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Abstract—The paper proposes Monte Carlo algorithms for
the computation of the information rate of two-dimensional
source / channel models. The focus of the paper is on binary-input
channels with constraints on the allowed input configurations.
The problem of numerically computing the information rate, and
even the noiseless capacity, of such channels has so far remained
largely unsolved. Both problems can be reduced to computing
a Monte Carlo estimate of a partition function. The proposed
algorithms use tree-based Gibbs sampling and multilayer (multi-
temperature) importance sampling. The viability of the proposed
algorithms is demonstrated by simulation results.

Index Terms—Two-dimensional channels, constrained chan-
nels, partition function, Gibbs sampling, importance sampling,
factor graphs, sum-product message passing, capacity, informa-
tion rate.

I. INTRODUCTION

Numerically computing the Shannon information rate for
source / channel models with memory can be difficult. In many
cases of practical interest, analytical results are not available
or hard to evaluate numerically. For a large class of channels,
however, Monte Carlo methods as proposed in [1]–[3] have
been shown to yield reliable numerical results.

In this paper, we consider the extension of such Monte Carlo
methods to source / channel models with a two-dimensional
(2-D) structure. The focus of the paper is on 2-D binary-input
channels with constraints on the allowed input configurations;
for example, we consider the channel where adjacent channel
input symbols must not both have the value 1. Variations of
such channels are of interest in magnetic and optical storage,
where the constraints are imposed, e.g., in order to reduce
the intersymbol interference or to help in timing control [4]–
[8]. We will consider both noiseless and noisy versions of
such channels. With suitable modifications (simplifications),
the methods of this paper can also be applied to other 2-D
source / channel models such as channels with intersymbol
interference.

In the one-dimensional (1-D) case, computing the capacity
of noiseless constrained channels was addressed and solved by
Shannon [9], see also [4]. For the noisy case, the Monte Carlo
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methods of [1]–[3] can be used to compute the information
rate. The 2-D case is harder. Even the noiseless capacity is hard
to compute numerically: while very tight analytical results
are available for a number of special cases (e.g., [10]–[15]),
other cases have remained open problems. The noisy case has
remained largely unsolved.

The capacity of a noiseless constrained channel is essen-
tially the logarithm of the partition function of the correspond-
ing indicator function (see Section II). Moreover, computing
the information rate of noisy source / channel models can also
be reduced to the computation of a partition function (see
Section VI). The heart of the paper, therefore, are Monte Carlo
algorithms for the computation of partition functions. Several
such algorithms are well known [19]–[21], see also [22], [23],
but some modifications will be necessary for the problems of
interest in this paper. In particular, we will find tree-based
Gibbs sampling (due to Hamze and de Freitas [24]) extremely
useful. We will observe that Monte Carlo estimates of a
partition function may actually be obtained as a by-product
of tree-based Gibbs sampling, which does not seem to have
been noticed before.

In related prior work, Monte Carlo algorithms have been
used to compute bounds on, or approximations of, the in-
formation rate of 2-D source / channels with memory [25],
[26]. Some of this work uses generalized belief propagation
[27], which appears to yield very good approximations to the
information rate [25], [18], [28], [29].

In contrast to all this prior work, the Monte Carlo methods
of this paper are asymptotically unbiased, i.e., in the limit of
infinitely many samples, the estimates are guaranteed to con-
verge to the desired quantity (the information rate). Moreover,
the focus of this paper is on constrained channels, for which
these computational problems are harder than for intersymbol
interference channels (cf. Section VI-B).

The empirical success of the proposed algorithms is epito-
mized by Fig. 8, which shows the uniform-input information
rate of a binary-input channel with input constraints and
additive white Gaussian noise (AWGN). As far as known to the
authors, no such figure (for such a channel) has been presented
before.

If the reader is not familiar with Gibbs sampling, the
following comments on the general nature of this work may
be in order. First, Gibbs sampling is easily proved (under
very mild conditions) to yield samples that are eventually
distributed according to the desired distribution and asymp-
totically independent [23] (i.e., deleting the first t samples

ar
X

iv
:1

10
5.

55
42

v2
  [

cs
.I

T
] 

 6
 A

ug
 2

01
2



2

and decimating the remaining sample sequence by a factor m
results in an i.i.d. sequence in the limit t,m→∞). However,
the dependencies among the samples may decay extremely
slowly, which is the pivotal issue with Gibbs sampling and
makes naive Gibbs sampling perfectly useless for the problems
of this paper (and for many other problems). The challenge,
therefore, is to speed up Gibbs sampling (i.e., to decrease the
dependencies of the samples) by various additional tricks and
insights so that it becomes useful.

