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Abstract

We study a wireless broadcast network, where a single source reliably communicates
independent messages to multiple destinations, with the aid of relays and cooperation
between destinations. The wireless nature of the medium is captured by the broadcast

nature of transmissions as well as the superposition of all transmit signals plus inde-
pendent Gaussian noise at the received signal at any radio. We propose a scheme that
can achieve rate tuples within a constant gap away from the cut-set bound, where the
constant is independent of channel coefficients and power constraints.

The proposed scheme operates in two steps. The inner code, in which the relays
perform a quantize-and-encode operation, is constructed by lifting a scheme designed
for a corresponding discrete superposition network. The outer code is a Marton code
for the non-Gaussian vector broadcast channel induced by the relaying scheme, and is
constructed by adopting a “receiver-centric” viewpoint.

1 Introduction

The scenario of study in this paper is depicted in Figure 1. A single source node is reliably
communicating independent messages to multiple destination nodes using the help of multiple
relay nodes. In the example of a cellular system, the setting represents downlink communi-
cation where the base-station is transmitting to multiple terminals with the potential help
of relay stations. Note that some of the terminals can themselves act as relays. A special
instance of our setting is the following: only the source node and multiple destinations (i.e.,
no relays) are present. Since we have allowed the ability to transmit and receive at all nodes,
this special instance models the downlink of a cellular system with the destinations having
the ability to cooperate among themselves, which has been studied in [9].

We consider the canonical Gaussian channel model among the various nodes in the network:
time is discrete and synchronized among all the nodes. Denoting the baseband transmit
symbol (a complex number) of node k at time m by xk[m], the average transmit power
constraint at each node implies that,

T
∑

m=1

|xk[m]|2 ≤ TPk, (1)
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Figure 1: A wireless broadcast network

where T is the time period over which the communication occurs. At each time m, we have
the received signal at any node ℓ

yℓ[m] =
∑

k 6=ℓ

hkℓ[m]xk[m] + zℓ[m]. (2)

Here {zℓ[m]}m is i.i.d. Gaussian noise and independent across the different nodes ℓ. The
channel attenuation hkℓ between a pair of nodes (k, ℓ) is supposed to be constant over the
time scale of communication. Note that by normalizing the channel attenuation hkℓ, without
loss of generality, we will assume unit average power constraints at each node, i.e. Pk = 1 and
also the variance of zℓ[m] to be 1. We suppose full duplex mode of operation for the most
part, while discussing the implications of half duplex mode later in the paper. We suppose
single antenna at each node and leave the discussion with multiple antennas for a later part
of the paper. We will begin with the supposition that these channel attenuations are known
to all the nodes in the network, and revisit this requirement later.

Let V denote the set of all nodes in the network. A (2TR1, . . . , 2TRJ , T ) coding scheme
for the broadcast network, with source node S and destination nodes D1, . . . , DJ , which
communicates over T time instants is comprised of the following

1. Independent random variables Wi which are distributed uniformly on [2TRi ] for i =
1, . . . , J respectively. Wi denotes the message intended for destination Di.

2. The source mapping,

fS : (W1 × . . .×WJ) → X T
S . (3)

3. The relay mappings for each v ∈ V\ {S} and t ∈ [T ],

fv,t : Y
t−1
v → Xv. (4)
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4. The decoding map at destination Di,

gDi
: YT

Di
→ Ŵi. (5)

The probability of error for destination i under this coding scheme is given by

P i
e

def
= Pr{Ŵi 6= Wi}. (6)

A rate tuple (R1, R2, ..., RJ), where Ri is the rate of communication in bits per unit time for
destination Di, is said to be achievable if for any ǫ > 0, there exists a (2TR1 , 2TR2, ..., 2TRJ , T )
scheme that achieves a probability of error lesser than ǫ for all nodes, i.e., maxi P

i
e ≤ ǫ. The

capacity region C is the set of all achievable rates.
The following is the well known cut-set upper bound to the rate tuples of reliable com-

munication [5, 4]: denoting the set of all nodes by V; and for all subsets J ⊆ [J ], where [J ]
denotes the set {1, . . . , J}, denoting ΛJ to be the collection of all subsets Ω ⊂ V such that
the source nodes S ∈ Ω and a subset J ⊆ [1 : J ] of destinations DJ ∈ Ωc; we have that if
(R1, . . . , RJ) is achievable, ∀J , there is a joint distribution p ({Xv|v ∈ V}) (denoted by Q)
such that

RJ ≤ C̄J (Q)
def
= min

Ω∈ΛJ

I (YΩc;XΩ|XΩc) , (7)

where RJ
def
=

∑

j∈J Rj.

Let C̄(Q) denote the set of all rate tuples that satisfy the cut-set upper bound for a given
joint distribution Q, and C̄ denote the cut-set bound:

C̄(Q)
def
= {(R1, ..., RJ) : RJ ≤ C̄J (Q) ∀J ⊆ [1 : J ]} (8)

C̄
def
= conv





⋃

{Q:E|Xv|2≤1}

C̄(Q)



 , (9)

where conv (·) denotes the convex hull of the region.
Our main result is the following.

Theorem 1. For the wireless broadcast network, a rate vector (R1, . . . , RJ) is achievable if
∀ J ,

(R1 + k, . . . , RJ + k) ∈ C̄ (10)

for some constant k, which depends only on the number of nodes, and not on the channel
coefficients, and k = O(|V| log |V|).

With a single destination node (J = 1), the scenario reduces to the classical Gaussian
(unicast) relay channel. Pioneering work of [1] has obtained an approximate characterization
of the capacity for this scenario. In recent work, [3, 6] derive similar approximation results
with different coding schemes. In particular, [1, 3] take a two-step approach in their coding
scheme: first, they develop deterministic models that approximate the Gaussian channel and
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next, they construct the codes for the Gaussian channel based on the codes for the corre-
sponding deterministic channel approximation. The specific approaches adopted in the actual
deterministic approximation and moving from the codes for the deterministic channel to the
Gaussian one are different between [1] and [3]; as such, we follow the approach of [3] in our
proof of the main result.

The proposed scheme operates in two steps. The inner code, in which the relays essentially
perform a quantize-and-encode operation, is constructed by lifting a scheme designed for
a corresponding discrete superposition network. This induces a vector broadcast channel
between

The outer code is essentially a Marton code ([7, 8]) for the broadcast channel induced by
the relaying scheme, and is constructed based on a “receiver-centric” viewpoint.

The rest of the paper is organized as follows. In Section 2, we give a coding scheme and
establish an achievable rate region for deterministic broadcast networks. In Section 3, we prove
Theorem 1 by giving a coding scheme for the wireless broadcast network. In order to do so,
we use the discrete superposition network, which is an approximation to the wireless network,
and the “lift” the scheme from the discrete superposition network to the Gaussian network.
In Section 4, we discuss various aspects of the proposed scheme, primarily the reciprocity in
the context of linear deterministic and Gaussian networks, and the channel state information
required. In Section 5, various generalizations of the scheme are provided, for half-duplex
networks, for networks with multiple antenna and for broadcast wireless networks, where some
set of nodes demand the same information and other nodes demand independent information.

2 Deterministic Broadcast Networks

In the deterministic network model, the received signal at each node is a deterministic function
of the received signals.

yℓ[m] = gℓ

(

{xk[m]}k 6=ℓ

)

. (11)

The input and output alphabet sets, Xk’s and Yℓ’s respectively, are assumed to be finite sets.
As before, we have the following cut-set upper bound to the rate tuples of reliable com-

munication [5, 4]: if (R1, . . . , RJ) is achievable, then ∀J ⊆ [1 : J ], there is a joint distribution
p ({Xv|v ∈ V}) (denoted by Q) such that

RJ ≤ C̄J (Q)
def
= min

Ω∈ΛJ

I (YΩc;XΩ|XΩc) . (12)

We prove the following achievability result for the deterministic channel.

Theorem 2. For the deterministic broadcast network, a rate vector (R1, . . . , RJ) is achievable
if ∀ J , there is a product distribution

∏

v∈V

p(Xv) (denoted by Qp) such that

RJ ≤ C̄J (Qp). (13)
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Figure 2: A Layered broadcast-relay network

Remark 1. Aref networks, i.e., deterministic broadcast networks where each node can receive
information from every incoming edge separately, were studied in [24]. It is shown there
that cut-set bound can be achieved for these networks. This result can also be recovered from
Theorem 2 by observing that product form distributions optimize the cut-set bound. It should
be noted, however, that the scheme proposed in [24] is a separation-based scheme whereas the
scheme proposed here is not.

