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Abstract

We consider a Gaussian two-hop network where the sourcetendestination can communicate
only via a relay node who is both an eavesdropper and a Bymaativersary. Both the source and the
destination nodes are allowed to transmit, and the relagives a superposition of their transmitted
signals. We propose a new coding scheme that satisfies two@etents simultaneously: the transmitted
message must be kept secret from the relay node, and theatestimust be able to detect any Byzantine
attack that the relay node might launch reliably and fase Tiree main components of the scheme
are the nested lattice code, the privacy amplification aedallgebraic manipulation detection (AMD)
code. Specifically, for the Gaussian two-hop network, wenstit lattice coding can successfully pair
with AMD codes enabling its first application to a noisy chahmodel. We prove, using this new
coding scheme, that the probability that the Byzantinecktgoes undetected decreases exponentially
fast with respect to the number of channel uses, while theitoghe secrecy rate, compared to the rate
achievable when the relay is honest, can be made arbitsmill. In addition, in contrast with prior

work in Gaussian channels, the notion of secrecy provided isestrong secrecy.
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I. INTRODUCTION

Information theoretic secrecy, first proposed by Shanhhrmpfbvides confidentiality of trans-
mitted information against an adversary regardless ofataputational power. Shannon proved
that if the adversary has access to the signals transmitteaiebsender of the secret message
through a noiseless channel, then, to achieve perfectcsefimm the adversary, the sender and
the receiver has to share a secret key of the same length asetdgage. Although Shannon’s
result implied that secret communication was impracticakthis setting, it was later shown
by Wyner [2] that this pessimistic result was a consequeridhe noiseless channel assump-
tion. Specifically, it was shown that when the adversary h@synobservations of the signals
transmitted by the sender, a nonzero transmission ratehtorsécrecy message is achievable
without requiring the transmitter to pre-share a key with thaceiver[[2]-+[4]. More recently, the
fundamental rate limits at which the secret communicatiam take place in the presence of an
eavesdropper were studied for a number of multi-terminaleig e.g., the broadcast channél [5],
[6], the two-way channel [7],[]8], the multiple access cheln[@] and the interference channel
[9], [20].

Secure communication for channel models with a relay nodeblkean studied from a variety
of perspectives, including the relay node as a helper todbiirate communication link [11],
or to an eavesdropper [12]. References [13]-[16] considercase where the relay node itself
is the eavesdropper from whom the information transmittedhfthe source to the destination
must be kept secret. This setting, which provides theakfiundations toward the utilization of
untrusted relay nodes in network design, is relevant intm=cThe potentially untrusted routers
of today’s Internet routinely relay sensitive informatiéor its users. The current approach is
that the authenticity and secrecy of the information is getdd by security protocols assuming
these routers arbmited in computational powefl7]. It is interesting to address the role of
these routers if they are computational power unlimitedessiries.

To answer this question, inl[8], [14], [15], as a first step, eemsidered the case where the
relay node was “honest but curious”. This means that theoaarrelay node is not trusted with
confidential messages. On the other hand, it is honest, arsddbnforms to the system rules
and performs the designated relaying scheme. Referéngecdbéidered the three-node relay

network with such a relay. Referencés [8],/[15] considehedtivo-way relay channel where two



nodes could only communicate through such a relay node esetlworks, we showed that if the
relay was not trusted but honest, recruiting it to help refdgrmation wasusefulin achieving

a higher secrecy rate than simply treating the relay nodeasaeesdropper. This effect is most
pronounced in the two-hop model studied[inl[15], in which #uhievable rate i§ if the relay
node is excluded from communication, and increases to bitign 1bit of the rate of having
trusted relay if the untrusted relay node is properly wilizSimilar observations can be made
in networks with multiple confidential messages![16].

It is the next natural step to consider the problem where éh@yrnode is curious and is
potentially dishonest This means that the relay can deviate from its designatedvio@. This
can be as benign as the relay node experiencing a failure tapgiisg transmission, which is
obviously easy to detect. However, if the relay is a malisi@ntity (or is captured by one),
a more detrimental scenario can materialize. Specifictily,relay can attempt to deceive the
destination into accepting a counterfeit message by dgtivanipulating the signals it relays.
Such behavior is a “Byzantine attack” |18]. When the adwsrsa limited in computational
power, this type of attack can be detected via message digidwgon code or digital signatures
[17]. The security guarantee promised by these schemeséntigly based on the absence of
known effective attack strategies and the fact that thdialygity can be proved if a very small
set of assumptions is made.

In this work, we tackle the case where the Byzantine adweiisas unlimited computational
power. In an effort to demonstrate the simplest network tvhielies on an untrusted node
to communicate, we consider a two-hop netwdrkl [15]. In casttrto referencel [15], which
considered an honest but curious relay, we allow the relas o actively modify the transmitted
signal in any way it desires. The goal of the destination thesomes detecting the message
that has been altered fast and reliably whenever the reldg nhooses to do so.

Toward accomplishing this goal, there are several knowalteshat can be leveraged, each
with their own limitations. For example, Byzantine attacktettion can be viewed as an au-
thentication problem, by treating the counterfeit messlgeas a message from a “wrong”
source node. An information theoretic secrecy scheme wittawahentication capability was
proposed in[[19]. However, like other message authentioatodes([20], the source has to share
an authentication key with the destination beforehand.

It is known, on the other hand, that to detect the Byzantitechkt which is a milder require-



ment than authentication, it is not essential to share keyeferencel[21], the so-called algebraic
manipulation detection (AMD) code was used for encodingd#ia from the source node which
ensures the probability that the Byzantine attack succeadsbe made arbitrarily small with
an arbitrarily small loss in rate. A limitation of this schens that it has to be used along with
a secrecy sharing scheme that has cetiagarity property [21], which is easily fulfilled in a
noiseless network as shown in [18], [22]. Indeed[in [22],c@esidered a deterministic two-hop
network and it was shown that by using AMD code, the probhiliat the Byzantine adversary
wins decreases exponentially fast with respect to the tataiber of channel uses while the
loss in rate can be made arbitrarily small. On the other htordioisy channels, secret sharing
schemes generally fail to have the required linearity priypés a result, to date the strongest
result that could have been obtained is that, for a noisyhap-network, the probability that a
Byzantine attack goes undetected decreases exponermtmylywith respect toy/n’ in [22].

The main contribution of this work is to demonstrate thattfoe Gaussian two-hop network,
the probability that a Byzantine attack goes undetected, the adversary wins, also decreases
exponentially fast with respect to’, while the loss in secrecy rate can be made arbitrarily
small. Hence, the same result achievable for the detertititvgo-hop network is attainable for
this noisy two-hop network. This represents a departure from tratkicsecurity approaches
that assume a noiseless bit pipe for communication and $riing physical characteristics of
the channel into the picture while providing a guaranteaugiind to be possible only with the
noiseless setting. The key to prove this result is the intctidn of a new strong secrecy scheme.
Its existence is proved via the representation theorenvetbrin [10], [23] and the privacy
amplification technique presented [n [24], [25]. Comparedteviously known strong secrecy
schemes, the main differences are:

1) Unlike the randomly generated codesl[in|[26], the decoflénenew scheme is linear for

certain rate configurations.

2) Unlike [10], [23], the codeword consists of a single ktipoint rather than multiple
lattice points. This allows the mutual information betwdbe confidential message and
eavesdropper’s observation to decrease exponentially resipect ta:’. Hence the notion
of secrecy provided by this scheme is stronger than commady strong secrecy scheme,

which only requires this mutual information to vanish witdsspect ton'.



The first item provides the linear property required by AMDdeo The stronger-than-usual
secrecy notion in the second item is essential in presethied@yzantine detection performance
offered by AMD code. As will be shown in Sectidn1VI, the commpmised strong secrecy
notion, as in[[25],[[27], is insufficient for this purpose.