Second, the class of problems for which the methods
proposed in this paper will work is not easily expressed
in exact terms. Again, the issue is not formal applicability
(which is quite sweeping), but the speed of convergence, which
strongly depends on the particulars of the case and is not easily
predicted.

The paper is organized as follows. In Section II, we review
partition functions and noiseless 2-D constrained channels, and
we introduce the corresponding notation. In Section III, we
review several Monte Carlo algorithms that will be used in
this paper. However, additional ideas are necessary to make
these algorithms work for our applications. In particular, we
will need tree-based Gibbs sampling as described in Sec-
tion IV. The application to noiseless constrained channels is
demonstrated in Section V. The application to noisy channels
is described and demonstrated in Section VI. The appendix
reviews sampling from Markov chains, which is needed in
Section IV.

II. PARTITION FUNCTION OF 2-D GRAPHICAL MODELS

Let X1,X2, . . . ,XN be finite sets, let X be the Cartesian
product X 4

= X1×X2× . . .×XN , and let f be a nonnegative
function f : X → R. We are interested in computing (exactly
or approximately) the partition function

Zf
4
=
∑
x∈X

f(x) (1)

for cases where
• N is large and
• f has a suitable factorization (as will be detailed below).

We will usually assume Zf 6= 0. Then

pf (x)
4
=
f(x)

Zf
(2)

is a probability mass function on X . We also define the support
of f (and of pf ) as

Sf
4
= {x ∈ X : f(x) > 0}. (3)

If f(x) has a cycle-free factor graph representation (and
if |X1|, |X2|, . . . , |XN | are not too large), then Zf can be
computed efficiently by sum-product message passing [30],
[31]. In this paper, however, we consider factor graphs with
cycles. In particular, we are interested in examples of the
following type.

Example: Simple 2-D Constrained Channel
Consider a grid of N = M × M binary (i.e., {0, 1}-
valued) variables x1, . . . , xN with the constraint that no two

=
X1 =

X2 =
X3 =

= = = =

= = = =

= = = =

Fig. 1. Forney factor graph of the indicator function (4). The unlabeled
boxes represent factors as in (5).

(horizontally or vertically) adjacent variables have both the
value 1. Let f : {0, 1}N → {0, 1} be the indicator function of
this constraint, which can be factored into

f(x1, . . . , xN ) =
∏

k, ` adjacent

κ(xk, x`), (4)

where the product runs over all adjacent pairs (k, `) and with
factors

κ(xk, x`) =

{
0, if xk = x` = 1
1, otherwise. (5)

The corresponding Forney factor graph of f is shown in Fig. 1,
where the boxes labeled “=” are equality constraints [31].
(Note that, in Forney factor graphs, variables are represented
by edges. Fig. 1 may also be viewed as a factor graph as in
[30] where the boxes labeled “=” are the variable nodes.)

Note that, in this example, Zf = |Sf |.
This example is known as the 2-D (1,∞) run-length limited

constrained channel [4]. The quantity

CM
4
=

1

N
log2 Zf (6)

is known as the (finite-size) noiseless capacity of the channel.
For this particular example, upper and lower bounds on the

infinite-size noiseless capacity

C∞
4
= lim
M→∞

CM (7)

were first proposed in [10] and improved in [11] and [32].
The bounds in [32] agree on nine decimal digits, which far
exceeds the accuracy that can be achieved with the Monte
Carlo methods of the present paper. However, the methods
proposed in this paper work also for various generalizations
of this example for which no tight bounds are known. 2

Later on, in Section VI, we will consider noisy versions of
such channels. As it turns out, the computation of the infor-
mation rates of such channels also requires the computation
of partition functions as in (1).
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III. MONTE CARLO METHODS FOR PARTITION FUNCTION
ESTIMATION

One well-known method to estimate Γf
4
= 1/Zf (and thus

Zf itself) goes as follows.

Ogata-Tanemura Method [19], [21]:
1) Draw samples x(1),x(2), . . . ,x(K) from Sf according

to pf (x) as in (2).
2) Compute

Γ̂f =
1

K|Sf |

K∑
k=1

1

f(x(k))
(8)

2

It is easy to verify that E(Γ̂f ) = 1/Zf .
However, there are two major issues with this method.

