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Extension of the Blahut-Arimoto algorithm for

maximizing directed information
Iddo Naiss and Haim Permuter

Abstract

We extend the Blahut-Arimoto algorithm for maximizing Massey’s directed information. The algorithm can be

used for estimating the capacity of channels with delayed feedback, where the feedback is a deterministic function

of the output. In order to do so, we apply the ideas from the regular Blahut-Arimoto algorithm, i.e., the alternating

maximization procedure, onto our new problem. We provide both upper and lower bound sequences that converge to

the optimum value. Our main insight in this paper is that in order to find the maximum of the directed information over

causal conditioning probability mass function (PMF), one can use a backward index time maximization combined

with the alternating maximization procedure. We give a detailed description of the algorithm, its complexity, the

memory needed, and several numerical examples.

Index Terms

Alternating maximization procedure, Backwards index timemaximization, Blahut-Arimoto algorithm, Causal

conditioning, Channels with feedback, Directed information, Finite state channels, Ising Channel, Trapdoor channel.

I. I NTRODUCTION

In his seminal work, Shannon [1] showed that the capacity of amemoryless channel is given as the optimization

problem

C = max
p(x)

I(X ;Y ). (1)

Since the set of allp(x) is not of finite cardinality, an optimization method is required to find the capacityC. In

order to obtain an efficient way to calculate the global maximum in (1), the well-known Blahut-Arimoto algorithm

(referred to as BAA) was introduced by Blahut [2] and Arimoto[3] in 1972. The main idea is that we can calculate

the optimum value using the equality

max
p(x)

I(X ;Y ) = max
p(x),p(x|y)

I(X ;Y ),
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i.e., we can maximize overp(x) andp(x|y), instead of justp(x) alone. The maximization is then achieved using

the alternating maximization procedure. The convergence of the alternating maximization procedure to the global

maximum was proven by Csiszar and Tusnady [4], and later by Yeung [5].

In this paper, we find an efficient way to estimate the capacityof channels with feedback. It was shown by

Massey [6], Kramer [7], Tatikonda and Mitter [8], Permuter,Weissman, and Goldsmith [9], and Kim [10], that the

expression

Cn =
1

n
max

p(xn||yn−1)
I(Xn → Y n)

has an important role in characterizing the feedback capacity, where

I(Xn → Y n) =
∑

yn,xn

p(yn, xn) log
p(yn||xn)

p(yn)

is thedirected information, andp(yn||xn) is a causally conditionedPMF (definitions in Section II) given by

p(yn||xn) =
n∏

i=1

p(yi|yi−1, xi). (2)

Since in the maximization we deal with causally conditionedPMFs, trying to follow the regular BAA will result

in difficulties. This is due to the fact that a causal conditioned PMF is the result of multiplications of conditioned

PMFs as seen in (2). While in the regular BAA we maximize overp(xn), and thus the constraints are simply
∑

xn p(xn) = 1 and p(xn) ≥ 0, in our extended problem we have no efficient way of writing all the constraints

necessary for a causally conditioned PMF. In fact, we needn simple constraints, one for each product ofp(xn||yn−1).

Another difficulty is that although the equality

I(Xn → Y n) =

n∑

i=1

I(Xi;Y
n
i |X i−1, Y i−1)

holds, we cannot translate the given problem into

n∑

i=1

max
p(xi|xi−1,yi−1)

I(Xi;Y
n
i |X i−1, Y i−1)

sincep(xi|xi−1, yi−1) influence all terms{I(Xj;Y
n
j |Xj−1, Y j−1)}nj=i. A solution could be to maximize backwards

from i = n to i = 1 overp(xi|xi−1, yi−1), and it can be shown that in each maximization, the non-causal probability

p(xi|xi−1, yn) is determined only by the previousp(xj |xj−1, yj−1) for j ≥ i. In our solution, we maximize the

entire expressionI(Xn → Y n) as a function of{p(x1), p(x2|x1, y1), ..., p(xn|xn−1, yn−1), p(xn|yn)}. Each time

we maximize over a specificp(xi|xi−1, yi−1) starting fromi = n and moving backwards toi = 1, where all but

p(xi|xi−1, yi−1) are fixed.

Before we present the extension of the BAA to the directed information, let us present some of the other

extensions of this algorithm. In 2004, Matz and Duhamel [11]proposed two Blahut-Arimoto-type algorithms that

often converge significantly faster than the standard Blahut-Arimoto algorithm, which relied on following the natural
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gradient rather than maximizing per variable. During that year, Rezaeian and Grant [12] generalized the regular BAA

for multiple access channels, and Dupuis, Yu, and Willems extended the BAA for channels with side information

[13]. They used the fact that the input is a deterministic function of the auxiliary variable and the side information,

and then extended the input alphabet. Another solution to the side information problem was given by El Gamal and

Heegard [14], where they did not expand the alphabet, but included an additional step to optimize overp(x|u, s).
Also, the BAA was used by Egorov, Markavian, and Pickavance [15] to decode Reed Solomon codes. In 2005

Dauwels [16] showed how the BAA can be used to calculate the capacity of continuous channels. Dauwels’s main

idea is the use of sequential Monte-Carlo integration methods known as the ”particle filters”. In 2008 Vontobel,

Kavc̆ić, Arnold, and Loeliger [17] extended the regular BAA to estimate the capacity of finite state channels where

the input is Markovian. Sumszyk and Steinberg [18] gave a single letter characterization of the capacity of an

information embedding channel and provided a BA-type algorithm for the case where the channel is independent

of the host given the input.

Recently, few papers about the maximization of the directedinformation using control theory and dynamic

programming were published. In [19], Yang, Kavcic and Tatikonda maximized the directed information to estimate

the feedback capacity of finite-state machine channels where the state is a deterministic function of the previous

state and input. Chen and Berger [20] maximized the directedinformation for the case where the state of the

channel is known to the encoder and decoder in addition to thefeedback link. Later, Permuter, Cuff, Van Roy and

Weissman [21] maximized the directed information and foundthe capacity of the trapdoor channel with feedback.

In [22], Gorantla and Coleman estimated the maximum of directed information where they considered a dynamical

system, whose state is an input to a memoryless channel. The state of the dynamical system is affected by its past,

an exogenous input, and causal feedback from the channel’s output.

The remainder of the paper is organized as follows. In Section II we present the notations we use throughout

the paper, and give the outline for the alternating maximization procedure as given by Yeung [5]. In Section III we

give a description of the algorithm for solving the optimization problem-maxp(xn||yn−1) I(X
n → Y n), calculate

the complexity of the algorithm and memory needed, and compare it with those of the regular BAA. In Section IV

we derive the algorithm using the alternating maximizationprocedure, and show the convergence of our algorithm

to the optimum value. Numerical examples for channel capacity with feedback are presented in Section V. In

Appendix A we give a wider angle on the feedback channel problem, where the feedback of the channel is a

deterministic functionf of the output with some delayd; namely, we derive the algorithm for the optimization

problemmaxp(xn||zn−d) I(X
n → Y n), wherezi = f(yi) andd ≥ 1. In Appendix B we prove an upper bound for

maxp(xn||yn−d) I(X
n → Y n), which converges to the directed information from above and helps determining the

stoping iteration of the algorithm.
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II. PRELIMINARIES

A. Directed information and causal conditioning

In this section we present the definitions of directed information and causally conditioned PMF, originally

introduced by Massey [6] (who was inspired by Marko’s work [23] on Bidirectional Communication) and by

Kramer [7]. These definitions are necessary in order to address channels with memory. We denote byXn
1 the

vector(X1, X2, ...Xn). Usually we use the notationXn = Xn
1 for short. Further, when writing a PMF we simply

write PX(X = x) = p(x). Let us denote asp(xn||yn−d) the probability mass function (PMF) ofXn causally

conditionedon Y n−d, given by

p(xn||yn−d) ,

n∏

i=1

p(xi|xi−1yi−d). (3)

Here we have to establish that whend > n, the vectorXn−d = ∅. Two straight forward properties of the causal

conditioning PMF that we use throughout the paper are

∑

xn

p(xn||yn−d) = p(xn−1||yn−d−1), (4)

and

p(xi|xi−1yi−d) =
p(xi||yi−d)

p(xi−1||yi−d−1)
. (5)

Another elementary property is the chain rule for directed information

p(xn||yn−1)p(yn||xn) = p(xn, yn). (6)

The definitions above lead to the causally conditioned entropy H(Xn||Y n), which is given by

H(Xn||Y n) , −E [log p(Xn||Y n)] .

