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The Approximate Capacity of
the GaussianN -Relay Diamond Network

Urs Niesen and Suhas N. Diggavi

Abstract

We consider the Gaussian “diamond” or parallel relay network, in which a source node transmits a message
to a destination node with the help ofN relays. Even for the symmetric setting, in which the channelgains to the
relays are identical and the channel gains from the relays are identical, the capacity of this channel is unknown in
general. The best known capacity approximation is up to an additive gap of orderN bits and up to a multiplicative
gap of orderN2, with both gaps independent of the channel gains.

In this paper, we approximate the capacity of the symmetric GaussianN -relay diamond network up to an
additive gap of1.8 bits and up to a multiplicative gap of a factor14. Both gaps are independent of the channel
gains and, unlike the best previously known result, are alsoindependent of the number of relaysN in the network.
Achievability is based on bursty amplify-and-forward, showing that this simple scheme is uniformly approximately
optimal, both in the low-rate as well as in the high-rate regimes. The upper bound on capacity is based on a careful
evaluation of the cut-set bound. We also present approximation results for the asymmetric GaussianN -relay diamond
network. In particular, we show that bursty amplify-and-forward combined with optimal relay selection achieves
a rate within a factorO(log4(N)) of capacity with pre-constant in the order notation independent of the channel
gains.

I. INTRODUCTION

Cooperation is a key feature of wireless communication. A simple canonical channel model capturing
this feature is the “diamond” or parallel relay network introduced by Schein and Gallager [1], [2]. This
network consists of a source node connected through a broadcast channel toN relays; the relays, in turn,
are connected to the destination node through a multiple-access channel (see Fig. 1). The objective is
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Fig. 1. TheN -relay diamond network. The source nodeu transmits a message to the destination nodew via theN relays{vn}Nn=1. The
two cuts indicated in the figure are the broadcast cut (separating the sourceu from the relays{vn}) and the multiple-access cut (separating
the relays{vn} from the destinationw).

to maximize the rate achievable between the source and the destination with the help of theN relays.
Throughout this paper, we will be interested in the Gaussianversion of this problem, in which both the
broadcast and the multiple-access parts are subject to additive Gaussian noise. Moreover, for simplicity
we will restrict attention in a significant part of the paper to the symmetric case, in which the channel
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gains within the multiple-access part and within the broadcast part of the network are identical (but are
allowed to differ between the multiple-access and broadcast parts). However, we do show that some of
the results for the symmetric setting can be extended to the asymmetric setting.

For the Gaussian2-relay diamond network, the rates achievable with decode-and-forward and with
amplify-and-forward at the relays were analyzed in [2]. It is shown there that these schemes achieve
capacity in some regimes of signal-to-noise ratios (SNRs) of the broadcast and multiple-access parts of
the diamond network. The asymptotic behavior of theN-relay Gaussian diamond network was investigated
in [3]. In certain regimes of SNRs of the broadcast and multiple-access parts of the network, it is shown
that amplify-and-forward is capacity achieving in the limit as N → ∞. New achievable schemes for
the Gaussian diamond network with bandwidth mismatch (i.e., the source and the relays have different
bandwidth) were introduced in [4] and [5]. Perhaps surprisingly, these schemes lead to higher achievable
rates than the ones obtained with amplify-and-forward and decode-and-forward even when the bandwidths
at the source and the relays are identical. Half-duplex versions of the Gaussian diamond network, in which
the relays cannot receive and transmit signals simultaneously, were considered in [6] and [7]. The capacity
of a special class of2-relay diamond networks is derived in [8]. For networks in this class, one relay
receives the signal sent at the source without noise, and thedestination node is connected to the relays by
two orthogonal bit pipes of fixed rate. To the best of our knowledge, this is the only non-trivial example
for which the capacity of the diamond network is known for allvalues of SNR. For the general Gaussian
N-relay diamond network, the capacity is unknown.

Given the difficulty of determining the capacity of communication networks in general and of the
diamond network in particular, it is natural to ask if it can at least be approximated. For high rates, such
an approximation should be additive in nature, i.e., we would like to determine capacity up to an additive
gap. For low rates, such an approximation should be multiplicative, i.e., we would like to determine
capacity up to a multiplicative gap. If a communication strategy can be shown to have both small additive
as well as multiplicative gaps, then this strategy is provably close to optimal both in the high rate as well
as low rate regimes.

Additive approximations for channel capacity of communication networks were first derived in [9],
where the capacity region of the two-user Gaussian interference channel is determined up to an additive
gap of one bit. This was mainly enabled through a new outer bound for the interference channel. The
approach of approximate capacity characterization was applied to general relay networks with single-
source multicast in [10]. By introducing a new relaying strategy termed quantize-map-forward, capacity is
derived up to an additive gap of15n bits, wheren is the number of nodes in the network. This additive gap
was improved through the use of vector quantization at the relays [11], [12]. The sharpest known additive
approximation gap is1.26n bits for the complex Gaussian case (or0.63n for the real case) [12]. Since
the N-user diamond network is a special case of a relay network with a single source and destination
and withn = N + 2 nodes, these results yield an additive approximation up to agap of 0.63N + 1.26
bits for this network (assuming real channel gains).

