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The Approximate Capacity of
the GaussianV-Relay Diamond Network

Urs Niesen and Suhas N. Diggavi

Abstract

We consider the Gaussian “diamond” or parallel relay nekwar which a source node transmits a message
to a destination node with the help &f relays. Even for the symmetric setting, in which the chamaéhs to the
relays are identical and the channel gains from the relagsdantical, the capacity of this channel is unknown in
general. The best known capacity approximation is up to alitimel gap of orderV bits and up to a multiplicative
gap of orderN?2, with both gaps independent of the channel gains.

In this paper, we approximate the capacity of the symmetacasSianN-relay diamond network up to an
additive gap of1.8 bits and up to a multiplicative gap of a factbt. Both gaps are independent of the channel
gains and, unlike the best previously known result, are imldependent of the number of relajsin the network.
Achievability is based on bursty amplify-and-forward, slirg that this simple scheme is uniformly approximately
optimal, both in the low-rate as well as in the high-rate megg. The upper bound on capacity is based on a careful
evaluation of the cut-set bound. We also present approiomegsults for the asymmetric Gaussignrelay diamond
network. In particular, we show that bursty amplify-andwiard combined with optimal relay selection achieves
a rate within a factoO(log*(N)) of capacity with pre-constant in the order notation indefger of the channel
gains.

. INTRODUCTION

Cooperation is a key feature of wireless communication.Apé¢ canonical channel model capturing
this feature is the “diamond” or parallel relay network educed by Schein and Gallagér [1]) [2]. This
network consists of a source node connected through a astdeannel taVv relays; the relays, in turn,
are connected to the destination node through a multiptesscchannel (see Figl 1). The objective is

v1

broadcast cut multiple-access cut

UN

Fig. 1. TheN-relay diamond network. The source noderansmits a message to the destination nedeia the N relays{v, }}_,. The
two cuts indicated in the figure are the broadcast cut (sépgrthe source: from the relays{v, }) and the multiple-access cut (separating
the relays{v,} from the destinationv).

to maximize the rate achievable between the source and stenalton with the help of theV relays.
Throughout this paper, we will be interested in the Gausse&sion of this problem, in which both the
broadcast and the multiple-access parts are subject toiveed@aussian noise. Moreover, for simplicity
we will restrict attention in a significant part of the paperthe symmetric case, in which the channel
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gains within the multiple-access part and within the breatipart of the network are identical (but are
allowed to differ between the multiple-access and broadgads). However, we do show that some of
the results for the symmetric setting can be extended to shmmetric setting.

For the Gaussiar-relay diamond network, the rates achievable with decaodkfarward and with
amplify-and-forward at the relays were analyzed [ih [2]. dtshown there that these schemes achieve
capacity in some regimes of signal-to-noise ratios (SNRdhe broadcast and multiple-access parts of
the diamond network. The asymptotic behavior of Meelay Gaussian diamond network was investigated
in [3]. In certain regimes of SNRs of the broadcast and migitgrcess parts of the network, it is shown
that amplify-and-forward is capacity achieving in the linas N — oo. New achievable schemes for
the Gaussian diamond network with bandwidth mismatch, (itee source and the relays have different
bandwidth) were introduced inl[4] and| [5]. Perhaps surpghij, these schemes lead to higher achievable
rates than the ones obtained with amplify-and-forward aswbde-and-forward even when the bandwidths
at the source and the relays are identical. Half-dupleximessof the Gaussian diamond network, in which
the relays cannot receive and transmit signals simultasigauere considered in[6] and![7]. The capacity
of a special class o2-relay diamond networks is derived inl [8]. For networks imsthlass, one relay
receives the signal sent at the source without noise, anddsignation node is connected to the relays by
two orthogonal bit pipes of fixed rate. To the best of our kremgie, this is the only non-trivial example
for which the capacity of the diamond network is known foralues of SNR. For the general Gaussian
N-relay diamond network, the capacity is unknown.

Given the difficulty of determining the capacity of commuation networks in general and of the
diamond network in particular, it is natural to ask if it canleast be approximated. For high rates, such
an approximation should be additive in nature, i.e., we wdikle to determine capacity up to an additive
gap. For low rates, such an approximation should be muafgiie, i.e., we would like to determine
capacity up to a multiplicative gap. If a communication &gy can be shown to have both small additive
as well as multiplicative gaps, then this strategy is provalse to optimal both in the high rate as well
as low rate regimes.

Additive approximations for channel capacity of commutima networks were first derived in|[9],
where the capacity region of the two-user Gaussian in@mfr channel is determined up to an additive
gap of one bit. This was mainly enabled through a new outentidar the interference channel. The
approach of approximate capacity characterization wasieappo general relay networks with single-
source multicast in [10]. By introducing a new relaying &gy termed quantize-map-forward, capacity is
derived up to an additive gap @6n bits, wheren is the number of nodes in the network. This additive gap
was improved through the use of vector quantization at tteys€11], [12]. The sharpest known additive
approximation gap id4.26n bits for the complex Gaussian case (b63n for the real case) [12]. Since
the N-user diamond network is a special case of a relay network wisingle source and destination
and withn = N + 2 nodes, these results yield an additive approximation up ga@of0.63N + 1.26
bits for this network (assuming real channel gains).

Multiplicative approximations were mostly analyzed forga wireless networks, for which the rate
per source-destination pair is low. For a network withnodes, the emphasis is on finding capacity
approximations up to a small multiplicative factor4n This approach was pioneered n [13]. Under a
restricted model of communication, (essentially) the ¢gati point of the capacity region of a wireless
network withn randomly placed nodes was determined up to a constant hizdtipe factor independent
of n. Without the restrictive communication assumptions ir [11% problem becomes considerably harder.
Approximations for the equal rate point under a Gaussianainwdre derived in[14] up to a multiplicative
factor of O(n®) for anye > 0. These approximation results were subsequently sharparigd], [16] to

a factorn®/v1°s(™) Under some conditions on the node placement, this factofuggher be sharpened
to O(log(n)) [17]. Multiplicative approximations for arbitrary relayetworks with single-source multicast
(as opposed to wireless networks with multiple unicast, naultiple separate source-destination pairs)
were derived in[[10]. For a network with maximum degrgethe capacity is approximated to within a



factor of 2d(d + 1). As pointed out earlier, the Gaussianrelay diamond network is such a network
with maximum degreel = N, and hence this result yields a multiplicative approximatup to a factor
of 2N(N +1).

To summarize, the capacity region of the general Gaussiaelay diamond network is not known. The
best known additive approximation is up to a ga@@f3 vV + 1.26 bits, and the best known multiplicative
approximation is up to a factor N (N + 1). In either case, the bounds degrade rather quicklyas
increases. It is hence of interest to find approximation gnimes that behave better as a function of the
number of relaysV in the network. Ideally, we would like the approximation gaatees to be uniform
in in the network size.

As a main result of this paper, we show that such a uniforma@pmration is indeed possible. More
precisely, we find an additive approximation of the capaocityhe symmetric GaussiaN-relay diamond
network of gap at most.8 bits for any SNR and number of relayé. Moreover, we find a multiplicative
approximation to the capacity up to at most a fadtdragain for any SNR and number of relays This
is a significant improvement over the previously best knodditave approximation of).63/N + 1.26 bits
and multiplicative approximation of a fact@iV(N + 1), especially for large values a¥. In particular,
as far as we know, this is the first such approximation resath( multiplicative as well as additive) that
is independent of the number of network nodes for a nontrolass of wireless networks.

