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Abstract—We study polarization for nonbinary channels with to the two extremes. Rather, they show that there exists a
input alphabet of size ¢ = 2",r = 2,3,.... Using Arikan's sequence of permutations of the input alphabet such that
polarizing kernel H», we prove that the virtual channels that when they are combined witHs, the virtual channels for the

arise in the process of polarization converge tgz-ary channels ¢ itted bols b ith | fect |
with capacity 1,2, ..., r bits, and that the total transmission rate ransmitied Symbols become either nearly periect or nearly

approaches the symmetric capacity of the channel. This leadto  USElESS.
an explicit transmission scheme forg-ary channels. The error The authors of [3] suggest several alternatives to the kerne

probabili(tly of decoding using successive cancellation belies as [, that rely on randomized permutations or, in the case of
fgsi(;hjgn())g""here N'is the code length anda is any constant , _ or on multilevel schemes that implement polar coding
- for each of the bits of the symbol independently, combining

. INTRODUCTION them in the decoding procedure; see esp. [4].

Polarization i tin inf tion th di In this paper we study polarization for channels with input
olarization is a new concept in information theory 'Scovélphabet of sizeg = 2'.r = 2,3,.... Suppose that the

ered in the _context of capacity-achieving families of Coqe&]annel is given by a stochastic matiik(y|z) wherez €
for symmetric memoryless channels and later generaliz

. . ﬁ% eV, X ={0,1,...,¢q— 1}, and Y is a finite alphabet.
to source codlng., mult|-u§er channels and other prc)blenESsuming that the channel combining is performed using the
Polarization was first described by Arikan [1] who constedict kernel H, with addition modulog, we establish results about

binary codes that achieve capacily of symmeiric memorylet polarization of channels for individual symbols. Itrtsiout

channels (and *symmetric capacity” of general blnary-Mplthat virtual channels for the transmitted symbols conveoge

channels). The main idea of [1] is to_cor_nbme the“b|ts. O.f th(?ne ofr+1 extremal configurations which j out of r bits are
source sequence using repeated application of the “pataiz

10 ) ) transmitted near-perfectly while the remaining j bits carry
kernel” H, = (1 1)~ The resulting linear code of lengthaimost no information. Moreover, the good bits are always
N = 2" has the generator matrix which forms a submatrialigned to the right of the transmittedblock, and no other
of Gy = BHS™, where B is a permutation matrix. The situations arise in the limit. Thus, the extremal configiorat
choice of the rows of7y is governed by the polarization offor information rates that arise as a result of polarizatoa
virtual channels for individual bits that arise in the prsge easily characterized: they form an upper-triangular meds
of channel combining and splitting. Namely, the data bitdescribed in Sect. II-B (see also Figs. 1,2 in the final sactio
are written in the coordinates that correspond to nearperfof the paper). This characterization also constitutes tagnm
channels while the other bits are fixed to some values knowifference of our results from the multilevel scheme in [4]:
to both the transmitter and the decoder. It was shown latkere, the set of extremal configurations can in principleha
that polarization on binary channels can be achieved usiogrdinality2” which complicates the code construction.
a variety of other kernels: in particular, amy x m matrix Another related work is the paper by Abbe and Telatar
whose columns cannot be arranged to form an upper triangyll: In it, the authors observed multilevel polarization an
matrix, achieves the desired polarization [2]. somewhat different context. The main result of their paper
A study of polar codes for channels with nonbinary inpytrovides a characterization of extremal points of the negib
was undertaken by Sasoglu et al. [3], [4] and Mori and Kanaattainable rates when polar codes are used for each aof the
[5]. For primeg, it suffices to take the kerndll,, while for users of a multiple-access channel. Namely, as shown in [6]
nonprime alphabets, the kernel is time-varying and notieitpl (see also [7]), these points form a subset in the set of eartic
Namely, for primeg, [3] showed that there exist permutation®f a matroid on the set af users. [6] also remarks that these
of the input alphabet such that the virtual channels for-indiesults translate directly to transmission oveg-ary DMC,
vidual g-ary symbols become either fully noisy or perfect, andhowing that the rate polarizes to many levels. To explaén th
the proportion of perfect channels approaches the symenetiifference between [6] and our work we note that transmissio
capacity, in analogy with the results for binary codes in [1pver the multiple-access channel in [6] is set up in such a way
At the same time, [3] remarks that the transmission scherimat, once applied to the DMC, it corresponds to encoding
that uses the kerndf, with modulo¢ addition for composite each bit of theg-ary symbol by its own polar code (we again
¢ does not necessarily lead to the polarization of the channaksume thay = 2"). In other words, the polarization kernel
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employed is a linear operatef = I, ® Ho. Thus, the group channeIsW](\',j),j =1,...,N. For the case; = 2 it is shown

acting onX" is F3. = Zy x -+ X Ly rather than the cyclic in [1] that asn increases, the channelg?) become either

additive group of ordey; considered in this paper. almost perfect or almost completely noisy (polarize). Imfal
This work began as an attempt to construct polar codes fefms, for any= > 0

theordered symmetric channeéhtroduced in our earlier paper " b

[8]. This channel provides an information-theoretic model lim [{be {+ —} .12(W )€ (el —e)}|

n—oo 4

related to the ordered distance on binaryectors, defined
as follows: In this paper we extend this result to the case 2",r > 1.

) . ) ) As shown in [1], aftem steps of the transformation (2)-(3)
dr(x,x ) = max{] 1Ty 75 .%'j}, Wherex,x (S {0, 1}T_ (1) the Channem)[/](vl) X = yN % Xi_171 < i< N are given

Below wt.(z) = d,(z,0) denotes the ordered weight of the?Y

symbolx. The ordered distance is an instance of a large class, i), v -1, _ 1 N/ NI N

of metrics introduced in [9] following works of Niederreite %/VN (1 uy™ fus) = AR ZN vW (1 [ur’ G ),
in numerical analysis [10]. It has subsequently appearel in Ui €A (5)

large rTumber of works in algebraic comblnr_altoncs a_nd godl%ere Gy — BHE™ and B is a permutation matrix. Here

theory; see e.g., [11] and references therein. We find itequit . i

: : b : : we use the shorthand notation for sequences of symbols: for

interesting that it independently arises in the study OfapOIinstance N & ), etc

codes on channels with input of size= 2”. Examples ofy- yr = W2y, et

ary polar codes for ordered symmetric channels can be eagily Notation

constructed and analyzed. o For any pair of input symbols, 2’ € X, the Bhattacharyya
Last but not least, when this work was in its final stagegisiance between them is

we became aware of the paper by Sahebi and Pradhan [12]

who also observed the multilevel polarization phenomeon f ZWiawy) = Y VW (yle)W (yla')

g-ary channels. At the same time, [12] did not give a proof yey

of polarization, which constitutes the main technical p#frt wherelV, . is the channel obtained by restricting the input

our work. The motivation of the approach of [12] relates tg|phabet ofiV’ to the subse{x, s’} C X.

