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Abstract

We consider a Gaussian two-hop network where the source and the destination can communicate

only via a relay node who is both an eavesdropper and a Byzantine adversary. Both the source and the

destination nodes are allowed to transmit, and the relay receives a superposition of their transmitted

signals. We propose a new coding scheme that satisfies two requirements simultaneously: the transmitted

message must be kept secret from the relay node, and the destination must be able to detect any Byzantine

attack that the relay node might launch reliably and fast. The three main components of the scheme

are the nested lattice code, the privacy amplification and the algebraic manipulation detection (AMD)

code. Specifically, for the Gaussian two-hop network, we show that lattice coding can successfully pair

with AMD codes enabling its first application to a noisy channel model. We prove, using this new

coding scheme, that the probability that the Byzantine attack goes undetected decreases exponentially

fast with respect to the number of channel uses, while the loss in the secrecy rate, compared to the rate

achievable when the relay is honest, can be made arbitrarilysmall. In addition, in contrast with prior

work in Gaussian channels, the notion of secrecy provided here is strong secrecy.
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I. INTRODUCTION

Information theoretic secrecy, first proposed by Shannon [1], provides confidentiality of trans-

mitted information against an adversary regardless of its computational power. Shannon proved

that if the adversary has access to the signals transmitted by the sender of the secret message

through a noiseless channel, then, to achieve perfect secrecy from the adversary, the sender and

the receiver has to share a secret key of the same length as themessage. Although Shannon’s

result implied that secret communication was impractical in this setting, it was later shown

by Wyner [2] that this pessimistic result was a consequence of the noiseless channel assump-

tion. Specifically, it was shown that when the adversary has noisy observations of the signals

transmitted by the sender, a nonzero transmission rate for the secrecy message is achievable

without requiring the transmitter to pre-share a key with the receiver [2]–[4]. More recently, the

fundamental rate limits at which the secret communication can take place in the presence of an

eavesdropper were studied for a number of multi-terminal models, e.g., the broadcast channel [5],

[6], the two-way channel [7], [8], the multiple access channel [7] and the interference channel

[9], [10].

Secure communication for channel models with a relay node has been studied from a variety

of perspectives, including the relay node as a helper to the legitimate communication link [11],

or to an eavesdropper [12]. References [13]–[16] consider the case where the relay node itself

is the eavesdropper from whom the information transmitted from the source to the destination

must be kept secret. This setting, which provides theoretical foundations toward the utilization of

untrusted relay nodes in network design, is relevant in practice: The potentially untrusted routers

of today’s Internet routinely relay sensitive informationfor its users. The current approach is

that the authenticity and secrecy of the information is protected by security protocols assuming

these routers arelimited in computational power[17]. It is interesting to address the role of

these routers if they are computational power unlimited adversaries.

To answer this question, in [8], [14], [15], as a first step, weconsidered the case where the

relay node was “honest but curious”. This means that the curious relay node is not trusted with

confidential messages. On the other hand, it is honest, and thus conforms to the system rules

and performs the designated relaying scheme. Reference [14] considered the three-node relay

network with such a relay. References [8], [15] considered the two-way relay channel where two
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nodes could only communicate through such a relay node. In these works, we showed that if the

relay was not trusted but honest, recruiting it to help relayinformation wasusefulin achieving

a higher secrecy rate than simply treating the relay node as an eavesdropper. This effect is most

pronounced in the two-hop model studied in [15], in which theachievable rate is0 if the relay

node is excluded from communication, and increases to beingwithin 1bit of the rate of having

trusted relay if the untrusted relay node is properly utilized. Similar observations can be made

in networks with multiple confidential messages [16].

It is the next natural step to consider the problem where the relay node is curious and is

potentiallydishonest. This means that the relay can deviate from its designated behavior. This

can be as benign as the relay node experiencing a failure and stopping transmission, which is

obviously easy to detect. However, if the relay is a malicious entity (or is captured by one),

a more detrimental scenario can materialize. Specifically,the relay can attempt to deceive the

destination into accepting a counterfeit message by actively manipulating the signals it relays.

Such behavior is a “Byzantine attack” [18]. When the adversary is limited in computational

power, this type of attack can be detected via message authentication code or digital signatures

[17]. The security guarantee promised by these schemes is essentially based on the absence of

known effective attack strategies and the fact that their reliability can be proved if a very small

set of assumptions is made.

In this work, we tackle the case where the Byzantine adversary has unlimited computational

power. In an effort to demonstrate the simplest network which relies on an untrusted node

to communicate, we consider a two-hop network [15]. In contrast to reference [15], which

considered an honest but curious relay, we allow the relay node to actively modify the transmitted

signal in any way it desires. The goal of the destination thusbecomes detecting the message

that has been altered fast and reliably whenever the relay node chooses to do so.

Toward accomplishing this goal, there are several known results that can be leveraged, each

with their own limitations. For example, Byzantine attack detection can be viewed as an au-

thentication problem, by treating the counterfeit messageW ′ as a message from a “wrong”

source node. An information theoretic secrecy scheme with an authentication capability was

proposed in [19]. However, like other message authentication codes [20], the source has to share

an authentication key with the destination beforehand.

It is known, on the other hand, that to detect the Byzantine attack, which is a milder require-
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ment than authentication, it is not essential to share keys.In reference [21], the so-called algebraic

manipulation detection (AMD) code was used for encoding thedata from the source node which

ensures the probability that the Byzantine attack succeedscan be made arbitrarily small with

an arbitrarily small loss in rate. A limitation of this scheme is that it has to be used along with

a secrecy sharing scheme that has certainlinearity property [21], which is easily fulfilled in a

noiseless network as shown in [18], [22]. Indeed, in [22], weconsidered a deterministic two-hop

network and it was shown that by using AMD code, the probability that the Byzantine adversary

wins decreases exponentially fast with respect to the totalnumber of channel usesn′ while the

loss in rate can be made arbitrarily small. On the other hand,for noisychannels, secret sharing

schemes generally fail to have the required linearity property. As a result, to date the strongest

result that could have been obtained is that, for a noisy two-hop network, the probability that a

Byzantine attack goes undetected decreases exponentiallyonly with respect to
√
n′ in [22].

The main contribution of this work is to demonstrate that forthe Gaussian two-hop network,

the probability that a Byzantine attack goes undetected, i.e., the adversary wins, also decreases

exponentially fast with respect ton′, while the loss in secrecy rate can be made arbitrarily

small. Hence, the same result achievable for the deterministic two-hop network is attainable for

this noisy two-hop network. This represents a departure from traditional security approaches

that assume a noiseless bit pipe for communication and brings the physical characteristics of

the channel into the picture while providing a guarantee thought to be possible only with the

noiseless setting. The key to prove this result is the introduction of a new strong secrecy scheme.

Its existence is proved via the representation theorem derived in [10], [23] and the privacy

amplification technique presented in [24], [25]. Compared to previously known strong secrecy

schemes, the main differences are:

1) Unlike the randomly generated codes in [26], the decoder of the new scheme is linear for

certain rate configurations.

2) Unlike [10], [23], the codeword consists of a single lattice point rather than multiple

lattice points. This allows the mutual information betweenthe confidential message and

eavesdropper’s observation to decrease exponentially with respect ton′. Hence the notion

of secrecy provided by this scheme is stronger than commonlyused strong secrecy scheme,

which only requires this mutual information to vanish with respect ton′.
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The first item provides the linear property required by AMD code. The stronger-than-usual

secrecy notion in the second item is essential in preservingthe Byzantine detection performance

offered by AMD code. As will be shown in Section VI, the commonly used strong secrecy

notion, as in [25], [27], is insufficient for this purpose.

There is other work in Byzantine detection from which this work differs. Notably, reference

[28] proposed to use the sender of the confidential message tomonitor the behavior of the relay

node. This so-called “watchdog” scheme could also have beenused in the setting we consider if

the message in transmission were not to be kept secret from the relay node. However, when the

message is confidential, using a “watchdog” is not possible.This is because there is no direct link

between the two legitimate communicating nodes which meansthe sender has no information

regarding the signals transmitted by the destination. As will be explained in Section IV, these

signals are necessary in order to deploy cooperative jamming [7] to keep the message secret

from the relay node, see also [15]. Since the received signals at the relay is garbled by signals

transmitted by the destination, so are the signals transmitted from it. This prevents the source

from detecting whether the relay misbehaves by just lookingat its transmitted signals without

the knowledge of the signals transmitted from the destination.

