
1

Structure Theorems for Real–Time Variable Rate
Coding With and Without Side Information

Yonatan Kaspi and Neri Merhav

Department of Electrical Engineering

Technion - Israel Institute of Technology

Technion City, Haifa 32000, Israel

Email: {kaspi@tx, merhav@ee}.technion.ac.il

Abstract

The output of a discrete Markov source is to be encoded instantaneously by a variable–rate encoder and decoded
by a finite–state decoder. Our performance measure is a linear combination of the distortion and the instantaneous
rate. Structure theorems, pertaining to the encoder and next–state functions are derived for every given finite–state
decoder, which can have access to side information.

I. INTRODUCTION

We consider the following source coding problem. Symbols produced by a discrete Markov source are
to be encoded, transmitted noiselessly and reproduced by a decoder which can have causal access to side
information (SI) correlated to the source. Operation is in real time, that is, the encoding of each symbol
and its reproduction by the decoder must be performed without any delay and the distortion measure does
not tolerate delays.

The decoder is assumed to be a finite–state machine with a fixed number of states. With no SI, the
scenario where the encoder is of fixed rate was investigated by Witsenhausen [1]. It was shown that for a
given decoder, in order to minimize the distortion at each stage for a Markov source of order k, an optimal
encoder can be found among those for which the encoding function depends on the k last source symbols
and the decoder’s state (in contrast to the general case where its a function of all past source symbols).
Walrand and Varaiya [2] extended this finding to a joint source–channel setup with noiseless feedback.
Teneketzis [3] used ideas from both [1] and [2] and considered the joint source–channel setup for a given
finite state decoder without feedback. A causal variant of the Wyner Ziv problem [4] was also considered
by Teneketzis [3]. It is shown in [3] that the optimal (fixed rate) encoder for this case is a function of the
current source symbol and the probability mass function of the decoder’s state for the symbols sent so
far. Borkar, Mitter and Tatikonda [5] derived structure theorems of a similar spirit when the cost function
is a linear combination (Lagrangian) of the conditional entropy of the reproduction sequence and the
mean square error of the reproduction. The scenario where the encoder is also a finite state machine was
considered by Gaarder and Slepian in [6]. In some cases, the minimization of the distortion (or cost)
can be cast as a stochastic control problem. In this case, tools developed for Markov decision processes
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are employed to either solve the optimization problem or to get insights on the structure of the optimal
solution. Examples of this technique include [2],[3],[5],[7],[8].

When the time horizon and alphabets are finite, there is a finite number of possible deterministic
encoding, decoding and memory update rules. In principle, a brute force search would yield the optimal
choice. However, since the number of possibilities increases doubly exponentially in the duration of the
communication and exponentially in the alphabet size, it is not trackable even for very short time horizons.
Recently, using the results of [3], Mahajan and Teneketzis [9] proposed a search frame that is linear in
the communication duration and doubly exponential in the alphabet size.

Real time codes are a subclass of causal codes, as defined by Neuhoff and Gilbert [10]. In [10], entropy
coding is used on the whole sequence of reproduction symbols, introducing arbitrarily long delays. In the
real time case, entropy coding has to be instantaneous, symbol–by–symbol (possibly taking into account
past transmitted symbols). It was shown in [10], that for a discrete memoryless source (DMS), the optimal
causal encoder consists of time–sharing between no more than two memoryless encoders. Weissman and
Merhav [11] extended [10] to the case where SI is also available at the decoder, encoder or both. Error
exponents for real time coding with finite memory for a DMS where derived in [12].

This work extends [1] in several directions: The first is extending the result of [1] from fixed–rate
coding to variable–rate coding, where accordingly, the cost function is redefined so as to incorporate both
the expected distortion and the expected coding rate. Secondly, we allow the decoder access to causal
side information. Unlike [1] and [3], we do not a-priori restrict the encoders to be deterministic and thus
the encoders can be any stochastic function of all causally available data. While in [1] and [3], it is
quite clear that deterministic encoders are a–priori optimal, it is not immediately clear in our case, as
we discuss in the sequel. We show that structure theorems, in the same spirit as those of Witsenhausen
[1] and Teneketzis [3], continue to hold in this setting as well. Moreover, the structure can be simplified
when the decoder has infinite memory. Finally, we upper bound the loss incurred by using a suboptimal
next–state function which uses a “sliding–window” over the past decoder inputs. We refer to such memory
update functions as Markov memory update functions. The upper bound is given in terms of the original
state alphabet and the window length. The suboptimal system that uses Markov memory update functions
is analytically more tractable and its optimization is easier since in order to find the best sub–optimal
system, effectively, as discussed in the sequel, only the encoders need to be optimized.

In contrast to [1] and [3], where fixed–rate coding was considered, and hence the performance measure
was just the expected distortion, here, since we allow variable–rate coding, our cost function incorporates
both rate and distortion. This is done by defining our cost function in terms of the Lagrangian

(distortion) + λ · (code length).

where λ > 0 is a fixed parameter that controls the tradeoff between rate and distortion. In [1], the proof of
the structure theorem relied on two lemmas. The proofs of the extensions of those lemmas to our case are
more involved than the proofs of their respective original versions in [1]. To intuitively see why, remember
that the proof of the lemmas in [1], relied on the fact that for every decoder state, source symbol and
a given decoder, since there is a finite number of possible encoder outputs (governed by the fixed rate),
we could choose the one minimizing the distortion. However, in our case, such a choice might entail a
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large expected coding rate, and although minimizes the distortion, it will not minimize the overall cost
function (especially for large λ). Furthermore, unlike the case of [1], in our setting, the cost in future
stages depends non–linearly on the choices of earlier encoders and in contrast to [1] and [3], there is no
reason, as we discuss in the sequel, to a–priori assume that deterministic encoders are optimal.

The remainder of the paper is organized as follows: In Section II, we give the formal setting and
notation used throughout the paper. In Section III, we start with the simpler setting without SI. Structure
theorems regarding the encoder are derived for both the finite and infinite memory models. In Section
IV, we upper bound the loss incurred when Markov memory functions are used instead of the optimal
next–state functions. In Section V, we exend the setting of Section III by allowing the decoder access to
SI. We begin each section by stating and discussing its main result. Finally, we conclude this work in
Section VI.

II. PRELIMINARIES

We begin with notation conventions. Capital letters represent scalar random variables (RV’s), specific
realizations of them are denoted by the corresponding lower case letters, and their alphabet – by calli-
graphic letters. For i < j (i, j - positive integers), xji will denote the vector (xi, . . . , xj), where for i = 1

the subscript will be omitted. PX(·) will denote a probability measure over X . When there is no room
for ambiguity, we will use P (x) instead of PX(x). 1 {A} will denote the indicator of the event A.

We consider a Markov source producing a random sequence X1, X2, ..., XT , Xt ∈ X , t = 1, 2, . . . , T .
The cardinality of X , as well as those of other alphabets in the sequel, is finite. The probability mass
function of X1, P (x1) and the transition probabilities, denoted by P (xt|xt−1), t = 2, 3, . . . , T are known.

Let Y denote the index set {1, 2, . . . ,M} for some finite M . A variable–length stochastic encoder
is a sequence of functions {ft}Tt=1. At stage t, a stochastic encoder uses all the causally available data,
(X t, Y t−1), to choose a probability measure over Y from which Yt is drawn. After drawing Yt, the encoder
noiselessly transmits an entropy–coded codeword of Yt. A deterministic encoder is a stochastic encoder
which draws a specific Yt ∈ Y with probability 1 (i.e., Yt is a deterministic function of (X t, Y t−1)). Unlike
the fixed rate regime in [1],[3], where log2 |Y| (rounded up) was the rate of the code at stage t, here the
subset of Y used at each stage, along with the length of the binary representation of Yt, will be subject
to optimization.

The encoder structure is not confined a–priori, and at each time instant t, Yt may be given by
an arbitrary (possibly stochastic) function of (X t, Y t−1) as described above. The decoder, however, is
assumed, similarly as in [1] and [3], to be a finite–memory device, defined as follows: At each stage, t,
the decoder updates its current state (or memory) and outputs a reproduction symbol X̂t. We assume that
the decoder state, Zt, is updated by

Z1 = r1(Y1)

Zt = rt(Yt, Zt−1), t = 2, 3, . . . , T (1)

Since the transmission is noiseless, Zt can be tracked by the encoder. Note that this model also includes
infinite memory, i.e., Zt = Y t. The reproduction symbols are produced by a sequence of functions {gt},
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gt : Y × Z → X̂ as follows

X̂1 = g1(Y1)

X̂t = gt(Yt, Zt−1), t = 2, 3, . . . , T (2)

Since at the beginning of stage t, Zt−1 is known to both encoder and decoder, the entropy coder at
every stage needs to encode the random variable Yt given Zt−1 = zt−1. We define A to be the set of all
instantaneously uniquely decodable codes for Y , i.e., all possible length functions l : Y → Z+ ∪∞ that
satisfy Kraft’s inequality:

A =

{
l(·) :

∑
y∈Y

2−l(y) ≤ 1

}
. (3)

Note that we allow infinite–length codewords. We will return to this technical issue after properly defining
the cost function. The average codeword length at stage t, for a specific decoder state zt−1, will be given
by:

LYt|Zt−1(zt−1)
4
=

{
0 if maxyt∈Y P (yt|zt−1) = 1

minl(·)∈A

{∑
yt∈Y P (yt|zt−1)l(y)

}
otherwise

. (4)

i.e., if given Zt−1 = zt−1, Yt is deterministically known, there is no need to transmit any informa-
tion, otherwise LYt|Zt−1(zt−1) is obtained by designing a Huffman code for the probability distribution
PYt|Zt−1(·|zt−1). Note that for given encoders and state update functions, LYt|Zt−1(zt−1) is a function of
zt−1 only. Also, LYt|Zt−1(zt−1) is discontinuous around 0 in the distribution PYt|Zt−1(·|zt−1) since if given
Zt−1 = zt−1, Yt is not deterministically known, then LYt|Zt−1(zt−1) ≥ 1.

