal7,

Lemmal[6 was proved based on the heat equation identity, 1 1 1

which is a novel approach to prove this lemma. At the JY) 2 J(X) + JJaw)’

same time, this lemma can also be alternatively proved using J(X)J(yaw)

Theoren¥ or Corollaril4. —= J)< . 75

Lemma 7 (Fisher Information InequalityConsider  the Since X and W are independent, ant¥’ is normally dis-
channelY = X + /aW in (1), where the random variabletributed,
X is assumed to have an arbitrary distribution but a fixed
second-order moment ant/ is normally distributed with  Ex [J(Y]X)]

zero mean and unit variance. Then, the following inequality [ >/ d 2
L n@ [ (G st i) ) frstyloia)dyds

is always satisfied: . dx
2 et = [ 5@ [ -0 Rtz
J(Y) J(X)  J(Vaw)’ ) L a? PR
vv_here the equality holds if and only iX is normally dis- 1 (76)
tributed.

a
Proof: Using Lemmalb (equivalently, Theorel 7 or=J(v/aW).

Corollar can be used),
yia ) The equality in[(7B) is due t&y | x[(Y — X)?|X = 2] = a.

d d 2 i i
~Liw) = By (—SY(Y)) For a Gaussian random varialfg,
> By |(Gpsvm)] 2
day whereVar(X|Y) stands folEx y [(X —Exy [X[Y])?] ([L1],
= J(Y)% (72) [20]).
. . Substituting Var(X|Y) and Ex[J(Y|X)] for J(Y) and
Equation [72) is expressed as J(y/aW), respectively, equatiof (¥5) is expressed as
d
- JY) = JV) ) < J(X)J(\/aw)
and it is equivalent to ~JX) + J(VaW)’
11 J(X)J(/aWw)
4y S <
e 21 = a @V = Geg ey
1
<— Var(X|Y) > ,
e (15 (73) ar(X| )_J(X)+J(\/5W)
da \ J(Y) 1
Since inequality[{73) is satisfied for amy = Var(X[Y) 2 J(X) + Ex J(Y|X)
/a a1 dt > /a 1dt, SinceVar(X|Y) is equal to the minimum mean square error,
o dt \J(Y) 0 . .
1 . MSE(X) > MMSE(X)
~ Iy Ix - ® — Var(X[Y)
= = ! + ! . (74) > !

TV) = 70 T Ivaw) T(X) T Ex UV X))
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where X denotes a Bayesian estimator, and the obtainedUsing Corollary% and equatiofi{[77), equatibnl(81) is furthe
inequality is the Bayesian Cramér-Rao lower bound (BCRLBprocessed as

[
d o (. d
APPENDIXE d ) d
A PROOF OFLEMMA 2 = 1-2a <2%h(y)) +a < 2ﬁh(y))
Proof: [Lemmal2] ) d 2
Whena is zero, the right-hand side df (22) is zero due to = 1-2aJ(Y)+a’Ey (WSY(Y)> (82)
the following relations:
> 1-2aJ(Y)+a*J(Y)? (83)
N(XIY) = 5 exp(2h(XV)) — (1-aJ(¥))
e
1
1 = — X|Y)2
= 5 exp2(A(X) + h(Y]X) = h(Y)) g2V X
1 The equality in[(8R) is due to Theordrh 1 and Coroll@ry 4, and
= e exp(2(h(X) + h(vaW) — h(Y))) the inequality in [8B) holds because
_ N(X)N(y/aW) 2 2
= — . > -
N(Y) B | (7p5rm) | = (5 [5svm))
_ aN(XON(W) A
T N(X 4+ aW)’ = J(Y)~
Therefore, whem goes to zero, Therefore,
d 1
—Var(X|Y) > =Var(X|Y)2 84
lim N(X[Y) = lim —J‘\’[N)((X)N(VMV/) da’ rXI) = GVarX|Y) (84)
“ _ 8_) (X + VaW) (78) Using equations[(80) and (84), we obtain the following in-
o equality:
The equality is due to the fact thdim N (X W) =
dualiyis cd fact that, N(X + valV) Liog NXY) < LiogVar(X|V).
N(X). Since the left-hand side df (22) is always greater than da da
or equal to zero, the inequality i (22) is satisfied wheis SinceN (X¢|Ye) = Var(X¢|Ys), whereX ¢ andYy denote
Zero. Gaussian random variables whose variances are equdl to