Multiplicative approximations were mostly analyzed for large wireless networks, for which the rate
per source-destination pair is low. For a network withn nodes, the emphasis is on finding capacity
approximations up to a small multiplicative factor inn. This approach was pioneered in [13]. Under a
restricted model of communication, (essentially) the equal rate point of the capacity region of a wireless
network withn randomly placed nodes was determined up to a constant multiplicative factor independent
of n. Without the restrictive communication assumptions in [13], the problem becomes considerably harder.
Approximations for the equal rate point under a Gaussian model were derived in [14] up to a multiplicative
factor ofO(nε) for any ε > 0. These approximation results were subsequently sharpenedin [15], [16] to

a factornO(1/
√

log(n)). Under some conditions on the node placement, this factor can further be sharpened
to O(log(n)) [17]. Multiplicative approximations for arbitrary relay networks with single-source multicast
(as opposed to wireless networks with multiple unicast, i.e., multiple separate source-destination pairs)
were derived in [10]. For a network with maximum degreed, the capacity is approximated to within a
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factor of 2d(d + 1). As pointed out earlier, the GaussianN-relay diamond network is such a network
with maximum degreed = N , and hence this result yields a multiplicative approximation up to a factor
of 2N(N + 1).

To summarize, the capacity region of the general GaussianN-relay diamond network is not known. The
best known additive approximation is up to a gap of0.63N +1.26 bits, and the best known multiplicative
approximation is up to a factor of2N(N + 1). In either case, the bounds degrade rather quickly asN
increases. It is hence of interest to find approximation guarantees that behave better as a function of the
number of relaysN in the network. Ideally, we would like the approximation guarantees to be uniform
in in the network size.

As a main result of this paper, we show that such a uniform approximation is indeed possible. More
precisely, we find an additive approximation of the capacityof the symmetric GaussianN-relay diamond
network of gap at most1.8 bits for any SNR and number of relaysN . Moreover, we find a multiplicative
approximation to the capacity up to at most a factor14, again for any SNR and number of relaysN . This
is a significant improvement over the previously best known additive approximation of0.63N +1.26 bits
and multiplicative approximation of a factor2N(N + 1), especially for large values ofN . In particular,
as far as we know, this is the first such approximation result (both multiplicative as well as additive) that
is independent of the number of network nodes for a nontrivial class of wireless networks.

We further show that bursty amplify-and-forward (first introduced in [2, p. 76]) with properly chosen
duty cycle is close to capacity achieving for the diamond network simultaneously in the sense of multi-
plicative and additive approximation up to the aforementioned gaps. Hence, bursty amplify-and-forward
with appropriately chosen duty cycle is a good communication scheme for the symmetric GaussianN-relay
diamond network both at low and at high SNRs, and independently of the number of relaysN .

Some of these results can be extended to the asymmetric setting. For general (i.e., not necessarily
symmetric) GaussianN-relay diamond networks, we provide a factorO(log4(N)) multiplicative approxi-
mation of capacity, with pre-constant in the order notationindependent of the channel gains. Achievability
is based again on bursty amplify-and-forward, but this timea careful selection of relays is also necessary.

The main technical contribution of this paper is the upper bound on capacity. The standard way to obtain
upper bounds on the capacity of the diamond network is to evaluate two particular cuts in the wireless
network, namely the one separating the source from the relays (called thebroadcast cut in the following)
and the one separating the relays from the destination (called themultiple-access cut in the following)
as depicted in Fig. 1. This approach is taken, for example, in[3]–[5]. In fact, for symmetric Gaussian
N-relay diamond networks, whenever the capacity is known, itcoincides with the minimum of these two
cuts. We show in this paper that, in order to obtain uniform additive or multiplicative approximations
for the capacity of this network, considering just these twocuts is not sufficient. Instead we need to
simultaneously optimize overall possible2N cuts separating the source from the destination. Without this
careful outer bound evaluation, we believe that the uniform(in network size) approximation would not
have been possible.

The remainder of this paper is organized as follows. SectionII formally introduces the problem
statement. Section III presents the main results; the corresponding proofs are presented in Section IV.
Section V contains concluding remarks.

II. PROBLEM STATEMENT

Consider the GaussianN-relay diamond network as depicted in Fig. 2. The source nodeu transmits a
message to the destination nodew with the help ofN parallel relays{v1, . . . , vN}. The channel inputs at
time t ∈ N at nodesu and vn are denoted byX [t] andXn[t], respectively. The channel outputs at time
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Fig. 2. The GaussianN -relay diamond network.

t ∈ N at nodesw andvn are denoted byY [t] andYn[t]. The channel inputs and outputs are related as

Yn[t] ,
√
gnX [t] + Zn[t],

Y [t] ,

N
∑

n=1

√
hnXn[t] + Z[t],

where(Z[t])t, (Zn[t])n,t are independent and identically distributed Gaussian random variables with mean
zero and variance one, independent of the channel inputs. The channel gains(gn)Nn=1 and (hn)

N
n=1 are

assumed to be real positive numbers, constant as a function of time, and known throughout the network.
A T -length block code for the diamond network is a collection of functions

f : {1, . . . ,M} → R
T ,

fn : R
T → R

T , ∀n ∈ {1, . . . , N},
φ : RT → {1, . . . ,M}.

The encoding functionf maps the messageW , assumed to be uniformly distributed over the set{1, . . . ,M},
to the channel inputs

(X [t])Tt=1 , f(W )

at the source nodeu. The functionfn maps the channel outputs(Yn[t])Tt=1 to the channel inputs

(Xn[t])
T
t=1 , fn

(

(Yn[t])
T
t=1

)

at relayvn.1 The decoding functionφ maps the channel outputs(Y [t])Tt=1 at the destination nodew into
a reconstruction

Ŵ , φ
(

(Y [t])Tt=1

)

.