We further show that bursty amplify-and-forward (first oduced in[[2, p. 76]) with properly chosen
duty cycle is close to capacity achieving for the diamondvoek simultaneously in the sense of multi-
plicative and additive approximation up to the aforemeamdi gaps. Hence, bursty amplify-and-forward
with appropriately chosen duty cycle is a good communicescheme for the symmetric Gaussisrrelay
diamond network both at low and at high SNRs, and indepehdefhthe number of relaysV.

Some of these results can be extended to the asymmetringseftdor general (i.e., not necessarily
symmetric) GaussiaV-relay diamond networks, we provide a factoflog?(V)) multiplicative approxi-
mation of capacity, with pre-constant in the order notatratependent of the channel gains. Achievability
is based again on bursty amplify-and-forward, but this tam@areful selection of relays is also necessary.

The main technical contribution of this paper is the uppamubon capacity. The standard way to obtain
upper bounds on the capacity of the diamond network is touat@ltwo particular cuts in the wireless
network, namely the one separating the source from thegdtalled thebroadcast cut in the following)
and the one separating the relays from the destinatione(talie multiple-access cut in the following)
as depicted in Fig11. This approach is taken, for examplg3JA[5]. In fact, for symmetric Gaussian
N-relay diamond networks, whenever the capacity is knoweogincides with the minimum of these two
cuts. We show in this paper that, in order to obtain unifornditace or multiplicative approximations
for the capacity of this network, considering just these wubs is not sufficient. Instead we need to
simultaneously optimize overall possible2” cuts separating the source from the destination. Withast th
careful outer bound evaluation, we believe that the unif¢inrmnetwork size) approximation would not
have been possible.

The remainder of this paper is organized as follows. Sedlibformally introduces the problem
statement. Section ]Il presents the main results; the sporeding proofs are presented in Secfioh IV.
SectionY¥ contains concluding remarks.

[I. PROBLEM STATEMENT

Consider the GaussiaN-relay diamond network as depicted in Hig. 2. The source nottansmits a
message to the destination nodewith the help of N parallel relays{vy, ..., vy}. The channel inputs at
time ¢ € N at nodesu andv,, are denoted byX [t] and X,,[t], respectively. The channel outputs at time
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Fig. 2. The GaussiaiV-relay diamond network.

t € N at nodesw andv,, are denoted by [t] andY,[t]. The channel inputs and outputs are related as
Yalt] 2 @ X[t] + Zu[t),
N
VI 2 S VRX[ + 2],
n=1

where(Z[t]), ,(Zn[t])m are independent and identically distributed Gaussianalaneariables with mean
zero and variance one, independent of the channel inputs.clibnnel gaingg,)”_, and (h,)_, are
assumed to be real positive numbers, constant as a fundtimme, and known throughout the network.
A T-length block code for the diamond network is a collection of functions

f:{1,...,M} = R”,

fo: R" = RY, Vne{1,...,N},

¢: RT = {1,...,M}.
The encoding functiorf maps the messad#, assumed to be uniformly distributed over the{det .., M},

to the channel inputs
(X[t])izy = F(W)

at the source node. The functionf,, maps the channel output¥),[t])Z; to the channel inputs

(Xalt])izy = fu((Yalthiz)

at relayvnﬁl The decoding functior maps the channel outputd’[t])._, at the destination node into
a reconstruction

W2 o((YI))-
We say the code satisfiesuait average power constraint if
1 T
Y B <1,

t=1

E(X2[t]) <1, Vne {l,..., N}

N =
hE

t

1

"Note that the functiong,, at the relays are not causal. This is to simplify notatiore ¢ the layered nature of the network all results
remain the same if causality is imposed.



The rate of the code is
log(M)/T,

and itsaverage probability of error )
P(W #W).

A rate R is achievableif there exists a sequence Gflength block codes with unit average power constraint
and rate at leask such that the average probability of error approaches zeff & co. The capacity
C (N, (gn), (hy)) of the diamond network is the supremum of all achievablesrate

A natural scheme for the diamond networkasiplify-and-forward, in which each relay transmits a
scaled version of the received signal. Formally,

Xolt] = anYalt] = any/gu X [t] + i Zp[t],

where the constant, is chosen to satisfy the power constraint at the relay. DR, (N, (¢,), (h,)) the
rate achieved by amplify-and-forward with optimal choide(@,,)’_,. We point out that the optimization
over (a,)_, is necessary. While perhaps counterintuitive, it turnstbat in the asymmetric setting the
rate of amplify-and-forward is not always maximized whee tielays use all available transmit power
(see [2] for a discussion of this phenomenon in the two-rekzse).

If the SNR at the relays is low (i.eg, < 1), it can be shown that simple amplify-and-forward is
arbitrarily suboptimal. This is because the received digoaver g, at the relayv,, is much smaller than
the noise powet, and therefore the relay amplifies mostly noise. This eféeet be mitigated by using
bursty amplify-and-forward [2]. For a constant € (0, 1], called theduty cycle in the following, we
communicate for a fraction of time at average powelr/j using the amplify-and-forward scheme and
stay silent for the remaining time. This satisfies the ovexatrage unit power constraint. The resulting
achievable rate is denoted 8% (N, (g,), (h,)). This notation is consistent, i.e., fér= 1 the simple and
bursty amplify-and-forward schemes coincide and achieta bate R, (N, (g,), (h,)).

A special case of the general diamond network described rs¢s felhe symmetric setting, in which

g1 =92 = ... =gy = gandh; = hy... = hy = h. With slight abuse of notation, we denote the
capacity and rates achievable by bursty amplify-and-foiviar the symmetric setting bg'(N, g, h) and
R5<N7 9, h)

Throughout this paper, we use bold font to denote vectorsmaattices.log(-) andIn(-) denote the
logarithms to bas@ ande, respectively. All capacities and rates are expressedtgnpar channel use.

[1l. M AIN RESULTS

The main results of this paper are additive and multiphe@atiapacity approximations for the Gaussian
diamond relay network. We start with a discussion of symimeietworks in Sectioi III-A. General
asymmetric networks are treated in Secfion 1lI-B.

A. Symmetric Diamond Networks
The first result lower bounds the rate achievable over a symorgiamond network by using bursty
amplify-and-forward with optimized duty cycle

Theorem 1. For every symmetric diamond network with N > 2 relays and channel gains g, h > 0, there
exists a duty cycle 6* € (0, 1] such that bursty amplify-and-forward achieves at least the rate

(31og (14 $N min{g, Nh}), if max{g, Nh} >1

+In(4/3)log(1+ Ng), if max{g, Nh} <1,g<h

Rs<(N,g,h) > { 3log (1+ $N?gh), if max{g, Nh} <1, g € (h, N*h), N\/gh > 1
11n(4/3)log(1 + N+v/gh), if max{g, Nh} <1, g € (h, N*h), N\/gh < 1
(51n(4/3) log(1 + N?h), if max{g, Nh} <1, g > N?h.




The proof of Theoremll is presented in Secfion IV-A. Note that optimal duty cycle)* is allowed
to depend onV, g, andh. In the high-rate regime, i.e., the first and third cases irofam[1, the duty
cycle achieving the lower bound & = 1, and hence the bursty amplify-and-forward scheme reduces t
simple amplify-and-forward. On the other hand, in the l@aterregime, i.e., the second, fourth, and fifth
cases in Theorem b < 1, and (genuine) bursty amplify-and-forward is used.