a detailed study of linear and group codesgeary channels, Define the quantityZ, (W) for v € X \ {0}:
and is also different from our approach. 1

In the next section we state and prove the main result, the Z,(W) = o Z Z(Wig ztu})-
convergence of the channels to one of the1 extremal con- TEX

figurations, and deduce that polar codes achieve the symmeffioqyce theith average Bhattacharyya distance of the chan-
capacity of the channel. Then we derive the rate of poladmat 1| 11/ by

—0. (4

and estimate the error probability of decoding, and giveesom 1
examples. Zi(W) = 5 z); Zy(W) (6)
veX;
II. POLARIZATION FOR ¢-ARY CHANNELS wherei =1,2,--- ,r andX; = {v € X : wt,(v) = i}. Then
We consider combining of the-ary data under the action 1
of the operatorH,, whereq = 2",r > 2. Let W : X — ZW):= > =1 > Z(Wiaary)
Y,|X| = ¢ be a discrete memoryless channel (DMC). The z#a!
symmetric capacityf the channel/ equals 1 ZT: 21 7.() @)
1 W (y|zx 2 —14& ’
(W)= Z Z -W (y|z) log (1 I|/V) p . =t _
scxuey 4 > wex W Yl2) Recall the setting of [1] for the evolution of the channel

parameters. On the sét = {+, —}* of semi-infinite binary
sequences definesaalgebraF on 2 generated by the cylinder
setsS(b1,...,b,) ={w € Q:wy =b1,...,w, = b,} for all
Wa(y1, y2lur, uz) = Wiyr|ur + u2) W(yz|uz), sequenceéq, ..., b,) € {+,—}" and for alln > 0. Consider
B 1 the probability spacé(), F, P), where P(S(b1,...,b,)) =
W= (1, yalur) = Z ~Wa(y, y2lur, u2),  (2) 2" n > 0. Define a filtrationFy, ¢ F; C --- € F where

where the base of the logarithm & Define the combined
channellV, and the channel&/~ and W by

?EX Fo ={0,Q} and F,,,n > 1 is generated by the cylinder sets
W (g1, y2, urluz) = =Wa(ys, yalur, uz), 3 S1;---500),bi € {4, -} _
q Let B;,i = 1,2,--- be ii.d. {4+, —}-valued random vari-
where uq,us, y1,y2 are r-vectors and+ is a modulog ables withPr(B; = +) = Pr(B; = —) = 1/2. The random

sum. This transformation can be applied recursively to tleannel emerging at time will be denoted byl Z, where
channelsW —, W+ resulting in four channels of the formB = (By, Bs, -, B,,). Thus,P(W5 = WJ(\})) = 2" for all
Woib2 by by € {+.—}. After n steps we obtainV = 2" i =1,...,2". LetW,, = WP, I, = I(W®), Z(, 1.0 =



Z(W{Efﬁ_z,}), Zyn = Zy(WP), and Z;,, = Z;(WP). These  (b) Forevery0 < k < r and every > 0 there exists > 0
random variables are adapted to the above filtration (mganisuch that
that I,, etc. are measurable w.rE, for everyn > 1). .
hﬁm P{|I, — (r—k)]| <6} A Bgn(e)) =0.
(©) E(|{i: Zioo = 0}) = I(W).
In this section we state a sequence of results that shows proof: The first statement is obvious from (9)-(10). To

that g-ary polar codes based on the keri#| can be used to prove the second statement we note that, with the apprepriat
transmit reliably over the chann@l for all ratesR < I(W).  choice ofe

B. Channel polarization

Theorem 1:(a) Letn — oo. The random variablé, con-

verges a.e. to a random varialble with E(1,) = I(W). {0 = (r = k)] <0} O Br.n(e)

(b) Foralli =1,2,....r for all n > 0. At the same timeP({|I,, — (r — k)| < 6} N
b 7 — 7 ae Brn(e)) = 0 for all & # k, and P(O By,(e)) — 1 for
nooo M Hee ’ any ¢ > 0. Together this implies (b). Finally, we have that
where the variableg; .. take value$) and1. With probability £(lsc) = I(W). Then use (a) and (b) to claim tha(|{: :
one the vectofZ; -,i = 1,...,r) takes one of the following Zioo = 0}]) = 2 ohmg kP (Ioo = k) = I(W). u
values: We can say a bit more about the nature of convergence

established in this proposition. Let us fixe {0,1,...,r}
and define the channel for the— k& rightmost bits of the
transmitted symbol as follows:

8 - 1 r—
: : : WEHG) =5 30 W), we{ot
(Zl,oo =1, ZZ,oo =1,... Zr—l,oo =1, Zr,oo = 0) TEX L |, =u

(Zl,oo = 17 ZZ,oo = 11 ceey Zr—l,oo = 17 Zr,oo = 1)

(Z1006=0,Z200=0,....Zr 1,00 =0, Zr oo =0)
(Z1oo=1,Z200=0,....Zr 1,00 =0, Zr oo =0)
(Zl,oo = 17 ZZ,oo = 11 ceey Zr—l,oo = 07 Zroo = 0)

s

wherex = (21, z2,...,2,).
Let us restate part (b) of this theorem for finite Lemma 2:LetV : X — Y be a DMC and le6 > 0. Sup-
Proposition 1: Lete,6 > 0 be fixed. Fork = 0,1,...,r posethatZ, ,(V),Z2n(V),...,Z.(V)) € Ri(e), for some
define disjoint events 0 < k < r. If ¢ is sufficiently small, thed(VI"=*) > r—k—6.
In particular, it suffices to take < 27++9 /(27 =k — 1).
By n(e) = {w (L Loy ooy Zrp) € Rk} Proof: We may assume that < £ < r — 1. Let u €

Xk o = (z1,...,705,u) € X,2' = (2},...,2),u) € X.
whereR;, = Rk() = (]‘[ic 1D1) ( o k+1 ) and Leth{O 13- k\{O} and consider

Dy =10,¢), D1 = (1 —¢,1]. ThenP(U;,_yBin(e)) > 1 — [r—k] r—Hl( V=]
starting from soma =n(e,0). Z(Viyuroy) Z \/V (ylu)VIr=H(ylu +v)