This work should also be differentiated from references [29]–[32]. In these works, the adver-

saries can also actively manipulate the signals received bythe destination. However, the purpose

is to find a way for reliable communication in the presence of such adversaries carrying out

the worst-case attack. In the two-hop network considered inthis work, this is not possible since

there is no direct link between the two legitimate communicating nodes. Hence, when Byzantine

behavior is detected, we need to forgo the relay.

The remainder of the paper is organized as follows: In Section II, we describe the system

model and formulate the Byzantine detection and secrecy problem. In Section III, we review

known Byzantine detection schemes, in particular, the AMD code and describe the technical

obstacles to be overcome in this work. Section IV-VI describe the main components of strongly

secure scheme proposed in this work and how it can be combinedwith AMD codes for Byzantine

detection purpose. Section VII concludes the paper.
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Fig. 1. The Gaussian two-hop network. Phase 1 is indicated bysolid line, and phase 2 by dashed line. R/E: Relay/Eavesdropper.

Y1 is not shown.

II. SYSTEM MODEL AND PROBLEM FORMULATION

The Gaussian two-hop network with a Byzantine relay node is shown in Figure 1. In this

model, node1 wants to send a confidential messageW to node2. Since it can not communicate

with node2 directly, it recruits the help of a relay node, who is not trusted with the message

W . The signal received by the relay node consists of the signals transmitted by both node1 and

2, and the signal broadcasted by the relay node is heard by bothnodes as well. These are fitting

assumptions for wireless communication. LetXi, i = 1, 2, Xr denote the signal transmitted by

node1, 2 and the relay. LetYi, i = 1, 2 andYr denote their received signals respectively. After

normalizing the channel gains, we have

Yr = X1 +X2 + Zr (1)

Y2 = Xr + ZR, Y1 = hXr + Z ′
R (2)

whereZr, ZR and Z ′
R are independent Gaussian random variables with zero mean and unit

variance.h is the normalized channel gain. SinceY1 is not used in the scheme described in this

work, it is omitted in Figure 1 for clarity. We assume each node is half-duplex. For simplicity,

we assume the relay node transmits during half of all channeluses. Without loss of generality,

we assume node1 and 2 do not transmit when the relay node transmits since the relaynode

can not receive and relay their transmitted signals simultaneously. We also assume during then

channel uses that the relay node transmits, its transmission power averaged over these channel

uses should not exceed̄P . During the remainingn channel uses that node1 and2 may transmit,
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the transmission power of each of these two nodes averaged over these channel uses should not

exceedP̄ .

We assume the Byzantine adversary at the relay node can employ any stochastic function to

compute its current transmitted signal. LetXr,i be its transmitted signal at theith channel use.

Let Mr be the local randomness available to the relay node. LetY i−1
r be the signals it received

in the past. LetW be the confidential message it is currently relaying. Letfi be the relaying

function. Then the attacker (relay) can compute:

Xr,i = fi(Mr, Y
i−1
r ,W ) (3)

It might seem inconsistent at first glance to assume the Byzantine adversary knows the message,

which should be kept secret from the relay node in the first place. However, when the possible

choice for W are limited, for example, to being binary, the attacker has anon-negligible

probability of success for guessing it. This can also happenwhen the channel is used to transmit

data with high redundancy and stringent latency requirement, so that adjacent messages are

highly likely to share the same value. If, somehow, the adversary has access to earlier messages,

it can guess the value of the current message with high probability of success. As a result, it is a

common practice to design a reliable message authentication scheme by assuming the adversary

knows the message [20, Definition 4.2]. Here too, we follow this convention.

The Byzantine detection problem for secure communication using an untrusted relay can be

stated as follows:

Let the total number of channel uses ben′ = 2n, during which each node transmits duringn

channel uses. Let̂W be the estimate ofW computed by the destination, i.e., node 2, based on

its observation. Note that because the relay can be a Byzantine adversary, node2 may or may

not acceptŴ as a genuine message from node1 based on certain criteria.

Definition 1: [20] A function of n, γn is negligible if for any polynomial ofn with a finite

degreepoly(n), we have:

lim
n→∞

poly(n)γn = 0 (4)

We wish to find the secrecy rateRe of W , defined as

Re = lim
n→∞

1

n′
H (W ) (5)
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such that the following conditions hold:

1) When the relay node is honest, andW is uniformly distributed over the message set, then

bothPr
(

W 6= Ŵ
)

and

Pr
(

Ŵ is not accepted by Node 2|W = Ŵ
)

(6)

should be negligible as per Definition 1. Hence, the transmission ofW is reliable.

2) For ∀w0 in the message set, the probability that the adversary wins,Pr(A wins), given

by

Pr(A wins) = Pr
(

Ŵ is accepted by Node 2|W = w0,W 6= Ŵ
)

(7)

is negligible. Hence any modification onW is detected reliably.

3) I (W ; Y n
r ) is negligible. SinceY n

r is the observation of the eavesdropper, this means the

information that the adversary has regarding the value ofW is negligible.

Remark 1:Observe that the condition of reliable Byzantine detectionin 2) is independent

from the distribution ofW .

III. K NOWN BYZANTINE DETECTION SCHEMES

As mentioned in the introduction, when there are no secrecy concerns at the relay, whether

the relay is honest or not can be checked by the source node, i.e., node1, by examiningY1.

However, since there are secrecy constraints in our model, applying sender-based Byzantine

detection approach is not feasible. Therefore, we will concentrate on a receiver-based approach

called algebraic manipulation detection (AMD) code in the sequel.

AMD code was formally defined in [21]. An AMD codeword is composed of three parts:

{s, x, h}, wheres is thed× 1 vector onGF(qr) representing the message. The componentx is

called the random seed and is generated fromGF(qr) by the encoder itself.h is the hash tag

and is computed according to thehash rule:

h = xd+2 +
d
∑

i=1

six
i (8)

wheresi is the ith component ofs and the addition and multiplication is defined overGF(qr).

Suppose the node2 receivess′, x′, h′, wheres′ 6= s. Let ∆x = x′ − x. ∆h = h′ − h. Then [21]

has the following result:
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Theorem 1: [21, Theorem 2] Assume at least one ofs′ − s,∆x,∆h is not zero. If the

distribution of x conditioned on{∆x,∆h, s
′, s} is uniform over the fieldGF(qr), q being a

prime, andd + 2 is not divisible byq, then the probability that the hash rule (8) holds for

{s′, x′, h′} is bounded byd+1
qr

.

Remark 2:The rate of the AMD code is d
d+2

. The rate can be made arbitrarily close to1 by

choosing a large enough value ford.

On the other hand, an AMD codeword can be represented by less than (d + 2)r log2 q + 1

bits. Hence, if we fixd and q, the codeword length is a linear function ofr. Consequently, for

a given code rate, the probability that{s′, x′, h′} can pass the hash rule check (8) decreases

exponentially fast with respect to the codeword length.

Despite the excellent performance of the AMD code, applyingit in a noisy channel is

difficult. This is exemplified by the condition in Theorem 1: The distribution ofx conditioned

on {∆x,∆h, s
′, s} must be uniform over the fieldGF(qr). In a noisy channel, in general,∆x

and x are not independent. In the two-hop network considered in this work, this can be seen

from the expression of∆x. Let g be the decoding function used by node2. Let Y n
2 be the signal

received by node2 if relay is honest. Otherwise, we denote it with̃Y n
2 . Assuming the decoding

result is correct at all nodes if the relay is honest. In this case,∆x is given by:

∆x = x′ − x (9)

=g
(

Ỹ n
2 , X

n
2

)

− g (Y n
2 , X

n
2 ) (10)

By observing (10), we notice the condition in Theorem 1 can befulfilled if g is linear in its

first parameter and̃Y n
2 − Y n

2 is independent fromx. In general,g is not linear. Even if this is

the case, it is also difficult to achieve independence between Ỹ n
2 − Y n

2 and x. Since bothỸ n
2

andY n
2 are signals transmitted by the relay corrupted by the channel noise, the joint distribution

of Ỹ n
2 − Y n

2 and x can be made close to an independent distribution if the relaynode has

negligible information regarding the value ofx. But it remains to see whether the performance

guarantee in Theorem 1 can be preserved whenỸ n
2 − Y n

2 andx are almost independent rather

than truly independent. In the sequel, we will propose a strong secrecy scheme that overcomes

these problems.
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IV. L ATTICE CODING SCHEME

We first briefly review the communication scheme when the relay is “honest but curious”, on

top of which we will build the strong secrecy scheme and the Byzantine detection scheme in

the sequel.