Having established an achievable rate, the next theorewida® an upper bound on the capacity of
the diamond network.

Theorem 2. For every symmetric diamond network with N > 2 relays and channel gains g, h > 0,
capacity is upper bounded by

(1log (1 + N min{g, Nh}), if max{g, Nh} >1
1log(1+ Ng), if max{g, Nh} <1,g<h
C(N,g,h) < < 3log (14 2N?gh) + £, if max{g, Nh} <1, g € (h, N*h), N\/gh > 1
log(1 4+ 2N+/gh), if max{g, Nh} <1, g € (h, N*h), N\/gh < 1
5 log(1+ N?h), if max{g, Nh} <1, g > N2h.

The proof of Theorem2 is presented in Secfion 1V-B. As a darglto Theorem§11 and 2, we obtain
that bursty amplify-and-forward is close to optimal, in thense that it achieves capacity both up to a
constant additive gap as well as a constant multiplicataje gvhere both constants are independent of the
number of relaysV and the channel gainsandh. This shows that optimized bursty amplify-and-forward
is a good communication scheme for the symmetric diamongark&tboth at low rates (due to the small
multiplicative gap) as well as at high rates (due to the smddlitive gap).

Corollary 3. For every symmetric diamond network with N > 2 relays and channel gains g, h > 0, there
exists a duty cycle 6* € (0, 1] such that

C(N,g,h) — Rs«(N,g,h) <1+ 1log(3) < 1.8 hits,

and

C(N,g,h) 4
< < 14.
R5*<N7ga h) N 11’1(4/3) N
The proof of Corollary B is presented in Sectlon TV-C. We paint that choosing the duty cyct& as

a function of N, g, andh, is not necessary to obtain the additive approximationlrésiuCorollary[3. In
fact, using only simple amplify-and-forward achieves thens additive approximation guarantee, i.e.,

C(N,g,h) — Ry(N,g,h) < 1.8 bits

for all N > 2, g,h > 0. However, the same is not true if we are also interested intiphahtive
approximation guarantees (at least in the low-rate regiff@)achieve a constant additive approximation
as well as constant multiplicative approximation, the deygle 6* is required to vary as a function of,

g, andh, and therefore bursty amplify-and-forward is required.

From Theorem§ll and 2, the capacity of the symmetric diamatadark has three distinct regimes,
depending on whether < h, h < g < N?h, or ¢ > N?h. In the first regime { < 1), the channel gain to
the relays is weak compared to the channel gain to the déstinand the achievable rate is constrained
by the broadcast part of the diamond network. The capacithigiregime is given approximately by

C(N,g,h) =~ 3log(1+ Ng),

where the approximation is in the sense of Corol[dry 3, ngraplto a multiplicative gap of factor4 in

the low-rate regimeg(< N~!) and up to an additive gap af8 bits in the high-rate regimey(> N71).
This is the capacity of a single-input multiple-output chahwith unit power constraint, one transmit
antenna,N receive antennas, and channel gaip between each of them. Thus, the broadcast cut in
Fig.[d in Sectiori]l is approximately tight in this regime.



In the third regime { > N?h), the channel gain to the relays is strong compared to thenehayain
to the destination, and the achievable rate is now considny the multiple-access part of the channel.
The capacity in the third regime is given approximately by

C(N,g,h) ~ $log(1+ N°h).

This is the capacity of a multiple-input single-output chahwith unit per-antenna power constraint,
transmit antennas, one receive antenna, and channehgaimetween each of them. Thus, the multiple-
access cut in Fid.l1 is approximately tight in this regimes@tbe that to achieve this rate the signals
sent by the relays must be highly correlated and add up cother@t the destination.
The most interesting regime is the second ohe(g < N2h). If max{g, Nh} > 1, then the capacity
is given approximately by
C(N,g,h) = 3log (1+ N min{g, Nh}),

and again either the broadcast cut or the multiple-accesareutight. If max{g, Nh} < 1 the situation
is more complicated. 1fV\/gh > 1, then the capacity of the diamond network is approximately

C(N,g,h) ~ 3log(1+ Ngh),
and, if Ny/gh < 1,
C(N,g,h) = 1log (1+ N+/gh).
In both cases, the capacity depends on the produgt afid , and not merely on the minimum aof
and Nh. Hence, neither the broadcast cut nor the multiple-accoaisare tight in this case. In fact, these
bounds can be arbitrarily bad, both in terms of additive gapvall as multiplicative gap, as the next two
examples illustrate.
For the additive gap, considgr = N=°% and h = N8, Thenmax{g, Nh} = N7V/® < 1, g =
N'Y2h € (h,N%h), and N\/gh = N'/8 > 1, so that
C(N,g,h) ~ $log(1+ Ngh)
= Llog(1+ N4,
On the other hand, the minimum of the broadcast and muléiptess cuts yields
1log (1 + Nmin{g, Nh}) = log(1 + N*¥),
resulting in an additive gap of ordér(log(/N)) bits, which is unbounded as the number of relays+ cc.
For the multiplicative gap, considgr= N~2 andh = N 3. Thenmax{g, Nh} = N2 <1,g= Nh €
(h, N2h), and N\/gh = N~%/2 < 1, so that

C(N,g,h) ~ 3log (1 + Nv/gh)

= 1log(1+ N=3/%)

~ élog(e)N‘?’/?.
On the other hand, the minimum of the broadcast and multiptess cuts yields

+log (14 Nmin{g, Nh}) = log(1+N~")
~ 3 log(e) N7,
resulting in a multiplicative gap of orde®(v/N), which is again unbounded as the number of relays
N — .
In the second regime, we thus need to take cuts other tharrdlaeldast and multiple-access ones into

account. The need for this can be understood as follows.i@&mna general cut separating the source node

u from the destination node in the diamond network as shown in Fig. 3. Formally,$et {1,..., N},
and consider the cut fromU {v, },es t0 w U {v, },es-. Assume the signalgX,,)Y_, sent from the relays



to the destination are highly correlated. This results & sfgnal summing up coherently at the receiver,
increasing the rate across the cut. At the same time, if tireats sent from the relays are highly correlated,
then the signal$.X,,),.cs- available at the relays on the other side of the cut can be tesedtimate the
signal received at the destination node. This decreasesatbeacross the cut. Thus, for general cuts,
there is a tradeoff between the gain from coherent receptmhthe loss from prediction that come with
increased signal correlation. This tradeoff is absent ifonly consider the broadcast and multiple-access
cuts. It is precisely this tradeoff that determines the keof the capacity of the diamond network in
the second regime.

Fig. 3. A general cut in the diamond network. HefeC {1,..., N}, and the cut separatesJ {v, }ncs from w U {v, tnese.

We point out that a (partial) decode-and-forward strategyat sufficient to provide a uniform capacity
approximation as in Corollaiy 3. Indeed, due to symmetilyrelays would be able to decode the source
in any such strategy, which implies that decode-and-faavaard partial decode-and-forward coincide in
this case. The rate achievable with decode-and-forwaravendoy

1log (1 + min{g, N*h}).

