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Abstract—We present a joint message passing approach that
combines belief propagation and the mean field approxima-
tion. Our analysis is based on the region-based free energy
approximation method proposed by Yedidia et al. We show that
the message passing fixed-point equations obtained with this
combination correspond to stationary points of a constrained
region-based free energy approximation. Moreover, we present
a convergent implementation of these message passing fixed-
point equations provided that the underlying factor graph fulfills
certain technical conditions. In addition, we show how to include
hard constraints in the part of the factor graph corresponding
to belief propagation. Finally, we demonstrate an application of
our method to iterative channel estimation and decoding in an
orthogonal frequency division multiplexing (OFDM) system.

Index Terms—Message passing, belief propagation, iterative
algorithms, iterative decoding, parameter estimation

I. I NTRODUCTION

Variational techniques have been used for decades in quan-
tum and statistical physics, where they are referred to as the
mean field(MF) approximation [2]. Later, they found their
way to the area of machine learning or statistical inference,
see, e.g., [3]–[6]. The basic idea of variational inferenceis
to derive the statistics of “hidden” random variables given
the knowledge of “visible” random variables of a certain
probability density function (pdf). In the MF approximation,
this pdf is approximated by some “simpler,” e.g., (fully)
factorized pdf and the Kullback-Leibler divergence between
the approximating and the true pdf is minimized, which can
be done in an iterative, i.e., message passing like way. Apart
from being fully factorized, the approximating pdf typically
fulfills additional constraints that allow for messages with a
simple structure, which can be updated in a simple way. For
example, additional exponential conjugacy constraints result
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The results of this paper have been presented partially in [1].

in messages propagating along the edges of the underlying
Bayesian network that are described by a small number of
parameters [5]. Variational inference methods were recently
applied in [7] to thechannel state estimation/interference
cancellation partof a class of MIMO-OFDM receivers that
iterate between detection, channel estimation, and decoding.

An approach different from the MF approximation isbe-
lief propagation (BP) [8]. Roughly speaking, with BP one
tries to find local approximations, which are—exactly or
approximately—the marginals of a certain pdf1. This can also
be done in an iterative way, where messages are passed along
the edges of a factor graph [10]. A typical application of BP is
decodingof turbo or low density parity check (LDPC) codes.
Based on the excellent performance of BP, a lot of variations
have been derived in order to improve the performance of
this algorithm even further. For example, minimizing an upper
bound on the log partition function of a pdf leads to the
powerful tree reweighted BP algorithm [11]. An offspring of
this idea is the recently developed uniformly tree reweighted
BP algorithm [12]. Another example is [13], where methods
from information geometry are used to compute correction
terms for the beliefs obtained by loopy BP. An alternative
approach for turbo decoding that uses projections (that are
dual in the sense of [14, Ch. 3] to the one used in [13]) on
constraint subsets can be found in [15]. A combination of the
approaches used in [13] and in [15] can be found in [16].

Both methods, BP and the MF approximation, have their
own virtues and disadvantages. For example, the MF approx-
imation

+ always admits a convergent implementation;
+ has simple message passing update rules, in particular

for conjugate-exponential models;
– is not compatible with hard constraints,

and BP
+ yields a good approximation of the marginal

distributions if the factor graph has no short cycles;
+ is compatible with hard constraints like, e.g.,

code constraints;
– may have a high complexity, especially when applied

to probabilistic models involving both, discrete and
continuous random variables.

Hence, it is of great benefit to apply BP and the MF approx-
imation on the same factor graph in such a combination that
their respective virtues can be exploited while circumventing

1Following the convention used in [9], we use the name BP also for loopy
BP.
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their drawbacks. To this end, aunified message passing algo-
rithm is needed that allows for combining both approaches.

The fixed-point equations of both BP and the MF approxi-
mation can be obtained by minimizing an approximation of the
Kullback-Leibler divergence, called region-based free energy
approximation. This approach differs from other methods, see,
e.g., [17]2, because the starting point for the derivation of the
corresponding message passing fixed-point equations is the
same objective function for both, BP and the MF approxi-
mation. The main technical result of our work is Theorem 2,
where we show that the message passing fixed-point equations
for such a combination of BP and the MF approximation
correspond to stationary points of one single constrained
region-based free energy approximation and provide a clear
rule stating how to couple the messages propagating in the BP
and MF part. In fact, based on the factor graph corresponding
to a factorization of a probability mass function (pmf) and
a choice for a separation of this factorization into BP and
MF factors, Theorem 2 gives the message passing fixed-point
equations for the factor graph representing the whole factoriza-
tion of the pmf. One example of an application of Theorem
2 is joint channel estimation, interference cancellation,and
decoding. Typically, these tasks are considered separately and
the coupling between them is described in a heuristic way. As
an example of this problematic, there has been a debate in
the research community on whether a posteriori probabilities
(APP) or extrinsic values should be fed back from the decoder
to the rest of the receiver components; several authors coincide
in proposing the use of extrinsic values for MIMO detection
[18]–[20] while using APP values for channel estimation [19],
[20], but no thorough justification for this choice is given apart
from the achieved superior performance shown by simulation
results. Despite having a clear rule to update the messages for
the whole factor graph representing a factorization of a pmf,
an additional advantage is the fact that solutions of fixed-point
equations for the messages are related to the stationary points
of the corresponding constrained region-based free energy
approximation. This correspondence is important because it
yields an interpretation of the computed beliefs for arbitrary
factor graphs similar to the case of solely BP, where solutions
of the message passing fixed-point equations do in general not
correspond to the true marginals if the factor graph has cycles
but always correspond to stationary points of the constrained
Bethe free energy [9]. Moreover, this observation allows usto
present a systematic way of updating the messages, namely,
Algorithm 1, that is guaranteed to converge provided that the
factor graph representing the factorization of the pmf fulfills
certain technical conditions.

The paper is organized as follows. In the remainder of
this section we fix our notation. Section II is devoted to the
introduction of the region-based free energy approximations
proposed by [9] and to recall how BP, the MF approximation,
and the EM algorithm [21] can be obtained by this method.
Since the MF approximation is typically used for parameter
estimation, we briefly show how to extend it to the case

2 An information geometric interpretation of the different objective func-
tions used in [17] can be found in [14, Ch. 2].

of continuous random variables using an approach presented
already in [22, pp. 36–38] that avoids complicated methods
from variational calculus. Section III is the main part of this
work. There we state our main result, namely, Theorem 2,
and show how the message passing fixed-point equations of a
combination of BP and the MF approximation can be related to
the stationary points of the corresponding constrained region-
based free energy approximation. We then (i) prove Lemma 2,
which generalizes Theorem 2 to the case where the factors of
the pmf in the BP part are no longer restricted to be strictly
positive real-valued functions, and (ii) present Algorithm 1
that is a convergent implementation of the message passing
update equations presented in Theorem 2 provided that the
factor graph representing the factorization of the pmf fulfills
certain technical conditions. As a byproduct, (i) gives insights
into solely BP (which is a special case of the combination of
BP and the MF approximation) with hard constraints, where
only conjectures are formulated in [9]. In Section IV we apply
Algorithm 1 to joint channel estimation and decoding in an
OFDM system. More advanced receiver architectures together
with numerical simulations and a comparison with other state
of the art receivers can be found in [23] and an additional
application of the algorithm in a cooperative communications
scenario is presented in [24]. Finally, we conclude in Section
V and present an outlook for further research directions.