Since each node is half-duplex, naturally we have a two-phase scheme. In phase one, nodes1

and2 transmit, and the relay node receives. In phase two, the relay transmits. For simplicity, we

assume that each phase occupies the same number of channel uses. It was shown in [15] that

these two phases can be used to facilitate the transmission of the confidential messageW from

node1 to 2: The channel alternates between phase one and phase two. During phase one, node

1 transmits the confidential message viaX1 and at the same time node2 sends a signalX2 to

jam the relay node. During phase two, the relay node transmits to node2 based on the signal it

received during phase one. Since node2 knowsX2, it can subtract it to obtain a clean signal.

The relay node, however, does not knowX2 and hence can only observe a noisy version ofX1.

Intuitively, this means node1 can transmit to node2 at a rate higher than the relay node can

decode, and that this excess rate can be used to convey confidential messages. This idea was

formalized in [15] using compress-and-forward relaying and in [23] using compute-and-forward

relaying. In this work, we focus on the compute-and-forwardscheme as it offers the algebraic

structure that facilitates detection of a Byzantine attack.

In the compute-and-forward scheme, the signals transmitted by the two legitimate nodes are

taken from the same nested lattice codebook. This scheme wasfirst proposed in [33] for a

Gaussian two-way relay channel without eavesdroppers. Later, the scheme was used in [23] as

a building block to transmit confidential messages when the relay is honest but curious, i.e., is

an eavesdropper but not a Byzantine adversary. The lattice coding scheme is described next for

completeness:

We begin by introducing basic notations for the nested lattice structure: For a latticeΛc, the

modulus operationx mod Λc is defined asx mod Λc = x− argmint∈Λc
d(x, t), whered(x, t) is

the Euclidean distance betweenx andt. The fundamental region of a latticeV(Λc) is defined as

the set{x : x mod Λc = x}. A pair of N-dimensional lattices{Λ,Λc} is said to have a nested

structure ifΛc ⊂ Λ [34].

Now consider a pair ofN-dimensional nested lattice pair{Λ,Λc} which is properly designed
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as in [34]. The signal transmitted by each node is given by

XN
i =

(

tNi + dNi
)

mod Λc, i = 1, 2 (11)

where tNi ∈ Λ ∩ V (Λc), and dNi , i = 1, 2 are two fixed vectors inV (Λc) and are known by

the relay node. For our purpose,tN1 will be computed from the confidential message.tN2 is

independent fromtN1 and is chosen fromΛ ∩ V (Λc) according to a uniform distribution. As a

result,XN
2 = tN2 +dN2 mod Λc serves as the jamming signal to confuse the untrusted relay node.

An honest relay node will then decodetN1 + tN2 mod Λc and transmittN1 + tN2 + dN3 mod Λc

during phase two, wheredN3 is a fixed vector inV (Λc) and is known by node2. Node2 then

decodeŝtN = tN1 + tN2 mod Λc from the signal it received during phase two. An estimate oftN1 ,

denoted bŷtN1 , is then by computed from̂tN − tN2 mod Λc.

Define |S| be the cardinality of a setS. DefineR0 as

R0 =
1

N
log2 |Λ ∩ V (Λc) | (12)

Then it was shown in [33] that, if

R0 <
1

2
log2(

1

2
+ P ) (13)

the probabilityPr(t̂N1 6= tN1 ) decreases exponentially with respect toN .

Remark 3: It is clear that if the relay chooses to transmittN3 + dN3 mod Λc for some arbitrary

tN3 ∈ Λ ∩ V (Λc), then node2 will be forced to accept a message that is not originated from

node1. This shows that unless some proper measure is taken, Byzantine attack can quite easily

succeed in this scenario.

Remark 4:dNi , i = 1, 2, 3 are conventionally defined as random variables uniformly distributed

over V(Λc) [34]. The reason of defining them to be random is that it is easier to analyze the

average error performance of an ensemble of lattice code books parameterized by the dithering

vectors than to analyze the error performance of a specific lattice code book [35]. However,

from the result on the average performance, we can also claimthat there must exist some

fixed dNi , i = 1, 2, 3, which corresponds to fixed lattice codebooks in the ensemble, and these

dNi , i = 1, 2, 3 also provide vanishing error probability and meet the average power constraints

[10]. Hence in the sequel we assumedNi , i = 1, 2, 3 are fixed.
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Fig. 2. The lattice input Wiretap Channel

V. USING NESTED LATTICE CODES TOPROVIDE STRONG SECRECY

For the lattice coding scheme described in Section IV, the two-hop network is equivalent

to the lattice input wiretap channelshown in Figure 2. The main channel takes inputtN1 ∈
Λ ∩ V(Λc), and produces output̂tN1 . The eavesdropper channel also takes inputtN1 , and has the

same observation as the signals received by the relay node inthe two-hop network. The only

difference from the original two-hop network is that in the two-hop network, it takes another

N channel uses for the relay to relay the lattice point to node2 during which node1 and2 do

not transmit. Here, to simplify the argument, we omit this detail and will take these additional

channel uses into account when we revisit the two-hop network in Section VI. Here, we simply

assume that in the lattice-input wiretap channel, the transmitter transmits in each channel use

and its average power constraint is given byP .

In the sequel, we will design a coding scheme for the lattice-input wiretap channel to transmit

a confidential messageW reliably such that the following strong secrecy condition holds:

I(W ; Y N
r ) < exp(−ᾱN), ᾱ > 0 (14)

A sufficient condition for (14) to hold is:

I(W ; Ȳ N
r ) < exp(−ᾱN), ᾱ > 0 (15)

whereȲ N
r is obtained by subtracting the channel noiseZN

r from Y N
r :

Ȳ N
r = (tN1 + dN1 ) mod Λc + (tN2 + dN2 ) mod Λc (16)

A. Strongly Secure Scheme
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1) WhenΛc = qΛ for a primeq: The self-similar nested lattice code with prime nesting ratio,

i.e.,Λc = qΛ, is a special case of the good nested lattice ensemble proposed in [34, Section 7].

We first consider this case since whenq is a prime, the set(Λ + dN) ∩ V (Λc) is isomorphic to

a finite field, as shown by the following lemma:

Lemma 1:When Λc = qΛ for a prime q and the generation matrix ofΛ has full rank,

(Λ + dN) ∩ V (Λc) , for the modulus-Λc plus operation, is isomorphic to the group of a finite

field GF(qN).

Proof: The proof is provided in Appendix A.

Remark 5:The isomorphism in Lemma 1 is not affected by the choice ofd. The fixed dithering

vectord is simply used to control the average power of the lattice code book.

As we will show later in the proof of Theorem 2, the isomorphism property proved by Lemma 1

allows the resulting decoder to be linear and proves to be of critical importance in the Byzantine

detection scheme in Section VI.

The next theorem declares the existence of the strong secrecy scheme.

Theorem 2:For a given constantε > 0 that can be arbitrarily small, assumeq is a prime

large enough such that

1− 1 + ε

log2 q
> 0 (17)

Then for an integerr, such that

0 ≤ r ≤ N

(

l−
1 + ε

log2 q

)

(18)

there exists a linear mappingg from GF(q)N to GF(q)r such that

1) g has full row rankr.

2) WhentNi , i = 1, 2 are uniformly distributed over(Λ + dNi ) ∩ V (Λc) and are independent

of each other, there exists a positive constantβ such that

I
(

g
(

tN1
)

; Ȳ N
r

)

≤ 2e−βN (19)

Before proving the theorem, we need several supporting results:

First, the following representation theorem from [23] is useful:

Theorem 3: [23] For anyu1, u2, such thatui ∈ V (Λc) , i = 1, 2,
2
∑

k=1
uk is uniquely determined

by {T,
2
∑

k=1
uk mod Λc}, whereT is an integer such that1 ≤ T ≤ 2N .
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Based on Theorem 3,̄Y N
r in (16) can be represented by{(∑2

i=1(t
N
i + dNi )) mod Λc, T}. Since

dNi , i = 1, 2 are known by each node, this meansȲ N
r in (16) can be represented by{(tN1 +

tN2 ) mod Λc, T}.

We also need the following result which says most matrices have full rank:

Lemma 2:Let G be taken from the set of linear mappings fromGF(q)N to GF(q)r according

to a uniform distribution. HenceG can be represented as a matrix overGF(q) with r rows and

N columns. The probability thatG has full row rank is greater than1− qr−N .

Proof: Let gi, i = 1, ..., r be theith row of G. ThenG does not have full row rank if and

only if

a1g1 + a2g2 + ... + argr = 0, ai ∈ GF(q) (20)

Since at least oneai has to be non-zero, there areqr − 1 possible choices forai.

For each choice of{ai}, since oneai is not zero, there areqN(r−1) solutions for{gi}. Hence

there are at mostqN(r−1)(qr − 1) Gs that do not have full row rank. There areqNr possibleGs

in all, each chosen with equal probability. Hence the probability that G does not have full row

rank smaller thanqr−N , and we have Lemma 2.