The average codeword length of stage t, denoted LYt|Zt−1 , is defined as ELYt|Zt−1(Zt−1), where the
expectation is with respect to Zt−1. Our system model is depicted in Figure 1.
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Fig. 1: System model

We are given a sequence of distortion measures {ρt}Tt=1, ρt : X × X̂ → IR+. At each stage, the cost
function is a linear combination of the average distortion and codeword length LYt|Zt−1 , i.e.,

Jt
4
= E

{
ρt(Xt, X̂t) + λLYt|Zt−1(Zt−1)

}
, (5)

where λ > 0 is a fixed parameter that controls the tradeoff between rate and distortion. Our goal is to
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minimize the average cost

J
4
=

1

T

T∑
t=1

Jt. (6)

A sequence of encoders, f1, . . . , fT , is said to be optimal if for a given sequence of decoders and
memory update functions, f1, . . . , fT attains inf J , where the infimum is over the set of all sequences of
stochastic encoders, which are functions of all causally available data.

A stage–t encoder is said to be optimal if given the future stages encoders and decoders, it attains
inf
∑T

i=t Ji, where the infimum is over the set of stochastic stage–t encoders (which are functions of
(X t, Y t−1)).

Note that for large enough λ, for some zt−1, the optimal encoders might use only a small subset of
Y (thus attaining higher distortion but smaller overall cost). Technically, this means that there will be a
subset B ⊂ Y such that P (yt|zt−1) = 0 if yt ∈ Bc. We therefore need that A will contain good codes
for subsets of Y . By allowing infinite length codewords, we make sure that A contains codes which are
uniquely decodable for all subsets of Y (and satisfy Kraft’s inequality for alphabet Y). Needless to say
that with this definition, a code for B ⊂ Y will be used iff P (yt|zt−1) = 0 for all yt ∈ Bc, where we use
0 · ∞ = 0.

III. STRUCTURE THEOREMS - NO SIDE INFORMATION

A. Main results

We start by briefly stating and discussing the main contributions of this section. The proofs of the
following theorems are found in the following subsections.

The first contribution of this paper is the following theorem, which basically states that the results of
[1] continue to hold in this setting as well.

Theorem I. For a Markov source and any given sequence of memory update functions {rt}, reproduction
functions {gt} and distortion measures {ρt}, there exists a sequence of deterministic encoders Yt =

ft(Xt, Zt−1) which is optimal.

The addition of the variable–rate coding and allowing a larger class of encoders compared to [1], makes
the proof of this result considerably more involved than its counterpart in [1], as was discussed at the end
of Section I.

While Theorem I covers the infinite decoder memory (Zt = Y t) setting, in this case, when optimal
reproduction functions are used (see Section III-E), we have the following theorem, which refine Theorem
I for this case:

Theorem II. For a Markov source and any sequence of distortion measures {ρt} and optimal infinite
memory decoders, there exists a sequence of deterministic encoders Yt = ft(Xt, PXt|Y t−1(·|yt−1)) which
is optimal.

We will show that PXt|Y t−1(·|yt−1) can be recursively updated. Theorem II is a refinement of Theorem
I since, in the setup of Theorem II, there is no need to store the whole history of encoder outputs, Y t, as
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the statement of Theorem I, but instead, PXt|Y t−1(·|yt−1) is recursively updated. (given that a probability
measure can be stored).

In the remainder of this section, we will prove Theorems I and II, starting with Theorem I. In order to
prove Theorem I, we need a few supporting lemmas, as in [1]. In the following two subsections, we state
and prove the supporting lemmas and then prove Theorem I in Subsection III-D. Theorem II is proved
in Subsection III-E.

B. Two–stage lemma

We start by analyzing a system with two stages only, where the first encoder is known.

Lemma I. For any two–stage system (T = 2), there exists a deterministic second stage encoder Y2 =

f2(X2, Z1), which is optimal.

Proof: Note that f1, g1, g2, r1 are fixed, and so, J1 is unchanged by changing f2. We need to show that a
second stage encoder, that minimizes J2, can be a deterministic function of (X2, Z1). Denote the set of
stochastic encoders which are functions of (X1, X2, Y1) by {f sX2Y1

}. For every joint probability measure
over the quadruple (X1, X2, Y2, Z1), J2 is well defined and our objective is to find the optimal encoder
that attains:

inf
{fs
X2Y1

}
J2 = inf

{fs
X2Y1

}
E
{
ρ2(X2, g2(Y2, Z1)) + λLY2|Z1(Z1)

}
. (7)

Consider the random quintuple (X1, X2, Y1, Y2, Z1) which takes part in the expectation of (7). From the
structure of the system, we know that

P (x1, x2, y1, y2, z1) = P (x1)P (x2|x1)P (y1|x1)P (y2|x1, x2, y1)1 {r1(y1) = z1} , (8)

where we used the fact that z1 is a deterministic function of y1. Everything but the second stage encoder,
which directly affects P (y2|x1, x2, y1) is fixed. Note that the optimization affects LY2|Z1(Z1) since

LY2|Z1(z1) = min
l(·)∈A

∑
y2

∑
x2

P (x2|z1)P (y2|x2, z1)l(y2) (9)

and P (y2|x2, z1) depends on P (y2|x1, x2, y1) as we will show shortly.
Let {f sX2Z1

} denote the subset of stochastic encoders which are functions of (X2, Z1). Also, let {fdX2Z1
}

denote the subset of deterministic encoders which are functions of (X2, Z1). Since Z1 is a function of
Y1, {fdX2Z1

} ⊂ {f sX2Z1
} ⊂ {f sX2Y1

}. We prove Lemma I in two steps. First, we show that it is enough
to search in the (infinite) subset {f sX2Z1

}. In the second step, we show that among {f sX2Z1
}, the optimal

encoder is a member of {fdX2Z1
}.
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Step 1: We rewrite (7) as follows:

inf
{fs
X2Y1

}
J2 = inf

{fs
X2Y1

}

∑
x2,y2,z1

P (x2, y2, z1)
[
ρ2(x2, g2(y2, z1)) + λLY2|Z1(z1)

]
= inf
{fs
X2Y1

}

∑
x2,y2,z1

P (x2, y2, z1)×ρ2(x2, g2(y2, z1)) + λ min
l(·)∈At

∑
y′2

∑
x′2

P (x′2|z1)P (y′2|x′2, z1)l(y′2)

 . (10)

Now, given that the first stage encoder and decoder are known, P (x2, z1) is well defined since

P (x2, z1) =
∑
x1,y1

P (x1, x2, y1, z1)

=
∑
x1,y1

P (x1)P (x2|x1)P (y1|x1)1 {r1(y1) = z1} (11)

and P (x1), P (x2|x1),1 {r1(y1) = z1} are determined by the known source and first stage next–state
function, P (y1|x1) is directly determined by the first stage encoder. Also, by the Bayes rule, we have, for
any second stage encoder:

P (x2, y2, z1) = P (y2|x2, z1)P (x2, z1). (12)

Therefore,

inf
{fs
X2Y1

}
J2 = inf

{fs
X2Y1

}

∑
x2,y2,z1

P (y2|x2, z1)P (x2, z1)×ρ2(x2, g2(y2, z1)) + λ min
l(·)∈At

∑
y′2

∑
x′2

P (x′2|z1)P (y′2|x′2, z1)l(y′2)

 . (13)

The only term that is affected by the optimization is P (y2|x2, z1). Observe that by (8), we have

P (y2|x2, z1) =
∑
x1,y1

P (x1, x2, y1, y2, z1)

P (x2, z1)

=
∑
x1,y1

P (x1)P (x2|x1)P (y1|x1)P (y2|x1, x2, y1)1 {r1(y1) = z1}
P (x2, z1)

. (14)

From (13), (14), it is evident that the role of the second stage encoder in a two stage system is to select
Py2|x2,z1(·|x2, z1) for every (x2, z1) so as to minimize the cost. To see this, note that every f2 ∈ {f sX2Y1

} is
mapped by (14) (through P (y2|x1, x2, y1) for every (x1, x2, y1)) to a point on the simplex of probability
measures on Y for every (x2, z1). Namely, every f2 ∈ {f sX2Y1

} is mapped to f̂2 ∈ {f sX2Z1
} and the

optimization is affected only by f̂2. If instead of using a specific f2 we will use f̂2 that results from it
through (14), the joint probability P (x2, y2, z1) will remain the same and therefore, also the second stage
cost. Also note that we cannot gain anything from optimizing only over {f sX2Z1

} and not {f sX2Y1
} since

{f sX2Z1
} is completely covered by {f sX2Y1

} through (14). Therefore, since the optimization over {f sX2Y1
}
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is mapped to an optimization over {f sX2Z1
}, we have

inf
{fs
X2Y1

}
J2 = inf

{fsX2Z1
}
J2 (15)

which completes the fist step of the proof.
Step 2: To complete the proof of the two–stage lemma, we need to show that it is enough to search in the
finite space of deterministic encoders which are functions of (X2, Z1). Observe that the set of stochastic
encoders is a convex set. The extreme points of this set (the points that are not convex combinations
of other points) are deterministic encoders, namely, the set {fdX2Z1

}. To complete the proof, we use the
following lemma, proved in Appendix A.

Lemma II. The stage t loss function is concave in {f sXtZt−1
}.

Using Lemma II, we conclude that since we minimize a concave function over a convex set, the
minimizer will be one of the extreme points of the set, i.e., a member of {fdX2Z1

}. We thus showed that

inf
{fs
X2Y1

}
J2 = min

{fdX2Z1
}
J2 (16)

This completes the proof of the two–stage lemma. Note that no assumptions on the statistics of the
source were made in the proof and therefore, the two–stage lemma holds for any source.