Without loss of generality, from now on, we assume thaindY’, respectively, the following inequality also holds:
a > 0.
d
Sinceh(X|Y) = h(X) + h(Y|X) — h(Y), by TheoreniIL T (log N(X¢g|Yg) — log N(X[Y))
(De Bruijn’s identity), d
> T (logVar(X¢g|Ye) —logVar(X]Y)). (85)
a

d XY
da N(X|Y) By performing an integration, frorl to a, of both sides in
_ di (L exp (2h(X|Y))> (85), equation[(85) is expressed as
“d
vt @ | Qo Ni(X¥e) ~ log (X |Y)) i
= 2N { RO + RV X) = on) ) .
11 > / pn (logVary(X¢|Ye) — logVar (X|Y)) dt
— aN(xY) {2— - 570 (79) o dt .
a
_ (le) Var(X|Y) (80) < log Ni(Xg|Ya) —log Ni(XY) .
Since h(X) is independent of: and h(Y|X) = h(y/aW), > log Vary(X¢|Ye) — log Vard(X|Y)
(d/da)h(X) is zero, and(d/da)h(Y|X) = 1/2a. Therefore, o

the equality in[(7D) is satisfied. The equality in](80) is dae t ., log No(Xc|Ye) — log Na(X[Y)
equation [(717). o B
Based on equatiol (¥7), lim (log Ni(X¢[Ye) — log Ni(X[Y))
>logVar.(Xg|Ya) —logVar,(X1]Y)

diaVar(XD/) = dia [a — aQJ(Y)] — lgr(l) (logVary(X|Y) —log Var:(Xg|Yes)) (86)
_ d% [a 2 (2%“”)] @) & log Nu(X|Y) <logVar,(X|Y), (87)

where< stands for equivalence between before and after the
The equality in[(8l) is due to Theordm 1. notation, subscript or ¢ denotes that a function depends on
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a parametet or a, respectively (the subscript is only used SinceN(X¢|Ys) isequaltol/(J(Xq)+J(v/aW)), where
when there may be a confusion between an actual parameter and Y are Gaussian random variables whose variances

variable and a dummy variable).
The equivalence in [(87)

No(Xg|Ye) = Var.(Xa|Ye),
N(X)N,(Y|X)

lim log
t—0

iy o

Ni(X¢al|Ye)
N(X|Y)
(Xe)N (Y| Xe)
(Mo
N(Xg W) /N(X)N(HtW)
NXG+\/W) N(X +VtW)
N(Xg)N(X + ViW)
}%log(zv( XG+WW>>
(NN
1g< N(X)N(X >>

iy o

lim (log Ni(X¢|Ye) —log N¢(X[Y))
Ny(Y)

and

hm (logVary(Xs|Ye) —logVard(X|Y))

=lim(lo

t—0

=lim(log

t—0

—log(l)

(1 tJ(XetVE W))—log(l 1I(X+V1 W)))
log(1)

(88)

(t £2J( XG+\fW))—log(t 12 (X+\/ZW)))

are equal toX andY, respectively, the following inequality

is due to the followingis satisfied:

d
—(log N(X¢|Yz)

= ~log N(X[Y)))

d 1 1
= %<l°gJ<Xc> TIaw) BT T J(\/EW)> (92)

By integrating both sides ifi (92), equatidn}(92) is equintle
to the following:

)

[ 5 Qo8 Ni(Xe¥e) — tog Ni(X[y )

/“d 1
<
0

E(logJ(XG)JrJ(\/EW)
< log No(Xe|Ye) — log No(X 1Y)
- }1_13(1) (log Ni(Xa[Ys) — log N (X]Y))
1 1
J(Xe) + J(VaW) )+ J(v/aW)