The proofs of these statements are given in a later part f thi

section. = o Z ZZV ylo)V (yla’ + ')

We need the following lemma.
Lemma 1:For a DMC with g-ary input,I(W) and Z (W) % Z Z Z VV (ylz)V (ylz' + ')
I(W) > log 2 9) =% Z Z(Vizar4v})

are related by
1+ 22:1 217121‘(W) x,x’
. < 2k
W) < S V= Z(W)e. (10) -
i=1
the fact thatZ;(V) < for i=k+1,...,r. SinceZ;(VIr—*)

For r = 1 these inequalities are proved in [1]. For> 1 iy . :
Eq. (9) is a restatement of [3, Prop. 3] using (7). The fact thig the average of ch( utv }) over allv with wt, (v) = i,

I /\

wherev’ = 0%vyv; ... v,_. The last inequality follows from

(10) holds for all- > 1 is new, and is proved in the Appendix.Z; (V") < 2*¢ for aII i=1,...,7 — k. Now the lemma
Inequalities (9)-(10) imply that i Zy,...,Z,) € Ry(c) follows from (9) in Lemma 1, m
then [I(W) — (r — k)| < § whereé > max(k/z, (2" — It turns out that the channels for individual bits converge t
1)eloge). either perfect or fully noisy channels. If the channel far pi
The following proposition is an immediate corollary of thdS perfect then the channels for all bits- > i > j are perfect.
above results. If the channel for biti is noisy then the channels for all bits

Proposition 2: (a) The random variablg,, is supported on J,1 < j < i are noisy. The total number of near-perfect bits
the sef{0,1,...,r}. approache$(W). This is made formal in the next proposition.



Proposition 3: Let Q) = {w : (Z1.00y 22,005+ -5 Zr00) = Where ifj € Ap,n,k = 0,1,...,7 — 1, then the maximum
1%07=*},k =0,1,...,r. Foreveryw € Q4 is computed over the symbolsc X with the fixed (known)
. k]| values of the firsk bits.
nh_?;ou"_[(w" )l =0. The error probability of this decoding is estimated in

Sect. II-E.
Proof: For everyw € Q; we have thatl,,(w) — r — k. ec

Combining this with the previous lemma and Proposition 2(bp. Proof of Theorem 1

we conclude that for such also I(Wy' ™) —r—k  m  pay (a) of Theorem 1 follows straightforwardly from [1],
The concluding claim of this section describes the chanr{8l. Namely, as shown in [1, Prop. 4L(W*) + I(W ™) =
polarization and establishes that the total number of lgitg s 2(1V). We note that the proof in [1] uses only the fact that
over almost noiseless channels approaclésiv’). ui, up are recoverable from, z, which is true in our case.
Theorem 2:For any DMCW : X — ) the channelW](Vi) Hence the sequendg, n > 1 forms a bounded martingale. By
polarize to one of the + 1 extremal configurations. Namely,Doob’s theorem [13, p.196], it converges a.e LiQ, F, P)
letV;, = W](V@ and to a random variablé., with E(I.) = I(W).
To prove part (b) we show that each of thg,,’s converges
H{i e [N]:|I(V;)—k| <A |I(Vi[k]) — k| <0} a.s. to a(0, 1) Bernoulli random variableZ; .. This conver-
- N ’ gence occurs in a concerted way in that the limit r.v.s obey
Zjo > Zio a.e. if j < i. This is shown by observing that
for any fixedi = 1,...,r and for allv € X; , the Z, ,,(W)
converge to identical copies of a Bernoulli random variable

Tk,N

whered > 0, thenlimy oo 7, v = Pl = k) forall k =
0,1,...,r. Consequently

Z/Wk — I(W). 1) Convergence 0%, ,,v € X: In this section we shall
k=1 prove that the Bhattacharyya paramet&ss, converge almost

This theorem follows directly from Theorem 1 and Propos?—urely to Bernoulli random variables. The proof forms the

tions 2 and 3. Some examples of convergence to the extrer‘ﬁ%ﬂin technical result of this paper and is accomplished in

configurations described by this theorem are given in Sct. $€Veral steps.
below. Lemma 3:Let

Zx

(W) =max Z,(W), j=1,...,r

C. Transmission with polar codes VEX,

Let us describe a scheme of transmitting over the chanfdien
W with polar codes. Take > 0 and choose a sufficiently (r—3) (ri+ =) an2
large n. Assume that the length of the code ¥ = 2". Zpald ' WT) = Z3 0’ (W)7, j=0,...,r =1 (11)

Proposition 1 implies that sé], apart from a small subset, is Z0) (W) < qz) (W) (12)
partitioned intqr—i— 1 subs.etsA;m such tlhat forj € A, the q q
vector (21 (W), Za(W\)),..., Z.(W)) € Ru(e). Each 20D W) < SZQW) + 5200 W) (13)

Jj € A refers to anr-bit symbol in whichr — £ rightmost
bits correspond to small values Zi(W](Vj)). To transmit data
over the channel, we write the data bits in these coordinatesZ(r_j)(W_) < QZ(T) (W) + QZ(T—U(WH_
and encode them using the linear transformatibp. max - max 4 max

and generally

More specifically, let us order the coordinatgse [N] et %Zga;j“)(W) + %Zga;j)(W). (14)
by the increase of the quantiy’’_, 2i~1Z;(W{’) and use . 2 2
these numbers to locate the subsdis,. We transmit data Proof: In [3] it is shown that for allv € A\ {0}
. g ) e
by encoding messages;' = (ui,...,un) in which if Zo(WH) = Zy(W)? (15)

Jj € Apn,k=0,...,r —1 then the symbot; is taken from

the subset of symbols ot with the first & symbols fixed ~ Zo(W ™) <2Z,(W)+ > Zs(W)Zy15(W). (16)
and known to both the encoder and the decoder ([1] calls 6€X\{0,—v}

them frozen bits). In particular, the subsét ,, is not used to The first of these two equations implies (11). Now take
transmit data. A polar codeword is computedi@s= u{'Gx  x,. Then in the sum on the right-hand side of (16) we have

and sent over the channel. that eithers € X, or 6 +v € &,., and

Decoding is performed using the “successive cancellation”
procedure of [1] with the obvious constraints on the symbol Zy(W™) <2Z,(W) + (g — 2) 2 (W),
values. Namely, foj =1,..., N put

implying (12). Now takev € X,_;,j > 1. The sum onj
" je A in (16) containsg/2 terms withd € X, ¢/4 terms with
U :{ 7 G N 1 ] ' 0 € X,._1, and so on, before reaching,_;. Finally, let
argmax, Wy’ (y1', 41 |z), j € Up<r—1Akn § € UZX,_;\{—v}. There are(q/27) — 2 possibilities, and



for each of them either + 6 or § is in &,._;. This implies the last step by (20). This however contradicts the almast su