Moreover, the directed information fromXn to Y n is given by

I(Xn → Y n) , H(Y n)−H(Y n||Xn). (7)

It is possible to show, that we can write the directed information as such:

I(Xn → Y n) =
∑

yn,xn

p(yn||xn)r(xn||yn−1) log
q(xn|yn)

r(xn||yn−1)
.

We refer to this form when using the alternating maximization procedure since{r = r(xn||yn−1), q = q(xn|yn)}
are the variables we optimize over wherep(yn||xn) is fixed. For convenience, we use from now on the notation of

I(Xn → Y n) = I(r, q) (8)

when required. With these definitions, we follow the alternating maximization procedure given by Yeung [5] in
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order to maximize the directed information.

B. Alternating maximization procedure

Here, we present the alternating maximization procedure onwhich our algorithm is based. Letf(u1, u2) be a

real function, and let us consider the optimization problemgiven by

sup
u1∈A1,u2∈A2

f(u1, u2) = f∗.

We denote byc2(u1) ∈ A2 the point that achievessupu2∈A2
f(u1, u2), and byc1(u2) ∈ A1 the one that achieves

supu1∈A1
f(u1, u2). The algorithm is defined by iterations, where in each iteration we maximize over one of the

variables. Let(u0
1, u

0
2) be an arbitrary point inA1 ×A2. For k ≥ 0 let

(uk
1 , u

k
2) = (c1(u

k−1
2 ), c2(c1(u

k−1
2 ))),

and letfk = f(uk
1 , u

k
2) be the value if the present iteration. The following lemma describes the conditions the

problem needs to meet in order forfk to converge tof∗ ask goes to infinity.

Lemma 1 (Lemmas 9.4, 9.5 in [5], Convergence of the alternating maximization procedure). Let f(u1, u2) be a real,

concave, bounded from above function that is continuous andhas continuous partial derivatives, and let the sets

A1, A2, which we maximize over, be convex. Further, assume thatc2(u1) ∈ A2 and c1(u2) ∈ A1 for all u1 ∈
A1, u2 ∈ A2. Under these conditions,limk→∞ fk = f∗.

In Section III we give a detailed description of the algorithm that computesmaxp(xn||yn−1) I(X
n → Y n) based

on the alternating maximization procedure. In Section IV weshow that the conditions in Lemma 1 hold, and

therefore the algorithm we suggest, which is based on the alternating maximization procedure, converges to the

global optimum.

III. D ESCRIPTION OF THE ALGORITHM

In this section, we describe an algorithm for maximizing thedirected information. In addition, we compute the

complexity of the algorithm per iteration, and compare it tothe complexity of the regular BAA. The memory

calculation is also given.

A. The algorithm for channel with feedback

In Algorithm 1, we present the steps required to maximize thedirected information where the channelp(yn||xn)

is fixed and the delay isd = 1. Note that the regular BAA has a structure similar to that of Algorithm 1, where

step (b) is an additional backward loop. Its purpose is to maximize over the input causal probability, which is not

necessary in the regular BAA.

Now, let us present a special case and a few extensions for Alg. 1.
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Algorithm 1 Iterative algorithm for calculatingmaxp(xn||yn−1) I(X
n → Y n), wherep(yn||xn) is fixed.

(a) Start from a random pointq(xn|yn). Usually we start from a uniform distribution, i.e.,q(xn|yn) = 2−n for
every(xn, yn)

(b) Starting fromi = n, calculater(xi|xi−1, yi−1) using the formula

r(xi|xi−1, yi−1) =
r′(xi, yi−1)

∑

xi
r′(xi, yi−1)

, (9)

where

r′(xi, yi−1) =
∏

xn
i+1,y

n
i

[

q(xn|yn)
∏n

j=i+1 r(xj |xj−1, yj−1)

]p(yi|x
i,yi−1)

∏n
j=i+1 r(xj|x

j−1,yj−1)p(yj |x
j,yj−1)

, (10)

and do so backwards untili = 1.

(c) Once you haver(xi|xi−1, yi−1) for all i ∈ {1, ..., n}, computer(xn||yn−1) =
∏n

i=1 r(xi|xi−1, yi−1).

(d) Computeq(xn|yn) using the formula

q(xn|yn) = r(xn||yn−1)p(yn||xn)
∑

xn r(xn||yn−1)p(yn||xn)
. (11)

(e) CalculateIU − IL, where

IL =
1

n

∑

yn,xn

p(yn||xn)r(xn||yn−1) log
q(xn|yn)

r(xn||yn−1)
,

IU =
1

n
max
x1

∑

y1

max
x2

· · ·
∑

yn−1

max
xn

∑

yn

p(yn||xn) log
p(yn||xn)

∑

x′n p(yn||x′n) · r(x′n||yn−1)
.

(f) Return to (b) if (IU − IL) ≥ ǫ.
(g) Cn = IL.

(1) Regular BAA, i.e.,n = 1. Forn = 1, the algorithm suggested here agrees with the original BAA,where instead

of steps (b), (c) we have

r(x) =

∏

y q(x|y)p(y|x)
∑

x

∏

y q(x|y)p(y|x)
, (12)

and step (d) is replaced by

q(x|y) = r(x)p(y|x)
∑

x r(x)p(y|x)
. (13)

The boundsIL, IU agree with the regular BAA as well, and are of the form

IL =
∑

y,x

p(y|x)r(x) log q(x|y)
r(x)

,

IU = max
x

∑

y

p(y|x) log p(y|x)
∑

x′ p(y|x′) · r(x′)
.

(2) Feedback with general delayd. We can generalize the algorithm in order to computemaxr(xn||yn−d) I(X
n →
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Y n), where the feedback is the output with delayd. In that case, in step (b) we have

r′(xi, yi−d) =
∏

xn
i+1,y

n
i−d+1

[

q(xn|yn)
∏n

j=i+1 r(xj |xj−1, yj−d)

]∏n
j=i−d+1 p(yj |x

j ,yj−1)
∏n

j=i+1 r(xj|x
j−1,yj−d)

, (14)

and step (d) will be replaced by

q(xn|yn) = r(xn||yn−d)p(yn||xn)
∑

xn r(xn||yn−d)p(yn||xn)
. (15)

The boundsIL, IU are of the form

IL =
1

n

∑

yn,xn

p(yn||xn)r(xn||yn−d) log
q(xn|yn)

r(xn||yn−d)
,

IU =
1

n
max
xd

∑

y1

max
xd+1

· · ·
∑

yn−d

max
xn

∑

yn
n−d+1

p(yn||xn) log
p(yn||xn)

∑

x′n p(yn||x′n) · r(x′n||yn−d)
.

(3) Feedback as a function of the output with general delay. In Appendix A, we generalize the algorithm in order

to computemaxr(xn||zn−d) I(X
n → Y n), where the feedbackzn−d is a deterministic function of the delayed

output. The expression characterizes the capacity of channels with time-invariant feedback [9]. In that case, in

step (b) we have

r′(xi, zi−d) =
∏

xn
i+1,y

n
i−d+1

∏

Ai,d,z

[

q(xn|yn)
∏n

j=i+1 r(xj |xj−1, zj−d)

]
p(yn||xn)

∏n
j=i+1 r(xj |xj−1,zj−d)

∑
Ai,d,z

∏i−d
j=1

p(yj |xj,yj−1)

, (16)

where we define the setAi,d,z , {yi−d : zi−d = f(yi−d)} as the set of output sequences thatf transforms to

zi−d, and step (d) will be replaced by

q(xn|yn) = r(xn||zn−d)p(yn||xn)
∑

xn r(xn||zn−d)p(yn||xn)
. (17)

The boundsIL, IU are of the form

IL =
1

n

∑

yn,xn

p(yn||xn)r(xn||zn−d) log
q(xn|yn)

r(xn||zn−d)
,

IU =
1

n
max
xd

∑

z1

max
xd+1

· · ·
∑

zn−d

max
xn

∑

An,d,z

∑

yn
n−d+1

p(yn||xn) log
p(yn||xn)

∑

x′n p(yn||x′n) · r(x′n||zn−d)
.