Comparing this with Corollarl3, we see that (partial) demathd-forward has an additive gap of at least
Q(log(N)) bits and a multiplicative gap of at least a factofN) to capacity. Similarly, compress-and-
forward does not achieve constant (in the network sideadditive or multiplicative gaps to capacity,
since it does not capture the gain from coherent signal iatiditt the destination. Finally, as was pointed
out earlier, the traditional amplify-and-forward stratedpes not yield a constant factor approximation of
capacity. In fact, in can be shown that simple amplify-aodwvbrd results in unbounded multiplicative
gap even forN = 2. Therefore the bursty amplify-and-forward scheme intemtlin [2] and advocated
in this work has the nice property of being uniformly approately optimal in both the additive sense
and the multiplicative sense, as well as being a simple nuadiifin of the traditional amplify-and-forward
scheme.

B. Asymmetric Diamond Networks

In the last section, we have considegthmetric diamond networks, in which the channel gain from
the sourceu to the relayv, is \/g and the channel gain from, to the destinationy is Vvh for all n.

In this section, we show how some of the results can be extetaasymmetric diamond networks, in
which the channel gaing;,,)_, and (h,,)"_, are allowed to take arbitrary values.

For this asymmetric setting, it was shown inl[10] that (bgrstmplify-and-forward doesot achieve a
constant (as a function af, and h,,) additive-gap approximation even whén= 2. However, we show
here that bursty amplify-and-forward is approximatelyimat in the sense of multiplicative approximation
for any N, (g,)Y_,, and(h,)Y_,. More precisely, we show that the rate achieved by burstylifyrand-
forward combined with optimal relay selection is at most etdaO(log*(N)) from capacity uniformly



in (g,)™_, and (h,)Y_,. While not constant inV, compared to the best previously known multiplicative
approximation of a facto2/N(N + 1), this is a significant improvement. Hence, at least in the-low
rate regime, bursty amplify-and-forward is also a good camication scheme for asymmetric diamond
networks.

Theorem 4. There exists a universal constant K < oo such that for every diamond network with N > 2
relays and channel gains (g,)Y_,, (h,)Y_, > 0,

C(N, (gn), (hn))
SUDse (0,1] Fs (N, (9n), (hn))

The proof of Theorerhl4 is presented in Secfion IV-D. At a higlrel, achievability is proved as follows.
Group the relays into classes such that all relays in the sdass have approximately the same channel
gains. Choose one such class, and set the constgnts 0 for all relays not in this class (effectively
disabling those relays). This relay-selection step reslube original asymmetric network to a (almost)
symmetric subnetwork. Theorelmh 1 can now be applied to thisnsgtric subnetwork to obtain a lower
bound on the rate achievable with bursty amplify-and-fodv@8y maximizing over all possible classes,
and hence all possible symmetric subnetworks, we get tlygedamrate achievable in this manner. The
corresponding upper bound shows that this approach of ss#gction combined with bursty amplify-
and-forward is approximately optimal.

< Klog"(N).

IV. PROOFS

Sectiond IV-A,[1V-B, and IV-C contain the proofs of Theordém(dchievability), Theoreni]l2 (upper
bound), and Corollar{]3 (approximation) for symmetric deard networks. Section TVAD contains the
proof of Theoren ¥ for general asymmetric diamond networks.

A. Proof of Theorem[I (Achievability for Symmetric Networks)
We start with a lemma computing the rate achievable by agplifd-forward.

Lemma 5. For every symmetric diamond network with V> 2 relays and channel gains g,h > 0,
amplify-and-forward achieves

N2gh )

149+ Nh/

Proof: Recall that with amplify-and-forward relay, transmits
X, [t] = aY,[t] = a/gX|[t] + aZ,]t]

at timet, with constanty > 0 chosen to satisfy the average unit power constraint. Theivied signal at
the destination node is

Ry(N, g, h) = Llog (1 i

Y[t] = aNVghX[t] + avh > Z,[t] + Z[t].

Observe that this describes a memoryless point-to-poimmél with channel gainN/gh and additive
Gaussian noise of variander o> Nh. R (N, g, h) is the capacity of this point-to-point channel, optimized
over the value ot.

For any value ofa > 0, the optimal distribution of the inpuk for this point-to-point channel is
Gaussian with zero mean and variance one. The signal seitebselays has power

B(X;) = o*(1+9),
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and hence for
a’ € [0,1/(1+g)]

the average unit power constraints at the relays are sdtigfies implies that amplify-and-forward achieves
a rate of

N2%gh
Ry(N, g, h) = 1 (1 0‘7)
1(N, g, ) a2e[311%+g)}2 o8 +1+042Nh
N2gh
_1 _rer
_210g<1+1+g+]\fh)'

[
The next lemma describes the rate achievable with burstylifyramd-forward.

Lemma 6. For every symmetric diamond network with N > 2 relays and channel gains g, h > 0, bursty
amplify-and-forward with duty cycle 6 € (0, 1] achieves

N2gh/§* )
1+g/0+Nh/o/

Proof: During theé fraction of time we communicate, we are dealing with an egjent channel
with gainsv/¢g/d, v'h/§ and with unit power constraints. The result now follows fraemmalb by taking

into account that we only communicate a fractibof time. [ ]
Note that Lemmals]5 arid 6 coincide fbe= 1, as expected. We now proceed to the proof of Thediem 1.

To simplify notation, set

Rs(N,g,h) = 301og (1 +

Ré £ R(S(Nvgv h)

for 0 € (0,1].
We consider the casesax{g, Nh} > 1 andmax{g, Nh} < 1 separately. Assume firstax{g, Nh} >
1. Here we seb = 1, i.e., we use simple amplify-and-forward. By Lemfda 5

N2gh )
1+g+ Nh
1o (14 N min{g, Nh} max{g, Nh}

2 1 4+ min{g, Nh} + max{g, Nh}
> 1og (14 N min{g, Nh} max{g, Nh}

2 3max{g, Nh}
= 1log (1 + $Nmin{g, Nh}),

where we have used that< max{g, Nh} to obtain the inequality.

Assume in the following thatnax{g, Nk} < 1. We consider the cases < h, g € (h, N*h), and
g > N?h separately. Consider firgt< h. Bursty amplify-and-forward with duty cyclé= Ng < Nh < 1
achieves by Lemmal 6

Rlzélog<1+

N?gh/(N*g?) )
1+g/(Ng)+ Nh/(Ng)

+g/N+h>

IVE

Nglog (1

Nglog(4/3)
In(4/3)log(1 4+ Ng),

h+h/N+h)

AVARLY,
MI»—t wl»—t o=
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where in(a) we usedg < h.
Consider thery € (h, N?h). If Ny/gh > 1, then simple amplify-and-forward achieves by Lemha 5
N2gh )
14+g+ Nh
> Llog (1 4 1N?gh),
where we have used thatt- ¢ + Nh < 3, which follows frommax{g, Nh} < 1.
Still assumingg € (h, N?h), if N\/gh < 1/ then bursty amplify-and-forward with duty cycle =
N+/gh <1 achieves by Lemmil 6

Rs = %N\/ghlog
= 3NV/ghlog

R1:110g<1+

N

N2gh/(N?gh)
(1+ 1+ g/( N\/g_)+l\fh/(]\f\/_)>
(

N RV
1

1+ vV N2h/(NVhR) + x/ﬁ/\/ﬁ)

b
> LN \/ghlog (1 +

— IN\/ghlog(4/3)
> 11n(4/3)log (1 + Nv/gh),
where in(b) we have used that < N?h andg > h.