Proof. We prove Theorem 2 for the layered network here. The arguments can then be extended
to the general network by using time expansion as done in [1]. A network is called a L-layered
network if the set of vertices V can be partitioned into L disjoint sets, such that only the source
node S is in the first layer and the J destination nodes are in the L-th layer. The nodes in
the intermediate layers are relaying nodes. The received signal at the nodes in the l + 1-th
layer only depend on the transmitted signals at the nodes in the l-th layer. This dependency
is often represented by edges connecting the nodes from the l-th layer to the (l + 1)-th layer.
An example of a layered broadcast network is shown in Fig. 2. The advantage of working with
a layered network is that we can view the information as propagating from one layer to the
next without getting intertwined.

2.1 Outline of Coding Scheme

fVR
(T3)

t3 = T3

fVR
(1)

~Xv

t2 = 1 t2 = T2

t3 = 1

Figure 3: Coding scheme

The coding scheme operates over three levels of nested blocks as shown in Figure 3. If T
is the total time period of communication, then T = T1T2T3. The innermost level is level-1
and consists of T1 time instants. T2 such level-1 blocks constitutes a level-2 block. The overall
coding scheme operates over T3 level-2 blocks. Our coding scheme comprises of the following:
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• The message Wi is broken into T3 independent sub-messages Wi(1), . . . ,Wi(T3), where
each sub-message is encoded over a particular level-2 block.

• The relay mappings are done at the level-1 block. Every node blocks up T1 received
symbols and maps it to T1 transmit symbols. This relay mapping is fixed for the duration
of a level-2 block and it essentially creates an end-to-end deterministic broadcast channel
at the level-2 block.

• The encoding at the source is done on the induced end-to-end deterministic broadcast
channel for each level-2 block. Across different level-2 blocks, the mappings are generated
in an i.i.d. manner and corresponding broadcast schemes are used for the different end-
to-end broadcast channel induced by this operation. This is very much like a fading
broadcast channel. Here the random fading is introduced by the relay mappings. This
is merely a proof technique which allows us to average the performance over random
relay mappings.

• The destinations decode the sub-message corresponding to each level-2 independently
and sequentially.

2.2 Coding Scheme in Detail

Throughout the discussion below, we fix a particular product distribution Qp, which is then
used to describe a random ensemble of coding operations.

2.2.1 Relay mappings

In the proposed scheme, the relays operate over level-1 blocks, i.e., each relay transmits in a
level-1 block using only the information from the previous received level-1 block. We will use

~xr
def
= xT1

r and ~yr
def
= yT1

r to denote the transmit and receive block at any relay node r ∈ VR,
where VR is the set of all relay nodes. The mapping at the relay node denoted by

fr(t3) : Y
T1
r → X T1

r , (14)

is random and generated i.i.d. from the distribution p(Xr), i.e., ∀yT1
r ∈ YT1

r , generate xT1
r

i.i.d. from p(Xr). Note that the relay mapping is only a function of t3 i.e., it is fixed across
all level-1 blocks in a given level-2 block. Across different level-2 blocks, i.e., for each t3, it
is generated in an i.i.d. manner. As mentioned earlier, this induces an end-to-end broadcast
channel as shown in Figure 4; a different one across every level-2 block.

2.2.2 Source Mappings

The capacity of the deterministic broadcast channel is well known ([7, 10]). For our coding
scheme over the induced deterministic broadcast channel of Figure 4, we use the coding scheme
similar to the one described for the deterministic broadcast channel in [8], which we refer to
henceforth as the “Marton code”. The source codebook for the t3-th level-2 block, which maps
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fVR
, gj(.)

~YD2

~YD1

~XS

Figure 4: Effective end-2-end deterministic broadcast channel created by a level-1 code.

the message Wi(t3) ∈ [2T1T2Ri(t3)], i = 1, 2, ..., J to transmit symbol block ~xT2
S , is described

below.
Given the random vector ~XS which is distributed as p( ~XS) =

∏

p(XS), the channel and

the relay mapping induce the joint distribution over the random variables
(

~XS, ~YV

)

. Create

auxiliary random variables ~UDi
such that p ~X,~UD1

,~UD2
,...,~UDJ

is the same as p ~X,~YD1
,~YD2

,...,~YDJ

.

The set T T2
δ (~UDi

) of all typical ~uT2
Di

are binned into 2T1T2Ri(t3) bins, where each bin index cor-

responds to a message, for i = 1, 2, ..., J . For each vector (~uT2
D1
, . . . , ~uT2

DJ
) ∈ T T2

δ (~YD1, . . . , ~YDJ
),

there exists a sequence ~xT2
S (~uT2

D1
, . . . , ~uT2

DJ
), since the channel is deterministic, such that (~xT2

S , ~uT2
D1
, . . . , ~uT2

DJ
) ∈

T T2

δ ( ~XS, ~YD1, . . . , ~YDJ
). This specifies the codebook for the given level-2 block t3. Similar

codebooks are generated, statistically independently, for all the T3 level-2 blocks.

2.2.3 Encoding

The messages Wi ∈ [2T1T2T3Ri ] are split into sub-messages Wi(t3) ∈ [2T1T2Ri(t3)] such that

∑

t3

Ri(t3) = RiT3. (15)

For the t3-th level-2 block, the messages to be transmitted are given by (W1(t3), . . . ,WJ(t3))
for the J destinations respectively. To transmit the message, the source looks at the codebook
for the level-2 block t3 and tries to find a vector

(

~uT2
1 , . . . , ~uT2

J

)

∈ T T2
δ (~U1, . . . , ~UJ) such that

~uT2
i is also in the bin with index Wi(t3). If the source can find such a vector, it transmits

~xT2
s (~uT2

1 , . . . , ~uT2
J ). If the source cannot find such a sequence it transmits a random sequence.

2.2.4 Decoding

At the end of t3-th level-2 block, the destination Di decodes the transmitted message Wi(t3).
The destination tries to find the bin in which the received level-2 block ~yT2

Di
(t3) falls and decodes

that bin index as the transmitted message.
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2.3 Performance Analysis

We begin with identifying rate constraints for the t3-th level-2 block, so that arbitrarily small
probability of error can be achieved for decoding the message at this block. From the coding
theorem for the deterministic broadcast channel ([7], Theorem 3), we know that as long as
Ri(t3) satisfies, for i = 1, . . . , J and ∀J ⊆ {1, . . . , J},

RJ (t3) ≤
1

T1
H(~YDJ

|FVR
= fVR

(t3)), (16)

the probability of error can be made arbitrarily small by choosing a large enough T2. The
overall rate Ri is given by (15). Therefore the rate tuple (R1, . . . , RJ) satisfies

RJ ≤
1

T1T3

T3
∑

t3=1

H(~YDJ
|FVR

= fVR
(t3)), ∀ J ⊆ {1, . . . , J} . (17)

By the strong law of large numbers, as T3 → ∞, we have

1

T1T3

T3
∑

t3=1

H(~YDJ
|FVR

= fVR
(t3))

a.s.
→

1

T1

EH(~YDJ
|FVR

= fVR
(t3))

=
1

T1
H(~YDJ

|FVR
). (18)

Next, we relate the expression in (18) to the cut-sets using the following lemma:

Lemma 1. Given arbitrary ǫ > 0, ∃ T1 s.t.,

H(~YDJ
|FVR

) = H(Y T1
DJ

|FVR
) ≥ T1(C̄J (Qp)− ǫ), (19)

∀ J ⊆ {1, . . . , J} .

Proof. See Appendix A.

Using (17), (18) and Lemma 1, we conclude that for any rate tuple satisfying

RJ ≤ C̄J (Qp)− ǫ, (20)

arbitrarily small probability of error is achieved. The proof is finally completed by allowing
time-sharing between the coding schemes for all product distributions Qp.

3 Gaussian Broadcast Networks (Proof of Theorem 1)

3.1 Layered Network

As for the deterministic network, we will first consider a layered network. For the deterministic
network, we first used the random relay mappings to create an effective vector broadcast
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channel. Then we used the Marton scheme with a specific choice of auxiliary random variables,
which is optimal for the deterministic broadcast channel. For the Gaussian network, while it
is possible to do the inner code similarly and induce a broadcast channel, this is a vector non-
Gaussian broadcast channel for which it is unknown whether a Marton scheme can achieve
any rate within a constant gap of the cut-set bound. To deal with this issue, we convert the
Gaussian network into a deterministic network, for which we can design the germane code
and then appropriately “lift” the code from the deterministic to the Gaussian network.

The procedure is outlined as follows:

1. Given the Gaussian broadcast network, we construct a corresponding deterministic su-
perposition network (DSN). The cut-set bound of the DSN approximates the cut-set
bound of the corresponding Gaussian network to within a factor N logN . Further, the
DSN is deterministic and thus the scheme in Theorem 2 can be used for the DSN to
achieve the cut-set bound evaluated under product-form distributions. The details are
provided in Sec 3.1.1.

2. We then prune a natural coding scheme P(κ) for the DSN, such that the rate is reduced
by a factor Nκ. The details are in Sec. 3.1.2.