Note, that ford = n, the vectorzn−d = ∅, hencer(xi|xi−1, zi−d) = r(xi|xi−1), and

r(xn||zn−d) =

n∏

i=1

r(xi|xi−1) = r(xn).

Also note that whenf(y) = const, r(xn||zn−d) = r(xn), Ai,d,z = yi−d, and
∑

yi−d

∏i−d

j=1 p(yj |xj , yj−1) = 1. In

each of the cases above (d = n or f(y) = const.), in step (d) we have

q(xn|yn) = r(xn)p(yn||xn)
∑

xn r(xn)p(yn||xn)
,
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and we obtain a different version of the regular BAA for channel capacity, where the maximization is done over

all r(xi|xi−1) instead of overr(xn) at once. Furthermore, iff(y) = y then case (3) agrees with all the equations

of case (2).

B. Complexity and Memory needed

Here, we give an expression for the computation complexity of one iteration in the algorithm, and then compare

it to regular BAA. This will be done in two parts, one for each step in the iteration.

(1) Complexity of computingq(xn|yn) as given in (11). For eachyn, we need|X |n multiplications for a specific

xn and use the denominator computed for every otherxn, thus obtainingO(|X |n) operations. Doing so for

all yn achievesO(|X |n|Y|n) = O((|X ||Y|)n).
(2) Complexity of computingr(xn||yn−1). First, we compute the complexity of eachr(xi|xi−1, yi−1) as given

in (10), assuming that an exponent is a constant number of computations, i.e.,O(1). Simple computations

will conclude that the entire numerator takes aboutO((n − i)(|X ||Y|)n−i
) computations. The denominator

is a summation over|X |i variables, and as withq(xn|yn), we can use the denominator for every other

xi. Hence, we obtainO((n − i)(|X ||Y|)n) computations for everyi ∈ {1..n}. Summing overi will achieve

O((n+n2)(|X ||Y|)n) = O(n2(|X ||Y|)n) computations. Multiplying allr(xi|xi−1, yi−1)s is a constant number

of computations for every(xi, yi). Finally, in order to computer(xn||yn−1) we needO((n2 + n)(|X ||Y|)n)
computations.

To conclude, each iteration requires aboutO(n2(|X ||Y|)n) computations.

Comparing to regular BAA: Since BAA computes the capacity ofmemoryless channels, we only need to compute

r(x) and q(x|y). In much the same way, we can have its complexity and achieveO((|X ||Y|)) computations.

However, if we want to compare it to BAA for channels with memory, we replaceX ⇔ Xn, Y ⇔ Y n But,

|Xn| = |X |n and so we obtainO((|X ||Y|)n) computations. The memory needed for the algorithm is very much

dependent on the manner in which one implements the algorithm. However, the obligatory memory needed is for

q, p, andr and its products; thus we need at leastn(|X ||Y|)n cells of type double. Computation complexity and

memory needed are presented in Table I.

TABLE I: Memory and operations needed for regular and extended BAA for channel coding with feedback.

Operation Memory

maxp(x)
(
1
n
I(Xn;Y n)

)
, regular BAA for channel capacity O((|X ||Y|)n) (|X ||Y|)n

maxp(xn||yn−1)

(
1
n
I(Xn → Y n)

)
, Alg. 1 O(n2(|X ||Y|)n) n(|X ||Y|)n
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IV. D ERIVATION OF ALGORITHM 1

In this section, we derive Algorithm 1 using the alternatingmaximization procedure, and conclude its convergence

to the global optimum using Lemma 1. Throughout the paper, note that the channelp(yn||xn) is fixed in all

maximization calculations. For this purpose we present several lemmas that will assist in proving our main goal: an

algorithm for calculatingmax I(Xn → Y n). In Lemma 2 we show that the directed information function has the

properties required for lemma 1. In Lemma 3 we show that we areallowed to maximize the directed information

over r(xn||yn−1) and q(xn|yn) combined, rather than just overr(xn||yn−1), thus creating an opportunity to use

the alternating maximization procedure for achieving the optimum value. Lemma 4 is a supplementary claim that

helps us prove Lemma 3, in which we find an expression forq(xn|yn) that maximizes the directed information

wherer(xn||yn−1) is fixed. In Lemma 5 we find an explicit expression forr(xn||yn−1) that maximizes the directed

information whereq(xn|yn) is fixed. Theorem 1 combines all lemmas to show that the alternating maximization

procedure as described byIL in Alg. 1 exists and converges. We end with Theorem 2 that proves the existence of

the upper bound,IU .

Lemma 2 . For a fixed channelp(yn||xn), the directed information given by

I(Xn → Y n) =
∑

yn,xn

p(yn||xn)r(xn||yn−1) log
q(xn|yn)

r(xn||yn−1)
(18)

as a function of{r = r(xn||yn−1), q = q(xn|yn)} is concave, continuous and has continuous partial derivatives.

Proof: First we need to show that the directed information can be written as above by using the causal

conditioning chain rule.

I(Xn → Y n) =
∑

yn,xn

p(yn, xn) log
p(yn||xn)

p(yn)

=
∑

yn,xn

p(yn||xn)r(xn||yn−1) log
p(yn||xn)r(xn||yn−1)

p(yn)r(xn||yn−1)

=
∑

yn,xn

p(yn||xn)r(xn||yn−1) log
q(xn|yn)

r(xn||yn−1)
.

Then we recall the log-sum inequality [24, Theorem 2.7.1] given by

n∑

i=1

ai log
ai

bi
≥
(

n∑

i=1

ai

)

log

∑n

i=1 ai
∑n

i=1 bi
. (19)

We define the sets

A1 = {r(xn||yn−1) : r(xn||yn−1) > 0 is a causally conditioned PMF},

A2 = {q(xn|yn) : q(xn|yn) is a conditioned PMF}, (20)

as the sets over which we maximize. Now, for(r1, q1), (r2, q2) in A = A1 × A2 and λ ∈ [0, 1], by using the
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log-sum inequality given above we derive that

(λr1 + (1− λ)r2) log
λr1 + (1 − λ)r2
λq1 + (1 − λ)q2

≤ λr1 log
r1

q1
+ (1− λ)r2 log

r2

q2
.

Taking the reciprocal of the logarithms yields

(λr1 + (1− λ)r2) log
λq1 + (1 − λ)q2
λr1 + (1 − λ)r2

≥ λr1 log
q1

r1
+ (1− λ)r2 log

q2

r2
.

Multiplying by p(yn||xn) and summing over allxn, yn, and lettingI(r, q) be the directed information as in (8),

we obtain

I(λr1 + (1− λ)r2, λq1 + (1− λ)q2 ≥ λI(r1, q1) + (1 − λ)I(r2, q2).

Further, since the functionlog(x) is continuous with continuous partial derivatives, and thedirected information is

a summation of functions of typelog(x), I(r, q) has the same properties as well. Moreover, it is simple to verify

that the setsA1, A2 are both convex, and we can conclude that all conditions in Lemma 1 hold for the directed

information.

Recall, that in the alternating maximization procedure we maximize over{r(xn||yn−1), q(xn|yn)} instead of

over r(xn||yn−1) alone, and thus need the following lemma.

Lemma 3 . For any discrete random variablesXn, Y n, the following holds

max
r(xn||yn−1)

I(Xn → Y n) = max
r(xn||yn−1),q(xn|yn)

I(Xn → Y n). (21)

The proof will be given after the following supplementary claim, in which we calculate the specificq(xn|yn) that

maximizes the directed information wherer(xn||yn−1) is fixed.

Lemma 4 . For fixed r(xn||yn−1), there existsc2(r) = q∗(xn|yn) that achievesmaxq(xn|yn) I(X
n → Y n), and

given by

q∗(xn|yn) = r(xn||yn−1)p(yn||xn)
∑

xn r(xn||yn−1)p(yn||xn)
.

