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Abstract—We present a joint message passing approach that in messages propagating along the edges of the underlying
tC_0mbigeS belilef _prqpatg);atiog andththe m'eanb fie'g ?ppfOXima- Bayesian network that are described by a small number of
ion. Our analysis is based on the region-based free energy g ;
approximation method proposed by Yedidia et al. We show that parametgrs[ﬂS]. Variational inference m_ethods \(vere régent
the message passing fixed-point equations obtained with i applied in [7] to thechannel state esumauon/m_terference
combination correspond to stationary points of a constraied cancellation partof a class of MIMO-OFDM receivers that
region-based free energy approximation. Moreover, we prent iterate between detection, channel estimation, and degodi
a convergent implementation of these message passing fixed- An approach different from the MF approximation be-
point equations provided that the underlying factor graph fulfills lief propagation (BP) [8]. Roughly speaking, with BP one

certain technical conditions. In addition, we show how to iclude tri to find | | imati hich "
hard constraints in the part of the factor graph corresponding res to find local approximations, which_are—exactly or

to belief propagation. Finally, we demonstrate an applicabn of ~approximately—the marginals of a certain [harhis can also
our method to iterative channel estimation and decoding in & be done in an iterative way, where messages are passed along

orthogonal frequency division multiplexing (OFDM) system the edges of a factor graph [10]. A typical application of BP i
Index Terms—Message passing, belief propagation, iterative decodingof turbo or low density parity check (LDPC) codes.
algorithms, iterative decoding, parameter estimation Based on the excellent performance of BP, a lot of variations

have been derived in order to improve the performance of
this algorithm even further. For example, minimizing an epp
. ) , bound on the log partition function of a pdf leads to the
Variational techniques have been used for decades in qu Bwerful tree reweighted BP algorithii J11]. An offspring of
tum and statistical physics, where they are referred to as is idea is the recently developed uniformly tree rewasght
mean field(MF) approximation[[2]. Later, they found theirBP algorithm [12]. Another example i5 [13], where methods
way to the area of machin.e I.earning or _St"_"tiStiC"_"l infe.ren om information geometry are used to compute correction
See, e..g.,EHB]EEG]. _The bas!‘clldea ,,Of varlatlonal_lnferelrs?e terms for the beliefs obtained by loopy BP. An alternative
to derive the Stat'St'C_s, of “hidden randpm variables g“’?ﬁpproach for turbo decoding that uses projections (that are
the knowledge of “visible” random variables of a certainy =1 in the sense of [14, Ch. 3] to the one used i [13]) on
probability density function (pdf). In the MF approximatio .,nqraint subsets can be found[inl[15]. A combination of the
this pdf is approximated by some “simpler,” e.g., (fu"y)approaches used iA [13] and [ [15] can be found ir [16].
factorized pdf and the Kullback-Leibler divergence betwee " g, methods, BP and the MF approximation, have their

the approximating and the true pdf is minimized, which cag,, yirtyes and disadvantages. For example, the MF approx-
be done in an iterative, i.e., message passing like way. tAPRRation

from being fully factorized, the approximating pdf typilyal
fulfills additional constraints that allow for messageshnét
simple structure, which can be updated in a simple way. For
example, additional exponential conjugacy constrainssilte

I. INTRODUCTION

+ always admits a convergent implementation;
has simple message passing update rules, in particular
for conjugate-exponential models;

— is not compatible with hard constraints,

and BP
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their drawbacks. To this end,unified message passing algo-of continuous random variables using an approach presented
rithm is needed that allows for combining both approachesalready in [22, pp. 36—38] that avoids complicated methods
The fixed-point equations of both BP and the MF approxfrom variational calculus. Sectidn ]l is the main part ofsth
mation can be obtained by minimizing an approximation of th&ork. There we state our main result, namely, Theofém 2,
Kullback-Leibler divergence, called region-based freergg and show how the message passing fixed-point equations of a
approximation. This approach differs from other methods, s combination of BP and the MF approximation can be related to
e.g., [T, because the starting point for the derivation of théae stationary points of the corresponding constrainebreg
corresponding message passing fixed-point equations is l@sed free energy approximation. We then (i) prove Lefima 2,
same objective function for both, BP and the MF approxwhich generalizes Theorelmh 2 to the case where the factors of
mation. The main technical result of our work is Theofdm 2he pmf in the BP part are no longer restricted to be strictly
where we show that the message passing fixed-point equatipasitive real-valued functions, and (ii) present Algomitfl
for such a combination of BP and the MF approximatiothat is a convergent implementation of the message passing
correspond to stationary points of one single constrainegdate equations presented in Theofdm 2 provided that the
region-based free energy approximation and provide a cldagtor graph representing the factorization of the pmf Halfi
rule stating how to couple the messages propagating in the &ftain technical conditions. As a byproduct, (i) givesghss
and MF part. In fact, based on the factor graph correspondiingo solely BP (which is a special case of the combination of
to a factorization of a probability mass function (pmf) an@®P and the MF approximation) with hard constraints, where
a choice for a separation of this factorization into BP anenhly conjectures are formulated inl [9]. In Sectiod IV we appl
MF factors, Theorerfil2 gives the message passing fixed-pogorithm [ to joint channel estimation and decoding in an
equations for the factor graph representing the whole fimeto  OFDM system. More advanced receiver architectures togethe
tion of the pmf. One example of an application of Theorewith numerical simulations and a comparison with otherestat
is joint channel estimation, interference cancellatiang of the art receivers can be found in_[23] and an additional
decoding. Typically, these tasks are considered sepgprabel application of the algorithm in a cooperative communiaadio
the coupling between them is described in a heuristic way. Agenario is presented in_[24]. Finally, we conclude in Secti
an example of this problematic, there has been a debatdViand present an outlook for further research directions.
the research community on whether a posteriori probadsliti
(APP) or extrinsic values should be fed back from the decod’Er
to the rest of the receiver components; several authorgidan
in proposing the use of extrinsic values for MIMO detection Capital calligraphic lettersA, Z, N denote finite sets. The
[18]-[20] while using APP values for channel estimation][19cardinality of a setZ is denoted by|Z|. If i € Z we write
[20], but no thorough justification for this choice is givepeat Z \ i for Z \ {i}. We use the convention thdf,(...) = 1,
from the achieved superior performance shown by simulatig¢here () denotes the empty set. For any finite $gt Iz
results. Despite having a clear rule to update the messagesdenotes the indicator function dfy i.e., Iz(i) = 1if i € Z
the whole factor graph representing a factorization of a,pn&ndIz(i) = 0 else. We denote by capital lette’s discrete
an additional advantage is the fact that solutions of fixeip random variables with a finite number of realizations and
equations for the messages are related to the stationamgspopmf px. For a random variableX, we use the convention
of the corresponding constrained region-based free enetbgt = is a representative for all possible realizationsof
approximation. This correspondence is important becatisd.¢., v serves as a running variable, and denote a particular
yields an interpretation of the computed beliefs for agsitr realization by z. For example,>" (...) runs through all
factor graphs similar to the case of solely BP, where sahstiopossible realizationg of X and for two functionsf and g
of the message passing fixed-point equations do in genetral depending on all realizations of X, f(x) = g(x) means
correspond to the true marginals if the factor graph hasesycthat f(z) = g(z) for each particular realizatiow of X.
but always correspond to stationary points of the constchinlf /' is a functional of a pmfpx of a random variableX
Bethe free energy [9]. Moreover, this observation allowsaus and g is a function depending on all realizations of X,
present a systematic way of updating the messages, namiign 32—12 = g(x) means tha% = g(z) is well defined
Algorithm[d, that is guaranteed to converge provided that tland hoid>s for each particular realizatianof X. We write
factor graph representing the factorization of the pmfiislfi x = (z; | i € Z)" for the realizations of the vector of
certain technical conditions. random variablesX = (X; | i € Z)T. If i € Z, then
The paper is organized as follows. In the remainder Qfx,,(---) runs through all possible realizations &f but
this section we fix our notation. Sectifn Il is devoted to th&. For any nonnegative real valued functigwith argument
introduction of the region-based free energy approxinmatiox = (zi | @ € Z)* andi € Z, f |5, denotesf with fixed
proposed by([9] and to recall how BP, the MF approximatio@gumentz; = ;. If a function f is identically zero, we
and the EM algorithm[[21] can be obtained by this methotrite f = 0 and f # 0 means that it is not identically
Since the MF approximation is typically used for paramet@ero. For two real valued functions and g with the same
estimation, we briefly show how to extend it to the casdomain and argument, we write f(z) o< g(z) if f = cg for
some real positive constante R,. We use the convention