3. Finally, we show that for an appropriate choice of κ = O(logN), the pruned coding
scheme on the DSN can be emulated on the Gaussian network, because each node in
the Gaussian network can decode the corresponding received vector in the DSN. The
details are given in Sec. 3.1.3. Therefore, the rate achieved in the Gaussian network by
the proposed scheme achieves within a gap of O(N logN) of the cut-set bound.

3.1.1 Discrete Superposition Network (DSN)

Given a Gaussian network, we construct a discrete superposition network. This network is
essentially a truncated noiseless version of the Gaussian model. Further, the input in this
model is restricted to a finite set.

Corresponding to the channel model for the Gaussian network given by (2), the received
signal in the DSN is given by

yℓ[m] =

[

∑

k 6=ℓ

hkℓ[m]xk[m]

]

, (21)

where [·] lies in Z+ıZ and corresponds to rounding the real and imaginary parts of the complex
number to the nearest integer. The transmit symbols xk[m] are restricted to a discrete and
finite complex valued set. This defines the DSN. Note that our model is very similar to the
truncated model in [1] and to the model described in [3].

Next, the following lemma relates the cut-set upper bound of the Gaussian network, C̄Gauss,
to the cut-set of the DSN under product distribution.

Lemma 2. There exists a Qp for the DSN such that

C̄Gauss ⊆ C̄DSN(Qp) + k2(1, 1, ..., 1), (22)
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where k2 = O(|V|).

Proof. See Appendix D.

Note that since the DSN is a deterministic network, we have the following corollary of
Theorem 2.

Corollary 1. For the DSN, a rate vector (R1, . . . , RJ) is achievable if there is a product
distribution Qp such that, ∀ J ,

RJ ≤ C̄DSN
J (Qp). (23)

We observe that, here Qp is product distribution over the finite input alphabet set of the
DSN.

3.1.2 Pruned Coding Scheme P(κ) for the DSN

The pruned coding scheme described next is along the lines of the ideas developed in [3].
The main idea there is that a coding scheme from the DSN can be used in the Gaussian
network, if at every node, the received vector at any node in the DSN can be decoded from
the corresponding received vector in the Gaussian network. This will not, in general, be true
for any scheme in the DSN. Therefore, to get the source codebook for the Gaussian network,
the codewords transmitted by the source in the DSN are pruned to a smaller set in such a way
that the received vector at any node in the DSN can be decoded from the received vector in
the Gaussian network. In this section, we will demonstrate how to construct a pruned coding
scheme P(κ), for which the rate is reduced by a constant Nκ. In Sec. 3.1.3, we will show how
to choose the parameter κ such that the Gaussian network can emulate the DSN.

Our coding scheme for the deterministic network described in Section 2.2 involved three
levels. Level-1 involved relay mappings over a level-1 block of T1 time symbols defined by
fVR

. Then the level-2 code involved a Marton scheme for this fixed fVR
. This code was over a

level-2 block, which comprised of T2 level-1 blocks. Then at level-3, we repeated this Marton
code over T3 level-2 blocks, where for each super-block the relay mapping fVR

was generated
i.i.d. using FV . For the Gaussian network, we will maintain the same level-1 and level-3 codes,
but will modify the Marton code by pruning the set of codewords transmitted by the source.
This is described in detail next.

Pruning the Level-2 (Marton) code: We now specify the operation during the t3-th level-2
block. In this level-2 block we need to send the messages Wi ∈ [2T1T2Ri(t3)] at rates Ri(t3),
for i = 1, . . . , J . As before, since the the relays maintain the same mapping fVR

(t3) for the
duration of this level-2 block, we have an effective end-to-end deterministic channel as shown
in Figure 4.

As before, given the random variable at the source ~XS = XT1
S which is distributed as

p( ~XS) =
∏

p(XS), the fixed relay mapping and the channel induces the joint distribution on

( ~XS, ~YV). Let T
T2
δ (~Yv) denote the set of all typical received block vectors at node v.

Previously, we created the codebook by binning the typical sets T T2
δ (~YDi

). But now, we
prune this set before binning. This will, in effect, lead to pruning the set of typical vectors
T T2
δ (~Yv) at all nodes. To do this pruning, we fix a constant κ, which will be defined in

10



Section 3.1.3. At every node v, we pick a random 2−T1T2κ fraction of T T2

δ (~Yv) and call this
subset Sv. We then define,

Zv
def
= {~yT2

v : ∀i, ∃~yT2
i ∈ Si, s.t. ~yT2

V ∈ T T2
δ (~YV)}. (24)

We will prune our codebook so that only codewords in Zv are typically received.
Following the Marton code for the deterministic channel, we bin the set of all ZDi

, the
typically received vectors at the destination, into 2T1T2Ri(t3) bins, for i = 1, . . . , J . For a given
message pair W1, ...,WJ , we select a jointly typical ~yD1, ..., ~yDJ

∈ T T2
δ (ZD1 , ...,ZDJ

) with ~yDi

belonging to the bin corresponding to the message Wi, and transmit the ~xT2 which is jointly
typical with all the ~yDi

. The decoder on receiving a ~yDi
, finds the index of the bin into which

it falls and reports this as the message Wi. This is our pruned codebook for the level-2 block
t3. Similarly pruned codebooks are generated for all the T3 level-2 blocks.

Performance Analysis:
As before, we first find the rate constraints for the t3-th level-2 block, so that arbitrarily

small probability of error can be achieved for decoding the message at this block. For this
purpose, we first need to establish a lower bound on the size of ZDi

. Towards this, we have
the following lemma.

Lemma 3.

|Zv|
.
> 2T2(H(~Yv |FVR

=fVR
)−NT1κ) w.h.p. as T2 → ∞, (25)

where N = |V| − 1.

We use the notation an
.
> 2nb, to denote the existence of a nonnegative sequence ǫn → 0

such that an > 2n(b−ǫn). Notations
.
< and

.
= are used in a similar sense in the rest of the paper.

For a sequence of events E(n) indexed by n, we use “E(n) w.h.p. as n → ∞” to denote that
P{E(n)} → 1, as n → ∞. In this section T2 will play the role of n.

Proof. The details of the proof are in Appendix B. To prove this lemma, we use the random-
ness in the choice of the pruned subsets Sv.

The following lemma then characterizes the achievable rates, Ri(t3), by our pruned scheme
in a t3-th level-2 block.

Lemma 4. As long as Ri(t3) satisfies, ∀i = 1, . . . , J, ∀J ⊆ {1, . . . , J},

RJ (t3) ≤
1

T1
H(~YDJ

|FVR
= fVR

(t3))− |J |Nκ, (26)

the probability of error can be made arbitrarily small by choosing a large enough T2.

Proof. The result follows from the fact that, our pruned version of the Marton scheme bins
ZDi

instead of T T2

δ (~YDi
). The details of the proof are in Appendix C.

11



As before, we can now average over the rates in each level-2 block, to get the overall rate
Ri. Under the pruned scheme, each rate is reduced by Nκ. Thereby, we have the following
lemma.

Lemma 5. A rate tuple R = (R1, . . . , RJ) is achievable for the DSN, using the pruned scheme
P(κ), if ∀ J , there is a product distribution

∏

v∈V

p(Xv) (denoted by Qp) such that

RJ ≤ C̄J (Qp)− |J |Nκ. (27)

3.1.3 Code for the Gaussian Network

We will now show that the pruned scheme for the DSN can be lifted to a scheme for the
Gaussian network to establish the following result.

Lemma 6. If κ = log(12N−2)+11, then any rate tuple (R1, R2, ..., RJ) that can be achieved in
the DSN using the pruned coding scheme P(κ) can also be achieved in the Gaussian network.

Proof. Note that the pruned coding scheme P(κ) for the DSN operated over three levels of
nested blocks. This scheme is now adapted to the Gaussian network as follows. We will use
Xv, Y v to denote the level-2 blocks in the Gaussian network (corresponding to ~Xv, ~Yv in the
DSN).

1. The coding over level-2 blocks is performed in the same way as in the DSN. We will
describe the operation during the t3-th level-2 block. In this level-2 block the relay
mapping is fixed to fVR

(t3), we will suppress this conditioning henceforth for notational
convenience.

2. Given a message Wi(t3), the source transmits the same vector that it would have trans-
mitted in the DSN, i.e., xT2

S (W1(t3), ...,WJ(t3)) = ~xT2
S (W1(t3), ...,WJ(t3)).

3. Node v receives yT2

v
and decodes ~yT2

v , the corresponding vector that it would have received
in the DSN.

Lemma 7. If κ = log(12N−2)+11, then the probability of error for decoding the received
vector ~yT2

v in the DSN from the corresponding vector yT2

v
in the Gaussian network goes

to zero as T2 → ∞.