(14) and therefore also (13). H convergence ot,.
In particular, takej = 0. Relations (11), (12) imply that (c) This implies thatP(Y, < 1/2) = P(Y,, — 0) =
P(U,, — 0). From (19
Zinir = (25 ) 1 Bugr = + an ) (1 | N
Zr(rj;m“ <q I(nﬁzm if Bpir=—. (18) P(U, —0) > 3 provided thatl/y < (Z) . (21)

Iterated random maps of this kind were studied in [14] whicRioreover, if Uy < (1/2)1//5 then eitherY,, — 0 or Y, > 1/2
contains general results on their convergence and stayionfor somen. This translates to

distributions. We need more detailed information abous thi /8
process, established in the following lemma. P((Uy — 0) or (U, = (1/2)"/" for somen)) =1 (22)

Lemma 4:Let U,,n > 0 be a sequence of random variProvided thatl/y < (1/2)'/%.
ables adapted to a filtratiof,, with the following properties:  (d) Let § > 0 be such thatz(%)% < 1— 6 (depending on
(i) U, €10,1] ¢ this may require taking a sufficiently smaf). Let L :=
(i) P(Un41 =Ug|Fn) = 1/2 [0,(3)%] and R := [1 — §,1]. Observe that the proceds,
(il)) Unt1 < qUy for someq € Z. cannot move front. to R without visitingC := ((1)%,1-4).
Then there are event3y, (1 such thatP(Qo U ) =1 and | ot 1 pe the first time whetl/, € C, let m be the first time

Un(w) — i for weQ,i=0,1 _aftero; whenU, € LU R, let o, be the first time after);
Proof: (a) First let us rescale the proceSs so that in whenU,, € C, etc.,01 < 1 < s < 12 < .... We shall prove

tbhe neﬁhgorhood of zero it has a drift to zero. L€ (0,1) that every sample path of the process eventually staysdeutsi

e such that 5 C, i.e., that for almost allu there existst = k(w) < oo such

¢ —1<1/4 that o, (w) = 0.

Let X,, = Uf. Taker(w) to be the first time wherk,,(w) > ~ Assume the contrary, i.elim o P(o < 00) =« > 0
1/2. Let Yy, = Xuin(n.)- ON the eventy;, > 1/2 we have (Since P(oxi1 < o0) < P(o) < oo), this limit exists.) We
Y, =Y, oOr have

E(Yns1 — Yu|Fn) =0 >
Frtr 1) P(3k: o, =00) > ZP(aj # oo; Uy, € L;0j41 = 00)
while on the event, < 1/2 we have =

1 1 i

E(Yn+1_Yn|]:n) S 5(Y3_Yn)+§(qﬂyn_yn) ZOLZP(UW EL;Gj+1 :OO|0'j ;éoo) (23)
1 j=1

< _§Y" <0. Consider the proces§!, = U,, 1, On the eventr, < oo

This implies that the sequendg, n > 0 forms a supermartin- (With the measure renormalized bi(o. < o0)). This
gale which is bounded betweénand 1. By the convergence Process has the same properties (i)-(iii) &s. Let J =
theorem,Y, — Y. a.e. and inL'(Q,F, P), where Yo, |1082(51og,_51/4)], thenz®" € L foranyx € C. Therefore,
is a random variable supported ¢, 1]. This implies that P(U’ € L) > 27 by property (ii). Now consider the process
EY, > EY, | EY.. Further, if X, € [0,1/4] then (since U}, on the eventU; € L. This process has properties (i)-
EYy = EXy) (iii), so we can use (21) to conclude that for

P(Yo > 1/2) < 2EY, < 1/2. (19) P(Uy, € L;ok41 = ooloy, # 00) > 27+

uniformly in k. But then the sum in (23) is equal to infinity,
a contradiction.
(e) The proof is completed by showing that the probability
of U,, staying in R® = [0,1]\R without converging to zero
P(Yyi1 = yn?|]:n) >1/2 onY, <1/2 (20) is zero. We know that almost all trajectories stay outsite
_ so suppose that the process startg(n(1/2)'/#). Then the
for all n > 0. Suppose that’,, takes values in9,1/2 — )  propapility that it entersL in a finite number of steps is
with probability o > 0. Let A, = {w: ¥, € (6,1/2—0)}.  yniformly bounded from below (this is shown similarly to
SinceY, — Y a.e., the Egorov theorem implies that thergy3y) sq the probability that it does not go kois zero. Next
is a subset of probability arbitrarily close #(A,) which  asume that the process startd.irthen by (22) it either goes
this convergence is uniform, and thi¥A,) > «/2 for all {5 zer0 or enter<” with probability one. Together with part

(b) Now we shall prove thaP(Y,, € (8, —4)) = 0 for any
§ > 0. From (ii) it follows that P(X,, 11 = X2|F,) > 1/2,
which implies that

sufficiently largen. Therefore (d) this implies that the process that startsZirconverges to
P(|[Yyi1 — Y| > 62/2) > P(Ypyy = Y2,Y, € (5,1/2—5)) Z€ro or one with probability one. [
S @ Lemma 5:LetV : X — ) be a channel. Let, v’ € X\{0}

4’ be such that wi(v) > wt,(v'). For anyd’ > 0 there exists



d > 0 such thatZ,, (V) > 1 — ¢’ wheneverZ,(V) > 1—4. valued random variable. But so,is(,fgxm, so the possibilities

In particular, we can také = §’¢ 3. are
Proof: If wt,.(v) =1 thenv =10...0, so the statement
is trivial. Let Z,, (V') > 1 -4, where wt(v) = ¢ > 2. Then for (Zlr-1 7‘] Z(r) ) = (1,1) or (1,0) or (0,0)

every pairr,»’ = x +v we haveZ(Vy, ,,) > 1 — ¢, where
e = ¢d. Consider the unit-length vectors= (\/V (y|z),y € , . ,
V). = (V/Vy[a),y € V), and letd(z,z') be the angle with probab|I|ty ?ne (note that0,1) is ruled 1out by the
between them. We haves(6(z, 2')) = Z(V{%m/}) >1—e¢, definition of anlax T) If ZT(,QXVOO =1 then Zr(ga;(go =1 hy

and sol|z — 2/||? = 2 — 2 cos(6(z, 2')) < 2e. Lemma 5 (this statement holds trajectory-wise). If on theeot
Now take a palr Of Symb0|861,x2_ = 1 + 'UI Where hand the case that |S rea“zed(m 0) then Zr(rrdxl())O =1 by
v € X,,s < i. There exists a numbet € X, ;,, the definition ofZIr-b") . Finally in the case0,0) we clearly

such thatv’ = tv. Define z; = (\/V(ylr1),y € j) and have thath[faxlg0 = 0, both holding trajectory-wise.