We say the code satisfies aunit average power constraint if

1

T

T
∑

t=1

E(X2[t]) ≤ 1,

1

T

T
∑

t=1

E(X2
n[t]) ≤ 1, ∀n ∈ {1, . . . , N}.

1Note that the functionsfn at the relays are not causal. This is to simplify notation; due to the layered nature of the network all results
remain the same if causality is imposed.



5

The rate of the code is
log(M)/T,

and itsaverage probability of error
P(Ŵ 6= W ).

A rateR is achievable if there exists a sequence ofT -length block codes with unit average power constraint
and rate at leastR such that the average probability of error approaches zero as T → ∞. The capacity
C
(

N, (gn), (hn)
)

of the diamond network is the supremum of all achievable rates.
A natural scheme for the diamond network isamplify-and-forward, in which each relay transmits a

scaled version of the received signal. Formally,

Xn[t] = αnYn[t] = αn
√
gnX [t] + αnZn[t],

where the constantαn is chosen to satisfy the power constraint at the relay. Denote byR1

(

N, (gn), (hn)
)

the
rate achieved by amplify-and-forward with optimal choice of (αn)

N
n=1. We point out that the optimization

over (αn)
N
n=1 is necessary. While perhaps counterintuitive, it turns outthat in the asymmetric setting the

rate of amplify-and-forward is not always maximized when the relays use all available transmit power
(see [2] for a discussion of this phenomenon in the two-relaycase).

If the SNR at the relays is low (i.e.,gn ≪ 1), it can be shown that simple amplify-and-forward is
arbitrarily suboptimal. This is because the received signal power gn at the relayvn is much smaller than
the noise power1, and therefore the relay amplifies mostly noise. This effectcan be mitigated by using
bursty amplify-and-forward [2]. For a constantδ ∈ (0, 1], called theduty cycle in the following, we
communicate for a fractionδ of time at average power1/δ using the amplify-and-forward scheme and
stay silent for the remaining time. This satisfies the overall average unit power constraint. The resulting
achievable rate is denoted byRδ

(

N, (gn), (hn)
)

. This notation is consistent, i.e., forδ = 1 the simple and
bursty amplify-and-forward schemes coincide and achieve both rateR1

(

N, (gn), (hn)
)

.
A special case of the general diamond network described so far is the symmetric setting, in which

g1 = g2 = . . . = gN = g and h1 = h2 . . . = hN = h. With slight abuse of notation, we denote the
capacity and rates achievable by bursty amplify-and-forward for the symmetric setting byC(N, g, h) and
Rδ(N, g, h).

Throughout this paper, we use bold font to denote vectors andmatrices.log(·) and ln(·) denote the
logarithms to base2 ande, respectively. All capacities and rates are expressed in bits per channel use.

III. M AIN RESULTS

The main results of this paper are additive and multiplicative capacity approximations for the Gaussian
diamond relay network. We start with a discussion of symmetric networks in Section III-A. General
asymmetric networks are treated in Section III-B.

A. Symmetric Diamond Networks

The first result lower bounds the rate achievable over a symmetric diamond network by using bursty
amplify-and-forward with optimized duty cycleδ.

Theorem 1. For every symmetric diamond network with N ≥ 2 relays and channel gains g, h > 0, there
exists a duty cycle δ⋆ ∈ (0, 1] such that bursty amplify-and-forward achieves at least the rate

Rδ⋆(N, g, h) ≥



























1
2
log

(

1 + 1
3
N min{g,Nh}

)

, if max{g,Nh} ≥ 1
1
2
ln(4/3) log(1 +Ng), if max{g,Nh} < 1, g ≤ h

1
2
log

(

1 + 1
3
N2gh

)

, if max{g,Nh} < 1, g ∈ (h,N2h), N
√
gh ≥ 1

1
2
ln(4/3) log(1 +N

√
gh), if max{g,Nh} < 1, g ∈ (h,N2h), N

√
gh < 1

1
2
ln(4/3) log(1 +N2h), if max{g,Nh} < 1, g ≥ N2h.
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The proof of Theorem 1 is presented in Section IV-A. Note thatthe optimal duty cycleδ⋆ is allowed
to depend onN , g, andh. In the high-rate regime, i.e., the first and third cases in Theorem 1, the duty
cycle achieving the lower bound isδ⋆ = 1, and hence the bursty amplify-and-forward scheme reduces to
simple amplify-and-forward. On the other hand, in the low-rate regime, i.e., the second, fourth, and fifth
cases in Theorem 1,δ⋆ < 1, and (genuine) bursty amplify-and-forward is used.

Having established an achievable rate, the next theorem provides an upper bound on the capacity of
the diamond network.

Theorem 2. For every symmetric diamond network with N ≥ 2 relays and channel gains g, h > 0,
capacity is upper bounded by

C(N, g, h) ≤



























1
2
log

(

1 +N min{g,Nh}
)

, if max{g,Nh} ≥ 1
1
2
log(1 +Ng), if max{g,Nh} < 1, g ≤ h

1
2
log

(

1 + 2N2gh
)

+ 1
2
, if max{g,Nh} < 1, g ∈ (h,N2h), N

√
gh ≥ 1

log(1 + 2N
√
gh), if max{g,Nh} < 1, g ∈ (h,N2h), N

√
gh < 1

1
2
log(1 +N2h), if max{g,Nh} < 1, g ≥ N2h.