Finally, we need the following results on privacy amplification [24], which we state here for

completeness: We begin with a couple of useful definitions:

Definition 2: For a discrete random variableX, the Rényi entropyH2(X) is defined as

H2(X) = − log2
∑

x

Pr(X = x)2 (21)

The Shannon entropyH(X) is defined as

H(X) = −
∑

x

Pr(X = x) log2 Pr(X = x) (22)

Definition 3: [24, Definition 1] A set of functionsA → B is a class ofuniversal hash function

if for a functiong taken from the set according to a uniform distribution, andx1, x2 ∈ A, x1 6= x2,

the probability thatg(x1) = g(x2) holds is at most1/|B|.
We next state the results based on these definitions:

Lemma 3: [24] The set of linear mapping as defined in Lemma 2 is a class ofuniversal hash

function.
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Theorem 4: [24, Corollary 4] LetG be selected according to a uniform distribution from a

class of universal hash function fromA to GF(q)r. For two random variablesA,B, A being

defined overA, if for a constantc, H2(A|B = b) > c, then

H(G(A)|G, B = b) > r log2 q −
2r log2 q−c

ln 2
(23)

With these preparations, we are now ready to prove Theorem 2:

Proof of Theorem 2:Definea⊕b asa+b mod Λc. Then for the distribution fortNi , i = 1, 2

stated in Theorem 2,tN1 ⊕ tN2 is independent fromtN1 . Therefore we have:

H2

(

tN1 |tN1 ⊕ tN2 = tN
)

= H2

(

tN1
)

= N log2 q (24)

Let T be the integer defined in Theorem 3. Then according to [36, P 106, Theorem 5.2] [25,

Lemma 3], for a given integera, 1 ≤ a ≤ 2N andtN ∈ Λ∩V(Λc), with probability1−2−(s/2−1):

H2

(

tN1 |tN1 ⊕ tN2 = tN , T = a
)

≥ H2

(

tN1 |tN1 ⊕ tN2 = tN
)

− log2 |T | − s (25)

=N (log2 q − 1)− s (26)

In Lemma 1, we have shown that ifΛc = qΛ, with q being prime, thenΛ∩V(Λc) is isomorphic

to GF(qN). The isomorphism is with respect to the addition operation defined in these two sets.

Since tN1 ∈ Λ ∩ V(Λc), we can writetN1 ∈ GF(qN). Moreover, sinceGF(qN) is isomorphic

to GF(q)N in terms of the addition operation defined in these two sets, we can further write

tN1 ∈ GF(q)N . LetG be taken from the set of linear mappings fromGF(q)N toGF(q)r according

to a uniform distribution. ThenG(tN1 ) is well defined.

According to Lemma 3,G is a universal hash function. Hence, according to Theorem 4,we

have:

H
(

G
(

tN1
)

|G, tN1 ⊕ tN2 = tN , T = a
)

≥ r log2 q −
2r log2 q−c

ln 2
(27)

wherec is given by (26):

c = N(log2 q − 1)− s (28)

Since depending on the value oftN anda equation (26) holds with probability1− 2−(s/2−1),

from (27), we have

H
(

G
(

tN1
)

|G, tN1 ⊕ tN2 , T
)

≥
(

1− 2−(s/2−1)
)

(

r log2 q −
2r log2 q−c

ln 2

)

(29)
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Note that

H(G(tN1 )|G) ≤ r log2 q (30)

Hence in order forI(G(tN1 ); t
N
1 ⊕ tN2 , T |G) to be negligible, we expect2−(s/2−1) and 2r logq −c

to decrease exponentially with respect toN . To achieve this, we chooses = ε′N , where0 <

ε′ < log2 q − 1 so thatc in (28) is positive. We chooser such that forδ > 0:

r log2 q < c−Nδ (31)

= N (log2 q − 1)− s−Nδ (32)

= N (log2 q − 1− ε′ − δ) (33)

We observe that if (31)-(33) are satisfied,2r logq −c to decrease exponentially with respect toN .

We also observe that if we letε = ε′ + δ, then (31)-(33) lead to (18).

For these choices ofr and s, from (29) and (30), we observe that there existsβ > 0, such

that

I
(

G
(

tN1
)

; tN1 ⊕ tN2 , T |G
)

≤ e−βN (34)

We next use the fact that for sufficiently largeN , mostGs have full row rank as shown in

Lemma 2. Therefore, for a uniform distribution fortNi , i = 1, 2, tN1 and tN2 being independent,

there must exists aG = g, such that

1) g has full rank.

2) From Markov inequality,

I
(

G
(

tN1
)

; tN1 ⊕ tN2 , T |G = g
)

≤ 2e−βN (35)

Finally, we use Theorem 3, which saystN1 ⊕ tN2 , T in (35) can be replaced bȳY N
r . Hence we

have proved Theorem 2.

The secrecy generation scheme described above will not be useful if the generated random

variable,g(tN1 ), can not serve as the random seed,x, in the AMD tuple as described in Section III.

Hence we need the following lemma on the distribution ofg(tN1 ).

Lemma 4: If tN1 is uniformly distributed overGF(qN), andg has full row rank, Theng(tN1 )

is uniformly distributed overGF(qr).
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Proof: Sinceg has full row rank, and its elements are taken from the fieldGF(q), it can

always be represented as

g = [I,P]O (36)

whereO is anN×N invertible matrix. HenceO(tN1 ) is uniformly distributed overGF(qN). I is

an r× r identity matrix. Since the sum of any two independent field elements will be uniformly

distributed if one of the field element is uniformly distributed, it can be verified thatg(tN1 ) is

uniformly distributed overGF(qr).

2) The General Case:When (Λ,Λc) does not have the self-similar relationship as described

in Section V-A1, we can still extract a strongly secure random variable from a lattice point using

the same method as shown in Section V-A1. The only differenceis that the map between the

extracted random variable and the lattice point will not be linear.

Consider a generalN dimensional nested lattice codebookΛ ∩ V (Λc). Recall thatR0, as

defined in (12), is the rate of the codebook. AssumeR0 > 1. Let ⌊x⌋ be the operation that

roundsx to the nearest integer less than or equal tox. DefineN0 as

N0 = ⌊log2 |Λ ∩ V (Λc) |⌋ (37)

Then

N0 ≥ NR0 − 1 (38)

Choose the subsetK of the codebook(Λ+dN1 )∩V (Λc) that yields the minimal average decoding

error probability with the lattice decoder and has size|K| = 2N0 . Define v as the one-to-one

mapping fromK to GF(2N0). Then we have the following theorem:

Theorem 5:Let ε > 0 be a constant such that

R0 − 1− ε > 0 (39)

Then for an integerr0, such that

0 ≤ r0 ≤ N(R0 − 1− ε) (40)

there exists a linear mappingg from GF(2)N0 to GF(2)r0 such that

1) g has full row rankr0.
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2) WhentN1 is uniformly distributed overK, tN2 is uniformly distributed over(Λ+dN2 )∩V (Λc),

tN1 , t
N
2 are independent of each other, we have

I
(

g
(

v(tN1 )
)

; Ȳ N
r

)

≤ 2e−βN (41)

for a certainβ > 0.

Proof: The proof is similar to that of Theorem 2, and is given in Appendix B.

3) Encoder Construction:Although both Theorem 2 and Theorem 5 can be used to prove the

existence of an encoder with rate arbitrarily close tomax{R0 − 1, 0}, with R0 defined in (12),

only Theorem 5 is used in the sequel to transmit confidential messages. Theorem 2 is only used

to generate strongly secure random seeds, for which Theorem2 is sufficient by itself. Hence in

this section, we discuss Theorem 5 only. The argument we use is as follows:

For a giveng that has full row rank, letg′ be (N0 − r0)×N0 matrix such that







g′

g





 is a

square matrix that is invertible. DefineS andS′ such that






g′
(N0−r0)×N0

gr0×N0






v(tN1 ) =







S′
(N0−r0)×1

Sr0×1






(42)

ThenS = g(v(tN1 )). DefineA as the inverse of







g′

g





, then the encoder is given by:

tN1 = v−1A







S′
(N0−r0)×1

Sr0×1





 (43)

whereS ∈ GF(2r0) be the input to the encoder. We assumeS is uniformly distributed over

GF(2r0). tN1 ∈ Λ ∩ V(Λc) is the output of the encoder.S′ represents the randomness in the

encoding scheme. We observe that, if{S′
(N0−r0)×1,Sr0×1} is uniformly distributed overGF(2)N0

and (43) is used as the encoder,tN1 is also uniformly distributed over the setK. SinceG = g

is chosen whentN1 has a uniform distribution overK, this means that when (43) is used as an

encoder, the secrecy constraint in Theorem 5, (41), still holds.