Discussion:
1. Observe that the actual optimal encoding function for each (x2, z1) depends on the encoder of the first
stage through P (x2, z1) (which also governs P (x2|z1)), as seen from (13). This is true in general and
not only in a two–stage system. The joint distribution PXt,Zt−1(·, ·) can be thought of as the state of the
system, governed by the choices of previous encoders (note however, that this state is static in the sense
that it is not influenced by the actual realization of the source sequence). Therefore, the role of the stage
t encoder, besides greedily minimizing the stage t cost (given the state PXt,Zt−1(·, ·)), is to control the
future states so that they will allow minimal costs in future stages. This is true for all but the last encoder,
which does not affect future cost, as seen for the second stage encoder in a two stage system. We will
come back to this issue in Subsection III-E when we deal with infinite memory decoders and apply tools
of stochastic control.
2. It is not surprising that the optimal second stage cost is attained by a deterministic encoder. Since the
second stage is the last stage, the last encoder does not affect future costs and therefore, instead of using
a convex combination of deterministic encoders (i.e., a stochastic encoder), use only the one with the
best performance. However, in a system with more stages, it is not immediately clear that deterministic
encoders in intermediate stages are optimal. In fact, this is also true for the first stage of a two stage
system. We saw that the first stage affects the second stage cost through P (x2, z1). Specifically, it affects
the second stage cost through P (x2|z1), (as seen in (10)) which is non linear in the first stage encoder
P (y1|x1) since

P (x2|z1) =

∑
x1,y1

P (x1, x2)P (y1|x1)1 {r1(y1) = z1}∑
x1,x2,y1

P (x1, x2)P (y1|x1)1 {r1(y1) = z1}
. (17)

If the first–stage encoder is deterministic, there is only a finite number of possible PX2|Z1(·, ·). Assume
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that we use a stochastic first–stage encoder, f s1 . Although by Lemma II, f s1 is sub–optimal for J1, can it
allow us to reach a P ′X2|Z1

(·, ·), unreachable by deterministic encoders, that will be favorable in terms of
J2 and yield a lower overall cost? We show in the sequel that the answer is negative and that the optimal
first–stage encoder is deterministic as well. We will show that the stage t cost is a concave functional in
the choices of the previous stages encoders. The proof of the last statement is much more involved than
the proof of Lemma II and it is discussed in the next subsection. In [1], [3], the stage t distortion is linear
in the choice of the encoders at all previous stages (since the expectation is linear and the non–linear
element of the codeword length was not present). Therefore, there was no loss of optimality in a-priori
confining the encoders to be deterministic. We further address this issue in the following subsection which
deal with a more complex system.

Corollary I. In any T–stage system (T ≥ 2) there exists a deterministic last stage encoder YT =

fT (XT , ZT−1), which is optimal.

Proof: Let X̂1
4
= (X1, X2, . . . , XT−1), X̂2

4
= XT , Ẑ1 = ZT−1, where Ẑ1 is calculated recursively according

the the encoding functions that operate on X̂1 and the resulting Y1, . . . , YT−1. We now apply the two–stage
lemma to this system to conclude that the last stage encoder is a deterministic function of (Xt, ZT−1).

C. Three–stage lemma

Lemma III. In a three-stage system (T = 3) with a Markov source, if the third–stage encoder is a
deterministic function of (X3, Z2), then there exists a deterministic second stage encoder Y2 = f2(X2, Z1),
which is optimal.

Proof of Lemma III: We define, as in Subsection III-B, {f sX2Y1
} to be the set of all possible stochastic

second–stage encoders. Let {f sX2Z1
} ⊂ {f sX2Y1

} be the set that contains all stochastic second stage encoders
that are functions of (X2, Z1) and finally, let {fdX2Z1

} ⊂ {f sX2Z1
} denote the set of deterministic encoders

which are functions of (X2, Z1). Since the first–stage is fixed, J1 is unaffected by changing the second
stage encoder. Our goal is to jointly optimize (J2 +J3) with respect to the second stage encoder and show
that

inf
{fs
X2Y1

}
(J2 + J3) = min

{fdX2Z1
}
(J2 + J3) . (18)

Since the third stage encoder is known, the expected third stage cost for any second stage encoder is
given by

J3 = E
{
ρ(X3, g(Y3, Z2)) + LY3|Z2(Z2)

}
=
∑

x3,y3,z2

P (x3, z2)P (y3|x3, z2)
[
ρ(x3, g(y3, z2)) + LY3|Z2(z2)

]
=
∑

x3,y3,z2

P (x3, z2)1 {f3(x3, z2) = y3} ρ(x3, g(y3, z2)) +
∑
z2

P (z2) min
l(·)∈A

∑
x3,y3

1 {f3(x3, z2) = y3}P (x3|z2)l(y3).

(19)

The second–stage encoder affects the last expression through P (x3, z2) (and thus also through P (z2) and
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P (x3|z2)) since

P (x3, z2) =
∑

x2,y2,z1

P (x2, x3, y2, z1, z1)

=
∑

x2,y2,z1

P (x2, z1)P (y2|x2, z1)P (x3|x2)1 {r2(y2, z1) = z2} (20)

where P (x2, z1) is the result of the first–stage and we used the fact that the source is Markov and that z2
is a deterministic function of (y2, z1). Therefore, as we saw in Subsection III-B, the optimization affects
the third–stage only through P (y2|x2, z1) for all (x2, y2, z1). We saw in (13) that the second stage cost
can be written as:

J2 =
∑

x2,y2,z1

P (y2|x2, z1)P (x2, z1)×ρ2(x2, g2(y2, z1)) + λ min
l(·)∈At

∑
y′2

∑
x′2

P (x′2|z1)P (y′2|x′2, z1)l(y′2)

 . (21)

where P (x2, z1) and thus P (x2|z1) are the result of the first–stage encoder. We see that the optimization
in the l.h.s of (18) affects both the second and third stage costs only through the conditional probabilities
P (y2|x2, z1), for all (x2, y2, z1). Repeating the arguments used in the proof of Lemma I, instead of using
a specific f2 ∈ {f sX2Y1

}, we can use f̂2 ∈ {f sX2Z1
} that results from it through (14), to draw Y2. Since

P (x2, y2, z1) will remain the same,

P (x3, z2) =
∑

x2,y2,z1

P (x2, z1)P (y2|x2, z1)P (x3|x2)1 {r2(y2, z1) = z2} (22)

will also remain the same and (J2 + J3) will not be affected by this step. We therefore have

inf
{fs
X2Y1

}
(J2 + J3) = inf

{fsX2Z1
}
(J2 + J3) . (23)

As in the two stage lemma, we need to show that it is enough to search in the space of deterministic
encoders, {fdX2Z1

}. Here, we have to show that both the second stage cost and the third stage cost are
concave in {f sX2Z1

}. We know that the second stage cost is concave in {f sX2Z1
} from Lemma II. The

following lemma asserts that the third stage cost is concave in {f sX2Z1
}.

Lemma IV. The third stage cost, J3, is concave functional of {f sX2Z1
}.

The proof Lemma IV is much more involved than the proof of Lemma II and can be found in Appendix
B.

Using lemma IV, we conclude that (J2 + J3), which is the sum of two concave functionals, is concave
in {f sX2Z1

}. Therefore, the minimizer will be one of the extreme points of the convex set of {f sX2Z1
},

namely, a member of {fdX2Z1
}. We showed that

inf
{fsX2Z1

}
(J2 + J3) = min

{fdX2Z1
}
(J2 + J3) (24)

Using (23), we arrive at (18) which completes the proof of Lemma III.
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D. Proof of Theorem I

With the two– and three–stage lemmas, we can prove Theorem I by using the method of [1], used for
fixed rate encoding. Theorem I is proven by backward induction. First apply Corollary I to any system
to conclude that the optimal fT is a deterministic function of (XT , ZT−1). Now assume that the last m
encoders fT−m+1, ..., fT are deterministic functions of (XT−m+1, ZT−m), . . . , (XT , ZT−1), respectively. We
will show that the encoder at time (T −m) also has this structure and continue backwards until t = 2. The
first encoder is trivially a function of X1 and by lemma IV (with Z0 as a constant) it is also deterministic.
Let

X̂1 = (X1, X2, ..., XT−m−1),

Ŷ1 = (Y1, Y2, ..., YT−m−1),

Ẑ1 = r̂1(Ŷ1),

X̂2 = XT−m,

Ŷ2 = YT−m,

Ẑ2 = rT−m(Ŷ2, Ẑ1),

X̂3 = (XT−m+1, XT−m+2, ..., XT ),

Ŷ3 = (YT−m+1, YT−m+2, ..., YT ), (25)

where Ẑ1 is recursively calculated from Ŷ1 and it represents the state of the decoder after (T −m − 1)

stages. Using this new notation, the encoder that produces Ŷ3 is a deterministic function of (X̂3, Ẑ2)

(since, by assumption, the last m encoders have the desired structure). The source is Markov since X̂3

is independent of X̂1 given X̂2 (since the original source is Markov). Now, by the three–stage lemma,
Ŷ2 = YT−m = fT−m(X̂2, Ẑ

y
1 ) = fT−m(XT−m, ZT−m−1). Thus, the induction step is proved. This completes

the proof of Theorem I.
Remark: Theorem I can be extended to a k-order Markov source using Witsenhausen’s method [1].

Namely, for a k-order Markov source, define X̃1 = (X1, X2, . . . , Xk), X̃2 = (X2, X3, . . . , Xk+1) and so
on. Now, X̃t is a Markov source. Using Theorem I, we can conclude that the optimal encoder is a function
of the last k source symbols and the state of the decoder.