The proof of Theorem 2 is presented in Section IV-B. As a corollary to Theorems 1 and 2, we obtain
that bursty amplify-and-forward is close to optimal, in thesense that it achieves capacity both up to a
constant additive gap as well as a constant multiplicative gap, where both constants are independent of the
number of relaysN and the channel gainsg andh. This shows that optimized bursty amplify-and-forward
is a good communication scheme for the symmetric diamond network both at low rates (due to the small
multiplicative gap) as well as at high rates (due to the smalladditive gap).

Corollary 3. For every symmetric diamond network with N ≥ 2 relays and channel gains g, h > 0, there
exists a duty cycle δ⋆ ∈ (0, 1] such that

C(N, g, h)−Rδ⋆(N, g, h) ≤ 1 + 1
2
log(3) ≤ 1.8 bits,

and
C(N, g, h)

Rδ⋆(N, g, h)
≤ 4

ln(4/3)
≤ 14.

The proof of Corollary 3 is presented in Section IV-C. We point out that choosing the duty cycleδ⋆ as
a function ofN , g, andh, is not necessary to obtain the additive approximation result in Corollary 3. In
fact, using only simple amplify-and-forward achieves the same additive approximation guarantee, i.e.,

C(N, g, h)−R1(N, g, h) ≤ 1.8 bits

for all N ≥ 2, g, h > 0. However, the same is not true if we are also interested in multiplicative
approximation guarantees (at least in the low-rate regime). To achieve a constant additive approximation
as well as constant multiplicative approximation, the dutycycle δ⋆ is required to vary as a function ofN ,
g, andh, and therefore bursty amplify-and-forward is required.

From Theorems 1 and 2, the capacity of the symmetric diamond network has three distinct regimes,
depending on whetherg ≤ h, h < g < N2h, or g ≥ N2h. In the first regime (g ≤ h), the channel gain to
the relays is weak compared to the channel gain to the destination, and the achievable rate is constrained
by the broadcast part of the diamond network. The capacity inthis regime is given approximately by

C(N, g, h) ≈ 1
2
log(1 +Ng),

where the approximation is in the sense of Corollary 3, namely up to a multiplicative gap of factor14 in
the low-rate regime (g ≪ N−1) and up to an additive gap of1.8 bits in the high-rate regime (g ≫ N−1).
This is the capacity of a single-input multiple-output channel with unit power constraint, one transmit
antenna,N receive antennas, and channel gain

√
g between each of them. Thus, the broadcast cut in

Fig. 1 in Section I is approximately tight in this regime.
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In the third regime (g ≥ N2h), the channel gain to the relays is strong compared to the channel gain
to the destination, and the achievable rate is now constrained by the multiple-access part of the channel.
The capacity in the third regime is given approximately by

C(N, g, h) ≈ 1
2
log(1 +N2h).

This is the capacity of a multiple-input single-output channel with unit per-antenna power constraint,N
transmit antennas, one receive antenna, and channel gain

√
h between each of them. Thus, the multiple-

access cut in Fig. 1 is approximately tight in this regime. Observe that to achieve this rate the signals
sent by the relays must be highly correlated and add up coherently at the destination.

The most interesting regime is the second one (h < g < N2h). If max{g,Nh} ≥ 1, then the capacity
is given approximately by

C(N, g, h) ≈ 1
2
log

(

1 +N min{g,Nh}
)

,

and again either the broadcast cut or the multiple-access cut are tight. Ifmax{g,Nh} < 1 the situation
is more complicated. IfN

√
gh ≥ 1, then the capacity of the diamond network is approximately

C(N, g, h) ≈ 1
2
log(1 +N2gh),

and, ifN
√
gh < 1,

C(N, g, h) ≈ 1
2
log

(

1 +N
√
gh

)

.

In both cases, the capacity depends on the product ofg and h, and not merely on the minimum ofg
andNh. Hence, neither the broadcast cut nor the multiple-access cut are tight in this case. In fact, these
bounds can be arbitrarily bad, both in terms of additive gap as well as multiplicative gap, as the next two
examples illustrate.

For the additive gap, considerg = N−5/8 and h = N−9/8. Thenmax{g,Nh} = N−1/8 < 1, g =
N1/2h ∈ (h,N2h), andN

√
gh = N1/8 ≥ 1, so that

C(N, g, h) ≈ 1
2
log(1 +N2gh)

= 1
2
log(1 +N1/4).

On the other hand, the minimum of the broadcast and multiple-access cuts yields

1
2
log

(

1 +N min{g,Nh}
)

= 1
2
log(1 +N3/8),

resulting in an additive gap of orderΘ(log(N)) bits, which is unbounded as the number of relaysN → ∞.
For the multiplicative gap, considerg = N−2 andh = N−3. Thenmax{g,Nh} = N−2 < 1, g = Nh ∈

(h,N2h), andN
√
gh = N−3/2 < 1, so that

C(N, g, h) ≈ 1
2
log

(

1 +N
√
gh

)

= 1
2
log(1 +N−3/2)

≈ 1
2
log(e)N−3/2.