1 1
<1°gJ(XG)+J(\/EW) T(X )+ (VW)
<log N(X|Y) > log 5

1
X) + J(Vaw)’
where< denotes the equivalence between before and after the
notation, and subscript or ¢ of a function means dependency
of the function with respect tax or ¢, respectively. The
equivalence in[{93) is due to the followingV(X¢|Ys) is

1
_1°gJ<X)+J<\/Em)dt

< log — log

J(X

— lim
t—0

)

(93)

— log

(89)

whereW is a Gaussian random variable. The equality[id (8§3)qual to1/(J(Xe) + J(vaW)), and

is due to equatior (T7).

Since logz is an increasing function with respect tg

equation[(8l7) is equivalent to
NX|Y) < Var(X|Y),
and the proof is completed.

APPENDIXF
A PROOF OFLEMMA [3

Proof: [Lemma[3]

1

lim <1og L — log )
=0 J(Xa) + J(VIW) J(X) + J(VIW)
. t t

= <1°g TXe) T 8 i) + J(W)>

" e tJ(X) + J(W)

T 50 tJ(Xg)+J(W)

g 2N

)

= 0, (94)

Whena = 0, both sides of the inequality i (R5) are zero,
and the inequality in[(25) is satisfied. Therefore, withamssl and

of generality, we assume that> 0.

1 d
N(X|Y) da
%V{M‘(XD/)

1 1
a2 J(X) + J(v/aw)

d ) 1
da 8 (J(X) + J(/aw)

di log N (X|Y) N(X|Y)
a

).

lim (log N¢(Xg[Ye) —log Ny(X[Y)) = 0
e
due to equation (88).

Sincelog x is a increasing function with respect tg the

(90) inequality in [93) is equivalent to

9

oD N(X[Y) > ! . (95)
J(X) + J(VaW)

Since we have already proved th&{ X |Y") is a lower bound

wherelV is a Gaussian random variable with zero mean aridr any Bayesian estimator in Lemrhh 2, the inequalityid (95)
unit variance. The equality i (90) is due to equationd (80¢, t means that the lower bound (X]Y"), the left-hand side of

inequality in [@1) is because of BCRLB.

(@9), is tighter than BCRLB, the right-hand side bfl(95)m



APPENDIXG
A PROOF OFLEMMA [4] (CosTA S EPI)

Proof: [Lemmal[4]

The proof will be conducted in two different ways.

1)

2)

Instead of proving equatioh_(26), we are going to prove

the inequality in[(2]7).
Using De Bruijn’s identity,

&2 d d d?
SEN(Y) = 2= N(Y)=h(Y) +2N(Y) 75 h(Y),
= N(Y) <J(Y) 2%h(y)>

whereY = X + /aW. Since N(Y) > 0, proving the
inequality in [2Y) is equivalent to proving the following
inequality:

J(Y)? + 2%11(}/) < 0. (96)
Using Theoreni]7, the inequality ih_(96) is expressed as
J(Y)? —2J,(Y) - %Ey [d‘;E” Y — X|Y]}
5By | 7S (VB [(V - XY <0.007
By Corollary[4, equatior[(Q?) is equivalent to
J(Y)2=2J,(Y)— Ey [X/EXY[Y X|Y]]
1 d
By {WSY(Y)EXY (o= x|
2
=J(Y)? -k, <%Sy(y)>
2
—_E, <J(Y) + %SY(Y)) (98)
<0.
Since J(Y) = —E[(d/dY)Sy (Y)] andE[Sy (Y)] = 0,

the equality holds in[(98). Therefore,

d2
—NY) = -E
da? () Y

)

(907 + sy

< 0,

and the proof is completed.

Remark 7: This proof mostly follows the proof i [30].
However, by using Theorel 7 to prove Costa’s EPI, we
show that Costa’s EPI can be proved by De Bruijn-like
identity without using the Fisher information inequality.
In the second proof, the inequalify {27) is proved by a
slightly different method.

