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Abstract

Large dimensional random matrix theory (RMT) has provided an efficient analytical tool to under-

stand multiple-input multiple-output (MIMO) channels and to aid the design of MIMO wireless commu-

nication systems. However, previous studies based on large dimensional RMT rely on the assumption

that the transmit correlation matrix is diagonal or the propagation channel matrix is Gaussian. There

is an increasing interest in the channels where the transmit correlation matrices are generally nonnega-

tive definite and the channel entries are non-Gaussian. This class of channel models appears in several

applications in MIMO multiple access systems, such as small cell networks (SCNs). To address these

problems, we use the generalized Lindeberg principle to show that the Stieltjes transforms of this class of

random matrices with Gaussian or non-Gaussian independent entries coincide in the large dimensional

regime. This result permits to derive the deterministic equivalents (e.g., the Stieltjes transform and the

ergodic mutual information) for non-Gaussian MIMO channels from the known results developed for

Gaussian MIMO channels, and is of great importance in characterizing the spectral efficiency of SCNs.
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I. Introduction

The seminal works by Foschini et al. [1] and Telatar [2] have inspired the world to realize the huge capac-

ity of multiple-input multiple-output (MIMO) antenna systems and shed light on the capacity-achieving

strategies of such systems. However, exact analysis for the achievable rates of MIMO channels could be dif-

ficult and for some channel models unsolvable. In the last few years, large-system approaches have emerged

as a means to circumvent the mathematical difficulties, greatly motivated by the landmark contributions

of Verdú-Shamai [8] and Tse-Hanly [9] using large dimensional random matrix theory (RMT) to various

problems in information theory. Since then, a large body of performance analyses of various MIMO chan-

nels were obtained by large dimensional random matrix tools such as the Stieltjes transform method (or the

Silverstein-Bai method) [10],1 the Gaussian tools (integration by part and the Poincaré-Nash inequality)

[11], the free probability [12], and the replica method [13]. See [14–16] for more details.

For channel matrices with Gaussian entries, the replica method, an approach originally developed in

statistical physics, serves as a powerful tool to derive the relevant results. For example, it has been used

to obtain asymptotic mutual information results for Rayleigh [25] and Rician fading [26] channels with

separately correlated antennas. Nevertheless, this method is mathematically incomplete, to say the least.

To acquire a more sound mathematical procedure, advanced tools such as the Gaussian tools and the

Stieltjes transform method are required. Using the Gaussian tools, the asymptotic mutual information

expressions for Rayleigh and Rician fading channels have been confirmed rigorously by Hachem et al. [27]

and Dumont et al. [28], respectively. Based on the Stieltjes transform method, Couillet et al. recently

studied a MIMO multiple access channel (MAC) with separately correlated user channels [7]. In this

case, each user’s channel matrix, Hk, can be written in the form R
1
2
kXkT

1
2
k , where Xk has independent

and identically distributed (i.i.d.) zero-mean Gaussian entries, and Rk and Tk are both deterministic

nonnegative definite matrices which, respectively, characterize the spatial correlation structure at the

receiver and transmitter sides separately.

Though strictly speaking, the large-system results are only asymptotically tight, they provide reliable

performance predictions even for small system dimensions and at a much lower computational cost than

Monte-Carlo simulations, as well as offer insightful understanding on communications channels. Moreover,

1In recent years, this method due to Silverstein and Bai has been developed into a much useful tool, widely known as the
Stieltjes transform method in the spectral analysis of large dimensional random matrices.
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Figure 1: A small-cell network.

large-system results are also important for designing many practical wireless systems such as precoder

design [7, 17, 18], optimal training length design [19, 20], scheduling [21], and others [22, 23]. For most

contributions, the elements of the MIMO channel matrix are assumed to be multivariate Gaussian distri-

butions; that is, the amplitudes of the channel fading coefficients are either Rayleigh or Rician distributed.

Despite being the most popular models for small-scale amplitude fading, there are more and more results

to suggest different models [3–5]. For example, [5] proposed that Nakagami-m distribution is best suited

for modeling the small-scale amplitude fading in such as indoor residential/office, industrial environments,

and suburban-like microcell environments. In addition, the log-normal distribution has recently been used

to describe the small-scale amplitude fading in the IEEE 802.15.3a [4]. There is clearly an increasing

demand to investigate channels with non-Gaussian fading and their performance. Whether the systems

specifically designed for Gaussian scenarios can still work well in non-Gaussian environments is unknown,

and the results available in the literature so far are too limited to answer this question [7, 29, 30].

To appreciate the objective of this paper, it is important to understand the limitations of the existing

results for non-Gaussian channels. In [7], the results were only derived under the assumption that each

transmitter-side correlation matrix, Tk, is diagonal, although it was conjectured that the results might be

valid even when Tk is nonnegative definite. A channel model composed of a general variance profile and a

deterministic line-of-sight (LOS) component was studied in [29] which partially generalized the results in

[7]. However, as compared to [7], the matrices Rk’s in [29] cannot be nonnegative definite.
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This paper aims to extend previous large-system results to a more general class of random matrices

with non-Gaussian entries. As in [7], we consider a K-user MIMO MAC, in which each Hk is spatially

correlated separately at both sides. In our model, a deterministic LOS component H̄k is also considered.

More specifically, the concerned Kronecker channel R
1
2
kXkT

1
2
k can be described as follows. The entries of Xk

are i.i.d. complex centered random variables (not necessarily Gaussian), Tk’s are deterministic nonnegative

definite matrices, and Rk’s are diagonal nonnegative matrices. This model arises in small-cell networks

(SCNs) as shown in Figure 1. The SCNs, which are typically composed of densely deployed low-cost low-

power base stations (BSs), have attracted considerable attention for their potential to increase the capacity

of cellular networks [6, 7, 20]. In these networks, the channel fading would tend to be non-Gaussian. In

contrast to [29], our consideration allows user equipments (UEs) to be equipped with multiple spatially

correlated antennas, which is a typical phenomenon due to space limitation of UEs.

There are several obstacles when one intends to apply the Stieltjes transform method originally devel-

oped for the case with diagonal Tk (e.g., [7, 10]) to that with general nonnegative definite Tk [35]. To

overcome the difficulties, using the generalized Lindeberg principle [38, 39], we show that under very mild

conditions, the Stieltjes transforms of the considered random matrices with Gaussian entries and that with

non-Gaussian entries coincide in the large dimensional regime. This result enables us to derive the deter-

ministic equivalents (e.g., the Stieltjes transform and the ergodic mutual information) for non-Gaussian

MIMO channels from the known results for Gaussian MIMO channels. We therefore generalize the deter-

ministic equivalents of previous results to the SCNs. For uncorrelated channel matrices with i.i.d. entries,

such property is implicit in [36, Figure 4] from computer simulations and has recently been proved in [38,

Corollary 2]. However, in our derivation, we prove that the deterministic equivalents of the MIMO MAC

channel in [7] are true even if the entries of Xk are non-Gaussian, and those Rk and Tk are deterministic

nonnegative definite matrices.2 Therefore, we prove the conjecture made in [7] entirely.

The remainder of this paper is structured as follows. In Section II, we introduce the channel model

of the SCNs. Section III then presents our main results and outline their proofs whose details are given

in the appendices. Some mathematical tools needed in proving the results are reviewed in Appendix D.

Simulation results are provided in Section IV and finally we conclude the paper in Section V.

Notations—Throughout this paper, the complex number field is denoted by C. For any matrix A ∈
2Note that if the LOS is absent, we allow Rk’s to be nonnegative definite. See Section III for detail.
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CN×n, Aij denotes the (i, j)th entry, while AT , and AH return the transpose and the conjugate transpose

of A, respectively. For a square matrix B, B
1
2 , B−1, tr(B), and det(B) denote the principal square root,

inverse, trace, determinant of B, respectively. Also, IN is the N × N identity matrix, 0N denotes either

the N ×N zero matrix or a zero vector depending on the context, ‖ · ‖ represents the Euclidean norm of an

input vector or the spectral norm of an input matrix, ‖ · ‖F denotes the Frobenius norm of a matrix, ρ(·)

represents the spectral radius (i.e., the largest absolute value of the eigenvalues) of a matrix, E{·} returns

the expectation of an input random entity, log(·) is the natural logarithm, <{·} and ={·} return the real

part and the imaginary part of an input entity respectively, 1A denotes the indicator function of the set A,

and ⊗ is the Kronecker product [31]. We use C (or Cp, C
′, C ′′, . . . ) to denote a universal constant whose

value does not depend on matrix sizes but may vary from one appearance to another. Almost sure (a.s.)

convergence is denoted by
a.s.−−→. If {ai}i is a sequence of real numbers, then bi = O(ai) and bi = o(ai)

stands for |bi| ≤ C|ai| and limi
bi
ai
→ 0 respectively. As usual, j ≡

√
−1, R+ ≡ {x ∈ R : x ≥ 0}, and

R− ≡ {x ∈ R : x ≤ 0}. Also, C+ ≡ {z = z1 + jz2 ∈ C : z2 > 0} and C− ≡ {z = z1 + jz2 ∈ C : z2 < 0}.

II. Channel Model and Problem Formulation

A. Multi-cell MIMO-MAC with LOS and Spatial Correlation

As shown in Figure 1, we consider a MIMO-MAC system with K UEs, labeled as UE1, . . . ,UEK , which

are equipped with n1, . . . , nK antennas, respectively. The K UEs transmit to N interconnected small-cell

single-antenna BSs simultaneously. In this paper, we use the Kronecker model to characterize the spatial

correlation of the MIMO channel for each link so that the correlation properties at the BS and any UE are

modeled separately, e.g., [32]. Specifically, user k’s channel, Hk ∈ CN×nk , can be written as

Hk = R
1
2
kXkT

1
2
k + H̄k, (1)

where Rk = diag(rk,1, . . . , rk,N ) is a deterministic diagonal matrix with the ith diagonal entry, rk,i, being

the channel gain from UEk to the ith receiving antenna (or the ith BS), Tk ∈ Cnk×nk is a deterministic

nonnegative definite matrix, which expresses the correlation of the transmit signals across the antenna

elements of UEk, Xk ≡ [ 1√
nk
X

(k)
ij ] ∈ CN×nk consists of the random components of the channel in which the

elements {X(k)
ij }1≤i≤N ;1≤j≤nk are i.i.d. complex random variables with zero mean and variance of Pk, and
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H̄k ∈ CN×nk is a deterministic matrix corresponding to the LOS of the channel.

To get a proper definition on the signal-to-noise ratio (SNR), consider the power of the channel:

E
[
tr
(
HkH

H
k

)]
=
Pk
nk

tr (Rk) tr (Tk) + tr
(
H̄kH̄

H
k

)
. (2)

It is customarily assumed that Rk, Tk, and H̄k are normalized such that tr (Rk) = N , tr (Tk) = nk, and

tr
(
H̄kH̄

H
k

)
= N . In so doing, Pk can be used as an indicator for the SNR of user k, which is independent

from the matrix dimensions. For notational brevity, henceforth, we assume that Pk = 1 ∀k without loss of

generality.3

A diagonal structure in Rk is sufficient to model the SCN scenarios under investigation. However, the

more general nonnegative definite structure for Rk could extend our results to cope with more complex

applications. Due to the presence of H̄k, unfortunately, the required analysis is incredibly arduous. As a

result, if {H̄k 6= 0}∀k, we restrict our consideration to diagonal Rk’s. Nevertheless, if {H̄k = 0}∀k, our

results to be presented in Section III are valid even under nonnegative definite Rk’s.

B. Mutual Information and Stieltjes Transform

Mutual information measures the achievable rate of a channel and has been a key metric for performance

analysis in wireless communications. The Stieltjes transform provides a convenient tool to study behavior

of random matrices in large dimensional RMT. To do so, we first explain their relations.

Defining H , [H1 · · ·HK ], H̄ ,
[
H̄1 · · · H̄K

]
and n ,

∑K
k=1 nk, the mutual information of the MIMO

channel can be linked to the eigenvalues of a nonnegative definite matrix BN of the form

BN = S + HHH = S +

K∑
k=1

(
R

1
2
kXkT

1
2
k + H̄k

)(
R

1
2
kXkT

1
2
k + H̄k

)H
, (3)

in which S accounts for a source of correlated interference whose covariance matrix has the nonnegative

square root S
1
2 . Let FBN be the empirical spectral distribution (ESD) of the eigenvalues of BN , given by

FBN (λ) =
1

N
{numbers of eigenvalues of BN ≤ λ} . (4)

3For practical applications, one can set any positive value of Pk without incurring any issues in the results of this paper.

5



One of the main problems in large dimensional RMT is to study the limiting spectral distribution (LSD)

of BN , denoted by FN . A convenient tool for this is the Stieltjes transform of FBN (λ) which is defined as

mBN (z) ,
∫
R+

1

λ− z
dFBN (λ) =

1

N
tr (BN − zIN )−1 for z ∈ C− R+. (5)

We will denote S(R+) as the class of all Stieltjes transforms of finite positive measures carried by R+. The

Stieltjes transform provides a direct way to identify the LSD of large dimensional random matrices. Some

useful properties of the Stieltjes transforms are listed in Lemma 17. According to [10, 34], to show that

the difference between FBN and FN converges vaguely to zero, it is equivalent to show that

mBN (z)−mN (z)
a.s.−−→ 0 for z ∈ C− R+, (6)

where mN (z) ,
∫
R+

1
λ−zdFN (λ) is the Stieltjes transform of FN .