Z2 = WV ( lz2),y € y Let w; = (V/V(ylz1 + jv),y € The general induction step is almost exactly the same.
V),7=1,...,t — 1. From the triangle mequallty Assume that we have proved the required convergence for
Zﬁfax”,z =0,1,...,5 — 1. Assume thatZHCaXJ’OQ = 0, then

— < — — =
o1 = zll < Iz =l Jhwr = wo oo ey = 2] 79 — 0. If on the other handZI[ﬁaQ’Q = 1 then either

<tV2e one ondeLo,z < j equals one, and theﬂmrdxjgo =1 by
< qV2e. Lemma 5, orZr(ndx Jo=o0foralli< j, and thenZ,({dX{?)o =
r—j,r]
We obtain by definition Omedx 0o - [ |
Now we are in a position to complete the proof of conver-
ZVips ) =cos8er,2) = 1= ol = 2P N P PEETEp
) .
z1-qe Lemma7:2Z,, — Z, a.e., whereZ, . is a (0,1)-
=1-¢%. valued random variable whose distribution depends only on
Thus we obtain the ordered we|ght wiv).
1 ; Proof: Let Q) = {w : ZU).. — i}, wherei = 0,1
Zy(V) = EZZ(V{m,mw}) >1-g°. andj = 1,...,r, where some of the events may be empty.
z For everyw € Q( yJjg=1,...,7we have that for any > 0
B starting with somen the quantltyZmax n > 1—90. Thus, for
Remark :We can prove the previous lemma in a different > no there existsy € X, possibly depending on, such

way by relating the Bhattacharyya distance to fhalistance thatZ, ,(w) > 1—4. Then Lemma 5 implies that, , (w) >
betweenV (y|z;) and V (y|zz) [15]. Then the estimaté = 1 —¢?0 for all v' € X}, so Z, ,(w) — 1. At the same time,

§’q~3 can be improved té = §'(2¢) 2. if we QY thenz,,(w) — 0 for all v € ;. [ ]
Lemma 6:Forallj=1,...,r
Zggx 2e 5(j) 2) Proof of Part (b) of Theorem 1:

. " e Lemma 8:For anyi = 1,...,r, the random variable
where Z{)x, is a Bernoulli random variable supported ory; , converges a.e. to @), 1)-valued random variabl¢; ..
{0,1}. Moreover,Z; oo > Z;_1 o a.e.

Proof: For a given channe¥” denote Proof: The first part follows because all thé,,v € X;
Zr[ﬁaﬂ(V) :max(Zggx(V),ZIf;})(V),... ZI(JQX(V)) converge to identical copies of the same random variable.
Formally, Lemma 7 asserts that, , — j for everyv € &;
Eq. (15) gives us that and everyw € Qy),j = 0, 1. Hence taking the limits — oo
ZI—in (W) = (zlr—ir(w))? in (6) we see thaf, , — j on Q(i) whereP(Q(i)UQ(i)) =

Let us prove the second part Suppose that > 1 — e,
then using (6) we see that, , > 1 — 21’ for all v/ € X;.
Zlr=ir(w=) < qzr—im(w). Lemma 5 implies thatZ, ,, > 1 — 237+ 15’ for any v €
. o X,wt.(v) = i, and thereforeZ,,, > 1 — 237+~1¢/ Thus
Hence by Lemma 4 the random vanablﬁgmi’&l are well- Zin(w) — 1 implies Z;_1(w) — 1 for all w € Q, (i ) and all
defined and are Bernoulli 0-1 valued a.e. for gll = ; The'second claim of the lemma now follows becaisg,
0,1,...,r =1 . are 0-1 valued for ali. [
We need to prove the same ftﬂ,(rfdxjoo The proof is
by induction onj. We just established the needed claim for We obtain thatZ; ., is a (0,1) random variable a.e. and

Z,({LZM For ease ofunderstandmg Iet us show that this impliésr all 4, and if Z; . = 1 thenZ, . =1forall 1 <j <.

r—1,7]

the convergence dfmrdxln Indeed Z,mxOo is a Bernoulli0-1 Consider the event§/ ={w:Zj =1i},i =0,1;j =

and (14) implies that



1,...,r. We have arise with probability 0), and therefore has to be, and is, a
1) 2) ) stable point of the channel combining operation. It is gassi
U, Ov DDV . e L )
1 1 1 to reach capacity by transmitting the least significant Ibit o
v cuP c.ocu, every symbol.
) . Paper [3] went on to show that for every > 1 there
We nged to prove that with probability one, the Veptoéxists a permutatiorr,, : X — X such that the kernels
(Zioo,t = 1,...,r) takes one of the values (8). WIth 7, (1) - (u,v) — (u-+v, 7 (v)) lead to channels that polarize
probability one Zy.c = 1 or 0. If it is equal to 1 then " herfect or fully noisy. While the result of [3] holds for
necessarilyZ,—1,co = -+ = Z1,00 = 1. OtherwiseZ,.oc = 0. 5y ¢ "in the case ofy — 2" this means that configurations
In this case it is possible thaf, ;... = 1 (in which case ;" " and11...1 arise with probabilityl — I (W) and (W)

ZT*?(»??fl): "'(Ti)ZLOO - 1_) or Z_T*LOO = 0. Of course respectively, while all the other configurations have pholits
P(¥y 7 u¥y ) =1, soin particular zero.