There is other work in Byzantine detection from which thisrkvdiffers. Notably, reference
[28] proposed to use the sender of the confidential messag®mitor the behavior of the relay
node. This so-called “watchdog” scheme could also have heed in the setting we consider if
the message in transmission were not to be kept secret frerethy node. However, when the
message is confidential, using a “watchdog” is not possiliié is because there is no direct link
between the two legitimate communicating nodes which mélamsender has no information
regarding the signals transmitted by the destination. Akhei explained in Sectioh 1V, these
signals are necessary in order to deploy cooperative jagifrhto keep the message secret
from the relay node, see also [15]. Since the received sigmathe relay is garbled by signals
transmitted by the destination, so are the signals tratednftom it. This prevents the source
from detecting whether the relay misbehaves by just lookihgs transmitted signals without
the knowledge of the signals transmitted from the desbnati

This work should also be differentiated from referenc¢eqd4f22]. In these works, the adver-
saries can also actively manipulate the signals receivetidyglestination. However, the purpose
is to find a way for reliable communication in the presence wfhsadversaries carrying out
the worst-case attack. In the two-hop network consideratligmwork, this is not possible since
there is no direct link between the two legitimate commutimganodes. Hence, when Byzantine
behavior is detected, we need to forgo the relay.

The remainder of the paper is organized as follows: In Sedflowe describe the system
model and formulate the Byzantine detection and secrechlgmo In Sectiori 1ll, we review
known Byzantine detection schemes, in particular, the AMIdecand describe the technical
obstacles to be overcome in this work. Secfiofl T¥-VI desetitre main components of strongly
secure scheme proposed in this work and how it can be comhiitledMD codes for Byzantine

detection purpose. Sectign VIl concludes the paper.
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Fig. 1. The Gaussian two-hop network. Phase 1 is indicatesbhg line, and phase 2 by dashed line. R/E: Relay/Eavepérop

Y1 is not shown.

1. SYSTEM MODEL AND PROBLEM FORMULATION

The Gaussian two-hop network with a Byzantine relay noden@wvs in Figurelll. In this
model, nodel wants to send a confidential messagjeto node2. Since it can not communicate
with node2 directly, it recruits the help of a relay node, who is not teaswith the message
W. The signal received by the relay node consists of the sgnahsmitted by both nodeand
2, and the signal broadcasted by the relay node is heard bynoakks as well. These are fitting
assumptions for wireless communication. Lét : = 1,2, X,. denote the signal transmitted by
nodel, 2 and the relay. Let;,i = 1,2 andY, denote their received signals respectively. After

normalizing the channel gains, we have

Y, =Xi+Xo+ Z, (1)

Yo=X,+2Zp, Yi=hX,+Zy 2

where Z,, Zr and Z}, are independent Gaussian random variables with zero medgrurih
variance.h is the normalized channel gain. SinEgis not used in the scheme described in this
work, it is omitted in Figuré 1l for clarity. We assume each edgl half-duplex. For simplicity,
we assume the relay node transmits during half of all chanses$. Without loss of generality,
we assume nodé and 2 do not transmit when the relay node transmits since the netaie
can not receive and relay their transmitted signals simattasly. We also assume during the
channel uses that the relay node transmits, its transmiggwer averaged over these channel

uses should not excedel During the remaining: channel uses that nodeand2 may transmit,



the transmission power of each of these two nodes averagadloese channel uses should not
exceedP.

We assume the Byzantine adversary at the relay node can gm@mpyostochastic function to
compute its current transmitted signal. L€t ; be its transmitted signal at théh channel use.
Let M, be the local randomness available to the relay nodeY]et be the signals it received
in the past. LetiV be the confidential message it is currently relaying. febe the relaying

function. Then the attacker (relay) can compute:
Xr,i = fi<M7"7 Y;*i_lv W) (3)

It might seem inconsistent at first glance to assume the Bymaadversary knows the message,
which should be kept secret from the relay node in the firstgolélowever, when the possible
choice for W are limited, for example, to being binary, the attacker hasoa-negligible
probability of success for guessing it. This can also happleen the channel is used to transmit
data with high redundancy and stringent latency requirémsm that adjacent messages are
highly likely to share the same value. If, somehow, the ashugrhas access to earlier messages,
it can guess the value of the current message with high pildlgadd success. As a result, it is a
common practice to design a reliable message authenticatioteme by assuming the adversary
knows the message [20, Definition 4.2]. Here too, we folloig ttonvention.

The Byzantine detection problem for secure communicat&inguian untrusted relay can be
stated as follows:

Let the total number of channel uses te= 2n, during which each node transmits during
channel uses. Lét’ be the estimate ofi’ computed by the destination, i.e., node 2, based on
its observation. Note that because the relay can be a Bywaativersary, nod2 may or may
not accepti’ as a genuine message from nadbased on certain criteria.

Definition 1: [20] A function of n, v, is negligibleif for any polynomial ofn with a finite

degreepoly(n), we have:

lim poly(n)y, =0 (4)

n—o0

L]
We wish to find the secrecy rate. of 1/, defined as

R, = lim — H (W) (5)

n—oo n/



such that the following conditions hold:

1) When the relay node is honest, andis uniformly distributed over the message set, then
both Pr (W # W) and

Pr (W is not accepted by Node 2|W = W) (6)

should be negligible as per Definitibh 1. Hence, the transimisof 11/ is reliable.

2) ForYuwy in the message set, the probability that the adversary Wins4 wins), given
by

Pr(A wins) = Pr (W is accepted by Node 2|W = wy, W # W) @)

is negligible. Hence any modification div is detected reliably.

3) I (W;Y") is negligible. SinceY" is the observation of the eavesdropper, this means the
information that the adversary has regarding the valu&/ois negligible.

Remark 1:Observe that the condition of reliable Byzantine deteciiof®) is independent

from the distribution ofit/. [

[ll. KNOWN BYZANTINE DETECTION SCHEMES

As mentioned in the introduction, when there are no secrecarns at the relay, whether
the relay is honest or not can be checked by the source nedenadel, by examiningY;.
However, since there are secrecy constraints in our moggelyiag sender-based Byzantine
detection approach is not feasible. Therefore, we will emiate on a receiver-based approach
called algebraic manipulation detection (AMD) code in tegusel.

AMD code was formally defined in_[21]. An AMD codeword is congeal of three parts:
{s,z, h}, wheres is thed x 1 vector onGF(q") representing the message. The componeist
called the random seed and is generated ftaf(¢") by the encoder itselfa is the hash tag

and is computed according to thash rule
d
h = z%? 4 Z ;" (8)
=1

wheres; is theith component ok and the addition and multiplication is defined o¥EF(¢").
Suppose the node receivess’, 2/, b/, wheres’ # s. Let A, = 2/ — z. A, = I/ — h. Then [21]

has the following result:



Theorem 1: [21, Theorem 2] Assume at least one of— s, A,, A, is not zero. If the
distribution of x conditioned on{A,, A, s’, s} is uniform over the fieldGF(¢"), ¢ being a
prime, andd + 2 is not divisible bygq, then the probability that the hash ruld (8) holds for
{s',2',h'} is bounded by’tt.

Remark 2:The rate of the AMD code i%%. The rate can be made arbitrarily closeltby
choosing a large enough value faér

On the other hand, an AMD codeword can be represented by Hassd + 2)rlog,q + 1
bits. Hence, if we fixd and ¢, the codeword length is a linear function af Consequently, for
a given code rate, the probability th&t’, ', 2’} can pass the hash rule check (8) decreases
exponentially fast with respect to the codeword length.