Consider finallyg > N2h. Bursty amplify-and-forward with duty cyclé = N2h < g < 1 achieves by
Lemmal®

N?gh/(N*h?)
1+ g/(N2h) + Nh/(N%))

_ 1772 9/(N2h)

= 5 NV"hlog (1 1 +g/(N2h) + 1/N>

NZ%hlog(4/3)

In(4/3)log(1 + N?h),

where in(c) we have used that/N <1 < g/(N?h). [}

Ry = }N*hlog (1+

B. Proof of Theorem[2 (Upper Bound for Symmetric Networks)

In this section, we derive an upper bound on the capacity ef Gaussian diamond network. The
standard way to find such bounds is to start with the cut-sahtband then to simplify it further to
obtain a closed-form expression. The derivation heresstaith the cut-set bound as well, but differs in
several key aspects from the standard approach, which wehigivight.

Let

[N] = {1,2,...,N},

and for a subsef C [N], define

By the cut-set bound [18, Theorem 14.10.1],

C(N,g,h) < sup min (X, Xg;V,Yse
X, X[y SCIN]

Xse),

Note thatg € (h, N*h) and NVgh < 1 imply max{g, Nh} < 1.
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where the maximization is over random variablesX |y, satisfying the power constrainfs(X?) < 1,
E(X2) < 1, and whereXs £ (X,,), .5 for any subsetS C [N] (see Fig[B in Section Il-A). A short
calculation (done in[{6) below) reveals that

S min [(X,Xg;Y, Vee | Xoo) < Jup min (1(X5Yse) + I(Xs:Y | X)), (1)

In the right-hand side of({1), the first mutual informationrresponds to the rate between the source
nodes and the relays, and the second mutual informatioesmonds to the rate between the relays and
the destination node.

One approach is to simplify this expression further throagbequence of two steps. The first step is
to upper bound

[(Xs;Y | Xge) = H(Y | Xse) — H(Z)
< H(ﬂ S esXn + Z) —H(Z)
— (X5 VA S esXa + ),

where, in order to avoid confusion with the channel gajrwe denote the differential entropy by the
non-standard symbdl.. This first step thus removes the conditioning on the sigialsavailable at the
destination side of the cut. The second step is to interahémg order of maximization and minimization.
This yields

= min_ ($log(1+ (N —n)g) + 1log(1 + nh)). 2

This can be further upper bounded by considering onkt 0 or n = N, resulting in the minimum of
the broadcast and multiple-access cut

C(N,g,h) < min {log(1+ Ng), 5 log(1+ N?h)}. (3)

Neither of the upper boundBl(2) arid (3) are tight enough taink# constant gap approximation of the
capacity (this can be seen from the two examples presentedGdrollary[B).

In this paper, we also start the derivation of the upper bdumu the cut-set bound(1), but we avoid
taking the two simplifying steps mentioned in the last paapb. Instead, we first show, using the symmetry
in the problem, that the correlation between any two sigiglsand X; with n # n can be assumed to
be equal without loss of optimality. Using the resulting glenform of the covariance matrix allows us
then to evaluate the terth( Xs; Y| X.) directly. This enables us to keep the conditioningX6g, which
yields a significantly tighter upper bound on capacity. Tasuiting upper bound is summarized in the
following lemma.

Lemma 7. For every symmetric diamond network with N > 2 relays and channel gains g, h > 0, capacity
is upper bounded as

C(N,g,h)

n(N —n)p?
< sup minN}(% log(1+ (N —n)g) + %log(l + n<1 +(n—1)p— T ((N — n)—p 1)p>h>).
The variablep appearing in the lemma can be interpreted as the correlagitbveen the random variables
X[~ as mentioned in the preceding discussion. Note that it i<lealr a priori that this correlatiop can
be restricted to be nonnegative. This restriction is parthefassertion of the lemma. We also point out
that it is important thap = 1 is excluded from the supremum in Lemina 7; the result is n& without
this restriction.
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It will be convenient in the following to work with a weaker nggon of Lemmal7. Note that, for
p€l0,1),

n(N —n)p? n(N —n)p?
14 (n—1)p— <1 _ MY WP
=1y 1+(N—n—1)p — e 14+ (N —n)p
- (V) )
N-—n 14+ (N —n)p
N
< .
~ N-—-n
Hence N2
< mi 1 - 1 :
C(N,g,h) < negl’.l.I}N} <2 log(1 + (N —n)g) + 5log (1 + N nh>> (4)

The upper bound_{4) derived from Lemmh 7 can be compared tgithgler bound[(R). Ifn = KN
for some constank” € (0, 1), then the factor multiplying the channel gdirin (2) is of order©(N?). On
the other hand, the same factor i (4) is of or@rV). Thus, the bound{4) can be considerably tighter
than the simpler bound](2).
Proof of Lemma[Zt By the cut-set bound [18, Theorem 14.10.1],

C 2 C(N,g,h) < sup min}I(X,XS;Y,YSc Xse), (5)

X, XN SC[N

where, as before, the maximization is over random variableXy; satisfying the power constraints
E(X?) <1, E(X?) < 1. We evaluate{5) in two steps. First, we argue that the mastiun overX, X,
can be restricted to jointly Gaussian random variables saheachF:(X?) = 1 and E(X,, X;) = p for
n # n and somep € [—1/(N — 1), 1]. This simplifies the maximization to be over just the parangt
instead ofN-dimensional distributions. Second, using the resultingpte form of the input distributions,
we analytically evaluate the mutual information 0 (5) taah the stated bound.

We start by simplifying the mutual information ial(5) for adiet cutS C [IV]. We have

I(X,XS;}/,YSc ch)
:H(KYSC ch)—H(Y,YSc X,X[N})
=M (Yse | Xge) + H(Y | Ve, Xge) = H(Yse | X, X)) = H(Y | Yo, X, X))

<H(Vse) + H(Y | Xge) = H(Yse | X) = H(Y | X))
=I1(X;Yse) + I(Xs;Y | Xse), (6)

where we have used that

H (Vs

X, X)) = H(Zse) = H(Yse

X),
and that

H(Y | Yoo, X, Xv)) = H(Z) = H(Y | X))
Combining [5) and[{6) yields

ngé;alggb%} ([(X;Ysc)—l—I(XS;Y}XSc)) (7)

For the first term in[{7),
I(X;Yse) < 3log(1+1[5g), (8)
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since the channel fronX to Ys. is a Gaussian single-input multiple-output channel withrotel gains
/9. For the second term if](7),

I(Xs;Y}Xsc)= (Y] Xse) = H(Y | Xiw))
= H(VR Y s (X0 = Bu(Xs0)) + 2 | Xs2) = H(2)
<H(VE S es(Xn = BulXs0)) + Z2) — H(2), (©)

for any choice of functiong, (Xs.) for n € S. In particular, let3,(Xs.) be the minimum mean-square
error estimator forX,, based onXge..

Let Xy have covariance matri@. Then, by [19, Theorem 1.2.11(X,, — 3,(Xs¢))necs has covariance
matrix

Qs|se = Qss — Qs,5:Qge 5-Qse s, (10)

where, for any subsets;, S, C [N], Qs, s, is the submatrix of) induced by the rows; and columnsS,,
and where) ;. <. is theMoore-Penrose generalized inverse of the matrixQs. s-. The matrixQss- is called
the generalized Schur complement of Qs sc in Q. Note that ifQs. s is invertible, thenQ. . = Qgc{sc
and the generalized Schur complement reduces to the staSdaur complement.

