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Abstract—We study polarization for nonbinary channels with
input alphabet of size q = 2r , r = 2, 3, . . . . Using Arıkan’s
polarizing kernel H2, we prove that the virtual channels that
arise in the process of polarization converge toq-ary channels
with capacity 1, 2, . . . , r bits, and that the total transmission rate
approaches the symmetric capacity of the channel. This leads to
an explicit transmission scheme forq-ary channels. The error
probability of decoding using successive cancellation behaves as
exp(−Nα), where N is the code length andα is any constant
less than0.5.

I. I NTRODUCTION

Polarization is a new concept in information theory discov-
ered in the context of capacity-achieving families of codes
for symmetric memoryless channels and later generalized
to source coding, multi-user channels and other problems.
Polarization was first described by Arıkan [1] who constructed
binary codes that achieve capacity of symmetric memoryless
channels (and “symmetric capacity” of general binary-input
channels). The main idea of [1] is to combine the bits of the
source sequence using repeated application of the “polarization

kernel” H2 =
(

1 0
1 1

)

. The resulting linear code of length

N = 2n has the generator matrix which forms a submatrix
of GN = BH⊗n

2 , where B is a permutation matrix. The
choice of the rows ofGN is governed by the polarization of
virtual channels for individual bits that arise in the process
of channel combining and splitting. Namely, the data bits
are written in the coordinates that correspond to near-perfect
channels while the other bits are fixed to some values known
to both the transmitter and the decoder. It was shown later
that polarization on binary channels can be achieved using
a variety of other kernels: in particular, anym × m matrix
whose columns cannot be arranged to form an upper triangular
matrix, achieves the desired polarization [2].

A study of polar codes for channels with nonbinary input
was undertaken by Şaşoğlu et al. [3], [4] and Mori and Tanaka
[5]. For primeq, it suffices to take the kernelH2, while for
nonprime alphabets, the kernel is time-varying and not explicit.
Namely, for primeq, [3] showed that there exist permutations
of the input alphabet such that the virtual channels for indi-
vidual q-ary symbols become either fully noisy or perfect, and
the proportion of perfect channels approaches the symmetric
capacity, in analogy with the results for binary codes in [1].
At the same time, [3] remarks that the transmission scheme
that uses the kernelH2 with modulo-q addition for composite
q does not necessarily lead to the polarization of the channels

to the two extremes. Rather, they show that there exists a
sequence of permutations of the input alphabet such that
when they are combined withH2, the virtual channels for the
transmitted symbols become either nearly perfect or nearly
useless.

The authors of [3] suggest several alternatives to the kernel
H2 that rely on randomized permutations or, in the case of
q = 2r, on multilevel schemes that implement polar coding
for each of the bits of the symbol independently, combining
them in the decoding procedure; see esp. [4].

In this paper we study polarization for channels with input
alphabet of sizeq = 2r, r = 2, 3, . . . . Suppose that the
channel is given by a stochastic matrixW (y|x) wherex ∈
X , y ∈ Y,X = {0, 1, . . . , q − 1}, andY is a finite alphabet.
Assuming that the channel combining is performed using the
kernelH2 with addition moduloq, we establish results about
the polarization of channels for individual symbols. It turns out
that virtual channels for the transmitted symbols convergeto
one ofr+1 extremal configurationsin whichj out ofr bits are
transmitted near-perfectly while the remainingr− j bits carry
almost no information. Moreover, the good bits are always
aligned to the right of the transmittedr-block, and no other
situations arise in the limit. Thus, the extremal configurations
for information rates that arise as a result of polarizationare
easily characterized: they form an upper-triangular matrix as
described in Sect. II-B (see also Figs. 1, 2 in the final section
of the paper). This characterization also constitutes the main
difference of our results from the multilevel scheme in [4]:
there, the set of extremal configurations can in principle have
cardinality2r which complicates the code construction.

Another related work is the paper by Abbe and Telatar
[6]. In it, the authors observed multilevel polarization ina
somewhat different context. The main result of their paper
provides a characterization of extremal points of the region of
attainable rates when polar codes are used for each of ther
users of a multiple-access channel. Namely, as shown in [6]
(see also [7]), these points form a subset in the set of vertices
of a matroid on the set ofr users. [6] also remarks that these
results translate directly to transmission over aq-ary DMC,
showing that the rate polarizes to many levels. To explain the
difference between [6] and our work we note that transmission
over the multiple-access channel in [6] is set up in such a way
that, once applied to the DMC, it corresponds to encoding
each bit of theq-ary symbol by its own polar code (we again
assume thatq = 2r). In other words, the polarization kernel
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employed is a linear operatorG = Ir ⊗H2. Thus, the group
acting onX is F

+
2r = Z2 × · · · × Z2 rather than the cyclic

additive group of orderq considered in this paper.
This work began as an attempt to construct polar codes for

theordered symmetric channel, introduced in our earlier paper
[8]. This channel provides an information-theoretic model
related to the ordered distance on binaryr-vectors, defined
as follows:

dr(x, x
′) = max{j : xj 6= x′

j}, wherex, x′ ∈ {0, 1}r. (1)

Below wtr(x) = dr(x, 0) denotes the ordered weight of the
symbolx. The ordered distance is an instance of a large class
of metrics introduced in [9] following works of Niederreiter
in numerical analysis [10]. It has subsequently appeared ina
large number of works in algebraic combinatorics and coding
theory; see e.g., [11] and references therein. We find it quite
interesting that it independently arises in the study of polar
codes on channels with input of sizeq = 2r. Examples ofq-
ary polar codes for ordered symmetric channels can be easily
constructed and analyzed.

Last but not least, when this work was in its final stages,
we became aware of the paper by Sahebi and Pradhan [12]
who also observed the multilevel polarization phenomenon for
q-ary channels. At the same time, [12] did not give a proof
of polarization, which constitutes the main technical partof
our work. The motivation of the approach of [12] relates to
a detailed study of linear and group codes onq-ary channels,
and is also different from our approach.

In the next section we state and prove the main result, the
convergence of the channels to one of ther+1 extremal con-
figurations, and deduce that polar codes achieve the symmetric
capacity of the channel. Then we derive the rate of polarization
and estimate the error probability of decoding, and give some
examples.

II. POLARIZATION FOR q-ARY CHANNELS

We consider combining of theq-ary data under the action
of the operatorH2, where q = 2r, r ≥ 2. Let W : X →
Y, |X | = q be a discrete memoryless channel (DMC). The
symmetric capacityof the channelW equals

I(W ) ,
∑

x∈X

∑

y∈Y

1

q
W (y|x) log W (y|x)∑

x′∈X
1
qW (y|x′)

where the base of the logarithm is2. Define the combined
channelW2 and the channelsW− andW+ by

W2(y1, y2|u1, u2) = W (y1|u1 + u2)W (y2|u2),

W−(y1, y2|u1) =
∑

u2∈X

1

q
W2(y1, y2|u1, u2), (2)

W+(y1, y2, u1|u2) =
1

q
W2(y1, y2|u1, u2), (3)

where u1, u2, y1, y2 are r-vectors and+ is a modulo-q
sum. This transformation can be applied recursively to the
channelsW−,W+ resulting in four channels of the form
W b1b2 , b1, b2 ∈ {+.−}. After n steps we obtainN = 2n

channelsW (j)
N , j = 1, . . . , N. For the caseq = 2 it is shown

in [1] that asn increases, the channelsW (j)
N become either

almost perfect or almost completely noisy (polarize). In formal
terms, for anyε > 0

lim
n→∞

|{b ∈ {+,−}n : I(W b) ∈ (ε, 1− ε)}|
2n

= 0. (4)

In this paper we extend this result to the caseq = 2r, r > 1.
As shown in [1], aftern steps of the transformation (2)-(3)

the channelsW (i)
N : X → YN × X i−1, 1 ≤ i ≤ N are given

by

W
(i)
N (yN1 , ui−1

1 |ui) =
1

qN−1

∑

uN
i+1∈XN−i

WN (yN1 |uN
1 GN ),

(5)
whereGN = BH⊗n

2 and B is a permutation matrix. Here
we use the shorthand notation for sequences of symbols: for
instance,yN1 , (y1, y2, . . . , yN), etc.