Proof. There is a natural joint distribution on ( ~XS, ~Yv, Y v) given by

p( ~XS, ~Yv, Y v) = p( ~XS)p(~Yv| ~XS)p(Y v| ~XS) (28)

= p( ~XS)p(~Yv| ~XS)p(Y v|XS). (29)

Here p(~Yv| ~XS) and p(Y v|XS) are a function of the relay mappings. The relay node in
the Gaussian network finds the ~yT2

v ∈ Sv such that1

(yT2

v
, ~yT2

v ) ∈ T T2
δ (Y v,

~Yv). (30)

1While the relay also knows that the received vector should be contained in Zv ⊆ Sv, we do not explicitly
use this information in the decoding step.
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Sv is a random 2−T1T2κ fraction of the typical set T T2

δ (~Yv). Therefore

|Sv|
.
= 2−T2T1κ2T2H(~Yv). (31)

If we choose κ = log(12N−2)+11, then T1κ > H(~Yv|Y v) (see [3] for a similar argument).
Therefore,

|Sv|
.
< 2−T2H(~Yv|Y v)2T2H(~Yv) (32)

⇒ |Sv|
.
< 2T2(I(~Yv;Y v)). (33)

This condition ensures that the typical set decoding succeeds with high probability, and
thus we can decode ~Y T2

v from Y T2
v .

4. Any node v now performs the same mapping as in the DSN,

~xT2
v = fv(~y

T2
v ), (34)

and transmits the vector xT2
v = ~xT2

v .

5. The destination Di reconstructs the corresponding vector ~yT2
Di

from yT2

Di
, and since de-

coding is possible in the DSN, it is possible in the Gaussian network as well.

To conclude: this procedure yields a code for the Gaussian network that can achieve the
same reliable rate of communication as the pruned code in the DSN.

3.1.4 A Simplified Coding Scheme

Our coding scheme for the deterministic and the Gaussian networks comprised coding over
three levels of blocks. We will show now that, if we consider the maximization of a linear
functional of the rate, the third level is not necessary (i.e., T3 = 1 is sufficient) in an operational
scheme, and is used only as a random coding technique. Suppose we want to maximize a
certain linear functional of the rate,

max
R∈C̄(Qp)

∑

i

λiRi. (35)

In Section 2.2, we saw that the average of the rate across various level-2 blocks yields the rate
Ri =

1
T3

∑T3

t3=1Ri(t3). Thus

∑

i

λiRi =
1

T3

T3
∑

t3=1

∑

i

λiRi(t3), (36)

which implies that there exists a t3 such that
∑

i λiRi(t3) ≥
∑

i λiRi. If we use the corre-
sponding relay encoding functions fVR

(t3) throughout, then we achieve the best possible linear
functional of the rate under this scheme. Thus coding over T3 level-2 blocks is unnecessary for
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maximizing a linear functional in the rate region. Thus coding over multiple relay transforma-
tions is only a proof technique and not a method of operation of the network for maximizing
a linear functional of the rate.

By the convexity of the rate region of the scheme, all extreme points in the rate region can
be achieved by setting T3 = 1. To achieve any point inside the rate region, time sharing of
these schemes will be required in general. Since the relay encoding functions fVR

(t3) required
to achieve this may be different for different extreme points, time sharing can be thought of
as being equivalent to coding with a larger T3 .

3.2 Non-layered Networks

Consider a general network specified by the set of vertices V. In [18, 1], it has been shown in
the context of unicast traffic that any network can be unfolded in time to get a layered network.
In the broadcast scenario here, we use the same procedure. The layering strategy is briefly
described below. Similar to [1], the level-1 (inner) block is now over KT1 time symbols. The
relay node still does random mappings over blocks of T1 symbols, however the transmit vector
in k-th block, for k = 1, . . . , K, now depends on the last k − 1 received blocks. This relaying
scheme can then be represented as a layered-network in time. The induced layered network
then has K layers, and each layer has |V| + J + 1 nodes - the |V| nodes v[k], k = 1, 2, ..., |V|
corresponding to the network at time slot k and J +1 special nodes T [k], R1[k], ..., RJ [k] that
act as virtual transmitters and receivers that act as transmit and receive buffers, holding
all the information about source message in the case of transmit buffer and holding all the
received information in the case of received buffer. The set of edges connecting the adjacent
layers is derived from the network by the following procedure:

1. v1[k] is connected to v2[k + 1] with a link hv1,v2 which is the channel corresponding to
the link from v1 to v2 in the original network.

2. Memory inside a node is maintained by connecting vi[k] to vi[k+1] using an orthogonal
and infinite capacity link.

3. The transmit buffer is maintained by connecting T [k] to T [k+1] and also T [k] to S[k+1]
using orthogonal and infinite capacity links.

4. Receive buffer for the the destination node j is maintained by connecting Rj [k] to Rj [k+
1] and from Dj [k] to Dj[k + 1] using orthogonal and infinite capacity links.

5. A 0-th layer with S = T [0] alone, and a K + 1-th layer with Dj = R[k + 1], j = 1, ..., J
are added to serve as the source and destinations in this unfolded network.

Let us consider the cut-set bound (normalized by K) between the source and the destina-
tion nodes J for this unfolded network C̄K−unf

J (Q) and for the original network by C̄org
J (Q).

Then, we have the following lemma (See proof of Lemma 5.1 in [1]).

Lemma 8. C̄K−unf
J (Q) = K−|V|

K
C̄org

J (Q).
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If we take K large enough, the effect of the penalty term K−|V|
K

can be made as small as
desired. Lemma 8, combined with our result for layered networks, yields the desired result for
general (non-layered) networks.

4 Discussion

In this section, we first review linear deterministic broadcast networks, and the capacity-
achieving schemes for such networks. We then show how these schemes are reciprocal to
the schemes for the multi-source single-destination deterministic networks. Then we pro-
ceed to identify the intuition connecting the reciprocal schemes based on a contrast between
transmitter-centric and receiver-centric viewpoints, and use this intuition to point out the in-
spiration for the Gaussian broadcast network scheme. At the end of this section, we point out
the channel state information required at various nodes in order to implement these schemes.

4.1 Linear Deterministic Networks (LDN)

A deterministic network of particular interest is the linear finite-field broadcast deterministic
network [1]. The inputs and outputs are vectors over a finite field, i.e. Xj = Yj = F

q
p, for some

prime p and q ∈ N. The channels are linear transformations over this finite field i.e.,

yj[m] =
∑

i∈Nj

Gi,jxi[m], (37)

where Gi,j ∈ F
q×q
p . In particular, Gi,j are often assumed to be “shift” matrices. The linear

deterministic model captures wireless signal interaction like interference and broadcast and
on the other hand has an algebraic structure that can be exploited for understanding schemes
in this network.

Corollary 2. For the linear deterministic broadcast network the capacity region is in fact the
cut-set bound.

Proof. We can show that for the linear deterministic network the cut-set bound, C̄J (Q), is
maximized by uniform and independent distribution of {Xv|v ∈ V}. Therefore

C̄J (Q) = C̄J (Qp) = min
Ω∈ΛJ

rank(GΩ,Ωc), (38)

where GΩ,Ωc is the matrix relating the vector of all the inputs at the nodes in Ω to the vector
of all the outputs in Ωc induced by (37). The inner bound has already been shown for the
general deterministic network in Theorem 2. This proves the corollary.

An important question is whether simpler linear schemes are optimal for these networks.
It has already been shown in [1] that for the single-source single-destination relay network,
linear mappings at all nodes suffice. The intuition behind the proof is that, when the relay
nodes randomly pick transformation matrices, the resulting matrix between the source and
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the destination has rank equal to the min-cut rank of the network, with high probability.
Therefore, if the rate is lesser than the min-cut rank, random linear coding at all nodes
(including the source but not the destination) ensures an end-to-end full-rank matrix and the
destination, knowing all these encoding matrices, picks up a decoding matrix, which is the
inverse of the end-to-end matrix. This intuition is then used to obtain schemes in the general
deterministic relay network and the Gaussian relay network in [1], where the relays perform
random mapping operations resulting in an induced end-to-end channel between the source
and the destination. Then the source uses a random code to map the messages, and the
destination performs a typical set decoding. It has also been shown in [13] and [14], that for
the linear deterministic relay network, restricting the relay mappings to permutation matrices
is without loss of optimality. The next corollary claims a similar result even for the linear
deterministic broadcast network.

Corollary 3. For linear deterministic broadcast network, linear coding at every node is suf-
ficient to achieve capacity. Furthermore, the mapping at relay nodes can be restricted to
permutation matrices.

Although this can be proved directly, we will use the connection between linear coding and
reciprocity to prove this in the next section.