First, define a functiori(a) as follows:

J(X)
l = ———
(@) 1+aJ(X)
whereY = X + /aW, X is an arbitrary but fixed

random variablelV is a Gaussian random variable, and
X andW are independent of each other.

+J(Y), (99)

17

For arbitrary non-negative real-valuedi(a) < 0, and
it is proved by the following procedure; using Lemma
(Theoren 7 or Corollar{]4 can be used instead of

Lemmal®),
— i) = By | (e >)2
> Ey[(%sym)r
= JY)% (100)

Equation [(Z0D) is equivalent to the following inequali-
ties:
d
_ daJ(Y) > 1
J(Y)?

ia (707) 2

Since inequality [(101) is satisfied for arbitrary non-
negative real-valued,

/Oa%<ﬁ>dt2/oaldt

(101)

1
= < Ty I
— JY )—1+0(L () oL (102)

and therefore, equatioh (99) is always non-positive.
Since J(Y') converges toJ(X) as a approaches zero,
1(0) = 0, and the following inequality holds for an
arbitrary but fixed random variabl€ and arbitrary small
non-negative real-valued

J(X)
l(e) = 1(0) —m J(X + /eW) (103)
< 0. (104)
Therefore,
d
2l _ <0 (105)

for an arbitrary but fixed random variabl€.

Since the inequality in[{I05) holds for an arbitrary
random variableX, we defineX as X + \/aWW, where

X is an arbitrary but fixed random variabl&/ is a
Gaussian random variable whose variance is identical to
the variance ofV, andX, W, andi¥ are independent of
one another. Then, the inequality [0 (105) is equivalent
to the following inequalities:

< J(X + aW) )2

14 eJ(X + /aW)

e=0

+%J(X +VaW + /eW)
e=0
~ ~ 2
&0 JX 4 ValV)
1+ eJ(X ++/aW) —o
+—€J(X +Va+ W) (106)
e=0
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S0 > ( J(XJF\/EW) )2 Therefore,
- rad&@vvam)) | _ d ) = (L (y—=
o ~0 d_fY\X(y|Iva) = %<dyfw<ﬁ>)
+%J(X+\/a—+eW) (107) 1 /1 d
62? = % (%%JCW (w)> ’

S0 > JX+VaW)?+ d%J(X + v/aW), (108)

va
and
where < denotes the equivalence between before and
after the notation. The equivalence [n(106) is due to the d—fy|X(y|:c; a)
fact that J(X + /aW + /eW) = J(X + Va + W) d .
for independent Gaussian random variablgsand W/ = ( fw ( >
whose variances are identical to each other. The inequal- @ 1\/— va L4
ity in (I07) holds due to the following procedure: first, —_— _ F (y - x> 2 (y - x>
the Fisher information/(X + \/a + ¢W) is expressed 2av/a Va ada Va
as - 1 y—a
. . ~ T\ a
J(X +vVa+eW)
i d b | e = 2 oy () (110)
— . . —_— —_—— _— :Z:‘ —_— .
_/;xd_ny(yaave)d_ylong(yaave)dy \/a QG\/E Y dw w W s
Ve
oo d -
:/ d—y]Ex{ we(y|Xsa, } —logE [ }dy Equation [TID) is further processed as
= d 1 1 1 y— 1 1 d
=] —Eg| ———exp(— S DR O S
/,xdy [ 2m(ate) p( ] “2ava ( Va >+\/a< 2aya D a ) )
d 1 ¥
x ——logE ¢|—=—=—=exp (y—X)?)|dy, 1 [ 1 d
dy L/2 a+ ( 2(ate) _ y—
e w7 |
(109)
> S . 1 d
whereY = X + /a+eW. Since fy x(y|Z;a,¢) is ——2—{<d—( —x)) Frix (ylz; a)+(y— ) fY\X( |2; a)
a Gaussian density function with meanand variance @ Y
a + ¢, the equality in[(Z09) holds. In equatidn_(109), __ 14 [(y — ) fyx (yla; a)]
and e are symmetrically included in the equation, and 2a dy
therefore, and therefore,
L JX 4 VAT = L 1 vaTeaw L fyixlea) = o [y - ) fy x lasa)]
£(+a+e) %(—l-a—l-e ). 2o Y1x Yl 2adyy vix(ylr;a)] .
Since random variableX is arbitrary anda is an APPENDIX |
arbitrary non-negative real-valued number in equatiogypi ANATION OF ASSUMPTIONS(LTZ) IN COROLLARIES[Z,
(108), the proof is completed. 3
u 1) Corollary[2
Given the channel” = X +/aW in (1), W is assumed
to be exponentially distributed with unit parameter, i.e.,
APPENDIXH . : '
DERIVATION OF EQUATION (16) its pdf fw (w) is defined asxp(—w)U (w), whereU(.)
denotes a unit step function. Since random variables
Given the channel moddll(1), random variablésand W/ X and W are independent of each other, conditional
are independent of each otherjs a deterministic parameter, density functionfy | x (y|x; a) is expressed as
and random variabl@” is the summation ofX and /aW.
o . , 1 y—=x
Therefore, between the two probability density functions fyix (ylz;a) = —exp( ) Uy —x), (111)
fyix (ylz;a) and fw (w), there exists a relationship that can Vva va
be established as follows. and its derivatives with respect tp and a are respec-
) tively denoted as
fyix(lasa) = —=fw(w) d
| VO - fix(vlea)
va Y
Lo (4= L il a) = exp L5 Vo(y — 2)(112)
= _— . = —_— : — X —_
\/a w \/a \/a Y|X y ) \/a p \/a y 9