PG\ U @) = 0. E. Rate of polarization and error probability of decoding
If Z,_1.0 = 0 then the possibilities arg, 5 ., = 1 or 0, up The following theorem, due to Arikan and Telatar [16], is

to another event of probability 0, and so on. Thus, the unistseful in quantifying the rate of convergence of the chasnel

of the disjoint events given by (8) holds with probabilityeon W, to one of the extremal configurations (8).
Theorem 1 is proved. m Theorem 3:[16] Suppose that a random procégsn > 0

§atisfies the conditions (i)-(iii) of Lemma 4 and that (i),

3) Proof of Prop. 1:The proof is analogous to the argumen . ;
: : ) converges a.e. to &0,1}-valued random variabl& ., with
in the previous paragraph. The random variabile, — Z, - P(Us. = 0) = p. Then for anys € (0,1/2)

a.e. . By the Egorov theorem, for any> 0 there are disjoint
subsetsh{”) ¢ 7 B e v with P(T 0Ty > 1-4 lim P(U, <27%") =p. (24)
on which this convergence is uniform. Takér) such that e
Zrm > 1—¢/2%=1 for everyw € ¥\ andn > n{”. By
Lemma 5 and (6) for every such we haveZ;, > 1 —¢
forall i =1,....,r —1; n > nY). This gives rise to the lim P(U, <2~

event B,.,,. Otherwise Ietnér) be such thatup, Z,, < ¢ oo -
for w € (I‘,ér) andn > nér). Consider the eventﬁ!ér_l) C Ngte that, as a consequence of Lemma 4, assum_pn(_)p (iv) in
\Ijgrfl)’ {I;Yq) c \Ijgrfl) with P(Ejérfl)uifjgrfl)) > 1—~ on this theorem |(sr)superfluou[§_|nrt]ha}t it follows from (|)-(J_||)
Processemax.n and Zwain',j = 0,...,7 — 1 satisfy
conditions (i)-(iiiy of Lemma 4. Hence the above theorem
gives the rate of convergence of each of them to zero. We

argue that the convergence ratezafa_xf%,j > 1 to zero is

If condition (iii) is replaced with (ifi) U,, < U,,+1 andUy > 0,
then for any > 1/2,

qan

) =0.

which Z,_; ,, = Z,_1 o uniformly. Choosezgr_l) such that
Zp_1n>1—¢/2 2 forall n > nY—” and allw € \I/Y_l).
For every suctv we haveZ; ,, > 1—cforalli =1,...,r—2;

(r—=1) ,
nzng . Next, also governed by Theorem 3. Indeed, ff 7 = {w -
PG\ @Y U @TNE)) < 29, Ziadnd = i3, Q) = {w: 2050 — i}, = 0,1. Then
We continue in this manner until we construct all the- 1 Q) ol andq("7) = lr 7] (25)

events By, ,,. For this, n should be taken sufficiently large, . ﬂ‘fj"7‘] o
n > maxy max(nf)k),ngk)). By takingy = ¢/r we can ensure thg_l?)s‘t equality because_by LemmaZhain — 1 implies
that P(Uy, By, > 1 — 6. This concludes the proof. Zmax,n — 1 On every trajectory. As a consequence of (25)
‘we have thatP(Q)\Ql' ") = 0. Hence P(Z{d), =

"6) = P(Zr[;;?;o] = 0). Denote this common value hy;. The
random variabIéZ,[f{;gﬁ] satisfies a condition of the form (24)
with p = p;. We obtain that for anyv € (0,1/2)

Remark :For binary-input channels, the transmitted bits
the limit are transmitted either perfectly or carry no imfa-
tion about the message. Sasoglu et al. [3] observed;thay
codes constructed using Arikan’s keriig] share this property
for transmitted symbols only if is prime. Otherwise [3] notes iy, p(z(—7) < 272"") = lim P(Z(J) <272"") = ;.
the symbols can polarize to states that carry partial inftiom " —°° ' n—reo ' '
about the transmission. In particular, they give an exarple of course if Z\7i), is small then so is everg,., for v €
a quaternary-input channél” : {0,1,2,3} — {0,1} with . we conclude as follows. ’

W(0[0) = W(0]2) = W(1[1) = W(1[3) = 1. This channel  proposition 4: For anya € (0,1/2) and anyv € X;,j =
has capacity 1 bit. Computing the chann&s™ and W~ 1,2,...,r

gan

we find that.they are eql_JivaIent to the original chanﬁéll lm P(Zy, < 272“") =p;.
The conclusion reached in [3] was that there are nonbinary n—oo
channels that do not polarize under the action{of This result enables us to estimate the probability of dewpdi

We observe that the above channel corresponds to #meor under successive cancellation decoding. To do this, w
extremal configuration0 in (8) (the other two configurations extend the argument of [1] to nonbinary alphabets.



The following statement follows directly from the previ-By Theorem 4, for anyR < I(W) there exists a se-

ously established results, notably Proposition 2. quence ofr-tuples of disjoint subsetdy v, ..., A,—1,n With
Theorem 4:Let 0 < a < 1/2. For any DMCW : X — ) 2k Ak |[(r — k) = NR such that

with I(W) > 0 and anyR < I(W) there exists a sequence () N

of r-tuples of disjoint subsetgl v, . .. ,A_T,LN of [N] such - UzjuA Zk Zy(Wy') < qN2

that 3™, [Apn|(r — k) > NR and Z, (W) < 2=V for all reso N A ve(ar)

i€ A allv €Uy Ay and allk = 0,1,..,r — 1. and thus we obtain tha®(&) = O(2~N"). |
Let

II. ORDERED CHANNELS

N N N N N . AN N
& R {(U}V’ yiv) < XN . yN N 17& “ i}—l A To compute a few examples, consider “ordered symmetric
Bi ={(uy’ gy ) € X7 x YW sy =wui ol # uid channels,” called so because they provide a natural cquarter

to the combinatorial definition of the ordered distance [8].
A simple example is given by the ordered erasure channel,
P.=P() =P( U B;). defined agv, : F; — (F, U{?})", where

Then the block error probability of decoding is defined as

i€Ag,NU-UA,._1 N

W, o €o, Yy=<x

The next theorem is the main result of this section. rlylz) = g, y=(7.. 22 1...2,),1<i<r
Theorem 5:Let 0 < o < 1/2 and let0 < R < I(W),

where W : X — ) is a DMC. The best achievableandW,(y|z) = 0 if y does not contain any erased coordinates

error probability of block error under successive cantielie andy # . Its capacity equals—)_;_, ic; and is attained by

decoding at block lengtlv = 2" and rateR satisfies sendingr independent streams of data encoded for binary era-
N sure channels with erasure probabilit@zi gji=1,...,m
Pe=0(2 )- Therefore, sending independent polar codewords over the
Proof: Let bit channels, one can approach the capacity of the channel.