On the other hand, the minimum of the broadcast and multiple-access cuts yields

1
2
log

(

1 +N min{g,Nh}
)

= 1
2
log(1 +N−1)

≈ 1
2
log(e)N−1,

resulting in a multiplicative gap of orderΘ(
√
N), which is again unbounded as the number of relays

N → ∞.
In the second regime, we thus need to take cuts other than the broadcast and multiple-access ones into

account. The need for this can be understood as follows. Consider a general cut separating the source node
u from the destination nodew in the diamond network as shown in Fig. 3. Formally, letS ⊂ {1, . . . , N},
and consider the cut fromu∪{vn}n∈S to w∪{vn}n∈Sc. Assume the signals(Xn)

N
n=1 sent from the relays
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to the destination are highly correlated. This results in the signal summing up coherently at the receiver,
increasing the rate across the cut. At the same time, if the signals sent from the relays are highly correlated,
then the signals(Xn)n∈Sc available at the relays on the other side of the cut can be usedto estimate the
signal received at the destination node. This decreases therate across the cut. Thus, for general cuts,
there is a tradeoff between the gain from coherent receptionand the loss from prediction that come with
increased signal correlation. This tradeoff is absent if weonly consider the broadcast and multiple-access
cuts. It is precisely this tradeoff that determines the behavior of the capacity of the diamond network in
the second regime.

...

u w

S

v1

v2

v3

vN

Fig. 3. A general cut in the diamond network. HereS ⊂ {1, . . . , N}, and the cut separatesu ∪ {vn}n∈S from w ∪ {vn}n∈Sc .

We point out that a (partial) decode-and-forward strategy is not sufficient to provide a uniform capacity
approximation as in Corollary 3. Indeed, due to symmetry,all relays would be able to decode the source
in any such strategy, which implies that decode-and-forward and partial decode-and-forward coincide in
this case. The rate achievable with decode-and-forward is given by

1
2
log

(

1 + min{g,N2h}
)

.

Comparing this with Corollary 3, we see that (partial) decode-and-forward has an additive gap of at least
Ω(log(N)) bits and a multiplicative gap of at least a factorΩ(N) to capacity. Similarly, compress-and-
forward does not achieve constant (in the network sizeN) additive or multiplicative gaps to capacity,
since it does not capture the gain from coherent signal addition at the destination. Finally, as was pointed
out earlier, the traditional amplify-and-forward strategy does not yield a constant factor approximation of
capacity. In fact, in can be shown that simple amplify-and-forward results in unbounded multiplicative
gap even forN = 2. Therefore the bursty amplify-and-forward scheme introduced in [2] and advocated
in this work has the nice property of being uniformly approximately optimal in both the additive sense
and the multiplicative sense, as well as being a simple modification of the traditional amplify-and-forward
scheme.

B. Asymmetric Diamond Networks

In the last section, we have consideredsymmetric diamond networks, in which the channel gain from
the sourceu to the relayvn is

√
g and the channel gain fromvn to the destinationw is

√
h for all n.

In this section, we show how some of the results can be extended to asymmetric diamond networks, in
which the channel gains(gn)Nn=1 and (hn)Nn=1 are allowed to take arbitrary values.

For this asymmetric setting, it was shown in [10] that (bursty) amplify-and-forward doesnot achieve a
constant (as a function ofgn andhn) additive-gap approximation even whenN = 2. However, we show
here that bursty amplify-and-forward is approximately optimal in the sense of multiplicative approximation
for anyN , (gn)Nn=1, and(hn)Nn=1. More precisely, we show that the rate achieved by bursty amplify-and-
forward combined with optimal relay selection is at most a factor O(log4(N)) from capacity uniformly
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in (gn)
N
n=1 and (hn)Nn=1. While not constant inN , compared to the best previously known multiplicative

approximation of a factor2N(N + 1), this is a significant improvement. Hence, at least in the low-
rate regime, bursty amplify-and-forward is also a good communication scheme for asymmetric diamond
networks.

Theorem 4. There exists a universal constant K <∞ such that for every diamond network with N ≥ 2
relays and channel gains (gn)

N
n=1, (hn)

N
n=1 > 0,

C
(

N, (gn), (hn)
)

supδ∈(0,1]Rδ

(

N, (gn), (hn)
) ≤ K log4(N).

The proof of Theorem 4 is presented in Section IV-D. At a high level, achievability is proved as follows.
Group the relays into classes such that all relays in the sameclass have approximately the same channel
gains. Choose one such class, and set the constantsαn = 0 for all relays not in this class (effectively
disabling those relays). This relay-selection step reduces the original asymmetric network to a (almost)
symmetric subnetwork. Theorem 1 can now be applied to this symmetric subnetwork to obtain a lower
bound on the rate achievable with bursty amplify-and-forward. By maximizing over all possible classes,
and hence all possible symmetric subnetworks, we get the largest rate achievable in this manner. The
corresponding upper bound shows that this approach of relayselection combined with bursty amplify-
and-forward is approximately optimal.

IV. PROOFS

Sections IV-A, IV-B, and IV-C contain the proofs of Theorem 1(achievability), Theorem 2 (upper
bound), and Corollary 3 (approximation) for symmetric diamond networks. Section IV-D contains the
proof of Theorem 4 for general asymmetric diamond networks.

A. Proof of Theorem 1 (Achievability for Symmetric Networks)

We start with a lemma computing the rate achievable by amplify-and-forward.

Lemma 5. For every symmetric diamond network with N ≥ 2 relays and channel gains g, h > 0,
amplify-and-forward achieves

R1(N, g, h) =
1
2
log

(

1 +
N2gh

1 + g +Nh

)

.