For wireless communications, the importance of the Stieltjes transform is due to the fact that many

important performance metrics can be expressed as functions of the Stieltjes transform of BN . The mutual

information can be expressed as functionals of the Stieltjes transform of BN through the so-called Shannon

transform, where their relationship can be expressed as [14, Section 2.2.3] (or [29, page 891])

VBN (σ2) ≡ 1

N
log det

(
IN +

1

σ2
HHH

)
=

∫ ∞
0

log

(
1 +

1

σ2
λ

)
dFBN (λ)

=

∫ ∞
σ2

(
1

ω
−mBN (−ω)

)
dω for σ2 ∈ R+, (7)

where it is assumed that S = 0N for simplicity.4 Here, VBN (σ2) provides a performance metric regarding

the number of bits per second per Hertz per antenna that can be transmitted reliably over the SCN with

channel matrices {Hk}k=1,...,K .

In this paper, we are particularly interested in understanding the Stieltjes transform as well as the

4The generalization of the corresponding results to the case with S 6= 0 is straightforward. In the case with S 6= 0, the
related performance metric (or the mutual information) is given by

1

N
log det

(
IN + S +

1

σ2
HHH

)
− 1

N
log det (IN + S) .

6



Shannon transform of BN in the asymptotic regime where K is fixed and N,n1, . . . , nK all grow to infinity

with ratios {βk(N) ≡ N
nk
}k=1,...,K such that

βmin < min
k

lim inf
N

βk(N) < max
k

lim sup
N

βk(N) < βmax (8)

and 0 < βmin, βmax <∞. For convenience, we will refer to this asymptotic regime simply as N →∞. Our

main goal is to find a nonrandom matrix-valued function Ψ(z) (to be determined later) such that

mBN (z)− 1

N
tr(Ψ(z))

a.s.−−→ 0 for z ∈ C− R+. (9)

This type of relation is referred to as deterministic equivalent [29], and 1
N tr(Ψ(z)) is said to be the deter-

ministic equivalent to mBN (z). We will apply (9) to find a deterministic equivalent of the ergodic mutual

information E{VBN (σ2)}, denoted by VN (σ2), and achieve this by proving E{VBN (σ2)} − VN (σ2) → 0.

In general, the computation of E{VBN (σ2)} relies on time-consuming Monte-Carlo computer simulations,

while the deterministic equivalent is analytical and a lot easier to compute than E{VBN (σ2)}.

In wireless communications applications, the Stieltjes transform itself may also be used to characterize

the asymptotic signal-to-interference plus noise ratio (SINR) of certain communication models, such as [9].

The above-mentioned illustrations are just a few of the several important applications of the Stieltjes trans-

form in wireless communications. For a thorough survey of other applications, see [14, 15]. Undoubtedly,

in order to construct reliable applications in wireless communications, new analytical results concerning

the LSD as well as the Stieltjes transform in the asymptotic regime are required.

III. Main Results

Before we present our main results, we first state the assumptions imposed in our SCN model.

A. Assumptions

Assumption 1 Let Xk = [ 1√
nk
X

(k)
ij ] ∈ CN×nk , where X

(k)
ij ’s are i.i.d. complex random variables with

independent real and imaginary parts such that E{X(k)
11 } = 0 and E

{
|X(k)

11 − E{X(k)
11 }|2

}
= 1.

Assumption 2 The family of deterministic matrices {Rk,Tk,S}∀k is deterministic nonnegative definite.

7



Assumption 3 The matrices Rk, Tk, and H̄k are normalized such that


tr (Rk) = N,

tr (Tk) = nk,

tr
(
H̄kH̄

H
k

)
= N.

(10)

Clearly, because of the normalization constraint in (10), the sequences {FTk}∀k are tight in nk while

{FRk
}∀k and {FH̄kH̄

H
k
}∀k are tight in N . It means that for each fixed ε ∈ (0, 1), we can always select an

α > 0 such that for all nk, FTk(α) > 1− ε, and for all N , FRk
(α) > 1− ε and FH̄kH̄

H
k

(α) > 1− ε.

Assumption 4 The family of deterministic matrices {Rk}∀k is diagonal with nonnegative elements.

Notice that Assumption 4 requires Rk to be diagonal which is more restrictive than Assumption 2.

However, this assumption is still satisfied in the application of the SCNs under investigation. Also, it

should be noted that Assumption 4 is not required for some theorems presented in this paper.

B. Main Results

We first introduce some properties of the deterministic matrix-valued function Ψ(z) which is needed in

the deterministic equivalents of the Stieltjes transform and the ergodic mutual information. To facilitate

our expressions, we define the notation 〈A〉k that returns the submatrix of A obtained by extracting the

elements of the rows and columns with indices from
∑k−1

i=1 ni + 1 to
∑k

i=1 ni.

Theorem 1 Let βk = N
nk

. Under Assumption 2, the deterministic system of the following K equations

ei(z) =
1

N
tr (RiΨ(z)) for 1 ≤ i ≤ K, (11a)

ẽi(z) =
1

ni
tr
(
Ti〈Ψ̃(z)〉i

)
for 1 ≤ i ≤ K, (11b)
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where

Ψ(z) =
(
Φ(z)−1 − zH̄Φ̃(z)H̄H

)−1
, (12a)

Ψ̃(z) =
(
Φ̃(z)−1 − zH̄HΦ(z)H̄

)−1
, (12b)

Φ(z) =
−1

z

(
−1

z
S +

K∑
i=1

ẽi(z)Ri + IN

)−1

, (12c)

Φ̃(z) =
−1

z
diag

(
(In1 + β1e1(z)T1)−1, . . . , (InK + βKeK(z)TK)−1

)
(12d)

have a unique solution for z ∈ C−R+. In particular, ei(z) ∈ S(R+) and ẽi(z) ∈ S(R+) for i ∈ {1, . . . ,K}.

Proof: See Appendix B. �

We next provide a deterministic equivalent for the Stieltjes transform of BN .

Theorem 2 In addition to Assumptions 1, 2, and 3, if one of the following conditions holds:

1) K = 1,

2) H̄ = 0 with 1 ≤ K <∞,

3) Assumption 4 with 1 ≤ K <∞,

then, as N →∞, we have

mBN (z)− 1

N
tr(Ψ(z))

a.s.−−→ 0 for z ∈ C− R+. (13)

Proof: Section III-C is dedicated to the proof of Theorem 2. �

Remark 1 According to (1), we have addressed the non-central part of the channel through H̄k. Hence,

we have E{X(k)
11 } = 0 in Assumption 1 for conceptual clarity. In fact, the assumption E{X(k)

11 } = 0 can be

removed from Theorem 2 if X
(k)
ij ’s have the same mean. One can see that removing the same mean of the

entries of Xk does not affect the LSD of FBN (x). See Appendix A.1 for detail.

When K = 1, S = 0, and H̄1 = 0, Zhang’s result in [35] allows R1 to be an arbitrary nonnegative

definite matrix and T1 to be Hermitian. While K = 1 and H̄1 = 0, Pan in [37] tackled the cases where

9



T1 and S are arbitrary Hermitian matrices, but R1 = IN . Using a new approach based on the generalized

Lindeberg principle [38], we can handle both the cases in [35, 37] and make the proofs simpler. As a result,

Theorem 2 says that (13) holds when K = 1 without the diagonal restriction on R1,T1, and without the

requirement of H̄1 = 0. This result also embraces the case in [29, Section 3.2] as a special case.

For the general case with 1 ≤ K <∞ but H̄ = 0, it was pointed out by Couillet et al. in [7, Corollary

1] that (13) holds when the entries of Xk are i.i.d. Gaussian random variables. When the entries of Xk are

non-Gaussain, (13) was derived in [7, Theorem 1] under the assumption that Tk’s are diagonal. Therefore,

Theorem 2 is more general than these previous studies in the sense that the entries of Xk are not necessarily

Gaussian and Tk is not necessarily diagonal, as conjectured in [7].

When 1 ≤ K < ∞ and the LOS component H̄ is present, we require Rk’s to be diagonal due to

mathematical difficulties. However, in this case it is worth pointing out that (13) is also true if the

matrices R1, . . . ,RK are simultaneously unitary diagonalizable according to our argument. This type of

channel model is the so-called “virtual channel representation” in [41] and is found to be useful for modeling

channels with many antennas [42].

As an application, we next use Theorem 2 to provide a deterministic equivalent of the ergodic mutual

information in the following theorem.

Theorem 3 Assume that BN follows the hypotheses of Theorem 2 and S = 0. Then, as N → ∞, the

Shannon transform of BN satisfies

E{VBN (σ2)} − VN (σ2) −→ 0, (14)

where

VN (σ2) =
1

N
log det

(
Φ(−σ2)−1

σ2
+ H̄Φ̃(−σ2)H̄H

)
+

1

N
log det

(
Φ̃(−σ2)−1

σ2

)

− σ2
K∑
i=1

ei(−σ2)ẽi(−σ2). (15)

Proof: (15) is an explicit expression of
∫∞
σ2

(
1
ω −

1
N tr (Ψ(−ω))

)
dω. The proofs of the convergence

and the explicit expression are given in Appendix C. �
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For the case with K = 1 and H̄ 6= 0 and the general case with 1 ≤ K < ∞ but H̄ = 0, VN (σ2)

agrees perfectly with those in [28, Theorem 1] and [7, Theorem 2], respectively. Nevertheless, Theorem 3 is

more general than [28, Theorem 1] and [7, Theorem 2] in the sense that there is no Gaussian distribution

requirement on the entries of Xk. Note that in the above two cases, Theorem 3 allows Rk’s and Tk’s to

be generally nonnegative definite. Further, for the general case with 1 ≤ K < ∞ and H̄ 6= 0, Theorem 3

contains [29, Theorem 4.1] as a special case even though Theorem 3 requires Rk’s to be diagonal, whereas

in [29, Theorem 4.1], both Rk’s and Tk’s are restricted to be diagonal. Finally, unlike several of other

contributions (e.g., [28, Theorem 1] and [29, Theorem 4.1]), where Rk’s, Tk’s, and H̄k’s are required to

have uniformly bounded spectral norms, Theorem 3 is valid for the more general trace constraints (10).

This relaxation makes Theorem 3 valid for all possible correlation patterns and LOS components.

As the large-system results are invariant to the type of fading distribution, any designs based on the

large-system results are robust, and the properties of the asymptotic optimal input covariance are invariant

to the type of fading distribution. Specifically, by [7, Proposition 3], we conclude that if H̄ = 0, even when

the entries of Xk are non-Gaussian, the eigenvectors of the asymptotic optimal input covariance matrix

align with that of Tk while the eigenvalues follows a water-filling principle. In [7, 28], an iterative water-

filling algorithm based on VN (σ2) is provided to obtain the asymptotic optimal input covariance. The

iterative algorithm turns out to have wide applicability to all types of fading distribution.

Unlike [7, Theorem 2], Theorem 3 does not assert that VBN (σ2) − VN (σ2)
a.s.−−→ 0. Although (14) has

already satisfied our applications of interest, we find it important to clarify some properties regarding the

a.s. convergence. Indeed, following [7, Theorem 2] and using Theorem 2, (14) can be strengthened to

a.s. convergence under an additional assumption stated in the following theorem.

Theorem 4 In addition to the assumptions of Theorem 3, suppose further that

1) E
{
|X(k)

11 |4
}
<∞;

2) There exists an α and a sequence τN such that for all N ,

max
k

max
{
λτN+1(Rk), λτN+1(Tk), λτN+1(H̄kH̄

H
k )
}
≤ α,

where λi(A) denotes the ith largest eigenvalue of a matrix A.

11



3) Let bN denote an upper-bound on the spectral norm of {Tk,Rk, H̄kH̄
H
k }1≤k≤K , and c > 0 a constant

such that c > Kβmax

βmin

(
1 +
√
βmin

)2
, aN = cb2N satisfies

τN log
(

1 +
aN
σ2

)
= o(N).

Then, (14) can be strengthened as

VBN (σ2)− VN (σ2)
a.s.−−→ 0. (16)

Remark 2 Indeed, (16) holds if assumptions 2) and 3) of Theorem 4 are replaced by the assumptions that

1
N tr(R4

k),
1
nk
tr(T4

k), and 1
N tr

(
(H̄kH̄

H
k )2
)

are bounded for all k. A proof is given in Appendix C.2.

Note that neither of the assumptions in Theorem 4 and Remark 2 implies the other. It was pointed out

in [7] that most conventional models for Rk’s and Tk’s satisfy the assumptions of Theorem 4. However,

the assumptions in Remark 2 assist in covering some cases that are not met by 2) and 3) of Theorem 4.5

C. Proof of Theorem 2

This subsection gives an outline of the proof of Theorem 2 for ease of understanding.