A. Notation

For any pair of input symbolsx, x′ ∈ X , the Bhattacharyya
distance between them is

Z(W{x,x′}) =
∑

y∈Y

√
W (y|x)W (y|x′)

whereW{x,x′} is the channel obtained by restricting the input
alphabet ofW to the subset{x, x′} ⊂ X .

Define the quantityZv(W ) for v ∈ X \ {0}:

Zv(W ) =
1

2r

∑

x∈X

Z(W{x,x+v}).

Introduce theith average Bhattacharyya distance of the chan-
nel W by

Zi(W ) =
1

2i−1

∑

v∈Xi

Zv(W ) (6)

wherei = 1, 2, · · · , r andXi = {v ∈ X : wtr(v) = i}. Then

Z(W ) : =
1

2r(2r − 1)

∑

x 6=x′

Z(W{x,x′})

=
1

2r − 1

r∑

i=1

2i−1Zi(W ) (7)

Recall the setting of [1] for the evolution of the channel
parameters. On the setΩ = {+,−}∗ of semi-infinite binary
sequences define aσ-algebraF onΩ generated by the cylinder
setsS(b1, . . . , bn) = {ω ∈ Ω : ω1 = b1, . . . , ωn = bn} for all
sequences(b1, . . . , bn) ∈ {+,−}n and for alln ≥ 0. Consider
the probability space(Ω,F , P ), whereP (S(b1, . . . , bn)) =
2−n, n ≥ 0. Define a filtrationF0 ⊂ F1 ⊂ · · · ⊂ F where
F0 = {∅,Ω} andFn, n ≥ 1 is generated by the cylinder sets
S(b1, . . . , bn), bi ∈ {+,−}.

Let Bi, i = 1, 2, · · · be i.i.d. {+,−}-valued random vari-
ables withPr(B1 = +) = Pr(B1 = −) = 1/2. The random
channel emerging at timen will be denoted byWB, where
B = (B1, B2, · · · , Bn). Thus,P (WB = W

(i)
N ) = 2−n for all

i = 1, . . . , 2n. Let Wn = WB, In = I(WB), Z{x,x′},n =



Z(WB
{x,x′}), Zv,n = Zv(W

B), andZi,n = Zi(W
B). These

random variables are adapted to the above filtration (meaning
that In etc. are measurable w.r.t.Fn for everyn ≥ 1).

B. Channel polarization

In this section we state a sequence of results that shows
that q-ary polar codes based on the kernelH2 can be used to
transmit reliably over the channelW for all ratesR < I(W ).

Theorem 1:(a) Letn → ∞. The random variableIn con-
verges a.e. to a random variableI∞ with E(I∞) = I(W ).

(b) For alli = 1, 2, . . . , r

lim
n→∞

Zi,n = Zi,∞ a.e.,

where the variablesZi,∞ take values0 and1. With probability
one the vector(Zi,∞, i = 1, . . . , r) takes one of the following
values:

(Z1,∞ = 0, Z2,∞ = 0, . . . , Zr−1,∞ = 0, Zr,∞ = 0)
(Z1,∞ = 1, Z2,∞ = 0, . . . , Zr−1,∞ = 0, Zr,∞ = 0)
(Z1,∞ = 1, Z2,∞ = 1, . . . , Zr−1,∞ = 0, Zr,∞ = 0)

...
...

...
(Z1,∞ = 1, Z2,∞ = 1, . . . , Zr−1,∞ = 1, Zr,∞ = 0)
(Z1,∞ = 1, Z2,∞ = 1, . . . , Zr−1,∞ = 1, Zr,∞ = 1).

(8)

Let us restate part (b) of this theorem for finiten.
Proposition 1: Let ε, δ > 0 be fixed. Fork = 0, 1, . . . , r

define disjoint events

Bk,n(ε) =
{
ω : (Z1,n, Z2,n, . . . , Zr,n) ∈ Rk

}

whereRk = Rk(ε) ,

(∏k
i=1 D1

)
×
(∏r

i=k+1 D0

)
and

D0 = [0, ε), D1 = (1 − ε, 1]. ThenP (∪r
k=0Bk,n(ε)) ≥ 1 − δ

starting from somen = n(ε, δ).

The proofs of these statements are given in a later part of this
section.

We need the following lemma.
Lemma 1:For a DMC with q-ary input,I(W ) andZ(W )

are related by

I(W ) ≥ log
2r

1 +
∑r

i=1 2
i−1Zi(W )

(9)

I(W ) ≤
r∑

i=1

√
1− Zi(W )2. (10)

For r = 1 these inequalities are proved in [1]. Forr > 1
Eq. (9) is a restatement of [3, Prop. 3] using (7). The fact that
(10) holds for allr > 1 is new, and is proved in the Appendix.

Inequalities (9)-(10) imply that if(Z1, . . . , Zr) ∈ Rk(ε)
then |I(W ) − (r − k)| ≤ δ where δ ≥ max(k

√
ε, (2r−k −

1)ε log e).
The following proposition is an immediate corollary of the

above results.
Proposition 2: (a) The random variableI∞ is supported on

the set{0, 1, . . . , r}.

(b) For every0 ≤ k ≤ r and everyδ > 0 there existsε > 0
such that

lim
n→∞

P ({|In − (r − k)| ≤ δ} △Bk,n(ε)) = 0.

(c)E(|{i : Zi,∞ = 0}|) = I(W ).
Proof: The first statement is obvious from (9)-(10). To

prove the second statement we note that, with the appropriate
choice ofε

{|In − (r − k)| ≤ δ} ⊃ Bk,n(ε)

for all n ≥ 0. At the same time,P ({|In − (r − k)| ≤ δ} ∩
Bk′,n(ε)) = 0 for all k′ 6= k, and P (

◦∪ Bk,n(ε)) → 1 for
any ε > 0. Together this implies (b). Finally, we have that
E(I∞) = I(W ). Then use (a) and (b) to claim thatE(|{i :
Zi,∞ = 0}|) =∑r

k=0 kP (I∞ = k) = I(W ).

We can say a bit more about the nature of convergence
established in this proposition. Let us fixk ∈ {0, 1, . . . , r}
and define the channel for ther − k rightmost bits of the
transmitted symbol as follows:

W [r−k](y|u) = 1

2k

∑

x∈X :xr
k+1=u

W (y|x), u ∈ {0, 1}r−k

wherex = (x1, x2, . . . , xr).

Lemma 2:Let V : X → Ỹ be a DMC and letδ > 0. Sup-
pose that(Z1,n(V ), Z2,n(V ), . . . , Zr,n(V )) ∈ Rk(ε), for some
0 ≤ k ≤ r. If ε is sufficiently small, thenI(V [r−k]) ≥ r−k−δ.
In particular, it suffices to takeε ≤ 2−k+δ/(2r−k − 1).

Proof: We may assume that1 ≤ k ≤ r − 1. Let u ∈
X r−k, x = (x1, . . . , xk, u) ∈ X , x′ = (x′

1, . . . , x
′
k, u) ∈ X .