Before proceeding, we need to introduce some notation. f2dmol, the a x a identity matrix, and by
1., the a x b matrix of ones. To simplify notation, we will writé for the column vectod, ;, whenever
the dimension is clear from the context. With these defingjo

H(VES e (Xn = BulXse)) + Z) = H(Z) < Slog (1+ M7 Qs;s1), (11)
Substituting [(B),[(B), and(11) int@](7) yields

C< s in <llo 1+5%g) + 2log (14 h1” 1 >,

< s i g(1+S°g) + 3 log ( Qsjs1)
qn,n<1Vne[N]

where@ > 0 denotes tha@) is a positive semi-definite matrix. We have thus simplifiegl thaximization

over input distributions to a maximization over covariamoatrices. The next step is to show that the

covariance matrix) can be restricted without loss of optimality to have the form

plyn + (1 —p)Iy,

and hence the maximization over covariance matrices carmipleef simplified to a maximization over
just the scalar correlation parametfﬁ
For convenience of notation, define

¥s(Q) £ Llog (14 h17 Qg se1)

and
U(Q) 2 min (§log(1+1590) +vs5(Q)).
so that
C<  sup P(Q). (12)
Q>0:
qn,n<1Vne[N]

3Upon completion of this work, we realized that a somewhailaimargument as in this step was used[inl [20, Section llI}ther Gaussian
multiple-access channel with feedback.
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Consider a covariance mat@@ > 0, and letP be any permutation matrix diV]. Note thatP"QP > 0.
Moreover, by symmeti,

v(Q) = min (310g(1+ |5°lg) +vs(Q))

= min (Jlog(1+(5°g) + U5 (P'QP))

=y (PTQP),

and thusy(+) is invariant under permutation.

Now, the generalized Schur complement is matrix-concaee the set of positive semi-definite matrices
[21, Theorem 3.1] (see alsb [22, p. 469] for the correspandasult for positive definite matrices). More
precisely, ifQ = A Q' + X\2Q? with )\, € [0,1], Ao = 1 — A, then

Qsise > M Qg se + AQ)se,

ie.,
Qs)sc — (AlQé\sa + )\2Q%‘\SC)
is a positive semi-definite matrix. Therefore,
1" (Qsse — ()\1@}%5‘6 + AzQ?ﬂsa))l > 0,
implying that
Llog (1+n1"Qgse1) (1+XMh17QY 51 + Aoh1" QF5.1)
og (1+ thQ}qwcl) + Ao log (1 + thQfﬂScl).

lo

1
2
A1

— 03

Thusys(Q) is concave inQ. Finally,
min (3 log(1 + |S°lg) +1s(Q))

SC[N]
> min (>\1 (3log(1+[Sg) +1s(Q")) + A2 (3 log(1 + [S°|g) + ¢s(Q2))>

>\ SHCLH;] ($1log(1+ |S¢g) + v¥s(Q")) + As 5?%13] (2log(1 + [S°g) + vs(Q?)),

and hence)(Q) is also concave iQ.
Fix ¢ > 0, and assume tha@* achievesz-optimality, i.e.,Q* > 0, ¢;;,, < 1 for all n € [N], and

(@)= sup Y(Q)—e.
Q>0:
qn,n<1Vne[N]
Set 1
_ T y*
Q=D P'QP
P
where the sum is over alV! permutation matrices ofiV].
Note thatQ is positive semi-definite and satisfigs,, < 1 for all n € [N]. Moreover, using the
concavity and invariance under permutationydf), we obtain
]' *
¥(Q) = w7 D_v(P'QP)
P
= (Q"),

“Note that the minimization ove$ C [N] is crucial for this fact to hold. Indeed)s(Q) # zps(PTQP) in general.
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and hencd is also anz-optimal covariance matrix. Note that thi3 has the form
plN,N + l‘iIN?

for k <1 — p|, and thus we can restrict the maximizationwaf@) to matrices of this form. Since the
generalized Schur complement is monotonically increasieg the set of positive semi-definite matrices
[21, Theorem 3.1], we can further restrict the value<db be 1 — p. Denote the resulting matrix b§?,
ie.,

1 pp ... p
p 1 p ... p
Q E|r 1 ... p
ppp ... 1

Note that@Q” is positive semi-definite only ifp € [—1/(N — 1),1] (since otherwise the eigenvalue
corresponding to the eigenvectbris negative).
The upper bound on capacity in {12) can thus be simplified to

C< sup min (% log(1 4+ ]5%|g) + % 5 log (1 + thQS|SC ))
pE[—1/(N—1),1] SC[N]

T i min _(3log(1l + (N —n)g) + 3log (1+h17Q7,.1.1)), (13)
pe[—1/(N—-1),1] n€{0,....N}

where [0] is understood as the empty set aoff = [N]. Observe that the minimization ih(13) is over
integersn € {0,..., N} as opposed to subsetsC [N] due to the symmetry i®Q”. Note furthermore
that instead of maximizing over arbitrary input distrilmts, we only have to maximize over the single
real numberp.

We now compute the expression in parentheseb ih (13) acellyti To this end we need to compute

fnmn}w which, by [10), involves the computation of the generalireverse(Q? (e e .) . We will first
consider the case Whe@”n e n } is invertible, and then consider the remaining cases in Iw@@ e is
not invertible. Ifn € {1,..., N —1} andp € [-1/(N —1),1), thenQy is invertible, and after some
algebra, we obtain

[n]€,[n]e

B n(N —n)p?
1TQ[n n]cl—n<1+(n—1)p— 1+(N—n—1)p)' (14)

We now consider the remaining cases, in wr@'pﬂc e is not invertible. Ifp = 1 andn € {1,...,N—
1}, then

If n =0, then
T _
1 Q1 =0, (16)
and ifn = N, then
Qw1 = 17Q"1 = N(1+ (N —1)p). (17)
both for anyp € [-1/(N — 1), 1].
Denote by

n(p.n) = n(l +(n=Dp—1 +n(<1]§:2>f 1)/)>

the right-hand side of(14). Note thatp, n) is well defined for allp € [-1/(N —1),1], n € {0,..., N}
except forn(1, N) and n(—1/(N — 1),0) (for which the expression involves dividing zero by zero).
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Moreover, from [(I4)+£(17) we see that whenewgp, n) is well defined, it is equal thQ”“[ .1. For
the two cases in which(p, n) is not well defined, we have frolhi (15)=(17) that for amy [V],

1;1%”7(0» n) =17 an[ncl» (18a)
: _ 1T~ 1/(N-1
¢—}%1v—1)n< n)=1 Qn”[n (18b)

and in particular this holds fon = 0 andn = N. Thus we can ertelTQ e L compactly as a
function of n(p,n) for anyn € [N] and do not need to consider the boundary cases0, n = N, and
p=—1/(N —1), p=1 separately. Substituting(14) arld{18) infol(13), we obtain

: N —n)p?
C < su min Log(1+ (N =n)g)+2log (1+n(1+(n—1)p— n( h).
N pe(—l/(]g—l),n ne{0,...,N} (2 &l ( )9) 208 < < ( ) 1+(N—-n-— l)p) ()19)

Observe that the supremum [n{19) is only owet (—1/(N —1),1) as opposed tp € [—-1/(N — 1), 1]
as in [13).