Since the encoder (43) usesN channel uses to transmit ar0 × 1 binary vector, the achieved

secrecy rate is

Re = [R0 − 1− ε]+ (44)
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where[x]+ equalsx if x ≥ 0 or 0 otherwise. According to (13), this meansRe can be arbitrarily

close to
[

1

2
log2(

1

2
+ P )− 1

]+

(45)

B. Comparison with Other Wiretap Coding Schemes

Although this work leverages the same technique, namely, privacy amplification as [25], it is

distinct from [25] in the following aspects:

Reference [25] proposed that one can invoke any weakly secure scheme multiple times and

extract a strongly secure key using privacy amplification. Let Θ(x) denote the set of functions

ax+ b, a > 0, b 6= 0, anda, b are constants. In our model, each invocation of the weakly secure

scheme involvesΘ(N) channel uses, whereN is the dimension of the lattice code. Suppose this

scheme is invoked forM times. Then the total number of channel uses isMN . Let K denote

the generated key andY MN
r be the signals observed by the eavesdropper, then the resultin [25]

implies 1

lim
M→∞

I
(

K; Y MN
r

)

= 0 (46)

In this work,g(tN1 ) in Theorem 2 can be viewed as the strongly secure key. Based onTheorem 2,

we have

lim
N→∞

− 1

N
log2 I

(

K; Y N
r

)

> 0 (47)

Comparing (47) to (46), we observe (47) is stronger. This is because the strongly secure scheme

in Section V-A leverages results specific to nested lattice code, namely Theorem 3 and extracts

the key from a single lattice point instead of a sequence of lattice points. Hence, while the

scheme we proposed in Section V-A is not as generally applicable as [25] does, we observe that

it performs better than applying [25] directly to our model.

1To simplify the argument, we have omitted several details from [25] including “error reconciliation”. Interested readers can

refer to [25] for further details.
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VI. BYZANTINE DETECTION

In this section, we describe how to transmit the AMD code using the strong secrecy scheme

proposed in Section V and analyze its performance.

To transmit{x, h}, we use the idea of “message authentication codes with key manipulation

security” in [21, Section 4]. Note that for a givens, the distribution of hash tagh is in general

not uniform. Hence the distribution ofh depends on the distribution ofs. However, if we want to

use the strongly secure scheme in Section V-A to transmith and desire to fix the hash function

G = g, we need to know the distribution ofh beforehand, which is difficult since the distribution

of s is hard to determine beforehand. To solve this problem, we introduce another random seed

k from GF(qr), which can be generated via the linear coding scheme in Section V-A. From

Lemma 4,k is uniformly distributed overGF(qr). Henceh can be transmitted by usingk as a

one time pad.

The transmission is hence divided into 4 stages:

1) x ∈ GF(qr) is extracted from anN dimensional lattice code as shown in Section V-A1.

2) k ∈ GF(qr) is extracted from anN dimensional lattice code as shown in Section V-A1.

Let k̂ be the estimate of it computed by node2. Let P1 be the average power per channel

use of theN dimensional lattice code.

3) u = h ⊕ k is transmitted by node1 via the conventional two-hop protocol usingr-

dimensional lattice code withlog2 q per channel use. In this stage, node2 remains silent.

Let û be the estimate of it computed by node2. Let P2 be the power per channel use of

the r dimensional lattice code.

4) s is transmitted via the encoder described in Section V-A2 with P = P̄ (1 − εP ). εP is a

positive constant that can be made arbitrarily small. Letŝ be the estimate ofs computed

by node2, which corresponds tos′ in Theorem 1.

Remark 6:Note that bothP1 andP2 are only functions of the rate of their respective lattice

code, which islog2 q. HenceP1 andP2 are only functions ofq. Therefore, we can increaser,

while leavingP1, P2 unchanged.

We next derive the following important lemma which implies the condition of AMD code

stated in Theorem 1 can be fulfilled using the transmission scheme described above:
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Lemma 5:Let s0 be anyd× 1 vector onGF(qr). Then

I (x; ∆x,∆h, ŝ|s = s0) < 4 exp(−βN) (48)

whereβ is a positive number defined in Theorem 2.

Proof: The proof of Lemma 5 is based on the strong secrecy offered by Theorem 2 and

Theorem 5, and is provided in Appendix C.

Remark 7:Lemma 5 implies that

I (x; ∆x,∆h, ŝ|s) < 4 exp(−βN) (49)

SinceI(x; s) = 0, this means

I (x; ∆x,∆h, ŝ, s) < 4 exp(−βN) (50)

Remark 8:Note thatI (x; ∆x,∆h, ŝ|s = s0) does not dependent on the error exponents of the

lattice decoder. Also, it does not depend on whethers0 is known by the attacker beforehand.

We next link Lemma 5 and Theorem 1 with Pinsker’s inequality which leads to the following

main result of this paper:

Theorem 6:For the Gaussian two-hop network, for a rate smaller but arbitrarily close to0.5Re

given by (45), and a total number of channel uses2n = Θ(N):

1) When the relay is honest, the confidential messageW can be transmitted at this rate such

that all the three termsPr(W 6= Ŵ ), I(W ; Y n
r ) and

Pr
(

Ŵ is not accepted by Node 2|W = Ŵ
)

(51)

decrease exponentially fast withN .

2) When the relay is not honest, the probability that the Byzantine attack goes undetected,

i.e., the probability that the adversary wins, denoted asPr(A wins) in (7), decreases

exponentially fast withN .

Proof: We use “HRH” for “hash rule holds” when fors 6= s′,

xd+2 +
d
∑

i=1

six
i = x′d+2 +

d
∑

i=1

s′ix
′i +∆h (52)
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This means the messages′, x′, h′ will be accepted by node2. Hence the probability that the

adversary wins is given by:

Pr (A wins)

=
∑

x,∆x

∆h,s
′ 6=s0

Pr (HRH|x,∆h,∆x, s = s0, s
′)

Pr (x|∆h,∆x, s = s0, s
′) Pr (∆h,∆x, s

′|s = s0)

(53)

DefineQ(A wins) as the term (53) withPr (x|∆h,∆x, s = s0, s
′) replaced byPr(x).

Q (A wins)

=
∑

x,∆x

∆h,s
′ 6=s0

Pr (HRH|x,∆h,∆x, s = s0, s
′)

Pr (x) Pr (∆h,∆x, s
′|s = s0)

(54)

Note thatQ (A wins) would be the probability that the Byzantine adversary wins if x and

∆h,∆x, s, s
′ are truly independent. To evaluate the effect of being otherwise, we next bound the

difference betweenPr (A wins) andQ (A wins).

|Pr (A wins)−Q (A wins) | (55)

≤
∑

x,∆x

∆h,s
′ 6=s0

Pr (HRH|x,∆h,∆x, s = s0, s
′)

|Pr (x|∆h,∆x, s = s0, s
′)− Pr (x) |

Pr (∆h,∆x, s
′|s = s0)

(56)

≤
∑

x,∆x

∆h,s
′ 6=s0

|Pr (x|∆h,∆x, s = s0, s
′)− Pr (x) |

Pr (∆h,∆x, s
′|s = s0)

(57)

=
∑

x,∆x

∆h,s
′ 6=s0

|Pr (x|∆h,∆x, s
′, s = s0)− Pr (x|s = s0) |

Pr (∆h,∆x, s
′|s = s0)

(58)

=
∑

x,∆x

∆h,s
′ 6=s0

|Pr (x,∆h,∆x, s
′|s = s0)− Pr (x|s = s0) Pr (∆h,∆x, s

′|s = s0) | (59)

≤
∑

x,∆x

∆h,s
′

|Pr (x,∆h,∆x, s
′|s = s0)− Pr (x|s = s0) Pr (∆h,∆x, s

′|s = s0) | (60)

Then we use Pinsker’s inequality [37, Theorem 2.33]:

I(A;B) ≥ 1

2 ln 2
D2(p (A,B) , p (A) p (B)) (61)

whereD(p(x), q(x)) =
∑

x |p(x)− q(x)|.
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Let p(A) bePr(x|s = s0). Let p(B) bePr(∆h,∆x, s
′|s = s0). Let p(A,B) be given by:

p(A,B) = Pr(x,∆h,∆x, s
′|s = s0) (62)

Then from Lemma 5, (60) is bounded by
√

(8 ln 2) exp(−βN) because of Pinsker’s inequality.