2 An information geometric interpretation of the differertjective func- that0In(0) = 0, aln(g) = oo if a > 0, and()ln(%) =0
tions used in[[17] can be found iA_[14, Ch. 2]. [25, p.31]. Forz € R, §(z) = 1if 2 = 0 and zero else.

Notation



Matrices are denoted by capital boldface Greek letters. Thariational free energf@ﬂﬁ

superscripts’ and f stand for transposition and Hermitian b(x)

transposition, respectively. For a matixe C™*", the entry F(b) = Z b(x)In x)

in the ith row andjth column is denoted by, ; = [A]; ;. x px

For two vectorsx = (z; | i € Z)T andy = (y; | i € 7)7, = b(x)Inb(x)—> bx)npx(x). (2
x®y = (z;y; | i € T)T denotes the Hadamard product of x x

x andy. Finally, CN(x; i, ) stands for the pdf of a jointly
proper complex Gaussian random vec&or CN (u, 3) with
meany and covariance matrix.

2_H(b) £_U(b)

In @), H(b) denotes the entropy [25, p.5] éfand U (b) is
called average energy &f Note thatF'(b) is the Kullback-
Leibler divergence[25, p. 19] betweérandpx, i.e., F'(b) =

Il. KNOWN RESULTS D(b || px). For a setR of regions and associated counting
numbers, thaegion-based free energy approximatiande-
A. Region-based free energy approximatidis [9] fined as[[9]Fg £ Ur — Hz With
Let px be a certain positive pmf of a vectd of random Ur 2 — Z CR Z ZbR(XR) In fo(xq)
variablesX; (i € 7) that factorizes as (Rem)€R  a€Ar xn
L
pX(X) _ H fa(xa) (1) HR - Z CRZbR(XR) ln bR(XR).

(R,cr)ER XR

Here, eachhr is defined locally on a regioiR. Instead of
wherex £ (z; | i € I)T andx, = (z; | i € N(a))™ with minimizing F with respect tdh, we minimizeF with respect
N(a) C Zforalla € A. Without loss of generality we assumeio all br ((R,cr) € R), where thebr have to fulfill certain
that AN Z = §), which can always be achieved by renamingonstraints. The quantitids; are calledbeliefs We give two
indiced] Sincepx is a strictly positive pmf, we can assumexamples of valid sets of regions and associated counting
without loss of generality that all the factofs of px in @) numbers.
are real-valued positive functions. Later in Secfioh l1& shall Example 2.1:The trivial exampleRyr £ {((Z,A),1)}. It
show how to relax the positivity constraint for some of theseads to the MF fixed-point equations, as will be shown in
factors. The factorization i {1) can be visualized ifiaator Subsectiof II=C.
graph [LOf. In a factor graph)\ (a) is the set of all variable  Example 2.2:We define two types of regions:
nodes connected to a factor node A and N (i) represents 1) large regions:R, £ (N(a), {a}), with cg, = 1 for all

acA

the set of all factor nodes connected to a variable nod€. a € A,
An example of a factor graph is depicted in Figlte 1. 2) small regions:R; = ({i}, ), with cg, = 1 — [N (3)| for
A regionR £ (Zr, AR) consists of subsets of indicg&s, C alli € Z.

Z and Ar C A with the restriction that: € Ar implies that  Note that this definition is well defined due to our assumption
N(a) CZg.To eachAreglorR we associate eounting number that A NZ = (. The region-based free energy approximation
cr € Z. A setR = {(R,cgr)} of regions and associatedcorresponding to the valid set of regions and associated

counting numbers is calledalid if counting numbers
Y crlagla)= Y erlz (i) =1 Rep £ {(Ri,cr,) | i € I} U{(Rq,cr,) | a € A}
(R,cr)ER (R,cr)ER is called theBethe free energy9], [26]. It leads to the BP

fixed-point equations, as will be shown in Subsecfion]ll-B.
The Bethe free energy is equal to the variational free energy
when the factor graph has no cyclés [9].

forallae A,i € T.
For a positive functiorb approximatingpx, we define the

® For example, we can write B. BP fixed-point equations
T—{1,2,.. |7} The fixed-point equations for BP can be obtained from the
A= (T3 A} Bethe free energy by imposing additional marginalizatiod a

normalization constraints and computing the stationaiptgo
This implies that any function that is defined pointwise .drandZ is well ~ of the corresponding Lagrangian function [9],]27]. The lget
defined. For example, if in addition to the definition of thess¥'(a) (@ € A)  free energy reads
we setN'(i) £ {a € A|i € N(a)} for all i € Z, the function gy

by (x4)
N:TUA—T(ZUA) FBP:ZZba(Xa)ln fa(Xa)
a— N(a), forallac A ac A xa
i N(i), forallieZ — Z(|N(Z)| -1) sz(%) Inb; (z;) 3)

€L T
with II(Z U .A) denoting the collection of all subsets BfJ.A is well defined
because # a foralli € Z,a € A. 5If px is not normalized to one, the definition of the variationalefienergy
4Throughout the paper we work with Tanner factor graphs aosgghto contains an additional normalization constant, callednihelltz free energy
Forney factor graphs. pp. 4-5].



with b, £ br, for all a € A, b; £ bg, for all i € Z, and Lemma 1:Suppose that{mq ;(x;),nisa(z;)} (@ €
Fgp £ Fr,.. The normalization constraints for the beliéfs .A,i € N'(a)) is a solution of [¥) and set

i (o C A1 & A1) can b6 included in the Lagrangian % 2 1 forallac A (&)
28, Sec.3.1.3] 2 fuloe) T Tioales)
Lep 2 Fep — Z Z Z)\m(ggi)(bi(;ﬂi) - Z ba(xa)) Then this solution can be rescaled toa solution[df (6) if and
a€AieN (a) i Xa\&i only if there exist positive constantg (i € Z) such that
-y %(Zba(xa) - 1). @) Wai = giZa, forallae Aie N(a). 9)
A Proof: See AppendiXA. ]

The stationary points of the Lagrangianlip (4) are theneelat Remark 2.1:Note that for factor graphs that have a tree-
to the BP fixed-point equations by the following theorem. strycture the messages obtained by running the forward-
Theorem 1: [9, Th. 2] Stationary points of the Lagrangiamackward algorithm[[10] always fulfill({9) because we have

in (@) must be BP fixed-points with positive beliefs fulfi§n ., . =1 (¢ € A,i € M(a)) andz, = 1 (a € A) in this case.