E. Infinite memory decoder - proof of Theorem II

In this section, we deal with the case where the decoder has infinite memory, i.e., Zt = Y t. The memory
update functions {rt} in this case are only appending the new received index Yt to Zt−1. Note that this
scenario is covered by Theorem I, however, in this case we can be more specific regarding the role of Y t

at the encoder. While Theorem I was true for any decoding rule, Theorem II is true only for the optimal
reproduction function. We define the Bayes Envelope as

B(PXt|Y t)
4
= min

x̂t

∑
xt

P (xt|yt)ρt(xt, x̂t). (26)

The minimizer of the last expression is called the Bayes–response and will be denoted by X̂Bayes(PXt|Y t).
Clearly, X̂Bayes(PXt|Y t) is a function of PXt|Y t(·|yt) and the cost function, ρt. The fact that the optimal
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reproduction function is the Bayes–response was shown in many places, for example [3],[8, Lemma 3].
When infinite memory is available, we can use tools from Markov decision processes (MDP’s) in order

to derive a structure theorem. In Appendix C, we provide a brief background on MDP’s. By Theorem I,
we know that we can confine the discussion to deterministic encoders without loss of optimality. We need
to show that our original problem can be represented as a MDP. The proof of Theorem II will follow
immediately from Theorem A.1, given in Appendix C. In order to show that we have an MDP, as we
discuss in Appendix C, we need to show that:

• We can a find a sequence of deterministic functions {γt}, along with two finite spaces, S,A, such that
the average cost, defined by (5),(6), can be written as J = 1

T
E
∑T

t=1 γt(st, at), where st ∈ S, at ∈ A
are the system state and the action taken by the decision maker at stage t, respectively.

• The next state is chosen according to P (st+1|st, at) = P (st+1|st, at), i.e., the state is Markov
conditioned on at.

We define our state as st = PXt|Y t−1(·|yt−1) and our actions at : X → Y . We note that for every history
xt−1, the general deterministic encoder (which is a function of xt) is a mapping from xt to yt. Our action,
at, is this mapping. Since there is only a finite number of mappings from Xt to Yt, our action space is
finite. Our state space is also finite. This is true since we consider only deterministic encoders, from which
there is only a finite number. Therefore, at each stage, there is only a finite number of possible PXt|Y t−1 .
This means that the cardinality of the state alphabet, grows with the time horizon T . Note however, that
the decoder’s state alphabet, Zt = Y t, grows as well in this case. We start by showing that the cost
function can be written as a function of the current state and action. Treating the codeword length first:

LYt|Y t−1(yt−1) = min
l(·)∈A

∑
yt

P (yt|yt−1)l(yt)

= min
l(·)∈A

∑
yt,xt

P (yt, xt|yt−1)l(yt)

= min
l(·)∈A

∑
yt,xt

P (xt|yt−1)P (yt|xt, yt−1)l(yt)

= min
l(·)∈A

∑
yt,xt

P (xt|yt−1)1 {at(xt) = yt} l(yt)

4
= αt(st, at), (27)

where the equation preceding the last one is true since we know the function from xt to yt. We now move
on to the average distortion. We first show that the optimal reproduction function, X̂Bayes(PXt|Y t), is a
function of (at, st, yt). To see this note that

P (xt|yt) =
P (xt, yt|yt−1)∑
xt
P (xt, yt|yt−1)

=
P (xt|yt−1)1 {at(xt) = yt}∑
xt
P (xt|yt−1)1 {at(xt) = yt}

4
= f(st, at, xt, yt). (28)

Therefore, the optimal reproduction function, which is a function of PXt|Y t(·|yt), is a function of (st, at, yt),
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i.e., X̂Bayes(PXt|Y t) = g∗t (st, at, yt). Using this notation we have

E

[
ρ(Xt, g

∗
t (st, at, Yt))

∣∣∣∣Y t−1 = yt−1
]

=
∑
xt,yt

P (xt, yt|yt−1)ρ(xt, g
∗
t (st, at, yt))

=
∑
xt,yt

P (xt|yt−1)P (yt|xt, yt−1)ρ(xt, g
∗
t (st, at, yt))

=
∑
xt,yt

P (xt|yt−1)1 {at(xt) = yt} ρ(xt, g
∗
t (st, at, yt))

4
= βt(st, at). (29)

Denoting βt(st, at)+λαt(st, at) = γt(st, at), our optimality criterion can be written as 1
T

∑T
t=1 Eγt(st, at).

We move on to show that the state sequence is Markov conditioned on the action, namely, P (st+1|st, at) =

P (st+1|st, at). We start by noting that st+1 = PXt+1|Y t(·|yt) is a function of (at, st, yt). For every xt+1,
we have

P (xt+1|yt) =

∑
xt
P (xt+1, xt, yt|yt−1)∑

xt,xx+1
P (xt+1, xt, yt|yt−1)

=

∑
xt
P (xt|yt−1)P (xt+1|xt, yt−1)P (yt|xt, xt+1, y

t−1)∑
xt,xx+1

P (xt+1, xt, yt|yt−1)

=

∑
xt
P (xt|yt−1)P (xt+1|xt)1 {at(xt) = yt}∑

xt,xx+1
P (xt+1, xt, yt|yt−1)

=

∑
xt
P (xt|yt−1)P (xt+1|xt)1 {at(xt) = yt}∑

xt,xx+1
P (xt|yt−1)P (xt+1|xt)1 {at(xt) = yt}

4
= f(at, st, xt+1, yt). (30)

Therefore, st+1 = h(at, st, yt), for a function h that uses (30) for every xt+1. Now,

P (st+1 = ν|st, at) =
∑
yt,xt

1 {h(at, st, yt) = ν}1 {at(xt) = yt}P (xt|yt−1)

= P (st+1 = ν|st, at), (31)

since the current prior on xt is given. We showed that our system can be represented as an MDP. By
invoking Theorem A.1, we know that the optimal action at each stage, at, is a deterministic function of the
state. Namely, The mapping from xt to yt can be chosen deterministically as a function of PXt|Y t−1(·|yt−1).
Therefore, Yt is a deterministic function of (Xt, PXt|Y t−1(·|yt−1)), which concludes the proof of Theorem
II. Since the state can be recursively calculated (see eq. (30)), the encoder does not need to store yt−1

but rather a probability measure (a vector in R|Y|).

IV. MARKOV MEMORY UPDATE FUNCTIONS

A. Preliminaries and main result

In Section III, we showed that for given memory update, distortion and reproduction functions, there
is no loss of optimality if the encoders use the current source symbol and the state of the decoder, which
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they track. We will refer to this class of encoders as tracking encoders. In the overall optimization of
the system, there is still the task of finding the best memory update and reproduction functions at each
stage. When the memory update functions and encoders are fixed, as we discussed in Section III-E, the
reproduction function should output the X̂t that minimizes the average distortion for a given (Yt, Zt−1),
i.e., the Bayes response of PXt|Yt,Zt−1 . This is simple since the reproduction function has no influence on
the future costs (cost to go) and it affects only the present distortion (in a way, for the same reasons,
the two–stage lemma was simpler than the three–stage lemma). However, similarly to the encoders, the
memory update function at stage t affects all future costs. In this section, we show that for a “small”
cost at each stage, one can take Markov memory update functions, defined as sliding windows over the
received symbols at the decoder and avoid the search for the |Z|–states optimal memory update functions.
The extra cost is a function of |Z| and the sliding window size only and it vanishes as the window size
is increased.

Let

∆|Z| = min
{rt}{ft},{gt}

E
1

T

{
T∑
t=1

[
ρ(Xt, gt(Yt, Zt−1)) + λLYt|Zt−1(Zt−1)

]}
(32)

where the minimization is over all next state functions {rt} with a state set of size |Z| and all decoders and
tracking encoders that use. Note that we choose here the whole sequence of next–state functions, encoders
and decoders for t = 1, 2, . . . , T . We say that the state is Markov of length l, if Zt = {Yt−l, . . . , Yt−1},
i.e., a sliding window of length l on the encoder outputs. Let

∆̃l = min
{f̃t},{g̃t}

E
1

T

T∑
t=1

[
ρ(Xt, g̃t(Yt, Y

t−1
t−l )) + λLYt|Y t−1

t−l
(Y t−1

t−l )
]
. (33)

where here, the minimization is with respect to all decoders and tracking encoders that use a Markov
state of length l.

Theorem III. For any source statistics, when considering only tracking encoders, we have for any l that
divides T :

∆Z ≥ ∆̃l − λ
log |Z|
l

(34)

The significance of this theorem is more conceptual than operational. The system on the r.h.s might
require more memory than the system on the l.h.s. and the search for the optimal encoders becomes more
complex as l increases. However, the system on the r.h.s is conceptually simpler and analytically more
tractable since the memory structure is simple.

Combining Theorem III with Theorem I we have the following theorem:

Theorem IV. For a Markov source, there exists a system with deterministic encoders Yt = ft(Xt, Zt−1)

and Markov memory update functions with a performance loss no greater than λ log |Z|
l

per source symbol,
compared to the optimal system.

Theorem III can be extended to the case where instead of our Lagrangian cost function, we would look
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for the minimal average distortion subject to an average length constraint. Let

∆Z(R)
4
= min
{ft},{gt},{rt}

E

{
1

T

T∑
t=1

ρ(Xt, gt(Yt, Zt−1))

}

s.t E

{
1

T

T∑
t=1

LYt(Zt−1)

}
< R

∆̃l(R)
4
= min
{ft},{gt}

E

{
1

T

T∑
t=1

ρ(Xt, gt(Y
t
t−l))

}

s.t E

{
1

T

T∑
t=1

LYt(Y
t−1
t−l )

}
< R (35)

where the minimization is over all tracking encoders that use Xt and the decoder’s state, reproduction
functions and state update functions (in ∆Z(R) only). We have the following theorem:

Theorem V. In the constrained setting, for any l that divides T we have

∆Z(R) ≥ ∆̃l

(
R +

log |Z|
l

)
(36)

Note that here we do not have a theorem in the spirit of Theorem IV since we did not show that in
this case, tracking encoders are optimal.