A. Notation

Capital calligraphic lettersA, I,N denote finite sets. The
cardinality of a setI is denoted by|I|. If i ∈ I we write
I \ i for I \ {i}. We use the convention that

∏
∅(. . . ) , 1,

where ∅ denotes the empty set. For any finite setI, II
denotes the indicator function onI, i.e., II(i) = 1 if i ∈ I
and II(i) = 0 else. We denote by capital lettersX discrete
random variables with a finite number of realizations and
pmf pX . For a random variableX , we use the convention
that x is a representative for all possible realizations ofX ,
i.e., x serves as a running variable, and denote a particular
realization by x̄. For example,

∑
x(. . . ) runs through all

possible realizationsx of X and for two functionsf and g
depending on all realizationsx of X , f(x) = g(x) means
that f(x̄) = g(x̄) for each particular realization̄x of X .
If F is a functional of a pmfpX of a random variableX
and g is a function depending on all realizationsx of X,
then ∂F

∂p(x) = g(x) means that ∂F
∂p(x̄) = g(x̄) is well defined

and holds for each particular realization̄x of X . We write
x = (xi | i ∈ I)T for the realizations of the vector of
random variablesX = (Xi | i ∈ I)T. If i ∈ I, then∑

x\xi
(. . . ) runs through all possible realizations ofX but

Xi. For any nonnegative real valued functionf with argument
x = (xi | i ∈ I)T and i ∈ I, f |x̄i

denotesf with fixed
argumentxi = x̄i. If a function f is identically zero, we
write f ≡ 0 and f 6≡ 0 means that it is not identically
zero. For two real valued functionsf and g with the same
domain and argumentx, we write f(x) ∝ g(x) if f = cg for
some real positive constantc ∈ R+. We use the convention
that 0 ln(0) = 0, a ln(a0 ) = ∞ if a > 0, and 0 ln(00 ) = 0
[25, p. 31]. Forx ∈ R, δ(x) = 1 if x = 0 and zero else.
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Matrices are denoted by capital boldface Greek letters. The
superscriptsT and H stand for transposition and Hermitian
transposition, respectively. For a matrixΛ ∈ Cm×n, the entry
in the ith row andjth column is denoted byλi,j = [Λ]i,j .
For two vectorsx = (xi | i ∈ I)T andy = (yi | i ∈ I)T,
x ⊙ y = (xiyi | i ∈ I)T denotes the Hadamard product of
x andy. Finally, CN(x;µ,Σ) stands for the pdf of a jointly
proper complex Gaussian random vectorX ∼ CN (µ,Σ) with
meanµ and covariance matrixΣ.

II. K NOWN RESULTS

A. Region-based free energy approximations [9]

Let pX be a certain positive pmf of a vectorX of random
variablesXi (i ∈ I) that factorizes as

pX(x) =
∏

a∈A

fa(xa) (1)

wherex , (xi | i ∈ I)T andxa , (xi | i ∈ N (a))T with
N (a) ⊆ I for all a ∈ A. Without loss of generality we assume
that A ∩ I = ∅, which can always be achieved by renaming
indices.3 SincepX is a strictly positive pmf, we can assume
without loss of generality that all the factorsfa of pX in (1)
are real-valued positive functions. Later in Section III, we shall
show how to relax the positivity constraint for some of these
factors. The factorization in (1) can be visualized in afactor
graph [10]4. In a factor graph,N (a) is the set of all variable
nodes connected to a factor nodea ∈ A andN (i) represents
the set of all factor nodes connected to a variable nodei ∈ I.
An example of a factor graph is depicted in Figure 1.

A regionR , (IR,AR) consists of subsets of indicesIR ⊆
I andAR ⊆ A with the restriction thata ∈ AR implies that
N (a) ⊆ IR. To each regionR we associate acounting number
cR ∈ Z. A set R , {(R, cR)} of regions and associated
counting numbers is calledvalid if

∑

(R,cR)∈R

cR IAR
(a) =

∑

(R,cR)∈R

cR IIR
(i) = 1

for all a ∈ A, i ∈ I.
For a positive functionb approximatingpX, we define the

3 For example, we can write

I = {1, 2, . . . , |I|}

A = {1, 2, . . . , |A|}.

This implies that any function that is defined pointwise onA andI is well
defined. For example, if in addition to the definition of the setsN (a) (a ∈ A)
we setN (i) , {a ∈ A | i ∈ N (a)} for all i ∈ I, the function

N : I ∪ A → Π(I ∪ A)

a 7→ N (a), for all a ∈ A

i 7→ N (i), for all i ∈ I

with Π(I ∪A) denoting the collection of all subsets ofI ∪A is well defined
becausei 6= a for all i ∈ I, a ∈ A.

4Throughout the paper we work with Tanner factor graphs as opposed to
Forney factor graphs.

variational free energy[9]5

F (b) ,
∑

x

b(x) ln
b(x)

pX(x)

=
∑

x

b(x) ln b(x)

︸ ︷︷ ︸
,−H(b)

−
∑

x

b(x) ln pX(x)

︸ ︷︷ ︸
,−U(b)

. (2)

In (2), H(b) denotes the entropy [25, p. 5] ofb andU(b) is
called average energy ofb. Note thatF (b) is the Kullback-
Leibler divergence [25, p. 19] betweenb andpX, i.e.,F (b) =
D(b || pX). For a setR of regions and associated counting
numbers, theregion-based free energy approximationis de-
fined as [9]FR , UR −HR with

UR , −
∑

(R,cR)∈R

cR
∑

a∈AR

∑

xR

bR(xR) ln fa(xa)

HR , −
∑

(R,cR)∈R

cR
∑

xR

bR(xR) ln bR(xR).

Here, eachbR is defined locally on a regionR. Instead of
minimizingF with respect tob, we minimizeFR with respect
to all bR ((R, cR) ∈ R), where thebR have to fulfill certain
constraints. The quantitiesbR are calledbeliefs. We give two
examples of valid sets of regions and associated counting
numbers.

Example 2.1:The trivial exampleRMF , {((I,A), 1)}. It
leads to the MF fixed-point equations, as will be shown in
Subsection II-C.

Example 2.2:We define two types of regions:
1) large regions:Ra , (N (a), {a}), with cRa

= 1 for all
a ∈ A;

2) small regions:Ri , ({i}, ∅), with cRi
= 1− |N (i)| for

all i ∈ I.
Note that this definition is well defined due to our assumption
thatA ∩ I = ∅. The region-based free energy approximation
corresponding to the valid set of regions and associated
counting numbers

RBP , {(Ri, cRi
) | i ∈ I} ∪ {(Ra, cRa

) | a ∈ A}

is called theBethe free energy[9], [26]. It leads to the BP
fixed-point equations, as will be shown in Subsection II-B.
The Bethe free energy is equal to the variational free energy
when the factor graph has no cycles [9].

B. BP fixed-point equations

The fixed-point equations for BP can be obtained from the
Bethe free energy by imposing additional marginalization and
normalization constraints and computing the stationary points
of the corresponding Lagrangian function [9], [27]. The Bethe
free energy reads

FBP =
∑

a∈A

∑

xa

ba(xa) ln
ba(xa)

fa(xa)

−
∑

i∈I

(|N (i)| − 1)
∑

xi

bi(xi) ln bi(xi) (3)

5If pX is not normalized to one, the definition of the variational free energy
contains an additional normalization constant, called Helmholtz free energy
[9, pp. 4–5].
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with ba , bRa
for all a ∈ A, bi , bRi

for all i ∈ I, and
FBP , FRBP. The normalization constraints for the beliefsba
(a ∈ A) and the marginalization constraints for the beliefsba
and bi (a ∈ A, i ∈ N (a)) can be included in the Lagrangian
[28, Sec. 3.1.3]

LBP ,FBP −
∑

a∈A

∑

i∈N (a)

∑

xi

λa,i(xi)
(
bi(xi)−

∑

xa\xi

ba(xa)
)

−
∑

a∈A

γa

(∑

xa

ba(xa)− 1
)
. (4)

The stationary points of the Lagrangian in (4) are then related
to the BP fixed-point equations by the following theorem.

Theorem 1: [9, Th. 2] Stationary points of the Lagrangian
in (4) must be BP fixed-points with positive beliefs fulfilling





ba(xa) = za fa(xa)
∏

i∈N (a)

ni→a(xi), for all a ∈ A

bi(xi) =
∏

a∈N (i)

ma→i(xi), for all i ∈ I

(5)
with




ma→i(xi) = za
∑

xa\xi

fa(xa)
∏

j∈N (a)\i

nj→a(xj)

ni→a(xi) =
∏

c∈N (i)\a

mc→i(xi)
(6)

for all a ∈ A, i ∈ N (a) and vice versa. Here,za (a ∈ A) are
positive constants that ensure that the beliefsba (a ∈ A) are
normalized to one.

Often, the following alternative system of fixed-point equa-
tions is solved instead of (6).




m̃a→i(xi) = ωa,i

∑

xa\xi

fa(xa)
∏

j∈N (a)\i

ñj→a(xj)

ñi→a(xi) =
∏

c∈N (i)\a

m̃c→i(xi)
(7)

for all a ∈ A, i ∈ N (a), whereωa,i (a ∈ A, i ∈ N (a)) are
arbitrary positive constants. The reason for this is that for a
fixed scheduling the messages computed in (6) differ from the
messages computed in (7) only by positive constants, which
drop out when the beliefs are normalized. See also [9, Eq.
(68) and Eq. (69)], where the“ ∝ ” symbol is used in the
update equations indicating that the normalization constants
are irrelevant. A solution of (7) can be obtained, e.g., by
updating corresponding likelihood ratios of the messages in (6)
or by updating the messages according to (6) but ignoring the
normalization constantsza (a ∈ A). The algorithm converges
if the normalized beliefs do not change any more. Therefore,
a rescaling of the messages is irrelevant and a solution of (7)
is obtained. However, we note that a rescaled solution of (7)
is not necessarily a solution of (6). Hence, the beliefs obtained
by solving (7) need not be stationary points of the Lagrangian
in (4). To the best of our knowledge, this elementary insight
is not published yet in the literature and we state a necessary
and sufficient condition when a solution of (7) can be rescaled
to a solution of (6) in the following lemma.