ba(%Xa) = za fa(xa) [[ nia(z:), forallac A

iEN(a) C. Fixed-point equations for the MF approximation
bi(zi) = H Mai(z;), forallieT A message passing interpretation of the MF approximation
WEN () was derived in[[b],[[29]. In this section, we briefly show how
(5) the corresponding fixed-point equations can be obtainetdy t
with free energy approach. To this end, we @ﬁp from Example
(2.1 together with the factorization constréint
Ma—i(Ti) = 2a Z Ja(Xa) H nja(2y)
X\ JEN (@)\i ©) b(x) = [ [ bil=i). (10)
Nisa(w) =[] mei(@:) . _ et _
ceN(i\a Plugging [Z0) into the expression for the region-baseddree

) ergy approximation corresponding to the trivial approxiom
forall a € A,i € N(a) and vice versa. Here,, (a € A) are Rue We get

positive constants that ensure that the beligfga € A) are

normalized to one. Fyve = Z Z bi(z;)In bi(Ii)—Z Z H bi(z;)In fo(x4)
Often, the following alternative system of fixed-point equa €T @ a€EA Xa i€N(a)
tions is solved instead of](6). (11)
with Fyr £ Fg,.. Assuming that all the beliefs; (i € T)
Ma—i(Ti) = Wai Z fa(xa) H Nja () have to fulfill a normalization constraint, the stationagjrs
xo\@; JEN (a)\i ) of the corresponding Lagrangian for the MF approximation
Fisa(@i) = H Fremsi(2i) can easily be evaluated to be

ceN(i)\a
bi(z;) = 2 bj(z;)In fo(Xa
for all a € A,i € N(a), wherew,; (a € A,i € N(a)) are () =2 eXp( Z Z H i (25) In fa(x ))

aeN (i) xo\zi jJEN (a)\i
arbitrary positive constants. The reason for this is thatafo SN JEN (12)

fixed scheduling the messages computedin (6) differ from the

messages computed il (7) only by positive constants, whitdf all i € Z, where the positive constants (i € Z) are such
drop out when the beliefs are normalized. See al$o [9, ERatb; is normalized to one for all € Z[]

(68) and Eq. (69)], where thé « ” symbol is used in the For the MF approximation there always exists a convergent
update equations indicating that the normalization constaalgorithm that computes beliefs (i € Z) solving [12) by
are irrelevant. A solution of[{7) can be obtained, e.g., bsimply using [IP) as an iterative update equation for the
updating corresponding likelihood ratios of the messag¢g)i beliefs. Since for ali € 7

or by updating the messages accordind{o (6) but ignoring the 0% Fue 1

normalization constants, (a € A). The algorithm converges by ()2 = by (1) >0

if the normalized beliefs do not change any more. Therefore, _ L. L

a rescaling of the messages is irrelevant and a solutidﬁ[)ofggd th? set of all behefsb.i satisfying the normah;atpn
is obtained. However, we note that a rescaled solutiofilof (FJnStraint>_,, bi(zi) = 1 is a convex set, the objective
is not necessarily a solution dfl(6). Hence, the beliefsiabta 1UNction Fie in (L1) cannot increase and the algorithm is

_by SOIVmg U) need not be stationary p0|_nts of the '-agr_a“‘g'a 8For binary random variables with pmf in an exponential fanitl was
in (@). To the best of our knowledge, this elementary insighkown in [30] that this gives a good approximation wheneher ttuncation
is not published yet in the literature and we state a nec;essafr;he Plefka expansion does not introduce a significantrerro

and sufficient condition when a solution &1 (7) can be restale ' _The Lagrange multiplier[[28, p.283] for each belief (i € I)

. . . corresponding to the normalization constraint can be &lesbinto the positive
to a solution of [(B) in the following lemma. constantz; (i € 7).




guaranteed to converge. Note that in order to derive a pdatic

updateb; (i € Z) we need all previous updatds with
JE Uae/\/(i) N(a) \i.
By settingn;_,q(x;) = b;(x;) for all i € Z,a € N (i), the

fixed-point equations i (12) are transformed into the mgssa

passing fixed-point equations

niﬂa(xi)zzi H maﬂi(xi)

a€N(7)
Ma—yi(x;) = eXp< Z H Nja(z;)1In fa(xa)>

xa\zs GEN (a)\i
(13)

for all a € A,i € N(a). The MF approximation can be
extended to the case wherg is a pdf, as shown in Appendix

Bl Formally, each sum ovet, (k € Z) in (I2) and [IB)

IIl. CoMBINED BP / MF APPROXIMATION FIXED-POINT

EQUATIONS

H fa(xa) H fb(xb)

a€ Avr be Agp

Let
(15)

be a partially factorized pmf wittdyr N Agp = () and A £
Awmr U Agp. As before, we have £ (z; | i € T), x, £ (; |
i € N(a)T, with N(a) C Z for all a € A, and N (i) £
{a € A | i€ N(a)} for all i € Z. We refer to the factor
graph representing the factorizatipp, . 4., fa(x.) in @L5) as
“BP part” and to the factor graph representing the factdiora
[Tacay, fa(xq) in @I5) as “MF part”. Furthermore, we set

has to be replaced by a Lebesgue integral whenever fied

corresponding random variablé;, is continuous.

D. Expectation maximization (EM)

Message passing interpretations for EMI[21] were derived in2) small regionsR; £
[31], [32]. It can be shown that EM is a special instance of the

IMF e U N(a), IBP 4 U N(a)
a€ Ave ac Agp
Nue(i) 2 Ave NN (4), Nep(i) £ Agp NN (i).

Next, we define the following regions and counting num-
bers:
1) one MF regionRvr £ (Zvr, Avr), With cg,,. = 1;
({i},0), with cr, = 1 — |Ngp(i)| —
I, (7) for all i € Zgp;

MF approximation[[3B, Sec. 2.3.1], which can be summarized3) large regionsk, £ (N (a),{a}), with cg, = 1 for all

as follows. Suppose that we apply the MF approximation to

a € Agp.

px in (@) as described before. In addition, we assume thafis yields the valid set of regions and associated counting
for all ¢ € £ C T the beliefso, fulfill the constraints that numbers

bi(x;) = 6(x; — &;). Using the fact thadIn(0) = 0, we can
rewrite Fyr in (1) as

Fur = Z Zbi(xi)lnbi(xi)

1€ET\E i
14
B3 o) LT
a€A Xq i€N(a)

For alli € 7\ £ the stationary points ofyyr in (I4) have the

Repme = {(Ri,cr,) | i € Tep} U{(Ra,cr,) | a € Agp}
U {(RMF7CRMF)}' (16)

The additional termslz,. (i) in the counting numbers of
the small regionsR; (i € Z) defined in 2) compared to
the counting numbers of the small regions for the Bethe
approximation (see Example_2.2) guarantee tRab wr is
indeed a valid set of regions and associated counting nienber
The valid set of regions and associated counting numbers

same analytical expression as the one obtaineCih (12). R{I8) gives the region-based free energy approximation

i € £, minimizing Fyr in (I4) with respect tai; yields

Z; = argmin(Fur)

el I of

= argmax<
i a€N (i)

Settingn; ., (z;) = bi(x;) foralli € Z,a € N(i), we get the
message passing update equations defined Ingd&ptthat
we have to replace the messaggs,,(x;) for all i € £ and

a € N(i) by

> ] bita)m fa(xa)>>.

xa\wi jEN (a)\i

Nisa(Ti) = 6(x; — Z;)
with
T = argmax< H Ma—si (xl)>
i a€EN (i)

foralli € £,a € N(a).