Proof for Lemma 4: Let q∗ = q∗(xn|yn). For anyq = q(xn|yn), and fixedr = r(xn||yn−1)

I(r, q∗)− I(r, q)

=
∑

xn,yn

r(xn||yn−1)p(yn||xn) log
q∗(xn|yn)
r(xn||yn−1)

−
∑

xn,yn

r(xn||yn−1)p(yn||xn) log
q(xn|yn)

r(xn||yn−1)

=
∑

xn,yn

r(xn||yn−1)p(yn||xn) log
q∗(xn|yn)
q(xn|yn)

= D

(

r(xn||yn−1)p(yn||xn) ‖ q(xn|yn)
∑

xn

r(xn||yn−1)p(yn||xn)

)

(a)

≥ 0,
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where (a) follows from the non-negativity of the divergence.

Proof of Lemma 3.After finding the PMFq that maximizesI(r, q) wherer is fixed, we can see thatq(xn|yn) is

the one that corresponds to the joint distributionr(xn||yn−1)p(yn||xn) in the sense that

q(xn|yn) = p(xn, yn)

p(yn)

=
p(xn, yn)

∑

xn p(xn, yn)

=
r(xn||yn−1)p(yn||xn)

∑

xn r(xn||yn−1)p(yn||xn)
,

and thus, the lemma is proven.

In the following lemma, we find an explicit expression forr that achievesmaxr(xn||yn−1) I(X
n → Y n), where

q is fixed.

Lemma 5 . For fixedq(xn|yn), there existsc1(q) = r∗(xn||yn−1) that achievesmaxr(xn||yn−1) I(X
n → Y n), and

is given by the products:

r∗(xn||yn−1) =

n∏

i=1

r(xi|xi−1, yi−1),

where

r(xi|xi−1, yi−1) =
r′(xi, yi−1)

∑

xi r′(xi, yi−1)
, (22)

and

r′(xi, yi−1) =
∏

xn
i+1,y

n
i

[

q(xn|yn)
∏n

j=i+1 r(xj |xj−1, yj−1)

]∏n
j=i p(yj |x

j ,yj−1)
∏n

j=i+1 r(xj |x
j−1,yj−1)

. (23)

Proof: In order to find the requestedr, we find all of its components, namely{r(xi|xi−1, yi−1)}ni=1, by

maximizing the directed information over each of them. For convenience, let us use for short:ri , r(xi|xi−1, yi−1),

andpi , p(yi|xi, yi−1). Since in Lemma 2 we showed thatI(Xn → Y n) is concave in{r, q} and the constraints

of the optimization problem are affine, we can use the Lagrange multipliers method with the Karush-Kuhn-Tucker

conditions [25, Ch. 5.3.3]. We define the Lagrangian as:

J =
∑

xn,yn

(

p(yn||xn)

n∏

i=1

ri log

(

q(xn|yn)
∏n

j=1 rj

))

+

n∑

i=1




∑

xi−1,yi−1

νi,(xi−1,yi−1)

(
∑

xi

ri − 1

)

.

Now, for everyi ∈ {1, ..., n} we find ri s.t.,

∂J

∂ri
=

∑

xn
i+1,y

n
i



p(yn||xn)

n∏

j 6=i=1

rj

[

log
q(xn|yn)
∏n

j=1 rj
− 1

]

+ νi,(xi−1,yi−1)

=

i−1∏

j=1

rj
∑

xn
i+1,y

n
i



p(yn||xn)

n∏

j=i+1

rj



log
q(xn|yn)
∏n

j=i+1 rj
− log

i−1∏

j=1

rj − log ri − 1







+ νi,(xi−1,yi−1)
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= 0.

Note that sinceνi is a function of(xi−1, yi−1) we can divide the whole equation by
∏i−1

j=1 rj , and get a new

ν∗
i,(xi−1,yi−1).

Moreover, we can see that three of the expressions in the sum,i.e., {log∏i−1
j=1 rj , log ri, 1}, do not depend on

(xn
i+1, y

n
i ), thus leaving their coefficient in the equation to be

∑

xn
i+1,y

n
i



p(yn||xn)

n∏

j=i+1

r(xj |xj−1, yj−1)



 =

i−1∏

j=1

p(yj |xj , yj−1).

Hence we obtain:

log






∏

xn
i+1,y

n
i

(

q(xn|yn)
∏n

j=i+1 rj

)
p(yn||xn)

∏n
j=i+1 rj

∏i−1
j=1

pj




− log ri − log ν∗∗i,(xi−1,yi−1) = 0,

where

log ν∗∗i,(xi−1,yi−1) =

i−1∏

j=1

pj



1 + log

i−1∏

j=1

rj



− ν∗i,(xi−1,yi−1).

Finally, we are left with the expression:

r(xi|xi−1, yi−1) =
r′(xi, yi−1)

∑

xi r′(xi, yi−1)
,

where

r′(xi, yi−1) =
∏

xn
i+1,y

n
i

[

q(xn|yn)
∏n

j=i+1 r(xj |xj−1, yj−1)

]
p(yn||xn)

∏n
j=i+1 r(xj |xj−1,yj−1)

∏i−1
j=1

p(yj |xj,yj−1)

=
∏

xn
i+1,y

n
i

[

q(xn|yn)
∏n

j=i+1 r(xj |xj−1, yj−1)

]∏n
j=i p(yj |x

j ,yj−1)
∏n

j=i+1 r(xj |x
j−1,yj−1)

. (24)

We can see that for everyi, ri depends onq(xn|yn) and{ri+1, ri+2, ..., rn}, andrn is a function ofq(xn|yn) alone.

Therefore, we can placern in the function we have forrn−1, thus makingrn−1 depend onq(xn|yn) alone as well.

Now we do the same forrn−2 and so on until for alli, ri is dependent onq(xn|yn) alone. We name this method

Backwards maximization. Finally, we obtainr(xn||yn−1) =
∏n

i=1 ri that maximizes the directed information where

q(xn|yn) is fixed, i.e.,c1(q), and the lemma is proven.

Having Lemmas 2-5 we can now state and prove our main theorem.

Theorem 1. For a fixed channelp(yn||xn), there exists an alternating maximization procedure, suchasIL in Alg.

1, to compute

Cn =
1

n
max

p(xn||yn−1)
I(Xn → Y n).
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Proof: To prove Theorem 1, we first have to show existence of a double maximization problem, i.e., an

equivalent problem where we maximize over two variables instead of one, and this was shown in Lemma 3. Now,

in order for the alternating maximization procedure to workon this optimization problem, we need to show that

the conditions given in Lemma 1 hold here, and this was shown in Lemma 2, 4 and 5. Thus, we have an algorithm

for calculating

Cn =
1

n
max

r(xn||yn−1)
I(Xn → Y n)

that is equal tolimk→∞ IL(k), whereIL(k) is the value ofIL in thekth iteration as in Alg. 1. Hence, the theorem

is proven.

Our last step in proving the convergence of Alg. 1 is to show why IU is a tight upper bound. For that reason

we state the following theorem.

Theorem 2. For the value ofCn = 1
n
maxp(xn||yn−1) I(X

n → Y n), the inequality

Cn ≤ IU , (25)

where

IU =
1

n
min
r

max
x1

∑

y1

max
x2

· · ·max
xn

∑

yn

p(yn||xn) log
p(yn||xn)

∑

x′n p(yn||x′n) · r(x′n||yn−1)

holds. Furthermore, ifr(xn||yn−1) achievesCn, then we have equality in (25).

The proof is given in Appendix B for the general case of delayd. We also omit the proof of the upper bound for

the case where the feedback is a deterministic function of the delayed output, as described in Appendix A.

V. NUMERICAL EXAMPLES FOR CALCULATING FEEDBACK CHANNEL’ S CAPACITIES

In this section we present some examples of Alg. 1 performances over various channels. We start with a

memoryless channel to see whether feedback improves the capacity of such channels, and continue with specific

FSCs such as the Trapdoor channel and the Ising channel. Since Alg. 1 is applicable on Finite State Channels

(FSC), we describe this class of such channels and their properties. Gallager [26] defined the FSC as one in which

the influence of the previous input and output sequence, up toa given point, may be summarized using astatewith

finite cardinality. The FSC is stationary and characterizedby the conditional PMFp(yi, si|xi, si−1) that satisfies

p(yi, si|xi, yi−1, si−1) = p(yi, si|xi, si−1),

and the initial statep(s0).

The causal conditioning probability of the output given theinput is given by

p(yn||xn, s0) =
∑

sn

n∏

i=1

p(yi, si|xi, si−1),
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and

p(yn||xn) =
∑

s0

p(yn||xn, s0)p(s0).