d
%fy\x(ylﬂ a)

—2—1afY\X(y|fC;a) + (ga;\/?fyx(ylw;a), (113)

whered(-) is a Dirac delta function.
The absolute values of equations (1112}, {113) are
bounded as

d%fwx(ylév;a)
= —%fﬂx(ylw,a) + ia exp (y\;;) 5(y —x)
< | Jextlea + | Sz e (U)ol o)
< §+%exp<y%’”)5<y—x>, (114)
and
L iyl a)
— gt + YD sty
< |getrxtlzi)| + |9 frixtoleia)| @1s)
< ﬁ+ , (116)
where E = maxy[(y — z)fy|x(ylz;a)]. Since

fyv|x(ylz;a) is exponentially decreasing ag ap-
proachesco, the real valuedE always exists. Also,
maxy f(Y|X)(y|lz;a) = 1/y/a, and therefore, the in-
equalities in[(1I4) and_(116) are satisfied.

The right-hand side of (114) an@ (116) are now inte-
grable as follows:

a5+ e (2 ot - 0| = 3 + 1)

If a function fx(z) is bounded, by dominated conver-
gence theorem, assumptidnl(17a) is verified.
Second, assumptiofi ([17b) is verified as follows.

+E. (117)

L (s )10 fy 3:.) (119)

IN

d
log fy (y; a)@fy(y; a)

d
+ ‘%fy(y; a)

= 10gfv(y§a)Ex l_ %fy\x(yl)ﬁa)

(y—X)

T oava 2a+/a

fY\X(y|X a)

d
+ ‘%f‘r(y?a)

19

= ‘\/ fv(y;a)log fy(y; a) < - 2—1a fy(y;a)

a) — Ex [X fyix(y|X;a)]
) T ) >|

y
+2a\/5
d
+ ’%fy(y; a)
= ‘2\/fy(y; a)log v/ fv (y; a)‘
(d1)

T (y;a)+

Y _ S
m fy(y;a)

_Ex[XfY\X (y|X;a)]
2av/av/ fv (y; a)

(d2)

| 1
X _—
2a

(119)

d
+ ‘%fy(y; a)
—_———
(ds)

<K ‘2\/fY(y;a)10g \/fY(%a)’ + ’%fY(%a) .