Let v ∈ {0, 1}r−k\{0} and consider

Z(V
[r−k]
{u,u+v}) =

∑

y

√
V [r−k](y|u)V [r−k](y|u+ v)

=
1

2k

∑

y

√∑

x

∑

x′

V (y|x)V (y|x′ + v′)

≤ 1

2k

∑

y

∑

x

∑

x′

√
V (y|x)V (y|x′ + v′)

=
1

2k

∑

x,x′

Z(V{x,x′+v′})

< 2kε

wherev′ = 0kv1v2 . . . vr−k. The last inequality follows from
the fact thatZi(V ) < ε for i = k+1, . . . , r. SinceZi(V

[r−k])

is the average of theZ(V
[r−k]
{u,u+v}) over all v with wtr(v) = i,

Zi(V
[r−k]) < 2kε for all i = 1, . . . , r − k. Now the lemma

follows from (9) in Lemma 1,
It turns out that the channels for individual bits converge to

either perfect or fully noisy channels. If the channel for bit j
is perfect then the channels for all bitsi, r ≥ i > j are perfect.
If the channel for biti is noisy then the channels for all bits
j, 1 ≤ j < i are noisy. The total number of near-perfect bits
approachesI(W ). This is made formal in the next proposition.



Proposition 3: Let Ωk = {ω : (Z1,∞, Z2,∞, . . . , Zr,∞) =
1k0r−k}, k = 0, 1, . . . , r. For everyω ∈ Ωk

lim
n→∞

|In − I(W [r−k]
n )| = 0.

Proof: For everyω ∈ Ωk we have thatIn(ω) → r − k.
Combining this with the previous lemma and Proposition 2(b),
we conclude that for suchω also I(W [r−k]

n ) → r − k.

The concluding claim of this section describes the channel
polarization and establishes that the total number of bits sent
over almost noiseless channels approachesNI(W ).

Theorem 2:For any DMCW : X → Y the channelsW (i)
N

polarize to one of ther + 1 extremal configurations. Namely,
let Vi = W

(i)
N and

πk,N =
|{i ∈ [N ] : |I(Vi)− k| < δ ∧ |I(V [k]

i )− k| < δ}|
N

,

whereδ > 0, thenlimN→∞ πk,N = P (I∞ = k) for all k =
0, 1, . . . , r. Consequently

r∑

k=1

kπk → I(W ).

This theorem follows directly from Theorem 1 and Proposi-
tions 2 and 3. Some examples of convergence to the extremal
configurations described by this theorem are given in Sect. III
below.

C. Transmission with polar codes

Let us describe a scheme of transmitting over the channel
W with polar codes. Takeε > 0 and choose a sufficiently
large n. Assume that the length of the code isN = 2n.
Proposition 1 implies that set[N ], apart from a small subset, is
partitioned intor+1 subsetsAk,n such that forj ∈ Ak,n the
vector (Z1(W

(j)
N ), Z2(W

(j)
N ), . . . , Zr(W

(j)
N )) ∈ Rk(ε). Each

j ∈ Ak,n refers to anr-bit symbol in whichr − k rightmost
bits correspond to small values ofZi(W

(j)
N ). To transmit data

over the channel, we write the data bits in these coordinates
and encode them using the linear transformationGN .

More specifically, let us order the coordinatesj ∈ [N ]

by the increase of the quantity
∑r

i=1 2
i−1Zi(W

(j)
N ) and use

these numbers to locate the subsetsAk,n. We transmit data
by encoding messagesuN

1 = (u1, . . . , uN) in which if
j ∈ Ak,n, k = 0, . . . , r − 1 then the symboluj is taken from
the subset of symbols ofX with the first k symbols fixed
and known to both the encoder and the decoder ([1] calls
them frozen bits). In particular, the subsetAr,n is not used to
transmit data. A polar codeword is computed asxN

1 = uN
1 GN

and sent over the channel.
Decoding is performed using the “successive cancellation”

procedure of [1] with the obvious constraints on the symbol
values. Namely, forj = 1, . . . , N put

ûj =

{
uj , j ∈ Ar,n

argmaxx W
(j)
N (yN1 , ûj−1

1 |x), j ∈ ∪k≤r−1Ak,n

where if j ∈ Ak,n, k = 0, 1, . . . , r − 1, then the maximum
is computed over the symbolsx ∈ X with the fixed (known)
values of the firstk bits.

The error probability of this decoding is estimated in
Sect. II-E.

D. Proof of Theorem 1

Part (a) of Theorem 1 follows straightforwardly from [1],
[3]. Namely, as shown in [1, Prop. 4],I(W+) + I(W−) =
2I(W ). We note that the proof in [1] uses only the fact that
u1, u2 are recoverable fromx1, x2 which is true in our case.
Hence the sequenceIn, n ≥ 1 forms a bounded martingale. By
Doob’s theorem [13, p.196], it converges a.e. inL1(Ω,F , P )
to a random variableI∞ with E(I∞) = I(W ).

To prove part (b) we show that each of theZi,n’s converges
a.s. to a(0, 1) Bernoulli random variableZi,∞. This conver-
gence occurs in a concerted way in that the limit r.v.’s obey
Zj,∞ ≥ Zi,∞ a.e. if j < i. This is shown by observing that
for any fixedi = 1, . . . , r and for all v ∈ Xi , theZv,n(W )
converge to identical copies of a Bernoulli random variable.

1) Convergence ofZv,n, v ∈ X : In this section we shall
prove that the Bhattacharyya parametersZv,n converge almost
surely to Bernoulli random variables. The proof forms the
main technical result of this paper and is accomplished in
several steps.

Lemma 3:Let

Z(j)
max(W ) = max

v∈Xj

Zv(W ), j = 1, . . . , r.

Then

Z(r−j)
max (W+) = Z(r−j)

max (W )2, j = 0, . . . , r − 1. (11)

Z(r)
max(W

−) ≤ qZ(r)
max(W ) (12)

Z(r−1)
max (W−) ≤ q

2
Z(r)
max(W ) +

q

2
Z(r−1)
max (W ) (13)

and generally

Z(r−j)
max (W−) ≤ q

2
Z(r)
max(W ) +

q

4
Z(r−1)
max (W )+

· · ·+ q

2j
Z(r−j+1)
max (W ) +

q

2j
Z(r−j)
max (W ). (14)

Proof: In [3] it is shown that for allv ∈ X\{0}
Zv(W

+) = Zv(W )2 (15)

Zv(W
−) ≤ 2Zv(W ) +

∑

δ∈X\{0,−v}

Zδ(W )Zv+δ(W ). (16)

The first of these two equations implies (11). Now takev ∈
Xr. Then in the sum on the right-hand side of (16) we have
that eitherδ ∈ Xr or δ + v ∈ Xr, and

Zv(W
−) ≤ 2Zv(W ) + (q − 2)Z(r)

max(W ),

implying (12). Now takev ∈ Xr−j , j ≥ 1. The sum onδ
in (16) containsq/2 terms with δ ∈ Xr, q/4 terms with
δ ∈ Xr−1, and so on, before reachingXr−j . Finally, let
δ ∈ ∪r−1

i=j Xr−i\{−v}. There are(q/2j)− 2 possibilities, and



for each of them eitherv + δ or δ is in Xr−j . This implies
(14) and therefore also (13).

In particular, takej = 0. Relations (11), (12) imply that

Z
(r)
max,n+1 = (Z(r)

max,n)
2 if Bn+1 = + (17)

Z
(r)
max,n+1 ≤ qZ(r)

max,n if Bn+1 = −. (18)

Iterated random maps of this kind were studied in [14] which
contains general results on their convergence and stationary
distributions. We need more detailed information about this
process, established in the following lemma.

Lemma 4:Let Un, n ≥ 0 be a sequence of random vari-
ables adapted to a filtrationFn with the following properties:
(i) Un ∈ [0, 1]
(ii) P (Un+1 = U2

n|Fn) ≥ 1/2
(iii) Un+1 ≤ qUn for someq ∈ Z+.
Then there are eventsΩ0,Ω1 such thatP (Ω0 ∪ Ω1) = 1 and
Un(ω) → i for ω ∈ Ωi, i = 0, 1.