We finally argue that the supremum can be restricted to bevaeesy € [0, 1). Consider the derivative
with respect top of the multiplier of theh term in [19),

n(N —n)p? B 24 (N—n—1)p
1+(N_”_1)P> —n((n—l)—n(N—n)p(1+(N_n_1)p)2)

d
d—pn(l +(n—1)p—
If pe(—=1/(N —1),0), then this derivative is non-negative, and thus the mugtipdf / in (I9) is non-
decreasing in that range pf Since this is true simultaneously for alle {0, ..., N}, we can restrict the
supremum to be over the range= [0, 1). This proves the lemma. [ ]

We now proceed to the proof of Theoréin 2. As before, we demateapacity of the diamond network
by

C £ C(N,g,h).

We again consider the casesax{g, Nh} > 1 and max{g, Nh} < 1 separately. Assume first that
max{g, Nh} > 1. Capacity is upper bounded by the minimum of the simple brastdand multiple-
access cuts

C' < min {}log(1 + Ng), $log(1+ N?h)}
= llog (1 + N min{g, Nh}). (20)
Observe that{20) is valid regardless of the valuenak{g, Nh}.

Assume in the following thatnax{g, Nh} < 1. As before, we treat the cases< h, g € (h, N*h),
andg > N2h separately. Consider firgt< h. Using the upper bound in_(20), we obtain

C< %log(1+Ng).

Consider thery € (h, N?h). If N\/gh > 1, then the simplified form[{4) of Lemnid 7 with" — n =
[N?h] € {0,...,N} (sinceNh < 1) yields

2

N
C’S%log(1+(N—n)g)+%log<1+N_ﬂh)

log(1+ [N?h]g) + i log <1+ U]vvjmh)

og(l+ g+ N°gh) + 3
og(1+2N?gh) + 1,

IA A
M= N [N
)—l )—l
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where we have used that< N2gh since
N2h > VgV N2h = NVgh > 1.

Still assumingg € (h, Nh), if Ny/gh < 1, then the simplified form[{4) of Lemnid 7 with — n =
[NVh/g]€{0,...,N} (sinceg > h and hence/./g < 1) shows that

2
C < $log(1+ (N —n)g) + ilog (1+ N]\i nh)
NZ
_1 i INVRg |
= 1log (1+ [Nvh/glg) + 5 log <1+ (N\/h—/gﬂh)

< 1log (14 g+ Nv/gh) + 41og (1 + N+/gh)
< log (1+2N+/gh),
where we have used that
g < Vgv/N2h = NVgh.
Finally, considerg > N2h. The upper bound_(20) yields
C< %log (1 + N2h)7

concluding the proof. [ |

C. Proof of Corollary[3 (Capacity Approximation for Symmetric Networks)
The corollary follows directly from Theorenmis 1 ahH 2 using thequalities

>alog(l+x), forae[0,1,2>0
<alog(l+z), fora>12>0,

log(1 + ax) {

and
> log(a) +log(1+z), forael0,1],2 >0
< log(a) +log(1+z), fora>1,2>0.

log(1 + ax) {

D. Proof of Theorem[4 (Capacity Approximation for Asymmetric Networks)

The idea of the proof is as follows. Group the relays into sgassuch that all relays in the same class
have approximately the same channel gains. We argue thatutihéer of classes needed is on the order
O(log?(N)). Choose one such class, and set the constants 0 for all relays not in this class. This
effectively reduces the network to a (almost) symmetric, aviéch we have already analyzed in the earlier
parts of this paper. By maximizing over which class to choege get the largest rate achievable in this
manner. This yields a lower bound d&(N, (g,), (h,)). We then argue that this approach is close to
optimal, by showing that capacity (V, (g), (h,)) is upper bounded b§ (log*(N)) times the maximum
of the capacities of these classes.

Recall the notation

[N] =A{1,.... N}
and, forS C [N],
S¢ £ [NJ\ S
Furthermore, in this section, we will use
gs £ (gn)nes,
hs = (hn)nes
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for S C [N], and
ahS é (ahn>n65

for scalara € R.

We want to partitior] V] into subsets such that farandn in the same subset the relaysandv; have
approximately the same channel gains. Moreover, we wanhtmeber of required subsets to be small.
This is not directly possible if the channel gains are veffedent. For example, considey, = h,, = 2";
note, however, that in this case most of the relays are veakwempared to the strongest one, and could
hence be disregarded without too much loss in rate. We fareéhis idea by allowing some “overload”
subsets (in the language of quantization theory) in theitfwartof [N], which correspond to relays that
may have very different channel gains, but that are all toake have much impact on achievable rates.

Define

g* = max min{g,, N*h,},
ne[N]

h* £ max min{h,, g, }.
ne[N]

The quantitieg;* and h* are essentially the largest channel gains, accountingiticateons in which one
of the channel gaing,, h, clearly dominates the other one. If we letbe such that* = min{h,, g, },
then

g* > min{g,, N*h,} > min{g,, h,} = h*. (21)

Similarly, if n is such thaty* = min{g,, N?h,}, then
R* > min{h,, g} > N2 min{N?h,, g,} = N %g". (22)

Thus, g* and”* can not be too different.
We are now ready to introduce the partition [3f] mentioned above. We start with the “overload”
subsets. Define the sets

T' £ {ne[N]:g, < N3¢},
T £ {ne [NJ]\T":h, < N°h*},

i.e., T' andT? correspond to those relays that have channel gains thateayeweak compared to the
strongest one in the network. Set
L = [3log(N)].

For ¢ € {0,..., L}, define
= {n € [N]\ (T'uT?) : g, c (2_6_19*,2_59*],hn > g, },
T; £ {n e [N)\(T'UT*U; T}) : g, > N?hy, hy € (27704, 2702,
i.e.,{T}} and{T}} quantize those channel gains for which ong,afh,, dominates the other one. Finally,
define fork, ¢ € {0,..., L},
SkeE{ne [N\ (T'UT* U; (T} UT?)) : go € (27 'g",27%¢"], by € (270,270}

The subset§.S;.,} quantize the remaining channel gains. The number of B&tg2, {7}}, {77}, { Sk}
is equal to B
LE(L+1)*+2(L+1)+2=0(og’(N)).

We argue thafr™, 72, {T}}, {T}},{Sk.} partition [N]. The sets are clearly disjoint, so we only need
to show that their union coversV]. If either g, < N~3¢* or h, < N73h* thenn € T' U T?. Assume
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in the following discussion thag, > N=3¢* andh,, > N3h*. If g, < ¢* andh, < h*, thenn is an
element of{T}'}, {T7}, or {Sk.}. If g, > ¢*, then

hn < N?h, < g* < gn,
so thatg,, > N?h,, andh,, = min{h,, g,} < h*. This implies thatn € U,T7. If h,, > h*, then
Gn < B < hy,

so thath, > g, and g, = min{g,, N*h,} < ¢g*. This implies that» € U,7}. Together, this proves that
we have properly partitionefV].

We are now ready for the proof of the upper bound on capacity.avgue that the capacity of the
diamond network withV relays cannot be much larger than the sum of the capacitig®df subchannels
induced by the partition ofN] defined above. Formally, we argue that

C (N, givy hivy) < C(ITY, gr1, 2Lk ) + C(|T?, gre, 2he2)

2 L L
+3 N C(T, gz, 2Lk ) + > C(ISkal, g5, 2L, , ). (23)

i=1 (=0 k,6=0

To see this, note that the right-hand side is the capacit§ parallel diamond networks each with unit

input power constraint. Moreover, increasing each chagaai v/, by a factor of\/ﬁ (or v/2 in the
case of7™) is equivalent to reducing the power of the additive noisthatdestination node of the parallel
networks by a factoi /(2L) (or 1/2 for T?). We can now use these parallel networks to simulate the
original N-relay diamond network by forcing the input (at the sourcdeo) to all the parallel networks

to be identical, and by summing up the outputs (at the ddgimaodew) of the parallel networks. This
proves [(2B).