Note that a memoryless channel, i.e., the output at any giventime is dependent on the input at that time alone, is

an FSC with one state.

It was shown in [9] that the capacity of an FSC with feedback isbounded between

CN − log |S|
N

≤ CN ≤ CN +
log |S|
N

, (26)

where

C =
1

N
max

p(xn||yn−1)
max
s0

I(Xn → Y n|s0), (27)

C =
1

N
max

p(xn||yn−1)
min
s0

I(Xn → Y n|s0). (28)

If we require that the probability of error tends to zero for every initial states0, then

C = lim
n→∞

C.

Since these bounds are obtained via maximization of the directed information, we can calculate them using Alg. 1

as presented in Section III, thus estimating the capacity.

Our first example shows the convergence of Alg. 1 to the analytical capacity of a memoryless channel.

A. Binary Symmetric Channel

Consider a memoryless BSC with probability ofp = 0.3 as in Fig. 1. The capacity of this BSC is known to bePSfrag replacements

0.3

0.3

0.7

0.7

X Y

00

11

Fig. 1: Binary Symmetric Channel

C = 1−H(0.3) = 0.1187. In Fig. 2 we present the directed information upperIU and lowerIL bounds as a function

of the iteration (as given in Alg. 1) and compare it to the capacity that is known analytically. Shannon showed [27]

that for memoryless channels, feedback does not increase the capacity. Thus, we can expect the numerical solution

given in Alg. 1 to achieve the same value as in the no-feedbackcase. Indeed, we can see that as the iterations

number increases, the algorithm approaches the true value and converges. Furthermore, the causally conditioned

probabilityr(xn||yn−1) that Alg. 1 achieves is actuallyr(xn), i.e., does not depend on the feedback. We note here

that we can achieve the capacity of the channel using a uniform distribution orr(xn). This does not imply that

there is only one optimum distribution, and indeed the one that Alg. 1 achieves is not uniform.
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Fig. 2: Performance of Alg. 1 over BSC(0.3). The lower and upper lines are the bounds in each iteration in Alg.
1, whereas the horizontal line is the analytical calculation of the capacity.

B. Trapdoor Channel

1) Trapdoor channel with 2 states:The trapdoor channel was introduced by David Blackwell in 1961 [28] and

later on by Ash [29]. One can look at this channel as such: Consider a binary channel modulated by a box that

1 100

0

0 101

PSfrag replacements

Input
Channel

Output

Fig. 3: Trapdoor Channel [29]

contains a single bit referred to as the state. In every step,an input bit is fed to the channel, which then transmits

either that bit or the one already contained in the box, each with probability 1
2 . The bit that was not transmitted

remains in the box for future steps as the state of the channel. The state, thus, is the bit in the box, and since it

can be ’0’ or ’1’, we conclude that|S| = 2, or log |S| = 1.

In order to use Alg. 1, we first have to calculate the channel probability p(yn||xn, s0). For that purpose, we find

p(yi|xi, yi−1, s0) analytically. Note thatp(yi|xi, yi−1, s0) = p(yi|xi, si−1). Thus, first we find the deterministic

function for si−1 given the past input, output, and initial state, i.e.,(xi−1, yi−1, s0), and then the function for

p(yi|xi, yi−1, s0) = p(yi|xi, si−1). An examination of the truth table in Table II yields the formula for si−1 as

si−1 = xi−1 ⊕ yi−1 ⊕ si−2

=

m=i−1⊕

m=1

(xm ⊕ ym)⊕ s0.

Note that in Table II, the input series(0, 0, 1) and (1, 1, 0) are not possible since the output is not one of the

bits in the box; thus we may assign tosi−1 whatever value we choose, in order to simplify the formula. As for

the conditional probabilityp(yi|xi, yi−1, s0), we assume thats0 = 0, and because of the channel’s symmetry the

outcome fors0 = 1 is easily calculated. Looking at Table III, we can see that the formula forp(yi|xi, yi−1, s0 = 0)
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TABLE II: si−i as a function ofxi−1, si−2 andyi−1

xi−1 si−2 yi−1 si−1

0 0 0 0
0 0 1 φ

0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 φ

1 1 1 1

TABLE III: p(yi|si−1, xi)

xi si−1 yi p(yi|xi, yi−1, s0 = 0)

0 0 0 1
0 0 1 0
0 1 0 0.5
0 1 1 0.5
1 0 0 0.5
1 0 1 0.5
1 1 0 0
1 1 1 1

is given by

p(yi|xi, yi−1, s0 = 0) =
1

2
(xi ⊕ si−1) + (xi ⊕ si−1) ∧ (xi ⊕ yi),

where we know thatsi−1 is a function of(xi−1, yi−1, so), and∧ denotes AND.

Now that we havep(yn||xn, s0 = 0), we use Alg. 1 for estimating the capacity of the channel as werun the

algorithm to find the upper and lower bound for everyn ∈ {1..12}, where

Cn = max
s0

max
r(xn||yn−1)

1

n
I(Xn → Y n|s0) +

1

n
, (29)

Cn = max
r(xn||yn−1)

min
s0

1

n
I(Xn → Y n|s0)−

1

n
. (30)

Note that (29) is calculated via Alg. 1 ands0 = 0 due to the channel’s symmetry. However, calculating (30) is

more difficult, since we have to maximize over all the probabilities r(xn||yn−1), and at the same time minimize

over the initial state. Hence, we use another lower bound denoted byC∗, for which r(xn||yn−1) is fixed and is

the one that achieves the maximum at (29), and we only minimize overs0. Clearly,C∗ ≤ C. Fig. 4 presents the

capacity estimation, and the upper and lower bound, as a function of the block lengthn. In [21], the capacity of
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Fig. 4: Plot ofCn, Cn, C∗
n and the true capacity of the trapdoor channel with 2 states and feedback with delay 1.
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the trapdoor channel is calculated analytically, and givenby

C = lim
n→∞

Cn = log

(

1 +
√
5

2

)

≈ 0.69424191. (31)

We see from the simulation that the upper and lower bounds of the capacity approach the limit in (31), and the

estimated capacity at block lengthn = 12 is C12 = 0.6706533.

2) Directed information rate as a different estimator for the capacity: We now consider an estimator to the

feedback capacity of an FSC by calculating(n + 1)Cn+1 − nCn. The justification for this estimator is based on

the following lemma.

Lemma 6 . If limn→∞ I(Xn;Yn|Y n−1) exists, then

lim
n→∞

1

n
I(Xn → Y n) = lim

n→∞

(
I(Xn → Y n)− I(Xn−1 → Y n−1)

)
,

i.e.,

lim
n→∞

Cn = lim
n→∞

(n+ 1)Cn+1 − nCn.

Proof: If we suppose that the limit above exists, then

lim
n→∞

(
I(Xn → Y n)− I(Xn−1 → Y n−1)

)
= lim

n→∞
I(Xn;Yn|Y n−1)

(a)
= lim

n→∞

1

n

n∑

i=1

I(X i;Yi|Y i−1)

= lim
n→∞

1

n
I(Xn → Y n),

where (a) follows from the fact that if the limit of the sequence {an} exists, then the average of the sequence

converges to the same limit. Further, a result from [7] provides that if the joint process{Xi, Yi} is stationary, then

the limit limn→∞ I(Xn;Yn|Y n−1) exists.

Fig. 5 presents the directed information rate estimator using the lemma above, and its comparison to the true

capacity. One can see that the convergence of(n + 1)Cn+1 − nCn is faster thanCn and the upper and lower
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Fig. 5: The upper line is(n + 1)Cn+1 − nCn calculated using Alg. 1 and the horizontal line is the analytical
calculation, for the trapdoor channel with 2 states and feedback with delay 1.
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bounds as seen in Fig. 4, and achieves the value0.6942285 when we calculate the11th difference. Furthermore,

the convergence of the directed information rate stabilizes faster.