Proof: (a) First let us rescale the processUn so that in
the neighborhood of zero it has a drift to zero. Letβ ∈ (0, 1)
be such that

qβ − 1 < 1/4.

Let Xn = Uβ
n . Takeτ(ω) to be the first time whenXn(ω) ≥

1/2. Let Yn = Xmin(n,τ). On the eventYn ≥ 1/2 we have
Yn = Yn+1 or

E(Yn+1 − Yn|Fn) = 0

while on the eventYn < 1/2 we have

E(Yn+1 − Yn|Fn) ≤
1

2
(Y 2

n − Yn) +
1

2
(qβYn − Yn)

≤ −1

8
Yn ≤ 0.

This implies that the sequenceYn, n ≥ 0 forms a supermartin-
gale which is bounded between0 and1. By the convergence
theorem,Yn → Y∞ a.e. and inL1(Ω,F , P ), where Y∞

is a random variable supported on[0, 1]. This implies that
EY0 ≥ EYn ↓ EY∞. Further, if X0 ∈ [0, 1/4] then (since
EY0 = EX0)

P (Y∞ ≥ 1/2) ≤ 2EY0 ≤ 1/2. (19)

(b) Now we shall prove thatP (Y∞ ∈ (δ, 12−δ)) = 0 for any
δ > 0. From (ii) it follows thatP (Xn+1 = X2

n|Fn) ≥ 1/2,
which implies that

P (Yn+1 = Y 2
n |Fn) ≥ 1/2 on Yn < 1/2 (20)

for all n ≥ 0. Suppose thatY∞ takes values in(δ, 1/2 − δ)
with probability α > 0. Let An = {ω : Yn ∈ (δ, 1/2 − δ)}.
SinceYn → Y∞ a.e., the Egorov theorem implies that there
is a subset of probability arbitrarily close toP (An) which
this convergence is uniform, and thusP (An) ≥ α/2 for all
sufficiently largen. Therefore

P (|Yn+1 − Yn| ≥ δ2/2) ≥ P (Yn+1 = Y 2
n , Yn ∈ (δ, 1/2− δ))

≥ α

4
,

the last step by (20). This however contradicts the almost sure
convergence ofYn.

(c) This implies thatP (Y∞ < 1/2) = P (Yn → 0) =
P (Un → 0). From (19)

P (Un → 0) ≥ 1

2
provided thatU0 ≤

(1
4

) 1
β

. (21)

Moreover, ifU0 ≤ (1/2)1/β then eitherYn → 0 or Yn ≥ 1/2
for somen. This translates to

P ((Un → 0) or (Un ≥ (1/2)1/β for somen)) = 1 (22)

provided thatU0 ≤ (1/2)1/β.

(d) Let δ > 0 be such thatq(12 )
1
β < 1 − δ (depending on

q this may require taking a sufficiently smallβ). Let L :=

[0, (14 )
1
β ] and R := [1 − δ, 1]. Observe that the processUn

cannot move fromL to R without visitingC := ((12 )
1
β , 1−δ).

Let σ1 be the first time whenUn ∈ C, let η1 be the first time
after σ1 whenUn ∈ L ∪ R, let σ2 be the first time afterη1
whenUn ∈ C, etc.,σ1 < η1 < σ2 < η2 < . . . . We shall prove
that every sample path of the process eventually stays outside
C, i.e., that for almost allω there existsk = k(ω) < ∞ such
thatσk(ω) = ∞.

Assume the contrary, i.e.,limk→∞ P (σk < ∞) = α > 0
(sinceP (σk+1 < ∞) < P (σk < ∞), this limit exists.) We
have

P (∃k : σk = ∞) ≥
∞∑

j=1

P (σj 6= ∞;Uηj
∈ L;σj+1 = ∞)

≥ α

∞∑

j=1

P (Uηj
∈ L;σj+1 = ∞|σj 6= ∞). (23)

Consider the processU ′
n = Uσk+n on the eventσk < ∞

(with the measure renormalized byP (σk < ∞)). This
process has the same properties (i)-(iii) asUn. Let J =
⌈log2( 1β log1−δ 1/4)⌉, thenx2J ∈ L for anyx ∈ C. Therefore,
P (U ′

J ∈ L) ≥ 2−J by property (ii). Now consider the process
U ′
J+n on the eventU ′

J ∈ L. This process has properties (i)-
(iii), so we can use (21) to conclude that for

P (Uηk
∈ L;σk+1 = ∞|σk 6= ∞) ≥ 2−(J+1)

uniformly in k. But then the sum in (23) is equal to infinity,
a contradiction.

(e) The proof is completed by showing that the probability
of Un staying inRc = [0, 1]\R without converging to zero
is zero. We know that almost all trajectories stay outsideC,
so suppose that the process starts in(0, (1/2)1/β). Then the
probability that it entersL in a finite number of steps is
uniformly bounded from below (this is shown similarly to
(23)), so the probability that it does not go toL is zero. Next
assume that the process starts inL, then by (22) it either goes
to zero or entersC with probability one. Together with part
(d) this implies that the process that starts inL converges to
zero or one with probability one.

Lemma 5:Let V : X → Ỹ be a channel. Letv, v′ ∈ X\{0}
be such that wtr(v) ≥ wtr(v′). For anyδ′ > 0 there exists



δ > 0 such thatZv′(V ) ≥ 1 − δ′ wheneverZv(V ) ≥ 1 − δ.
In particular, we can takeδ = δ′q−3.

Proof: If wtr(v) = 1 thenv = 10 . . .0, so the statement
is trivial. Let Zv(V ) ≥ 1−δ, where wtr(v) = i ≥ 2. Then for
every pairx, x′ = x + v we haveZ(V{x,x′}) ≥ 1 − ε, where
ε = qδ. Consider the unit-length vectorsz = (

√
V (y|x), y ∈

Ỹ), z′ = (
√
V (y|x′), y ∈ Ỹ), and let θ(z, z′) be the angle

between them. We havecos(θ(z, z′)) = Z(V{x,x′}) ≥ 1 − ε,
and so‖z − z′‖2 = 2− 2 cos(θ(z, z′)) ≤ 2ε.

Now take a pair of symbolsx1, x2 = x1 + v′ where
v′ ∈ Xs, s ≤ i. There exists a numbert ∈ Xr−i+s

such thatv′ = tv. Define z1 = (
√
V (y|x1), y ∈ Ỹ) and

z2 = (
√
V (y|x2), y ∈ Ỹ). Let wj = (

√
V (y|x1 + jv), y ∈

Ỹ), j = 1, . . . , t− 1. From the triangle inequality

‖z1 − z2‖ ≤ ‖z1 − w1‖+ ‖w1 − w2‖+ · · ·+ ‖wt−1 − z2‖
≤ t

√
2ε

≤ q
√
2ε.

We obtain

Z(V{x1,x2}) = cos(θ(z1, z2)) = 1− 1/2‖z1 − z2‖2

≥ 1− q2ε

= 1− q3δ.

Thus we obtain

Zv′(V ) =
1

q

∑

x

Z(V{x,x+v}) ≥ 1− q3δ.

Remark :We can prove the previous lemma in a different
way by relating the Bhattacharyya distance to theℓ1-distance
betweenV (y|x1) and V (y|x2) [15]. Then the estimateδ =
δ′q−3 can be improved toδ = δ′(2q)−2.

Lemma 6:For all j = 1, . . . , r

Z(j)
max,n

a.e.−→ Z(j)
max,∞.

whereZ(j)
max,∞ is a Bernoulli random variable supported on

{0, 1}.
Proof: For a given channelV denote

Z [s,r]
max(V ) = max(Z(s)

max(V ), Z(s+1)
max (V ), . . . , Z(r)

max(V )).