Hence we have:

|Pr (A wins)−Q (A wins) | ≤
√

(8 ln 2) exp(−βN) (63)

From Theorem 1,Q (A wins) is bounded byd+1
qr

. Hence

Pr (A wins) ≤
√

(8 ln 2) exp(−βN) +
d+ 1

qr
(64)

Each{s} conveysdr log2 q bits of information, wherer is defined in Theorem 2. Recall that

the total number of channel uses is denoted by2n. The relay node transmits duringn channel

uses. Node1 transmits during the othern channel uses. When node1 transmits, node2 may or

may not transmit depending on which of the 4 stages describedat the beginning of this section

is being executed. For the four-stage transmission scheme,n is given by:

n = 2N + r +

⌈

dr log2 q

NRe

⌉

N (65)

This is becauseN channel uses are needed to transmitx or k, andr channel uses are needed

to transmitk ⊕ h. The third term in (65) is the number of channel uses needed totransmits,

where⌈x⌉ is the operation that roundsx to the nearest integer greater than or equal tox.

The overall secrecy rateRT is given by

RT =
dr log2 q

2n
(66)

From (65), we observeRT can be made arbitrarily close to0.5Re by choosing a sufficiently

larged.

Let PT denote the transmission power averaged over the channel uses during which a node

transmits. Based on the four stage transmission scheme,PT of node 1 and the relay are the

same.PT of node2 is smaller since it does not transmit during the third stage.Hence we only

need to make surePT of node1 does not exceed the power constraintP . PT of node1 is given

by

PT =
P12N + P2r + P

(

dr log2 q
Re

)

n
(67)
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PT can be made arbitrarily close to but strictly smaller thanP̄ by choosing a sufficiently large

d and a sufficiently smallεP .

OnceRT andPT is fixed, d is fixed. On the other hand, as shown by (65) and (18), for a

fixed d, n increases linearly with respect toN .

Selectr as in (18) such thatr increases linearly with respect toN . Then, from (64), we

observe that the probability that the adversary wins decreases exponentially fast withN . Hence

we have the bound onPr(A wins) stated in the theorem.

We next check whether the secrecy constraint is satisfied:

I (s; Yr (i) , 0 ≤ i ≤ 3) (68)

≤I (x; Yr (0)) + I (h; Yr (1) , Yr (2)) + I (s; Yr (3)) (69)

In (69), the first term decreases exponentially fast with respect toN due to Theorem 2. For

the second term, we have

I (h; Yr (1) , Yr (2)) ≤I
(

h; Ȳr (1) , Zr(1), h⊕ k
)

(70)

=I
(

h; Ȳr (1) , h⊕ k
)

(71)

=I (h; h⊕ k) + I
(

h; Ȳr (1) |h⊕ k
)

(72)

=I
(

h; Ȳr (1) |h⊕ k
)

(73)

≤I
(

h, k; Ȳr (1)
)

= I
(

k; Ȳr (1)
)

(74)

Hence, the second term is bounded byI(k, Ȳr(1), which also decreases exponentially fast with

respect toN due to Theorem 2. The third term decreases exponentially fast with respect to
dr log2 q

Re
due to Theorem 5. Hence (68) decreases exponentially fast with respect toN .

Finally, we check whether the confidential messageW , which corresponds tos in our scheme,

can be transmitted reliably. We observe that the probability Pr(W 6= Ŵ ) does decrease expo-

nentially fast with respect toN because the decoding error probability of the lattice decoder

decreases at this speed, as stated in the end of Section IV.

The probability

Pr
(

Ŵ is not accepted by Node 2|W = Ŵ
)

(75)

depends on whetherx, k, k⊕ h can be transmitted reliably. Since they are also transmitted with

the nested lattice code and decoded with a lattice decoder, the probability of decoding error
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when transmittingx, k, k ⊕ h also decreases exponentially with respect to the dimensionof the

lattice, which in turn increases linearly withN . Hence (75) also decreases exponentially fast

with respect toN .

Hence we have proved the theorem.

Remark 9: It is evident from (63) that if Lemma 5 were weakened to just proving the left-

hand side converges to0, which is the case if the conventional strong secrecy notionlike the one

in [27] is used, then it would not be possible to preserve the exponentially decreasing detection

property offered by the AMD code. Hence in this problem, the commonly recognized strong

secrecy notion is insufficient, and a stronger notion, as described by (19), is required.

VII. CONCLUSION

In this work, we developed a coding scheme which provides strong secrecy by combining

nested lattice codes and universal hash functions. In our previous work [23], the representation

theorem for nested lattice codes is used to bound the Shannonentropy. Here we showed the same

theorem is also useful in bounding another information theoretic measure, i.e., the Rényi entropy,

which in turn leads to the desired strong secrecy results in aGaussian setting. We showed that

this coding scheme can be used with AMD codes to perform Byzantine detection for a Gaussian

two-hop network where the relay is both an eavesdropper and aByzantine attacker. Using this

code, we showed that the probability that a Byzantine adversary wins decreases exponentially

fast with respect to the number of channel uses.

It should be noted that, in this work, we have assumed that thechannel gains are known by

each node before the communication starts. It should be recognized that the Byzantine attacker

at the relay node may attempt to manipulate the channel estimation process, for example, by

broadcast incorrect pilot signals, to gain an advantage. Detection of this type of misbehavior is

closely related to the physical layer implementation of thesystem and is left as future work.

APPENDIX A

PROOF OFLEMMA 1

WhenΛc = qΛ and the generation matrix ofΛ has full rank, there areqN lattice points in

(Λ+dN)∩V (Λc). Each point in(Λ+dN)∩V (Λc) can be represented by its coordinates, which

is a vector composed ofN integers:{c1, ..., cN}.
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We next prove the following mapping is an isomorphism from(Λ+dN)∩V (Λc) to the group

of a finite fieldGF(qN):

I : I(c1, ...cN) = {c1 mod q + (c2 mod q)x... + (cN mod q)xN−1} (76)

First we prove that two elements in(Λ+dN)∩V (Λc) can not be mapped to the same element

in GF(qN). This can be proved via contradiction: Suppose they can. Then, we have two points

x, andy, whose coordinates are{a1, ..., aN} and{b1, ..., bN} respectively, such that

ai − bi mod q = 0 i = 1, ..., N (77)

∃j, aj 6= bj (78)

This meansx− y ∈ qΛ = Λc. Let z ∈ Λc be x− y. Thenx = y + z andz 6= 0.

Define the quantization operatorQΛc
(x) as

QΛc
(x) = argmin

t∈Λc

‖t− x‖ (79)

where‖t−x‖ denotes the Euclidean distance betweent andx. QΛc
(x) has the following property:

∀z ∈ Λc, QΛc
(x+ z) = QΛc

(x) + z. This can be shown as follows:

QΛc
(x+ z) = argmin

t∈Λc

‖t− x− z‖ (80)

= arg min
t−z∈Λc

‖(t− z)− x‖ (81)

= arg min
t′∈Λc

‖t′ − x‖+ z (82)

= QΛc
(x) + z (83)

Sincex, y ∈ V (Λc). This meansQΛc
(x) = 0 andQΛc

(y) = 0 . However we can also write

QΛc
(x) = QΛc

(y + z) = QΛc
(y) + z = z 6= 0. This leads to a contradiction.

SinceI cannot map two different lattice points to the same field element, and the set(Λ +

dN) ∩ V (Λc) has the same cardinality asGF(qN), I must be a one-to-one mapping.

Finally, it is easy to verify thatI preserves the addition operation:

I(x+ y) = I(x) + I(y) (84)

This completes the proof thatI is an isomorphism.
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APPENDIX B

PROOF OFTHEOREM 5

For the distribution fortNi , i = 1, 2 stated in Theorem 5,tN1 ⊕ tN2 is independent fromtN1 .

Therefore:

H2

(

tN1 |tN1 ⊕ tN2 = tN
)

= H2

(

tN1
)

= N0 (85)

Then, as in (26), with probability1− 2−(s/2−1):

H2

(

tN1 |tN1 ⊕ tN2 = tN , T = a
)

(86)

≥H2

(

tN1 |tN1 ⊕ tN2 = tN
)

− log2 |T | − s = N0 −N − s (87)

We next use the fact that whenG is uniformly distributed over the set of linear functions

from GF(2)N0 to GF(2)r0, the following equation holds according to Theorem 4:

H
(

G
(

v(tN1 )
)

|G, tN1 ⊕ tN2 = tN , T = a
)

≥ r0 −
2r0−c

ln 2
(88)

wherec = N0 −N − s.