In the next subsection, we prove Theorem III. Theorem IV is a direct consequence of Theorem I and
Theorem III combined. Theorem V is proven exactly in the same manner as Theorem III and its proof is
therefore, omitted. Theorem III is valid even without taking expectations in (32),(33) and therefore, it is
also valid for individual sequences (see [13]). Theorems III–V will also hold in the setting of the Section
V, where SI is available to the decoder.

B. Proof of Theorem III:

The ideas in the proof rely on some ideas from [13]. Fix the optimal encoders, state update and
reproduction functions of ∆|Z|. We start by focusing on the codeword length element of ∆|Z|, using the
fact that conditioning reduces the length element (see Appendix D), we have

R
4
=

1

T

T∑
t=1

ELYt|Zt−1(Zt−1)

≥ 1

T

T∑
t=1

ELYt|Y t−1
t−l ,Zt−1

(Y t−1
t−l , Zt−1) (37)

Since we will always deal with the expected codeword length, in order to simplify the notation, we
will use from now ELYt|Zt−1(Zt−1)

4
= LYt|Zt−1 (as defined in Section II). We now add conditioning on

Z0, Zl, Z2l, . . . which will further reduce the last expression. Z0 is added to the first l summands of (37),
Zl to the summands indexed by l + 1, . . . , 2l, and so on. This conditioning makes the conditioning on
Zt−1 redundant since if we know the state in the past and the encoder outputs up to the present, we know
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the current state as well. We continue by assuming that l divides T :

R ≥ 1

T

T∑
t=1

LYt|Y t−1
t−l ,Zt−1

≥ 1

T

T/l−1∑
j=0

jl+l∑
t=jl+1

LYt|Y t−1
t−l ,Zjl

(38)

Now there are two types of terms:

1) (Yjl+1, Zjl) appear together in the conditioning.
2) Yjl+1 is conditioned on Zjl and the previous block: Y jl

j(l−1)+1.

We rewrite the sum of (38) as two sums, pertaining to the above two types:

R ≥ 1

T

T/l−1∑
j=0

jl+l∑
t=jl+1

LYt|Y t−1
t−l ,Zjl

=
1

T

T/l−1∑
j=0

jl+l∑
t=jl+2

LYt|Y t−1
t−l ,Zjl

+
1

T

T/l−1∑
j=0

LYjl+1|Y jlj(l−1)+1
,Zjl
. (39)

We now use the following inequality, which is proved in Appendix D:

LYjl+1|Y jlj(l−1)+1
,Zjl
≥ LYjl+1,Zjl|Y jlj(l−1)+1

− log |Z| (40)

Substituting (40) in (39), we have:

R ≥ 1

T

T/l−1∑
j=0

jl+l∑
t=jl+2

LYt|Y t−1
t−l ,Zjl

+
1

T

T/l−1∑
j=0

LYjl+1|Y jlj(l−1)+1
,Zjl

≥ 1

T

T/l−1∑
j=0

jl+l∑
t=jl+2

LYt|Y t−1
t−l ,Zjl

+
1

T

T/l−1∑
j=0

LYjl+1,Zjl|Y jlj(l−1)+1
− log |Z|

l

≥ 1

T

T/l−1∑
j=0

jl+l∑
t=jl+2

LYt|Y t−1
t−l ,Zjl

+
1

T

T/l−1∑
j=0

LYjl+1,Zjl|Y jlj(l−1)+1
,Zj(l−1)

− log |Z|
l

. (41)

Regarding the distortion element of ∆|Z|, we have:

1

T

T∑
t=1

Eρ(Xt, gt(Yt, Zt−1))

=
1

T

T/l−1∑
j=0

jl+l∑
t=jl+2

Eρ(Xt, gt(Yt, Zt−1)) +
1

T

T/l−1∑
j=0

Eρ(Xjl+1, gt(Yjl+1, Zjl))

≥ 1

T
min
{gt}


T/l−1∑
j=0

jl+l∑
t=jl+2

Eρ(Xt, gt(Y
t
t−l, Zjl)) +

T/l−1∑
j=0

Eρ(Xjl+1, g(Y jl+1
j(l−1)+1, Zjl, Zj(l−1)))

 . (42)

In the last inequality, we used the fact that with the same encoders (same {Yt}), optimal decoders that use
more data will do at least as well as the original decoders. Note that in the above derivation, (Yjl+1, Zjl)
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always appear together. Therefore, we set for all j = 0, 1, . . . , n/l − 1 Y ′jm+1 = (Yjm+1, Zjl) and for all
other indexes we set Y ′t = Yt. Using this notation, we have for (41):

R ≥ 1

T

n∑
t=1

LY ′t (Y
′t−1
t−l )− log |Z|

l
. (43)

and for (42)

1

T

T∑
t=1

Eρ(Xt, gt(Yt, Zt−1)) ≥ min
{gt}

1

T

T∑
t=1

Eρ(Xt, gt(Y
′t
t−l)). (44)

and each Y ′t is a function of Xt, Y
′t−1
t−l . Note that although the size of the alphabet of Y ′ is now |Y|× |Z|,

the size of the alphabet was not a constraint on the system and was introduced so it will be convenient
to define A. The fact that it is now larger does not change any of the results obtained in the previous
sections. We have

∆Z ≥ min
{gt}

1

T

T∑
t=1

Eρ(Xt, gt(Y
′t
t−l)) + λ

(
1

T

n∑
t=1

EL
Y ′t |Y

′t−1
t−l

(Y
′t−1
t−l )− log |Z|

l

)
. (45)

The r.h.s of the above equation was calculated with the optimal encoders of the l.h.s. with a scheme that
appends the original decoder state once every block. This is, of course, only one of the possible schemes
for Markovian states and therefore if we optimize the r.h.s over all encoders that use a Markovian state
of length l we get

∆Z ≥ ∆̃l − λ
log |Z|
l

(46)

V. SIDE INFORMATION AT THE DECODER

A. Preliminaries and main result

In this section, we assume that the decoder has access to SI. The SI sequence, W1,W2, ...,WT , Wt ∈ W ,
is generated by a discrete memoryless channel (DMC), fed by X1, X2, . . . , XT :

P (w1, . . . , wT |x1, . . . xT ) =
T∏
t=1

P (wt|xt).

For simplicity, we assume that P (w|x) > 0 for all X ∈ X and W ∈ W . Our results, however, will
continue to hold without this assumption with minor changes to the length function (see [14]). The SI
is used both in the reproduction function and in the state update function. We assume that the state now
consists of two sub–states. The first, Zy

t ∈ Zy, is independent of the SI and is updated as in Section II.
The second, Zw

t ∈ Zw, is updated by

Zw
1 = rw1 (W1, Y1),

Zw
t = rwt (Wt, Yt, Z

w
t−1), t = 2, 3, . . . , T. (47)
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The reproduction symbols are produced by a sequence of functions {gt}, gt : Y ×W × Zw × Zy → X̂
as follows:

X̂1 = g1(W1, Y1),

X̂t = gt(Wt, Yt, Z
w
t−1, Z

y
t−1), t = 2, 3, . . . , T. (48)

Since Zw
t is not known at the encoder, it cannot be used by the variable–length encoder and thus the cost

function is now given by

Jt = E
{
ρt(Xt, gt(Wt, Yt, Z

w
t−1, Z

y
t−1)) + λLYt(Z

y
t−1)
}

(49)

Let Bt
4
= PZwt |Xt(·|X t) and bt

4
= PZWt |Xt(·|xt), i.e., bt ∈ RZw is a probability measure over the sub–state

of the decoder, Zw
t , which is not known to the encoder. Note that since the decoder does not have access

to xt, bt is not known to the decoder. Our system model with SI is depicted in Figure 2.
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Fig. 2: System model with SI.

The following two theorems are the contribution of this section.

Theorem VI. For a Markov source and any given sequence of memory update functions {rt}, reproduction
functions {gt} and distortion measures {ρt}, there exists a sequence of deterministic encoders Yt =

ft(Bt−1, Xt, Z
y
t−1), which is optimal.

The last theorem basically states that the results of [3] continue to hold in this setting as well.
As in Section III, When Zy

t = Y t, we have the counterpart of Theorem II for the SI setting when the
optimal reproduction functions are used:

Theorem VII. For a Markov source and any given sequence of SI memory update functions {rwt } and
distortion measures {ρt}, when Zy

t = Y t and the optimal reproduction function are used, there exists a
sequence of deterministic encoders Yt = ft(PXt,Zwt−1|Yt−1(·, ·|yt−1), Xt) which is optimal.

Note that unlike the result of Theorem VI, in the setting of Theorem VII, the encoder does not need
to store Bt−1 which is a function of X t−1. Instead it stores the joint conditional probability measure of
(Xt, Z

w
t−1), which is a function of Y t−1. There is no contradiction between the theorems since the setting

of Theorem VII is different both in the use of the optimal reproduction functions and in the SI independent
sub–state of the decoder.
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The proof of Theorem VI follows the lines of the proof of Theorem I after Lemmas I-IV are extended
to the setting of this section. The changes to Lemmas II, IV are quite simple (roughly speaking, instead of
xt write (bt−1, xt) everywhere in the proof). The extension of the two– and three–stage lemmas (Lemmas
I,III) is more involved and is given in the next two subsections. After these lemmas will be proven, the
remainder of the proof is the same as in the previous section and therefore, will be omitted. Theorem VII
is proved in Subsection V-C.