3) M-State Trapdoor channel:We generalize the trapdoor channel to an M-state one. In the previous example

1 100

0

0 101

0 0

PSfrag replacements

Input
Channel Output

· · ·

m cells

Fig. 6: Trapdoor channel with M states.

we hadM = 2 cells in the box, one for the state bit, and one for the input bit. One can consider the state to be

the number of ’1’s in the channel before a new input is inserted. We can expand this notation, by letting the ’box’

contain more than 2 cells as presented in Fig. 6. Here, the state at any given time will express the number of1′s

that are in the box at that time, and each cell has even probability to be chosen for the output. In this case,M

cells in the box are equivalent toM states of the channel. By that definition we can see that the state si−1 as a

function of past input, output, and the initial state is given by

si−1 = xi−1 + si−2 − yi−1

= s0 +

i−1∑

j=1

(xj − yj).

Moreover, for calculating the channel probabilityp(yi = 1|xi, yi−1, s0), we addsi−1 to xi and divide the sum by

the number of cells, i.e.,

p(yi = 1|xi, yi−1, s0) =
si−1 + xi

m
.

Now that we havep(yn||xn, s0), we use Alg. 1 for calculatingCn for everyn ∈ {1, 2, ..., 12}. Fig. 7 presents the

directed information rate estimator(n + 1)Cn+1 − nCn for the trapdoor channel withM = 3 cells. Note, that in
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Fig. 7: Plot of(n+ 1)Cn+1 − nCn for the trap door channel with 3 cells and feedback with delay1.

Fig. 7 we achieve the value0.5423984 in the 11th difference, thus we can assume that the capacity of a 3-state

trapdoor channel is approximately0.542.



19

4) Influence of the number of cells on the capacity:To summarize the trapdoor channel example, we examine

the way the number of cells affects the capacity. The estimation use is the directed information rate, withn = 12.
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Fig. 8: Change of12C12 − 11C11 over the number of cells in the trapdoor channel with feedback with delay 1.

In Fig. 8 we can see that the capacity decreases as the number of cells increases and approaches zero.

C. The Ising channel

The Ising model is a mathematical model of ferromagnetism instatistical mechanics. It was originally proposed

by the physicist Wilhelm Lenz who gave it as a problem to his student Ernst Ising after whom it is named. The

model consists of discrete variables called spins that can be in one of two states. The spins are arranged in a lattice

or graph, and each spin interacts only with its nearest neighbors.

The Ising channel is based on its physical model, and simulates Intersymbol Interference where the state of the

channel at timei is the current input, and the output is determined by the input at timei+1. The channel (without
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Fig. 9: The Ising Channel. [30]

feedback) was introduced by Berger and Bonomi [30] and is depicted in Fig. 9. In their paper, they proved the

existence of bounds for the no-feedback case. In addition, they showed that the zero-error capacity without feedback

is 0.5.

1) Ising channel with delayd = 2: We estimate the capacity of the Ising channel with feedback.Since the output

at timei is determined by the input at timesi, i+1, we define the channel PMF asp(yn−1
0 ||xn, s0). Therefore, the

feedback at timei must be the output at timei− 2, since we cannot haveyi−1 beforexi−1 is sent. Thus, looking

at the Ising channel with delayd = 1 is not a practical example, and we did not examine it. We ran our algorithm

on the Ising channel, with delayed feedback ofd = 2; the results are presented in Fig. 10. In Fig. 10 (a), we obtain

C12 = 0.5459, and in (b) we achieve12C12 − 11C11 = 0.5563 in the 11th difference.
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Fig. 10: Performance of Alg. 1 on the Ising channel with feedback delay ofd = 2. In (a) we presentCn, Cn, C∗
n,

and in (b) we have(n+ 1)Cn+1 − nCn.

2) The effects the delay has on the capacity:Here we investigate how the delay influences the capacity. Wedo

so by computing the directed information rate estimator of the Ising channel with blocks of length12, over the

feedback delayd = {2, 3, ..., 12}. The formulas for estimating the capacity when the delay is bigger than 1 is given

in Section III, equations (14), (15). In Fig. 11 we can see that, as expected, the capacity decreases as the delay

increases. This is due to the fact that we have less knowledgeof the output to use.
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Fig. 11: Change of12C12 − 11C11 over the delay of the feedback on the Ising channel.

VI. CONCLUSIONS

In this paper, we generalized the classical BAA for maximizing the directed information over causal conditioning,

i.e., calculating

Cn =
1

n
max

p(xn||yn−1)
I(Xn → Y n).

The optimizing the directed information is necessary for estimating the capacity of an FSC with feedback. As we

attempted to solve this problem we found that difficulties arose regarding the causal conditioning probability we

tried to optimize over. We overcame this barrier by using an additional backwards loop to find all components of

the causal conditioned probability, separately.



21

Another application of optimizing the directed information is to estimate the rate distortion function for source

coding with feed forward as presented in [31], [32], [33]. Inour future work [34], we address the source coding with

feedforward problem, and derive bounds for stationary and ergodic sources. We also present and prove a BA-type

algorithm for obtaining a numerical solution that computesthese bounds.

APPENDIX A

GENERAL CASE FOR CHANNEL CODING-FEEDBACK THAT IS A FUNCTION OF THE DELAYED OUTPUT

Here we extend Alg. 1, given in Section IV, for channels wherethe encoder has specific information about the

delayed output. In this case, the input probability is givenby r(xn||zn−d), wherezi = f(yi) is the feedback, and

f is deterministic. In other words, we solve the optimizationproblem given by

max
r(xn||zn−d)

I(Xn → Y n).

The optimization problem is associated to Fig. 12.
PSfrag replacements

Xn(M,Zi−d)
p(yn||xn) Y n

M Decoder M̂(Y n)

zi−d = f(yi−d)

Encoder

Fig. 12: Channel with delayed feedback as a function of the output.

The proof for this case is similar to that of Theorem 1, exceptthe steps that follow from Lemmas 4 and 5. Lemma

4 proves the existence of an argumentq(xn|yn) that maximizes the directed information wherer(xn||yn−1) is fixed.

The modification of this lemma is presented here, where we findthe argumentq(xn|yn) that maximizes the directed

information wherer(xn||zn−d) is fixed; the proof is omitted. Therefore, the maximization over q(xn|yn) where

r(xn||zn−d) is fixed is given by

q∗(xn|yn) = r(xn||zn−d)p(yn||xn)
∑

xn r(xn||zn−d)p(yn||xn)
.

Lemma 5 proves the existence of an argumentr(xn||yn−1) that maximizes the directed information where

q(xn|yn) is fixed. We replace this lemma by Lemma 7.

Lemma 7 . For fixedq(xn|yn), there existsc1(q) that achievesmaxr(xn||zn−d) I(X
n → Y n), and given by

r(xn||zn−d) =

n∏

i=1

r(xi|xi−1, zi−d),

where

r(xi|xi−1, zi−d) =
r′(xi, zi−d)

∑

xi r′(xi, zi−d)
, (32)
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and

r′(xi, zi−d) =
∏

xn
i+1,y

n
i−d+1

∏

Ai,d,z

[

q(xn|yn)
∏n

j=i+1 r(xj |xj−1, zj−d)

]
p(yn||xn)

∏n
j=i+1 r(xj |x

j−1,zj−d)

∑
Ai,d,z

∏i−d
j=1

p(yj |xj,yj−1)

. (33)

Proof: We find the products ofr(xn||zn−d) that achieve maximum for the directed information. For

convenience, let us use for short:ri , r(xi|xi−1, zi−d), andpi , p(yi|xi, yi−1). As in Lemma 2 we can omit that

I(Xn → Y n) is concave in{r(xn||yn−d), q(xn|yn)}. Furthermore, the constraints of the optimization problem

are affine, and we can use the Lagrange multipliers method with the Karush-Kuhn-Tucker conditions. We define

the Lagrangian as:

J =
∑

xn,yn

(

p(yn||xn)
n∏

i=1

ri log

(

q(xn|yn)
∏n

j=1 rj

))

+
n∑

i=1




∑

xi−1,zi−d

νi,(xi−1,zi−d)

(
∑

xi

ri − 1

)

.