First, there is the problem of generating the samples
x(1),x(2), . . . ,x(K) according to pf (x). Ideally, we would
like these samples to be independent, but (for the purposes of
this paper) this is asking too much. In particular, we will use
Gibbs sampling [22], [33], which produces dependent samples.
However, with naive Gibbs sampling, the dependencies among
the samples decay far too slowly for the estimate (8) to be
useful for us (cf. the remarks in the Introduction). We will
see in Section IV, how this issue is eased by tree-based Gibbs
sampling as proposed by Hamze and de Freitas [24].

Second, it is usually assumed that f is strictly positive. In
this case, Sf = X and |Sf | = |X | is known. However, this
assumption excludes applications to constrained channels as in
the example in Section II. Indeed, in that example, we would
have f(x(k)) = 1 for all samples x(k), and |Sf | = Zf is
the desired unknown quantity. We will address this issue in
Section IV-B.

With suitable modifications, which will address the men-
tioned issues, the Ogata-Tanemura method will turn out to
work well for the capacity of noiseless constrained 2-D
channels.

However, for our second application—the information rate
of noisy 2-D constrained source / channel models—the Ogata-
Tanemura method turns out to be inadequate. We will therefore
resort to multilayer importance sampling as described below.
We first describe the use of standard (single-layer) importance
sampling to estimate Zf .

Importance Sampling [22], [34]:
1) Draw samples x(1),x(2), . . . ,x(K) from X according to

some auxiliary probability distribution q(x) = 1
Zg
g(x),

where g(x) is a nonnegative function defined on X
satisfying g(x) 6= 0 whenever f(x) 6= 0.

2) Compute

R̂ =
1

K

K∑
k=1

f(x(k))

g(x(k))
(9)

2

It is easy to verify that E(R̂) = Zf/Zg .
The key issue with importance sampling is to find a useful

function g(x) such that
• q(x) is a good approximation of p(x) (so that f(x)/g(x)

does not wildly fluctuate),
• sampling from q(x) is feasible, and

= = = =

= = = =

= = = =

= = = =
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Fig. 2. Partition of Fig. 1 into two cycle-free parts (one part inside the two
ovals, the other part outside the ovals).

• computing Zg is feasible.

An obvious choice for g(x) (and thus q(x)) is

g(x)
4
= f(x)α (10)

for 0 < α < 1. With this choice, any factorization of f(x)
results in a factorization of g(x) that preserves the topology
of the corresponding factor graph. (Note, however, that this
choice of g(x) is not helpful if f(x) is {0, 1}-valued.)

In order to sample from q(x), we will again use tree-based
Gibbs sampling (see Section IV-A).

In a variation of the algorithm, the estimator (9) of the
ratio Zf/Zg could be replaced by Bennett’s acceptance ratio
method [35], which is also known as bridge sampling [36].

A function g(x) with all the required properties may be
hard to find, or it may not exist. This problem is addressed by
multilayer importance sampling, which uses several auxiliary
distributions.

Multilayer (Multi-Temperature) Importance Sampling:
Multilayer importance sampling, as described here, is a

variation of annealed importance sampling as proposed by
Neal [37], [34]; see also [38]. We use J parallel versions of
importance sampling as follows. For j = 0, 1 . . . , J , let

gj(x)
4
= f(x)αj (11)

with 0 ≤ αJ < · · · < α1 < α0 = 1. Note that Zg0 = Zf and

Zf
ZgJ

=
Zg0
Zg1

Zg1
Zg2
· · ·

ZgJ−1

ZgJ
(12)

For j = 1, 2, . . . , J , compute the ratio Zgj−1
/Zgj by impor-

tance sampling as described before:

1) Draw samples x(1),x(2), . . . ,x(K) from qj(x) ∝ gj(x).
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2) Compute

R̂j =
1

K

K∑
k=1

gj−1(x(k))

gj(x(k))
(13)

=
1

K

K∑
k=1

f(x(k))αj−1−αj . (14)

2

Noting that E(R̂j) = Zgj−1
/Zgj , we use

∏J
j=1 R̂j as an

estimate of Zf/ZgJ .
If the number of layers J is large, gj(x) is a good approx-

imation of gj−1(x) at each layer j.
It remains to find an estimate of ZgJ , which tends to be

easier than the original problem of estimating Zf . In particular,
for αJ = 0, we have ZgJ = |Sf |, the cardinality of the support
of f . In our application (Section VI), it turns out that ZgJ
can be computed efficiently by the tree-based Ogata-Tanemura
method of Section IV-B.