Lemma 1:Suppose that{m̃a→i(xi), ñi→a(xi)} (a ∈
A, i ∈ N (a)) is a solution of (7) and set

z̃a ,
1∑

xa

fa(xa)
∏

i∈N (a)

ñi→a(xi)
, for all a ∈ A. (8)

Then this solution can be rescaled to a solution of (6) if and
only if there exist positive constantsgi (i ∈ I) such that

ωa,i = giz̃a, for all a ∈ A, i ∈ N (a). (9)

Proof: See Appendix A.
Remark 2.1:Note that for factor graphs that have a tree-

structure the messages obtained by running the forward-
backward algorithm [10] always fulfill (9) because we have
ωa,i = 1 (a ∈ A, i ∈ N (a)) and z̃a = 1 (a ∈ A) in this case.

C. Fixed-point equations for the MF approximation

A message passing interpretation of the MF approximation
was derived in [5], [29]. In this section, we briefly show how
the corresponding fixed-point equations can be obtained by the
free energy approach. To this end, we useRMF from Example
2.1 together with the factorization constraint6

b(x) =
∏

i∈I

bi(xi). (10)

Plugging (10) into the expression for the region-based freeen-
ergy approximation corresponding to the trivial approximation
RMF we get

FMF =
∑

i∈I

∑

xi

bi(xi) ln bi(xi)−
∑

a∈A

∑

xa

∏

i∈N (a)

bi(xi) ln fa(xa)

(11)
with FMF , FRMF . Assuming that all the beliefsbi (i ∈ I)
have to fulfill a normalization constraint, the stationary points
of the corresponding Lagrangian for the MF approximation
can easily be evaluated to be

bi(xi) = zi exp

(
∑

a∈N (i)

∑

xa\xi

∏

j∈N (a)\i

bj(xj) ln fa(xa)

)

(12)

for all i ∈ I, where the positive constantszi (i ∈ I) are such
that bi is normalized to one for alli ∈ I.7

For the MF approximation there always exists a convergent
algorithm that computes beliefsbi (i ∈ I) solving (12) by
simply using (12) as an iterative update equation for the
beliefs. Since for alli ∈ I

∂2FMF

∂bi(xi)2
=

1

bi(xi)
> 0

and the set of all beliefsbi satisfying the normalization
constraint

∑
xi
bi(xi) = 1 is a convex set, the objective

function FMF in (11) cannot increase and the algorithm is

6For binary random variables with pmf in an exponential family it was
shown in [30] that this gives a good approximation whenever the truncation
of the Plefka expansion does not introduce a significant error.

7 The Lagrange multiplier [28, p. 283] for each beliefbi (i ∈ I)
corresponding to the normalization constraint can be absorbed into the positive
constantzi (i ∈ I).



5

guaranteed to converge. Note that in order to derive a particular
update bi (i ∈ I) we need all previous updatesbj with
j ∈

⋃
a∈N (i) N (a) \ i.

By settingni→a(xi) , bi(xi) for all i ∈ I, a ∈ N (i), the
fixed-point equations in (12) are transformed into the message
passing fixed-point equations




ni→a(xi) = zi
∏

a∈N (i)

ma→i(xi)

ma→i(xi) = exp

(
∑

xa\xi

∏

j∈N (a)\i

nj→a(xj) ln fa(xa)

)

(13)
for all a ∈ A, i ∈ N (a). The MF approximation can be
extended to the case wherepX is a pdf, as shown in Appendix
B. Formally, each sum overxk (k ∈ I) in (12) and (13)
has to be replaced by a Lebesgue integral whenever the
corresponding random variableXk is continuous.

D. Expectation maximization (EM)

Message passing interpretations for EM [21] were derived in
[31], [32]. It can be shown that EM is a special instance of the
MF approximation [33, Sec. 2.3.1], which can be summarized
as follows. Suppose that we apply the MF approximation to
pX in (1) as described before. In addition, we assume that
for all i ∈ E ⊆ I the beliefsbi fulfill the constraints that
bi(xi) = δ(xi − x̃i). Using the fact that0 ln(0) = 0, we can
rewriteFMF in (11) as

FMF =
∑

i∈I\E

∑

xi

bi(xi) ln bi(xi)

−
∑

a∈A

∑

xa

∏

i∈N (a)

bi(xi) ln fa(xa).
(14)

For all i ∈ I \ E the stationary points ofFMF in (14) have the
same analytical expression as the one obtained in (12). For
i ∈ E , minimizingFMF in (14) with respect tõxi yields

x̃i = argmin
xi

(FMF)

= argmax
xi

(
∏

a∈N (i)

exp

(
∑

xa\xi

∏

j∈N (a)\i

bj(xj) ln fa(xa)

))
.

Settingni→a(xi) , bi(xi) for all i ∈ I, a ∈ N (i), we get the
message passing update equations defined in (13)exceptthat
we have to replace the messagesni→a(xi) for all i ∈ E and
a ∈ N (i) by

ni→a(xi) = δ(xi − x̃i)

with

x̃i = argmax
xi

(
∏

a∈N (i)

ma→i(xi)

)

for all i ∈ E , a ∈ N (a).

III. C OMBINED BP / MF APPROXIMATION FIXED-POINT

EQUATIONS

Let

pX(x) =
∏

a∈AMF

fa(xa)
∏

b∈ABP

fb(xb) (15)

be a partially factorized pmf withAMF ∩ ABP = ∅ andA ,

AMF ∪ ABP. As before, we havex , (xi | i ∈ I), xa , (xi |
i ∈ N (a))T, with N (a) ⊆ I for all a ∈ A, and N (i) ,

{a ∈ A | i ∈ N (a)} for all i ∈ I. We refer to the factor
graph representing the factorization

∏
a∈ABP

fa(xa) in (15) as
“BP part” and to the factor graph representing the factorization∏

a∈AMF
fa(xa) in (15) as “MF part”. Furthermore, we set

IMF ,
⋃

a∈AMF

N (a), IBP ,
⋃

a∈ABP

N (a)

and

NMF(i) , AMF ∩ N (i), NBP(i) , ABP ∩ N (i).

Next, we define the following regions and counting num-
bers:

1) one MF regionRMF , (IMF,AMF), with cRMF = 1;
2) small regionsRi , ({i}, ∅), with cRi

= 1− |NBP(i)| −
IIMF(i) for all i ∈ IBP;

3) large regionsRa , (N (a), {a}), with cRa
= 1 for all

a ∈ ABP.
This yields the valid set of regions and associated counting
numbers

RBP, MF , {(Ri, cRi
) | i ∈ IBP} ∪ {(Ra, cRa

) | a ∈ ABP}

∪ {(RMF, cRMF)}. (16)

The additional termsIIMF(i) in the counting numbers of
the small regionsRi (i ∈ I) defined in 2) compared to
the counting numbers of the small regions for the Bethe
approximation (see Example 2.2) guarantee thatRBP, MF is
indeed a valid set of regions and associated counting numbers.

The valid set of regions and associated counting numbers
in (16) gives the region-based free energy approximation

FBP, MF =
∑

a∈ABP

∑

xa

ba(xa) ln
ba(xa)

fa(xa)

−
∑

a∈AMF

∑

xa

∏

i∈N (a)

bi(xi) ln fa(xa)

−
∑

i∈I

(|NBP(i)| − 1)
∑

xi

bi(xi) ln bi(xi) (17)

with FBP, MF , FRBP, MF. In (17), we have already plugged in
the factorization constraint

bMF(xMF) =
∏

i∈IMF

bi(xi)

with xMF , (xi | i ∈ IMF)
T and bMF , bRMF . The beliefsbi

(i ∈ I) and ba (a ∈ ABP) have to fulfill the normalization
constraints∑

xi

bi(xi) = 1, for all i ∈ IMF \ IBP

∑

xa

ba(xa) = 1, for all a ∈ ABP

(18)
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and the marginalization constraints

bi(xi) =
∑

xa\xi

ba(xa), for all a ∈ ABP, i ∈ N (a). (19)

Remark 3.1:Note that there is no need to introduce normal-
ization constraints for the beliefsbi (i ∈ IBP). If a ∈ NBP(i),
then it follows from the normalization constraint for the belief
ba and marginalization constraint for the beliefsba andbi that

1 =
∑

xa

ba(xa)

=
∑

xi

( ∑

xa\xi

ba(xa)
)

=
∑

xi

bi(xi).