Despite the excellent performance of the AMD code, applyingn a noisy channel is
difficult. This is exemplified by the condition in Theordh 1hd distribution ofz conditioned
on {A,, Ay, s, s} must be uniform over the field F(¢"). In a noisy channel, in general,
and x are not independent. In the two-hop network considered is wlork, this can be seen
from the expression of\,. Let g be the decoding function used by nazld_et Y;* be the signal
received by node if relay is honest. Otherwise, we denote it with?. Assuming the decoding

result is correct at all nodes if the relay is honest. In tlase;A, is given by:
A, =2 —x 9)
=g (Y3, X3) — g (Y5, X3) (10)

By observing [(ID), we notice the condition in Theorem 1 carfldélled if ¢ is linear in its
first parameter andé” — YJ" is independent fronx. In general,g is not linear. Even if this is
the case, it is also difficult to achieve independence batige— Y;* and z. Since bothY}"
andYy' are signals transmitted by the relay corrupted by the cHarose, the joint distribution
of Y* — Yy* and z can be made close to an independent distribution if the rataye has
negligible information regarding the value of But it remains to see whether the performance
guarantee in Theorefd 1 can be preserved whign- Y;* andz are almost independent rather
than truly independent. In the sequel, we will propose angtreecrecy scheme that overcomes

these problems.
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IV. LATTICE CODING SCHEME

We first briefly review the communication scheme when theyred&honest but curious”, on
top of which we will build the strong secrecy scheme and thedByine detection scheme in
the sequel.

Since each node is half-duplex, naturally we have a twog@kakeme. In phase one, nodes
and?2 transmit, and the relay node receives. In phase two, thg tedlasmits. For simplicity, we
assume that each phase occupies the same number of chaeseltusas shown in[15] that
these two phases can be used to facilitate the transmiskitie @onfidential messagé” from
nodel to 2: The channel alternates between phase one and phase twog [Phase one, node
1 transmits the confidential message Wa and at the same time nodesends a signak’, to
jam the relay node. During phase two, the relay node trassimihode2 based on the signal it
received during phase one. Since nadknows X5, it can subtract it to obtain a clean signal.
The relay node, however, does not knéw and hence can only observe a noisy versiotXef
Intuitively, this means nodé can transmit to node at a rate higher than the relay node can
decode, and that this excess rate can be used to convey ctigideessages. This idea was
formalized in [15] using compress-and-forward relayingl &m [23] using compute-and-forward
relaying. In this work, we focus on the compute-and-forwactieme as it offers the algebraic
structure that facilitates detection of a Byzantine attack

In the compute-and-forward scheme, the signals transiniityethe two legitimate nodes are
taken from the same nested lattice codebook. This schemefissagproposed in[[33] for a
Gaussian two-way relay channel without eavesdropper®rLtite scheme was used [n [23] as
a building block to transmit confidential messages when #feyris honest but curious, i.e., is
an eavesdropper but not a Byzantine adversary. The latidimg scheme is described next for
completeness:

We begin by introducing basic notations for the nesteddatsitructure: For a lattica.., the
modulus operation: mod A, is defined asc mod A, = x — argmine,, d(z,t), whered(x,t) is
the Euclidean distance betweerandt. The fundamental region of a lattidg A.) is defined as
the set{z : z mod A, = x}. A pair of N-dimensional lattice§A, A.} is said to have a nested
structure ifA. C A [34].

Now consider a pair ofV-dimensional nested lattice p&in, A.} which is properly designed
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as in [34]. The signal transmitted by each node is given by
XY= (tF +d) mod A, i=1,2 (11)

wherety € ANV (A.), andd¥,i = 1,2 are two fixed vectors iV (A.) and are known by
the relay node. For our purposg) will be computed from the confidential messagdg. is
independent from{" and is chosen fron NV (A.) according to a uniform distribution. As a
result, XV = tI¥ +dY mod A. serves as the jamming signal to confuse the untrusted reldg.n

An honest relay node will then decodf + 5 mod A, and transmity’ + 5 + d} mod A,
during phase two, wheré!’ is a fixed vector inV (A.) and is known by nod&€. Node2 then
decodes™ = ¢V + Y mod A, from the signal it received during phase two. An estimate)of
denoted bytY, is then by computed from¥ — ) mod A..

Define |S| be the cardinality of a sef. Define R, as
Ro = 1 log ANV (A)| (12)
Then it was shown in[33] that, if
Ry < %logQ(% + P) (13)

the probabilityPr ()Y # tIV) decreases exponentially with respectNo

Remark 3:It is clear that if the relay chooses to transmiit+ d)Y mod A. for some arbitrary
t e ANV (A.), then node2 will be forced to accept a message that is not originated from
nodel. This shows that unless some proper measure is taken, Byzaitack can quite easily
succeed in this scenariol

Remark 4:dY,i = 1,2, 3 are conventionally defined as random variables uniforngyritiuted
over V(A,) [34]. The reason of defining them to be random is that it isezatsi analyze the
average error performance of an ensemble of lattice codkshoarameterized by the dithering
vectors than to analyze the error performance of a specificdacode book[[35]. However,
from the result on the average performance, we can also dlaaihthere must exist some
fixed dV,i = 1,2, 3, which corresponds to fixed lattice codebooks in the ensenarid these
d¥,i =1,2,3 also provide vanishing error probability and meet the ayerower constraints

[10]. Hence in the sequel we assumi®, i = 1,2, 3 are fixed.]
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t ————=| Main Channel = i

Eavesdropper's = (¢ + dy) mod A.+
Channel (tY + d5) mod A, + ZN

Fig. 2. The lattice input Wiretap Channel

V. USING NESTED LATTICE CODES TOPROVIDE STRONG SECRECY

For the lattice coding scheme described in Sectioh 1V, the-lap network is equivalent
to the lattice input wiretap channeshown in FigurdZR2. The main channel takes inplit
ANYV(A,), and produces outpuf’. The eavesdropper channel also takes ipytand has the
same observation as the signals received by the relay notleeitwo-hop network. The only
difference from the original two-hop network is that in thveothop network, it takes another
N channel uses for the relay to relay the lattice point to nddkeiring which nodel and2 do
not transmit. Here, to simplify the argument, we omit thisaileand will take these additional
channel uses into account when we revisit the two-hop nétwoSection V). Here, we simply
assume that in the lattice-input wiretap channel, the tratbsr transmits in each channel use
and its average power constraint is given By

In the sequel, we will design a coding scheme for the laftipes wiretap channel to transmit

a confidential messagé’ reliably such that the following strong secrecy conditiands:
IW;YN) <exp(—aN), a>0 (14)
A sufficient condition for [(I4) to hold is:
IW; YY) <exp(—aN), a>0 (15)
whereY," is obtained by subtracting the channel noi&# from Y,V:

YN = (Y +dY) mod A, + (t) + d5) mod A, (16)

A. Strongly Secure Scheme



13

1) WhenA, = ¢A for a primeq: The self-similar nested lattice code with prime nestingprat
i.e., A, = g/, is a special case of the good nested lattice ensemble mopos$34, Section 7].
We first consider this case since wheis a prime, the setA + d¥) NV (A.) is isomorphic to
a finite field, as shown by the following lemma:

Lemma 1:When A, = ¢A for a prime ¢ and the generation matrix of has full rank,
(A+d¥)nV(A,) , for the modulusA, plus operation, is isomorphic to the group of a finite
field GF (¢").

Proof: The proof is provided in Appendix]A. [ |

Remark 5: The isomorphism in Lemnid 1 is not affected by the choicé. dthe fixed dithering
vectord is simply used to control the average power of the latticeecodok.

As we will show later in the proof of Theorem 2, the isomorphigroperty proved by Lemmnid 1
allows the resulting decoder to be linear and proves to beitsa importance in the Byzantine
detection scheme in Sectién]VI.

The next theorem declares the existence of the strong sesckeme.