Fap,mF = Z Zb f X%

a€App Xq

- Z Z H bi(x;) In fo(x4)

a€AMF Xa €N (a)

—Z|NBP ) —1) Zb () Inb;(z;)

i€l

With Fp mr = Free e In (I7), we have already plugged in
the factorization constraint
- 1 #te

1€IME

(17)

bumF (XMF)

with xme £ (.CCZ | s IMF)T and byr £ bRMF' The beliefsb;
(i € I) andb, (a € Agp) have to fulfill the normalization
constraints

Zb%—

Zb x,) =1, forallae Agp

for all i € Zyr \IBP
(18)



and the marginalization constraints

(ri) = Z ba(xa)a

Xa \Z;

forall a € Agp,i € N(a). (19)

Remark 3.1:Note that there is no need to introduce normal-

ization constraints for the beliets (i € Zgp). If a € Ngp(i),
then it follows from the normalization constraint for thdibg
b, and marginalization constraint for the beliéfsandb; that

1= ba(xa)
=3 (X balxa)

T; Xa \ T4

with

ni%a(xi) =Zj c~>z Il

| | | | mc~>z Il

c€Negp(i)\a cENur ()
foralla € A,i € N(a)
a—n (T:) =24 Z fa(%a) H nj—a(Tj),
xa\mw 76N(a)\i
for all a € Agp,i € N(a)

—exp< Z H Njsa(T)) 1nfa(xa)>
xq\zi JEN(

(a)\i
for all a € Ave,i € N(a)

MF

ma—n €T

(22)
and vice versa. Here; (i € 7) andz, (a € Agp) are positive
constants that ensure that the beligféi € 7) andb, (a € A)
are normalized to one with; = 1 for all 7 € Zgp.

Proof: See Appendik L. [ |
Remark 3.2:Note that for eactt € 7\ Zgp Theorenl 2 can
be generalized to the case wheXg is a continuous random
variable following the derivation presented in Appenflik B.
Formally, each sum over, with k € 7\ Zgp in the third iden-
tity in (22) has to be replaced by a Lebesgue integral wheneve

We will show in LemmdR that the region-based free enerdlye corresponding random variablg, is continuous.

approximation in[(TI7) fulfilling the constraintE_(18) aridj1

is a finite quantity, i.e., that-co < Fgp mr < 00.

Remark 3.3:Note that Theoreni]2 clearly states whether
“extrinsic” values or “APPs” should be passed. In fact, the

The constraints[(18) and_{[19) can be included in tHegSt equation inl(22) implies that each message. (z:) (a €

Lagrangian[[28, Sec.3.1.3]

A
Lgp,mr = Fep,MF

— Z Z Z/\a,i(:vi)(bi(x

a€Agpi€N(a) Ti

Z "yZ(Zb T; —1)

i€Zvr\Zsp

- Z %(Zb Xa —1)

a€ Agp

l) - Z ba(xa))

Xq \ T

(20)

,i € T) is an “extrinsic” value whem € Agp and an “APP”
whena € Ave.

A. Hard constraints for BP

Some suggestions on how to generalize Theorgém 11 ([9,
Th. 2]) to hard constraints, i.e., to the case where the facto
of the pmfpx are not restricted to be strictly positive real-
valued functions, can be found inl[9, Sec. VI.D]. An example
of hard constraints are deterministic functions like, ,ecode
constraints. However, the statements formulated thererdye
conjectures and are based on the assumption that we can
always compute the derivative of the Lagrange function with
respect to the beliefs. This is not always possible because

O0Fgp

The stationary points of the Lagrangidisp wr in (20) are e oo, asfu(xa) =0

then obtained by setting the derivativesiafp yr with respect ) ’

to the beliefs and the Lagrange multipliers equal to ZerQiith Fap from @). In the sequel, we show how to generalize
The following theorem relates the stationary points of t heorent® to the case whefe > 0 for all a € Agp based
Lagran_glanLBp,MF to solutions of fixed-point equations for g, y,e simple observation that we are interested in solsition
the beliefs. where the region-based free energy approximation is nat plu
Theorem 2:Stationary points of the Lagrangian in_{20) innfinity (recall that we want to minimize this quantity). As
the combined BP—MF approach must be fixed-points with byproduct, this also yields an extension of Theoféni 1L ([9,
positive beliefs fulfilling Th. 2]) to hard constraints by simply settingyr =
Lemma 2:Suppose that

fu>0, (23)
fa >0, (24)

andpx |z,# 0 for all i € 7 and each realization; of XZ-E
Furthermore, we assume thiat (i € Z) and b, (a € Agp)
fulfill the constraints[(18) and (19). Then

for all a € Agp
for all a € Aur

ba(Xa) =2a fa(%a) [ mimsal®s),

ieN (a)
for all a € Agp

a:l =2z; H maﬂz Iz
a€Ngp(7)
forallieZ

(21)

| | ma%l 'rl

a€Nvr (i)

8If px |z, = 0 then we can simply remove this realizatian of X;.



1) Fepmr > —o0; implies that for eachi € Zyr \ Zgp we are solving
2) The condition a convex optimization problem. Therefore, the region-

o . o based free energy approximation[in](17) cannot increase.
ba(%a) =0, for all X, with a € Agp, fa(Xa) =0 5) Proceed as described in 2).

25
. o (25) Remark 3.5:If the factor graph representing the BP part is
is necessary and sufficient fépur < o0; not cycle-free then Algorithrll1 can be modified by running
3) If @) is fulfilled, the remaining stationary poinis(z;) |oopy BP in step 2). However, in this case the algorithm is

(i € 7) andb,(x,) excluding allx,, from (23) @ € Aep) not guaranteed to converge.
of the Lagrangian in[{20) are positive beliefs fulfilling

(21) and [2R) excluding att,, from (23) and vice versa.
4) Moreover, [(2I1) and[(22) hold for all realizatiorss,

(including allz, from (23)) and, thereford, (21) contains . .
@5) as a special case. In this section, we present an example where we show

Proof: See AppendiD. m Now to compute the updates of the messagesih (22) based

Remark 3.4:At first sight it seems to be a contradiction ta*" Algorithm[1. We choose a simple communication model

the marginalization constrain{s {19) thatl(25) holds amhdha! Wr(;ere the l_Jdpdates of th(ej mes_sageAs ?re swfnple enougf; in
beliefsb, (i € Zgp) are strictly positive functions. To illustrate ©"der to avol over§tresse .notat|0n. class of more campie
that this is indeed the case, Iete Zgp, a € Nap(i), and MIMO-OFDM receiver architectures together with numerical

fix one realizationz; of X,. Sincepx |»,# 0 we also have simulations can be found iri [23]. In our example, we use
fu |52 0. This implies thatf,(x,) # 7'0 for at least one BP for modulation and decoding and the MF approximation
rgali?ation.i (% |j e J\/a(a)()lT with i € A(a) and for estimating the parameters of the a posteriori distidout

a J ’

therefore, b (X,) # 0. The marginalization constraintﬂlg)Of the channel gains. This splitting is convenient becauBe B

together with the fact that the beligf must be a nonnegativewOrkS well W_'th hard consiraints gnd the MF appr(_)leatlon
function then implies that we have indeédz;) > 0. yields very simple message passing update equations due to
the fact that the MF part in our example is a conjugate-

exponential mode[]5]. Applying BP to all factor nodes would

IV. APPLICATION TO ITERATIVE CHANNEL ESTIMATION
AND DECODING

B. Convergence and main algorithm be intractable because the complexity is too high, cf. the
If the BP part has no cycle and discussion in Subsectign TVC.