As in [33, Section 4.5.1], we argue that the entries of Xk can be replaced by random variables bounded

in absolute value by εn
√
nk without changing the LSD of FBN . Here εn is a positive sequence converging

to zero. Also, following [33, Section 4.3.1] we apply a truncation on Rk,Tk, H̄kH̄
H
k such that the spectral

norms of Rk, Tk, and H̄kH̄
H
k are bounded by a constant, say α (see details in Appendix A.1). As a

consequence, the proof of Theorem 2 may be achieved under the following additional conditions.

Assumption 5 For each of N , X
(k)
ij are i.i.d., and

E
{
X

(k)
11

}
= 0, E

{
|X(k)

11 |
2
}

= 1, |X(k)
11 | ≤ εn

√
nk, (17a)

max
k=1,...,K

max{‖Rk‖, ‖Tk‖, ‖H̄kH̄
H
k ‖} ≤ α. (17b)

For convenience, we still use Xk, Rk, Tk, and H̄k to denote those truncated and centralized matrices.

5As an example, suppose that the eigenvalues of Rk are given as: one being N
1
4 , N

logN
of them being (logN)

1
4 , and the

remaining eigenvalues being bounded. In this case, τN = N
logN

and aN = O(N
1
2 ), so τN log(1 + aN

σ2 ) = O(N) rather than

o(N). Therefore, assumptions 2) and 3) of Theorem 4 are not satisfied. However, 1
N
tr(R4

k) is bounded.
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Write

mBN (z)− 1

N
tr (Ψ(z))

= (mBN (z)− E{mBN (z)}) + (E{mBN (z)} − E{mBN (z)}) +

(
E{mBN (z)} − 1

N
tr (Ψ(z))

)
, (18)

where BN is obtained from BN defined in (3) with all the entries X
(k)
ij ’s of Xk replaced by independent

standard Gaussian random variables X (k)
ij ’s. Here X

(k)
ij ’s are independent of X (k)

ij ’s.

The proof of Theorem 2 then consists of the following three steps:

Step 1. By a martingale approach we first prove that

mBN (z)− E{mBN (z)} a.s.−→ 0. (19)

Step 2. By the Lindeberg principle (Lemma 1 below) [38, Theorem 2] we claim that

E{mBN (z)} − E{mBN (z)} −→ 0. (20)

Step 3. The last step is to investigate the Stieltjes transform of BN so that the following is true:

E{mBN (z)} − 1

N
trΨ(z) −→ 0. (21)

Not that Step 1 and Step 2 are completed under Assumptions 1–3 in which Rk’s and Tk’s are generally

nonnegative definite and H̄ 6= 0. Appendix A.2 handles Step 1 while Step 2 is addressed in Appendix A.3,

where we mainly make use of the generalized Lindeberg principle given below.

Lemma 1 (Generalized Lindeberg Principle [38]) Let v = [vi] ∈ Rn and ṽ = [ṽi] ∈ Rn be two random

vectors with mutually independent components. Define {ai}1≤i≤n and {bi}1≤i≤n with

ai = |E{vi} − E{ṽi}|, and bi = |E{v2
i } − E{ṽ2

i }|. (22)

13



Then, given a thrice continuously differentiable function f : Rn → R, we have

|E{f(v)} − E{f(ṽ)}| ≤
n∑
i=1

[
ai E{|∂if(vi−1

1 , 0, ṽni+1)|}+
1

2
bi E{|∂2

i f(vi−1
1 , 0, ṽni+1)|}

+
1

2
E

{∫ vi

0
|∂3
i f(vi−1

1 , s, ṽni+1)|(vi − s)2ds

}
+

1

2
E

{∫ ṽi

0
|∂3
i f(vi−1

1 , s, ṽni+1)|(ṽi − s)2ds

}]
, (23)

where ∂pi is the p-fold derivative in the ith coordinate, vi−1
1 = (v1, . . . , vi−1), and ṽni+1 = (ṽi+1, . . . , ṽn).

Here, it should be noted that both Lindeberg’s principle (Chatterjee [39], Korada and Montanari [38])

and the interpolation trick (see Lytova and Pastur in [40] and Pan [37]) can be used to handle Step 2.

However, Lindeberg’s principle is simpler than the interpolation trick when proving this type of problems.

Due to Lemma 1, the remaining task is to consider BN with underlying random variables being a

standard Gaussian distribution. In the remainder of this subsection, we will show how Step 3 can be done

case by case from the known results of Gaussian matrices.

Before proceeding, we recall some useful results. Denote the spectral decomposition of T
1
2
k by ŨkD̃

1
2
k ŨH

k ,

where Ũk ∈ Cnk×nk is unitary and Dk is diagonal. Since X k is Gaussian, the joint distribution of X kŨk

is the same as that of X k. Thus, (R
1
2
kX kT

1
2
k + H̄k)(R

1
2
kX kT

1
2
k + H̄k)

H has the same distribution as

(
R

1
2
kX kD̃

1
2
k + ¯̄Hk

)(
R

1
2
kX kD̃

1
2
k + ¯̄Hk

)H
, (24)

where ¯̄Hk , H̄kŨk. Hence, we will assume that the channel is in the form of R
1
2
kX kD̃

1
2
k + ¯̄Hk in the sequel.

Consider condition 1) of Theorem 2 (i.e., the case K = 1) first. Denote the spectral decomposition

of R
1
2
1 by U1D

1
2
1 UH

1 . For simplicity, we assume S = 0.6 The joint distribution of UH
k X k is the same

as that of X k. Therefore, the distribution of (R
1
2
1 X 1D̃

1
2
1 + ¯̄H1)(R

1
2
1 X 1D̃

1
2
1 + ¯̄H1)H is the same as that of

6The extension to the case with S 6= 0 is straightforward.
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(U1D
1
2
1 X 1D̃

1
2
1 + ¯̄H1)(U1D

1
2
1 X 1D̃

1
2
1 + ¯̄H1)H . Since

tr

((
(U1D

1
2
1 X 1D̃

1
2
1 + ¯̄H1)(U1D

1
2
1 X 1D̃

1
2
1 + ¯̄H1)H − zIN

)−1
)

= tr

((
(D

1
2
1 X 1D̃

1
2
1 +

¯̄̄
H1)(D

1
2
1 X 1D̃

1
2
1 +

¯̄̄
H1)H − zIN

)−1
)

(25)

with
¯̄̄
H1 , UH

1 H̄1Ũ1, it suffices to prove (21) with BN as follows

BN =

(
D

1
2
1 X 1D̃

1
2
1 +

¯̄̄
H1

)(
D

1
2
1 X 1D̃

1
2
1 +

¯̄̄
H1

)H
. (26)

However, the convergence of (21) with BN in (26) was reported in [29, Section 3.2]. Indeed, in [29], X
(1)
ij ’s

are i.i.d. complex random variables with finite fourth moment and the variance profile is separable. For our

interest, X (1)
ij ’s are standard Gaussian random variables and the variance profile of the channel D

1
2
1 X 1D̃

1
2
1

is separable. Hence, Step 3 is completed under condition 1) of Theorem 2.

Next, we turn to condition 2) of Theorem 2 (i.e., the case H̄ = 0). In view of (24), it is enough to

prove (21) with BN as

BN = S +
K∑
k=1

R
1
2
kX kD̃kXH

k R
1
2
k . (27)

The convergence of (21) with BN in (27) follows immediately from [7, Corollary 1]. Therefore, Step 3 is

finished under condition 2) of Theorem 2.

Finally, we consider condition 3) of Theorem 2 (i.e., Rk’s being diagonal). Note that Rk’s are diagonal

nonnegative matrices in the remainder of this subsection. From (24), it suffices to prove (21) with BN as

BN = S +

K∑
k=1

(
R

1
2
kX kD̃

1
2
k + ¯̄Hk

)(
R

1
2
kX kD̃

1
2
k + ¯̄Hk

)H
. (28)

The following theorem contributes to Step 3 in this case.

Theorem 5 Consider the channel matrix of the form Hk = R
1
2
kX kD̃

1
2
k + ¯̄Hk for k = 1, . . . ,K, where Rk’s

and D̃k’s are diagonal nonnegative matrices. Assume that the spectral norms of Rk’s, D̃k’s, and ¯̄Hk’s

are all bounded and that X (k)
ij ’s are i.i.d. standard Gaussian random variables. Let ¯̄H =

[
¯̄H1 · · · ¯̄HK

]
. As
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N →∞, then for any z ∈ C− R+,

1

N
E
{
tr
(
HHH − zI

)−1
}
− 1

N
tr(Ξ(z)) −→ 0, (29a)

1

N
E
{
tr
(
HHH− zI

)−1
}
− 1

N
tr(Ξ̃(z)) −→ 0, (29b)

where

Ξ(z) =
(
Θ(z)−1 − z ¯̄HΘ̃(z) ¯̄HH

)−1
, (30a)

Ξ̃(z) =
(
Θ̃(z)−1 − z ¯̄HHΘ(z) ¯̄H

)−1
, (30b)

Θ(z) =
−1

z

(
K∑
i=1

n−1
i tr

(
D̃i〈Ξ̃(z)〉i

)
Ri + IN

)−1

, (30c)

Θ̃(z) =
−1

z
diag

((
In1 + n−1

1 tr (R1Ξ(z)) D̃1

)−1
, . . . ,

(
InK + n−1

K tr (RKΞ(z)) D̃K

)−1
)
. (30d)

Proof: Note that H =

[
R

1
2
1 X 1D̃

1
2
1 · · ·R

1
2
KXKD̃

1
2
K

]
+ ¯̄H corresponds to the channel in [29] with a

general variance profile. Therefore, this theorem can be obtained immediately from [29, Theorems 2.4 and

2.5] and the dominated convergence theorem.7 �

The proof of (21) under condition 3) of Theorem 2 is a result of Theorem 5. The idea is to cast the

model HHH + S into an extended model such that it fits into the framework of (29). To this end, write

HHH + S =

K+1∑
k=1

HkH
H
k ,

where Hk = R
1
2
kX kD̃

1
2
k + ¯̄Hk is given in (28) and HK+1 = S

1
2 (without a random component). Plugging

this model into (30a) and (30b), we obtain

Ξ(z) =
(
Θ(z)−1 − z ¯̄HΘ̃(z) ¯̄HH + S

)−1
, (31)

Ξ̃(z) =


 Θ̃(z)−1 0

0 −zIN

− z
 ¯̄HH

S
1
2

Θ(z)

[
¯̄H S

1
2

]
−1

. (32)

7The dominated convergence theorem is due to the expectation involved in (29).
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Note that Ξ̃(z) is now a matrix of size (n+N)× (n+N). From (30d), write

Θ(z)−1 + S = −
K∑
i=1

z

ni
tr
(
D̃i〈Ξ̃(z)〉i

)
Ri − zIN + S. (33)

Applying Lemma 12 in Appendix D, we can obtain the n× n principal submatrix of Ξ̃(z) as

[Ξ̃(z)]1:n,1:n =

[
Θ̃(z)−1 − z ¯̄HHΘ(z) ¯̄H− z2 ¯̄HHΘ(z)S

1
2

(
−zIN − zS

1
2 Θ(z)S

1
2

)−1
S

1
2 Θ(z) ¯̄H

]−1

=

[
Θ̃(z)−1 − z ¯̄HH

(
Θ(z) + zΘ(z)S

1
2

(
−zIN − zS

1
2 Θ(z)S

1
2

)−1
S

1
2 Θ(z)

)
¯̄H

]−1

=
[
Θ̃(z)−1 − z ¯̄HH

(
Θ(z)−1 + S

)−1 ¯̄H
]−1

, (34)

where the third equality is due to the matrix inverse lemma (Lemma 12 in Appendix D). Plugging (33)

and (34) into (30a)–(30d) and recovering the effect from the eigenvectors Uk’s, we obtain the formu-

las (12a)–(12d). In particular, defining Ũ = diag(Ũ1, . . . , ŨK), we have Ψ(z) = Θ(z)−1 + S, Ψ̃(z) =

ŨH [Ξ̃(z)]1:n,1:nŨ, Θ(z) = Φ(z), and Θ̃(z) = ŨHΦ̃(z)Ũ. By (29a), we immediately establish (21).

For the general case with nontrivial H̄, Rk’s are required to be diagonal so that [29, Theorem 2.4] can

be used immediately to yield Theorem 5. If Rk’s are generally nonnegative definite, one may wonder if

the same Stieltjes transform method in [29] can still be used to get the similar result. At present, due to

mathematical difficulties, this is still an open challenge and such development is ongoing.

IV. Simulation Results

In this section, computer simulations are provided to evaluate the reliability of the asymptotic result par-

ticularly when the channel entries are non-Gaussian. Specifically, we compare the analytical result VN (σ2)

(15) with the Monte-Carlo simulation results of the ergodic mutual information E{VBN (σ2)} obtained from

averaging over a large number of independent realizations of H.