Proof: Recall that with amplify-and-forward relayvn transmits

Xn[t] = αYn[t] = α
√
gX [t] + αZn[t]

at timet, with constantα ≥ 0 chosen to satisfy the average unit power constraint. The received signal at
the destination nodew is

Y [t] = αN
√
ghX [t] + α

√
h

N
∑

n=1

Zn[t] + Z[t].

Observe that this describes a memoryless point-to-point channel with channel gainαN
√
gh and additive

Gaussian noise of variance1+α2Nh. R1(N, g, h) is the capacity of this point-to-point channel, optimized
over the value ofα.

For any value ofα ≥ 0, the optimal distribution of the inputX for this point-to-point channel is
Gaussian with zero mean and variance one. The signal sent by the relays has power

E(X2
n) = α2(1 + g),
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and hence for
α2 ∈

[

0, 1/(1 + g)
]

the average unit power constraints at the relays are satisfied. This implies that amplify-and-forward achieves
a rate of

R1(N, g, h) = max
α2∈[0,1/(1+g)]

1
2
log

(

1 +
α2N2gh

1 + α2Nh

)

= 1
2
log

(

1 +
N2gh

1 + g +Nh

)

.

The next lemma describes the rate achievable with bursty amplify-and-forward.

Lemma 6. For every symmetric diamond network with N ≥ 2 relays and channel gains g, h > 0, bursty
amplify-and-forward with duty cycle δ ∈ (0, 1] achieves

Rδ(N, g, h) =
1
2
δ log

(

1 +
N2gh/δ2

1 + g/δ +Nh/δ

)

.

Proof: During theδ fraction of time we communicate, we are dealing with an equivalent channel
with gains

√
g/δ,

√
h/δ and with unit power constraints. The result now follows fromLemma 5 by taking

into account that we only communicate a fractionδ of time.
Note that Lemmas 5 and 6 coincide forδ = 1, as expected. We now proceed to the proof of Theorem 1.

To simplify notation, set
Rδ , Rδ(N, g, h)

for δ ∈ (0, 1].
We consider the casesmax{g,Nh} ≥ 1 andmax{g,Nh} < 1 separately. Assume firstmax{g,Nh} ≥

1. Here we setδ = 1, i.e., we use simple amplify-and-forward. By Lemma 5

R1 =
1
2
log

(

1 +
N2gh

1 + g +Nh

)

= 1
2
log

(

1 +
N min{g,Nh}max{g,Nh}

1 + min{g,Nh}+max{g,Nh}

)

≥ 1
2
log

(

1 +
N min{g,Nh}max{g,Nh}

3max{g,Nh}

)

= 1
2
log

(

1 + 1
3
N min{g,Nh}

)

,

where we have used that1 ≤ max{g,Nh} to obtain the inequality.
Assume in the following thatmax{g,Nh} < 1. We consider the casesg ≤ h, g ∈ (h,N2h), and

g ≥ N2h separately. Consider firstg ≤ h. Bursty amplify-and-forward with duty cycleδ = Ng ≤ Nh ≤ 1
achieves by Lemma 6

Rδ =
1
2
Ng log

(

1 +
N2gh/(N2g2)

1 + g/(Ng) +Nh/(Ng)

)

= 1
2
Ng log

(

1 +
h

g + g/N + h

)

(a)

≥ 1
2
Ng log

(

1 +
h

h+ h/N + h

)

≥ 1
2
Ng log(4/3)

≥ 1
2
ln(4/3) log(1 +Ng),
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where in(a) we usedg ≤ h.
Consider theng ∈ (h,N2h). If N

√
gh ≥ 1, then simple amplify-and-forward achieves by Lemma 5

R1 =
1
2
log

(

1 +
N2gh

1 + g +Nh

)

≥ 1
2
log

(

1 + 1
3
N2gh

)

,

where we have used that1 + g +Nh ≤ 3, which follows frommax{g,Nh} ≤ 1.
Still assumingg ∈ (h,N2h), if N

√
gh < 1,2 then bursty amplify-and-forward with duty cycleδ =

N
√
gh ≤ 1 achieves by Lemma 6

Rδ =
1
2
N
√
gh log

(

1 +
N2gh/(N2gh)

1 + g/(N
√
gh) +Nh/(N

√
gh)

)

= 1
2
N
√
gh log

(

1 +
1

1 +
√
g/(N

√
h) +

√
h/

√
g

)

(b)

≥ 1
2
N
√
gh log

(

1 +
1

1 +
√
N2h/(N

√
h) +

√
h/

√
h

)

= 1
2
N
√
gh log(4/3)

≥ 1
2
ln(4/3) log

(

1 +N
√
gh

)

,

where in(b) we have used thatg ≤ N2h andg ≥ h.
Consider finallyg ≥ N2h. Bursty amplify-and-forward with duty cycleδ = N2h ≤ g ≤ 1 achieves by

Lemma 6

Rδ =
1
2
N2h log

(

1 +
N2gh/(N4h2)

1 + g/(N2h) +Nh/(N2h)

)

= 1
2
N2h log

(

1 +
g/(N2h)

1 + g/(N2h) + 1/N

)

(c)

≥ 1
2
N2h log(4/3)

≥ 1
2
ln(4/3) log(1 +N2h),

where in(c) we have used that1/N ≤ 1 ≤ g/(N2h).

B. Proof of Theorem 2 (Upper Bound for Symmetric Networks)

In this section, we derive an upper bound on the capacity of the Gaussian diamond network. The
standard way to find such bounds is to start with the cut-set bound and then to simplify it further to
obtain a closed-form expression. The derivation here starts with the cut-set bound as well, but differs in
several key aspects from the standard approach, which we nowhighlight.