IV. TREE-BASED GIBBS SAMPLING AND PARTITION
FUNCTION ESTIMATION

A. Tree-Based Gibbs Sampling

Tree-based Gibbs sampling was proposed by Hamze and de
Freitas [24]. It works as follows. Let (A,B) be a partition of
the index set {1, 2, . . . , N} such that,
• for fixed xA, the factor graph of f(x) = f(xA,xB) is

cycle-free, and
• for fixed xB , the factor graph of f(x) = f(xA,xB) is

also cycle-free.
An example of such a partition is shown in Fig. 2. Starting
from some initial configuration x(0) = (x

(0)
A ,x

(0)
B ), the sam-

ples x(k) = (x
(k)
A ,x

(k)
B ), k = 1, 2, . . ., are created as follows:

first, x(k)
A is drawn from

pf (xA|xB = x
(k−1)
B ) ∝ f(xA,x

(k−1)
B ); (15)

second, x(k)
B is drawn from

pf (xB |xA = x
(k)
A ) ∝ f(x

(k)
A ,xB). (16)

The point is that drawing these samples is easy (by means of
backward-filtering forward-sampling, see the appendix) since
the corresponding factor graphs are cycle-free.

As in standard Gibbs sampling, the samples (x
(k)
A ,x

(k)
B ) are

eventually (i.e., for k →∞) drawn from pf (provided that the
corresponding Markov chain is irreducible and aperiodic [23]).
However, tree-based Gibbs sampling mixes faster than naive
Gibbs sampling.

B. Application to Partition Function Estimation

With A and B as above, let

fA(xA)
4
=
∑
xB

f(xA,xB), (17)

and
fB(xB)

4
=
∑
xA

f(xA,xB). (18)

We then note that

ZfA =
∑
xA

fA(xA) (19)

= Zf , (20)

i.e., fA (and analogously fB) has the same partition function
as f itself.

We also note that samples x
(1)
A , x(2)

A , . . . , from

pfA(xA)
4
=
fA(xA)

Zf
=
∑
xB

pf (xA,xB) (21)

can be obtained by tree-based Gibbs sampling as in Sec-
tion IV-A simply by dropping the second component (the B-
part) of the samples (x

(1)
A ,x

(1)
B ), (x

(2)
A ,x

(2)
B ), . . .

We can now use the Ogata-Tanemura method (Section III)
to estimate Γf = 1/Zf in two different ways. One way is to
directly use the estimator (8) with samples x(k) = (x

(k)
A ,x

(k)
B )

as in Section IV-A. Another way is to apply the estimator (8)
to fA, i.e., to compute

Γ̂fA
4
=

1

K|SfA |

K∑
k=1

1

fA(x
(k)
A )

(22)

which is also an estimate of 1/Zf . The computation of

fA(x
(k)
A ) =

∑
xB

f(x
(k)
A ,xB), (23)

which is required in (22), is easy since the corresponding
factor graph is a tree; in fact, the result of this computation is
obtained for free as a by-product of tree-based Gibbs sampling
as is explained in the appendix. By symmetry, we also have
an analogous estimate Γ̂fB defined as

Γ̂fB
4
=

1

K|SfB |

K∑
k=1

1

fB(x
(k)
B )

(24)

With the same samples (x
(1)
A ,x

(1)
B ), (x

(2)
A ,x

(2)
B ), . . . , es-

timating 1/Zf from (22) and (24) tends to converge faster
than (8). More importantly for this paper, the direct Ogata-
Tanemura method (8) cannot be used for constrained channels
(cf. the example in Section II) where |Sf | = Zf is the desired
quantity. In contrast, the computation of |SfA | in (22) and
|SfB | in (24) may be easy in such cases as will be exemplified
below.

V. APPLICATION TO THE CAPACITY OF NOISELESS 2-D
CONSTRAINED CHANNELS

We demonstrate the estimators (22) and (24) by their appli-
cation to the example in Section II, the 2-D (1,∞) runlength-
limited constrained channel.