Given the Kronecker MIMO channel model Hk = R
1
2
kXkT

1
2
k + H̄k for UEk, the simulation settings used

in this study are based on the following assumptions. First, the spatial correlation is generated from a

uniform linear array with half wavelength spacing in a wireless scenario. The propagation path cluster is

assumed to have a Gaussian power azimuthal distribution, which is characterized by the mean angle and
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the root-mean-square spread [25]. Second, the channel gain from UEk to each receiving antenna Rk and

its LOS components H̄k are generated randomly. Third, the i.i.d. entries of Xk’s are assumed to be of

the form 1√
nk
X

(k)
11 = 1√

nk
W

(k)
11 exp(jθ

(k)
11 ) [43], where θ

(k)
11 is the phase modeled as a uniform distribution

over [0, 2π], and W
(k)
11 is the random amplitude drawn from a distribution with normalized mean power,

i.e., E{[W (k)
11 ]2} = 1. The typical probability distributions for modeling the amplitude behavior include

the Rayleigh, Nakagami, and log-normal distributions [4, 5]. Among them, the Nakagami distribution is

arguably the most general model that embraces the Rayleigh distribution and those having longer tails.

On the other hand, the log-normal distribution is well known to be a suitable model for slowly varying

communication channels, e.g., indoor radio propagation environments.

To measure the fading severity of the channel model, we adopt the coefficient of variance (CV) as a

performance metric, which is defined by [43]

CV =

√
var{W (k)

11 }

E{W (k)
11 }

(35)

with var{W (k)
11 } being the variance of W

(k)
11 . According to [43], the variation in ergodic mutual information

can be significant if the values of CV are different. Note that the CV for Rayleigh fading channels is 0.526

and any CV value much greater than this reference point indicates a severe level of fading. For Nakagami

fading, fading is severe if the Nakagami m-factor is very small. However, the m-factor is greater than 0.5

[44], which gives a possible range for the CV values only in [0, 0.7555]. Therefore, we use the log-normal

distribution to generate a fading channel with very severe fading by setting a large value for CV.

Under a different fading severity, Figures 2 and 3 show the results of E{VBN (σ2)} and VN (σ2) for the

cases with H̄ = 0 and H̄ 6= 0 respectively. As we can see, when the number of antennas grows large (e.g.,

N = n1 = n2 = 16) all curves almost overlap regardless of the distributions or the CV values. The ergodic

mutual information is more sensitive to the type of distribution as well as the CV value for the scenarios

with small number of antennas. Thus, this invariance phenomenon of the ergodic mutual information in

the large-system limit agrees with our analysis. Also, one can observe that the case H̄ 6= 0 exhibits less

sensitivity to the type of distribution, even for a small number of antennas because half of the energy has

contributed to the LOS components which has nothing to do with mitigating the fading distributions.

Next, we evaluate the variance of VBN (σ2) by numerical simulations. Using the same parameters as
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Figure 2: Ergodic mutual information versus SNRs for the SCNs with H̄ = 0 and a) N = n1 = n2 = 2 and
b) N = n1 = n2 = 16. The solid lines plot the analytical results, while the markers plot the exact results.
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Figure 3: Ergodic mutual information versus SNRs for the SCNs with H̄ 6= 0 and a) N = n1 = n2 = 2 and
b) N = n1 = n2 = 16. The solid lines plot the analytical results, while the markers plot the exact results.
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Figure 4: The empirical variance versus CV when H̄ = 0 and 1/σ2 = 30 (dB). The above plot corresponds
to a small system while the below plots correspond to the large system of interest.

those in Figure 2, Figure 4 shows the empirical variances against CV when 1/σ2 = 30 (dB). We observe

that as the number of receive antennas grows large, the variance of VBN (σ2) becomes small, or the mutual

information approaches to a deterministic value in the large-system limit. The scenario with N = 16

and n1 = n2 = 2 particularly corresponds to typical SCNs, where the transmitter has a small number of

antennas while the receiver is composed of large number of antennas. This validates the practice of the

deterministic approximation in the SCNs.

The CLT of VBN (σ2) has been recognized for different models by Moustakas et al. [25], Taricco [26],

and Hachem et al. [45, 46]. Although the CLT is beyond the scope of this paper, we find it important to

clarify some properties of the variance of VBN (σ2). In the large system of interest (e.g., N = n1 = n2 = 16

or N = 16, n1 = n2 = 2), it is noted that the log-normal distribution undergoes the highest variance. In

addition, the curves of variance diverge as the CV value increases. Clearly, the CV does not provide a

proper metrology neither for the mean nor the variance of VBN (σ2) in the large system limit.8 In this paper,

we have shown that VN (σ2) depends on the second moment of the variables X
(k)
ij ’s. As a consequence, the

mean of the mutual information is invariant to the type of fading distribution in the large system limit.

8The insightful finding is due to A. Moustakas.
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Under a simpler model (where the correlation matrices are diagonal), it has been pointed out recently in

[46] that the variance of mutual information depends not only on the second moment but also on the fourth

moment of the variables X
(k)
ij ’s. This conjecture might be true in the SCNs of interest but at present, the

required CLT to address the cases where the correlation matrices are generally nonnegative definite and

the channel entries are non-Gaussian is not at all understood.

Large-system results have been widely used to design the optimal input covariance [7, 17, 18, 25]. With

Gaussian channel entries, [18] showed that the input covariance design based on the large-system results can

provide indistinguishable results to that achieved by stochastic programming (or the Vu-Paulraj algorithm

[47]), even for the cases with a small number of antennas. It is important to know if such good characteristics

still holds when the channel entries are non-Gaussian. We clarify this property over the case with H̄ = 0.

In this case, the ergodic mutual information is more sensitive to the type of distribution and an iterative

water-filling algorithm based on the large-system results can be used to obtain the asymptotic optimal input

covariance [7, Table II].9 For stochastic optimization, the Vu-Paulraj algorithm based on the barrier method

is used, in which the average mutual information and their first and second derivatives are calculated by

Monte-Carlo methods with 104 trials. The number of iterations for the barrier method is set to 10. In

Figure 5, we evaluate E{VBN (σ2)} when the input covariance matrices are obtained using the large-system

results and the stochastic optimization. As shown, the asymptotic approach provides indistinguishable

results to that achieved by stochastic programming in the case of non-Gaussian fading channels.

V. Conclusion

This paper provided the deterministic equivalent of the LSD to deal with the channel matrices of SCNs

where the entries of the MIMO channel matrix are no longer limited to be Gaussian distributed. Also, the

correlation effects (caused by insufficient antenna spacing) and the LOS components (due to low antenna

heights) are included in the analysis. Using the deterministic equivalent of the LSD, we analyzed the

Shannon transform of this class of large dimensional random matrices and showed that the ergodic mutual

information of the random matrices under investigation is invariant with respect to their distributions. As

a byproduct, we proved that the deterministic equivalents of the MIMO MAC in [7] are true even if the

entries of the channel matrix are non-Gaussian and Rk’s and Tk’s are nonnegative definite.

9If H̄ 6= 0, a similar iterative algorithm based on the large-system result was provided in [48].
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Figure 5: Achievable rates versus SNR with N = n1 = n2 = 2. The (red) lines plot the results based on
the large-system results, and the marker points plot the results for stochastic optimization.

Appendix A. Proof of Theorem 2

A.1 Truncation, Centralization, and Rescaling

We begin the proof of Theorem 2 by replacing the entries of {Xk}1≤k≤K and that of the spectral decom-

positions of {Rk,Tk, H̄k}1≤k≤K with truncated (and centralized) variables. It suffices to prove that the

difference between the ESD of BN and the one of truncated BN converges to zero with probability one

because such convergence is equivalent to the convergence of their Stieltjes transforms.

We first follow a line similar to that in [33, Section 4.3] to truncate the spectral decompositions of

{Rk,Tk, H̄kH̄
H
k }1≤k≤K . For any nonnegative definitive matrix A ∈ Cm×m, introduce its spectral decom-

position and the corresponding truncation as follows:


A = UAdiag (λ1(A), . . . , λm(A)) UH

A ,

Aα = UAdiag
(
λ1(Tk)1(λ1(A)≤α), . . . , λm(A)1(λm(A)≤α)

)
UH
A ,

(36)

where λi(A) denotes the ith largest eigenvalues of A and α > 0. Also, for the rectangular matrix H̄k,
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define its singular value decomposition and the corresponding truncation version as follows:


H̄k = ŪkΣ̄kV̄

H
k ,

H̄α
k = ŪkΣ̄

α
k V̄H

k ,

(37)

where Σ̄
α
k is obtained from Σ̄k with each singular value χ being replaced by χ1(χ≤α). Let χi(H̄k) denote

the ith largest singular value of H̄k. By Lemma 6 and iv) of Lemma 4, we have

sup
x

∣∣∣∣∣∣FS+
∑K
k=1

(
H̄k+R

1
2
k XkT

1
2
k

)(
H̄k+R

1
2
k XkT

1
2
k

)H (x)− F
S+
∑K
k=1

(
H̄α
k+(R

1
2
k )αXk(T

1
2
k )α

)(
H̄α
k+(R

1
2
k )αXk(T

1
2
k )α

)H (x)

∣∣∣∣∣∣
≤ 1

N

K∑
k=1

(
rank

(
H̄k − H̄α

k

)
+ rank

(
R

1
2
k − (R

1
2
k )α
)

+ rank

(
T

1
2
k − (T

1
2
k )α
))

=
1

N

K∑
k=1

(
N∑
i=1

1(χi(H̄k)>α) +
N∑
i=1

1(
λi(R

1/2
k )>α

) +

nk∑
i=1

1(
λi(T

1/2
k )>α

)
)

=
K∑
k=1

(
FH̄kH̄

H
k

((α2,∞)) + FRk
((α2,∞)) +

1

βk
FTk((α2,∞))

)
. (38)

The right-hand side of the inequality above can be made arbitrary small if α is large enough by Assumption

3. Therefore we can assume that the eigenvalues of {Rk,Tk, H̄kH̄
H
k }1≤k≤K are bounded by a constant α.

Next, we truncate and centralize the entries of Xk. As pointed out at Remark 1, the assumption

E{X(k)
11 } = 0 can be removed from Theorem 2 if X

(k)
ij ’s have the same mean. For this reason, we do not

make the zero mean assumption in the subsequent analysis. For each k, let


X̂

(k)
11 = X

(k)
11 1

(|X(k)
11 |≤εn

√
nk)

X̃
(k)
11 = X̂

(k)
11 − E{X̂(k)

11 },
(39)

where

εn ↓ 0, and ε−2
n E

{
|X(k)

11 |
2 1

(|X(k)
11 |>εn

√
nk)

}
−→ 0. (40)

Also, define X̂k = [ 1√
nk
X̂

(k)
ij ] ∈ CN×nk and X̃k = [ 1√

nk
X̃

(k)
ij ] ∈ CN×nk , and B̂N and B̃N (obtained from
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BN with X
(k)
ij replaced by X̂

(k)
ij and X̃

(k)
ij , respectively). By Lemma 6 and iv) of Lemma 4, we obtain

sup
x

∣∣∣FBN (x)− FB̂N
(x)
∣∣∣ ≤ 1

N

K∑
k=1

rank(X̂k −Xk) ≤
1

N

K∑
k=1

∑
ij

1
(|X(k)

ij |>εn
√
nk)

a.s.−−→ 0, (41)

where the last step can be obtained in the same way as in [33, Section 4.3.2]. Repeating the first inequality

in (41) with FBN (x) replaced by FB̃N
(x) yields10

sup
x

∣∣∣FB̃n
(x)− FB̂n

(x)
∣∣∣ a.s.−→ 0. (42)

Similarly, we may show that re-normalization of X̃
(k)
ij does not affect the LSD of F B̃N (x) as in [33, Section

3.2].

Therefore, henceforth, we consider that Assumption 5 holds. For ease of reading, we recall this as-

sumption here: For each of N , X
(k)
ij are i.i.d., and

E
{
X

(k)
11

}
= 0, E

{
|X(k)

11 |
2
}

= 1, |X(k)
11 | ≤ εn

√
nk, (43a)

max
k=1,...,K

max{‖Rk‖, ‖Tk‖, ‖H̄kH̄
H
k ‖} ≤ α. (43b)

For convenience, we still use Xk, Tk, Rk, and H̄k to denote those truncated and centralized matrices.

A.2 Proof of Step 1

The aim in this subsection is to prove that

E
{
|mBN (z)− E{mBN (z)}|2p

}
= O

(
1

Np

)
for any p ≥ 2, (44)

which, together with Borel-Cantelli’s lemma, ensures Step 1. For ease of explanation, we prove the case

with K = 1 only but the similar procedure can be easily extended to the case with K ≥ 1. For this reason,

we omit the index k in the following procedure.