Theorem 2:For a given constant > 0 that can be arbitrarily small, assumeis a prime

large enough such that

1
-T2y (17)
log, ¢
Then for an integer, such that
1
0§r§N<1— +5) (18)
log, ¢

there exists a linear mappingfrom GF(¢q)" to GF(q)" such that

1) g has full row rankr.
2) Whent" i = 1,2 are uniformly distributed ovefA + d¥) NV (A.) and are independent

of each other, there exists a positive constarsuch that
I(g(1):¥Y) < 2e7 (19)

Before proving the theorem, we need several supportindtsesu
First, the following representation theorem from1[23] iefus:
2
Theorem 3: [23] For anyu;, us, such that,; € V (A.),i = 1,2, 3 uy is uniquely determined
k=1

2
by {T, > u; mod A.}, whereT is an integer such that < 7" < 2%,
k=1
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Based on Theoref /" in (I8) can be represented Hy>"2_, (tN + dV)) mod A., T'}. Since
d¥, i = 1,2 are known by each node, this meaxri§ in (I8) can be represented HytY +
tY) mod A, T}.

We also need the following result which says most matrice® Hiall rank:

Lemma 2:Let G be taken from the set of linear mappings frgi# (¢)"¥ to GF(¢)" according
to a uniform distribution. Henc& can be represented as a matrix ogef(q) with r rows and
N columns. The probability thaf has full row rank is greater than— ¢" .

Proof: Let g;,i = 1, ..., be theith row of G. ThenG does not have full row rank if and

only if
aigr + asgs + ... + a,g, =0, a; € GF(q) (20)

Since at least one; has to be non-zero, there ajfé— 1 possible choices fou;.

For each choice ofa;}, since ones; is not zero, there arg""—! solutions for{g;}. Hence
there are at most¥"—Y(¢" — 1) Gs that do not have full row rank. There ay&" possibleGs
in all, each chosen with equal probability. Hence the prditplthat G does not have full row
rank smaller tha”~", and we have Lemma 2. [

Finally, we need the following results on privacy amplificat[24], which we state here for
completeness: We begin with a couple of useful definitions:

Definition 2: For a discrete random variable, the Rényi entropy,(X) is defined as
Hy(X) = —log, > Pr(X = z)? (21)
The Shannon entrop¥/ (X) is defined as
H(X)=—> Pr(X = z)log, Pr(X = z) (22)

Definition 3: [24, Definition 1] A set of functionsd — B is a class ofiniversal hash function
if for a functiong taken from the set according to a uniform distribution, ande, € A, 1 # xo,
the probability thaty(z,) = g(z2) holds is at most /|3|.

We next state the results based on these definitions:
Lemma 3: [24] The set of linear mapping as defined in Lenima 2 is a classmiversal hash

function.
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Theorem 4: [24, Corollary 4] LetG be selected according to a uniform distribution from a
class of universal hash function from to GF(q)". For two random variables!, B, A being

defined overA, if for a constantc, Hy(A|B = b) > ¢, then

or log, g—c

H(G(A)|G,B=10b) >rlog,q— 05

(23)

With these preparations, we are now ready to prove Thebtem 2:
Proof of Theoremi]2:Definea®b asa+b mod A.. Then for the distribution fot i = 1,2

stated in Theorernl 2 @ ¢ is independent from'. Therefore we have:
Hy (1|6 @ 1) =1V) = Hy () = Nlog, g (24)

Let 7' be the integer defined in Theorér 3. Then according to [36,8 TBeorem 5.2][25,
Lemma 3], for a given integer, 1 < a < 2V andt” € ANV(A,), with probability 1 —2~(/2=1):

Hy (Y[t @) =tV T =a) > Hy () [t @ 1) =t") — log, |T| s (25)
=N (logyg—1) —s (26)

In Lemmadl, we have shown thatAf. = ¢A, with ¢ being prime, therl\NV(A,) is isomorphic
to GF(¢V). The isomorphism is with respect to the addition operatiefingd in these two sets.
Sincet) € ANV(A.), we can writet) € GF(¢"). Moreover, sincegF(¢") is isomorphic
to GF(q)V in terms of the addition operation defined in these two setscan further write
t € GF(q)V. Let G be taken from the set of linear mappings frgi# (¢)" to GF(q)" according
to a uniform distribution. TheiG(¢{) is well defined.

According to Lemmal3@G is a universal hash function. Hence, according to Thedremes,

have:

or logy g—c

(G (1) 6.8 61 = .7 =) > rlogyg — Lo’

(27)
wherec is given by [26):
c=N(logoqg—1)—s (28)

Since depending on the value 8f anda equation[(2B) holds with probability — 2-(/2=1),

from (217), we have

H (G (tiv) |Gr,tiV @téV,T) > (1 _ 2—(s/2—1)) (r log, g — %) 9)
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Note that
H(G()|G) < rlog,q (30)

Hence in order forl (G(tV); tN @ t)', T|G) to be negligible, we exped (*/>~1) and 278 —¢
to decrease exponentially with respectfo To achieve this, we choose= ¢'N, where( <

¢’ <log,q — 1 so thatc in (28) is positive. We choose such that for§ > 0:

rlog,q < c— N§ (31)
= N(logyqg—1) —s—N§ (32)
= N(logyq—1—¢"—9) (33)

We observe that if(31)-(33) are satisfiexi!°¢. —¢ to decrease exponentially with respect¥o
We also observe that if we let= ¢’ + ¢, then [31){(3B) lead td_(18).

For these choices of and s, from (29) and [(3D), we observe that there exjsts- 0, such
that

I(G (1)t @), T|G) < e (34)

We next use the fact that for sufficiently largé, most Gs have full row rank as shown in
Lemmal2. Therefore, for a uniform distribution feff ;i = 1,2, ¢} and¢) being independent,
there must exists & = g, such that

1) g has full rank.

2) From Markov inequality,
(G (1)t o), TG =g) <2e N (35)

Finally, we use Theorerl 3, which say8 @ ), T in (35) can be replaced by". Hence we
have proved Theorem 2. [
The secrecy generation scheme described above will not défelut the generated random
variable,g(t)Y), can not serve as the random segdn the AMD tuple as described in Section II.
Hence we need the following lemma on the distributiong6f).
Lemma 4:1f ¢ is uniformly distributed ove F(¢"), andg has full row rank, Therg(t{)

is uniformly distributed oveG F(q").
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Proof: Sinceg has full row rank, and its elements are taken from the fi&f(q), it can

always be represented as
g=[LP]O (36)

whereQ is an N x N invertible matrix. HenceO(¢)) is uniformly distributed oveg F(¢"). I is
anr x r identity matrix. Since the sum of any two independent fielhednts will be uniformly
distributed if one of the field element is uniformly distribd, it can be verified thag(t)) is
uniformly distributed ovelGF(q"). u

2) The General CaseWhen (A, A.) does not have the self-similar relationship as described
in Sectio V-Al, we can still extract a strongly secure rand@riable from a lattice point using
the same method as shown in Secfion \-A1. The only differéadbat the map between the
extracted random variable and the lattice point will not inedr.

Consider a generaN dimensional nested lattice codebodkn V (A.). Recall thatR,, as
defined in [(IR), is the rate of the codebook. AssuRie> 1. Let |z| be the operation that

roundsz to the nearest integer less than or equat.t®efine NV, as
No = [log, [ANYV (Ac) [ (37)
Then
No > NRy — 1 (38)

Choose the subséf of the codebookA +dY)NV (A.) that yields the minimal average decoding
error probability with the lattice decoder and has sigg = 2™°. Definev as the one-to-one
mapping fromK to GF(2"0). Then we have the following theorem:

Theorem 5:Let ¢ > 0 be a constant such that
Ry—1—¢>0 (39)
Then for an integer, such that
0<rg<N(Ry—1-—¢) (40)

there exists a linear mappingfrom GF(2)N to GF(2)™ such that

1) g has full row rankr.
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2) Whent} is uniformly distributed ovek’, t) is uniformly distributed ovefA+d3 )NV (A.),

tV ¢ are independent of each other, we have
I(g(v(t))); V) < 2e7V (41)

for a certaing > 0.
Proof: The proof is similar to that of Theorel 2, and is given in ApgiriBl [ |
3) Encoder ConstructionAlthough both Theorerll2 and Theoréin 5 can be used to prove the
existence of an encoder with rate arbitrarily closertex{ R, — 1,0}, with R, defined in [(ID),
only Theorenib is used in the sequel to transmit confidentedsages. Theorelm 2 is only used
to generate strongly secure random seeds, for which TheBrsnsufficient by itself. Hence in

this section, we discuss Theorémn 5 only. The argument wesuas follows:
/
For a giveng that has full row rank, leg’ be (Ny — r9) x Ny matrix such that{ & ] is a
g

square matrix that is invertible. Defiand S’ such that

gENO—TO)XNO :| ’U(tiv) _ |: S/(NO—To)Xl :| (42)
S

gTOXNo rox1

/

ThenS = g(v(t))). Define A as the inverse o{ 8 ] then the encoder is given by:

tN =vtA
STQXI

/(No—To)Xl ] (43)

whereS € GF(2™) be the input to the encoder. We assufés uniformly distributed over
GF(2m). t¥ € AnV(A.) is the output of the encode®’ represents the randomness in the
S,.x1} is uniformly distributed oveg F(2)™o

x1»

encoding scheme. We observe thagSf,, _,,
and [43) is used as the encodgY, is also uniformly distributed over the séf. SinceG = g
is chosen when!¥ has a uniform distribution ovek’, this means that whefi . {(43) is used as an
encoder, the secrecy constraint in Theoféni 5] (41), stilo

Since the encodel_(#3) us@s channel uses to transmitrg x 1 binary vector, the achieved

secrecy rate is

Ro=[Ry—1-¢" (44)
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where[z]T equals if x > 0 or 0 otherwise. According td (13), this meafs can be arbitrarily

close to

+

1 1

B. Comparison with Other Wiretap Coding Schemes

Although this work leverages the same technique, namelyagyr amplification as[[25], it is
distinct from [25] in the following aspects:

Reference[[25] proposed that one can invoke any weakly sesthieme multiple times and
extract a strongly secure key using privacy amplificatioet ®(x) denote the set of functions
ar+b,a>0,b+# 0, anda, b are constants. In our model, each invocation of the wealdyrse
scheme involve®(/N) channel uses, whet¥ is the dimension of the lattice code. Suppose this
scheme is invoked fon/ times. Then the total number of channel used/ig/. Let K denote
the generated key arild”? be the signals observed by the eavesdropper, then the ire$p]
implies

Jim 1 (K; VM) =0 (46)

In this work, g(¢)¥) in Theoreni2 can be viewed as the strongly secure key. Bas&teoreni 2,

we have

: 1 Vv IN
lim —NlogQI(KJ/T ) >0 (47)

N—oo
Comparing[(4l7) to[(46), we obsenje [47) is stronger. Thisisalise the strongly secure scheme
in Section V-A leverages results specific to nested lattmdec namely Theoref 3 and extracts
the key from a single lattice point instead of a sequence ticéapoints. Hence, while the
scheme we proposed in Section V-A is not as generally agpécas [25] does, we observe that

it performs better than applying [25] directly to our model.

To simplify the argument, we have omitted several detadsnf{23] including “error reconciliation”. Interested resd can
refer to [25] for further details.
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VI. BYZANTINE DETECTION

In this section, we describe how to transmit the AMD code gidghre strong secrecy scheme
proposed in SectionlV and analyze its performance.

To transmit{z, h}, we use the idea of “message authentication codes with keypulation
security” in [21, Section 4]. Note that for a given the distribution of hash tag is in general
not uniform. Hence the distribution &f depends on the distribution ef However, if we want to
use the strongly secure scheme in Sedtion] V-A to transnaitd desire to fix the hash function
G = g, we need to know the distribution éfbeforehand, which is difficult since the distribution
of s is hard to determine beforehand. To solve this problem, wedudce another random seed
k from GF(q"), which can be generated via the linear coding scheme in @e8HAL From
Lemmal4,% is uniformly distributed oveG F(¢"). Henceh can be transmitted by usingas a
one time pad.

The transmission is hence divided into 4 stages:

1) z € GF(q") is extracted from anV dimensional lattice code as shown in Secfion -A1.

2) k € GF(q") is extracted from anV dimensional lattice code as shown in Secfion -Al.
Let k be the estimate of it computed by nogleLet P, be the average power per channel
use of theN dimensional lattice code.

3) u = h @ k is transmitted by nodd via the conventional two-hop protocol using
dimensional lattice code witlog, ¢ per channel use. In this stage, natleemains silent.
Let u be the estimate of it computed by no#leLet P, be the power per channel use of
the r dimensional lattice code.

4) s is transmitted via the encoder described in Sedfion V-Ahit= P(1 — cp). cp is a
positive constant that can be made arbitrarily small. £ be the estimate of computed

by node2, which corresponds te’ in Theoren{lL.

Remark 6:Note that bothP;, and P, are only functions of the rate of their respective lattice
code, which islog, ¢. Hence P, and P, are only functions of;. Therefore, we can increase
while leaving P;, P, unchanged.]

We next derive the following important lemma which implié¢ge tcondition of AMD code

stated in Theorernl 1 can be fulfilled using the transmissitierse described above:
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Lemma 5:Let sy be anyd x 1 vector onGF(q"). Then
I (..'lf, Al’v Ahv ‘§|S = 80) < 4eXp(_ﬁN) (48)

where 3 is a positive number defined in Theoréin 2.
Proof: The proof of Lemmdl5 is based on the strong secrecy offeredhgoem 2 and
Theoren{b, and is provided in Appendix C. [
Remark 7:Lemmal5 implies that

I (250, A, 8]s) < dexp(—BN) (49)
Sincel(x;s) = 0, this means
I(z;0,, A, 3,5) < dexp(—BN) (50)

[]

Remark 8:Note that/ (x; A, Ay, §|s = so) does not dependent on the error exponents of the
lattice decoder. Also, it does not depend on whethigs known by the attacker beforehandl
We next link Lemmdb and Theorelm 1 with Pinsker's inequalityich leads to the following
main result of this paper:

Theorem 6:For the Gaussian two-hop network, for a rate smaller butraridy close t00.5 R,
given by [4%), and a total number of channel uges= ©(N):

1) When the relay is honest, the confidential mesd&gean be transmitted at this rate such
that all the three termBr(W # W), I(W;Y") and

Pr (W is not accepted by Node 2|W = W) (51)

decrease exponentially fast wifli.
2) When the relay is not honest, the probability that the Byine@ attack goes undetected,
i.e., the probability that the adversary wins, denotedPagA wins) in (7)), decreases

exponentially fast withv.

Proof: We use “HRH” for “hash rule holds” when for #£ ¢/,

d d

a2+ st =2 Y s+ A, (52)
=1 i=1
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This means the messagé ', ' will be accepted by nod@. Hence the probability that the

adversary wins is given by:

Pr (A wins)
Pr (HRH|z, A, Ay, s = 0, 8) (53)
2,0y Pr (z|Ap, Ay, s = so,8") Pr(Ap, Ay, s'|s = so)
Ap,,s'#s0

Define Q(A wins) as the term[(33) withPr (z|Ay, A,, s = so, s') replaced byPr(x).