4.2 Reciprocity

The reciprocal of a Gaussian communication network (with unit power constraint at all nodes)
with multiple unicast flows can be defined as the network where the roles of the sources and
the destinations are swapped. Note that any channel coefficient that captures the signal
attenuation between a pair of nodes is the same in either direction. For a linear deterministic
network, the reciprocal network was defined in [15] as the network where the roles of the
sources and the destinations are swapped, and the channel matrices are chosen as transposes
of each other in the forward channel for the network and its reciprocal.

While it is unresolved whether a given network and its reciprocal have the same capacity
region, many interesting examples are known for which this is true. For some cases, this
reciprocity is applicable even at the scheme level.

• Wire-line networks can be considered as a special case of wireless networks studied here.
It has been shown in [19] that wire-line networks are reciprocal (also called reversible in
the literature) under linear coding.

• In [15], it was shown that reciprocity, under linear coding, can be extended naturally
to the linear deterministic network. The reciprocity was shown at the scheme level and
the coding matrices at each node can be obtained from the reciprocal network.

• In Gaussian networks, duality has been shown, [20, 21], between the multiple access
channel (MAC) and broadcast channel (BC), where it was shown that the capacity
region of the MAC is equal to the capacity region of the BC under the same sum power
constraint. This duality was also shown, interestingly, at the scheme level between the
dirty-paper pre-coding for the BC and the successive cancellation for the MAC.
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The reciprocal network corresponding to the broadcast network studied here is the network
with many sources and one destination.

4.2.1 Sufficiency of Linear Coding in LDN

The multi-source single-destination network has been studied in [6, 16, 17, 22], the capacity
region for the linear deterministic network with many sources and one destination is estab-
lished and it is further shown that linear coding is sufficient to achieve this. This is done by
converting the problem to the case of single-source single-destination by adding a super-node
and connecting all the source nodes to the super-node by orthogonal links with capacities
equal to the rate required for that source. Since random linear coding at the source and the
relays works for the single-source single-destination network, it works for this network too.
Therefore, the source nodes and the relay nodes perform random mappings, and the desti-
nation, knowing the source and relay mappings, can then carefully pick the decoding matrix
that inverts this overall matrix. Since this coding is linear, we can use the reciprocity result of
[15], to show that any rate achievable in the dual multiple-source single-destination network
is also achievable in the single-source multiple-destination case. Along with the fact that the
cuts are reciprocal in these two networks, this implies that linear coding is optimal even in
the case of the linear deterministic broadcast network. This result has also been shown in [17]
without using reciprocity by adopting an algebraic approach.

Furthermore, from the results of [13] and [14], it can also be shown that the sources and
the relays can pick up specific permutation matrices for the single-source single-destination
network. The above argument can then the extended to show that a coding scheme involving
only permutation mappings at the relays is sufficient for the linear deterministic broadcast
network.

4.3 Receiver-Centric Vs. Transmitter-Centric Schemes: Intuition
for the Gaussian Broadcast Network Scheme

We now continue on our discussion on duality for linear deterministic network to illustrate
how these ideas lead us to a scheme for the Gaussian broadcast network. We begin by defining
two viewpoints in which schemes can be constructed. A transmitter-centric scheme in one in
which the scheme is constructed from the viewpoint of the transmitter, where the codebook at
the transmitter is first selected using a random coding argument and then the receiver chooses
its de-codebook in accordance with the realization of the transmit codebook. In contrast, in
a receiver-centric scheme, we fix the decode-book, which comprises of the mappings from the
received vectors to the messages, and based on these mappings, the transmitter chooses its
codebook to ensure low probability of error.

Because random coding is done at the source, we can think of this scheme as first con-
structing the transmitter codebook in a random manner and the receiver then constructs its
de-codebook as a function of the realization of the transmit codebook. While the scheme
for the linear deterministic multi-source network is transmitter-centric, the scheme for the
linear-deterministic broadcast network is receiver-centric.
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4.3.1 A Point-to-Point Channel

For a point-to-point channel, the usual random coding scheme [4] can be regarded as either
a transmitter-centric scheme, which is the traditional viewpoint (since the random codebook
is thought of as being constructed at the source), or as a receive-centric scheme. It can be
viewed as a receiver-centric scheme, because, at the receiver we construct a vector quantization
codebook (alternately viewed as the decode-book) or rate R, which “quantizes” the received
signal yT to a vector xT (m), for some m where m is the message index and xT (m) is the
m-th quantization codeword. Now the source sets its codebook to be equal to the vector
quantization codebook at the destination. This scheme is the same scheme as the usual random
coding scheme. The distinction between transmitter-centric and receiver-centric schemes in
this example is therefore one of personal preference, rather than an enforced one.

4.3.2 Multiple-Access Vs. Broadcast Channel

In some networks, we may not have the luxury to use the two viewpoints simultaneously, in
which case we need to choose between the two. In the capacity-achieving coding scheme for
the multiple access channel [4], the random coding is done at the transmitters and the receiver
does joint typical-set decoding, based on the specific codebooks constructed at the sources.
This provides a good example of a transmitter-centric scheme.

In contrast, for the two-user broadcast channel, we can now view the Marton coding
scheme ([7, 8]), used in Sec. 2.2.2, as a receiver-centric scheme. In this scheme, there are
two auxiliary random variables, U1 and U2, which we view as corresponding to the vector
quantization variables at the two users. The receiver i can be thought of as constructing a
vector quantization codebook which “quantizes” the received vector Y T

i to UT
i (wi), where wi

is an index belonging to a set larger than the set of all messages to user i, and bins the set of
all wi to the message mi for user i. The transmitter, to transmit a message pair (m1, m2), finds
a pair (w1, w2) such that UT

1 (w1), U
T
2 (w2) is jointly typical. From this viewpoint, the receivers

are choosing random de-codebooks, and the transmitters are choosing specific codebooks to
be a function of the realization of the de-codebook. Thus the coding scheme can be viewed
as a receiver-centric one.

4.3.3 Multiple-Access Vs. Broadcast in Linear-Deterministic Networks

From [16, 6], we know that a transmitter-centric scheme, where the sources and the intermedi-
ate nodes perform random coding, is optimal for the many-source single-destination problem
in the linear determinstic setup. Intuition suggests that a natural receiver-centric method
should work for the reciprocal network (i.e., single-source multiple-destination network). In
particular, the relays perform random mappings, and the destinations perform “random de-
coding”, i.e., they fix a random linear mapping from the received vector into a smaller message
vector. Once these mappings at the relay and the destinations are fixed, the source evaluates
the induced linear broadcast channel between the source and the various destinations; and
constructs a linear broadcast code for this channel. This scheme can then be shown to be
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Figure 5: Reciprocity in linear deterministic networks

optimal for the broadcast network, because this is the reciprocal of the linear random coding
scheme, which is optimal for the multi-source single-destination network, as shown in Fig. 5.

4.3.4 Scheme for Gaussian Broadcast Networks: Lifting Scheme as a Receiver-
Centric Scheme

The general idea for the scheme for the linear deterministic broadcast network is the foundation
of our scheme for the Gaussian broadcast network in Sec. 3. In order to build the scheme
for the Gaussian network, we first construct a scheme for general deterministic networks (of
which the DSN is a special case) and then lift the scheme from the DSN to the Gaussian
network. In case of the linear-deterministic broadcast network, the source-mapping depended
on the specific relay transformations used, not just on the probability distribution used to
create the relay transformation. Extending this idea, we would like to construct a scheme
for the general deterministic network, where the source codebook is a function of the specific
relay transformation. Indeed, we resolve this problem by constructing a Marton scheme at
the source for the vector broadcast channel induced by the specific relay mappings.

Next, the scheme for lifting codes from the DSN to Gaussian relay networks proposed in
[3] requires each node, including the destination, to prune their received vectors to a restricted
set to ensure that the received vector in the DSN can be decoded from the received vector in
the Gaussian network. Since this scheme restricts the received codewords at the destination,
this scheme also naturally fits into a receiver-centric viewpoint.

While the lifting procedure proposed there works only for single-source single-destination
networks, we extend the procedure to our specific scheme for broadcast network. We achieve
this by designing a pruned Marton code, in which the receivers are guaranteed to receive
vectors which are in the pruned set. Instead of binning the set of all possible received vectors
into messages, as we would for a broadcast channel, we now bin only the pruned received
vectors to construct the pruned Marton coding scheme. The natural alignment of the receiver-
centric viewpoints of the Marton scheme and the lifting scheme allows us to construct the
scheme for the Gaussian broadcast network.
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4.4 Approximate Reciprocity in Gaussian Multi-Source and Broad-
cast Networks

In this section, we will demonstrate that there is an approximate reciprocity in the capac-
ity regions of a Gaussian multi-source network and the corresponding reciprocal Gaussian
broadcast network.