Specifically, we consider an OFDM system wilti + N
Wla) N Zep| <1, foralla € A (26)  active subcarriers. We denote ByC [1: M+ N]andP C
then there exists a convergent implementation of the coeabinl : M + N] the sets of subcarrier indices for the data and
message passing equations [n](22). In fact, we can iter@itot symbols, respectively withP| = M, |D| = N, and
between updating the beliets with i € Zyr \ Zgp and the PND = 0.
forward backward algorithm in the BP part, as outlined in the In the transmitter, a random vectdf = (U; | i € [1 : K])
following Algorithm. representing the information bits is encoded and inteddav
Algorithm 1: If the BP part has no cycle and_(26) isusing a rateR = K/(LN) encoder and a random interleaver,
fulfilled, the following implementation of the fixed-pointjga- respectively into the random vector
tions in [22) is guaranteed to converge. T T
1) Initialize b; for all i@ € Zyr \ Zgp and send the cor- C= (C(l) ;oo GV )
i MF BP
responding messages . (x;) = b;(x;) to all factor
nodesa € Nyr(i).
2) Use all messages:V'F,,(x;) with i € Zgp N Iyr and

of length L N representing the coded and interleaved bits. Each
random subvecto€(™ 2 (C\™ ... C{")T of length L is
a4 then mapped, i.e., modulated, 15, € S with i,, € D (n €

a € Nue(i) as fixed input for the BP part and run;. ! . .
the forward/backward algorithm[L0]. The fact that th(lf1 + N]), wheres is a complex modulation alphabet of size

__ 9oL
resulting beliefsb;, with i € Zgp cannot increase the S| =2".

. L : After removing the cyclic prefix in the receiver, we get the
region-based free energy approximatiorfinf (17) is proV(?(()jllowing input-output relationship in the frequency dama

in Appendix[B.
3) For eachi € Zyr N Zgp anda € Nyr(i) the message Yp =Hp ®Xp+Zp
ni—q(x;) IS now available and can be used for further Yp = Hp O xp+ Zp (27)

updates in the MF part.
4) For eachi € Zye \ Zgp successively recompute thewhereXp = (X; |i € D)T is the random vector correspond-
message;_,(z;) and send it to alb € Nye(i). Note ing to the transmitted data symbolgp = (z; | i € P)T

that for all indicesi € Zyr \ Zgp is the vector containing the transmitted pilot symbols, and
2 Hp £ (H; | i € D)T andHp £ (H; | i € P)T are
0 FBP,MF 1 . T . .
N = b >0 random vectors representing the multiplicative action hef t
Obi(x:) i(wi) channel whileZp £ (Z; | i € D)T andZp £ (Z; | i € P)T

and the set of all beliefs; satisfying the normalization are random vectors representing additive Gaussian noise wi
constraint (first equation if(18)) is a convex set. Thigz(z) = CN(z;0,7 Iy, n) andZ = (Z; | i € DU P)T.



Note that[2F) is very general and can also be used to modelAlgorithm 2:

e.g., a time-varying frequency-flat channel.

SettingY = (Y; | i € DUP)T andH £ (H; | i € DUP)T,
the pdfpy x, 1 ,c,u admits the factorization
pY,XD,H,C,U(ya XD, h7 C, U.)

= Py %o, H(Y|Xp, h) pr(h) px,|c(Xplc) peju(clu) pu(u)

= 1 pviixs.on @il i) T oy o, (wilhs) % pra(h)

i€D JEP

X H DPx;, |ctm (xin|c(")) X poju(clu)
ne[l:N]

< [ pu.(ur) (28)
ke[1:K]

where we used the fact théf is independent oXp, C, and
U andY is independent ofC and U conditioned onXp.
Note that

Py, (il hi) = T exp(=Alys = hiaf?)
= CN(y;; hiz;, 1)), forallieD
(29)
_ 7 2
Py, u, (Yilhi) = - exp(—|y; — hiz;|”)
= CN(ys; hizi, 1/), forallic P.
(30)

We choose for the prior distribution @
pr(h) = CN(b; i, AR ).
Now define
I2{X,|ieD}u{H}

u{c,....c\"Y Uy, ... Uk} (31)

U{px, jcm [ n€[l: N}
U{pciut U{pu, | ke [l: K]}

and setf, = a for all a € A. For example, we havg,,, (h) =
pu(h). We choose a splitting ofl into Agp and Aug with

Aep = {px, |con | n € [1: NJ}
U{pciut Uipy, | k€[l K]}

(32)

(33)
Avr £
With this selection
Tep={X;|ieD}u{CM,...,c!"M}
u{U,..., Uk}
Ivr ={X; | i€ D}U{H}

which implies thaZgpNZyr = {X; | i € D}. The factor graph
corresponding to the factorization in_{28) with the spligtiof
A into Ayr and Agp as in [33B) is depicted in Figufd 1.

We now show how to apply the variant of Algorithi 1
referred to in Remark_3\5 to the factor graph depicted in
Figure[1. Note thaf(26) is fulfilled in this example; howegver
cycles occur in the BP part of the factor graph due to the
combination of (convolutional) coding, interleaving, amdh-
order modulation (see Tab[e I).

1)

2)

3)

4)

Initialize
br(h) = CN(h; pm, Agy')
by setting
pH = A (A i + Anfin)
with
~ vyl )2 ifi=5€eP
AH,;, =
’ 0 else
and
Xer Tier yyizp ifieP
HufH =0 if i e D
and set
NHopy, x, n, (B) = bu(h), forallieD.

Using the particular form of the distributions;| x, #,
(i € D) in @9) andpy, g, (i € P) in (30), compute

MF
Dy;|X;,H; —>Xz( )

x exp < - W/dhnH—min,Hi (h)[y; — hml2>

2
2 2 yZM;I,L
ocexp | —v(og, 1) — ———5
( e e e = o S )
" 1
o CN| z;; — et 20 (2 2
o, +um? y(og, + uml?)

for all i € D with 02, 2 [Ag']ii (i € D).

Use the messages,, F‘ —>X1( x;) (i € D) as fixed
input for the BP part and run BP.

After running BP in the BP part, compute the messages
NX;—py, x, n, (i) (i € D) and update the messages in
the MF part. Namely, after setting

L N
- E NX;—=py,|x;.1; (:CZ).’L'l
@i

Ug{i = aniﬁpyﬂxi,m (@i)|z; — MX¢|2

T

Hx;

for all ¢ € D, compute the messages
MF

Py, |X;, H; HH(h‘i)

X €Xp ( -7 Z NXi—py,1x;,H; (xl)h/l - hZ.CCZ|

 exp < — (0%, + lux[?)|h

o« CN (hi; 3
UXT',

2)
yikx,

2% )

%

O.Xi

1
%)

Vil

27 2
'Y(Uxi




|
MF part | BP part
|
: oy —{po;
|
(x.)
bPcju .
Uk buk

Fig. 1. Factor graph corresponding to the factorizationhef pdf in [28) withD = {i1,...,ix} andp € P. The splitting of the factor graph into BP and
MF part is chosen in such a way that utilizes most of the adgm# of BP and the MF approximation.