Let
[N ] , {1, 2, . . . , N},

and for a subsetS ⊂ [N ], define
Sc , [N ] \ S.

By the cut-set bound [18, Theorem 14.10.1],

C(N, g, h) ≤ sup
X,X[N]

min
S⊂[N ]

I
(

X,XS; Y, YSc

∣

∣ XSc

)

,

2Note thatg ∈ (h,N2h) andN
√
gh < 1 imply max{g,Nh} < 1.
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where the maximization is over random variablesX,X[N ] satisfying the power constraintsE(X2) ≤ 1,
E(X2

n) ≤ 1, and whereXS̃ , (Xn)n∈S̃ for any subsetS̃ ⊂ [N ] (see Fig. 3 in Section III-A). A short
calculation (done in (6) below) reveals that

sup
X,X[N]

min
S⊂[N ]

I
(

X,XS; Y, YSc

∣

∣ XSc

)

≤ sup
X,X[N]

min
S⊂[N ]

(

I
(

X ; YSc

)

+ I
(

XS; Y
∣

∣ XSc

)

)

. (1)

In the right-hand side of (1), the first mutual information corresponds to the rate between the source
nodes and the relays, and the second mutual information corresponds to the rate between the relays and
the destination node.

One approach is to simplify this expression further througha sequence of two steps. The first step is
to upper bound

I
(

XS; Y
∣

∣ XSc

)

= H
(

Y
∣

∣ XSc

)

−H(Z)

≤ H
(√

h
∑

n∈SXn + Z
)

−H(Z)

= I
(

XS;
√
h
∑

n∈SXn + Z
)

,

where, in order to avoid confusion with the channel gainh, we denote the differential entropy by the
non-standard symbolH. This first step thus removes the conditioning on the signalsXSc available at the
destination side of the cut. The second step is to interchange the order of maximization and minimization.
This yields

C(N, g, h) ≤ min
S⊂[N ]

sup
X,X[N]

(

I
(

X ; YSc

)

+ I
(

XS;
√
h
∑

n∈SXn + Z
))

= min
n∈{0,...,N}

(

1
2
log(1 + (N − n)g) + 1

2
log(1 + n2h)

)

. (2)

This can be further upper bounded by considering onlyn = 0 or n = N , resulting in the minimum of
the broadcast and multiple-access cut

C(N, g, h) ≤ min
{

1
2
log(1 +Ng), 1

2
log(1 +N2h)

}

. (3)

Neither of the upper bounds (2) and (3) are tight enough to obtain a constant gap approximation of the
capacity (this can be seen from the two examples presented after Corollary 3).

In this paper, we also start the derivation of the upper boundfrom the cut-set bound (1), but we avoid
taking the two simplifying steps mentioned in the last paragraph. Instead, we first show, using the symmetry
in the problem, that the correlation between any two signalsXn andXñ with n 6= ñ can be assumed to
be equal without loss of optimality. Using the resulting simple form of the covariance matrix allows us
then to evaluate the termI

(

XS; Y |XSc

)

directly. This enables us to keep the conditioning onXSc, which
yields a significantly tighter upper bound on capacity. The resulting upper bound is summarized in the
following lemma.

Lemma 7. For every symmetric diamond network with N ≥ 2 relays and channel gains g, h > 0, capacity
is upper bounded as

C(N,g, h)

≤ sup
ρ∈[0,1)

min
n∈{0,...,N}

(

1
2
log(1 + (N − n)g) + 1

2
log

(

1 + n
(

1 + (n− 1)ρ− n(N − n)ρ2

1 + (N − n− 1)ρ

)

h
)

)

.

The variableρ appearing in the lemma can be interpreted as the correlationbetween the random variables
X[N ] as mentioned in the preceding discussion. Note that it is notclear a priori that this correlationρ can
be restricted to be nonnegative. This restriction is part ofthe assertion of the lemma. We also point out
that it is important thatρ = 1 is excluded from the supremum in Lemma 7; the result is not true without
this restriction.
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It will be convenient in the following to work with a weaker version of Lemma 7. Note that, for
ρ ∈ [0, 1),

1 + (n− 1)ρ− n(N − n)ρ2

1 + (N − n− 1)ρ
≤ 1 + nρ− n(N − n)ρ2

1 + (N − n)ρ

=
( N

N − n

)( N−n
N

+ (N − n)ρ

1 + (N − n)ρ

)

≤ N

N − n
.

Hence

C(N, g, h) ≤ min
n∈{0,...,N}

(

1
2
log(1 + (N − n)g) + 1

2
log

(

1 +
N2

N − n
h
)

)

. (4)

The upper bound (4) derived from Lemma 7 can be compared to thesimpler bound (2). Ifn = KN
for some constantK ∈ (0, 1), then the factor multiplying the channel gainh in (2) is of orderΘ(N2). On
the other hand, the same factor in (4) is of orderΘ(N). Thus, the bound (4) can be considerably tighter
than the simpler bound (2).