In our model, we have assumed, without loss of generality, the average transmit power
constraint of unity at each node. We have also assumed that the reciprocal network, in
addition to having the same channel coefficients, also has unit power constraints at each node.
However, it is not clear if this is the “right” way of defining the corresponding reciprocal
network. For instance, in [20, 21], MAC-BC duality was shown under the assumption of same
total transmit power in both networks; however this power could be divided amongst the
nodes in a different manner in the forward and reciprocal networks. Under this assumption,
it was shown that the capacity region of the two networks was identical. However, since we
are concerned only about approximate reciprocity in this section, which is a weaker form
of reciprocity, our definition of unit power constraint everywhere will be sufficient to show
approximate reciprocity.

In [16] and [6], a coding scheme is given for the Gaussian network with many sources and
is shown to achieve the cut-set bound region within a constant gap, which depends only on
the network gain. In Sec. 3, we have showed that for the Gaussian broadcast network also,
we can achieve the cut-set bound region within a constant gap. As a result, to show that
the capacity region of the two networks are themselves within a constant gap, which depends
only on the network topology and not on the channel gains, all we need to do is to observe
that cut-sets of the reciprocal networks are within a constant gap of each other. Note that
the cut-set bounds corresponds to MIMO point-to-point channel where all the nodes on the
source side of the nodes can be thought of as transmit antennas and all the nodes on the
destination side can be thought of as receive antennas. The relationship then between a cut in
a network and the corresponding cut in the reciprocal network is the same as the relationship
between a MIMO channel with channel matrix H and the reciprocal MIMO channel with the
channel matrix HT . The reciprocity of MIMO channel has been shown in [23], under equal
total transmit power, i.e. the capacity of the two networks is the same. It can be further shown
that restricting to per node power constraint only leads to a loss which does not depend on
the channel gains. Therefore, we can show that the cut-set bounds are reciprocal.

4.5 Induced Coordination in Relays’ Transmission

Let us consider a simple example for a broadcast relay network comprised of a single source,
two relays and two destinations, shown in Fig. 6. The link between the source to the two
relays is infinite, which implies therefore that the network is essentially a MISO broadcast
channel with two transmit antennas and two receivers, each with a single antenna. It is clear
that for a MISO broadcast channel, independent coding across the two relays is insufficient to
even obtain the best possible degrees-of-freedom. Therefore, any scheme that is approximately
optimal needs to perform coordinated transmission at the relays.
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In the proposed scheme, the relays perform quantization followed by independent encoding
of the quantized bits into transmitted vectors. At a first glance, a scheme in which the relays
are performing independent mappings seems incapable of attaining good performance because
of the inability to induce coordination. However two key features in the proposed scheme help
avoid this pitfall.

• The relays R1 and R2 perform quantize-and-encode relaying in the aforementioned ex-
ample, in spite of the fact that they can decode the source message completely. Had
the relays decoded the source message and performed independent encoding, there is no
possibility of achieving the degrees-of-freedom of even this simple broadcast network.

• The source takes into account the specific realizations of the relay mappings and con-
structs the coding scheme. This ensures that from the point of view of the receiver, the
signals transmitted by the two relays appear coordinated. In particular, in this example,
since the channel from S to Ri is infinitely good, the relay Ri quantizes the received signal
to a very fine degree and encodes this for transmission to the destination. This gives the
source many degrees-of-freedom to encode information in the various least-significant-
bits of its transmission, so that after the relay mappings, the relay transmissions appear
coordinated.

4.6 Channel State Information

We now examine the channel state information required at the various nodes for the schemes
proposed in Sec. 2 and Sec. 3 for deterministic and gaussian broadcast networks.

4.6.1 Deterministic Broadcast Networks

For deterministic networks, the following channel state information is required:

1. All non-source non-destination nodes are unaware of any channel state information.

2. We assume that each destination knows the distribution of the received vector ~YDi
, and

the transmitted rate Ri(t3) for each t3. The destination bins the set of all typical vectors
into 2T1T2Ri bins corresponding to the messages, and uses this as the decoding rule.
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3. The transmitter is assumed to have full CSI, and knows the relay mappings at all nodes
and also the binning scheme at the destinations. The transmitter construct the codebook
using the same binning scheme as the receiver.

Thus this scheme has the interesting property that if the transmitter had all knowledge,
the intermediate nodes have zero knowledge and the destination has a little knowledge (about
the distribution of the received vector), then the same rate can be achieved as the complete
CSI case.

This is dual to the situation of the multi-source single-destination network, where the
receiver having full knowledge, intermediate nodes having zero knowledge and the transmitters
having a little knowledge (about the distribution of the transmitted vector) can achieve the
same rate as full channel knowledge.

4.6.2 Gaussian Broadcast Network

For Gaussian networks, the following channel state information is required:

1. All non-source non-destination nodes are unaware of any channel state information.
Node v however knows the probability distribution of the received and transmitted vectors
pYv , pXv for the corresponding DSN, which will be used to calculate the relay mappings.
The node v also needs to use the received vector distribution to pick a pruned subset of
the typically received vectors in the corresponding DSN.

2. We assume that each destination knows the distribution of the received vector in the
corresponding DSN ~YDi

, and the transmitted rate Ri(t3) for each t3. The destination
maps bins the set of all typical vectors into 2T1T2Ri bins corresponding to the messages,
and uses this as the decoding rule.

3. The transmitter is assumed to have full CSI, and knows the mappings used at all the
nodes and also the binning scheme at the destinations. The transmitter then uses the
same binning scheme used at the receiver.

This scheme has the interesting property that if the transmitter had all knowledge, the
intermediate nodes and the destination have some knowledge, then the same rate can be
achieved as the complete CSI case.

5 Generalizations

In this section, we present various generalizations of our result, for half-duplex networks in
Section 5.1, for networks with multiple antenna in Section 5.2 and for broadcast wireless
networks, where some set of nodes demand the same information and other nodes demand
independent information in Section 5.3.
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5.1 Half Duplex Networks

Our discussion so far has been restricted to the context of full duplex scenario. A network is
said to be half duplex if the nodes in the network can either transmit or receive information,
but not do both simultaneously. Therefore the network needs to be scheduled by specifying
which nodes are listening and which nodes are transmitting at any given time instant. Let
the set of all possible half-duplex schedules at any time instant be H. An edge eij is said to
be active at time slot k if vi is transmitting and vj is receiving at that time slot.

Consider K time slots and at any time instant k, let hk ∈ H be the half duplex schedule
used, and hK be the sequence h1, h2, ..., hK . We consider only static schedules here, that is,
schedules that are specified apriori and do not vary depending on dynamic parameters like
channel noise. For any static schedule hK , we can unfold the network graph with respect
to that schedule. This procedure is performed in [1], and is the same as the procedure in
Section 3.2, except for the following difference: v1[k] is connected to v2[k+1] with a link hv1,v2

only when ev1v2 is active at time slot k.
Given that the network is operated under a schedule hK , we define the set of all rate pairs

achievable as the capacity region under the schedule hK . An upper bound on the capacity
region under the schedule hK is given by the cut-set bound in the unfolded layered network
corresponding to the schedule. This rate can be achieved within a constant gap by using
Theorem 1. Thus for any schedule hK , any rate tuple within the constant k = O(|V| log(|V|))
of the cut-set bound can be achieved (to within a constant number of bits) using that schedule
and then using the scheme of Theorem 1 for the unfolded layered network. Now, we can
optimize over all schedules hK ∈ H allowed under the half-duplex constraints. Thus, the
capacity region of the network under static half-duplex scheduling is the union over all possible
schedules of the capacity region under schedule hK . Therefore, any rate tuple (R1, ..., RJ) such
that (R1+k, R2+k, ..., RJ+k) is in the capacity region of the network under static half-duplex
scheduling can be achieved by using the method described here.

5.2 MIMO

In this section, we consider the implication of having multiple antenna elements at each of
the nodes in the network. Suppose v possesses mv antenna elements, which are used for both
transmission and reception. The basic result for multi-antenna broadcast networks is the
following.

Theorem 3. For the multi-antenna broadcast network, a rate vector (R1, . . . , RJ) is achiev-
able,

(R1 + k, . . . , RJ + k) ∈ C̄ (39)

for some constant k, which depends only on the number of nodes, and not on the channel
coefficients, and k = O(M logM) where M =

∑

v∈V mv .

Proof. The proof is essentially the same as the one for the single antenna case in Section 3.
We only outline the proof below, highlighting the key distinctions.
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1. For a given multi-antenna Gaussian network, we first obtain a multi-antenna DSN such
that the cut-set bound for the Gaussian network and the cut-set bound under the product
form distribution for the DSN differ only by a constant (in the same manner as we
obtained Lemma 2 in Sec. 3.1.1. This is because (72) continues to hold for multi-antenna
networks, with |V| now replaced by the total number of antennas M .

2. Then we use Theorem 2 to show that the cut-set bound under product form distribution
is achievable for the DSN.

3. We can now prune the codebook for the DSN by a factor κ, to get a pruned scheme for
the DSN, Pκ. The pruned scheme achieves a rate Mκ lesser than the original rate.