for all i € D, A. “Extrinsic” values versus “APP”
My, 1 (hi) o exp(=ly; — hiz;[?) In consideration of Remaik3.3 it is instructive to analyze
. the messages coming from the variable nodigsN Zyr =
x CN| h;; L% b {X1,...,Xx}, which are contained in the BP and MF part
il y]zil?) of the factor graph depicted in Figué 1. Whether a message
for all i € P, passing from a variable node to a factor node is an “extrinsic
ME po.p-1 value or an “APP” depends on whether the corresponding
M su(h) = CN(b; pgg, Ag ) factor node is in the BP or the MF part. Thus, for all
and n € [1: N], the messages
nH-?PYi\X,L,Hi (h) nxin _>pxi o) (xzn) = 'Z\)A; 1Xo H =X, (,Tzn)
ME ME n n n n
= hi h; . . .
ZHig)mpYﬂXwHi_’H( )gmp‘/ﬂfﬂ_’H( i) which are passed into the BP part, are “extrinsic” values,
ME ! whereas the messages
X mpH—>H (h)
det(A nx,;, oo ()
= % exp ( — (b — ps)" A (h — MH)) ;fyl" i i ME
— CN(h; MHaAﬁ ) Xy, IC n im | Xip Hiy, n
for all i € D. Here, we used Lemnid 3 in Appendik Fvhich are passed ir_lto the MF part, are "APPs”. Note that this
to get the updated parameters result is aligned with the strategies proposed|in| [18]./ [20]
PP~ where “APPs” are used for channel estimation and “extrinsic
pu = Ay (AEJ“H +Anpn) (34) Values” for detection.
Au = Af + A
with B. Level of MF approximation
2 2 H
- 7(0X2i +lex ) !f v=JE D Note that there is an ambiguity in the choice of variable
Al = 7zl fi=jeP nodes in the MF part. This ambiguity reflects the “level of
0 else the MF approximation” and results in a family of different
and algorithms. For example, instead of choosiHgas a single
L random variable, we could have chos#n (i € [1 : M + N|)
Xva/jH- _ ) Wik, if ieD to be separate variable nodes in the factor graph. In this cas
R yyirr  ifieP. we make the assumption that the random varialles(i €

[1: M+ NJ) are independent and the set of indidem (31)

The update for the belidfy is
has to be replaced by

bH(h) = NH-py, | x, 1, (h) a
. T2{X;|ieD)U{H|ieD
i.e., ber(h) = CN(h; firg, Ag)). {(Xifi e DyULH; [ € DUP)

5) Proceed as described in 2). U {Cl(l), ce CéN)} uU{Ui,...,Ux}.
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Since this is an additional approximation, the performan:
of the receiver is expected to decrease compared to the c )
where we choosEl as a single random variable. However, it it ==
possible that the complexity reduces by applying an aduhiio 10t
MF approximation. See[ [23] for further discussions on thi

ambiguity for a class of MIMO-OFDM receivers. 152l
x

C. Comparison with BP combined with Gaussian approxim. @
tion 107 BP with perfect CSI

The example makes evident how the complexity of th —&— BP-MF M =25
message passing algorithm can be simplified by exploitii ;4| BP Gaussian approx. M = 25
the conjugate-exponential property of the MF part, whic - ¥ —BP-MF M =13
leads to simple update equations of the beligf In fact, — % —BP Gaussian approx. M =13
at each iteration in the algorithm we only have to update tl 2 4 5 3 10 12 14
parameters of a Gaussian distributiénl(34). In comparisbn SNR [dB]

us consider an alternative split o by moving the factor
nOdeSPYi\Xi u, (i€D)in 29) andei‘Hi (i € P)in (30) to Fig. 2. Bit error rate (BER) as a function of signal-to-noisio (SNR)

P : ; r Algorithm [2 (BP-MF), BP combined with Gaussian approation as
the BP part. This is equivalent to applying BP to the Who'?escribed in Subsectidn TVC, and BP with perfect CSI at eeiver. Pilot

factor graph in Figlégal becausel’" ., = m>" ;. DOING  spacingAp &~ Weon (M = 25) and Ap & 2Weon (M = 13).
SO, gach messagepyﬂxiﬂﬁ}.l(hi.) (i € D) does no longer
admit a closed form expression in terms of the mean and the

variance of the random variabl®; and becomes a mixture D. Estimation of noise precision

of Gaussian pdfs witl?” components; in consequence, each Algorithm[2 can be easily extended to the case where the
messag@H-p,, «, », (h) (i € D) becomes a sum N pojse precisiony is a realization of a random variable In
terms. To keep the complexity of computing these messaggst, sincelnpy,|x, g, (i € D) andInpy, g, r (i € P)
tractable one has to rer on additional approximations. are linear in»}/, we can rep|ace any dependence»pfm the

As suggested in[[34],[[35], we can approximate eadkisting messages in Algorithil 2 by the expected valug of
messageﬂgi‘xiﬂﬁﬂ(hi) (i € D) by a Gaussian pdf. BP and get simple expressions for the additional messageg usin
combined with this approximation is comparable in termg Gamma prior distribution foF, reflecting the powerfulness
of complexity to Algorithm[2, since the computations obf exploiting the conjugate-exponential model propertytia
the updates of the messages are equally complex. HowewgF part for parameter estimation. Séel[23] for further dstai
Algorithm [2 clearly outperforms this alternative, as can bgn the explicit form of the additional messages.
seen in Figur€]2. It can also be noticed that the performance
of Algorithm 2 is close to the case with perfect channel state V. CONCLUSION AND OUTLOOK

information (CSI) at the receiver, even with a low density of L . .
. . . . We showed that the message passing fixed-point equations
pilots, i.e., such that the spacing between any two consecut

b () approumasly squl re coherence bandiB, camareion f B 0 1 WE st corespo:
(Weon) of the channel or twice of it. yp 9 9

To circumvent the intractability of the BP-based receiv free energy approximation. These stationary points araé o

X . Vely-one correspondence to solutions of a coupled system of
one could also apply other approximate inference algosthm

to the factor graph like, e.g., expectation propagation)(EF;nessage passing fixed-point equations. For an arbitratgrfac

A comparison between EP and BP-MF can be found i [363raph and a choice of a splitting of the factor nodes into a

where it was shown that BP-MF yields the best pen‘ormanc¢]3$t of MF and BP factor nodes, our fe.S“'t gIves |mme_d|ately
. .. the corresponding message passing fixed-point equatiahs an
complexity tradeoff and does not suffer from numericalanst

yields an interpretation of the computed beliefs as statipn

bility. . . .
Y points. Moreover, we presented an algorithm for updatirg th
TABLE | messages that is guaranteed to converge provided thatdhe fa
PARAMETERS OF THEOFDM SYSTEM. tor graph fulfills certain technical conditions. We also wskd
NUMBSr of SUBGATTIErs TN =300 how to exte_nd the MF par_t in the factor graph _to cc_)ntmuous
Number of evenly spaced pilots M€ (13,25} random variables and to include hard constraints in the BP
Modulation scheme for pilot symbols QPSK part of the factor graph. Finally, we illustrated the congtigon
Modulation scheme for data symbolks 16 QAM (L = 4) of the messages of our algorithm in a simple example. This
Convolutional channel code R=1/3(133,171,165)s le d h ffici fth bined sch
MuTtipath channel model 3GPP ETU example demonstrates the efficiency of the combined scheme
Subcarrier spacing T5kHz in models in which BP messages are computationally in-
Coherence bandwidth Weonh ~ 200 kHz tractable. The proposed algorithm performs significanditdy

than the commonly used approach of using BP combined
with a Gaussian approximation of computationally demagdin
9Calculated as the reciprocal of the maximum excess delay. messages.
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An interesting extension of our result would be to geneealizvhere the positive constants, (« € A) are such that the
the BP part to contain also continuous random variabldseliefs b, (a € A) in (@) are normalized to one. This
The results in[[3[7] provide a promising approach. Indeedprmalization of the beliefs, (a € A) in ) gives
they could be used to generalize the Lagrange multiplier

for the marginalization constraints to the continuous case P Zfa(xa H Nj—a(T5)