Eq. (15) gives us that

Z [r−j,r]
max (W+) = (Z [r−j,r]

max (W ))2

and (14) implies that

Z [r−j,r]
max (W−) ≤ qZ [r−j,r]

max (W ).

Hence by Lemma 4 the random variablesZ
[r−j,r]
max,∞ are well-

defined and are Bernoulli 0-1 valued a.e. for allj =
0, 1, . . . , r − 1.

We need to prove the same forZ(r−j)
max,∞. The proof is

by induction onj. We just established the needed claim for
Z

(r)
max,n. For ease of understanding let us show that this implies

the convergence ofZ(r−1)
max,n. Indeed,Z [r−1,r]

max,∞ is a Bernoulli 0-1

valued random variable. But so isZ(r)
max,∞, so the possibilities

are

(Z [r−1,r]
max,∞ , Z(r)

max,∞) = (1, 1) or (1, 0) or (0, 0)

with probability one (note that(0, 1) is ruled out by the
definition of Z [r−1,r]

max ). If Z
(r)
max,∞ = 1 thenZ

(r−1)
max,∞ = 1 by

Lemma 5 (this statement holds trajectory-wise). If on the other
hand, the case that is realized is(1, 0) thenZ

(r−1)
max,∞ = 1 by

the definition ofZ [r−1,r]
max . Finally in the case(0, 0) we clearly

have thatZ(r−1)
max,∞ = 0, both holding trajectory-wise.

The general induction step is almost exactly the same.
Assume that we have proved the required convergence for
Z

(r−i)
max , i = 0, 1, . . . , j − 1. Assume thatZ [r−j,r]

max,∞ = 0, then
Z

(r−j)
max = 0. If on the other hand,Z [r−j,r]

max,∞ = 1 then either
one ofZ(r−i)

max,∞, i < j equals one, and thenZ(r−j)
max,∞ = 1 by

Lemma 5, orZ(r−i)
max,∞ = 0 for all i < j, and thenZ(r−j)

max,∞ = 1

by definition ofZ [r−j,r]
max,∞.

Now we are in a position to complete the proof of conver-
gence.

Lemma 7:Zv,n → Zv,∞ a.e., whereZv,∞ is a (0, 1)-
valued random variable whose distribution depends only on
the ordered weight wtr(v).

Proof: Let Ω(j)
i = {ω : Z

(j)
max,n → i}, where i = 0, 1

and j = 1, . . . , r, where some of the events may be empty.
For everyω ∈ Ω

(j)
1 , j = 1, . . . , r we have that for anyδ > 0

starting with somen0 the quantityZ(j)
max,n ≥ 1− δ. Thus, for

n ≥ n0 there existsv ∈ Xj , possibly depending onn, such
thatZv,n(ω) ≥ 1− δ. Then Lemma 5 implies thatZv′,n(ω) ≥
1 − q3δ for all v′ ∈ Xj , so Zv,n(ω) → 1. At the same time,
if ω ∈ Ω

(j)
0 thenZv,n(ω) → 0 for all v ∈ Xj .

2) Proof of Part (b) of Theorem 1:

Lemma 8:For any i = 1, . . . , r, the random variable
Zi,n converges a.e. to a(0, 1)-valued random variableZi,∞.
Moreover,Zi,∞ ≥ Zi−1,∞ a.e.

Proof: The first part follows because all theZv, v ∈ Xi

converge to identical copies of the same random variable.
Formally, Lemma 7 asserts thatZv,n → j for every v ∈ Xi

and everyω ∈ Ω
(i)
j , j = 0, 1. Hence taking the limitn → ∞

in (6) we see thatZi,n → j onΩ
(i)
j whereP (Ω

(i)
0 ∪Ω

(i)
1 ) = 1.

Let us prove the second part. Suppose thatZi,n ≥ 1 − ε′,
then using (6) we see thatZv′,n ≥ 1− 2i−1ε′ for all v′ ∈ Xi.
Lemma 5 implies thatZv,n ≥ 1 − 23r+i−1ε′ for any v ∈
X ,wtr(v) = i, and thereforeZi,n ≥ 1 − 23r+i−1ε′. Thus
Zi,n(ω) → 1 impliesZi−1(ω) → 1 for all ω ∈ Ω1(i) and all
i. The second claim of the lemma now follows becauseZi,∞

are 0-1 valued for alli.

We obtain thatZi,∞ is a (0, 1) random variable a.e. and
for all i, and if Zi,∞ = 1 thenZj,∞ = 1 for all 1 ≤ j < i.

Consider the eventsΨ(j)
i = {ω : Zj,∞ = i}, i = 0, 1; j =



1, . . . , r. We have

Ψ
(1)
1 ⊃ Ψ

(2)
1 ⊃ · · · ⊃ Ψ

(r)
1

Ψ
(1)
0 ⊂ Ψ

(2)
0 ⊂ · · · ⊂ Ψ

(r)
0 .

We need to prove that with probability one, the vector
(Zi,∞, i = 1, . . . , r) takes one of the values (8). With
probability oneZr,∞ = 1 or 0. If it is equal to 1 then
necessarilyZr−1,∞ = · · · = Z1,∞ = 1. OtherwiseZr,∞ = 0.
In this case it is possible thatZr−1,∞ = 1 (in which case
Zr−2,∞ = · · · = Z1,∞ = 1) or Zr−1,∞ = 0. Of course
P (Ψ

(r−1)
0 ∪Ψ

(r−1)
1 ) = 1, so in particular

P (Ψ
(r)
0 \(Ψ(r−1)

0 ∪ (Ψ
(r−1)
1 \Ψ(r)

1 ))) = 0.

If Zr−1,∞ = 0 then the possibilities areZr−2,∞ = 1 or 0, up
to another event of probability 0, and so on. Thus, the union
of the disjoint events given by (8) holds with probability one.
Theorem 1 is proved.

3) Proof of Prop. 1:The proof is analogous to the argument
in the previous paragraph. The random variableZr,n → Zr,∞

a.e. . By the Egorov theorem, for anyγ > 0 there are disjoint
subsets̃Ψ(r)

0 ⊂ Ψ
(r)
0 , Ψ̃

(r)
1 ∈ Ψ

(r)
1 with P (Ψ̃

(r)
0 ∪Ψ̃(r)

1 ) ≥ 1−γ

on which this convergence is uniform. Taken(r)
1 such that

Zr,n > 1 − ε/24r−1 for everyω ∈ Ψ̃
(r)
1 and n ≥ n

(r)
1 . By

Lemma 5 and (6) for every suchω we haveZi,n ≥ 1 − ε

for all i = 1, . . . , r − 1; n ≥ n
(r)
1 . This gives rise to the

eventBr,n. Otherwise letn(r)
0 be such thatsupω Zr,n < ε

for ω ∈ Ψ̃
(r)
0 and n ≥ n

(r)
0 . Consider the events̃Ψ(r−1)

0 ⊂
Ψ

(r−1)
0 , Ψ̃

(r−1)
1 ⊂ Ψ

(r−1)
1 with P (Ψ̃

(r−1)
0 ∪Ψ̃(r−1)

1 ) ≥ 1−γ on
which Zr−1,n → Zr−1,∞ uniformly. Choosen(r−1)

1 such that
Zr−1,n > 1− ε/24r−2 for all n ≥ n

(r−1)
1 and allω ∈ Ψ̃

(r−1)
1 .

For every suchω we haveZi,n ≥ 1−ε for all i = 1, . . . , r−2;

n ≥ n
(r−1)
1 . Next,

P (Ψ̃
(r)
0 \(Ψ̃(r−1)

0 ∪ (Ψ̃
(r−1)
1 \Ψ̃(r)

1 ))) ≤ 2γ.