We will show in Lemma 2 that the region-based free energy
approximation in (17) fulfilling the constraints (18) and (19)
is a finite quantity, i.e., that−∞ < FBP, MF < ∞.

The constraints (18) and (19) can be included in the
Lagrangian [28, Sec. 3.1.3]

LBP, MF ,FBP, MF

−
∑

a∈ABP

∑

i∈N (a)

∑

xi

λa,i(xi)
(
bi(xi)−

∑

xa\xi

ba(xa)
)

−
∑

i∈IMF\IBP

γi

(∑

xi

bi(xi)− 1
)

−
∑

a∈ABP

γa

(∑

xa

ba(xa)− 1
)
. (20)

The stationary points of the LagrangianLBP, MF in (20) are
then obtained by setting the derivatives ofLBP, MF with respect
to the beliefs and the Lagrange multipliers equal to zero.
The following theorem relates the stationary points of the
LagrangianLBP, MF to solutions of fixed-point equations for
the beliefs.

Theorem 2:Stationary points of the Lagrangian in (20) in
the combined BP–MF approach must be fixed-points with
positive beliefs fulfilling





ba(xa) = za fa(xa)
∏

i∈N (a)

ni→a(xi),

for all a ∈ ABP

bi(xi) = zi
∏

a∈NBP(i)

mBP
a→i(xi)

∏

a∈NMF(i)

mMF
a→i(xi),

for all i ∈ I

(21)

with





ni→a(xi) = zi
∏

c∈NBP(i)\a

mBP
c→i(xi)

∏

c∈NMF(i)

mMF
c→i(xi),

for all a ∈ A, i ∈ N (a)

mBP
a→i(xi) =za

∑

xa\xi

fa(xa)
∏

j∈N (a)\i

nj→a(xj),

for all a ∈ ABP, i ∈ N (a)

mMF
a→i(xi) = exp

(
∑

xa\xi

∏

j∈N (a)\i

nj→a(xj) ln fa(xa)

)
,

for all a ∈ AMF, i ∈ N (a)
(22)

and vice versa. Here,zi (i ∈ I) andza (a ∈ ABP) are positive
constants that ensure that the beliefsbi (i ∈ I) andba (a ∈ A)
are normalized to one withzi = 1 for all i ∈ IBP.

Proof: See Appendix C.
Remark 3.2:Note that for eachk ∈ I \IBP Theorem 2 can

be generalized to the case whereXk is a continuous random
variable following the derivation presented in Appendix B.
Formally, each sum overxk with k ∈ I \IBP in the third iden-
tity in (22) has to be replaced by a Lebesgue integral whenever
the corresponding random variableXk is continuous.

Remark 3.3:Note that Theorem 2 clearly states whether
“extrinsic” values or “APPs” should be passed. In fact, the
first equation in (22) implies that each messageni→a(xi) (a ∈
A, i ∈ I) is an “extrinsic” value whena ∈ ABP and an “APP”
whena ∈ AMF.

A. Hard constraints for BP

Some suggestions on how to generalize Theorem 1 ([9,
Th. 2]) to hard constraints, i.e., to the case where the factors
of the pmf pX are not restricted to be strictly positive real-
valued functions, can be found in [9, Sec. VI.D]. An example
of hard constraints are deterministic functions like, e.g., code
constraints. However, the statements formulated there areonly
conjectures and are based on the assumption that we can
always compute the derivative of the Lagrange function with
respect to the beliefs. This is not always possible because

∂FBP

∂ba(xa)
→ ∞, asfa(xa) → 0

with FBP from (3). In the sequel, we show how to generalize
Theorem 2 to the case wherefa ≥ 0 for all a ∈ ABP based
on the simple observation that we are interested in solutions
where the region-based free energy approximation is not plus
infinity (recall that we want to minimize this quantity). As
a byproduct, this also yields an extension of Theorem 1 ([9,
Th. 2]) to hard constraints by simply settingAMF = ∅.

Lemma 2:Suppose that

fa ≥ 0, for all a ∈ ABP (23)

fa > 0, for all a ∈ AMF (24)

and pX |x̄i
6≡ 0 for all i ∈ I and each realization̄xi of Xi.8

Furthermore, we assume thatbi (i ∈ I) and ba (a ∈ ABP)
fulfill the constraints (18) and (19). Then

8If pX |x̄i
≡ 0 then we can simply remove this realization̄xi of Xi.
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1) FBP,MF > −∞;
2) The condition

ba(x̄a) = 0, for all x̄a with a ∈ ABP, fa(x̄a) = 0
(25)

is necessary and sufficient forFBP,MF < ∞;
3) If (25) is fulfilled, the remaining stationary pointsbi(xi)

(i ∈ I) andba(xa) excluding allx̄a from (25) (a ∈ ABP)
of the Lagrangian in (20) are positive beliefs fulfilling
(21) and (22) excluding all̄xa from (25) and vice versa.

4) Moreover, (21) and (22) hold for all realizations̄xa

(including allx̄a from (25)) and, therefore, (21) contains
(25) as a special case.

Proof: See Appendix D.
Remark 3.4:At first sight it seems to be a contradiction to

the marginalization constraints (19) that (25) holds and all the
beliefsbi (i ∈ IBP) are strictly positive functions. To illustrate
that this is indeed the case, leti ∈ IBP, a ∈ NBP(i), and
fix one realizationx̄i of Xi. SincepX |x̄i

6≡ 0 we also have
fa |x̄i

6≡ 0. This implies thatfa(x̄a) 6= 0 for at least one
realization x̄a = (x̄j | j ∈ N (a))T with i ∈ N (a) and,
therefore,ba(x̄a) 6= 0. The marginalization constraints (19)
together with the fact that the beliefba must be a nonnegative
function then implies that we have indeedbi(x̄i) > 0.

B. Convergence and main algorithm

If the BP part has no cycle and

|N (a) ∩ IBP| ≤ 1, for all a ∈ AMF (26)

then there exists a convergent implementation of the combined
message passing equations in (22). In fact, we can iterate
between updating the beliefsbi with i ∈ IMF \ IBP and the
forward backward algorithm in the BP part, as outlined in the
following Algorithm.

Algorithm 1: If the BP part has no cycle and (26) is
fulfilled, the following implementation of the fixed-point equa-
tions in (22) is guaranteed to converge.

1) Initialize bi for all i ∈ IMF \ IBP and send the cor-
responding messagesni→a(xi) = bi(xi) to all factor
nodesa ∈ NMF(i).

2) Use all messagesmMF
a→i(xi) with i ∈ IBP ∩ IMF and

a ∈ NMF(i) as fixed input for the BP part and run
the forward/backward algorithm [10]. The fact that the
resulting beliefsbi with i ∈ IBP cannot increase the
region-based free energy approximation in (17) is proved
in Appendix E.

3) For eachi ∈ IMF ∩ IBP and a ∈ NMF(i) the message
ni→a(xi) is now available and can be used for further
updates in the MF part.

4) For eachi ∈ IMF \ IBP successively recompute the
messageni→a(xi) and send it to alla ∈ NMF(i). Note
that for all indicesi ∈ IMF \ IBP

∂2FBP, MF

∂bi(xi)2
=

1

bi(xi)
> 0

and the set of all beliefsbi satisfying the normalization
constraint (first equation in (18)) is a convex set. This

implies that for eachi ∈ IMF \ IBP we are solving
a convex optimization problem. Therefore, the region-
based free energy approximation in (17) cannot increase.

5) Proceed as described in 2).

Remark 3.5:If the factor graph representing the BP part is
not cycle-free then Algorithm 1 can be modified by running
loopy BP in step 2). However, in this case the algorithm is
not guaranteed to converge.

IV. A PPLICATION TO ITERATIVE CHANNEL ESTIMATION

AND DECODING

In this section, we present an example where we show
how to compute the updates of the messages in (22) based
on Algorithm 1. We choose a simple communication model
where the updates of the messages are simple enough in
order to avoid overstressed notation. A class of more complex
MIMO-OFDM receiver architectures together with numerical
simulations can be found in [23]. In our example, we use
BP for modulation and decoding and the MF approximation
for estimating the parameters of the a posteriori distribution
of the channel gains. This splitting is convenient because BP
works well with hard constraints and the MF approximation
yields very simple message passing update equations due to
the fact that the MF part in our example is a conjugate-
exponential model [5]. Applying BP to all factor nodes would
be intractable because the complexity is too high, cf. the
discussion in Subsection IV-C.

Specifically, we consider an OFDM system withM + N
active subcarriers. We denote byD ⊂ [1 : M +N ] andP ⊂
[1 : M + N ] the sets of subcarrier indices for the data and
pilot symbols, respectively with|P| = M , |D| = N , and
P ∩ D = ∅.