However, these methods are based on the assumption that “ xa JEN (a)

the objective function is Fréchet differentiable 38, .21 Sofaxa) TI Mjsalzj)

In general a region-base free energy approximation is @eith _ Xa JEN (@)

Fréchet differentiable nor Gateaux differentiable, astenot 1 7a;

without any modification of the definitions used in standard JEN(a)

text books [[38, pp. 171-178] An extension to continuous — 1 forallac A (39)
random variables in the BP part would allow to apply a Zo Il 7y’

combination of BP with the MF approximation, e.g., for JEN(a)

sensor self-localization, where both methods are usef [3®here we used(35) in the second step &id (8) in the last step.
[40]. Another interesting extension could be to generalime Combining [37), [(38), and(39) we obtain

region-based free energy approximation such that the messa 1 Ka.iTai
in the BP part are equivalent to the messages passed in tree ER
. . . . a a,i
reweighted BP or to include second order correction terms in gi .
the MF approximation that are similar to the Onsager reactio = wad foralla € Ai € N(a)
term [30]. , ’
with
A .
VI. ACKNOWLEDGMENT 9i = H feir  forallieT.
ceN(7)
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comments on a previous draft of this paper. Now suppose thaf9) is fulfilled. Setting

g (”‘, foralla € A,i € N(a)

APPENDIX 5 )
Taz_gl W<—>‘, forall a € A,i € N(a)

A. Proof of Lemmé&ll

Suppose thafmg i(z;), i sq(7i)} (a € Ayi € N(a)) is
a solution of [¥) and set

and reversing all the steps finishes the proof.

B. Extension of the MF approximation to continuous random

Fasi(25) = FaiMai(z:), forallae A i N(a) variables

forall a € A,i € N(a) (35) Suppose thapx is a pdf of the vector of random variables
X. In this appendix, we assume that all integrals in the region

With k4., 70,s > 0 (a € A,i € N(a)). Plugging [(3b) into[([7) based free energy approximation are Lebesgue integrals and

we obtain the following fixed-point equations for the megsaghave finite values, which can be verified by inspection of

Nisq (Zz) = Ta,iniﬂa(fpi)v

{ma—i(zi),nisa(z)} (a € A1 € N(a)). the factorsf, (¢ € A) and the analytic expressions of the
computed beliefsh; (i € Z). An example where the MF
Ra,iMa—i(2:) approximation is applied to continuous random variabled an
_ wai( I = j) S fuxa) T mimalas) combined with BP is discussed in Sect[od IV.
JeA(a)\i o\ jeA(a)\i For eachi € Z we can rewriteFyr in (I1) as
Ta,iNi—sa(Ti) Fur = D(bi |l a;) + Z bj(z;) Inbj(z;)dz;
= ( 11 nc,z-) I mesite) JET\i
ceN(i)\a ceN(i)\a
(36) — Z /ln fa(Xa) bj(xj)dzzrj
for all a € A,i € N(a). Now (38) is equivalent td{6) if and a€ AN () JEN (a)
only if with
Tai= H Kei, forallae Aie N(a) (37) ai(w;) = exp Z /ln fa(xa) b-(:vj)dxj),
ceN(i)\a aeN (i) JEN (a)\i
wai [I  7ay for all i € 7.
JEN (a)\i .
Za=— foralla e Ai € N(a) (38) It follows from [22, Th. 2.1] thatD(b; || a;) is minimized
subject to [ b;(x;) da; = 1 if and only if
10For a positive real-valued functioly b + Ab might fail to be a positive ai(;pi)
real-valued function for arbitrary perturbationsb with sufficiently small bz(ilfz) = (40)

norm ||Ab]|. [ a;(z;) dz;
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up to sets of Lebesgue measure zero. Formallyin (40d) Next, we shall compute the stationary points of the Lagramgi
differs from b; in (@2) by replacing sums with Lebesgue
integrals. Lgp,mr =Fsp mF

=Y St () — Y balxa))

C. Proof of Theorerfl2

a€Agpi€N(a) Ti X \Ti
The proof of Theorerhl2 is based on the ideas of the proof B Z (Z bi(s) — )
of [0, Th.2]. However, we will see that we get a significant ‘ Bt E
simplification by augmenting it with some of the arguments #€Zue\ Lo '
originally used in[[11] for Markov random fields and adopted - Z %(Zb Xq) — ) (46)
to factor graphs in[[12]. In particular, we shall make use of a€App

the following observation. Recall the expression f@p, mr in

@2)
Fap,mF = Z Zb f X%

a€App Xa

- Z Z H bi(z;) In fo(xa)

a€AwF Xa 1€N(a)

— ) (INep(i)| — 1 Zb (z;)Inb(z;)  (41)
i€l
the marginalization constraints
(i) = Y ba(xa), forallac Agp,icN(a) (42)
Xo \ T
and the normalization constraints
Zb :Z?l —1 fOfa”iGIMF\IBp
(43)

for all a € Agp.

Zb Xq) = 1,
Using the marglnallzatlon constrainfs142), we see that

ZZb xalng:cZ

a€App Xa 1€N (a)

=2 > >

a€Agp Xa €N (a)

= > > bilw) Inbi(x)

a€AppieN (a) Ti

=30 > D bilw) Inb(w:)

1€Zpp a€Npp(i) Ti

=) Nes(i) |Zb i) In by ().

1€Zgp

Combining [4#) with [(411), we further get

FBP,MF = - Z Zba(xa)lnfa(xa)

a€App Xq

= >3 I biwi)n falxa)

a€AwF Xa 1€N(a)

€L X

+ ) I

a€ Agp
with the mutual information[25, p. 19]

ba(x4q)
Lo 2> ba(x) In taXa)
2 Moo bi(e)

o(Xa) Inb; ()

(44)

(45)

for all a € Agp.

using the expression fafgp mr in (@3). The particular form
of Fgp mr in (@8) is convenient because the marginalization
constraints in[(42) imply that for all € Z anda € Agp We
have% = —Ipnqe(i)(a). Setting the derivative oLgp,vr

in (46) with respect td;(x;) andb,(x,) equal to zero for all

1 € Z anda € Agp, we get the following fixed-point equations
for the stationary points:

Z )\az :Ez

a€Nep(i)

2 > 1w

a€Nvr (i) xo\zi JEN (a)\i
+ |NBP( )| + IIMF\IBP( ) - 17

In b;(

i(x5) In fo(xq)

forall:eZ

Inb,(x4) =In fo(x4) Z Aai(@ —i—ln( H bi(xi))
ieN(a) ieN(a)
+7v,—1, forallae Agp.
(47)

Setting

1
BP .y o -
L) 2 exp (Aas(o0) 1= ).
for all a € Agp,i € N(a)

(48)
maMil (x;) = exp< Z H (2 )In fq Xa))u
xa\zi JEN (a)\i
for all a € Ayr,i € N(a)
we can rewrite[(47) as
xl = Zi H ma%z ‘TZ H ma%l xl
a€Ngp(i) a€Nwr (i)
forall:eZ (49)
49
bi(,fi)
ba(%a) = za fa(xa) [] —mp—r—
iEN(a) ma%i (‘Tz)
for all a € Agp
where
z; £ exp(Igye\zep(i)y:), forallieZ

ieN(a)
for all a € Agp
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are such that the normalization constraintgid (43) arelldfi and set
Finally, we define