We continue in this manner until we construct all ther + 1
eventsBk,n. For this, n should be taken sufficiently large,
n ≥ maxk max(n

(k)
0 , n

(k)
1 ). By takingγ = δ/r we can ensure

thatP (∪kBk,n ≥ 1− δ. This concludes the proof.

Remark :For binary-input channels, the transmitted bits in
the limit are transmitted either perfectly or carry no informa-
tion about the message. Şaşoğlu et al. [3] observed thatq-ary
codes constructed using Arıkan’s kernelH2 share this property
for transmitted symbols only ifq is prime. Otherwise [3] notes
the symbols can polarize to states that carry partial information
about the transmission. In particular, they give an exampleof
a quaternary-input channelW : {0, 1, 2, 3} → {0, 1} with
W (0|0) = W (0|2) = W (1|1) = W (1|3) = 1. This channel
has capacity 1 bit. Computing the channelsW+ and W−

we find that they are equivalent to the original channelW .
The conclusion reached in [3] was that there are nonbinary
channels that do not polarize under the action ofH2.

We observe that the above channel corresponds to the
extremal configuration10 in (8) (the other two configurations

arise with probability 0), and therefore has to be, and is, a
stable point of the channel combining operation. It is possible
to reach capacity by transmitting the least significant bit of
every symbol.

Paper [3] went on to show that for everyn ≥ 1 there
exists a permutationπn : X → X such that the kernels
H2(n) : (u, v) → (u+v, πn(v)) lead to channels that polarize
to perfect or fully noisy. While the result of [3] holds for
any q, in the case ofq = 2r this means that configurations
00 . . .0 and11 . . . 1 arise with probability1−I(W ) andI(W )
respectively, while all the other configurations have probability
zero.

E. Rate of polarization and error probability of decoding

The following theorem, due to Arıkan and Telatar [16], is
useful in quantifying the rate of convergence of the channels
Wn to one of the extremal configurations (8).

Theorem 3:[16] Suppose that a random processUn, n ≥ 0
satisfies the conditions (i)-(iii) of Lemma 4 and that (iv),Un

converges a.e. to a{0, 1}-valued random variableU∞ with
P (U∞ = 0) = p. Then for anyα ∈ (0, 1/2)

lim
n→∞

P (Un < 2−2αn

) = p. (24)

If condition (iii) is replaced with (iii′) Un ≤ Un+1 andU0 > 0,
then for anyα > 1/2,

lim
n→∞

P (Un < 2−2αn

) = 0.

Note that, as a consequence of Lemma 4, assumption (iv) in
this theorem is superfluous in that it follows from (i)-(iii).

ProcessesZ(r)
max,n and Z

[r−j,r]
max,n , j = 0, . . . , r − 1 satisfy

conditions (i)-(iii) of Lemma 4. Hence the above theorem
gives the rate of convergence of each of them to zero. We
argue that the convergence rate ofZ

(r−j)
max,n, j ≥ 1 to zero is

also governed by Theorem 3. Indeed, letΩ
[r−j,r]
i = {ω :

Z
[r−j,r]
max,n → i},Ω(r−j)

i = {ω : Z
(r−j)
max,n → i}, i = 0, 1. Then

Ω
(r−j)
0 ⊇ Ω

[r−j,r]
0 andΩ(r−j)

1 = Ω
[r−j,r]
1 (25)

the last equality because by Lemma 5,Z
[r−j,r]
max,n → 1 implies

Z
(r−j)
max,n → 1 on every trajectory. As a consequence of (25)

we have thatP (Ω
(r−j)
0 \Ω[r−j,r]

0 ) = 0. HenceP (Z
(r−j)
max,∞ =

0) = P (Z
[r−j,r]
max,∞ = 0). Denote this common value bypj . The

random variableZ [r−j,r]
max,n satisfies a condition of the form (24)

with p = pj . We obtain that for anyα ∈ (0, 1/2)

lim
n→∞

P (Z(r−j)
max,n < 2−2αn

) = lim
n→∞

P (Z(r−j)
max,n < 2−2αn

) = pj .

Of course ifZ(r−j)
max,n is small then so is everyZv,n for v ∈

Xr−j. We conclude as follows.
Proposition 4: For anyα ∈ (0, 1/2) and anyv ∈ Xj , j =

1, 2, . . . , r
lim
n→∞

P (Zv,n < 2−2αn

) = pj .

This result enables us to estimate the probability of decoding
error under successive cancellation decoding. To do this, we
extend the argument of [1] to nonbinary alphabets.



The following statement follows directly from the previ-
ously established results, notably Proposition 2.

Theorem 4:Let 0 < α < 1/2. For any DMCW : X → Y
with I(W ) > 0 and anyR < I(W ) there exists a sequence
of r-tuples of disjoint subsetsA0,N , . . . ,Ar−1,N of [N ] such
that

∑
k |Ak,N |(r − k) ≥ NR andZv(W

(i)
N ) < 2−Nα

for all
i ∈ Ak,N , all v ∈ ⋃r

l=k+1 Xl, and allk = 0, 1, . . . , r − 1.

Let

E , {(uN
1 , yN1 ) ∈ XN × YN : ûN

1 6= uN
1 }

Bi , {(uN
1 , yN1 ) ∈ XN × YN : ûi−1

1 = ui−1
1 , ûi 6= ui}.

Then the block error probability of decoding is defined as

Pe = P (E) = P
( ⋃

i∈A0,N∪···∪Ar−1,N

Bi

)
.

The next theorem is the main result of this section.
Theorem 5:Let 0 < α < 1/2 and let 0 < R < I(W ),

where W : X → Y is a DMC. The best achievable
error probability of block error under successive cancellation
decoding at block lengthN = 2n and rateR satisfies

Pe = O(2−Nα

).

Proof: Let

Ei,v , {(uN
1 , yN1 ) ∈ XN × YN :

W
(i)
N (yN1 , ui−1

1 |ui) ≤ W
(i)
N (yN1 , ui−1

1 |ui + v)}.

For a fixed value ofak1 = (a1, a2, . . . , ak) ∈ {0, 1}k let us
defineX (ak1) = {x ∈ X : xk

1 = ak1}. Notice that the decoder
finds ûi, i ∈ Ak,N by taking the maximum over the symbols
x ∈ X (ak1). Then we obtain

Bi ⊆
⋃

v∈X (ak
1)

Ei,v.

Using (5), we obtain

P (Bi) ≤
∑

v∈X (ak
1)

P (Ei,v)

=
∑

v∈X (ak
1)

∑

uN
1 ,yN

1

1

qN
WN (yN1 |uN

1 )1Ei,v
(uN

1 , yN1 )

≤
∑

v∈X (ak
1)

∑

uN
1 ,yN

1

1

qN
WN (yN1 |uN

1 )

√√√√W
(i)
N (yN1 , ui−1

1 |ui + v)

W
(i)
N (yN1 , ui−1

1 |ui)

=
∑

v∈X (ak
1)

∑

ui

1

q
Z(W

(i)
N,{ui,ui+v})

=
∑

v∈X (ak
1)

Zv(W
(i)
N ).

Thus the decoding error is bounded by

P (E) ≤
∑

i∈A0,N∪···∪Ar−1,N

∑

v∈X (ak
1)

Zv(W
(i)
N ).

By Theorem 4, for anyR < I(W ) there exists a se-
quence ofr-tuples of disjoint subsetsA0,N , . . . ,Ar−1,N with∑

k |Ak,N |(r − k) ≥ NR such that
∑

i∈A0,N∪···∪Ar−1,N

∑

v∈X (ak
1)

Zv(W
(i)
N ) ≤ qN2−Nα

and thus we obtain thatP (E) = O(2−Nα

).