Q (A wins)
= Pr (HRHz, Ay, A, 5 = 50, ) (54)
- 3 o=

28 Pr(2) Pr (A, Ay, sls = s0)

Note that(@ (A wins) would be the probability that the Byzantine adversary wihg: iand
An, A, s, s are truly independent. To evaluate the effect of being etfser, we next bound the
difference betweetrr (A wins) and @ (A wins).

| Pr (A wins) — Q (A wins) | (55)

Pr(HRH|z, Ap, Ay, s = 80, 8)
< > |Pr(z|An, Ay s = sg,8) — Pr(z)| (56)
z,Ay
Ans'#so Pr(Ap, Ay, s'|s = so)

| Pr(z|Ap, Ay, s = so,8) — Pr(z) |
> (57)
2,0y Pr(An, A, s'|s = so)
Ay ,s'#so

IN

| Pr(z|Ap, Ay, s’ s = sg) — Pr(x]s = so) |

= > (58)
A, Pr(An, A, s'ls = so)
Ap,s'#so

= Z | Pr(z, An, Ay, 8'|s = so) — Pr(z]s = s9) Pr (Ap, Ay, s'[s = s¢) | (59)
Xﬁz’yﬁso

< N Pr(z, AR, Ay, '|s = so) — Pr(z]s = so) Pr(Ap, Ay, s'|s = s0) | (60)
z,Ay
Ap,s’

Then we use Pinsker’s inequality [37, Theorem 2.33]:

I(A; B) = D*(p (A, B),p(A)p(B)) (61)

2In2
where D(p(z), q(x)) = >, [p(z) — q(x)|.
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Let p(A) be Pr(z|s = s¢). Let p(B) be Pr(Ax, A,, s'|s = so). Let p(A, B) be given by:

p(A, B) = Pr(x, A, Ay, s'|s = s0) (62)

Then from Lemma&l5,(80) is bounded l;g)f/(8ln 2) exp(—pN) because of Pinsker’s inequality.

Hence we have:

| Pr (A wins) — Q (A wins) | < /(81In2) exp(—AN) (63)

From Theoreni]1() (A wins) is bounded by% Hence

d+1

T

Pr (A wins) < \/(8 In2) exp(—FGN) + (64)

Each{s} conveysdrlog, ¢ bits of information, where- is defined in Theorerml 2. Recall that
the total number of channel uses is denoted2hy The relay node transmits duringchannel
uses. Nodd transmits during the other channel uses. When nodetransmits, node may or
may not transmit depending on which of the 4 stages descabéie beginning of this section

is being executed. For the four-stage transmission schensegiven by:

drlog, q
= 2N —>- N 65
n +r+{ NE, w (65)

This is becauséV channel uses are needed to transmdr &k, andr channel uses are needed
to transmitk & h. The third term in[(6b) is the number of channel uses needdthismits,
where [z] is the operation that roundsto the nearest integer greater than or equat.to

The overall secrecy rat& is given by

_ drlogyq

R
r 2n

(66)

From [65), we observé?r can be made arbitrarily close tb5R,. by choosing a sufficiently
larged.

Let Pr denote the transmission power averaged over the channeldusing which a node
transmits. Based on the four stage transmission schémef node 1 and the relay are the
same.Pr of node2 is smaller since it does not transmit during the third sta¢gnce we only
need to make suré; of nodel does not exceed the power constrathtP; of nodel is given
by

 Pi2N + Por + P (2gt)

Pr = (67)

n
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Pr can be made arbitrarily close to but strictly smaller tiamy choosing a sufficiently large
d and a sufficiently smaltp.

Once Ry and Pr is fixed, d is fixed. On the other hand, as shown by|(65) dnd (18), for a
fixed d, n increases linearly with respect 9.

Selectr as in [18) such that increases linearly with respect t§¥. Then, from [64), we
observe that the probability that the adversary wins dee®axponentially fast withv. Hence
we have the bound oRr(A wins) stated in the theorem.

We next check whether the secrecy constraint is satisfied:
I(s;Y,(i),0<i<3) (68)
<I(2;Y,(0)) + 1 (h; Y, (1),Y,(2)) + 1 (s:Y;(3)) (69)

In (€9), the first term decreases exponentially fast witlpeesto N due to Theoreml2. For

the second term, we have

I(h:Y,(1),Y,(2) <I (h;Y, (1), Z,(1), h & k) (70)
=1 (1Y, (1), he k) (71)
=I(h;h@ k) +1(h;Y, (1)|h@k) (72)
=1 (Y, (1) [he k) (73)
<1 (h, kY, (1) =1 (k; Y, (1)) (74)

Hence, the second term is bounded ¥, Y;(1), which also decreases exponentially fast with
respect toN due to Theoreni]2. The third term decreases exponentialtywik respect to
%f” due to Theorerh]5. Henck_(68) decreases exponentially féstrespect taV.

Finally, we check whether the confidential messHgewhich corresponds te in our scheme,
can be transmitted reliably. We observe that the probgdit(1/" # I/T/) does decrease expo-
nentially fast with respect t@&v because the decoding error probability of the lattice decod
decreases at this speed, as stated in the end of Séciion IV.

The probability
Pr (W is not accepted by Node 2|W = W) (75)

depends on whether, k, k & h can be transmitted reliably. Since they are also transdhittiéh

the nested lattice code and decoded with a lattice decdaerprobability of decoding error
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when transmittinge, k£, k & h also decreases exponentially with respect to the dimertdidine
lattice, which in turn increases linearly witN. Hence [(7b) also decreases exponentially fast
with respect toV.

Hence we have proved the theorem.

[

Remark 9:lt is evident from [(6B) that if LemmBl5 were weakened to jusivprg the left-
hand side converges ) which is the case if the conventional strong secrecy ndtienthe one
in [27] is used, then it would not be possible to preserve stppeentially decreasing detection
property offered by the AMD code. Hence in this problem, tleenmonly recognized strong

secrecy notion is insufficient, and a stronger notion, asrdesd by [19), is required.

VIlI. CONCLUSION

In this work, we developed a coding scheme which providesngtrsecrecy by combining
nested lattice codes and universal hash functions. In awiqgus work [238], the representation
theorem for nested lattice codes is used to bound the Shammpy. Here we showed the same
theorem is also useful in bounding another information te&o measure, i.e., the Rényi entropy,
which in turn leads to the desired strong secrecy results@aassian setting. We showed that
this coding scheme can be used with AMD codes to perform Byzawletection for a Gaussian
two-hop network where the relay is both an eavesdropper aBgzantine attacker. Using this
code, we showed that the probability that a Byzantine adwver&ins decreases exponentially
fast with respect to the number of channel uses.

It should be noted that, in this work, we have assumed thatlia@nel gains are known by
each node before the communication starts. It should begnéoed that the Byzantine attacker
at the relay node may attempt to manipulate the channel astimprocess, for example, by
broadcast incorrect pilot signals, to gain an advantagéediien of this type of misbehavior is

closely related to the physical layer implementation of $fistem and is left as future work.

APPENDIX A

PROOF OFLEMMA (1]
When A, = ¢A and the generation matrix df has full rank, there arg" lattice points in
(A+dV)NV (A.). Each pointin(A+d")NV (A.) can be represented by its coordinates, which

is a vector composed a¥ integers:{ci,...,cx}.
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We next prove the following mapping is an isomorphism frafn+d") NV (A.) to the group
of a finite field GF(¢"):

I:1(cy,...cx) = {e1 mod g + (¢ mod q)x... + (ex mod )z '} (76)

First we prove that two elements it +d") NV (A.) can not be mapped to the same element
in GF(¢N). This can be proved via contradiction: Suppose they cann,Tlve have two points

x, andy, whose coordinates afg, ...,ax} and{by, ..., by } respectively, such that
3j, a; #b; (78)

This meanst —y € ¢gA = A.. Letz € A, bex —y. Thenz =y + 2z andz # 0.

Define the quantization operat@l, (z) as

Qn.(x) = argmin ¢ — 2] (79)

where||t—z|| denotes the Euclidean distance betweandz. @, (x) has the following property:

Vz € Ae, Qa (x4 2) = Qa.(z) + 2. This can be shown as follows:

Qr o +2) = argypin i — 2] 80)
— arg min (¢~ 2) ~ o (81)
= argtlrréiAnc |t —z|| + = (82)
=Qu, () + 2 (83)

Sincex,y € V (A.). This means),, (z) = 0 and Q. (y) = 0 . However we can also write
Qr. () = Qa.(y+ 2) = Qa.(y) + 2z = z # 0. This leads to a contradiction.