The term (ds;) is bounded by an integrable function
due to equation[{115), factofds) is bounded by a
constantK due to assumption§ (L7c) arld17d), which
will be proved later, and factofd;) is bounded, and it
is integrable:

/Om ‘\/fy(y;a)log \/fy(y;a)‘ dy
Z%/Ow‘\/mlogfy(y;a)}dy

-4 efgen(-r-0)oo)

1 [l ()
()l ) o




where Mx (-) denotes the moment generating function
of X. If the moment generating function of exists,

then equation[{120) is bounded and integrable, and so2)

does the tern(d;). Therefore, term(d;) is integrable
with respect toy, and assumptior (17b) is verified by
dominated convergence theorem.

Similarly, assumptior‘[(l?c) is verified as follows.

| fyixlasa)| = 7 (y\}x) Uly — )
< 7 (121)
2 fyx (Ylz;0)] = wl% exp (y\;;> Uy — )
< 7 (122)

and the right hand-side terms df (121) amd (122) are
integrable as

1 1
|7 - 7
1 1
Ex [EX} = %EX[XL
and if Ex|[X] exists, assumptiof (IL7c) is satisfied.
Since fy|x(ylr;a) is exponentially decreasing,
lim 42 fy (y;a) is zero. In addition,
Y—r00

(123)

2
Jim 4 fy (y; a)

= lim Ex [y*fy)x (| X;a)]
y—0

— limEy [ 21 oo <y_x> U(y—x)}

y—0 Va Va
~ Ex [0 x % exp (\_/—9 U(—x)}
_— (124)

Assumption[(I]7d) is expressed as
Ex [Xfyix(y|X;a)]
fY(ya )

[Xfy\x le a /
B fY(y7 a)

_fo SCfx

exp(T)U y—x)dx

\/ v(y;a)(125)

S @) 7 ex (T)U(y )

yfo [x(z \% (%) d |

f Ix(x 7a eXp (y_\/;) d fy(y; a) (126)
fy(y;a).

The inequality in[(22B) is due to the fact that, in (1.25),
the term inside integral is non-negativwejs increasing,
and integration is performed fromto y.

Therefore, the assumptions [n{17) require the following
conditions: 1) existence oEx[X], 2) existence of
Mx (), 3) bounded pdffx(z), and these are further
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simplified into the existence of the moment generating
function of X and bounded pdfx ().

Corollary(3

Given the channel” = X +/aW in (1), W is assumed

to be a gamma random variable, and its pdf is expressed
as

fww) = ——w*  exp(—w)U(w),

I(a)

whereT'(:) is a gamma function{/(-) denotes a unit
step function, andx > 2. Since random variableX
and W are independent of each other, the conditional
density functionfy | x (y|x; a) is expressed as

fY|X(y|17; a)
1 y—x ol y—x
-z () =)o
and its derivatives are denoted as

d
ay D wlesa)

2),(127)

= —%fy\x(ylx; a)

d%fwx(ylx;a)

«
—%fY\X(yW;a)
« 1 y—x\" y—x
el G () = o).
(129)
The absolute values of equations (1128}, {129) are
bounded as

d
d—yfy\x(y|$;a)

1
= ‘ - %fwx(ylx; a)

() o7
< ‘%fyx(ykﬂ;a)
“Jran () el

‘ fY\X (y|z; a)

\ vtz
\/—fY|X(y|~T Ja) + %fya,ux(ylw;a), (130)

where

fyo_1x (Wlz;a)

() ol o oo
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i.e., this is a gamma density function with two parame- = ‘2\/fy y;x)log v/ fy (y; x ‘
ters defined asx — 1 and1, and

(e1)