III. O RDEREDCHANNELS

To compute a few examples, consider “ordered symmetric
channels,” called so because they provide a natural counterpart
to the combinatorial definition of the ordered distance [8].
A simple example is given by the ordered erasure channel,
defined asWr : Fr

q → (Fq ∪ {?})r, where

Wr(y|x) =
{
ε0, y = x,

εi, y = (?? . . .?xi+1 . . . xr), 1 ≤ i ≤ r

andWr(y|x) = 0 if y does not contain any erased coordinates
andy 6= x. Its capacity equalsr−∑r

i=1 iεi and is attained by
sendingr independent streams of data encoded for binary era-
sure channels with erasure probabilities

∑r
j=i εj , i = 1, . . . , r.

Therefore, sendingr independent polar codewords over ther
bit channels, one can approach the capacity of the channel.

Despite the fact that this example is trivial, it already shows
the domination pattern observed in Theorem 1. Namely, it is
easy to prove directly thatZj,∞ ≥ Zi,∞ a.s. for all i > j,
thereby establishing the result of Lemma 8. For that it suffices
to observe that the erasure in higher-numbered bits impliesthat
all the lower-numbered bits are erased with probability 1. We
include two examples. In Fig. 1,r = 2, and ε0 = 0.5, ε1 =
0.4, ε2 = 0.1. In Fig. 2, r = 9 and εi = 0.1, i = 0, 1, . . . , 9.
Note that the proportion of the channels with capacityi =
0, 1, . . . , r bits converges toεi.

Another example is given by theordered symmetric channel
[8] which is a DMCW : {0, 1}r → {0, 1}r defined by the
matrix W (y|x) where

W (y|x) = 2−(j−1)εj (26)

for all pairs y, x such thatdr(x, y) = j, j = 1, . . . , r, and
whereW (x|x) = ε0 for all x ∈ X . The ordered symmetric
channel models transmission overr parallel links such that,
if in a given time slot a bit is received incorrectly, the bits
with indices lower than it are equiprobable. This system was
proposed in [19] as an abstraction of transmission in wireless
fading environment. The capacity of the channel equals

I(W ) = r + ε0 logq ε0 +

r∑

i=1

εi logq

( εi
qi−1(q − 1)

)
.

By Theorem 1q-ary polar codes,q = 2r can be used to
transmit at rates close to capacity on this channel; moreover,
the domination pattern that emerges, exactly matches the
fading nature of the bundle ofr parallel channels, achieving
the capacity of the system discussed above.
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Fig. 1. 3-level polarization on the ordered erasure channelW : X →
Y ,X = {00, 01, 10, 11} with transition probabilitiesε0 := W (00|00) =
0.5, ε1 := W (?x2|x1x2) = 0.4, ε2 := W (??|x1, x2) = 0.1, for all
x1, x2 ∈ {0, 1}. In this example it is easy to see thatP (I∞ = i) = εi, i =
0, 1, 2.
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Fig. 2. 10-level polarization on the ordered erasure channel W : {0, 1}9 →
Y with transition probabilitiesεi = 0.1, i = 0, 1, . . . , 9.

IV. CONCLUSION

The result of this paper offers more detailed information
about polarization onq-ary channels,q = 2r. The multilevel
polarization adds flexibility to the design of the transmission
scheme in that we can adjust the number of symbols that carry
a given number of bits to a specified proportion of the overall
transmission as long as the total number of bits is fixed. This
could be useful in the design of signal constellations for coded
modulation, including BICM [17], [18] as well as in other
communication problems that can benefit from nonuniform
symbol sets.

The authors are grateful to Emmanuel Abbe, Eren Şaşoğlu,
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APPENDIX

The proof of(10) : We shall break the expression forI(W )
into a sum of symmetric capacities of B-DMCs.

Let z = (z1, . . . , zk) be ank-tuple of symbols fromX .
Define the probability distributionP (y|z) = 1

k

∑k
i=1 W (y|zi).

Define a B-DMCW
(k)

{z(1),z(2)}
: X k → Y with inputs z(i) ∈

X k, where the transitionz(i) → y is given byP (y|z(i)), i =
1, 2.

Lemma 9:The Bhattacharyya parameter of the chan-
nel W

(k)

{z(1),z(2)}
, where z(1) = (x1, . . . , xk), z

(2) =

(xk+1, . . . , x2k), can be lower bounded by

Z(W
(k)

{z(1),z(2)}
) ≥ 1

k

k∑

j=1

Z(W{xj ,xf(j)}) (27)

for any f which is a one-to-one mapping from the set
{1, 2, . . . , k} to {k + 1, . . . , 2k}.

Proof: It suffices to prove the above inequality for some
one-to-one mapping. Letf(i) = k + i. For brevity denote
wi,y = W (y|xi). We have

Z(W
(k)

{z(1),z(2)}
) =

1

k

∑

y

√√√√
( k∑

i=1

wi,y

)( 2k∑

i=k+1

wi,y

)
,

while the right hand side of (27) is

1

k

k∑

j=1

Z(W{xj ,xf(j)}) =
1

k

∑

y

k∑

i=1

√
wi,ywk+i,y .

The Cauchy-Schwartz inequality gives us

( k∑

i=1

wi,y

)( 2k∑

i=k+1

wi,y

)
≥
( k∑

i=1

√
wi,ywk+i,y

)2

hence the lemma.
Let us introduce some notation. Givenz = (z1, . . . , zk) ∈

X k, let z ⊕ x = (z1 ⊕ x, . . . , zk ⊕ x) where ⊕ is a bit-
wise modulo-2 summation. In the next lemma we consider
B-DMCs W

(k)

{z
(1)
m ,z

(2)
m }

: X k → Y, k = 2m−1,m = 1, . . . , r

with inputs of special form. Namely,z(1)1 = x1; z
(1)
2 =

(x1, x1⊕x2); z
(1)
3 = (x1, x1⊕x2, x1⊕x3, x1⊕x2⊕x3), and

generally,z(1)m is formed ofx1 plus all the possible sums of
the vectorsx2, . . . , xm with 0 − 1 coefficients, including the
empty one. Finally,z(2)m = z

(1)
m ⊕ xm+1.

For m = 0, 1, . . . , r − 1 introduce the setA =
A(x1, . . . , xm+1) ⊂ Xm+1 as follows:

A =
{
(x1, . . . , xm+1) ∈ Xm+1

∣∣x1 ∈ X ;x2 ∈ X\{0};

xj 6=
j−1∑

i=2

aixi, for all choices ofai ∈ {0, 1}, j = 3, . . . ,m+ 1
}

We need the following technical lemma.
Lemma 10:

I(W ) =

r∑

m=1

(
1

2r

m∏

j=1

1

2r − 2j−1

) ∑

A(x1,...,xm+1)

I(W
(k)

{z
(1)
m ,z

(2)
m }

)

(28)
where the numberk, the vectorsz(1)m , z

(2)
m , and the set

A(x1, . . . , xm+1) are defined before the lemma.



Proof: First we express the capacity ofW as the sum of
symmetric capacities of B-DMCs.

I(W )

=
1

2r

∑

x

∑

y

W (y|x) log W (y|x)
P (y)

=
1

2r

∑

y

1

2(2r − 1)

∑

x1

∑

x2:x2 6=0

(
W (y|x1) log

W (y|x1)

P (y)

+W (y|x1 ⊕ x2) log
W (y|x1 ⊕ x2)

P (y)

)

=
1

2r(2r − 1)

·
∑

y

∑

x1,x2

x2 6=0

(
1

2
W (y|x1) log

W (y|x1)
1
2 (W (y|x1) +W (y|x1 ⊕ x2))

+
1

2
W (y|x1 ⊕ x2) log

W (y|x1 ⊕ x2)
1
2 (W (y|x1) +W (y|x1 ⊕ x2))

+
1

2
(W (y|x1) +W (y|x1 ⊕ x2))

· log
1
2 (W (y|x1) +W (y|x1 ⊕ x2))

P (y)

)

=
1

2r(2r − 1)

{ ∑

x1,x2

x2 6=0

I(W{x1,x1⊕x2}) + T2

}

where

T2 =
∑

y

∑

x1,x2

x2 6=0

1

2
(W (y|x1) +W (y|x1 ⊕ x2))

· log
1
2 (W (y|x1) +W (y|x1 ⊕ x2))

P (y)

}
.