B. Theorem VI proof outline

We redefine Bt, bt to be Bt
4
= PZwt |Xt,Y t(·|X t, Y t) and bt

4
= PZWt |Xt,Y t(·|xt, yt). Since Theorem VI states

that the encoders can be deterministic, the conditioning on Y t in the definition of Bt is redundant since
the sequence of encoder outputs Y t is a deterministic function of the source symbols X t. However, in
the proof of Theorem VI, since we are allowing stochastic encoders a-priori, Y t adds information to X t

and therefore, this conditioning is needed. We precede the proof of this theorem with a short discussion
regarding its significance. Since bt−1 is a deterministic function of (xt−1, yt−1), one may argue that this
theorem does not simplify the structure of the general encoder, which is, anyway, a function of xt, yt−1.
However, it turns out that the encoder can update bt recursively using only the data that is available to it
at each stage (i.e., Xt, Yt, Bt−1). To see why this is true, observe that

bt(z) = P (zwt = z|xt, yt) = P (rwt (yt, wt, z
w
t−1) = z|xt, yt)

=
∑

wt,zwt−1:r
w
t (yt,wt,zwt−1)=z

P (wt, z
w
t−1|xt, yt)

=
∑

wt,zwt−1:r
w
t (yt,wt,zwt−1)=z

P (wt|xt, yt)P (zwt−1|wt, xt, yt)

=
∑

wt,zwt−1:r
w
t (yt,wt,zwt−1)=z

P (wt|xt)P (zwt−1|xt−1, yt−1)

4
= h(bt−1, xt, yt, z) (50)

Since this is true for any z ∈ Zw, we showed that bt is a function of (bt−1, xt, yt). Therefore, the encoder
can recursively update bt at the end of each encoding stage using its knowledge of (bt−1, xt) and its last
output yt.

1) Two-stage lemma: We start by analyzing a system with only two stages, where the first encoder is
known.

Lemma V. In a two–stage system (T = 2), there exists a deterministic second–stage encoder, Y2 =

f2(B1, X2, Z
y
1 ) which is optimal.

Proof of Lemma V: Note that J1 is unchanged by changing the second stage encoder. Denote the set
of stochastic encoders which are functions of (X1, X2, Y1) by {f sX2Y1

}. The minimization of J2 can be
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written as

J∗2 = inf
{fs
X2Y1

}
E
{
E
[
ρ2(X2, gt(W2, Y2, Z

w
1 , z

y
1)) + λLY2|Zy1 (Zy

1 )|X1, X2, Y1, Y2, Z
y
1

]}
= inf
{fs
X2Y1

}
E
{
λLY2|Zy1 (Zy

1 ) + E [ρ2(X2, gt(W2, Y2, Z
w
1 , Z

y
1 ))|X1, X2, Y1, Y2, Z

y
1 ]
}
. (51)

Focusing on the inner conditional expectation, we have

E [ρ2(X2, gt(W2, Y2, Z
w
1 , Z

y
1 ))|X1, X2, Y1, Y2, Z

y
1 ] =

=
∑
w2,zw1

P (w2|X2)P (zw1 |X1, Y1)ρ2(X2, gt(w2, Y2, z
w
1 , Z

y
1 ))

4
= ρ̂2(B1, X2, Y2, Z

y
1 ) (52)

where B1
4
= Pzw1 |x1,y1(·|X1, Y1) is a probability measure on Zw

1 that represents the encoder’s belief on the
decoder’s unknown state. Note that B1 is a deterministic function of (X1, Y1) and the modified distortion
measure (52) depends on (X1, Y1) only through B1. Combining (51) and (52) we have

J∗2 = inf
{fs
X2Y1

}
E
{
ρ̂2(X2, Y2, B1, Z

y
1 ) + λLY2|Zy1 (Zy

1 )
}

(53)

where the expectation is with respect to P (b1, x2, y2, z
y
1). Consider the quadruple of RV’s (B1, X2, Y2, Z

y
1 ).

We have

P (b1, x2, y2, z
y
1) = P (b1, x2, z

y
1)P (y2|b1, x2, zy1). (54)

While P (b1, x2, z
y
1), which depends on the first stage design and the source, remains fixed in the opti-

mization in (53) (it can be thought of a state of the system, governed by the choice of the first stage
design), P (y2|b1, x2, zy1) depends on the second stage encoder since

P (y2|b1, x2, zy1) =∑
x1,y1

P (x1, x2, y1)P (y2|x1, x2, y1)P (b1|x1, y1)P (zy1 |y1)
P (b1, x2, z

y
1)

(55)

in the last expression, P (b1|x1, y1) = 1 for all x1, y1 that yield the same specific conditional distribution,
b1, over Zw

1 and zero otherwise. P (y2|x1, x2, y1) is governed by the second stage stochastic encoder, which
maps (x1, x2, y1) to a probability measure on Y . Let us now look at the expectation in (53):

E
{
ρ̂2(X2, Y2, B1, Z

y
1 ) + LY2|Zy1 (Zy

1 )
}

=∑
b1,x2,y2,z

y
1

P (b1, x2, z
y
1)P (y2|b1, x2, zy1)

{
ρ̂2(x2, y2, b1, z

y
1)+

min
l(·)∈A

∑
b′1,x

′
2,y
′
2

P (y′2|b′1, x′2, z
y
1)P (b′1, x

′
2|z

y
1)l(y′2)

}
. (56)

As in the proof of Lemma I, from (56) we see that the optimization will be affected by the choice of the
second stage encoder through P (y′2|b′1, x′2, z

y
1) for all (b′1, x

′
2, z

y
1). Denote the subset of stochastic second
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stage encoders that are functions of (b1, x2, z
y
1) by {f s

B1X2Z
y
1
}. Since (b1, z

y
1) are functions of (x1, y1),

{f s
B1X2Z

y
1
} ⊂ {f sX1X2Y1

}. From (55) we see that every specific f2 ∈ f sX1X2Y1
is mapped to some specific

f̂2 ∈ f sB1X2Z
y
1
. Since the optimization is affected only by P (y2|b1, x2, zy1), if instead of using a specific

f2, we would use f̂2 that result from it, we would not change the joint probability of the quadruple
(B1, X2, Y2, Z

y
1 ) and thus the second stage cost will not be changed. Therefore we conclude that

inf
{fsX1X2Y1

}
J2 = inf

{fs
B1X2Z

y
1
}
J2. (57)

To complete the proof, we need to show that it is enough to search in the finite subset of deterministic
functions of (b1, x2, z

y
1), which we denote by {fd

B1X2Z
y
1
}. This is done by repeating the arguments we used

below (15) in the end of the proof of Lemma I.

2) Three-stage Lemma:

Lemma VI. In a three-stage system (T = 3) with a Markov source, if the third–stage encoder is
a deterministic function of (B2, X3, Z

y
2 ), then there exists a deterministic second stage encoder Y2 =

f2(B1, X2, Z
y
1 ) which is optimal.

Proof of Lemma VI: We define, as in we did in Subsection V-B1, {f sX1X2Y1
} to be the set of all possible

stochastic second stage encoders. Let {f s
B1X2Z

y
1
} ⊂ {f sX1X2Y1

} be the subset that contains all stochastic
second stage encoders that are functions of (B1, X2, Z

y
1 ) and finally, let {fd

B1X2Z
y
1
} ⊂ {f s

B1X2Z
y
1
} denote

the set of deterministic encoders which are functions of (B1, X2, Z
y
1 ). Since the first stage is fixed, J1 is

unaffected. Our goal is to jointly optimize (J2 + J3) with respect to the second stage encoder and show
that

inf
{fsX1X2Y1

}
(J2 + J3) = min

{fd
B1X2Z

y
1
}
(J2 + J3) . (58)

We start by focusing on the third stage cost.

J3 = E
{
ρ3(X3, g3(Y3,W3, Z

w
2 , Z

y
2 )) + λLY3|Zy2 (Zy

2 )
}

= E

{
λLY3|Zy2 (Zy

2 ) + E

{
ρ3(X3, g3(Y3,W3, Z

w
2 , Z

y
2 ))

∣∣∣∣X3, Y 2, Zy
2

}}
(59)

Focusing on the inner expectation of (59), we have

E

{
ρ3(X3, g3(Y3,W3, Z

w
2 , Z

y
2 ))

∣∣∣∣∣X3, Y 2, Zy
2

}

= E

{
ρ3(X3, g3(Y3,W3, Z

w
2 , Z

y
2 ))

∣∣∣∣∣X3, Y 3, Zy
2

}
=
∑
w3,zw2

P (w3|X3)P (zw2 |X2, Y 2)ρ3(X3, g3(Y3, w3, z
w
2 , Z

y
2 ))

4
= ρ̂3(B2, X3, Y3, Z

y
2 ) (60)
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where the first equality is true since Y3 is a function of (B2, X3, Z
y
2 ) and B2 is a deterministic function

of (X2, Y 2). Therefore,

J3 =
∑

b2,x3,y3,z
y
2

P (b2, x3, z
y
2)P (y3|b2, x3, zy2)×

[
ρ̂3(b2, x3, y3, z

y
2) + λLY3|Zy2 (zy2)

]
. (61)

In the last expression, P (y3|b2, x3, zy2) will not be affected by the optimization of the second stage encoder
since, under the assumptions of Lemma VI, the third encoder is a fixed deterministic function of (b2, x3, z

y
2)

(i.e., P (y3|b2, x3, zy2) = 1 {f3(b2, x3, zy2) = y3}). Thus, the second stage encoder affects the last expression
only through P (b2, x3, z

y
2) since

P (b2, x3, z
y
2) =

∑
b1,x2,y2

P (b1, x2, z
y
1)P (y2|b1, x2, zy1)×

P (x3|x2)1 {h(b1, x2, y2) = b2}1 {ry2(zy1 , y2) = zy2} , (62)

where h(b1, x2, y2) was defined in (50) and we used the fact that the source is Markov. As in subsection
V-B1, P (b1, x2, z

y
1) is the result of the first stage design and the source. Note that 1 {h(b1, x2, y2) = b2},