In the transmitter, a random vectorU = (Ui | i ∈ [1 : K])
representing the information bits is encoded and interleaved
using a rateR = K/(LN) encoder and a random interleaver,
respectively into the random vector

C =
(
C(1)T, . . . ,C(N)T

)T

of lengthLN representing the coded and interleaved bits. Each
random subvectorC(n) , (C

(n)
1 , . . . , C

(n)
L )T of lengthL is

then mapped, i.e., modulated, toXin ∈ S with in ∈ D (n ∈
[1 : N ]), whereS is a complex modulation alphabet of size
|S| = 2L.

After removing the cyclic prefix in the receiver, we get the
following input-output relationship in the frequency domain:

YD = HD ⊙XD + ZD

YP = HP ⊙ xP + ZP
(27)

whereXD , (Xi | i ∈ D)T is the random vector correspond-
ing to the transmitted data symbols,xP , (xi | i ∈ P)T

is the vector containing the transmitted pilot symbols, and
HD , (Hi | i ∈ D)T and HP , (Hi | i ∈ P)T are
random vectors representing the multiplicative action of the
channel whileZD , (Zi | i ∈ D)T andZP , (Zi | i ∈ P)T

are random vectors representing additive Gaussian noise with
pZ(z) = CN(z;0, γ−1IM+N ) andZ , (Zi | i ∈ D ∪ P)T.
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Note that (27) is very general and can also be used to model,
e.g., a time-varying frequency-flat channel.

SettingY , (Yi | i ∈ D∪P)T andH , (Hi | i ∈ D∪P)T,
the pdfpY,XD,H,C,U admits the factorization

pY,XD,H,C,U(y,xD,h, c,u)

= pY|XD,H(y|xD,h) pH(h) pXD|C(xD|c) pC|U(c|u) pU(u)

=
∏

i∈D

pYi|Xi,Hi
(yi|xi, hi)

∏

j∈P

pYj |Hj
(yj |hj)× pH(h)

×
∏

n∈[1:N ]

pXin |C(n)

(
xin |c

(n)
)
× pC|U(c|u)

×
∏

k∈[1:K]

pUk
(uk) (28)

where we used the fact thatH is independent ofXD, C, and
U and Y is independent ofC and U conditioned onXD.
Note that

pYi|Xi,Hi
(yi|xi, hi) =

γ

π
exp(−γ|yi − hixi|

2)

= CN(yi;hixi, 1/γ), for all i ∈ D
(29)

pYi|Hi
(yi|hi) =

γ

π
exp(−γ|yi − hixi|

2)

= CN(yi;hixi, 1/γ), for all i ∈ P .
(30)

We choose for the prior distribution ofH

pH(h) = CN(h;µP
H,ΛP

H

−1
).

Now define

I , {Xi | i ∈ D} ∪ {H}

∪ {C
(1)
1 , . . . , C

(N)
L } ∪ {U1, . . . , UK} (31)

A , {pYi|Xi,Hi
| i ∈ D} ∪ {pYi|Hi

| i ∈ P} ∪ {pH}

∪ {pXin |C(n) | n ∈ [1 : N ]}

∪ {pC|U} ∪ {pUk
| k ∈ [1 : K]} (32)

and setfa , a for all a ∈ A. For example, we havefpH
(h) =

pH(h). We choose a splitting ofA into ABP andAMF with

ABP , {pXin |C(n) | n ∈ [1 : N ]}

∪ {pC|U} ∪ {pUk
| k ∈ [1 : K]}

AMF , {pYi|Xi,Hi
| i ∈ D} ∪ {pYi|Hi

| i ∈ P} ∪ {pH}.

(33)

With this selection

IBP = {Xi | i ∈ D} ∪ {C
(1)
1 , . . . , C

(N)
L }

∪ {U1, . . . , UK}

IMF = {Xi | i ∈ D} ∪ {H}

which implies thatIBP∩IMF = {Xi | i ∈ D}. The factor graph
corresponding to the factorization in (28) with the splitting of
A into AMF andABP as in (33) is depicted in Figure 1.

We now show how to apply the variant of Algorithm 1
referred to in Remark 3.5 to the factor graph depicted in
Figure 1. Note that (26) is fulfilled in this example; however,
cycles occur in the BP part of the factor graph due to the
combination of (convolutional) coding, interleaving, andhigh-
order modulation (see Table I).

Algorithm 2:

1) Initialize

bH(h) = CN(h;µH,Λ−1
H

)

by setting

µH = Λ−1
H

(ΛP
Hµ

P
H + Λ̃Hµ̃H)

ΛH = ΛP
H + Λ̃H

with

λ̃Hij
=

{
γ|xi|2 if i = j ∈ P

0 else

and

λ̃Hii
µ̃Hi

=

{
γyix

∗
i if i ∈ P

0 if i ∈ D

and set

nH→pYi|Xi,Hi
(h) = bH(h), for all i ∈ D.

2) Using the particular form of the distributionspYi|Xi,Hi

(i ∈ D) in (29) andpYi|Hi
(i ∈ P) in (30), compute

mMF
pYi|Xi,Hi

→Xi
(xi)

∝ exp

(
− γ

∫
dhnH→pYi|Xi,Hi

(h)|yi − hixi|
2

)

∝ exp

(
− γ(σ2

Hi
+ |µHi

|2)

∣∣∣∣∣xi −
yiµ

∗
Hi

σ2
Hi

+ |µHi
|2

∣∣∣∣∣

2)

∝ CN

(
xi;

yiµ
∗
Hi

σ2
Hi

+ |µHi
|2
,

1

γ(σ2
Hi

+ |µHi
|2)

)

for all i ∈ D with σ2
Hi

, [Λ−1
H

]i,i (i ∈ D).
3) Use the messagesmMF

pYi|Xi,Hi
→Xi

(xi) (i ∈ D) as fixed
input for the BP part and run BP.

4) After running BP in the BP part, compute the messages
nXi→pYi|Xi,Hi

(xi) (i ∈ D) and update the messages in
the MF part. Namely, after setting

µXi
,
∑

xi

nXi→pYi|Xi,Hi
(xi)xi

σ2
Xi

,
∑

xi

nXi→pYi|Xi,Hi
(xi)|xi − µXi

|2

for all i ∈ D, compute the messages

mMF
pYi|Xi,Hi

→H
(hi)

∝ exp

(
− γ

∑

xi

nXi→pYi|Xi,Hi
(xi)|yi − hixi|

2

)

∝ exp

(
− γ(σ2

Xi
+ |µXi

|2)

∣∣∣∣∣hi −
yiµ

∗
Xi

σ2
Xi

+ |µXi
|2

∣∣∣∣∣

2)

∝ CN

(
hi;

yiµ
∗
Xi

σ2
Xi

+ |µXi
|2
,

1

γ(σ2
Xi

+ |µXi
|2)

)
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MF part BP part

✔
✔
✔
✔
✔

❚
❚
❚
❚
❚

✔
✔
✔

❚
❚
❚

✔
✔
✔

❚
❚
❚
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qqq

qqq
qqq

qqq

qqq

qqqpH

pYi1 |Xi1 ,Hi1

pYiN
|XiN

,HiN

pYp|Hp

pXi1 |C
(1)

pXiN
|C(N)

pC|U

pU1

pUK

✒✑
✓✏
H

✒✑
✓✏
Xi1

✒✑
✓✏
XiN

✒✑
✓✏
C

(1)
1

✒✑
✓✏
C

(1)
L

✒✑
✓✏
C

(N)
1

✒✑
✓✏
C

(N)
L

✒✑
✓✏
U1

✒✑
✓✏
UK

Fig. 1. Factor graph corresponding to the factorization of the pdf in (28) withD = {i1, . . . , iN} andp ∈ P . The splitting of the factor graph into BP and
MF part is chosen in such a way that utilizes most of the advantages of BP and the MF approximation.

for all i ∈ D,

mMF
pYi|Hi

→H
(hi) ∝ exp(−γ|yi − hixi|

2)

∝ CN

(
hi;

yix
∗
i

|xi|2
,

1

γ|xi|2)

)

for all i ∈ P ,

mMF
pH→H(h) = CN(h;µP

H,ΛP
H

−1
)

and

nH→pYi|Xi,Hi
(h)

= zH
∏

i∈D

mMF
pYi|Xi,Hi

→H
(hi)

∏

j∈P

mMF
pYi|Hi

→H
(hj)

×mMF
pH→H(h)

=
det(ΛH)

πM+N
exp

(
− (h− µH)HΛH(h− µH)

)

= CN(h;µH,Λ−1
H

)

for all i ∈ D. Here, we used Lemma 3 in Appendix F
to get the updated parameters

µH = Λ−1
H

(ΛP
H
µ

P
H
+ Λ̃Hµ̃H)

ΛH = ΛP
H
+ Λ̃H

(34)

with

λ̃Hij
=





γ(σ2
Xi

+ |µXi
|2) if i = j ∈ D

γ|xi|2 if i = j ∈ P

0 else

and

λ̃Hii
µ̃Hi

=

{
γyiµ

∗
Xi

if i ∈ D

γyix
∗
i if i ∈ P .