Let xj denote the jth column of X, ej be the column vector with the jth element being 1 and otherwise

10Note that rank(X̂k − X̃k) = rank(E{X̂k}) ≤ 1.
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0, and set

X(j) = X− xje
T
j . (45)

Furthermore, we find it useful to define

mBN (z) =
1

N
tr (BN − zIN )−1 , (46)

mB(j)
(z) =

1

N
tr
(
B(j) − zIN

)−1
, (47)

where B(j) = (R
1
2 X(j)T

1
2 + H̄)(R

1
2 X(j)T

1
2 + H̄)H + S. Also, we use Ej to denote conditional expectation

given xj+1, . . . ,xn, so that E0{mBN (z)} = mBN (z) and En{mBN (z)} = E{mBN (z)}. Therefore, we have

mBN (z)− E{mBN (z)} =
n∑
j=1

[Ej−1{mBN (z)} − Ej{mBN (z)}]

=
n∑
j=1

[Ej−1 − Ej ]{tr
(
(BN − zIN )−1

)
− tr

(
(B(j) − zIN )−1

)
}

=
1

N

n∑
j=1

[Ej − Ej−1]{γj1 + γj2 + γj3 + γj4 + γj5}, (48)

where

γj1 = −eTj TXH
(j)R

1
2 (B(j) − zI)−1(BN − zI)−1R

1
2 xj , (49a)

γj2 = −xHj R
1
2 (BN − zI)−1(B(j) − zI)−1R

1
2 X(j)Tej , (49b)

γj3 = −eTj Tejx
H
j R

1
2 (B(j) − zI)−1(BN − zI)−1R

1
2 xj , (49c)

γj4 = −eTj T
1
2 H̄H(B(j) − zI)−1(BN − zI)−1R

1
2 xj , (49d)

γj5 = −xHj R
1
2 (BN − zI)−1(B(j) − zI)−1H̄T

1
2 ej . (49e)

In (48), we have used the resolvent identity (see Lemma 3), (45) and

BN −B(j) = R
1
2 xje

T
j TXH

(j)R
1
2 + R

1
2 X(j)Tejx

H
j R

1
2

+ R
1
2 xje

T
j Tejx

H
j R

1
2 + R

1
2 xje

T
j T

1
2 H̄H + H̄T

1
2 ejx

H
j R

1
2 . (50)

Since the mathematical treatments for γj4 and γj5 are similar, we here consider γj5 only. Starting from
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the Cauchy-Schwartz inequality and then applying 3) of Lemma 2, we get

|γj5| ≤ ‖R
1
2 (BN − zI)−1(B(j) − zI)−1H̄T

1
2 ej‖‖xj‖

≤ ‖R
1
2 ‖‖(BN − zI)−1‖‖(B(j) − zI)−1‖‖H̄‖‖T

1
2 ‖‖xj‖. (51)

Lemma 10 gives

E
{
‖xj‖2p

}
= O(1) for any p ≥ 2. (52)

Note that ‖R‖, ‖T‖, ‖H̄‖, ‖(BN − zI)−1‖ and ‖(B(j) − zI)−1‖ are all bounded. Hence, we have

E
{
|γj5|2p

}
= O(1) for any p ≥ 2. (53)

Then, by Lemma 9, we can show that for any p ≥ 2,

E


∣∣∣∣∣∣ 1

N

n∑
j=1

[Ej − Ej−1]{γj5}

∣∣∣∣∣∣
2p ≤ Cp

N2p
E


 n∑
j=1

|γj5|2
p ≤ CCp

Np+1

n∑
j=1

E
{
|γj5|2p

}
= O

(
1

Np

)
, (54)

where the second inequality follows from Lemma 7 and the last equality is due to (53).

Next, we consider γj3. Let dist(z,R+) stand for the Euclidean distance between z and R+. Since

‖(BN − zI)−1‖ and ‖(B(j) − zI)−1‖ are both bounded by 1

dist(z,R+)
, using Lemma 2 gives

|γj3| ≤ |eTj Tej | ‖R
1
2 (B(j) − zI)−1(BN − zI)−1R

1
2 ‖‖xj‖2 ≤

‖T‖ ‖R‖
dist(z,R+)

2 ‖xj‖
2. (55)

In addition, a simple application of Lemma 10 gives E{|γj3|p} = O(1) for any p ≥ 2. Then, applying the

same arguments as in (54), we have that for any p ≥ 2,

E


∣∣∣∣∣∣ 1

N

n∑
j=1

[Ej − Ej−1]{γj3}

∣∣∣∣∣∣
p ≤ CCp

N
p
2

+1

n∑
j=1

E {|γj3|p} = O

(
1

N
p
2

)
. (56)

As the procedures for γj1 and γj2 are similar, we take γj1 as an example. Using Lemma 2, we have

|γj1| ≤ ‖eTj TXH
(j)‖ ‖R

1
2 (B(j) − zI)−1(B− zI)−1R

1
2 ‖‖xj‖ ≤

‖R‖
dist(z,R+)

2 ‖e
T
j TXH

(j)‖ ‖xj‖. (57)
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Let x́i be the ith column vector of XH
(j). It is easily verified that

E
{
x́Hi Teje

T
j Tx́i

}
≤ 1

n
eTj T2ej ≤

1

n
‖T‖2 ≤ 1

n
α2. (58)

Then,

E
{
‖eTj TXH

(j)‖
2p
}

(a)
=E

{∣∣∣∣∣
n∑
i=1

x́Hi Teje
T
j Tx́i

∣∣∣∣∣
p}

= CpE

{∣∣∣∣∣
n∑
i=1

(
x́Hi Teje

T
j Tx́i − E

{
x́Hi Teje

T
j Tx́i

})∣∣∣∣∣
p}

+ Cp

∣∣∣∣∣
n∑
i=1

E
{
x́Hi Teje

T
j Tx́i

}∣∣∣∣∣
p

(b)

≤Cp
n∑
i=1

E
{∣∣∣x́Hi Teje

T
j Tx́i − E

{
x́Hi Teje

T
j Tx́i

} ∣∣∣p}

+ Cp

(
n∑
i=1

E

{∣∣∣x́Hi Teje
T
j Tx́i − E

{
x́Hi Teje

T
j Tx́i

} ∣∣∣2}) p
2

+ Cpα
2p, (59)

where (a) is due to the fact that XH
(j)X(j) =

∑n
i=1 x́ix́

H
i , and (b) follows from Lemma 8 and (58). From

Lemma 7 and (58), we get

E
{∣∣∣x́Hi Teje

T
j Tx́i − E

{
x́Hi Teje

T
j Tx́i

} ∣∣∣p} ≤ 2p−1

(
E
{∣∣∣x́Hi Teje

T
j Tx́i

∣∣∣p}+
1

np
α2p

)
. (60)

Substituting this into (59), we obtain

E
{
‖eTj TXH

(j)‖
2p
}
≤ CpC ′

n∑
i=1

E
{∣∣∣x́Hi Teje

T
j Tx́i

∣∣∣p}+ Cp

(
n∑
i=1

E

{∣∣∣x́Hi Teje
T
j Tx́i

∣∣∣2}) p
2

+ C. (61)

Moreover, since we know that

‖Tej‖2 = eHj T2ej ≤ α2, (62)

Lemma 10 gives

E
{
|x́Hk Tej |2p

}
= O

(
1

N

)
for any p ≥ 1. (63)

From this and (61), it follows that

E
{
‖eTj TXH

(j)‖
2p
}

= O (1) . (64)
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By applying the independence between X(j) and xj and using (52), (57), and (64), we have

E
{
|γj1|2p

}
≤ ‖R‖2p

dist(z,R+)
4p E

{
‖eTj TXH

(j)‖
2p
}

E
{
‖xj‖2p

}
= O (1) . (65)

Therefore, using Lemma 9 with the above, we have, for any p ≥ 1,

E


∣∣∣∣∣∣ 1

N

n∑
j=1

[Ej − Ej−1]{γj1}

∣∣∣∣∣∣
2p ≤ Cp

N2p
E


 n∑
j=1

|γj1|2
p = O

(
1

Np

)
. (66)

(44) then follows from (54), (56), and (66). The proof is complete.

A.3 Proof of Step 2

To begin with, recall the definition:

BN = S +
(
R

1
2 XT

1
2 + H̄

)(
R

1
2 XT

1
2 + H̄

)H
, (67)

BN = S +
(
R

1
2XT

1
2 + H̄

)(
R

1
2XT

1
2 + H̄

)H
, (68)

where X and X are matrices with entries satisfying (43a) but X is Gaussian. The aim here is to prove

|E{mBN (z)} − E{mBN (z)}| = O (εn) . (69)

As before, we will prove the case K = 1 only and drop the unnecessary index k in the sequel.

The strategy is to use Lemma 1, the Lindeberg principle [38, Theorem 2]. As pointed out at the end

of the first paragraph of Appendix A, E{Xij} = E{Xij} = 0. Also we have E{|Xij |2} = E{|Xij |2} = 1.

Therefore ai = bi = 0 ∀i in (22). We next evaluate the second and third lines of (23). To achieve this,

we need to take the derivatives with respect to the real and imaginary parts of the (i, j)th entries of X,

respectively. Because the real and imaginary parts of Xij are independent, all the results established in

the real case can be directly applied for the complex case. Thus, without loss of generality, we deal with

X and X with real entries only in order to present the formulas in a compact and succinct way.
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For ease of exposition, we define

f(A) ,
1

N
tr

(
S +

(
R

1
2 AT

1
2 + H̄

)(
R

1
2 AT

1
2 + H̄

)H
− zI

)−1

, (70)

where A is any matrix such that the product R
1
2 AT

1
2 exists. As such, we have mBN (z) = f(X) and

mBN (z) = f(X ). Moreover, to apply (23), A will take the form A(r, c, s) = [Aij(r, c, s)] ∈ CN×n with

Aij(r, c, s) =


Xij√
n
, if i < r, or i = r and j < c,

s, if i = r, and j = c,

Xij√
n
, otherwise.

(71)

Further, let G , S +
(
R

1
2 AT

1
2 + H̄

)(
R

1
2 AT

1
2 + H̄

)H
, denote the partial derivative with respect to Aij

by ∂ij , and let Eij be the matrix with a 1 in the (i, j)th position and 0’s elsewhere. To get the third-fold

derivative of f(A), we rely on the following differentiation formulas:

∂ij(G− zI)−1 = −(G− zI)−1(∂ijG)(G− zI)−1, (72a)

∂ijG =
(
R1/2EijT

1
2

)(
R

1
2 AT

1
2 + H̄

)H
+
(
R

1
2 AT

1
2 + H̄

)
T

1
2 EjiR

1
2 , (72b)

∂2
ijG = 2TjjR

1
2 EiiR

1
2 , (72c)

∂3
ijG = 0. (72d)

By (72), one can easily show that

∂ijf(A) =− 1

N
tr
(
(∂ijG)(BN − zI)−2

)
, (73a)

∂2
ijf(A) =

2

N
tr
(
(∂ijG)(BN − zI)−1(∂ijG)(BN − zI)−2

)
− 1

N
tr
(
(∂2
ijG)(BN − zI)−2

)
, (73b)

∂3
ijf(A) =− 6

N
tr
(
(∂ijG)(BN − zI)−1(∂ijG)(BN − zI)−1(∂ijG)(BN − zI)−2

)
+

3

N
tr
(
(∂2
ijG)(BN − zI)−1(∂ijG)(BN − zI)−2

)
+

3

N
tr
(
(∂ijG)(BN − zI)−1(∂2

ijG)(BN − zI)−2
)
. (73c)

Now, we provide a bound for each of the three terms of ∂3
ijf(A) (see (73c) above). The first term of
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∂3
ijf(A) can be bounded by

∣∣tr ((∂ijG)(BN − zI)−1(∂ijG)(BN − zI)−1(∂ijG)(BN − zI)−2
)∣∣

(a)

≤‖((∂ijG)(BN − zI)−1)2‖F ‖(∂ijG)(BN − zI)−2‖F (74)

(b)

≤ 1

dist(z,R+)
‖(∂ijG)(BN − zI)−1‖3F (75)

(c)

≤ 1

dist(z,R+)
4 ‖(∂ijG)‖3F, (76)

where (a) follows from 1)-i) of Lemma 2 and the remaining two inequalities, (b) and (c), follow from 1)-ii)

and 1)-iii) of Lemma 2. By 1)-i) and 1)-ii) of Lemma 2, the second and third terms of ∂3
ijf(A) can be

bounded by

∣∣tr ((∂2
ijG)(BN − zI)−1(∂ijG)(BN − zI)−2

)∣∣
≤ 1

dist(z,R+)
3 ‖(∂

2
ijG)‖F ‖(∂ijG)‖F =

2

dist(z,R+)
3 ‖TjjR

1
2 EiiR

1
2 ‖F ‖(∂ijG)‖F. (77)

Therefore, to estimate |∂3
ijf(A)|, we note that ‖TjjR

1
2 EiiR

1
2 ‖F = TjjRii ≤ ‖T‖‖R‖ ≤ α2 and

‖R
1
2 EijT

1
2 H̄H‖2F = Rii tr

(
eTj T

1
2 H̄HH̄T

1
2 ej

)
(a)

≤‖R‖‖T
1
2 H̄HH̄T

1
2 ‖tr

(
eje

T
j

)
(b)

≤‖T‖‖R‖‖H̄HH̄‖ ≤ α3, (78)

where (a) follows from 1)-iv) and 2) of Lemma 2, and (b) follows from 3) of Lemma 2. As a result,

‖(∂ijG)‖2F
(a)

≤4
(
‖R

1
2 EijTATR

1
2 ‖2F + ‖R

1
2 EijT

1
2 H̄H‖2F

)
(b)

≤4
(
tr
(
R

1
2 EijTATRATEjiR

1
2

)
+ α3

)
(c)

≤4
(
‖R‖2tr

(
eTj TATATej

)
+ α3

)
= 4

(
‖R‖2

N∑
i=1

|áiTej |2 + α3

)
, (79)

where (a) follows from the triangle inequality of the Frobenius norm and Lemma 7, (b) follows from (78),
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(c) follows from 1)-iv) and 2) of Lemma 2, and ái represents the ith row vector of A.