1 {ry2(zy1 , y2) = zy2} are not affected by the choice of the second stage encoder since they represent
known deterministic functions of (b1, x2, y2) and (zy1 , y2) respectively. Focusing on the third stage average
codeword length for Zy

2 = zy2 , we have

LY3|Zy2 (zy2) = min
l(·)∈A

∑
b2,x3,y3

P (b2, x3, y3|zy2)l(y3)

= min
l(·)∈A

∑
b2,x3,y3

P (b2, x3|zy2)P (y3|b2, x3, zy2)l(y3). (63)

Again, the second–stage encoder affects only P (b2, x3, z
y
2) (and thus P (b2, x3|zy2)). In (55),(56) we showed

that the second–stage encoder affect the second stage cost only through P (y2|b1, x2, zy1). In (61),(62),(63)
we showed that the third stage cost depends on the second stage cost only through P (y2|b1, x2, zy1).
Therefore, we conclude that the optimization of the second stage encoder affects (J2 + J3) only through
P (y2|b1, x2, zy1). Repeating the arguments we used in the proof of Lemma V, if we use f̂2 ∈ f s

B1X2Z
y
1

that result from a specific f2 ∈ f sX1X2Y1
(through (55)) instead of using that specific f2, we would not

change the joint probability of (B2, X3, Y 3, Zy
1 , Z

y
2 ) and therefore will not change the value of (J2 + J3).

Therefore we have

min
{fsX1X2Y1

}
(J2 + J3) = min

{fs
B1X2Z

y
1
}
(J2 + J3) . (64)

From here, the same arguments we used after (23) in the proof of Lemma III will complete the proof.

C. Infinite memory decoder - proof of Theorem VII

As in the case without SI, when Zy
t = Y t, we can use the tools of MDP to derive a structure theorem.

We will need to redefine the state to st = PXt,Zwt−1|Y t−1(·, ·|yt−1). The action is defined in the same manner
as in the case without SI, i.e., at : X → Y . The optimal reproduction function, x̂∗t = g∗(wt, y

t, zwt−1) is
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the Bayes response to PXt|Wt,Y t,Zwt−1
(·|wt, yt, zwt−1):

x̂∗t = arg max
x̂

∑
xt

P (xt|wt, yt, zwt−1)ρt(xt, x̂). (65)

As in Subsection III-E, in order to use the tools of MDP, we need to show that we can write the cost
function as a function of (st, at) and that the state is conditionally Markov, given at.

The optimal reproduction function is a function of PXt|Wt,Y t,Zwt−1
(·|wt, yt, zwt−1). Note that

P (xt|wt, yt, zwt−1) =
P (wt, xt, yt, z

w
t−1|yt−1)∑

x′t
P (wt, x′t, yt, z

w
t−1|yt−1)

=
P (xt, z

w
t−1|yt−1)P (wt|xt)1 {at(xt) = yt}∑

x′t
P (x′t, z

w
t−1|yt−1)P (wt|x′t)1 {at(x′t) = yt}

4
= f(st, at, wt, xt, yt, z

w
t−1) (66)

Therefore, the optimal reproduction function is a function of (st, at, wt, yt, z
w
t−1), which we denote by

g∗t (st, at, wt, yt, z
w
t−1). We now move on to show that the cost function can be written as a function of the

state and action. As in Subsection III-E, we deal with the distortion and codeword length elements of the
cost separately. Treating the expected codeword length first we have:

LYt|Y t−1(yt−1) = min
l(·)∈A

∑
yt

P (yt|yt−1)l(yt)

= min
l(·)∈A

∑
xt,yt,zwt−1

P (xt, yt, z
w
t−1|yt−1)l(yt)

= min
l(·)∈A

∑
yt,xt,zwt−1

P (xt, z
w
t−1|yt−1)1 {at(xt) = yt} l(yt)

4
= αt(st, at), (67)

When using the optimal reproduction function, the average distortion is given by:

E

[
ρ(Xt, g

∗
t (st, at, Yt,Wt, Z

w
t−1))

∣∣∣∣Y t−1 = yt−1
]

=
∑

wt,xt,yt,zwt−1

P (xt, yt, z
w
t−1|yt−1)ρ(xt, g

∗
t (st, at, wt, yt, z

w
t−1))

=
∑

wt,xt,yt,zwt−1

P (xt, z
w
t−1|yt−1)P (wt|xt)1 {at(xt) = yt} ρ(xt, g

∗
t (st, at, wt, yt, z

w
t−1))

4
= βt(st, at). (68)

Denoting βt(st, at)+λαt(st, at) = γt(st, at), our optimality criterion can be written as 1
T

∑T
t=1 Eγt(st, at).

We move on to show that the state process is Markov conditioned on the action, namely, P (st+1|st, at) =

P (st+1|st, at). We start by noting that st+1 = PXt+1,Zwt |Y t(·, ·|y
t) is a function of (st, at, yt). For every
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(xt+1, z
w
t ) we have

P (xt+1, z
w
t |yt) =

∑
wt,xt,zwt−1

P (xt, xt+1, wt, yt, z
w
t−1, z

w
t |yt−1)∑

wt,xt,xt+1,zwt−1
P (xt, xt+1, wt, yt, zwt−1, z

w
t |yt−1)

=

∑
wt,xt,zwt−1

P (xt, z
w
t−1|yt−1)P (xt+1|xt)P (wt|xt)1 {at(xt) = yt}1

{
zwt = rwt (wt, yt, z

w
t−1)
}∑

wt,xt,xt+1,zwt−1
P (xt, zwt−1|yt−1)P (xt+1|xt)P (wt|xt)1 {at(xt) = yt}1

{
zwt = rwt (wt, yt, zwt−1)

}
= f(st, at, xt+1, yt, z

w
t ) (69)

and therefore, st+1 = h(st, at, yt) for a function, h, that uses (69) for every pair (xt+1, z
w
t ). Now,

P (st+1 = ν|st, at) =
∑

yt,xt,zwt−1

1 {h(at, st, yt) = ν}1 {at(xt) = yt}P (xt, z
w
t−1|yt−1)

= P (st+1 = ν|st, at). (70)

We showed that our system can be represented as a MDP. By invoking Theorem A.1, we know that the
optimal action at each stage, at is a deterministic function of the state. Namely, the mapping from xt to
yt can be chosen deterministically as a function of PXt,Zwt−1|Y t−1(·, ·|yt−1). Therefore, Yt is a deterministic
function of (Xt, PXt,Zwt−1|Y t−1(·, ·|yt−1)), which concludes the proof of Theorem VII. By (69), the encoder
does not need to store yt−1, but rather a probability measure (a vector in R|Y|×|Zw|).

VI. CONCLUSION

This work extended the setting of [1] to include both variable rate coding and SI. It was shown that
structure theorems, in the spirit of [1] and [3], continue to hold in this setting as well. These theorems
are further refined when the decoder has infinite memory. We were able to show that the cost function
is concave in the choices of past encoders (Lemmas II, IV) and therefore, the optimal encoders are
deterministic. It was also shown that in order to simplify the overall system optimization, one can use
sliding–window next–state functions and the excess loss incurred by this suboptimal choice vanishes as
the window size increases (Theorems III, IV). However, in the finite horizon setting we investigated, the
window size is always upper bounded by the time horizon.

Extensions to this work would include investigating the infinite horizon setting. While Theorem III
carries over verbatim to the infinite horizon setting, it is not necessarily true for the other theorems, which
were proved using dynamic programming. Another extension would be to investigate the constrained
setting (briefly mentioned in Theorem V). In this case, relying on results from constrained MDPs, we do
not expect the optimal encoders to be deterministic (see [15]).

APPENDIX

A. Proof of Lemma II

We start by focusing on the average codeword length element of the cost function and show that
LYt(Zt−1) is concave in {f sXt,Zt−1

}. For 0 ≤ α ≤ 1 and f1, f2 ∈ {f sXt,Zt−1
}, let

fα = αf1 + (1− α)f2.
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This means that for any (xt, zt−1) we have

Pα(yt|xt, zt−1) = αP1(yt|xt, zt−1) + (1− α)P2(yt|xt, zt−1) (A.1)

Let LfαYt (Zt−1), Lf1Yt(Zt−1), Lf2Yt(Zt−1) denote the length function calculated with fα, f1, f2 respectively.
We have

LfαYt (z
y
t−1) = min

l(·)∈A

{∑
yt

Pα(yt|zt−1)l(yt)
}

= min
l(·)∈A

{∑
yt,xt

[αP1(yt|xt, zt−1)

+ (1− α)P2(yt|xt, zt−1)]P (xt|zt−1)l(yt)
}

≥ α min
l(·)∈A

{∑
yt,xt

P1(yt|xt, zt−1)P (xt|zt−1)l(yt)
}

+ (1− α) min
l(·)∈A

{∑
yt,xt

P2(yt|xt, zt−1)P (xt|zt−1)l(yt)
}

= αLf1Yt(zt−1) + (1− α)Lf2Yt(zt−1) (A.2)

where we used the fact that the sum of minima is smaller than the minimum of a sum. Since the distortion
part of the cost is linear in P (yt|xt, zt−1) (through the expectation), we have that the overall stage t cost
function is concave in {f sXt,Zt−1

}.