The update for the beliefbH is

bH(h) = nH→pYi|Xi,Hi
(h)

i.e., bH(h) = CN(h;µH,Λ−1
H

).
5) Proceed as described in 2).

A. “Extrinsic” values versus “APP”

In consideration of Remark 3.3 it is instructive to analyze
the messages coming from the variable nodesIBP ∩ IMF =
{X1, . . . , XN}, which are contained in the BP and MF part
of the factor graph depicted in Figure 1. Whether a message
passing from a variable node to a factor node is an “extrinsic”
value or an “APP” depends on whether the corresponding
factor node is in the BP or the MF part. Thus, for all
n ∈ [1 : N ], the messages

nXin→p
Xin

|C(n)
(xin) = mMF

pYin
|Xin

,Hin
→Xin

(xin)

which are passed into the BP part, are “extrinsic” values,
whereas the messages

nXin→pYin
|Xin

,Hin
(xin)

= mBP
p
Xin

|C(n)→Xin
(xin) m

MF
pYin

|Xin
,Hin

→Xin
(xin)

which are passed into the MF part, are “APPs”. Note that this
result is aligned with the strategies proposed in [19], [20],
where “APPs” are used for channel estimation and “extrinsic
values” for detection.

B. Level of MF approximation

Note that there is an ambiguity in the choice of variable
nodes in the MF part. This ambiguity reflects the “level of
the MF approximation” and results in a family of different
algorithms. For example, instead of choosingH as a single
random variable, we could have chosenHi (i ∈ [1 : M +N ])
to be separate variable nodes in the factor graph. In this case
we make the assumption that the random variablesHi (i ∈
[1 : M +N ]) are independent and the set of indicesI in (31)
has to be replaced by

I , {Xi | i ∈ D} ∪ {Hi | i ∈ D ∪ P}

∪ {C
(1)
1 , . . . , C

(N)
L } ∪ {U1, . . . , UK}.
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Since this is an additional approximation, the performance
of the receiver is expected to decrease compared to the case
where we chooseH as a single random variable. However, it is
possible that the complexity reduces by applying an additional
MF approximation. See [23] for further discussions on this
ambiguity for a class of MIMO-OFDM receivers.

C. Comparison with BP combined with Gaussian approxima-
tion

The example makes evident how the complexity of the
message passing algorithm can be simplified by exploiting
the conjugate-exponential property of the MF part, which
leads to simple update equations of the beliefbH. In fact,
at each iteration in the algorithm we only have to update the
parameters of a Gaussian distribution (34). In comparison let
us consider an alternative split ofA by moving the factor
nodespYi|Xi,Hi

(i ∈ D) in (29) andpYi|Hi
(i ∈ P) in (30) to

the BP part. This is equivalent to applying BP to the whole
factor graph in Figure 1 becausemMF

pH→H
= mBP

pH→H
. Doing

so, each messagemBP
pYi|Xi,Hi

→H
(hi) (i ∈ D) does no longer

admit a closed form expression in terms of the mean and the
variance of the random variableXi and becomes a mixture
of Gaussian pdfs with2L components; in consequence, each
messagenH→pYi|Xi,Hi

(h) (i ∈ D) becomes a sum of2L(N−1)

terms. To keep the complexity of computing these messages
tractable one has to rely on additional approximations.

As suggested in [34], [35], we can approximate each
messagemBP

pYi|Xi,Hi
→H

(hi) (i ∈ D) by a Gaussian pdf. BP
combined with this approximation is comparable in terms
of complexity to Algorithm 2, since the computations of
the updates of the messages are equally complex. However,
Algorithm 2 clearly outperforms this alternative, as can be
seen in Figure 2. It can also be noticed that the performance
of Algorithm 2 is close to the case with perfect channel state
information (CSI) at the receiver, even with a low density of
pilots, i.e., such that the spacing between any two consecutive
pilots (∆P ) approximately equals the coherence bandwidth9

(Wcoh) of the channel or twice of it.
To circumvent the intractability of the BP-based receiver,

one could also apply other approximate inference algorithms
to the factor graph like, e.g., expectation propagation (EP).
A comparison between EP and BP-MF can be found in [36],
where it was shown that BP-MF yields the best performance-
complexity tradeoff and does not suffer from numerical insta-
bility.

TABLE I
PARAMETERS OF THEOFDM SYSTEM.

Number of subcarriers M +N = 300
Number of evenly spaced pilots M ∈ {13, 25}
Modulation scheme for pilot symbols QPSK
Modulation scheme for data symbols 16QAM (L = 4)
Convolutional channel code R = 1/3 (133, 171, 165)8
Multipath channel model 3GPP ETU
Subcarrier spacing 15 kHz
Coherence bandwidth Wcoh ≈ 200 kHz

9Calculated as the reciprocal of the maximum excess delay.
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Fig. 2. Bit error rate (BER) as a function of signal-to-noiseratio (SNR)
for Algorithm 2 (BP–MF), BP combined with Gaussian approximation as
described in Subsection IV-C, and BP with perfect CSI at the receiver. Pilot
spacing∆P ≈ Wcoh (M = 25) and∆P ≈ 2Wcoh (M = 13).

D. Estimation of noise precision

Algorithm 2 can be easily extended to the case where the
noise precisionγ is a realization of a random variableΓ. In
fact, sinceln pYi|Xi,Hi,Γ (i ∈ D) and ln pYi|Hi,Γ (i ∈ P)
are linear inγ, we can replace any dependence onγ in the
existing messages in Algorithm 2 by the expected value ofΓ
and get simple expressions for the additional messages using
a Gamma prior distribution forΓ, reflecting the powerfulness
of exploiting the conjugate-exponential model property inthe
MF part for parameter estimation. See [23] for further details
on the explicit form of the additional messages.

V. CONCLUSION AND OUTLOOK

We showed that the message passing fixed-point equations
of a combination of BP and the MF approximation correspond
to stationary points of one single constrained region-based
free energy approximation. These stationary points are in one-
to-one correspondence to solutions of a coupled system of
message passing fixed-point equations. For an arbitrary factor
graph and a choice of a splitting of the factor nodes into a
set of MF and BP factor nodes, our result gives immediately
the corresponding message passing fixed-point equations and
yields an interpretation of the computed beliefs as stationary
points. Moreover, we presented an algorithm for updating the
messages that is guaranteed to converge provided that the fac-
tor graph fulfills certain technical conditions. We also showed
how to extend the MF part in the factor graph to continuous
random variables and to include hard constraints in the BP
part of the factor graph. Finally, we illustrated the computation
of the messages of our algorithm in a simple example. This
example demonstrates the efficiency of the combined scheme
in models in which BP messages are computationally in-
tractable. The proposed algorithm performs significantly better
than the commonly used approach of using BP combined
with a Gaussian approximation of computationally demanding
messages.
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An interesting extension of our result would be to generalize
the BP part to contain also continuous random variables.
The results in [37] provide a promising approach. Indeed,
they could be used to generalize the Lagrange multiplier
for the marginalization constraints to the continuous case.
However, these methods are based on the assumption that
the objective function is Fréchet differentiable [38, p. 172].
In general a region-base free energy approximation is neither
Fréchet differentiable nor Gateaux differentiable, at least not
without any modification of the definitions used in standard
text books [38, pp. 171–172]10. An extension to continuous
random variables in the BP part would allow to apply a
combination of BP with the MF approximation, e.g., for
sensor self-localization, where both methods are used [39],
[40]. Another interesting extension could be to generalizethe
region-based free energy approximation such that the messages
in the BP part are equivalent to the messages passed in tree
reweighted BP or to include second order correction terms in
the MF approximation that are similar to the Onsager reaction
term [30].
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APPENDIX

A. Proof of Lemma 1

Suppose that{m̃a→i(xi), ñi→a(xi)} (a ∈ A, i ∈ N (a)) is
a solution of (7) and set

m̃a→i(xi) = κa,ima→i(xi), for all a ∈ A, i ∈ N (a)

ñi→a(xi) = τa,ini→a(xi), for all a ∈ A, i ∈ N (a)
(35)

with κa,i, τa,i > 0 (a ∈ A, i ∈ N (a)). Plugging (35) into (7)
we obtain the following fixed-point equations for the messages
{ma→i(xi), ni→a(xi)} (a ∈ A, i ∈ N (a)).