fY\X( |3 a) 1 Folyio) + Y i)
. — 5 VYT m\/ y\y; T
:‘ - %fy‘x(ylw;a) _EX [XfY|X(y|X§a)]
i 1 y—a\" [ y-u 2av/a\/ fy (y; )
2a \Val(a+ D\ va ) “P\7 /& (c2)
d
<[ & frctolesa) | o). (137
@ 1 y—x\" y—x —
+ == T 1 exp| — (es)
val(la+ 1\ va va The factors(ey), (e2), and(es) can be verified using exactly
= ‘ 2 fy‘x(ylx a ’ + ’2 Fyoinix (Yl a)’ the same reasons as the factgts), (d2), and(ds), in (I19),
respectively. Therefore, like equatidn_(120), the existenf
= %fywx(mx;“) + %f‘/amx(yma)v (132) moment generating function of is required.
where Assumption[(Zl7c) is confirmed by the following procedures.
Since fy|X(y|$C;a) is exponentially decreasing,
Sraix(yla;a) hm y?fy (y;a) is zero. By the same procedure as equation
wo(57) ()
= exp y—1),(133) @) v fy(y;a) becomes zero ag approaches zero. In
\/EF(O‘JFU( Va Va =) addition,
i.e., this is a gamma density function with two parame-
ters defined as + 1 and 1. |[frix(ylzia)| < fY‘X(ylx;a)‘y:I'i'\/E(a_l)’ (138)

Sincefy, _,x(ylz;a), fyix(ylz;a), andfy, ,, x (y|z; a) , ,
are all integrable, the right-hand side ﬁllSO) dnd 1132) |2 fyix (ylwsa)| < @ fyix (vl a)’y:IJr\/g(a,l)' (139)

are integrable as The inequalities above are due to the fact that the function

1 1 fyix(ylz; @) is always nonnegative, and it is maximized at
Ex {\/—fYIX( [X5a) + \/Efy"‘*'X(y'X a)] yyzxx + v/a(a — 1). Therefore, the right-hand sides 6 (138)
_ ify(y;a) n —fya,l(y;a), (134) and [139) ar_e integrable as
Va Va E 1 et .
Ex |5 frix(01X:a) + oo . x (01X ) * |[Varqy @ - VT et ”]
1 o
= S fr(ia) + o fron ia), (135) = m(a ~1)°  exp(—(a — 1)),

where fy _ (y;a) = Ex[fv, ,x(y[X;a)], and D exn(— (o — }

Foor (50) = B [fy (5] X; )] Therefore, assump- Ex | X Var (@~ DT el 1)

tion (I7a) is verified by dominated convergence theorem. 1 a—

Second, assumptiof (17b) is verified as follows. ~ Val(a) (0= 1)*Fexp(~(a — 1Ex[X],  (140)
d ) ] and, if Ex[X] exits, by dominated convergence theorem,
da (fv(y;a)log fy(y’w))’ (136) assumption[(I7c) is verified.

. d ' d . Finally, assumption{17d) is expressed as
< o (1) 50| | v ) e
1 fY(y7 )
= |log fy (y;2)Ex | — — fy|x (y|X;a)
2a Ex [X frix(y|X;a)] /
_ fY(y7 )
I [T A
X e A Ve ) v \/fy(y;a)
=2/ fy (y:z) log \/fy(y;x)<_ 5oV Iv(y:2) Sy MYz (7) eXp( e JAy=a)d
a (141)
Y : Ex [X fyx(y|X;a)] ) ) N == 7exp — =) da
+2a\/a .fY(yaI)_ 2&\/6\/% < )(\/_) ( \/_) /fy(y;a) (142)

st () ol 2 o

d
" ‘%fy(y;a) e
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The inequality in [[I4R) is due to the fact that, [n (1L41), thes] T. Liu and P. Viswanath, “An Extremal Inequality Motheai by Multi-

term inside integral is non-negative,is increasing, and the
integration with respect te is performed from to y.

terminal Information-Theoretic ProblemdEEE Trans. Inf. Theoryvol.
53, no. 5, pp. 1839 - 1851, May 2007.
26] T. Liu and S. Shamai (Shitz), “A Note on the Secrecy Cépaaf the

Therefore, in this case, the assumptiondid (17) require the Multiple-Antenna Wiretap ChannelJEEE Trans. Inf. Theoryvol. 55,

existence of the mean and moment generating functiok ,of

no. 6, pp. 2547 - 2553, Jun 2009.
27] S. Park, E. Serpedin, and K. Qarage “An Alternative Prob an

and these are further simplified to the existence of the mom&H Extremal Inequality, arXiv:1201.6681.

generating function ofX.
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