We will use factor graphs as in Fig. 1 with a partitioning
as in Fig. 2. In this example, the quantities |SfA | and |SfB |,
which are needed in (22) and (24), respectively, are given by

|SfA | =
∑
xA

f(xA,0) (25)

|SfB | =
∑
xB

f(0,xB), (26)
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Fig. 3. Estimated noiseless capacity (in bits/symbol) vs. the number of
samples K for a 10 × 10 grid with a (1,∞) constraint. The plot shows 10
different sample paths, each with two estimates, one from ΓA and another
from ΓB . The horizontal dotted line shows the infinite-size capacity for this
constraint.
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Fig. 4. Estimated noiseless capacity (in bits/symbol) vs. the number of
samples K for a 60 × 60 grid with a (1,∞) constraint. The plot shows 10
different sample paths, each with two estimates, one from ΓA and another
from ΓB . The horizontal dotted line shows the infinite-size capacity for this
constraint.

since

f(xA,0) =

{
1, if fA(xA) > 0
0, if fA(xA) = 0,

(27)

and likewise for f(0,xB). It follows that |SfA | and |SfB | are
easy to compute by sum-product message passing in the cycle-
free factor graphs of f(xA,0) and f(0,xB), respectively.

Some experimental results are shown in Figs. 3 through 6.
All figures refer to f as in (4) and (5) and show the estimates
of the finite-size capacity CM (6) obtained from (22) and (24)
vs. K for several different experiments.

In Fig. 3, we have N = 10×10 and we obtain C10 ≈ 0.6082
bits/symbol. In Fig. 4, we have N = 60 × 60, and there are
issues with slow convergence.

In order to speed up the mixing and thus improving the con-
vergence, we now partition the factor graph into vertical strips
each containing M ×2 or M ×3 variables (rather than M ×1
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Fig. 5. Same conditions as in Fig. 4, but with strips of width two.
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Fig. 6. Same conditions as in Fig. 4, but with strips of width three.

variables as in Fig. 2). Exact sum-product message passing is
still possible on such strips, e.g., by converting the strip into
an equivalent cycle-free factor graph. The computation time
is exponential in the width of the strip, but the faster mixing
results in a substantial reduction of total computation time for
strips of moderate width.

Simulation results for strips of width 2 and 3 are shown in
Figs. 5 and 6, respectively, both for a grid of size N = 60×60.
Note that the convergence is much better than in Fig. 4, and
we obtain C60 ≈ 0.5914 bits/symbol.

Also shown in these figures, as a horizontal dotted line,
is the infinite-size capacity C∞ ≈ 0.5879 bits/symbol from
[32], which (in this example) is a lower bound on the finite-
size capacity.

VI. ESTIMATING THE INFORMATION RATE OF NOISY 2-D
SOURCE / CHANNEL MODELS

A. The Problem

We now consider the problem of computing the information
rate of noisy 2-D source / channel models. Although the focus
of this paper is on constrained channels, the proposed approach
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Fig. 7. Extension of Fig. 1 to a factor graph of p(x)p(y|x) with p(y|x)
as in (29).

can also be applied to other 2-D source / channel models such
as 2-D channels with intersymbol interference.

For a 2-D grid of size N = M × M (as before), let
X = {X1, X2, . . . , XN} be the source process (i.e., the input
process of the channel) and let Y = {Y1, Y2, . . . , YN} be the
output process of the channel; X takes values in X (as defined
in Section II) and Y takes values in RN . We wish to compute
the mutual information rate

1

N
I(X;Y) =

1

N

(
H(Y)−H(Y|X)

)
(28)

for cases where p(x,y) has a suitable factor graph. In particu-
lar, we will focus on the case where the channel is memoryless,
i.e.,

p(y|x) =

N∏
n=1

p(yn|xn), (29)

and where the channel input distribution p(x) has a factor-
ization with a factor graph as in Fig. 1. It then follows that
p(x,y) has a factor graph as in Fig. 7.

In many cases of practical interest, H(Y|X) is analytically
available, see our numerical experiments in Section VI-C. In
such cases, the problem of computing the mutual information
rate (28) reduces to computing

H(Y) = E
[
− log2 p(Y)

]
. (30)

If H(Y|X) is not analytically available, it can be computed
by the same method as H(Y), see [2, Section III].

B. The Method

As in [2], we approximate the expectation in (30) by the
empirical average

H(Y) ≈ − 1

L

L∑
`=1

log2

(
p(y(`))

)
, (31)

where samples y(1),y(2), . . . ,y(L) are drawn according to
p(y). The problem of estimating the mutual information rate
is thus reduced to

 0
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Fig. 8. Uniform-input information rate (in bits/symbol) vs. SNR for a 24×24
channel with a (1,∞) constraint and additive white Gaussian noise. The
horizontal dotted line shows the noiseless capacity of this channel.