Hence

H
(

G
(

v(tN1 )
)

|G, tN1 ⊕ tN2 , T
)

≥
(

1− 2−(s/2−1)
)

(

r0 −
2r0−c

ln 2

)

(89)

In order for 2−(s/2−1) to decrease exponentially fast with respect toN , we chooses = εN ,

where0 < ε < R0 − 1 so thatc is positive. Chooser0 such that forδ > 0:

r0 < c−Nδ/2 = N0 −N − s−Nδ/2 (90)

so that2r0−c decreases exponentially fast with respect toN . Recall by (38), we haveN0 ≥
NR0 − 1. Hence a sufficient condition for (90) to hold is to require

r0 < N(R0 − 1)− s−Nδ (91)

This yields (40). For thisr0 ands, from (89), we observe that there existsβ > 0, such that

I
(

G
(

v(tN1 )
)

; tN1 ⊕ tN2 , T |G
)

≤ e−βN (92)

We next use the fact that for sufficiently largeN , mostG has full row rank as shown in Lemma

2. Therefore, under a uniform distribution fortNi , i = 1, 2, tN1 and tN2 being independent, there

must exists aG = g, such that
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1) g has full rank.

2) I
(

G
(

v(tN1 )
)

; tN1 ⊕ tN2 , T |G = g
)

≤ 2e−βN

Hence we have proved Theorem 5.

APPENDIX C

PROOF OFLEMMA 5

The following notation is used in the proof:Xi(j), i = 0, ..., 3, Xr(j) denote the signals

transmitted by node1, 2 and the relay during thejth stage,j = 0, ..., 3. Similarly, Yi(j), i =

1, 2, Yr(j), Zr(j), ZR(j) denote the signals and channel noise observed during thejth stage.

X̂r(i), i = 0, ..., 3 denotes the estimate forXr(i) computed by node2. To simplify the notation,

we omit the superscript for these signals which were used to indicate their dimensions.

As described in Section VI, the0th stage is used to transmitx. The 1st stage is used to

transmitk. The 2nd stage is used to transmitk ⊕ h. The 3rd stage is used to transmits.

We next explain how to upper bound the following quantity:

I (x; ∆x,∆h, ŝ|s = s0) (93)

Let ⊕ in x⊕ y denote the addition operation in the field wherex andy are taken from. Let−x

denote the element such that(−x)⊕x = 0. Recall thatg is the linear mapping whose existence

is proved in Theorem 2. With these notations, we can write∆x as:

∆x =g
(

X̂r (0)⊕ (−X2 (0))
)

⊕ (−x) (94)

=g
(

X̂r (0)⊕ (−X2 (0))
)

⊕ g (−X1 (0)) (95)

=g
(

X̂r (0)⊕ (− (X2 (0)⊕X1 (0)))
)

(96)

Since∆x is a function ofX̂r(0) andX2(0)⊕X1(0), (93) is upper bounded by:

I
(

x; X̂r (0) , X1 (0)⊕X2 (0) ,∆h, ŝ|s = s0
)

(97)

X̂r(0) is computed fromY2(0) by node2. Hence (97) is upper bounded by:

I (x; Y2 (0) , X1 (0)⊕X2 (0) ,∆h, ŝ|s = s0) (98)

≤I (x;Xr (0) , ZR (0) , X1 (0)⊕X2 (0) ,∆h, ŝ|s = s0) (99)

=I (x;Xr (0) , X1 (0)⊕X2 (0) ,∆h, ŝ|s = s0)
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+ I (x;ZR (0) |Xr (0) , X1 (0)⊕X2 (0) ,∆h, ŝ, s = s0) (100)

Recall thatZR(0) is the noise observed by Node2 during the stage responsible for transmitting

x. We observe that it is independent from all the other terms inthe second term of (100). This

is because∆h, ŝ, s are only related to signals transmitted in later stages. Therelay node has no

knowledge ofZR(0). HenceZR(0) can not affect the relaying strategy. As a result, (100) equals

I (x;Xr (0) , X1 (0)⊕X2 (0) ,∆h, ŝ|s = s0) (101)

Recall thatMr denotes the randomness available to the relay node. Then, the expression in (101)

is upper bounded by

I (x;Mr, Xr (0) , Yr (0) , X1 (0)⊕X2 (0) ,∆h, ŝ|s = s0) (102)

=I (x;Mr, Yr (0) , X1 (0)⊕X2 (0) ,∆h, ŝ|s = s0)+

I (x;Xr (0) |Mr, Yr (0) , X1 (0)⊕X2 (0) ,∆h, ŝ, s = s0) (103)

SinceXr(0) is computed fromYr(0) at the relay node, it is a deterministic function ofYr(0),

Mr and potentiallys0. Hence the second term in (103) is0, and (103) equals:

I (x;Mr, Yr (0) , X1 (0)⊕X2 (0) ,∆h, ŝ|s = s0) (104)

We next examine∆h in (104). Recall thatu is defined ask ⊕ h. û and k̂ are the estimates for

u andk computed by node2 respectively. With these notations, we can express∆h as:

∆h = û⊕ (−k̂)⊕ (−h) (105)

= û⊕ ((−k)⊕ (−∆k))⊕ (−h) (106)

= û⊕ (−(k ⊕ h))⊕ (−∆k) (107)

As seen from (105)-(107),∆h is a function ofû, k ⊕ h, and∆k. Therefore (104) can be upper

bounded by:

I (x;Mr, Yr (0) , X1 (0)⊕X2 (0) , û, k ⊕ h,∆k, ŝ|s = s0) (108)

Note thatû is computed fromY2(2) by node2. Therefore (108) is upper bounded by:

I (x;Mr, Yr (0) , X1 (0)⊕X2 (0) , Y2 (2) , k ⊕ h,∆k, ŝ|s = s0) (109)

≤I(x;Mr, Yr (0) , X1 (0)⊕X2 (0) , Xr (2) , ZR (2) , k ⊕ h,∆k, ŝ|s = s0) (110)
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=I(x;Mr, Yr (0) , X1 (0)⊕X2 (0) , Xr (2) , k ⊕ h,∆k, ŝ|s = s0)

+ I(x;ZR (2) |Mr, Yr (0) , X1 (0)⊕X2 (0) , Xr (2) , k ⊕ h,∆k, ŝ, s = s0) (111)

Again ZR(2) is independent from all the other terms in the second term of (111). Hence (111)

equals:

I(x;Mr, Yr (0) , X1 (0)⊕X2 (0) , Xr (2) , k ⊕ h,∆k, ŝ|s = s0) (112)

For ∆k, we have:

∆k = g
(

X̂r (1)⊕ (−X2 (1))
)

⊕ (−k) (113)

= g
(

X̂r (1)⊕ (−X2 (1))
)

⊕ g (−X1 (1)) (114)

= g
(

X̂r (1)⊕ (− (X2 (1)⊕X1 (1)))
)

(115)

Hence∆k is a function ofX̂r(1), X2(1)⊕X1(1). Therefore (112) can be upper bounded by:

I(x;Mr, Yr (0) , X1 (0)⊕X2 (0) , Yr (2) , k ⊕ h, X̂r (1) , X1 (1)⊕X2 (1) , ŝ|s = s0) (116)

X̂r(1) is computed fromY2(1) by node2. Hence (116) is upper bounded by:

I(x;Mr, Yr (0) , X1 (0)⊕X2 (0) , Yr (2) , k ⊕ h, Y2 (1) , X1 (1)⊕X2 (1) , ŝ|s = s0) (117)

≤I(x;Mr, Yr (0) , X1 (0)⊕X2 (0) , Yr (2) , k ⊕ h,Xr (1) , ZR(1),

X1 (1)⊕X2 (1) , ŝ|s = s0) (118)

=I(x;Mr, Yr (0) , X1 (0)⊕X2 (0) , Yr (2) , k ⊕ h,Xr (1) , X1 (1)⊕X2 (1) , ŝ|s = s0)

+ I(x;ZR(1)|Mr, Yr (0) , X1 (0)⊕X2 (0) , Yr (2) ,

k ⊕ h,Xr (1) , X1 (1)⊕X2 (1) , ŝ, s = s0) (119)

=I(x;Mr, Yr (0) , X1 (0)⊕X2 (0) , Yr (2) , k ⊕ h, Yr (1) , X1 (1)⊕X2 (1) , ŝ|s = s0) (120)

Finally, ŝ is computed fromY2(3), X2(3) by node2. Hence (120) is upper bounded by:

I(x;Mr, Yr (0) , X1 (0)⊕X2 (0) , Yr (2) , k ⊕ h, Yr (1) ,

X1 (1)⊕X2 (1) , Y2 (3) , X2 (3) |s = s0) (121)