4. Under the pruned scheme, the received vector in the DSN can be decoded from the
received vector in the Gaussian network.

5. Therefore the DSN coding scheme can be emulated in the Gaussian network, and achieves
a rate a constant k = O(M logM) lesser than the cut-set bound in the Gaussian network.

5.3 Broadcast-cum-Multicast

The broadcast network comprised of a single source S and destinations D1, D2, ..., DJ de-
manding independent messages at rates R1, R2, ..., RJ . Suppose that in addition there are
also other multicast destinations M1,M2, ...,ML that demand all the messages transmitted by
the source. We call such a network a broadcast-cum-multicast network. In this section, we
will show that even for such networks, the cut-set bound is achievable to within a constant
number of bits. This network is a generalization of both the multicast network considered in
[1] and the broadcast network considered in the previous sections.

First we note that the cut-set bound for the broadcast-cum-multicast network is given by
the cut-set bound for the broadcast network, along with the cut-set constraints for each multi-
cast receiver. In particular for the Gaussian broadcast-cum-multicast network, if (R1, ..., RJ)
is achievable, then ∀ J ⊆ [J ] there exists a joint distribution Q such that,

RJ ≤ min
Ω∈ΛJ

I(XΩ; YΩc|XΩc), (40)

and in addition, the sum rate is constrained by all the multicast destinations since all these
destinations demand all the messages transmitted by the source

R[J ] ≤ min
i∈[L]

min
Ω∈ΛMi

I(XΩ; YΩc|XΩc). (41)

The set of all rate tuples inside the cut-set bound is then denoted by C̄.
The main result for the wireless broadcast-cum-multicast network is that any rate a con-

stant away from cut-set bound is achievable.
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Theorem 4. For the Gaussian broadcast-cum-multicast network, there exists a constant k,
which does not depend on the channel coefficients and is O(|V| log |V|), such that a rate vector
of (R1, ..., RL) is achievable whenever

(R1 + k, ..., RJ + k) ∈ C̄. (42)

To prove this result, we follow an approach similar to the one we took for broadcast
networks. First we will prove a result for deterministic broadcast-cum-multicast networks.
Second, we show that the Gaussian network can emulate the deterministic superposition
network with a constant rate loss. These two steps are completed in the rest of this section.

5.3.1 Deterministic Broadcast-cum-Multicast Network

The next Lemma shows that for the deterministic broadcast-cum-multicast network, the cut-
set bound evaluated under product form distributions is achievable.

Lemma 9. For the deterministic broadcast-cum-multicast network, the cut-set bound under
product-form distributions is achievable, i.e., a rate vector (R1, ..., RK) is achievable if for
every J ∈ [J ] there is some product probability distribution Qp, such that,

RJ ≤ min
Ω∈ΛJ

I (XΩ; YΩc|XΩc) (43)

= min
Ω∈ΛJ

H (YΩc|XΩc) , and (44)

R[J ] ≤ min
i∈[L]

min
Ω∈ΛMi

I (XΩ; YΩc|XΩc) (45)

= min
i∈[L]

min
Ω∈ΛMi

H (YΩc|XΩc) . (46)

Proof. Coding Scheme: The source operation, relaying operations and decoding operations at
the broadcast destinations remain the same as in Section 2.2. In addition, we need to specify
the decoding operation at the multicast destinations.

At each level-3 block, each multicast destination performs a typical set decoding with
the set of all possible ~XT2

s (corresponding to all possible messages) and finds the unique

W1(t3), ...,WJ(t3) for which the ( ~XT2
s (W1(t3), ...,WJ(t3)), ~Y

T2
Mi

) ∈ T T2
δ ( ~Xs, ~YMi

).
Performance Analysis: If the cut-set bound for the broadcast destinations is satisfied, then

the probability of error at these destinations is guaranteed to be small (by the same analysis
in Sec 2.3). We need to analyze the error events at all multicast destinations. The probability
of error at destination Mi in the t3-th level-2 block goes to zero, with T2 → ∞ if

R[J ](t3) <
1

T1

I( ~Xs; ~YMi
|Fr = fr(t3)) (47)

=
1

T1

H(~YMi
|Fr = fr(t3)). (48)

As before, since the overall rate is given by averaging the rate across all T3 blocks, as
T3 → ∞, the probability of error at destination Mi is small if,

R[J ] <
1

T1
H(~YMi

|Fr). (49)
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Using Lemma 1, we can relate the entropy term above to the cut-set w.r.t. this destination,
i.e for any arbitrary ǫ > 0, ∃T1, s.t., we have

1

T1
H(~YMi

|Fr) ≥ min
Ω∈ΛMi

H (YΩc|XΩc)− ǫ. (50)

Corollary 4. For the linear deterministic broadcast-cum-multicast network, the cut-set bound
is achieved. For the deterministic broadcast-cum-multicast channel (a deterministic broadcast-
cum-multicast network in the absence of relays and destination cooperation) the cut-set bound
is achieved.

Proof. In the former case, the cut-set bound under product form distribution is the same as
the cut-set bound under general distributions since there is only one transmitting node in the
network. The latter case can be proved by showing the cut-set bound for linear deterministic
networks is optimized by product form distributions.

5.3.2 Gaussian Broadcast-cum-Multicast Network

We will now prune and lift the coding scheme from the DSN broadcast-cum-multicast network
to the Gaussian broadcast-cum-multicast network. Since the encoding at the source and relay
mappings are the same as a network with the broadcast destinations alone, the same procedure
used for pruning and lifting the broadcast code in Sec. 3.1.2 and Sec. 3.1.3 can be used to
lift the code for the DSN broadcast-cum-multicast network to the Gaussian broadcast-cum-
multicast network. This procedure ensures that all nodes in the Gaussian network can decode
the corresponding received vector in the DSN. Therefore, the destinations carry out the same
decoding operation that they perform in the DSN. The performance analysis of the scheme is
similar to the performance analysis for the broadcast network in Sec. 3, and it can be shown
that any rate tuple (R1, .., RJ) that satisfies (R1 + k, ..., RJ + k) ∈ C̄ can be achieved, where
k = O(|V| log(|V|)).

A Proof of Lemma 1

Proof. Fix any J ⊆ {1, . . . , J}. To prove the lemma, we consider a communication scenario
where the source needs to send a message to a single destination which has access to YDJ

with

rate R̃(J ). Define,

W̃(J ) ∼ Uniform
{

[2R̃(J )]
}

, (51)

and the mapping at the source node,

F(J ) : W̃(J ) → X T
S ,which is generated using i.i.d. p(XS). (52)

Note that F(J ) denotes a random source code-book and FVR
denotes random relay mappings.

The probability of error conditioned on a given source code-book and relay mapping is given
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by,

P
{

E|F(J ), FVR

}

= P

{

Y T
DJ

(W̃J ) = Y T
DJ

(w′)|w′ 6= W̃J , F(J ), FVR

}

, (53)

and the average probability of error, averaged across all code-books and random-relay map-
pings, is given by,

Pe
def
= E

[

P
{

E|F(J ), FVR

}]

. (54)

By the coding theorem in [1], we have

Pe → 0, as T → ∞, ∀ R̃(J ) < C̄J (Qp). (55)

Now,

I(W̃(J ); Y
T
DJ

|F(J ), FVR
) = H(W̃(J ))−H(W̃(J )|Y

T
DJ

, F(J ), FVR
)

= TR̃(J ) − E

[

H(W̃J )−H(W̃(J )|Y
T
DJ

, F(J ) = f(J ), FVR
= fVR

)
]

Fano
≥ TR̃(J ) − E

[

1 + P
{

E|F(J ), FVR

}

R̃(J )T
]

= TR̃(J ) − (1 + PeR̃(J )T ).

Letting R̃(J ) = C̄J (Qp)− ǫ1 and for large enough T , we have

I(W̃(J ); Y
T
DJ

|F(J ), FVR
) ≥ T (C̄J (Qp)− ǫ). (56)

Further

I(W̃(J ); Y
T
DJ

|F(J ), FVR
) = H(Y T

DJ
|F(J ), FVR

)−H(Y T
DJ

|F(J ), FVR
, W̃J )

≤ H(Y T
DJ

|FVR
)−H(Y T

DJ
|F(J ), FVR

, W̃J , X
T
S )

= I(XT
S ; Y

T
DJ

|FVR
).

Therefore,
I(XT

S ; Y
T
DJ

|FVR
) ≥ T (C̄J (Qp)− ǫ). (57)

Since the channel is deterministic

H(Y T
DJ

|FVR
) = I(XT

S ; Y
T
DJ

|FVR
)

≥ T (C̄J (Qp)− ǫ).

The proof is completed by choosing T1 to be the maximum T over all J .