Now, for everyi ∈ {1..n} we find ri s.t.,

∂J

∂ri
=

∑

xn
i+1,y

n
i−d+1,Ai,d,z



p(yn||xn)
n∏

j 6=i=1

rj

[

log
q(xn|yn)
∏n

j=1 rj
− 1

]

+ νi,(xi−1,zi−d)

=
∑

Ai,d,z

i−1∏

j=1

rj
∑

xn
i+1,y

n
i−d+1



p(yn||xn)

n∏

j=i+1

rj



log
q(xn|yn)
∏n

j=i+1 rj
− log

i−1∏

j=1

rj − log ri − 1







+ νi,(xi−1,zi−d)

= 0,

where the setAi,d,z = {yi−d : zi−d = f(yi−d)} stands for all output sequencesyi−d s.t. the function in the delay

maps them to the same sequencezi−d, which is the feedback.

Note that since
∏i−1

j=1 rj does not depend onAi,d,z, we can take the product out of the sum. Furthermore, since

νi is a function of(xi−1, zi−d) we can divide the whole equation by the product above, and geta newν∗
i,(xi−1,zi−d).

Moreover, we can see that three of the expressions in the sum,i.e., {log∏i−1
j=1 rj , log ri, 1}, do not depend on

(xn
i+1, y

n
i−d+1), thus leaving their coefficient in the equation to be

∑

xn
i+1,y

n
i−d+1

,Ai,d,z

p(yn||xn)

n∏

j=i+1

rj =
∑

Ai,d,z

i−d∏

j=1

pj .

Hence we obtain:

log






∏

xn
i+1,y

n
i−d+1

(

q(xn|yn)
∏n

j=i+1 rj

)
p(yn||xn)

∏n
j=i+1 rj

∑
Ai,d,z

∏i−d
j=1

pj




− log ri − log ν∗∗i,(xi−1,zi−d) = 0,

where

log ν∗∗i,(xi−1,zi−d) =
∑

Ai,d,z

i−d∏

j=1

pj



1 + log

i−1∏

j=1

rj



− ν∗i,(xi−1,zi−d).
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Therefore, we are left with the expression:

r(xi|xi−1, zi−d) =
r′(xi, zi−d)

∑

xi r′(xi, zi−d)
,

where

r′(xi, zi−d) =
∏

xn
i+1,y

n
i−d+1,Ai,d,z

[

q(xn|yn)
∏n

j=i+1 r(xj |xj−1, zj−d)

]
p(yn||xn)

∏n
j=i+1 r(xj |x

j−1,zj−d)

∑
Ai,d,z

∏i−d
j=1

p(yj |x
j,yj−1)

. (34)

As in Section IV, we can see that for alli, ri is dependent onq(xn|yn) and{ri+1, ri+2, ..., rn}, andrn is a function

of q(xn|yn) alone. Thus, we use theBackwards maximizationmethod. After calculatingri for all i = 1, ..., n, we

obtainr(xn||zn−d) =
∏n

i=1 ri that maximizes the directed information whereq(xn|yn) is fixed, i.e.,c1(q) and the

lemma is proven.

As mentioned, by replacing Lemmas 4, 5 by those given here, wecan follow the outline of Theorem 1 and

conclude the existence of an alternating maximization procedure, i.e., we can compute

Cn =
1

n
max

r(xn||zn−d)
I(Xn → Y n)

that is equal tolimk→∞ IL(k), whereIL(k) is the value ofIL in the kth iteration in the extended algorithm. One

more step is required in order to prove the extension of Alg. 1to the case presented here; the existence ofIU . This

part is presented in Appendix B.

APPENDIX B

PROOF OFTHEOREM 2

Here, we prove the existence of an upper bound,IU , that converges toCn from above simultaneously with the

convergence onIL to it from below, as in Alg. 1. To this purpose, we present and prove few lemmas that assist

in obtaining our main goal. We start with Lemma 8 that gives aninequality for the directed information. This

inequality is used in Lemma 9 to prove the existence of our upper bound which Lemma 10 proves to be tight.

Theorem 2 combines Lemmas 9, 10.

Lemma 8 . Let Ir1(X
n → Y n) correspond tor1(xn||yn−d), then for everyr0(xn||yn−d),

Ir1(X
n → Y n) ≤

∑

xn,yn−d

r1(x
n||yn−d)

∑

yn
n−d+1

p(yn||xn) log
p(yn||xn)

∑

x′n p(yn||x′n) · r0(x′n||yn−d)
.

Proof: For anyr1(xn||yn−d), r0(xn||yn−d),

∑

xn,yn−d

r1(x
n||yn−d)

∑

yn
n−d+1

p(yn||xn) log
p(yn||xn)

∑

x′n p(yn||x′n) · r0(x′n||yn−d)
− Ir1(X

n → Y n)

=
∑

xn,yn

r1(x
n||yn−d) · p(yn||xn) log

p(yn||xn)
∑

x′n p(yn||x′n) · r0(x′n||yn−d)
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−
∑

xn,yn

r1(x
n||yn−d) · p(yn||xn) log

p(yn||xn)
∑

x′n p(yn||x′n) · r1(x′n||yn−d)

=
∑

xn,yn

r1(x
n||yn−d) · p(yn||xn) log

∑

x′n p(yn||x′n) · r1(x′n||yn−d)
∑

x′n p(yn||x′n) · r0(x′n||yn−d)

=
∑

yn

p1(y
n) log

p1(y
n)

p0(yn)

(a)
= D (p1(y

n)||p0(yn))
(b)

≥ 0,

where in (a),p0(yn) andp1(yn) are the PMFs ofyn that corresponds tor0(x′n||yn−d) andr1(x′n||yn−d), and (b)

follows from the non negativity of the divergence. Thus, thelemma is proven.

Our next lemma uses the inequality in Lemma 8 to show the existence of the upper bound, which is the first

step in proving Theorem 2.

Lemma 9 . For everyr0(xn||yn−d),

Cn ≤ IU ,

where

IU =
1

n
max
xd

∑

y1

max
xd+1

∑

y2

· · ·max
xn

∑

yn
n−d+1

p(yn||xn) log
p(yn||xn)

∑

x′n p(yn||x′n) · r0(x′n||yn−d)
.

Proof: To prove this lemma, we first use lemma 8. For everyr1(x
n||yn−d), r0(x

n||yn−d),

Ir1(X
n → Y n)

(a)

≤
∑

xn,yn−d

r1(x
n||yn−d)

∑

yn
n−d+1

p(yn||xn) log
p(yn||xn)

∑

x′n p(yn||x′n) · r0(x′n||yn−d)

(b)

≤
∑

xn,yn−d

n∏

i=1

r1(xi|xi−1, yi−d)max
xn

∑

yn
n−d+1

p(yn||xn) log
p(yn||xn)

∑

x′n p(yn||x′n) · r0(x′n||yn−d)

︸ ︷︷ ︸

f(xn−1, yn−d)

(c)
=

∑

xn−1,yn−d−1

n−1∏

i=1

r1(xi|xi−1, yi−d)
∑

yn−d

max
xn

∑

yn
n−d+1

p(yn||xn) log
p(yn||xn)

∑

x′n p(yn||x′n) · r0(x′n||yn−d)

︸ ︷︷ ︸

f(xn−1, yn−d−1)

≤
∑

xn−1,yn−d−1

n−1∏

i=1

r1(xi|xi−1, yi−d)max
xn−1

∑

yn−d

max
xn

∑

yn
n−d+1

p(yn||xn) log
p(yn||xn)

∑

x′n p(yn||x′n) · r0(x′n||yn−d)

︸ ︷︷ ︸

f(xn−2, yn−d−1)

...
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≤
∑

xd

d∏

i=1

r1(xi|xi−1, yi−d)
∑

y1

max
xd+1

∑

y2

· · ·max
xn

∑

yn
n−d+1

p(yn||xn) log
p(yn||xn)

∑

x′n p(yn||x′n) · r0(x′n||yn−d)

︸ ︷︷ ︸

f(xd)

≤
∑

xd

d∏

i=1

r1(xi|xi−1, yi−d)

︸ ︷︷ ︸

= 1

max
xd

∑

y1

max
xd+1

∑

y2

· · ·max
xn

∑

yn
n−d+1

p(yn||xn) log
p(yn||xn)

∑

x′n p(yn||x′n) · r0(x′n||yn−d)

︸ ︷︷ ︸

∈ R

= max
xd

∑

y1

max
xd+1

∑

y2

· · ·max
xn

∑

yn
n−d+1

p(yn||xn) log
p(yn||xn)

∑

x′n p(yn||x′n) · r0(x′n||yn−d)
,

where (a) follows Lemma 8, (b) follows from maximizing an expression overxn, and (c) follows from the fact

that the expression in the under-brace is a function ofxn−1, yn−d, and we can take it out of the summation over

xn and use
∑

xn
r(xn|xn−1, yn−d) = 1. The rest of the steps are the same as (b) and (c), where we refer to a

differentxi.