Despite the fact that this example is trivial, it alreadywho
Eiw = {(W,y) e AN x YN the domination pattern observed in Theorem 1. Namely, it is
@ (N i1,y < WD (N i1y easy to prove directly tha¥; .. > Z; ., a.s. for alli > j,
W' (yr uy i) < W (i’ s + )} thereby establishing the result of Lemma 8. For that it sedfic
For a fixed value ofu} = (ay,as,...,ar) € {0,1}* let us to observe that the erasure in higher-numbered bits im{hias
define X (a¥) = {z € X : 2% = a¥}. Notice that the decoder all the lower-numbered bits are erased with probability & W

finds @;, i € Ay v by taking the maximum over the symbolgnclude two examples. In Fig. I, = 2, andeg = 0.5,&1 =

T c X(a’f). Then we obtain 0.4,e0 =0.1. In Fig. 2,7 =9 ande; = 0.1,¢ = 0,1,...,9.
Note that the proportion of the channels with capacity
B; C U Ei v 0,1,...,r bits converges ta;.
veX (af) Another example is given by tlerdered symmetric channel

[8] which is a DMCW : {0,1}" — {0,1}" defined by the

Using (5), we obtain ;
9 () matrix W (y|x) where

PB)< > P& —9-G-1)
= W(yle) = 2707 (26)
Z Z NN [l )1£M(U1 M) for all pairsy,z such thatd,(x,y) =4, j=1,...,r, and

where W (z|z) = ¢ for all z € X. The ordered symmetric

€X (ak , . .
veX(ap) uilul channel models transmission ovemparallel links such that,

N WJ(\} (N ui = u; + v) if in a given time slot a bit is received incorrectly, the bits
Z Z uy ) @, N i1 with indices lower than it are equiprobable. This system was
veX( P ul’ y1 W' (yr s uy ua) proposed in [19] as an abstraction of transmission in wéele
() fading environment. The capacity of the channel equals
Z Z WN Aui, U1+’U}) .
vEX (ak) Ui gi
B Z U(WJ(\;) (W) r+aologqao+;szlogq (qi—l(q—l))'
Ve (o} By Theorem 1g-ary polar codesg = 27 can be used to
Thus the decoding error is bounded by transmit at rates close to capacity on this channel; moreove
(i) the domination pattern that emerges, exactly matches the
P(&) < Z Z Zy(Wy')- fading nature of the bundle of parallel channels, achieving

i€Ao, NU-UA, 1, N vEX (ak) the capacity of the system discussed above.



2 Let z = (21,...,2;) be ank-tuple of symbols fromX.

:Z Define the probability distributio®(y|z) = + Zle W (y|zi)-
14 Define a B-DMCW{(Z)D_Z@)} : XF — Y with inputs () €

12 X%, where the transition") — y is given by P(y|z(?), i =

T 1 1,2.

3 o8 Lemma 9:The Bhattacharyya parameter of the chan-
06 nel W{(f()l) .y, Where 20 = (zq,...,2p),2) =
04 (k41 .., T2k), can be lower bounded by
0.2

0 (k) Ly
0 2048 4096 6144 8192 10240 12283 14336 16384 Z(W{Z(1)7Z(2)}) > Z ZZ(W{%.W(J_)}) (27)
Channel Index 7j=1

Fig. 1.  3-level polarization on the ordered erasure charifel: X — for any f which is a one-to-one mapping from the set
Y, & = {00,01,10, 11} with transition probabiliesso := W(00j00) = {1,2,...,k} to {k+1,...,2k}. _ _

0.5,e1 = W(tza|z1z2) = 04,62 1= W(??|z1,22) = 0.1, for all Proof: It suffices to prove the above inequality for some
e € {0, 1}. In this example it is easy to see th&l(/oc =i) =<i,i = pgne-to-one mapping. Lef(i) = k + i. For brevity denote
U w; 4 = W(y|x;). We have

k 2k
. 1
s 2078, o) = 3 4 (S ) (X wi).
Y i=1 i=k+1

6 while the right hand side of (27) is
g’ Iy Ly
5 e T2 ZWiay0)) = 7 D DV Big iy,
3 j=1 y =1
2 The Cauchy-Schwartz inequality gives us
1 k 2k k )
0 (wa)( Z wa) 2 (Z\/wiyywkﬂ,y)
0 4096 8192 12288 16384 20480 24576 28672 32768 i=1 i=k+1 i=1
Index
hence the lemma. [ |
Fig. 2. 10-level polarization on the ordered erasure chafirie {0,1}° — Let us introduce some notation. Given= (z1,...,2x) €
Y with transition probabilitiess; = 0.1, =0,1,...,9. Xk, let z @ x = (Zl D,..., 25 D x) where @ is a bit-
wise modulo2 summation. In the next lemma we consider
BDMCs W*) o xF 5 Y k=21 m =1, r
V. CONCLUSION {zm’szm’ }

with inputs of special form. Namely, 2" = z;; 2{" =

bThe relsu_lt of this paper r:)f'ferslmoie2(3efl<:;1r|1led lnlf(_)lrmalno&hxl@@); Zél) = (21,71 ® T2, 71 D3, 71 D22 B13), and
about polarization om-ary channelsg = 2. The multileve generally,zfﬁ) is formed ofz; plus all the possible sums of

polarization adds flexibility to the design of the transnugas the vectorsrs, .. . &, with 0 — 1 coefficients, including the
scheme in that we can adjust the number of symbols that carr oty one F7inall7y,z7&) — LWy ’

a given number of bits to a specified proportion of the overa(? For m ': 0.1 " . " 1 ir:;rc:duce the setd —
transmission as long as the total number of bits is fixed. Thf(x Emst) ’C’)'(',,;;l as follows:

could be useful in the design of signal constellations fatezb Lo metd '
modulation, including BICM [17], [18] as well as in other 4 — {(561,---,:Cm+1) c Xm+1’x1 € Xy € X\{0};
communication problems that can benefit from nonuniform
symbol sets.

The authors are grateful to Emmanuel Abbe, Eren Sasogﬁ,
and Emre Telatar (EPFL), and Leonid Koralov, Armand
Makowski, and Himanshu Tyagi (UMD) for useful discussions
of this work. This research was partially supported by NSF Lemma 10:
grants CCF0916919, CCF0830699, and DMS1117852. : ( 1 5 1 )

Az

Jj—1

+ Zaixi, for all choices ofa; € {0,1},7=3,...,m+ 1}
=2

We need the following technical lemma.

1) =3 (g

> 1w, o)
APPENDIX m=1 j=1 {zm’ 2m }

(28)
The proof of(10) : We shall break the expression f(i1’) where the numberk, the vectorSZ,(,P,z,(ﬁ), and the set
into a sum of symmetric capacities of B-DMCs. A(zy,...,xm41) are defined before the lemma.