Next, we argue that the capacities of the asymmetric sulmmksnn (23) can be upper bounded by the
capacities of symmetric diamond networks. Consider theeiff). ,. Since capacity is increasing in the
channel gains, } }

C(|Skel, 98000 2Lhs, ) < C(|Skel, 279", L2 %), (24)

Observe that the right-hand side is the capacity sframetric diamond network. Consider thefy. By
the same argument .
C(|T€1|79T[172LhT[1) < C(|Tél|,2_€g*,00), (25)

and
C(|T€2|79T[272LhT£2) < C(|TZQ|7007221_€}L*)' (26)

It remains to consider! and7?2. For the sefl’!, we have
C’(|T1|,gT1, 2EhT1) < C(N, N73g*, oo)

From Theoreni]2,
C(N,N%g*,00) < Llog(1+ N?g").

By the definition ofg*, there exists at least one such thatg, > ¢* and h, > N—2¢*. Using just this
one relayv,, a rate of at least
% log(1 + N~%g")

is achievabl&. For thisn, we have
gn Z g* > N—S *7

®This rate is achievable, for example, with decode-and-éodwNote that we use decode-and-forward here only as a peobhique to
obtain the upper bound on capacity. Achievability is basedusively on (bursty) amplify-and-forward.
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and hence: ¢ T'. Moreover, using[(21),
hp > N72g* > N721* > N73R*,
and hencex ¢ T2, Thisn is therefore an element of one of the subg€éts}, {77}, {Sk.}, and we obtain

from (24)-{(26),

C(|T1|,gT1,EhT1)§max{ max C(|T}],27°g%, 00), max C(\Tf\,oo,fﬂl_zh*),

¢€{0,....L} ¢e{0,...,L}

—k x Tol—l1x
s 1Skl 274 12 )}. (27)

Similarly,

C(|T2|,gT2, 2hT2) S C(N, o0, 2N_3h*)
< ilog(1+2N""h*)
< Llog(1 + h*).

By the definition ofh* there exists at least one such thath,, > h* andg, > h*. Using this relayv,

alone, we achieve at least a rate of
5 log(1 + h*).

For thisn,
h, > h* > N73h*,

and hence: ¢ T2. Moreover, using[(22),
Ggn > h* > N72g* > N3¢%,
and hencex ¢ T*. Thisn is therefore an element of one of the subg€éts}, {77}, {Sk.}, and we obtain

again from [[(24)£(26),

2 1 —0 % 2 Tol—fl7%
C(|T?, grz, 2hy2) < max{ee%%}c(m\,z g ,oo),ée?olaXL C(|T7], 00, L2 %),

—k x Tol—l7*
k7éer?(%2{-7L}C(‘Sk7g|,2 9", L2""h )}. (28)

Substituting [(2¥)-£(28) intd (23), we obtain

C(N,g[N},h[N})gimaX{ max C(|T}],27°g%, 00), max C’(|T£2|,oo,[~/21_zh*),

2e{0,...,L} 2e{0,...,L}
C(1S,4.275g*. L2 ) b, 29
polx (|Sk.el, 279", ) (29)

This concludes the proof of the upper bound on capacity.

We continue with the proof of achievability. Fik ¢ € {0,..., L}, and recall thaty, is the constant
determining the amplification at relay,. Assume we set,, = 0 for all n ¢ Sy ,. This results in a network
in which all but the relays irb; , are removed. Thus

R5 (N7 g[N]7 h[N]) 2 RJ(‘SIC,£|7 gsk,p hSH) . (30)
Moreover, sinceR; is increasing in the channel gains,
R6 (‘Sk,€|7 9Sy 00 h’Sk,l) > R5 (|Sk,f|7 2_k_1g*7 Q_Z_lh*) : (31)



22

With this, we have lower bounded the rate achievable for gyenanetric diamond network by the one
of a symmetric diamond network (with fewer relays and smatleannel gains). We can thus apply the
results from Sectiof T=A to obtain

1 ~
sup Rs(|Skel, 277 g%, 27 h*) > =C(|Skel, 27Fg*, L2 h), (32)
5€(0,1] 112L

where the factott /(112L) = 1/(8L x 14) is composed of a factatL to offset the increase of the channel
gains to the relay by two and the increase of the channel deons the relays bytL (see Theorerall)
and of a factorl4 to go from rate achievable with bursty amplify-and-forwéodcapacity (see Theorem 2
and Corollan[B).

Combining [3D), [(311), and(32) yields
1 3
sup Rs(N, gy, hiny) > 12EC(|5W|72_k9*>L21_Zh*)- (33)

5€(0,1] 1

A similar argument, setting,, = 0 for n outsideT}, shows that

sup R(S(Nag[N}ah[N}) > sup R5(|Tél|ngelthZ1)7
5e(0,1] 5¢(0,1]
> sup Ry(|T/],27 1", 27 g"),
0€(0,1]
1 —0 _x
2 2_8C(|T£1|72 Zg 700)7 (34)

and

sup Ré(Nvg[N}ah[N}) > 551(JP]R6(|T42|79T37hT;)7
€(0,1

6€(0,1]
> sup Ry(|T7|, N*27 7w, 27 hY),
0€(0,1]
1 -
> —_C(|T}], 00, L2V *h*), 35
> —=C(T} ) (35)

forall ¢ €{0,...,L}.
We can optimize over the lower bounds [n](33).1(34), dnd (8%)Mtain

1 ~
sup [t N7 ’ h 2 = max max C' Tl ) 2_6 *7 o0), Imax C T2 , 00, LQI_Zh* )
s 5 (N gy, b)) > oy {ZE{O _____ 0 (I7}],27%g%, 00) (B (172 )

max C(|Sk7g|,2_kg*,[~/21_€h*)}.
k,te{0,...,.L}

Comparing this with the upper bound {29) shows that

C(N, giny, hyvy) < 11217 681(1p} Rs(N, giny, hiny)-
(0,1

Using that .
L < (3log(N) + 1)® + 61log(N) + 4

shows that there exists a universal constnt: oo (and, in particular, independent gy, /], and V)
such thatl122? < K log*(N) for N > 2. This concludes the proof of the theorem. u
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V. CONCLUSION

We presented an approximation of the capacity of the synien@aussianV-relay diamond network.
The capacity was characterized up td.& bit additive gap and a factdrd multiplicative gap uniformly
for all channel gains and number of relays. The inner bounthis approximate characterization relies
on bursty amplify-and-forward, showing that this schemgasd simultaneously at low and high rates,
uniformly in the channel gains and in the number of relaysThe upper bound resulted from a careful
evaluation of the cut-set bound. We argued that2all possible cuts in the diamond network need to
be evaluated simultaneously, and that the standard agprofaonly considering the minimum of the
broadcast and multiple-access cuts is insufficient to dariviform capacity approximations. We extended
this approach to asymmetric diamond networks, for which ewed that bursty amplify-and-forward
achieves capacity up to a multiplicative gap of a factgtog* (V)) with pre-constant in the order notation
independent of the channel gains.

The results in this paper show that, at least for symmetrgandnd networks, it is possible to de-
rive capacity approximations that are independent of thevorl size. Deriving such uniform capacity
approximations for general networks remains an open pnoble
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