B. Proof of Lemma IV

Fix any third stage encoder which is a deterministic function of (X3, Z2). We showed in (19) that the
second stage encoder affects J3 only through P (x3, z2) (and thus also through P (z2) and P (x3|z2)). Let
f1, f2 ∈ {f sX2Z1

} be two second stage stochastic encoders which are functions of (X2, Z1). Let

Pγ(x3, z2) =
∑

x2,y2,z1

P (x2, z1) [γP1(y2|x2, z1) + (1− γ)P2(y2|x2, z1)]P (z2|z1, y2)P (x3|x2),

= γP1(x3, z2) + (1− γ)P2(x3, z2), (A.3)

where P1(x3, z2), P2(x3, z2) are calculated with P1(y2|x2, z1), P2(y2|x2, z1)} that result from f1, f2 respec-
tively. Similarly, for i = 1, 2, γ, define Pi(z2), and Pi(x3|z2) as the marginal and conditional distribution,
respectively, resulting from the probability measures in (A.3). We now show that Pγ(x3|z2) can be written
as a convex combination of P1(x3|z2), P2(x3|z2).

Pγ(x3|z2) =
Pγ(x3, z2)

Pγ(z2)

=
γP1(x3, z2) + (1− γ)P2(x3, z2)∑
x′3
γP1(x′3, z2) + (1− γ)P2(x′3, z2)

=
γP1(x3, z2)∑

x′3
γP1(x′3, z2) + (1− γ)P2(x′3, z2)

+
(1− γ)P2(x3, z2)∑

x′3
γP1(x′3, z2) + (1− γ)P2(x′3, z2)

= α
P1(x3, z2)∑
x′3
P1(x′3, z2)

+ β
P2(x3, z2)∑
x′3
P2(x′3, z2)

(A.4)
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with,

α =
γ
∑

x′3
P1(x

′
3, z2)∑

x′3
γP1(x′3, z2) + (1− γ)P2(x′3, z2)

=
γP1(z2)

Pγ(z2)

β =
(1− γ)

∑
x′3
P2(x

′
3, z2)∑

x′3
γP1(x′3, z2) + (1− γ)P2(x′3, z2)

=
(1− γ)P2(z2)

Pγ(z2)
. (A.5)

Note that 0 ≤ α, β ≤ 1 and α + β = 1. We showed that

Pγ(x3|z2) = αP1(x3|z2) + (1− α)P2(x3|z2) (A.6)

We are now ready to prove the lemma. For any given third stage encoder, let J3(Pi), i = 1, 2, γ, denote
the third stage cost as a function of the joint probability of (X3, Z2), where the dependence on the second
stage encoder was shown in (20),(A.3). In order to prove the lemma, we need to show that:

J3(Pγ) ≥ γJ3(P1) + (1− γ)J3(P2). (A.7)

We now focus on the codeword length element of the cost function. Let L3(Pi), i = 1, 2, γ, denote the
third stage average codeword length as a function of the joint probability of (X3, Z2)

L3(Pγ) =
∑
z2

Pγ(z2) min
l(·)∈A

∑
y3

Pγ(y3|z2)l(y3)

=
∑
z2

Pγ(z2) min
l(·)∈A

∑
y3,x3

Pγ(y3, x3|z2)l(y3)

=
∑
z2

Pγ(z2) min
l(·)∈A

∑
y3,x3

Pγ(x3|z2)P (y3|x3, z2)l(y3)

=
∑
z2

Pγ(z2) min
l(·)∈A

∑
y3,x3

[αP1(x3|z2) + (1− α)P2(x3|z2)]P (y3|x3, z2)l(y3) (A.8)

≥
∑
z2

Pγ(z2)α min
l(·)∈A

∑
y3,x3

P1(x3|z2)P (y3|x3, z2)l(y3)+∑
z2

Pγ(z2)(1− α) min
l(·)∈A

∑
y3,x3

P2(x3|z2)P (y3|x3, z2)l(y3) (A.9)

=
∑
z2

Pγ(z2)
γP1(z2)

Pγ(z2)
min
l(·)∈A

∑
y3,x3

P1(x3|z2)P (y3|x3, z2)l(y3)+

∑
z2

Pγ(z2)
(1− γ)P2(z2)

Pγ(z2)
min
l(·)∈A

∑
y3,x3

P2(x3|z2)P (y3|x3, z2)l(y3) (A.10)

= γd3(P1) + (1− γ)d3(P2), (A.11)

where in (A.8) we used (A.6), (A.9) is true since the minimum of a sum is greater than the sum of minima
and finally, in (A.10) we substituted α given in (A.5). Thus, we showed that the codeword length element
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of the cost function is concave in the choice of the second stage encoder. We have

J3(Pγ) =
∑

x3,y3,z2

P (y3|x3, z2)Pγ(x3, z2)ρ(x3, g(y3, z2)) + λL3(Pγ)

=
∑

x3,y3,z2

γP (y3|x3, z2)P1(x3, z2)ρ(x3, g(y3, z2))+

(1− γ)P (y3|x3, z2)P2(x3, z2)ρ(x3, g(y3, z2)) + λL3(Pγ)

≥ γJ3(P1) + (1− γ)J3(P2) (A.12)

where in the last step we used (A.11) and the lemma is proven.

C. Markov decision processes - short overview

In a Markov decision process, a decision maker is influencing the behavior of a Markov probabilistic
system through his actions, as the system evolves in time. Formally, a discrete time, finite horizon Markov
decision process is defined by {T, S,A, {Pt(·|s, a)}, {ρt(s, a)}}, where,

• T is the time horizon, t = 1, 2, . . . , T .
• S is the state space.
• A is the action space.
• Pt(·|s, a) is the transition probability to the systems’s next state, given the previous system state

and action. The transition probabilities obey Pt(·|st, at) = Pt(·|st, at), namely, the next state, st+1,
distribution depends on the history only through (st, at).

• P0(·) is the probability measure over the initial state.
• ρt(s, a) is the cost incurred when at stage t and state s, action a is taken.

In our case, the goal of the decision maker is to minimize the expected average cost E 1
T

∑T
t=1 ρt(St, At).

The history of the process at stage t is ht = (s1, a1, s2, a2, . . . , st−1, at−1, st), i.e., all previous actions
taken by the decision maker and the system states, up to stage t. Note that ht = {ht−1, at−1, st}.

A decision rule, dt, prescribes the procedure for action selection in a given state at stage t. Decision
rules can range from deterministic functions of the current state to randomized functions that depend on
the whole history of states and actions, up to stage t. A decision rule that is a deterministic function
of the current state will be called a Markovian deterministic (MD) decision rule. A policy specifies the
decision rules to be used at all stages, i.e., a policy π is a sequence of decision rules d1, . . . , dT . We say
that a policy is MD if all its decision rules are MD.

In Sections III-E,V-C, the state space is finite, however, it grows as the system evolves, i.e., at each
stage the stage space is St. We set S = ∪Tt=1St. The action space is the set of deterministic functions
f : X → Y , which is finite.

We will use the following theorem which is the key to the results of section III-E.

Theorem A.1. ([16, Proposition 4.4.3]): There exist an MD policy which is optimal.

We outline the proof here for completeness.
Proof of Theorem A.1 (outline): Define for policy π, uπt (ht) = E

{∑T
i=t ρi(si, ai)|ht

}
, where the actions
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ai are prescribed by the policy π. Note that

uπt (ht) = ρt(st, at) +
∑
j∈S

pt(j|st, at)uπt+1(ht, j, at) (A.13)

Let u∗t (ht) = infπ u
π
t (ht). We start by showing the u∗t (ht) depends on the history only through st. We will

use backwards induction. Note that u∗T (hT ) = mina∈A ρ(sT , a), so the claim is valid for the last stage.
Now assume that the claim is valid for n = t+ 1, t+ 2, . . . , T . We have

u∗t (ht) = min
a∈A

{
ρt(st, a) +

∑
j∈S

pt(j|st, a)u∗t+1(ht, j, a)

}

= min
a∈A

{
ρt(st, a) +

∑
j∈S

pt(j|st, a)u∗t+1(j)

}
(A.14)

where the last equation is due to the induction hypothesis. Since the term in brackets depends on the
history only through st, the induction step is proven. Now, define the decision rule at each stage for every
st ∈ S as the minimizer of (A.14). By construction, this decision rule is MD and the policy constructed
from these decision rules is optimal.

D. Properties of the length function

Let W ,Y ,Z be finite alphabets.
1) Conditioning reduces the length: We have

LY |Z =
∑
z∈Z

P (z) min
l(·)∈A

∑
y∈Y

P (y|z)l(y)

=
∑
z∈Z

P (z) min
l(·)∈A

∑
y∈Y

∑
w∈W

P (y|w, z)P (w|z)l(y)

≥
∑
z∈Z

∑
w∈W

P (z)P (w|z) min
l(·)∈A

∑
y∈Y

P (y|w, z)l(y)

= LY |W,Z (A.15)

where the inequality is true since the minimum of a sum is greater than the sum of minima.
2) Proving that LY |W,Z ≥ LY,Z|W − log |Z|: The intuition behind this is simple: given W , the average

optimal code length for the pair (Y, Z) can not be larger than coding Z separately and concatenating a
codeword that describes Y and is decodable when Z is known. The optimal scheme for coding the pair
can not be worse, otherwise, this scheme can be used. To see this mathematically, for each y ∈ Y , z ∈ Z ,
let l∗(y), l∗(z) be the length functions optimized for the distributions P (y|w, z) and P (z|w) respectively.
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Using the fact that LZ|W < log |Z| we have:

LY |Z,W + log |Z| ≥
∑
w,z

P (w, z)
∑
y

P (y|w, z)l∗(y) +
∑
w

P (w)
∑
z

P (z|w)l∗(z)

=
∑
w

P (w)
∑
z

P (z|w)

[(∑
y

P (y|w, z)l∗(y)

)
+ l∗(z)

]
=
∑
w

P (w)
∑
z

P (z|w)
∑
y

P (y|w, z)[l∗(y) + l∗(z)]

≥
∑
w

P (w) min
l∈Ã

∑
z,y

P (y, z|w)l(y, z)

= LY,Z|W (A.16)

where Ã is defined as in Section II with Y × Z replacing Y .
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