Proof: First we express the capacity @f as the sum of
symmetric capacities of B-DMCs.

o)
1 W(ylz)
> Z Z W (yl)log =5 5

M DIPD

T1 x2:wa#£0

( (y|z1) log Si';;l)

W(yle: @ £C2)>
P(y)

+ W{(y|lz1 & x2) log
1
2r (2 —

1)
>3DY

( (y|z1) log T
Yy Xr1,T2
12;50

W (y|xy)
s(W(ylz1) + W(ylz: © 22))

W (yle, @ x2)
s (W(ylz1) + W(ylz: © x2))

(ylz1) + W(ylz1 © 22))
(W (ylz1) + W (y|z1 & 582)))
P(y)

ﬁ{ > IWiermees) + T2 )

T1,T2
Iz;éo

1
+35 92 (y|:c1 @ 1'2) 1Og 1

1
2

NIEg

where

W(ylx1) + W (ylz: © x2))

P IPIE!

y Xr1,T2
12;50

3(W

(ylz1) + W (ylz: © z2)) }

‘log Py)

Observe that the conditian, # 0 is needed in order to obtain

the expression fol (Wi, 1 @z.})-

We will apply the same technique repeatedly. In the next
step we add another sum, this time onwhich has to satisfy

the conditionses # 0, x3 # x2. We have

1
TF%ZW >

A(xy,z2,73)
(W (ylzy) + W (yl|z, @ 3))

P(y)
(ylz1 & x3) + W (y|z1 © 22 © 23))

-log

+ %(W
%(W(y|:1:1 @ x3) + W(ylzs ® z2 ® 5173)))
P(y)

1 1
—_ (5 507 0lon) + Wivlor 02
Yy A(xy,z2,23)
(W +W ® B
Tog s (W (ylz:1) . (y|z1 @ x2)) 4 Blog 7

1
5(W(y|x1) + W(y|z1 @ 22)) pefore the statement of lemma.

W(ylz: @ 22 @ 3))
W(ylz1 @ z2 ® 173)))

1
+ 3 (W (ylzr @ x3) +

1
2
%(W(y|:171 Dasz) +

-1
og 5

where B = L(W (ylz1) + W (y|z1 & z2) + W (y|z1 & x3) +
W(ylz1 @ 2o @ x3)).

By now it is clear what we want to accomplish. Let us
again take the sum opinside. Recalling the definition of the
channellV %) before Lemma 9, we obtain

1 2)
T 2{ 2 Wl ) T3};

A(xy,z2,23)

T

here I(W{(zzl) (2)}) is the symmetric capacity of the B-

22 ,22

DMC W{(j()l) z(2)} with Zél) = {xl,:cl (&) 1172} and Z§2)
2 1°2

{z1 ® z3,21 B 22 & 23}, and T3 is the term remaining in

the expression foll; upon isolating this capacity:

n-y %

Yy A(xy,z2,r3)

B
Blog .
P(y)

Now repeat the above trick fdf;, namely, average over all
the linear combinations that this time include the vector
and isolate the symmetric capacity of the charid&l) that
arises. Proceeding in this manner, we obtain

= 71) Z I(W{wl,wl@wz})

T1,T2
12#0

1 (2)
(W
2r(2r — 1)(2T —2) 2 {zé”,zé”})

A(z1,x2,23)

52 2

Yy A(zi,z2,x3)

B

Blog ——
P(y)

k
I(W{(zgi%z;?})

>

»»»»» Tm41)

()

where the notatior}:f,p,zm JA(x1, ..., &me1) IS introduced

[ |
We continue with the proof of inequality (10). The term
with m = 1 in (28) equals

1
2r(2r _ 1) Z I(W{11711®I2})
ii%fé
- _1 Z \/1 - W{Ihwl@:ﬂz})
45
- Z Z \/1 - W{11;11®12})2
wtm(ljm)z_d



T

1
2r+d—1
27"(27" _ 1) Z

a d=1
1 2
1- (W Z Z(W{zl,m@m}))
wtf(lm’gw)zzd
S 2911 - 73
2r — 1 d
d=1

where the first inequality is from the relation between the

symmetric capacity and the Bhattacharyya parameter of B- + il

DMCs [1], and the second inequality follows from the fact
that the functiony/1 — x2 is concave fol) < z < 1.

The terms withm > 2 in (28) will be estimated using
Lemma 9. We will choose the map so that ther-vector

a(f) = (M) @ (z®) 54

does not depend on. For instance, one such map is given
in Lemma 9. Moreover, out of all such mappings we take the
one for which wt (a(f)) is the smallest. Then the second terml!]
becomes

(2]

2
W2 o)
%2

1
2r(2r — 1)(2" — 2) 2 {2

A(z1,m2,23)

1
2727 —1)(27 — 2) > \/1 B

A(x1,z2,73)

1 [ D2
27(2r — 1)(2" — 2) 2 =7

A(I17I27I3)

(3]
(4]

(5]

\/W o
- or (2r Z Z 1- T [7]
d 1 A(z1,22,x3)

wt, (z3)=d [8]
< 2"«
T 2n(2r - —2) ; [9]

[10]
D

1
I- 27‘+1 -0y Z
A(z1,22,23)
VVtT(:E3):d

(11]

[12]

<

< o7 agy/1 — Zg (13]
(2 - d=1 [14]
where [15]
D= Z(W{Ihﬂh@ﬂﬁs}) + Z(W{11®12711€B12€B13})
ag =247 (ot —3.2471 )

[16]
which is the number of terms with wtxs) = d,z1 = 0
under the given condition. Repeating this process, we obtgj;;
the claimed result. The full calculation is cumbersome,itsut
essence is captured in the examplesfee 3 which we write

out in full: [18]
1
8§ — 291

m 19
W )

>

Az, Tmg1)

_|_

1
+8-7-6~4 Z

1
8-7

>

A(zq,x2)

1 2
8-7-6 Z I(W{(zglﬁzé”})

A(z1,22,23)

I(W{117I1@LE2})

I(W(g()l) e )

z3 23}
A(xy,w2,x3,24)

1
§?<,/1—Zf+2\/1—222+4\/1—2§)

(12\/1—Z2—|—18\/1—Z2—|—12\/1—Z2)

+m(%dl—Z%+48,/1—Z§+24,/1—Z§)
=\J1-z2+\1-23+\1- 2

This completes the proof of (10).
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