Since the inequality above is true for everyr1(xn||yn−d), we can use it onrc(xn||yn−d) that achievesCn, and

thus for everyr0(xn||yn−d)

Cn ≤ 1

n
max
xd

∑

y1

max
xd+1

∑

y2

· · ·max
xn

∑

yn
n−d+1

p(yn||xn) log
p(yn||xn)

∑

x′n p(yn||x′n) · r0(x′n||yn−d)
.

This is also true for everyr0(xn||yn−d), and hence for the minimum over allr0(xn||yn−d), and we obtain

Cn ≤ 1

n
min
r0

max
xd

∑

y1

max
xd+1

∑

y2

· · ·max
xn

∑

yn
n−d+1

p(yn||xn) log
p(yn||xn)

∑

x′n p(yn||x′n) · r0(x′n||yn−d)
,

and the lemma is proven.

The next part of Theorem 2 is to show that the bound is tight.

Lemma 10 . The upper bound in Lemma 9 is tight, and is obtained byr(xn||yn−d) that achieves the capacity.

Proof: In Lemma 9, we showed only half of the proof of the theorem, i.e., the existence of an upper bound. To

prove this lemma, we need to show that this inequality is tight. For that purpose, we use the Lagrange multipliers

method with the KKT conditions with respect to allr(xi|xi−1, yi−d)s. We can use the KKT conditions since the

directed information is a concave function in allr(xi|xi−1, yi−d)s, as seen in Lemma 3.

We define the Lagrangian as

J =
∑

xn,yn

r(xn||yn−d) · p(yn||xn) log
p(yn||xn)

∑

x′n p(yn||x′n) · r(x′n||yn−d)

−
n∑

i=1

∑

xi−1,yi−d

νi,(xi−1,yi−d)(
∑

xi

r(xi|xi−1, yi−d)− 1) +

n∑

i=1

∑

xi−1,yi−d

hi,(xi−1,yi−d)r(xi|xi−1, yi−d).

Now, for everyr(xi|xi−1, yi−d), we have

∂J

∂r(xi|xi−1, yi−d)
=

∑

xi+1,yi−d+1

r(xi+1|xi, yi−d+1) · · ·
∑

xn,yn−d

r(xn|xn−1, yn−d)·



26

∑

yn
n−d+1

p(yn||xn) log
p(yn||xn)

∑

x′n p(yn||x′n) · r(x′n||yn−d)
− νi,(xi−1,yi−d) + hi,(xi−1,yi−d).

Setting ∂J
∂r(xi|xi−1,yi−d)

= 0 we are left with two cases. Forr(xi|xi−1, yi−d) > 0 the KKT conditions requires us

to sethi = 0 and we obtain

∑

xi+1,yi−d+1

r(xi+1|xi, yi−d+1) · · ·
∑

xn,yn−d

r(xn|xn−1, yn−d)
∑

yn
n−d+1

p(yn||xn) log
p(yn||xn)

∑

x′n p(yn||x′n) · r(x′n||yn−d)
= νi,

whereas forr(xi|xi−1, yi−d) = 0 we sethi > 0 and the equality becomes an inequality.

We now analyze our results for the case wherer(xi|xi−1, yi−d) > 0. First, we note that fori = n we have that

∑

yn
n−d+1

p(yn||xn) log
p(yn||xn)

∑

x′n p(yn||x′n) · r(x′n||yn−d)
= νn,(xn−1,yn−d),

and thus constant for everyxn. As a result, fori = n− 1 we have

∑

xn,yn−d

r(xn|xn−1, yn−d)
∑

yn
n−d+1

p(yn||xn) log
p(yn||xn)

∑

x′n p(yn||x′n) · r(x′n||yn−d)

=
∑

yn−d

max
xn

∑

yn
n−d+1

p(yn||xn) log
p(yn||xn)

∑

x′n p(yn||x′n) · r(x′n||yn−d)

= νn−1,(xn−2,yn−d−1)

that again, is constant for everyxn−1. We can move backwards and obtain that fori = 1,

∑

x2

r(x2|x1) · · ·
∑

xd

r(xd|xd−1)
∑

xd+1,y1

r(xd+1|xd, y1) · · · r(xn|xn−1, yn−d)·

∑

yn
n−d+1

p(yn||xn) log
p(yn||xn)

∑

x′n p(yn||x′n) · r(x′n||yn−d)

=
∑

x2

r(x2|x1)max
xd
3

∑

y1

max
xd+1

· · ·max
xn

∑

yn
n−d+1

p(yn||xn) log
p(yn||xn)

∑

x′n p(yn||x′n) · r(x′n||yn−d)

︸ ︷︷ ︸

ν2,(x1)

= max
xd
2

∑

y1

max
xd+1

· · ·max
xn

∑

yn
n−d+1

p(yn||xn) log
p(yn||xn)

∑

x′n p(yn||x′n) · r(x′n||yn−d)

︸ ︷︷ ︸

ν1

= max
xd

∑

y1

max
xd+1

· · ·max
xn

∑

yn
n−d+1

p(yn||xn) log
p(yn||xn)

∑

x′n p(yn||x′n) · r(x′n||yn−d)
.

Using the analysis above, we find an expression forCn wherer(xn||yn−d) achieves it. In the following equations

we can assume thatr(xn||yn−d) > 0, since otherwise, for the specificxn, yn, the expression forCn will contribute

0 to the summation.

Cn =
1

n

∑

xn,yn

r(xn||yn−d) · p(yn||xn) log
p(yn||xn)

∑

x′n p(yn||x′n) · r(x′n||yn−d)
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=
1

n

∑

x1

r(x1)
∑

x2

r(x2|x1) · · ·
∑

xd

r(xd|xd−1)
∑

xd+1,y1

r(xd+1|xd, y1)

· · · r(xn|xn−1, yn−d)
∑

yn
n−d+1

p(yn||xn) log
p(yn||xn)

∑

x′n p(yn||x′n) · r(x′n||yn−d)

=
1

n

∑

x1

r(x1)max
xd

∑

y1

max
xd+1

· · ·max
xn

∑

yn
n−d+1

p(yn||xn) log
p(yn||xn)

∑

x′n p(yn||x′n) · r(x′n||yn−d)

(a)
=

1

n
max
xd

∑

y1

max
xd+1

· · ·max
xn

∑

yn
n−d+1

p(yn||xn) log
p(yn||xn)

∑

x′n p(yn||x′n) · r(x′n||yn−d)
,

where (a) is due to the analysis above fori = 1. We showed that the upper bound is tight, and thus the lemma is

proven.

Now we combine both lemmas to conclude our main theorem.

Proof of Theorem 2: As showed in Lemma 9, there exists an upper bound forCn. Lemma 10 showed that

this upper bound is tight, when using the PMFr(xn||yn−d) that achievesCn. Thus, the theorem is proven.

Generalization of Theorem 2We generalize Theorem 2 to the case where the feedback is a delayed function of

the output (as presented in Appendix A). We recall, that the optimization problem for this model is

max
r(xn||zn−d)

I(Xn → Y n).

While solving this optimization problem, we defined the following set:Ai,d,z = {yi−d : zi−d = f(yi−d)}; namely,

all output sequencesyi−d s.t. the function in the delay sends them to the same sequencezi−d. We use this notation

for the upper bound. In that case, the upper bound is of the form

IU =
1

n
max
xd

∑

z1

max
xd+1

· · ·
∑

zn−d

max
xn

∑

An,d,z

∑

yn
n−d+1

p(yn||xn) log
p(yn||xn)

∑

x′n p(yn||x′n) · r(x′n||zn−d)
.

The proof for this upper bound is omitted due to its similarity to the case wherezi = yi for all i, i.e., Theorem

2. Moreover, one can see that this is a generalization, sinceif indeedzi = yi, thenAn,d,z has only one sequence,

yn−d, and the equation forIU coincides with the one in Theorem 2.
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