Recalling the definition of A(r, c, s) in (71), when i 6= r, a direct application of Lemma 8 yields

E
{
|áiTej |2p

}
= E


∣∣∣∣∣
n∑
k=1

AikTkj

∣∣∣∣∣
2p


≤ Cp

(
n∑
k=1

E
{
|Aik|2p|Tkj |2p

}
+

(
n∑
k=1

E
{
|Aik|2|Tkj |2

})p)
. (80)

When i = r, similarly, we have

E
{
|áiTej |2p

}
≤ Cp

 n∑
k 6=c

E
{
|Aik|2p|Tkj |2p

}
+

 n∑
k 6=c

E
{
|Aik|2|Tkj |2

}p+ Cp|s|2p. (81)

From the definition of A(r, c, s) in (71), we get

E{|Aij |2p} ≤


ε2p−2
n
n , if i < r, or i = r and j < c,

|s|2p, if i = r, and j = c,∏p
l=1(2l−1)

np , otherwise.

(82)

Then, the above gives the simple bound E{|Aij |2p} ≤ C
n for i 6= r and j 6= c. Note that

n∑
k=1

|Tkj |2p ≤

(
n∑
k=1

|Tkj |2
)p

=
(
eTj T2ej

)p ≤ ‖T‖2p ≤ α2p. (83)

From (82) and (83), we get, when i 6= r,

n∑
k=1

E
{
|Aik|2p|Tkj |2p

}
≤ C

n

n∑
k=1

|Tkj |2p ≤
Cαp

n
= O

(
1

n

)
, (84)

and similarly, when i = r,
n∑
k 6=c

E
{
|Aik|2p|Tkj |2p

}
= O

(
1

n

)
. (85)
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Therefore, using (80) and (81) with the above bounds, we have

E
{
|áiTej |4

}
=

 O
(

1
n

)
+ |s|4, if i = r,

O
(

1
n

)
, otherwise,

(86)

which, together with Lemma 8, ensures that

E


∣∣∣∣∣∣
N∑
i 6=r
|áiTej |2 − E

{
|áiTej |2

}∣∣∣∣∣∣
2 ≤ C

N∑
i 6=r

E
{∣∣|áiTej |2 − E

{
|áiTej |2

}∣∣2} = O(1). (87)

Combining everything together, we get

E
{
|∂3
rcf(A(r, c, s))|

}(a)

≤ C

N
E


(
C ′ +

N∑
i=1

|áiTej |2
) 3

2


(b)

≤ C
N

C ′ + |s|3 + E


 N∑
i 6=r
|áiTej |2

 3
2




≤ C

N

C ′ + |s|3 + E


 N∑
i 6=r
|áiTej |2 − E

{
|áiTej |2

} 3
2


+

C

N

 N∑
i 6=r

E
{
|áiTej |2

} 3
2

(c)

≤ C
N

C ′ + |s|3 +

E


∣∣∣∣∣∣
N∑
i 6=r
|áiTej |2 − E

{
|áiTej |2

}∣∣∣∣∣∣
2


3
4

+
C

N

 N∑
i 6=r

E
{
|áiTej |2

} 3
2

(d)

≤ C
N

(
C ′ + |s|3

)
, (88)

where (a) follows from (79), (b) follows from Lemma 7, (c) is due to the fact that (E{| · |p})
1
p is a nonde-

creasing function of p, and (d) follows from (87).
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Finally, we can evaluate the second and third lines of (23). Using (23) and (88), we have11

|E{<{mBN (z)}} − E{<{mBN (z)}}| ≤ C

N

N∑
i=1

n∑
j=1

(
E

{∫ |Xij |/√n
0

(C ′ + |s|3)

(
Xij√
n
− s
)2

ds

}

+E

{∫ |Xij |/√n
0

(C ′ + |s|3)

(
Xij√
n
− s
)2

ds

})

≤ C

N

N∑
i=1

n∑
j=1

(
C ′

3
E

{(
|Xij |√
n

)3
}

+
1

60
E

{(
|Xij |√
n

)6
}

+
C ′

3
E

{(
|Xij |√
n

)3
}

+
1

60
E

{(
|Xij |√
n

)6
})

= O(εn).

(89)

The quantity |E{={mBN (z)}} − E{={mBN (z)}}| also admits the same upper bound. Therefore, we finish

Step 2.

Appendix B. Existence and Uniqueness

In this appendix, we will consider existence and uniqueness of the solution to (11).

Appendix B.1 Existence

As pointed out in the paragraphs after Theorem 5, Formulas (12a)–(12d) can be obtained from those of

[29, Theorems 2.4 and 2.5] by recovering the effect from the eigenvectors Uk’s. Therefore existence of ei(z)

follows from that of the corresponding solution ψi(z) of [29, Theorems 2.4].

Appendix B.2 Uniqueness

In fact, uniqueness of ei(z) also follows immediately from that of ψi(z) in [45, Theorems 2.4]. However,

here we provide an alternative proof, which is inspired by [7, 18].

11Note that <{f(A)} is a smooth function and |∂pij<{f(A)}| ≤ |∂pijf(A)| for each p.

33



For the reader’s convenience, we recall the notation introduced in Theorem 1:

ei(z) =
1

N
tr (RiΨ(z)) , (90a)

ẽi(z) =
1

ni
tr
(
Ti〈Ψ̃(z)〉i

)
, (90b)

where

Ψ(z) =
(
Φ(z)−1 − zH̄Φ̃(z)H̄H

)−1
, (91a)

Ψ̃(z) =
(
Φ̃(z)−1 − zH̄HΦ(z)H̄

)−1
, (91b)

Φ(z) =
−1

z

(
−1

z
S +

K∑
i=1

ẽi(z)Ri + IN

)−1

, (91c)

Φ̃(z) = diag
(
Φ̃1(z), . . . , Φ̃K(z)

)
, (91d)

with Φ̃i(z) , −1
z (Ini + βiei(z)Ti)

−1. Let ez = [ze1(z) · · · zeK(z)]T , ẽz = [zẽ1(z) · · · zẽK(z)]T , Φz = zΦ(z),

Φ̃z = zΦ̃(z), Φzi = zΦi(z), and Φ̃zi = zΦ̃i(z). To facilitate our notations, we, henceforth, denote by

Ψ = Ψ(z), Ψ̃ = Ψ̃(z), Φ = Φ(z), Φ̃ = Φ̃(z), Φ̃i = Φ̃i(z). Suppose that {e◦i (z), ẽ◦i (z)}1≤i≤K are another

solutions satisfying (90) and let Ψ◦, Ψ̃
◦
, Φ◦, Φ̃

◦
, Φ◦z, Φ̃

◦
z, e◦z, ẽ◦z be the matrices/vectors by replacing the

entries ei(z)’s and ẽi(z)’s in Ψ, Ψ̃, Φ, Φ̃, Φz, Φ̃z, ez, ẽz with e◦i (z)’s and ẽ◦i (z)’s respectively. We prove

the uniqueness of ez and ẽz by showing that ez − e◦z = 0 and ẽz − ẽ◦z = 0.

Denote Ti , diag(0n1 , . . . ,0ni−1 ,Ti,0ni+1 , . . . ,0nK ) for i = 1, . . . ,K. To simplify notation, we let

u1,ij =
1

N
tr
(
RiΨRjΨ

H
)
,

u2,ij =
βj
N

tr
(
RiΨH̄jΦ̃zjTjΦ̃

H
zjH̄

H
j ΨH

)
,

v1,ij =
βj
nj

tr
(
TiΨ̃TjΨ̃

H
)
,

v2,ij =
1

nj
tr
(
TiΨ̃H̄HΦzRjΦ

H
z H̄Ψ̃

H
)
.

(92)
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Moreover, let

Γ =



Γ11 0 0 Γ12

0 Γ11 |z|2Γ12 0

0 Γ21 Γ22 0

|z|2Γ21 0 0 Γ22


(93)

with Γ11 = [Γ11,ij ] ∈ CK×K , Γ12 = [Γ12,ij ] ∈ CK×K , Γ21 = [Γ21,ij ] ∈ CK×K , Γ22 = [Γ22,ij ] ∈ CK×K , and

Γ11,ij =


0, i = j,

u2,ij

1− u2,ii
, i 6= j,

Γ12,ij =
u1,ij

1− u2,ii
,

Γ22,ij =


0, i = j,

v2,ij

1− v2,ii
, i 6= j,

Γ21,ij =
v1,ij

1− v2,ii
.

Similarly, let Γ◦ as well as Γ◦11, Γ◦12, Γ◦21, and Γ◦22 be the matrices by replacing Ψ, Ψ̃, Φ, and Φ̃ with Ψ◦H ,

Ψ̃
◦H

, Φ◦H , and Φ̃
◦H

respectively.

Now, write ei(z) = ei,1(z) + jei,2(z), ẽi(z) = ẽi,1(z) + jẽi,2(z) and z ≡ z1 + jz2. A direct calculation then

yields

={zei(z)} = =
{

1

N
tr
(
RiΨ

(
zΨ−H

)
ΨH

)}
(a)
==

 1

N
tr

RiΨ

zS− K∑
j=1

|z|2ẽ∗j (z)Rj −
K∑
j=1

zH̄jΦ̃
H
zjH̄

H
j − |z|2IN

ΨH


==

 1

N
tr

RiΨ

zS− K∑
j=1

|z|2ẽ∗j (z)Rj +
K∑
j=1

H̄jΦ̃zj

(
−zΦ̃−1

zj

)
Φ̃
H
zjH̄

H
j − |z|2IN

ΨH


(b)
==

 1

N
tr

RiΨ

zS− K∑
j=1

|z|2ẽ∗j (z)Rj +
K∑
j=1

H̄jΦ̃zj(zInj + βjzej(z)Tj)Φ̃
H
zjH̄

H
j − |z|2IN

ΨH


=

K∑
j=1

ẽj,2(z)|z|2 1

N
tr
(
RiΨRjΨ

H
)

+

K∑
j=1

={zej(z)}
βj
N

tr
(
RiΨH̄jΦ̃zjTjΦ̃

H
zjH̄

H
j ΨH

)
+
z2

N
tr
(
RiΨ(S + H̄Φ̃zΦ̃

H
z H̄H)ΨH

)
(c)
=

K∑
j=1

ẽj,2(z)|z|2u1,ij +

K∑
j=1

={zej(z)}u2,ij +
z2

N
tr
(
RiΨ

(
S + H̄Φ̃zΦ̃

H
z H̄H

)
ΨH

)
, (94)
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where (a) and (b) are obtained by expanding
(
zΨ−H

)
and

(
−zΦ̃−1

zj

)
respectively using (91), and (c) is

obtained by using the definitions in (92). Similarly we can get

={zẽi(z)} =
K∑
j=1

ej,2(z)|z|2v1,ij +
K∑
j=1

={zẽj(z)}v2,ij +
z2

ni
tr
(
TiΨ̃H̄HΦzΦ

H
z H̄Ψ̃

H
)
, (95)

ei,2(z) =
K∑
j=1

={zẽj(z)}u1,ij +
K∑
j=1

ej,2(z)u2,ij +
z2

N
tr
(
RiΨΨH

)
, (96)

ẽi,2(z) =
K∑
j=1

={zej(z)}v1,ij +
K∑
j=1

ẽj,2(z)v2,ij +
z2

ni
tr

(
TiΨ̃

(
In +

1

|z|2
H̄HΦzSΦH

z H̄

)
Ψ̃
H
)
. (97)

Let

η = [e1,2(z), . . . , eK,2(z),={ze1(z)}, . . . ,={zeK(z)}, ẽ1,2(z), . . . ẽK,2(z),={zẽi(z)}, . . . ,={zẽK(z)}]T .

By the definition of Γ in (93), η satisfies

η = Γη + b, (98)

where b = [bT1 bT2 bT3 bT4 ]T with b1 = [
b1,i

1−u2,ii ], b2 = [
b2,i

1−u2,ii ], b3 = [
b3,i

1−v2,ii ], b4 = [
b4,i

1−v2,ii ] ∈ CK , and



b1,i =
z2

N
tr
(
RiΨΨH

)
,

b2,i =
z2

N
tr
(
RiΨ

(
S + H̄Φ̃zΦ̃

H
z H̄H

)
ΨH

)
,

b3,i =
z2

ni
tr

(
TiΨ̃

(
In +

1

|z|2
H̄HΦH

z SΦzH̄

)
Ψ̃
H
)
,

b4,i =
z2

ni
tr
(
TiΨ̃H̄HΦzΦ

H
z H̄Ψ̃

H
)
.

(99)

Let

Υ = diag (1− u2,11, · · · , 1− u2,KK , 1− v2,11, · · · , 1− v2,KK) . (100)

Multiplying both sides of (98) by Υ gives

Υη = ΥΓη + Υb. (101)
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For z ∈ C+, it is observed that the following quantities


ei,2(z), ={zei(z)}, ẽi,2(z), ={zẽi(z)}, ∀i,

u1,ij , u2,ij , v1,ij , v2,ij , ∀i, j,

b1,i, b2,i, b3,i, b4,i, ∀i.