SinceI cannot map two different lattice points to the same field elethand the setA +
d¥)NV(A,.) has the same cardinality &F(¢"), I must be a one-to-one mapping.

Finally, it is easy to verify thal preserves the addition operation:
I(z +y) = 1(z) + L(y) (84)

This completes the proof thdtis an isomorphism.
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APPENDIX B

PROOF OFTHEOREM[G

For the distribution fort)Y i = 1,2 stated in Theoreril % ¢ tJ’ is independent front}'.

Therefore:
Hy (1|6 @) =V) = Hy (1)) = N (85)
Then, as in[(26), with probability — 2-(s/2-1);
Hy (1|t @) =1V, T = a) (86)
>Hy (1t @) = V) —log, |T| —s = No— N — s (87)

We next use the fact that whe@ is uniformly distributed over the set of linear functions
from GF(2)N to GF(2)™, the following equation holds according to Theorgm 4:

H (G (v(tiv)) G, N @t =V, T = a) N 217;—20 o
wherec = Ny — N — s.
Hence
H (G (U(tiv)) \G,tiv @b téV,T) > (1 _ 2—(5/2_1)) <7’0 B 21::—;) .

In order for2=(/2=1 to decrease exponentially fast with respectpwe chooses = N,

where( < ¢ < Ry — 1 so thatc is positive. Choose, such that for§ > 0:
ro<c—N6/2=Ny—N—s—No/2 (90)

so that2™0—¢ decreases exponentially fast with respecto Recall by [(38), we havev, >
NR, — 1. Hence a sufficient condition fof_(P0) to hold is to require

’T’Q<N(R0—1)—S—N(S (91)
This yields [(40). For this, and s, from (89), we observe that there exigts> 0, such that
I(G (o)) ;) @), TIG) < e N (92)

We next use the fact that for sufficiently largé mostG has full row rank as shown in Lemma
2. Therefore, under a uniform distribution fof ;i = 1,2, ¢} andt}’ being independent, there

must exists & = g, such that
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1) g has full rank.
2) 1(G (o(t))) st @) TG = g) < 2¢7°N

Hence we have proved Theoréin 5.

APPENDIX C

PROOF OFLEMMA

The following notation is used in the prooX;(j),i = 0,...,3, X,.(j) denote the signals
transmitted by nodd, 2 and the relay during thgth stage,j = 0, ..., 3. Similarly, Y;(j),i =
1,2, Y.(4), Z.(j), Zr(j) denote the signals and channel noise observed duringtthstage.
X,(i),i=0,...,3 denotes the estimate fd¥, (i) computed by node. To simplify the notation,
we omit the superscript for these signals which were useddicate their dimensions.

As described in Section VI, theth stage is used to transmit The 1st stage is used to
transmitk. The 2nd stage is used to transntitd ~. The 3rd stage is used to transmit

We next explain how to upper bound the following quantity:
I (z; A, Ay, 8|s = sp) (93)

Let @ in = @y denote the addition operation in the field wherandy are taken from. Let-z
denote the element such thatz) & = = 0. Recall thatg is the linear mapping whose existence

is proved in Theorerh]2. With these notations, we can wiiteas:

A, =g (X, (0) ® (- X3 (0))) & (—2) (94)
=g (X (0) ® (—X5(0))) ® g (—X, (0)) (95)
=g (X, (0) & (= (X2 (0) & X1 (0)))) (96)

SinceA, is a function ofX,.(0) and X5(0) @ X;(0), (@3) is upper bounded by:

I (; X, (0), X1 (0) & X5 (0), A, 85 = so) (97)

~

X,(0) is computed fron3(0) by node2. Hence [(9F7) is upper bounded by:
I(z;Y2(0), X (0)& X5 (0),Ap, §s = so) (98)
<I(z; X, (0),Zr(0),X:(0)® X5(0),Ap, 5|s = so) (99)

=T (2: X, (0), X1 (0) ® X2 (0), Ay, &5 = s0)
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+ 1 (23 Z5 (0) |X, (0), X1 (0) @ X5 (0), Ap, 3,5 = ) (100)

Recall thatZz(0) is the noise observed by Nodeduring the stage responsible for transmitting
x. We observe that it is independent from all the other termthénsecond term of (100). This
is because\,, s, s are only related to signals transmitted in later stages.rélay node has no
knowledge ofZx(0). HenceZx(0) can not affect the relaying strategy. As a resllf, {100) Equa

I(*T;Xr (0>7X1 (O>@X2 (0)7Ah7§‘3: SO) (101)

Recall that)/, denotes the randomness available to the relay node. Theexpression il (101)
is upper bounded by

I (x; M., X, (0),Y,(0), X1 (0) ® X2 (0), Ap, 3]s = s0) (102)
=/ (JJ; Mr, Y; (0) ,Xl (0) ) X2 (0) s Ah, §‘8 = 80) +
I (2: X, (0)| M, Y, (0), X1 (0) ® X5 (0), Ay, 8,5 = s0) (103)

Since X,.(0) is computed fromy,.(0) at the relay node, it is a deterministic function 5f(0),
M, and potentiallys,. Hence the second term ih (103)(sand [I0B) equals:

I('T; MMY;‘(O>7X1 (O>®X2 (0)7Ah7§‘3: SO) (104)

We next examine\, in (I04). Recall that: is defined as: & h. @ andk are the estimates for

u and k computed by node respectively. With these notations, we can exprssas:

Ap=a®(—k)® (—h) (105)
=u® ((—k)® (—Ap)) @ (—h) (106)
=u®(—(kdh) ®(—Ar) (107)

As seen from[(ZA5)-(107)); is a function ofu, k @ h, and Ay. Therefore [(104) can be upper
bounded by:

I (s M,, Y, (0), X1 (0) ® X2 (0), 1,k @ h, Ag, 3]s = s0) (108)
Note thata is computed fromy,(2) by node2. Therefore [(108) is upper bounded by:
I (.CL’, Mra Y;" (0) 7X1 (0) D X2 (O) 71/2 (2) ) k@ hu Aku §‘8 = SO) (109)

<I(x; My, Y, (0), X1 (0) ® X5 (0), X, (2), Zr (2) , k ® b, Ay, 3]s = o) (110)
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:I<£L’, M’f‘7 Y;‘ (O) 7X1 (O) SY X2 (0) 7Xr (2) ) k@ h’7 Akv §‘8 = SO)
+1(z; Zr (2) |M,, Y (0), X1 (0) © X5 (0), X (2) , k ® h, A, 5,8 = s0)  (111)

Again Zr(2) is independent from all the other terms in the second ternidl) Hence[(111)
equals:

I(w; My, Y, (0), X1 (0) @ X5 (0), X, (2), k& h, Ay, 8ls = so) (112)

For A;, we have:

Ap =g (X (1) @& (X2 (1)) & (—k) (113)
=g(X, (D& (-X2(1) & g(-X, (1)) (114)
=g (X (D e (- (1) e X (1) (115)

HenceA, is a function ofX,(1), X5(1) & X;(1). Therefore [II2) can be upper bounded by:

I(x; M,, Y, (0), X1 (0) ® X (0),Y, (2), k@ h, X, (1), X1 (1) ® X5 (1), 8]s = s0)  (116)

~

X, (1) is computed fromy;(1) by node2. Hence [(116) is upper bounded by:
I(z; M, Y (0), X1 (0) © X2 (0),Y,(2), kR, Y2 (1), X1 (1) & Xa (1), 3]s = s0)  (117)
<I(z; M,,Y, (0),X:(0)® X2(0),Y, (2),kdh, X, (1), Zr(1),
X, (1)@ Xo (1), 3]s = so) (118)
=1(x; My, ¥, (0), X1 (0) & X2 (0), Y7 (2) , k@ b, Xo (1), X1 (1) & X5 (1), 8]5 = s0)
+ 1 (x; Zr(1)[M;, Y, (0), X1 (0) ® X5 (0), Y7 (2),
koh X, (1), X, (1) ® Xz (1), 5,5 = s) (119)
=1(z; M,, Y, (0), X1 (0) & X2 (0),Y, (2) kb, Y, (1), X1 (1) & Xa (1), 8]s = s0)  (120)
Finally, s is computed from5(3), X»(3) by node2. Hence [(12D) is upper bounded by:
I(x; M, Y, (0),X,(0)® X, (0),Y,(2),k®h,Y, (1),
X1(1) @ X2(1),Y2(3),X2(3) |s = s0) (121)
<I(x; M,,Y, (0),X,(0)® X5(0),Y,.(2), k@ h,Y, (1),