B Proof of Lemma 3

Proof. Throughout this section, we will assume that the relay mappings are fixed to fVR
(t3)

without making this explicit in the conditioning expressions. We will assume N = 2 to begin
with and establish a lower bound on |Z1| (w.l.o.g.).

Z1 = {~yT2
1 ∈ S1 : ∃~y

T2
2 ∈ S2, (~y

T2
1 , ~yT2

2 ) ∈ T T2
δ }.
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We will consider two cases.
Case 1: H(~Y2|~Y1) > T1κ
Fix a ~yT2

1 ∈ S1. The set of sequences ~yT2
2 which are jointly typical with ~yT2

1 is given by

T T2

δ (~Y2|~y
T2
1 ), and its size is of the order 2T2H(~Y2|Y1). Now S2 is a random 2−T2T1κ fraction of the

typical set T T2
δ (~Y2). Therefore we can show that , if H(~Y2|~Y1) > T1κ, then w.h.p. as T2 → ∞,

S1 ∩ T T2
δ (~Y2|~y

T2
1 ) 6= ∅, (58)

i.e. every ~yT2
1 ∈ S1 will be jointly typical with some ~yT2

2 ∈ S2. Therefore the size of the set is

|Z1|
.
= |S1|

.
= 2T2(H(~Y1)−T1κ) w.h.p. as T2 → ∞. Clearly

|Z1|
.
> 2T2(H(~Y1)−2T1κ). (59)

Case 2: H(~Y2|~Y1) ≤ T1κ
Fix a ~yT2

1 ∈ S1. For T2 large enough, the probability that there exists a sequence ~yT2
2 ∈ S2

which is conditionally typical given any ~yT2
1 ∈ S1 is given by p

.
= 2T2(H(~Y2|~Y1)−T1κ). Consider

an arbitrary subset S11 ⊆ S1 of size 2T2∆. The probability that there is an element in S11

which is jointly typical with an element in S2 is given by:

P{∃ ~yT2
1 ∈ S11 : (~y

T2
1 , ~yT2

2 ) ∈ T T2
δ (~Y1, ~Y2) for some ~yT2

2 ∈ S2}

= 1− (1− p)2
T2∆

(60)

≥ 1− e−p2T2∆ (61)

= 1− e−2T2(H(~Y2|
~Y1)−T1κ+∆)

(62)

→ 1, if ∆ > T1κ−H(~Y2|~Y1), (63)

as T2 → ∞.
So we will set ∆ = T1κ−H(~Y2|~Y1) + ǫ1. Thus if we divide S1 into disjoint sets S1i each

of size 2T2∆, then each will have at least one element in Z1. Therefore

|Z1| ≥
|S1|

2T2∆
(64)

.
=

2T2(H(~Y1)−T1κ)

2T2∆
(65)

= 2T2(H(~Y1)−T1κ−T1κ+H(~Y2|~Y1)). (66)

Therefore
|Z1|

.
> 2T2(H(~Y1)−2T1κ). (67)

This completes the proof for the case when N = 2. By iterating this calculation, we can show
that for a general N , w.h.p. as T2 → ∞,

|Z1|
.
> 2T2(H(~Y1)−NT1κ). (68)
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C Proof of Lemma 4

Proof. Let us consider the case where there are only two receivers i.e. J = 2. The proof
extends similarly for the general case. ZDi

is the set of all typically received codewords at the

destination Di. We know from Lemma 3 that |ZDi
|

.
> 2−T2T1κN2T2H(~YDi

|FVR
=fVR

(t3)) w.h.p. as
T2 → ∞.

Since we are binning the set of all ~yT2
Di

∈ ZDi
into 2T2T1Ri bins, to ensure each bin has at

the least one codeword, we need for some ǫ > 0,

2T2T1(Ri(t3)+ǫ) ≤ |ZDi
|.

It is sufficient to have,

2T2T1(Ri(t3)+ǫ) ≤ 2−T2T1κN2T2H(~YDi
|FVR

=fVR
(t3))

⇒ Ri(t3) <
1

T1
H(~YDi

|FVR
= fVR

(t3))−Nκ.

Now, there is no error if corresponding to each message pair (W1(t3),W2(t3)), the source
can find a jointly typical (~yT2

D1
, ~yT2

D2
) in the bin corresponding to (W1(t3),W2(t3)). This can be

done w.h.p. as T2 → ∞, as long as there are at the least 2T2(I(~YD1
;~YD2

|FVR
=fVR

(t3))+ǫ) pairs of
(~yT2

D1
, ~yT2

D2
) in this bin. This condition translates to

|ZD1|

2T2T1R1(t3)

|ZD2|

2T2T1R2(t3)
≥ 2T2(I(~YD1

;~YD2
|FVR

=fVR
(t3))+ǫ).

This is satisfied if,

2T2{H(~YD1
|FVR

=fVR
(t3)))+H(~YD2

|FVR
=fVR

(t3))}

2T2T1(R1(t3)+R2(t3))22T2T1Nκ
≥ 2T2(I(~YD1

;~YD2
|FVR

=fVR
(t3))+ǫ)

⇒ R1(t3) +R2(t3) <
1

T1
H(~YD1, ~YD2|FVR

= fVR
(t3))− 2T2T1Nκ.

D Proof of Lemma 2

First of all, we note that the for the Gaussian network, the cut-set bound is given by letting
the inputs be jointly Gaussian, i.e. Q = CN (0, K) with Kjj ≤ 1 such that

C̄Gauss def
=

{

(R1, ..., RJ) : RJ ≤ C̄Gauss
J (Q) = min

Ω∈ΛJ

log |I +HΩ,ΩcKΩH
∗
Ω,Ωc|, ∀J ⊆ [J ]

}

,(69)

where HΩ,Ωc is defined as the matrix such that

YΩc = HΩ,ΩcXΩ +HΩc,ΩcXΩc + ZΩc , (70)
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and KΩ is the conditional covariance matrix of XΩ given XΩc .
It is also well-known (see Lemma 6.6 in [1]) that restricting to the product distribution

Qp = CN (0, I), only leads to relaxation of the mutual information term in (69) by at most
min(|Ω|, |Ωc|), and therefore

C̄Gauss
J (Q) ≤ C̄Gauss

J (Qp) + |V|/2

= min
Ω∈ΛJ

log |I +HΩ,ΩcH∗
Ω,Ωc|+ |V|/2. (71)

The following proposition shows that every cut in the Gaussian network is within a a
constant gap to the cut in the DSN.

Proposition 1. For every Ω ∈ ΛJ , there exists a product distribution QDSN
p =

∏

v∈V p(X
DSN
v )

such that,
log |I +HΩ,ΩcH∗

Ω,Ωc| ≤ I
(

Y DSN
Ωc ;XDSN

Ω |XDSN
Ωc

)

+O(|V|), (72)

Proof. We will reduce the jointly Gaussian vector X to a vector that is valid in the DSN
model and show that the reduction only leads to a O(|V|) loss in mutual information.

1. Note that
log |I +HΩ,ΩcH∗

Ω,Ωc| = I (HΩ,ΩcXΩ + ZΩc ;XΩ) , (73)

whereXv ∼ i.i.d. CN (0, 1). Throughout the rest of this proof, we will drop the subscripts
Ω and Ωc for convenience. It is shown in the proof of Theorem 4.1 in [2] that if we
restrict Xv to only the fractional part, the loss in mutual information can be bounded.

We present a quick sketch here for the sake of completeness. Let X̄v
def
= Xv− [Xv] denote

the fractional part. Then

I (HX + Z;X) ≤ I
(

HX̄ + Z,H [X ]
)

(74)

≤ I(HX̄ + Z; X̄) +H(H [X ]) (75)

≤ I(HX̄ + Z; X̄) +
∑

v∈Ω

H([X ]) (76)

≤ I(HX̄ + Z; X̄) + 4|Ω|. (77)

Note that X̄v ∈ [−1/2, 1/2).

2. Next, from [1](Lemma 7.2), it follows that

I(HX̄ + Z; X̄) ≤ I(
[

HX̄
]

; X̄) + 19|Ωc|. (78)

Here
[

HX̄
]

corresponds to the output of the DSN when X̄ is the input, however X̄ still
takes values in a continuous space and is not a permissible input in the DSN.

3. Since the reduced channel given by Y =
[

HX̄
]

is deterministic and further the output
Y takes values in a finite set, we can also restrict X̄v to take values from a finite set
within [−1/2, 1/2) without any loss of mutual information. Let us call this vector XDSN,

I(
[

HX̄
]

; X̄) = I(
[

HXDSN
]

;XDSN). (79)
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We have therefore showed that

log |I +HΩ,ΩcH∗
Ω,Ωc| ≤ I

(

Y DSN
Ωc ;XDSN

Ω |XDSN
Ωc

)

+ 23|V|. (80)

This completes the proof of proposition.
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