≤I(x;Mr, Yr (0) , X1 (0)⊕X2 (0) , Yr (2) , k ⊕ h, Yr (1) ,

X1 (1)⊕X2 (1) , Xr (3) , X2 (3) |s = s0) (122)
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SinceXr(3) is a deterministic function ofMr, Yr(3) and potentiallys0, we can upper bound

(122) with the following term by replacingXr(3) with Yr(3):

I(x;Mr, Yr (0) , X1 (0)⊕X2 (0) , Yr (2) , k ⊕ h, Yr (1) , X1 (1)⊕X2 (1) ,

Yr (3) , X2 (3) |s = s0) (123)

≤ I(x;Mr, Yr (0) , X1 (0)⊕X2 (0) , Yr (2) , k ⊕ h, Yr (1) , X1 (1)⊕X2 (1) ,

X1 (3) , Zr(3), X2 (3) |s = s0) (124)

Equation (124) follows fromYr(3) = X1(3) + X2(3) + Zr(3). We then use the fact that the

stochastic encoder used by node1 to transmits is independent from the stochastic mapping

used at other stages. Hence, we have:

I(x;X1 (3) , X2 (3) , Zr (3) |Mr, Yr (0) , X1 (0)⊕X2 (0) , (125)

Yr (2) , k ⊕ h, Yr (1) , X1 (1)⊕X2 (1) , s = s0) = 0 (126)

and (124) equals:

I(x;Mr, Yr (0) , X1 (0)⊕X2 (0) , Yr (2) , k ⊕ h, Yr (1) , X1 (1)⊕X2 (1) |s = s0) (127)

=I(x;Mr|s = s0)

+ I(x; Yr (0) , X1 (0)⊕X2 (0) , Yr (2) , k ⊕ h, Yr (1) , X1 (1)⊕X2 (1) |Mr, s = s0) (128)

Next we note that sinceI(x;Mr|s = s0) = 0, (128) equals:

I(x; Yr (0) , X1 (0)⊕X2 (0) , Yr (2) , k ⊕ h, Yr (1) , X1 (1)⊕X2 (1) |Mr, s = s0) (129)

Equation (129) is upper bounded by:

I(x, h; Yr (0) , X1 (0)⊕X2 (0) , Yr (2) , k ⊕ h, Yr (1) , X1 (1)⊕X2 (1) |Mr, s = s0) (130)

Recall that the notation̄Yr, as introduced in (16), denotes the quantity obtained by subtracting

the channel noiseNr from Yr. Following this notation, we can upper bound (130) as:

I(x, h;Ȳr (0) , Zr (0) , X1 (0)⊕X2 (0) ,

Ȳr (2) , Zr (2) , k ⊕ h, Ȳr (1) , Zr (1) , X1 (1)⊕X2 (1) |Mr, s = s0) (131)

= I(x, h;Ȳr (0) , X1 (0)⊕X2 (0) ,
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Ȳr (2) , k ⊕ h, Ȳr (1) , X1 (1)⊕X2 (1) |Mr, Zr (i) , i = 1, 2, 3, s = s0) (132)

which is further upper bounded by:

H
(

Ȳr (0) , X1 (0)⊕X2 (0) |Mr, Zr (i) , i = 1, 2, 3, s = s0
)

+H
(

Ȳr (2) , k ⊕ h, Ȳr (1) , X1 (1)⊕X2 (1) |Mr, Zr (i) , i = 1, 2, 3, s = s0
)

−H(Ȳr (0) , X1 (0)⊕X2 (0) , Ȳr (2) , k ⊕ h, Ȳr (1) , X1 (1)⊕X2 (1) |

x, h,Mr, Zr (i) , i = 1, 2, 3, s = s0) (133)

=H
(

Ȳr (0) , X1 (0)⊕X2 (0) |Mr, Zr (i) , i = 1, 2, 3, s = s0
)

+H
(

Ȳr (2) , k ⊕ h, Ȳr (1) , X1 (1)⊕X2 (1) |Mr, Zr (i) , i = 1, 2, 3, s = s0
)

−H(Ȳr (0) , X1 (0)⊕X2 (0) |x, h,Mr, Zr (i) , i = 1, 2, 3, s = s0)

−H(Ȳr (2) , k ⊕ h, Ȳr (1) , X1 (1)⊕X2 (1) |Ȳr (0) , X1 (0)⊕X2 (0) ,

x, h,Mr, Zr (i) , i = 1, 2, 3, s = s0) (134)

We then use the two Markov chains shown below:

{

Ȳr (0) , X1 (0)⊕X2 (0)
}

− {x,Mr, Zr (i) , i = 1, 2, 3, s} − h (135)
{

Ȳr (2) , k ⊕ h, Ȳr (1) , X1 (1)⊕X2 (1)
}

− {h,Mr, Zr (i) , i = 1, 2, 3, s}

− {x, Ȳr(0), X1(0)⊕X2(0)} (136)

The Markov relation in (135) holds because givenx, the distribution of{Ȳr (0), X1 (0)⊕X2 (0)}
only depends on the randomness in the transmitter of node1 and2 during stage0. The Markov

chain in (135) follows because:

k ⊕ h− {h,Mr, Zr (i) , i = 1, 2, 3, s} − {x, Ȳr(0), X1(0)⊕X2(0)} (137)

and

{

Ȳr (2) , Ȳr (1) , X1 (1)⊕X2 (1)
}

− {k ⊕ h, h,Mr, Zr (i) , i = 1, 2, 3, s}

− {x, Ȳr(0), X1(0)⊕X2(0)} (138)

are Markov chains. Equation (137) is a Markov chain, because, givenh, the distribution ofk⊕h

only depends onk, which is independent from all the remaining terms in (137).Equation (138)

is a Markov chain, because, givenk ⊕ h and h, which impliesk is given, the distribution of
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{Ȳr (2), Ȳr (1),X1 (1) ⊕ X2 (1)} only depends on the randomness in the transmitter of node1

and2 during stage1 and stage2.

Applying the two Markov chains (135) and (136) to the last twoterms in (134), we find that

it equals:

I
(

x; Ȳr (0) , X1 (0)⊕X2 (0) |Mr, Zr(i), i = 1, 2, 3, s = s0
)

+ I
(

h; Ȳr (2) , k ⊕ h, Ȳr (1) , X1 (1)⊕X2 (1) |Mr, Zr (i) , i = 1, 2, 3, s = s0
)

(139)

For the first term in (139), sinceX1(0)⊕X2(0) = Ȳr(0) mod Λc and hence is a function of

Ȳr(0), we have

I
(

x; Ȳr (0) , X1 (0)⊕X2 (0)|Mr, Zr(i), i = 1, 2, 3, s = s0
)

(140)

=I
(

x; Ȳr (0)|Mr, Zr(i), i = 1, 2, 3, s = s0
)

= I
(

x; Ȳr (0)
)

(141)

Sincex is extracted from a lattice point inGF(qN) based on the strong secrecy scheme described

in Section V-A1, from Theorem 2, we haveI
(

x; Ȳr (0)
)

< 2 exp(−βN).

For the second term in (139), note thatȲr(2) is justX1(2), because node2 remains silent at

this stage. Therefore, this term can be expressed as:

I
(

h;X1(2), k ⊕ h, Ȳr (1) , X1 (1)⊕X2 (1)|Mr, Zr(i), i = 1, 2, 3, s = s0
)

(142)

=I
(

h; Ȳr (1) , X1(2)|Mr, Zr(i), i = 1, 2, 3, s = s0
)

+ I
(

h; k ⊕ h,X1 (1)⊕X2 (1) |Ȳr (1) , X1(2),Mr, Zr(i), i = 1, 2, 3, s = s0
)

(143)

The second term in (143) is0 sincek⊕h is a deterministic function ofX1(2) andX1(1)⊕X2(1)

is a deterministic function of̄Yr(1). Therefore (143) equals

I
(

h; Ȳr (1) , X1(2)|Mr, Zr(i), i = 1, 2, 3, s = s0
)

(144)

=I
(

h; Ȳr (1) , X1(2)
)

(145)

SinceX1(2) is determined byh⊕ k, (145) is upper bounded by:

I
(

h; Ȳr (1) , h⊕ k
)

(146)

=I (h; h⊕ k) + I
(

h; Ȳr (1) |h⊕ k
)

(147)

=I
(

h; Ȳr (1) |h⊕ k
)

(148)
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≤I
(

h, k; Ȳr (1)
)

= I
(

k; Ȳr (1)
)

(149)

Since k is extracted from a lattice point inGF(qN) based on the strong secrecy scheme

described in Section V-A1, hence from Theorem 2, (149) is bounded by2 exp(−βN).

Therefore (139) is bounded by4 exp(−βN). Hence we have Lemma 5.
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