X1 (1) & X (1) 7X7” (3) >X2 (3) |$ - 80) (122)
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Since X,.(3) is a deterministic function of\/,, Y,.(3) and potentiallys,, we can upper bound
(A22) with the following term by replacing, (3) with Y,.(3):

I(z;M,, Y, (0), X, (0) X2 (0),Y,(2),k@h,Y, (1), X1 (1) ® X5 (1),
Y, (3),X2(3) |s = s0) (123)

< I(w;M,, Y, (0), X1 (0) & X5 (0),Y, (2), kR, Y, (1), X1 (1) & X2 (1),
X1(3),2:(3), X2(3) |s = s0) (124)

Equation [(12K) follows fromY,.(3) = X;(3) + X»(3) + Z,(3). We then use the fact that the
stochastic encoder used by notldo transmits is independent from the stochastic mapping

used at other stages. Hence, we have:
(X1 (3), X2 (3), Z (3) | My, Y, (0), X1 (0) @ X5 (0) (125)
Y, (2),kdh Y, (1), X; (1)@ X2(1),s=150) =0 (126)
and [124) equals:
I(a; M, Y (0), X1 (0) @ X5 (0), Y, (2), k@ h, Y, (1), X1 (1) @ Xz (1) |s = s0) (127)
=I(x; M|s = so)
+ I(2;Y,(0), X1 (0)® X2(0),Y,(2),kdh, Y, (1), X; (1) ® Xo (1) |[M,,s =50) (128)
Next we note that sincé(xz; M, |s = so) = 0, (I128) equals:
I(2:Y,(0), X1 (0) & X2(0),Y,(2), k& h, Y, (1), X1 (1) & Xo (1) [M,, s = sp) (129)
Equation [(I2DB) is upper bounded by:
I(z,h; Y, (0), X1 (0) ® X2 (0),Y,(2), kD h, Y, (1), Xy (1) ® X (1) [M,, s =50)  (130)

Recall that the notatio,, as introduced in[{16), denotes the quantity obtained byraciing

the channel noiséV, from Y,. Following this notation, we can upper boud (1130) as:

[(l‘, hv?;’ (O) ) Zr (0) 7X1 (0) D XZ (O) )

:<j I

(2) ) Zr (2) ’ k D h> )_/;’ (1) ) Zr (1) 7X1 (1) D XZ (1) |MT> s = SO) (131)

= I(LL’, h71/;‘ (O> 7X1 (O> D X2 (O> 9
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Y, (2),kdh, Y, (1), X (1) ® Xy (1) |M,, Z, (i) ,i =1,2,3,5 = s) (132)
which is further upper bounded by:
H (Y, (0), X1 (0) & X5 (0) [ My, Z, (i) ;i = 1,2,3,5 = s0)
+H (Y, (2), k®h,Y, (1), X1 (1) @ X (1) |M,, Z, (i) i = 1,2,3,5 = o)
— H(Y,(0),X,(0)® X5 (0),Y,(2),k®h, Y, (1), X, (1) ® Xy (1) |
z,h, M, Z,(i),i=1,2,3,5 = 50) (133)
=H (Y, (0), X1 (0) @ X5 (0)|M,, Z, (i) i = 1,2,3,5 = so)
+H (Y, (2), k& h, Y, (1), X1 (1) @ Xa (1) | My, Z, (i) i = 1,2,3,5 = s0)
— H(Y,(0),X,(0)® X5 (0) |z, h, M,., Z, (i) ,i = 1,2,3,5 = 50)
—H(Y,(2),k®h,Y, (1), X1 (1) © X, (1) Y, (0), X, (0) © X (0),
z,h, M,,Z, (i),i=1,2,3,5 = 5¢) (134)
We then use the two Markov chains shown below:
{Y:(0),X1(0) ® X (0)} — {x, My, Z, (i) ,i = 1,2,3,5} — h (135)
V.2, k@Y, (1), X (1) ® X2 (1)} - {h, M,, Z, (i) i = 1,2,3, 5}
— {2, Y:(0), X1(0) ® X5(0)} (136)

The Markov relation in[[135) holds because giverthe distribution of{ Y, (0), X; (0)® X, (0)}
only depends on the randomness in the transmitter of maated 2 during stage). The Markov

chain in [I35) follows because:
ke h—{h M, Z (i),i=1,23,s} — {z,7,(0), X,(0) ® X5(0)} (137)
and
{V.(2),%.(1), X (1) © X3 (1)} = {k & h,h, M,, Z, (i) ;i = 1,2,3, 5}
—{2,Y:(0), X1(0) & X»(0)} (138)

are Markov chains. Equatioh (137) is a Markov chain, becagisenh, the distribution oft & h
only depends ork, which is independent from all the remaining terms[in_{1Etuation [13B)
is a Markov chain, because, givén® h and h, which impliesk is given, the distribution of
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1Y, (2), Y, (1),X1 (1) @ X, (1)} only depends on the randomness in the transmitter of node
and2 during stagel and stage.
Applying the two Markov chaind (185) and (136) to the last twoms in [134), we find that

it equals:
I (2;Y,(0), X1 (0) ® X2 (0) | My, Z,(i),i = 1,2,3,5 = s0)
+ 1 (B Y, (2), k@ h, Y, (1), X, (1) © X3 (1) [ My, Z, (i) ;i = 1,2,3,5 = s0) (139)
For the first term in[{139), sinc& (0) ® X,(0) = Y,(0) mod A, and hence is a function of
Y,(0), we have
I (2;Y,(0), X1 (0) @ X5 (0)| My, Z(i),i = 1,2,3,5 = 50) (140)
=1 (2:Y, (0)|M,, Z,(i),i = 1,2,3,5 = 50) = I (2: Y, (0)) (141)
Sincex is extracted from a lattice point iG.F (¢"V) based on the strong secrecy scheme described
in Section'V-Al, from Theorer] 2, we ha\Ie(x; Y, (O)) < 2exp(—BN).

For the second term il (IB9), note tHat2) is just X,(2), because node remains silent at

this stage. Therefore, this term can be expressed as:
I(h; X1(2), k& h, Y, (1), X1 (1) © Xo (1)| My, Z,(i),i = 1,2,3,5 = 50) (142)
=1 (Y, (1), X2(2)| My, Z,(i),i = 1,2,3,5 = 59
+1 (hik@h, Xy (1) @ Xp (1) [V, (1), X1(2), My, Z,(i),i = 1,2,3,5 = 59) (143)

The second term i (143) issincek @ 1 is a deterministic function ok (2) and X; (1) X5(1)

is a deterministic function o¥,(1). Therefore [(1413) equals
I(h;ﬁ(l),X1(2)|Mr,Zr(i),z’: 1,2,3,s = 50) (144)
=1 (Y, (1), X,1(2)) (145)
Since X, (2) is determined by, @ k, (145) is upper bounded by:
I(hY, (1), hek) (146)

=I(hsh@k)+1 (Y, (1) |hek) (147)

I(hY, (1) |hek) (148)
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<I (b, ks Y, (1) =1 (k; Y, (1)) (149)

Since k is extracted from a lattice point ig F(¢") based on the strong secrecy scheme
described in Section V-A1, hence from Theorem[2,{149) isnded by2 exp(—3N).
Therefore [I30) is bounded byexp(—3N). Hence we have Lemnid 5.
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