(102)

are all positive. For any matrix A = [aij ], we write A > 0 if aij > 0 ∀i, j. From (102), we have that η > 0,

ΥΓ > 0, and Υb > 0. As a result, we get Υη > 0 [the right-hand side of (101)] and since η > 0, we

conclude that

1− u2,ii > 0, 1− v2,ii > 0, ∀i. (103)

Now, all the elements of Γ, η, and b are shown to be positive. Therefore, from (98) and Lemma 13, we

get ρ(Γ) < 1. Similarly, we also have ρ(Γ◦) < 1.

A standard computation involving the resolvent identity (Lemma 3) yields

ei(z)− e◦i (z)

=− 1

N
tr
(
RiΨ

(
Ψ−1 −Ψ◦−1

)
Ψ◦
)

(a)
=

K∑
j=1

(zẽj(z)− zẽ◦j (z))
1

N
tr (RiΨRjΨ

◦) +
1

N

K∑
j=1

tr
(
RiΨH̄j(Φ̃zj − Φ̃

◦
zj)H̄

H
j Ψ◦

)

=
K∑
j=1

(zẽj(z)− zẽ◦j (z))
1

N
tr (RiΨRjΨ

◦) +
K∑
j=1

(ej(z)− e◦j (z))
βj
N

tr
(
RiΨH̄jΦ̃zjTjΦ̃

◦
zjH̄

H
j Ψ◦

)
. (104)

where (a) is obtained by expanding
(
Ψ−1 −Ψ◦−1

)
using (91). Similarly,

ẽi(z)− ẽ◦i (z)

=
K∑
j=1

(zej(z)− ze◦j (z))
βj
nj

tr
(
TiΨ̃TjΨ̃

◦)
+

K∑
j=1

(ẽj(z)− ẽ◦j (z))
1

nj
tr
(
TiΨ̃H̄HΦzRjΦ

◦
zH̄Ψ̃

◦)
.

(105)

Now, let τ , [eT eTz ẽT ẽTz ]T and τ ◦ , [e◦T e◦Tz ẽ◦T ẽ◦Tz ]T . Thus we have

τ − τ ◦ = ∆(τ − τ ◦), (106)
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where

∆ =



∆11 0 0 ∆12

0 ∆11 z2∆12 0

0 ∆21 ∆22 0

z2∆21 0 0 ∆22


with ∆11 = [∆11,ij ] ∈ CK×K , ∆12 = [∆12,ij ] ∈ CK×K , ∆21 = [∆21,ij ] ∈ CK×K , ∆22 = [∆22,ij ] ∈ CK×K

and

∆11,ij =


0, i = j,

βj
N tr

(
RiΨH̄jΦ̃zjTjΦ̃

◦
zjH̄

H
j Ψ◦

)
1− βj

N tr
(
RiΨH̄iΦ̃ziTiΦ̃

◦
ziH̄

H
i Ψ◦

) , i 6= j,

∆12,ij =
1
N tr (RiΨRjΨ

◦)

1− βj
N tr

(
RiΨH̄iΦ̃ziTiΦ̃

◦
ziH̄

H
i Ψ◦

) ,
∆21,ij =

βj
nj
tr
(
TiΨ̃TjΨ̃

◦)
1− 1

nj
tr
(
TiΨ̃zH̄HΦzRiΦ

◦H̄Ψ̃
◦) ,

∆22,ij =


0, i = j,

1
nj
tr
(
TiΨ̃H̄HΦzRjΦ

◦
zH̄Ψ̃

◦)
1− 1

nj
tr
(
TiΨ̃zH̄HΦzRiΦ

◦H̄Ψ̃
◦) , i 6= j.

Let | · | denote the operator taking the absolute values of the input vector or matrix. It follows

from Lemma 14 that ρ(∆) ≤ ρ(|∆|). Applying Lemma 16 with A =
√
βj/N R

1
2
i ΨH̄iΦ̃ziT

1
2
i and BH =√

βj/NT
1
2
i Φ̃
◦
ziH̄

H
i Ψ◦R

1
2
i , we have a lower bound for the denominator of ∆11,ij by

(
1− βj

N
tr
(
RiΨH̄iΦ̃ziTiΦ̃

◦
ziH̄

H
i Ψ◦

))
≥
(

1− βj
N

tr
(
RiΨH̄iΦ̃ziTiΦ̃

H
ziH̄

H
i ΨH

)) 1
2
(

1− βj
N

tr
(
RiΨ

◦HH̄iΦ̃
◦H
zi TiΦ̃

◦
ziH̄

H
i Ψ◦

)) 1
2

(107)

where the conditions tr(AAH) = u2,ii ≤ 1 and tr(BBH) = u◦2,ii ≤ 1 are satisfied by (103). Applying the
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Cauchy-Schwarz inequality to the numerator of ∆11,ij , we then obtain from (107)

|∆11,ij | ≤

 βj
N tr

(
RiΨH̄jΦ̃zjTjΦ̃

H
zjH̄

H
j ΨH

)
1− βj

N tr
(
RiΨH̄iΦ̃ziTiΦ̃

H
ziH̄

H
i ΨH

)


1
2
 βj

N tr
(
RiΨ

◦HH̄jΦ̃
◦H
zj TjΦ̃

◦
zjH̄

H
j Ψ◦

)
1− βj

N tr
(
RiΨ

◦HH̄iΦ̃
◦H
zi TiΦ̃

◦
ziH̄

H
i Ψ◦

)


1
2

. (108)

Recalling the definitions of the entries of Γ, (108) is equivalent to

|∆11,ij | ≤
∣∣∣∣ u2,ij

1− u2,ii

∣∣∣∣ 12
∣∣∣∣∣ u◦2,ij
1− u◦2,ii

∣∣∣∣∣
1
2

= |Γ11,ij |
1
2 |Γ◦11,ij |

1
2 . (109)

Likewise we have

|∆12,ij | ≤ |Γ12,ij |
1
2 |Γ◦12,ij |

1
2 , |∆21,ij | ≤ |Γ21,ij |

1
2 |Γ◦21,ij |

1
2 , and |∆22,ij | ≤ |Γ22,ij |

1
2 |Γ◦22,ij |

1
2 . (110)

We then conclude from Lemmas 14 and 15 that

ρ(|∆|) ≤ ρ
([
|Γij |

1
2 |Γ◦ij |

1
2

])
≤ ρ(Γ)

1
2 ρ(Γ◦)

1
2 < 1 (111)

where the fact that ρ(Γ) < 1 and ρ(Γ◦) < 1 is proved before. As pointed out by [7], this contradicts to the

statement that ∆ has an eigenvalue equal to 1 via (106). Therefore we get e = e◦ and ẽ = ẽ◦ if z ∈ C+.

If z ∈ C− or z ∈ R−, similar arguments apply and details are omitted here. Theorem 1 is thus proved.

Appendix C. Proof of Theorem 3

Recalling (7), we have [29, page 891]

VBN (σ2) =

∫ ∞
σ2

(
1

ω
−mBN (−ω)

)
dω, for σ2 ∈ R+. (112)

In Appendix C.1, we first show E{VBN (σ2)} − VN (σ2)→ 0; i.e.,

∫ ∞
σ2

(
1

ω
− E{mBN (−ω)}

)
dω −

∫ ∞
σ2

(
1

ω
− 1

N
tr (Ψ(−ω))

)
dω

N→∞−−−−−→ 0. (113)
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Next, we show in Appendix C.2 that with the additional assumptions in Remark 2, (113) can be strength-

ened to almost surely convergence as N →∞. Finally, in Appendix C.3, we show that
∫∞
σ2

1
ω−

1
N tr (Ψ(−ω)) dω

can be written more explicitly as (15).

Appendix C.1 Proof of the convergence of E{VBN (σ2)} − VN(σ2)

By Theorem 2 together with the dominated convergence theorem, we have

(
1

ω
− E{mBN (−ω)}

)
−
(

1

ω
− 1

N
tr (Ψ(−ω))

)
N→∞−−−−−→ 0. (114)

Let FN be the probability distribution whose Stieltjes transform is 1
N trΨ(z). Notice that [29]

∣∣∣∣( 1

ω
− E{mBN (−ω)}

)
−
(

1

ω
− 1

N
tr (Ψ(−ω))

)∣∣∣∣
≤
∣∣∣∣E{∫ ∞

0

(
1

ω
− 1

λ+ ω

)
dFBN (λ)

}∣∣∣∣+

∣∣∣∣∫ ∞
0

(
1

ω
− 1

λ+ ω

)
dFN (λ)

∣∣∣∣
≤
∣∣∣∣ 1

ω2
E

{∫ ∞
0

λdFBN (λ)

}∣∣∣∣+

∣∣∣∣ 1

ω2

∫ ∞
0

λdFN (λ)

∣∣∣∣ . (115)

Also, we notice the following equalities:

E

{∫ ∞
0

λdFBN (λ)

}
=

1

N

K∑
k=1

tr(Tk)tr(Rk)

nk
+

1

N

K∑
k=1

tr(H̄kH̄
H
k ), (116)

∫ ∞
0

λdFN (λ) =
1

N

K∑
k=1

tr(Tk)tr(Rk)

nk
+

1

N

K∑
k=1

tr(H̄kH̄
H
k ). (117)

We will confirm these equalities later. From (116) and (117) together with the constraints in (10), we get

E

{∫ ∞
0

λdFBN (λ)

}
= 2K and

∫ ∞
0

λdFN (λ) = 2K. (118)

As a result, (113) follows from the dominated convergence theorem.
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It remains to check (116) and (117). For (116), a direct calculation yields

E

{∫ ∞
0

λdFBN (λ)

}
=

1

N
E
{
tr(HHH)

}
=

1

N

K∑
k=1

E
{
tr(RkXkTkX

H
k )
}

+
1

N

K∑
k=1

tr
(
H̄kH̄

H
k

)
(119)

=
1

N

K∑
k=1

tr(Tk)tr(Rk)

nk
+

1

N

K∑
k=1

tr
(
H̄kH̄

H
k

)
. (120)

The equality (117) can be obtained by using [29, (C.4)]:

∫ ∞
0

λdFN (λ) = lim
z2→∞

Re

{
−jz2

(
jz2

1

N
tr (Ψ(jz2)) + 1

)}
. (121)

The proof of (121) being the right-hand slide of (117) is similar to that in [29, Lemma C.1] and is therefore

omitted. The proof of (14) is complete.

Appendix C.2 Proof of VBN (σ2)− VN(σ2)
a.s.−−→ 0

Following [7], one can verify (16) under the assumptions of Theorem 4.

As for Remark 2, similar to (119), write

∫ ∞
0

λdFBN (λ) =
1

N

K∑
k=1

tr(RkXkTkX
H
k ) +

2

N

K∑
k=1

tr

(
R

1
2
kXkT

1
2
k H̄H

k

)
+

1

N

K∑
k=1

tr(H̄kH̄
H
k ). (122)

Furthermore, write

1

N

K∑
k=1

tr(RkXkTkX
H
k ) =

1

N

K∑
k=1

N∑
i=1

N∑
j=1

R
(k)
ij x́Hk,jTkx́k,i, (123)

and

1

N

K∑
k=1

tr(R
1
2
kXkT

1
2
k H̄H

k ) =
1

N

K∑
k=1

N∑
j=1

x́Hk,jyk,j (124)

where Rk = [R
(k)
ij ] and x́Hk,j is the jth row of Xk and yk,j = T

1
2
k H̄H

k R
1
2
k ej . Note that

1

nk

N∑
i=1

∣∣∣R(k)
ii

∣∣∣2 ≤ 1

nk
tr(R2

k). (125)
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It follows from Lemma 7, Lemma 9 and Lemma 11 that

E


∣∣∣∣∣ 1

N

K∑
k=1

N∑
i=1

R
(k)
ii

(
x́Hk,iTkx́k,i −

1

nk
tr(Tk)

)∣∣∣∣∣
2
 ≤ C

N2

K∑
k=1

N∑
i=1

|R(k)
ii |

2E

{∣∣∣∣x́Hk,iTkx́k,i −
1

nk
tr(Tk)

∣∣∣∣2
}

≤ C ′

N2

K∑
k=1

N∑
i=1

|R(k)
ii |

2 1

n2
k

tr(T2
k)

≤ C ′′
K∑
k=1

1

Nnk

1

N
tr(R2

k)
1

nk
tr(T2

k). (126)

This, together with Borel-Cantelli’s Lemma, implies

1

N

K∑
k=1

N∑
i=1

R
(k)
ii x́Hk,iTkx́k,i −

1

N

K∑
k=1

tr(Tk)tr(Rk)

nk

a.s.−−→ 0. (127)

A direct calculation indicates that

E


∣∣∣∣∣∣ 1

N

K∑
k=1

N∑
i 6=j

R
(k)
ij x́Hk,jTkx́k,i

∣∣∣∣∣∣
2 ≤ C

N2

K∑
k=1

N∑
i 6=j
|R(k)

ij |
2 1

n2
k

tr(T2
k)

≤ C ′
K∑
k=1

1

Nnk

1

N
tr(R2

k)
1

nk
tr(T2

k). (128)