Nisa(Ti) = 2 H mBP () H mMF () 0<ky2 Z fa(xq), forallae A
ceNegp(i)\{a} c€Nwr (1) Xa
(50)
foralla € A,i € N(a). Plugging the expression far;,_,,(z;) Then
in (&0) into the expression fdr,(x,) in (49), we find that

bi(w) =z [[ mEPu@) [ mi% (), Fy=Y" D(ball fa/ka) = > Inkq
a€Nesp(%) a€Nve (i) a€Agp a€ Agp
forallieZ > — In(k,
! (51) = ZA: n(ka)
ba(xa) = Za fa(xa) H ni—)a(xi)a ac4er
iEN (a) > =00
for all a € Agp. F=Y D( IT v fa/ka) ~ 3 Ik,
Using the marginalization constraints {1.{42) in combioati a€Awe €N (a) a€ Awr
with (&1) and noting that; = 1 for all i € Zgp we further > Z Ink,
fII"ld that a€ Avr
nisa(@i)men, (@) = [ mii@) [ mii() T
a€Ngp(1) a€Nue () F3 > 0.
= Z ba(Xa) This proves 1). NowFs < oo, (24) implies thatF, < oo, and
Xa\ws (23) implies thatr;, < oc if and only if (28) if fulfilled, which
— . Z Fal(xa) H nra(;) proves 2).

Suppose that we have fixed all(%,) (a € Agp) from (23).
(52) Then the analysis for the remainibgz;) (i € Z) andba(xa)

. - . excluding allx, from (28) (a € Agp) is the same as in the
for all a« € Agp,i € N(a). Dividing both sides of[(52) by proof of Theoreni R and the resulting fixed-point equatioes ar

Xo \ T JEN (a)

Ni—va(2i) giVes identical to [21) and{22) excluding at, from (23) and vice
mSii (1) = 24 Z fa(xa) H Njsa () (53) versa, which proves 3). We can reintro_duce the realizatigns
xa\ws JEN(a)\i with f,(%,) = 0 (a € Agp) from (28) in [22) because they

do not contribute to the message passing update equat®ns, a

for all a € Agp,i € N(a). Noting thatn;_,,(z;) = bj(x;) . . e
for all @ € Aye andj € N(a), we can write the messagescaBnPbe seen immediately from the definition of the messages

MF (Y mi*, . (z;) (a € Agp,i € N(a)) in (22). The same argument
mas(@i) in @8) as implies that[[2b) is a special case of the first equatiofin), (21

which proves 4) and, therefore, finishes the proof of Lemma
mMF () = exp< Z H Nja(zj)In fa(xa)> P ) P

a—i B

%o \zi JEN (a)\i

(54)

for all a € Awmr,i € N(a). Now (B0), [63), and[(34)
are equivalent to[(22) and_(51) is equivalent fal(21). This proof of convergence
completes the proof that stationary points of the Lagramigia
(20) must be fixed-points with positive beliefs fulfilling i In order to finish the proof of convergence for the algorithm
Since all the steps are reversible, this also completesrtief p presented in Subsecti@iII-B, we need to show that running
of TheorentC. the forward/backward algorithm in the BP part in step 2)
of Algorithm I cannot increase the region-based free energy

D. Proof O_f Lemmﬂz _ approximationFgp wr in (I7). To this end we analyze the
We rewrite Fgp, mE IN @z asFgp mr = Fy + F» + F3 with  factorization

B2 )0 Db |l fo) pxep) o< [] faxa) [T II mifitz) (55)
acAgp ac Agp 1€ZgpNZmr bENwWF (1)
B2 Y (T bl f)

acAu  i€N(a) with xgp £ (z; | i € Zgp)". The factorization in[(35) is the

Fy & — Z(|NBP(Z')| + [Nuve(2)| — 1) Zbi(ivi)ln bi(x;) product of the factorization of the BP part ii{15) and the
= z; incoming messages from the MF part. The Bethe free energy
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(3) corresponding to the factorization in{55) is Hence, minimizingFgp in (B6) is equivalent to minimizing

X,) Fgp me in (17).

Fgp = Z Zb Xa) By assumption, the factor graph in the BP part has a tree
acAgp Xa *a structure. Thereforel [9, Prop. 3] implies that

P Yy Zb ) (iz) 1) Fep > 0;

i€ TomTur ac N (i) 7 2) Fgp = 0 if and only if the beliefs{b;,b,} in (BB) are

_ ) the marginals of the factorization ih_(55).
- EZZ: (INep(i)] + |Nwr(i)] — 1) Zbi(xi)lnbi(mi) Hence, forb; fixed with j € Zyur \ Zgp, We see thatFp vr
1€Zgp T :

Xa) in (I7) is minimized by the marginals of the factorization in
Z Zb Xq) G5).
a€Agp Xa fa Xa) It remains to show that running the forward/backword

_ Z Z Zb (z:) InmMF () algorithm in the BP part as described in step 2) in Algorithm
' ez [ indeed computes the marginals of the factorizatior . (55)
Applying Theoren(L to the factorization ifh_(55) yields the

1€ZgpNIMr a€ENwr(i) Ti

- Z (Wee(@)| — 1) Zb (i) nbi (). (56 message passing fixed-point equations
i1€Zgp
We now show that m|n|m|2|ngFBp in (56) is equivalent to Nia(Ti) = H mety (i) H m ()
minimizing Fgp mr in (@4) with respect td, andb; for all c€Nee(i)\a c€Nwr (i)
a € Agp andi € Zgp. Obvioulsy, mBP () = za Z fa(x4) H njsa(z;)
5)F 6F Xa \Ti N(a)\i
BP,MF BP for all i € Tep \ T \ JEN (a)\ (60)

Obi(x;)  Obi(x;)’ ; i i
(i) (1) for all @ € Agp,i € N(a). The message passing fixed-

and point equations in[(80) are the same as the message passing
OFgp wr — OFgp . forall a € Agp. fixed-point equations for the BP part in_{22) with fixed-input
Oba(xa)  Oba(xa) messagesnMF . (z;) for all i € Zgp N Zye anda € Nyg(i).

This follows from the fact thatFgp we differs from Fgp by Hence, running the forward/backward algorithm in the BR par
terms that depend only dn with i € Zyr. Now suppose that indeed computes the marginals of the factorizatiofi i (5%) a
1 € Igp N Iue. In this case, we find that Algorithm [T is guaranteed to converge.

O0Fgp, MF
1— M Inb;(z;) +1 . o
b (zi) = (1= [Nep(@)l)(Inbi(w:) +1) F. Product of Gaussian distributions
- > > II bi@j)nfa(xa) (57)  Lemma 3:Let
@SN (0 o\ JEN ()0 pi(x) = CN(x; i, A7), foralli e [1: N].
and
OF Then

ey ~ L~ Wer@D(nbi(e) + 1) =37 nmif(a). 1

i(2 N (i) [ Pi(x) < CNGx; A1)

(58) i€[1:N]
From [22) we see that with
pE ST AT A
mMF (z;) = exp( Z H Nja(Tj) 1nfa(xa)> 6;]\” i
xo\7i JEN (a)\i . ‘
(59) 23 A

for all a € MNye(i). Note that, according to step 2) in i€[l:N]
Algorithm[1, the messagesM (z;) in (B9) arefixed inputs Proof: Follows from direct computation. |
for the BP part. Therefore, we are not allowed to plug the
expressions for the messaged' ;(z;) in (89) into [58) in REFERENCES
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