Observe that the conditionx2 6= 0 is needed in order to obtain
the expression forI(W{x1,x1⊕x2}).

We will apply the same technique repeatedly. In the next
step we add another sum, this time onx3 which has to satisfy
the conditionsx3 6= 0, x3 6= x2. We have

T2 =
∑

y

1

2(2r − 2)

∑

A(x1,x2,x3)

(
1

2
(W (y|x1) +W (y|x1 ⊕ x2))

· log
1
2 (W (y|x1) +W (y|x1 ⊕ x2))

P (y)

+
1

2
(W (y|x1 ⊕ x3) +W (y|x1 ⊕ x2 ⊕ x3))

· log
1
2 (W (y|x1 ⊕ x3) +W (y|x1 ⊕ x2 ⊕ x3))

P (y)

)

=
1

2r − 2

∑

y

∑

A(x1,x2,x3)

(
1

2
· 1
2
(W (y|x1) +W (y|x1 ⊕ x2))

· log
1
2 (W (y|x1) +W (y|x1 ⊕ x2))

B
+B log

B

P (y)

+
1

2
· 1
2
(W (y|x1 ⊕ x3) +W (y|x1 ⊕ x2 ⊕ x3))

· log
1
2 (W (y|x1 ⊕ x3) +W (y|x1 ⊕ x2 ⊕ x3))

B

)

whereB = 1
4 (W (y|x1) +W (y|x1 ⊕ x2) +W (y|x1 ⊕ x3) +

W (y|x1 ⊕ x2 ⊕ x3)).

By now it is clear what we want to accomplish. Let us
again take the sum ony inside. Recalling the definition of the
channelW (k) before Lemma 9, we obtain

T2 =
1

2r − 2

{ ∑

A(x1,x2,x3)

I(W
(2)

{z
(1)
2 ,z

(2)
2 }

) + T3

}
;

here I(W
(2)

{z
(1)
2 ,z

(2)
2 }

) is the symmetric capacity of the B-

DMC W
(2)

{z
(1)
2 ,z

(2)
2 }

with z
(1)
2 = {x1, x1 ⊕ x2} and z

(2)
2 =

{x1 ⊕ x3, x1 ⊕ x2 ⊕ x3}, and T3 is the term remaining in
the expression forT2 upon isolating this capacity:

T3 =
∑

y

∑

A(x1,x2,x3)

B log
B

P (y)
.

Now repeat the above trick forT3, namely, average over all
the linear combinations that this time include the vectorx4

and isolate the symmetric capacity of the channelW (k) that
arises. Proceeding in this manner, we obtain

I(W ) =
1

2r(2r − 1)

∑

x1,x2

x2 6=0

I(W{x1,x1⊕x2})

+
1

2r(2r − 1)(2r − 2)

∑

A(x1,x2,x3)

I(W
(2)

{z
(1)
2 ,z

(2)
2 }

)

+
1

2r(2r − 1)(2r − 2)

∑

y

∑

A(x1,x2,x3)

B log
B

P (y)

= . . .

=

r∑

m=1

(
1

2r

m∏

j=1

1

2r − 2j−1

) ∑

A(x1,...,xm+1)

I(W
(k)

{z
(1)
m ,z

(2)
m }

)

where the notationz(1)m , z
(2)
m ,A(x1, . . . , xm+1) is introduced

before the statement of lemma.
We continue with the proof of inequality (10). The term

with m = 1 in (28) equals

1

2r(2r − 1)

∑

x1,x2

x2 6=0

I(W{x1,x1⊕x2})

≤ 1

2r(2r − 1)

∑

x1,x2

x2 6=0

√
1− Z(W{x1,x1⊕x2})

2

=
1

2r(2r − 1)

r∑

d=1

∑

x1,x2

wtr(x2)=d

√
1− Z(W{x1,x1⊕x2})

2



≤ 1

2r(2r − 1)

r∑

d=1

2r+d−1

·

√√√√√1−
(

1

2r+d−1

∑

x1,x2

wtr(x2)=d

Z(W{x1,x1⊕x2})

)2

=
1

2r − 1

r∑

d=1

2d−1
√
1− Z2

d

where the first inequality is from the relation between the
symmetric capacity and the Bhattacharyya parameter of B-
DMCs [1], and the second inequality follows from the fact
that the function

√
1− x2 is concave for0 ≤ x ≤ 1.

The terms withm ≥ 2 in (28) will be estimated using
Lemma 9. We will choose the mapf so that ther-vector

a(f) = (z(1))s ⊕ (z(2))f(s)

does not depend ons. For instance, one such map is given
in Lemma 9. Moreover, out of all such mappings we take the
one for which wtr(a(f)) is the smallest. Then the second term
becomes

1

2r(2r − 1)(2r − 2)

∑

A(x1,x2,x3)

I(W
(2)

{z
(1)
2 ,z

(2)
2 }

)

≤ 1

2r(2r − 1)(2r − 2)

∑

A(x1,x2,x3)

√
1− Z(W

(2)

{z
(1)
2 ,z

(2)
2 }

)2

≤ 1

2r(2r − 1)(2r − 2)

∑

A(x1,x2,x3)

√
1− D2

4

=
1

2r(2r − 1)(2r − 2)

r∑

d=1

∑

A(x1,x2,x3)
wtr(x3)=d

√
1− D2

4

≤ 1

2r(2r − 1)(2r − 2)

r∑

d=1

2r · αd

·

√√√√√√1−
(

1

2r+1 · αd

∑

A(x1,x2,x3)
wtr(x3)=d

D

)2

≤ 1

(2r − 1)(2r − 2)

r∑

d=1

αd

√
1− Z2

d

where

D = Z(W{x1,x1⊕x3}) + Z(W{x1⊕x2,x1⊕x2⊕x3})

αd = 2d−1 · (2r+1 − 3 · 2d−1 − 1)

which is the number of terms with wtr(x3) = d, x1 = 0
under the given condition. Repeating this process, we obtain
the claimed result. The full calculation is cumbersome, butits
essence is captured in the example forr = 3 which we write
out in full:

I(W ) =
3∑

m=1

(
1

8

m∏

j=1

1

8− 2j−1

) ∑

A(x1,...,xm+1)

I(W
(m)

{z
(1)
m ,z

(2)
m }

)

=
1

8 · 7
∑

A(x1,x2)

I(W{x1,x1⊕x2})

+
1

8 · 7 · 6
∑

A(x1,x2,x3)

I(W
(2)

{z
(1)
2 ,z

(2)
2 }

)

+
1

8 · 7 · 6 · 4
∑

A(x1,x2,x3,x4)

I(W
(3)

{z
(1)
3 ,z

(2)
3 }

)

≤ 1

7

(√
1− Z2

1 + 2
√
1− Z2

2 + 4
√
1− Z2

3

)

+
1

7 · 6

(
12
√
1− Z2

1 + 18
√
1− Z2

2 + 12
√
1− Z2

3

)

+
1

7 · 6 · 4

(
96
√
1− Z2

1 + 48
√
1− Z2

2 + 24
√
1− Z2

3

)

=
√
1− Z2

1 +
√
1− Z2

2 +
√
1− Z2

3

This completes the proof of (10).
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