κa,ima→i(xi)

= ωa,i

( ∏

j∈N (a)\i

τa,j

) ∑

xa\xi

fa(xa)
∏

j∈N (a)\i

nj→a(xj)

τa,ini→a(xi)

=
( ∏

c∈N (i)\a

κc,i

) ∏

c∈N (i)\a

mc→i(xi)

(36)
for all a ∈ A, i ∈ N (a). Now (36) is equivalent to (6) if and
only if

τa,i =
∏

c∈N (i)\a

κc,i, for all a ∈ A, i ∈ N (a) (37)

za =

ωa,i

∏
j∈N (a)\i

τa,j

κa,i

, for all a ∈ A, i ∈ N (a) (38)

10For a positive real-valued functionb, b+∆b might fail to be a positive
real-valued function for arbitrary perturbations∆b with sufficiently small
norm ‖∆b‖.

where the positive constantsza (a ∈ A) are such that the
beliefs ba (a ∈ A) in (5) are normalized to one. This
normalization of the beliefsba (a ∈ A) in (5) gives

1

za
=
∑

xa

fa(xa)
∏

j∈N (a)

nj→a(xj)

=

∑
xa

fa(xa)
∏

j∈N (a)

ñj→a(xj)

∏
j∈N (a)

τa,j

=
1

z̃a
∏

j∈N (a)

τa,j
, for all a ∈ A (39)

where we used (35) in the second step and (8) in the last step.
Combining (37), (38), and (39) we obtain

1

z̃a
=

κa,iτa,i
ωa,i

=
gi
ωa,i

, for all a ∈ A, i ∈ N (a)

with

gi ,
∏

c∈N (i)

κc,i, for all i ∈ I.

Now suppose that (9) is fulfilled. Setting

κa,i = g
1

|N(i)|

i , for all a ∈ A, i ∈ N (a)

τa,i = g
1− 1

|N(i)|

i , for all a ∈ A, i ∈ N (a)

and reversing all the steps finishes the proof.

B. Extension of the MF approximation to continuous random
variables

Suppose thatpX is a pdf of the vector of random variables
X. In this appendix, we assume that all integrals in the region-
based free energy approximation are Lebesgue integrals and
have finite values, which can be verified by inspection of
the factorsfa (a ∈ A) and the analytic expressions of the
computed beliefsbi (i ∈ I). An example where the MF
approximation is applied to continuous random variables and
combined with BP is discussed in Section IV.

For eachi ∈ I we can rewriteFMF in (11) as

FMF =D(bi || ai) +
∑

j∈I\i

∫
bj(xj) ln bj(xj) dxj

−
∑

a∈A\N (i)

∫
ln fa(xa)

∏

j∈N (a)

bj(xj) dxj

with

ai(xi) , exp
( ∑

a∈N (i)

∫
ln fa(xa)

∏

j∈N (a)\i

bj(xj) dxj

)
,

for all i ∈ I.

It follows from [22, Th. 2.1] thatD(bi || ai) is minimized
subject to

∫
bi(xi) dxi = 1 if and only if

bi(xi) =
ai(xi)∫
ai(xi) dxi

(40)
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up to sets of Lebesgue measure zero. Formally,bi in (40)
differs from bi in (12) by replacing sums with Lebesgue
integrals.

C. Proof of Theorem 2

The proof of Theorem 2 is based on the ideas of the proof
of [9, Th. 2]. However, we will see that we get a significant
simplification by augmenting it with some of the arguments
originally used in [11] for Markov random fields and adopted
to factor graphs in [12]. In particular, we shall make use of
the following observation. Recall the expression forFBP, MF in
(17)

FBP, MF =
∑

a∈ABP

∑

xa

ba(xa) ln
ba(xa)

fa(xa)

−
∑

a∈AMF

∑

xa

∏

i∈N (a)

bi(xi) ln fa(xa)

−
∑

i∈I

(|NBP(i)| − 1)
∑

xi

bi(xi) ln bi(xi) (41)

the marginalization constraints

bi(xi) =
∑

xa\xi

ba(xa), for all a ∈ ABP, i ∈ N (a) (42)

and the normalization constraints
∑

xi

bi(xi) = 1, for all i ∈ IMF \ IBP

∑

xa

ba(xa) = 1, for all a ∈ ABP.
(43)

Using the marginalization constraints (42), we see that
∑

a∈ABP

∑

xa

ba(xa) ln
∏

i∈N (a)

bi(xi)

=
∑

a∈ABP

∑

xa

∑

i∈N (a)

ba(xa) ln bi(xi)

=
∑

a∈ABP

∑

i∈N (a)

∑

xi

bi(xi) ln bi(xi)

=
∑

i∈IBP

∑

a∈NBP(i)

∑

xi

bi(xi) ln bi(xi)

=
∑

i∈IBP

|NBP(i)|
∑

xi

bi(xi) ln bi(xi). (44)

Combining (44) with (41), we further get

FBP, MF =−
∑

a∈ABP

∑

xa

ba(xa) ln fa(xa)

−
∑

a∈AMF

∑

xa

∏

i∈N (a)

bi(xi) ln fa(xa)

+
∑

i∈I

∑

xi

bi(xi) ln bi(xi)

+
∑

a∈ABP

Ia (45)

with the mutual information [25, p. 19]

Ia ,
∑

xa

ba(xa) ln
ba(xa)∏

i∈N (a) bi(xi)
, for all a ∈ ABP.

Next, we shall compute the stationary points of the Lagrangian

LBP, MF =FBP, MF

−
∑

a∈ABP

∑

i∈N (a)

∑

xi

λa,i(xi)
(
bi(xi)−

∑

xa\xi

ba(xa)
)

−
∑

i∈IMF\IBP

γi

(∑

xi

bi(xi)− 1
)

−
∑

a∈ABP

γa

(∑

xa

ba(xa)− 1
)

(46)

using the expression forFBP, MF in (45). The particular form
of FBP, MF in (45) is convenient because the marginalization
constraints in (42) imply that for alli ∈ I anda ∈ ABP we
have ∂Ia

∂bi(xi)
= − INBP(i)(a). Setting the derivative ofLBP, MF

in (46) with respect tobi(xi) andba(xa) equal to zero for all
i ∈ I anda ∈ ABP, we get the following fixed-point equations
for the stationary points:

ln bi(xi) =
∑

a∈NBP(i)

λa,i(xi)

+
∑

a∈NMF(i)

∑

xa\xi

∏

j∈N (a)\i

bj(xj) ln fa(xa)

+ |NBP(i)|+ IIMF\IBP(i)γi − 1, for all i ∈ I

ln ba(xa) = ln fa(xa)−
∑

i∈N (a)

λa,i(xi) + ln
( ∏

i∈N (a)

bi(xi)
)

+ γa − 1, for all a ∈ ABP.
(47)

Setting

mBP
a→i(xi) , exp

(
λa,i(xi) + 1−

1

|NBP(i)|

)
,

for all a ∈ ABP, i ∈ N (a)

mMF
a→i(xi) , exp

(
∑

xa\xi

∏

j∈N (a)\i

bj(xj) ln fa(xa)

)
,

for all a ∈ AMF, i ∈ N (a)

(48)

we can rewrite (47) as

bi(xi) = zi
∏

a∈NBP(i)

mBP
a→i(xi)

∏

a∈NMF(i)

mMF
a→i(xi),

for all i ∈ I

ba(xa) = za fa(xa)
∏

i∈N (a)

bi(xi)

mBP
a→i(xi)

,

for all a ∈ ABP

(49)

where

zi , exp(IIMF\IBP(i)γi), for all i ∈ I

za , exp

(
γa − 1 +

∑

i∈N (a)

(
1−

1

|NBP(i)|

))
,

for all a ∈ ABP
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are such that the normalization constraints in (43) are fulfilled.
Finally, we define

ni→a(xi) , zi
∏

c∈NBP(i)\{a}

mBP
c→i(xi)

∏

c∈NMF(i)

mMF
c→i(xi)

(50)

for all a ∈ A, i ∈ N (a). Plugging the expression forni→a(xi)
in (50) into the expression forba(xa) in (49), we find that

bi(xi) = zi
∏

a∈NBP(i)

mBP
a→i(xi)

∏

a∈NMF(i)

mMF
a→i(xi),

for all i ∈ I

ba(xa) = za fa(xa)
∏

i∈N (a)

ni→a(xi),

for all a ∈ ABP.