• creating samples y(`) and
• computing p(y(`)) for each sample.
If p(x,y) has a cycle-free factor graph (and if

|X1|, |X2|, . . . , |XN | are not too large), then both tasks can
be carried out in a single-loop algorithm as in [2]. In this
paper, however, we assume that no such factor graph exists
and we propose a double-loop algorithm (with an outer loop
and an inner loop) to carry out these tasks. In the outer loop,
we create samples y(1), . . . ,y(L) as follows.

1) Draw samples x(1), . . . ,x(L) according to p(x). In sim-
ple cases (such as unconstrained channels with i.i.d.
input), this may be trivial; in general, however, we do
this by tree-based Gibbs sampling (as in Section IV-A)
using the factor graph of p(x).

2) For ` = 1, . . . , L, draw y(`) from pY|X(y|x(`)), i.e., by
simulating the channel with input x(`).

In the inner loop, we compute an estimate of

p(y(`)) =
∑
x∈X

p(x) pY|X(y(`)|x) (32)

as follows. Note that, for fixed `, the right-hand side of (32)
is the partition function Zf` of

f`(x)
4
= p(x) pY|X(y(`)|x), (33)

which has a suitable factor graph (as, e.g., in Fig. 7). In
principle, we can thus estimate (32) by any of the methods
of Section III. It turns out, however, that only multilayer
importance sampling is able to handle the more demanding
cases (as will be explained in our numerical experiments in
Section VI-C) while the other methods of Section III suffer
from slow and erratic convergence.

C. Numerical Experiments

In our numerical experiments, we consider a noisy version
of the example in Section II, i.e., a noisy version of the
2-D (1,∞) runlength-limited constrained channel. We assume
that the channel input distribution p(x) is uniform over the
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Fig. 9. Estimated information rate (in bits/symbol) vs. the number of samples
L for a noisy 24×24 (1,∞) constraint at 0 dB. The plot shows 12 different
sample paths.
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Fig. 10. Estimated information rate (in bits/symbol) vs. the number of
samples L for a noisy 24× 24 (1,∞) constraint at 6 dB. The plot shows 12
different sample paths.

allowed configurations, i.e., p(x) = pf (x) with f as in (4),
and we assume that the noise is additive white Gaussian (and
independent of X), i.e., p(y|x) is a product as in (29) with
factors

p(yn|xn) =
1√

2πσ2
exp

(
− 1

2σ2

(
yn − (−1)xn

)2)
(34)

and thus

H(Y|X) =
N

2
log2(2πeσ2). (35)

We will use the signal-to-noise ratio (SNR) defined as

SNR 4
=

1

σ2
, (36)

which we will specify in dB, i.e., 10 log10(SNR).
The grid size in all the plots is N = 24 × 24 and the

parameters αj in (11) are set to αj = 2−j , for j = 1, 2, . . . , J .
Fig. 8 shows the computed information rate vs. the SNR

over the interval [−10, 8] dB. The horizontal dotted line

in Fig. 8 shows the capacity of the noiseless version of this
channel, which is about 0.596 bits per symbol.

Figs. 9 and 10 illustrate the convergence of the outer loop
of the proposed double-loop algorithm at 0 dB and at 6 dB,
respectively. Both figures show the estimated information rate
vs. the number of samples L in (31) for 12 different sample
paths.

As for the inner loop, the required number of layers J
in (12) depends on the SNR. As the SNR increases (or
equivalently as σ2 decreases), the function f`(x) in (33) tends
to have more isolated modes. Therefore, in order to obtain
a good approximation at each level of multilayer importance
sampling, larger values of J are required for higher SNR. In
our numerical experiments at 0 dB and 6 dB, J is set to 3 and
6, respectively.

Fig. 11 shows the convergence of log2 R̂j as in (14) for
j = 1, 2, . . . , 6, for a fixed output sample at 6 dB.

The value of ZgJ is estimated by the tree-based Ogata-
Tanemura method of Section IV-B. Fig. 12 shows the con-
vergence of the estimate of log2(Zg6)/N according to (22)
for four different sample paths.