It follows that

1

N

K∑
k=1

tr(RkXkTkX
H
k )− 1

N

K∑
k=1

tr(Tk)tr(Rk)

nk

a.s.−−→ 0. (129)

Similarly, we have

E


∣∣∣∣∣∣ 1

N

K∑
k=1

N∑
j=1

x́Hk,jyk,j

∣∣∣∣∣∣
2 ≤ C

K∑
k=1

1

Nnk

1

N
tr(TkH̄

H
k RkH̄k)

≤ C ′
K∑
k=1

1

Nnk

(
1

N
tr(T4

k)
1

N
tr(R4

k)

(
1

N
tr
(
(H̄H

k H̄k)
2
))2

) 1
4

, (130)

which implies that

1

N

K∑
k=1

tr(R
1
2
kXkT

1
2
k H̄H

k )
a.s.−→ 0. (131)

It follows from the generalized dominated convergence theorem, (129), (131), (112) and (115) that Remark

2 is true.
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Appendix C.3 Explicit Expression of
∫∞
σ2

(
1
ω
− 1

N
tr (Ψ(−ω))

)
dω

In this appendix, we will prove

VN (σ2) =

∫ ∞
σ2

(
1

ω
− 1

N
tr (Ψ(−ω))

)
dω, (132)

or equivalently,

∂VN (σ2)

∂σ2
=

1

N
tr
(
Ψ(−σ2)

)
− 1

σ2
. (133)

The right-hand side of (133) can be reexpressed as

1

N
tr
(
Ψ(−σ2)

)
− 1

σ2
=

1

N
tr
(
Ψ(−σ2)− (σ2I)−1

)
(a)
= − 1

N
tr

(
Ψ(−σ2)

(
K∑
i=1

σ2ẽi(−σ2)Ri + H̄(σ2Φ̃(−σ2))H̄H

)
(σ2I)−1

)
(b)
= −

K∑
i=1

ẽi(−σ2)ei(−σ2)− 1

N
tr
(
Ψ(−σ2)H̄Φ̃(−σ2)H̄H

)
, (134)

where (a) is due to the resolvent identity (Lemma 3) and (b) follows merely from the definitions of ẽi(−σ2)

and ei(−σ2). We then prove that (134) corresponds to the left-hand side of (133). To this end, we define

V(σ2,κ, κ̃) ,
1

N
log det

(
IN +

K∑
i=1

κ̃iRi +
1

σ2

K∑
i=1

H̄i(Ini + βiκiTi)
−1H̄H

i

)
+

1

N

K∑
i=1

log det (Ini + βiκiTi)− σ2
K∑
i=1

κiκ̃i. (135)

Note that V(σ2, eσ, ẽσ) = VN (σ2) with eσ , [ei(−σ2)] ∈ RK and ẽσ , [ẽi(−σ2)] ∈ RK . The derivative of

VN (σ2) can be expressed as

∂VN (σ2)

∂σ2
=

∂V
∂σ2

∣∣∣∣
(σ2,eσ ,ẽσ)

+

K∑
i=1

∂V
∂κi

∣∣∣∣
(σ2,eσ ,ẽσ)

∂ei
∂σ2

+
K∑
i=1

∂V
∂κ̃i

∣∣∣∣
(σ2,eσ ,ẽσ)

∂ẽi
∂σ2

. (136)

It can be checked that

∂V
∂κi

∣∣∣∣
(σ2,eσ ,ẽσ)

= 0, and
∂V
∂κ̃i

∣∣∣∣
(σ2,eσ ,ẽσ)

= 0, for i = 1, . . . ,K. (137)
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Therefore, we have

∂VN (σ2)

∂σ2
=

∂V
∂σ2
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(σ2,eσ ,ẽσ)

=− 1

N
tr

IN +
K∑
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ẽi(−σ2)Ri +
1

σ2

K∑
j=1

H̄j(Inj + βjej(−σ2)Tj)
−1H̄H

j

−1

×

(
1

σ4

K∑
i=1

H̄i(Ini + βiei(−σ2)Ti)
−1H̄H

i

)]
−

K∑
i=1

ei(−σ2)ẽi(−σ2)

= − 1

N
tr
(
Ψ(−σ2)H̄Φ̃(−σ2)H̄H

)
−

K∑
i=1

ẽi(−σ2)ei(−σ2), (138)

which is identical to (134) and hence we complete the proof.

Appendix D. Mathematical Tools

In this appendix, we provide some mathematical tools needed in the proof of Appendices A–C.

Lemma 2 [51]

1) Let A = [Aij ] and B be any matrices such that the product AB exists and is a square matrix. Then

i) |tr(AB)| ≤ ‖A‖F‖B‖F,

ii) ‖AB‖F ≤ ‖A‖F‖B‖,

iii) ‖AB‖F ≤ ‖A‖F‖B‖F,

iv) |Aij | ≤ ‖A‖.

2) If A is nonnegative definite, we have |tr(AB)| ≤ ‖B‖tr(A).

3) Let A be any matrix such that the product AB exists. Then, ‖AB‖ ≤ ‖A‖‖B‖.

Lemma 3 (Resolvent Identity [29].) For invertible A and B matrices, we have the identity

A−1 −B−1 = −A−1(A−B)B−1.

Lemma 4 ([50, 0.4.5 and 0.4.6]). Some fundamental equality and inequalities involving the rank are:
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i) If A ∈ CN×n, rank(A) = rank(AH).

ii) If A ∈ CN×n and B ∈ Cn×k, rank(AB) ≤ min{rank(A), rank(B)}.

iii) If A, B ∈ CN×n, rank(A + B) ≤ rank(A) + rank(B).

iv) If A, B ∈ CN×n, rank([A B]) ≤ rank(A) + rank(B).

Lemma 5 ([33, Theorem A.44].) Let A1 and A2 be two N×n matrices. If S and D be Hermitian matrices

of orders N ×N and n× n, then we have

sup
x

∣∣∣FS+A1DAH
1

(x)− FS+A2DAH
2

(x)
∣∣∣ ≤ 1

N
rank(A1 −A2).

Lemma 6 Let S be a Hermitian matrix of order N ×N , A1 and A2 be N ×n complex matrices, and B1,

B2, C1, C2, and D be any matrices such that B1DC1 and B2DC2 exist and are of orders N × n. Then,

sup
x

∣∣∣FS+(A1+B1DC1)(A1+B1DC1)H (x)− FS+(A2+B2DC2)(A2+B2DC2)H (x)
∣∣∣

≤ 1

N
(rank (A1 −A2) + rank (B1 −B2) + rank (C1 −C2)) .

Proof:

sup
x

∣∣∣FS+(A1+B1DC1)(A1+B1DC1)H (x)− FS+(A2+B2DC2)(A2+B2DC2)H (x)
∣∣∣

(a)

≤ 1

N
rank ((A1 + B1DC1)− (A2 + B2DC2))

(b)

≤ 1

N
(rank (A1 −A2) + rank (B1DC1 −B2DC2))

=
1

N
(rank (A1 −A2) + rank ((B1DC1 −B2DC1) + (B2DC1 −B2DC2)))

≤ 1

N
(rank (A1 −A2) + rank (B1 −B2) + rank (C1 −C2)) ,

where (a) follows from Lemma 5, (b) follows from iii) of Lemma 4, and the last inequality follow from ii)

and iii) of Lemma 4. �
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Lemma 7 For any p ≥ 1 and real numbers ai’s, we have

∣∣∣∣∣
n∑
i=1

ai

∣∣∣∣∣
p

≤ np−1
n∑
i=1

|ai|p.

Proof: This lemma follows from a simple application of the Hölder’s inequality. �

Lemma 8 (Elementary Inequality [33, page 29].) If the Xi’s are independent with zero means, then

E

{∣∣∣∑Xi

∣∣∣2p} ≤ Cp (∑E
{
|Xi|2p

}
+
(∑

E
{
|Xi|2

})p)
.

Lemma 9 (Burkholder’s Inequality [49] or [33, Lemma 2.12].) Let {Xi} be a complex martingale difference

sequence with respect to the increasing σ-field {Fi}. Then for p > 1, we have

E
{∣∣∣∑Xi

∣∣∣p} ≤ CpE{(∑ |Xi|2
) p

2

}
.

Lemma 10 Let x = [ 1√
N
Xi] ∈ CN be a random vector, where Xi’s are independent complex random

variables with zero mean and unit variance; and c = [ci] ∈ CN be a deterministic vector independent of

x. Assume that |Xi|’s are bounded by ε
√
N with a constant ε and ‖c‖2p are bounded by a constant C for

p ≥ 1. Then, for any p ≥ 1, we have

E
{
|cHx|2p

}
= O

(
1

N

)
, (139)

and for p ≥ 2,

E
{
‖x‖2p

}
= O(1). (140)

Proof: We will frequently use the fact that if |Xi| ≤ ε
√
N , then E{|Xi|3} ≤ ε

√
N E{|Xi|2} = ε

√
N

and more generally, E{|Xi|p} ≤
(
ε
√
N
)p−2

E{|Xi|2} =
(
ε
√
N
)p−2

.

46



We first prove (139). Using Lemma 8, we have, for p ≥ 1,

E
{
|cHx|2p

}
= E


∣∣∣∣∣ 1√
N

N∑
i=1

ciXi

∣∣∣∣∣
2p
 ≤ Cp

Np

(
N∑
i=1

|ci|2pE
{
|Xi|2p

}
+

(
N∑
i=1

|ci|2E
{
|Xi|2

})p)

≤ Cp
Np

(
C
(
ε
√
N
)2p−2

+ C

)
= O

(
1

N

)
.

Next, we prove (140). For any p ≥ 2, we have

E
{
‖x‖2p

}
= E

{
|xHx|p

}
≤ C

(
E
{∣∣xHx− E

{
xHx

}∣∣p})+ C
(
E
{
xHx

})p
≤ CCp

Np

 N∑
i=1

E
{∣∣|Xi|2 − E

{
|Xi|2

}∣∣p}+

(
N∑
i=1

E
{∣∣|Xi|2 − E

{
|Xi|2

}∣∣2}) p
2

+ C

≤ C ′Cp
Np

(
N ·

(
ε
√
N
)2p−2

+
(
N · ε2N

) p
2

)
+ C

= O(1),

where the first inequality follows from Lemma 7 and the second inequality follows from Lemma 8. �

Lemma 11 ([33, Lemma B.26].) Let A ∈ CN×N be a nonrandom matrix and x = [Xi] ∈ CN be a random

vector of independent entries. Assume that E{Xi} = 0, E{|Xi|2} = 1, and E{|Xi|l} ≤ cl. Then, for any

p ≥ 1,

E
{
|xHAx− tr(A)|p

}
≤ Cp

((
c4tr(AAH)

) p
2 + c2ptr

(
(AAH)

p
2

))
.

Lemma 12 [51, 0.7.3] Let A be partitioned as

A =

 A11 A12

A21 A22

 .
Invertibility is assumed for any subblock whose inverse is indicated. Then,

A−1 =

 (A11 −A12A
−1
22 A21)−1 A−1

11 A21(A21A
−1
11 A12 −A22)−1

(A21A
−1
11 A12 −A22)−1A21A

−1
11 (A22 −A21A

−1
11 A12)−1

 .
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Lemma 13 [7, Lemma 9] If the components of C, x, and b are all positive, then x = Cx + b implies

ρ(C) < 1.

Lemma 14 [50, Theorem 8.1.18] Let A = [Aij ] and B = [Bij ] be square matrices. If |Aij | ≤ Bij , ∀i, j,

then ρ(A) ≤ ρ(|A|) ≤ ρ(B).

Lemma 15 ([51, Lemma 5.7.9] Let A = [Aij ] and B = [Bij ] be matrices with nonnegative elements. Then

ρ

([
A

1
2
ijB

1
2
ij

])
≤ ρ(A)

1
2 ρ(B)

1
2 .

Lemma 16 Let A and B be any matrices such that ABH exists and is a squared matrix. If tr(AAH) ≤ 1

and tr(BBH) ≤ 1, then

∣∣1− tr(ABH)
∣∣ ≥ (1− tr(AAH)

) 1
2
(
1− tr(BBH)

) 1
2 .

Proof: For real numbers a and b with a, b ∈ [0, 1] it is easily shown that

(1− a)
1
2 (1− b)

1
2 ≤ 1−

√
ab. (141)

Let a = tr(AAH) and b = tr(BBH). Plugging a and b into (141), we obtain

(
1− tr(AAH)

) 1
2
(
1− tr(BBH)

) 1
2 ≤ 1−

√
tr(AAH)tr(BBH) ≤ 1−

∣∣tr(ABH)
∣∣ ≤ ∣∣1− tr(ABH)

∣∣ ,
where the second inequality follows from Lemma 2. �

Lemma 17 [29, Proposition 2.2] Let ϑ(z) ∈ S(R+) with µ being its associated measure carried by R+. We

have the following results:

1) ϑ(z) is analytic on C− R+;

2) ={ϑ(z)} > 0 if ={z} > 0, and ={ϑ(z)} < 0 if ={z} < 0;

3) ={zϑ(z)} > 0 if ={z} > 0, and ={zϑ(z)} < 0 if ={z} < 0;

4) µ(R+) = limy→∞−jy ϑ(jy).
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