(51)

Using the marginalization constraints in (42) in combination
with (51) and noting thatzi = 1 for all i ∈ IBP we further
find that

ni→a(xi)m
BP
a→i(xi) =

∏

a∈NBP(i)

mBP
a→i(xi)

∏

a∈NMF(i)

mMF
a→i(xi)

= bi(xi)

=
∑

xa\xi

ba(xa)

= za
∑

xa\xi

fa(xa)
∏

j∈N (a)

nj→a(xj)

(52)

for all a ∈ ABP, i ∈ N (a). Dividing both sides of (52) by
ni→a(xi) gives

mBP
a→i(xi) = za

∑

xa\xi

fa(xa)
∏

j∈N (a)\i

nj→a(xj) (53)

for all a ∈ ABP, i ∈ N (a). Noting thatnj→a(xj) = bj(xj)
for all a ∈ AMF and j ∈ N (a), we can write the messages
mMF

a→i(xi) in (48) as

mMF
a→i(xi) = exp

(
∑

xa\xi

∏

j∈N (a)\i

nj→a(xj) ln fa(xa)

)

(54)

for all a ∈ AMF, i ∈ N (a). Now (50), (53), and (54)
are equivalent to (22) and (51) is equivalent to (21). This
completes the proof that stationary points of the Lagrangian in
(20) must be fixed-points with positive beliefs fulfilling (21).
Since all the steps are reversible, this also completes the proof
of Theorem C.

D. Proof of Lemma 2

We rewriteFBP, MF in (17) asFBP, MF = F1 + F2 + F3 with

F1 ,
∑

a∈ABP

D(ba || fa)

F2 ,
∑

a∈AMF

D
( ∏

i∈N (a)

bi || fa
)

F3 , −
∑

i∈I

(|NBP(i)|+ |NMF(i)| − 1)
∑

xi

bi(xi) ln bi(xi)

and set

0 < ka ,
∑

xa

fa(xa), for all a ∈ A.

Then

F1 =
∑

a∈ABP

D(ba || fa/ka)−
∑

a∈ABP

ln ka

≥−
∑

a∈ABP

ln(ka)

>−∞

F2 =
∑

a∈AMF

D
( ∏

i∈N (a)

bi || fa/ka
)
−
∑

a∈AMF

ln ka

≥−
∑

a∈AMF

ln ka

>−∞

F3 ≥ 0.

This proves 1). NowF3 < ∞, (24) implies thatF2 < ∞, and
(23) implies thatF1 < ∞ if and only if (25) if fulfilled, which
proves 2).

Suppose that we have fixed allba(x̄a) (a ∈ ABP) from (25).
Then the analysis for the remainingbi(xi) (i ∈ I) andba(xa)
excluding all x̄a from (25) (a ∈ ABP) is the same as in the
proof of Theorem 2 and the resulting fixed-point equations are
identical to (21) and (22) excluding all̄xa from (25) and vice
versa, which proves 3). We can reintroduce the realizationsx̄a

with fa(x̄a) = 0 (a ∈ ABP) from (25) in (22) because they
do not contribute to the message passing update equations, as
can be seen immediately from the definition of the messages
mBP

a→i(xi) (a ∈ ABP, i ∈ N (a)) in (22). The same argument
implies that (25) is a special case of the first equation in (21),
which proves 4) and, therefore, finishes the proof of Lemma
2.

E. Proof of convergence

In order to finish the proof of convergence for the algorithm
presented in Subsection III-B, we need to show that running
the forward/backward algorithm in the BP part in step 2)
of Algorithm 1 cannot increase the region-based free energy
approximationFBP, MF in (17). To this end we analyze the
factorization

p(xBP) ∝
∏

a∈ABP

fa(xa)
∏

i∈IBP∩IMF

∏

b∈NMF(i)

mMF
b→i(xi) (55)

with xBP , (xi | i ∈ IBP)
T. The factorization in (55) is the

product of the factorization of the BP part in (15) and the
incoming messages from the MF part. The Bethe free energy
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(3) corresponding to the factorization in (55) is

FBP =
∑

a∈ABP

∑

xa

ba(xa) ln
ba(xa)

fa(xa)

+
∑

i∈IBP∩IMF

∑

a∈NMF(i)

∑

xi

bi(xi) ln
bi(xi)

mMF
a→i(xi)

−
∑

i∈IBP

(|NBP(i)|+ |NMF(i)| − 1)
∑

xi

bi(xi) ln bi(xi)

=
∑

a∈ABP

∑

xa

ba(xa) ln
ba(xa)

fa(xa)

−
∑

i∈IBP∩IMF

∑

a∈NMF(i)

∑

xi

bi(xi) lnm
MF
a→i(xi)

−
∑

i∈IBP

(|NBP(i)| − 1)
∑

xi

bi(xi) ln bi(xi). (56)

We now show that minimizingFBP in (56) is equivalent to
minimizing FBP, MF in (17) with respect toba and bi for all
a ∈ ABP and i ∈ IBP. Obvioulsy,

∂FBP, MF

∂bi(xi)
=

∂FBP

∂bi(xi)
, for all i ∈ IBP \ IMF

and
∂FBP, MF

∂ba(xa)
=

∂FBP

∂ba(xa)
, for all a ∈ ABP.

This follows from the fact thatFBP, MF differs from FBP by
terms that depend only onbi with i ∈ IMF. Now suppose that
i ∈ IBP ∩ IMF. In this case, we find that

∂FBP, MF

∂bi(xi)
= (1− |NBP(i)|)(ln bi(xi) + 1)

−
∑

a∈NMF(i)

∑

xa\xi

∏

j∈N (a)\i

bj(xj) ln fa(xa) (57)

and
∂FBP

∂bi(xi)
= (1− |NBP(i)|)(ln bi(xi) + 1)−

∑

a∈NMF(i)

lnmMF
a→i(xi).

(58)

From (22) we see that

mMF
a→i(xi) = exp

(
∑

xa\xi

∏

j∈N (a)\i

nj→a(xj) ln fa(xa)

)

(59)

for all a ∈ NMF(i). Note that, according to step 2) in
Algorithm 1, the messagesmMF

a→i(xi) in (59) arefixed inputs
for the BP part. Therefore, we are not allowed to plug the
expressions for the messagesmMF

a→i(xi) in (59) into (58) in
general. However, sincea ∈ AMF andi ∈ IBP∩IMF, condition
(26) implies thatN (a) \ i ⊆ IMF \ IBP and guarantees that

nj→a(xj) = bj(xj)

is constant in step 2) of Algorithm 1 for allj ∈ N (a) \
i ⊆ IMF \ IBP. Therefore, we are indeed allowed to plug the
expressions of the messagesmMF

a→i(xi) in (59) into (58) and
finally see that also

∂FBP, MF

∂bi(xi)
=

∂FBP

∂bi(xi)
, for all i ∈ IBP ∩ IMF.

Hence, minimizingFBP in (56) is equivalent to minimizing
FBP, MF in (17).

By assumption, the factor graph in the BP part has a tree
structure. Therefore, [9, Prop. 3] implies that

1) FBP ≥ 0;
2) FBP = 0 if and only if the beliefs{bi, ba} in (56) are

the marginals of the factorization in (55).

Hence, forbj fixed with j ∈ IMF \ IBP, we see thatFBP, MF

in (17) is minimized by the marginals of the factorization in
(55).

It remains to show that running the forward/backword
algorithm in the BP part as described in step 2) in Algorithm
1 indeed computes the marginals of the factorization in (55).
Applying Theorem 1 to the factorization in (55) yields the
message passing fixed-point equations




ni→a(xi) =
∏

c∈NBP(i)\a

mBP
c→i(xi)

∏

c∈NMF(i)

mMF
c→i(xi)

mBP
a→i(xi) = za

∑

xa\xi

fa(xa)
∏

j∈N (a)\i

nj→a(xj)

(60)
for all a ∈ ABP, i ∈ N (a). The message passing fixed-
point equations in (60) are the same as the message passing
fixed-point equations for the BP part in (22) with fixed-input
messagesmMF

a→i(xi) for all i ∈ IBP ∩ IMF and a ∈ NMF(i).
Hence, running the forward/backward algorithm in the BP part
indeed computes the marginals of the factorization in (55) and
Algorithm 1 is guaranteed to converge.

F. Product of Gaussian distributions

Lemma 3:Let

pi(x) = CN(x;µi,Λ
−1
i ), for all i ∈ [1 : N ].

Then
∏

i∈[1:N ]

pi(x) ∝ CN(x;µ,Λ−1)

with

µ ,
∑

i∈[1:N ]

Λ−1Λiµi

Λ ,
∑

i∈[1:N ]

Λi.

Proof: Follows from direct computation.
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