D. Remarks

In statistical physics, the partition function typically has the
form

Z =
∑
x∈X

e−E(x)/T , (37)

where T is the temperature and E(x) is the energy of the
configuration x. We therefore point out that the noise variance
σ2 in (34) may be viewed as the temperature parameter of the
partition function Zf` of (33). It is well known in statistical
physics that computing the partition function is harder at low
temperatures than at high temperatures. Similarly, we observe
that computing the partition function Zf` of (33) is harder at
high SNR than at low SNR; in particular, at high SNR, more
layers (higher values of J) are required for multilayer (multi-
temperature) importance sampling.

We also note that, in the examples of Section VI-C, the
choice of the parameters αj = 2−j in (11) is somewhat
arbitrary. It is possible that other choices of these parameters
result in faster convergence.

VII. CONCLUSION

Monte Carlo methods have been highly succesful in comput-
ing the information rate of source / channel models with 1-D
memory. The extension of such methods to source / channel
models with 2-D memory has been an open research problem.
In this paper, we develop such methods with a focus on the
(difficult) case of channels with input constraints, with or
without noise. In contrast to previous techniques, which either
use generalized belief propagation or compute only bounds on
the information rate, the Monte Carlo algorithms of this paper
are guaranteed to converge (asymptotically) to the desired
information rate. A key role in the proposed algorithms is
played by tree-based Gibbs sampling by Hamze and de Freitas,
which we have shown to yield an estimate of the partition
function as a by-product. The success of the proposed methods
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Fig. 12. Estimated log2(Zg6 )/N vs. the number of samples K for a noisy
24× 24 (1,∞) runlength-limited constraint at 6 dB.

is exemplified by Fig. 8, which (to the best of our knowledge)
is the first such plot for a noisy 2-D channel. We also note that
the extension of the proposed methods to computing upper and
lower bounds on the information rate as in [2, Section VI] is
straightforward.
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APPENDIX
SAMPLING FROM MARKOV CHAINS

We recall some pertinent facts about the simulation of
Markov chains and cycle-free factor graphs. Let p(x) =
p(x1, . . . , xn) be the probability mass function of a Markov

Xk−2
gk−1

Xk−1
gk

Xk

�

gk+1
Xk+1

�

Fig. 13. Forney factor graph of (39) with messages ←−µXk
(40).

chain. If p(x) is given in the form

p(x) = p(x1)

n∏
k=2

p(xk|xk−1), (38)

then it is obvious how to draw i.i.d. samples according to p(x).
Now consider the case where p(x) is not given in the form
(38), but in the more general form

p(x) ∝
n∏
k=2

gk(xk−1, xk) (39)

with general factors gk. It is then still easy to draw i.i.d.
samples according to p(x), which may be seen as follows.
First, a probability mass function of the form (39) can be
rewritten in the form (38) (which allows efficient simulation).
Second, this reparameterization of p(x) may be efficiently
carried out by backward sum-product message passing, as
will be detailed below. The resulting algorithm is known as
“backward-filtering forward-sampling” (or, in a time-reversed
version, as “forward-filtering backward-sampling”) [39].

Specifically, let←−µXk
be the backward sum-product message

along the edge Xk in the factor graph of (39), as is illustrated
in Fig. 13 (cf. [31]). We then have ←−µXn(xn) = 1 and

←−µXk
(xk)

4
=
∑
xk+1

gk+1(xk, xk+1)←−µXk+1
(xk+1) (40)

=
∑

xk+1,...,xn

n∏
m=k+1

gm(xm−1, xm) (41)

for k = n− 1, n− 2, . . . , 1. Then

p(x1) =
∑

x2,...,xn

p(x1, . . . , xn) (42)

∝ ←−µX1
(x1) (43)

and
p(xk|xk−1) =

gk(xk−1, xk)←−µXk
(xk)

←−µXk−1
(xk−1)

(44)

for k = 2, . . . , n. The proof of (44) follows from noting that

p(xk−1) = γ−→µXk−1
(xk−1)←−µXk−1

(xk−1) (45)

and

p(xk−1, xk) = γ−→µXk−1
(xk−1)gk(xk−1, xk)←−µXk

(xk) (46)

where −→µXk−1
is the forward sum-product message along the

edge Xk−1 and where γ is the missing scale factor in (39).
We also note that∑

x1

←−µX1(x1) =
∑
x

g(x), (47)

where g(x) is defined as the right-hand side of (39). In this
paper, this fact is used to compute the marginals (23) as a
by-product of the sampling.
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The generalization of all this to arbitrary factor graphs
without cycles is straightforward.
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