Proof of Lemma 7: By the cut-set bound [18, Theorem 14.10.1],

C , C(N, g, h) ≤ sup
X,X[N]

min
S⊂[N ]

I
(

X,XS; Y, YSc

∣

∣ XSc

)

, (5)

where, as before, the maximization is over random variablesX,X[N ] satisfying the power constraints
E(X2) ≤ 1, E(X2

n) ≤ 1. We evaluate (5) in two steps. First, we argue that the maximization overX,X[N ]

can be restricted to jointly Gaussian random variables suchthat eachE(X2
n) = 1 andE(XnXñ) = ρ for

n 6= ñ and someρ ∈ [−1/(N − 1), 1]. This simplifies the maximization to be over just the parameter ρ
instead ofN-dimensional distributions. Second, using the resulting simple form of the input distributions,
we analytically evaluate the mutual information in (5) to obtain the stated bound.

We start by simplifying the mutual information in (5) for a fixed cutS ⊂ [N ]. We have

I
(

X,XS;Y, YSc

∣

∣ XSc

)

= H
(

Y, YSc

∣

∣ XSc

)

−H
(

Y, YSc

∣

∣ X,X[N ]

)

= H
(

YSc

∣

∣ XSc

)

+H
(

Y
∣

∣ YSc, XSc

)

−H
(

YSc

∣

∣ X,X[N ]

)

−H
(

Y
∣

∣ YSc , X,X[N ]

)

≤ H
(

YSc

)

+H
(

Y
∣

∣ XSc

)

−H
(

YSc

∣

∣ X
)

−H
(

Y
∣

∣ X[N ]

)

= I
(

X ; YSc

)

+ I
(

XS; Y
∣

∣ XSc

)

, (6)

where we have used that

H
(

YSc

∣

∣ X,X[N ]

)

= H
(

ZSc

)

= H
(

YSc

∣

∣ X
)

,

and that

H
(

Y
∣

∣ YSc, X,X[N ]

)

= H(Z) = H
(

Y
∣

∣ X[N ]

)

.

Combining (5) and (6) yields

C ≤ sup
X,X[N]

min
S⊂[N ]

(

I
(

X ; YSc

)

+ I
(

XS; Y
∣

∣ XSc

)

)

. (7)

For the first term in (7),
I
(

X ; YSc

)

≤ 1
2
log(1 + |Sc|g), (8)
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since the channel fromX to YSc is a Gaussian single-input multiple-output channel with channel gains√
g. For the second term in (7),

I
(

XS; Y
∣

∣ XSc

)

= H
(

Y
∣

∣ XSc

)

−H
(

Y
∣

∣ X[N ]

)

= H
(√

h
∑

n∈S
(

Xn − βn(XSc)
)

+ Z
∣

∣

∣
XSc

)

−H(Z)

≤ H
(√

h
∑

n∈S
(

Xn − βn(XSc)
)

+ Z
)

−H(Z), (9)

for any choice of functionsβn(XSc) for n ∈ S. In particular, letβn(XSc) be the minimum mean-square
error estimator forXn based onXSc.

Let X[N ] have covariance matrixQ. Then, by [19, Theorem 1.2.11],(Xn−βn(XSc))n∈S has covariance
matrix

QS|Sc , QS,S −QS,ScQ−
Sc,ScQSc,S, (10)

where, for any subsetsS1, S2 ⊂ [N ], QS1,S2 is the submatrix ofQ induced by the rowsS1 and columnsS2,
and whereQ−

Sc,Sc is theMoore-Penrose generalized inverse of the matrixQSc,Sc. The matrixQS|Sc is called
the generalized Schur complement of QSc,Sc in Q. Note that ifQSc,Sc is invertible, thenQ−

Sc,Sc = Q−1
Sc,Sc

and the generalized Schur complement reduces to the standard Schur complement.
Before proceeding, we need to introduce some notation. Denote byIa thea×a identity matrix, and by

1a,b the a× b matrix of ones. To simplify notation, we will write1 for the column vector1a,1, whenever
the dimension is clear from the context. With these definitions,

H
(√

h
∑

n∈S
(

Xn − βn(XSc)
)

+ Z
)

−H(Z) ≤ 1
2
log

(

1 + h1TQS|Sc1
)

. (11)

Substituting (8), (9), and (11) into (7) yields

C ≤ sup
Q≥0:

qn,n≤1∀n∈[N ]

min
S⊂[N ]

(

1
2
log(1 + |Sc|g) + 1

2
log

(

1 + h1TQS|Sc1
)

)

,

whereQ ≥ 0 denotes thatQ is a positive semi-definite matrix. We have thus simplified the maximization
over input distributions to a maximization over covariancematrices. The next step is to show that the
covariance matrixQ can be restricted without loss of optimality to have the form

ρ1N,N + (1− ρ)IN ,

and hence the maximization over covariance matrices can be further simplified to a maximization over
just the scalar correlation parameterρ.3

For convenience of notation, define

ψS(Q) , 1
2
log

(

1 + h1TQS|Sc1
)

and
ψ(Q) , min

S⊂[N ]

(

1
2
log(1 + |Sc|g) + ψS(Q)

)

,

so that
C ≤ sup

Q≥0:
qn,n≤1∀n∈[N ]

ψ(Q). (12)

3Upon completion of this work, we realized that a somewhat similar argument as in this step was used in [20, Section III] forthe Gaussian
multiple-access channel with feedback.
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Consider a covariance matrixQ ≥ 0, and letP be any permutation matrix on[N ]. Note thatP TQP ≥ 0.
Moreover, by symmetry,4

ψ(Q) = min
S⊂[N ]

(

1
2
log(1 + |Sc|g) + ψS(Q)

)

= min
S⊂[N ]

(

1
2
log(1 + |Sc|g) + ψS

(

P TQP
))

= ψ
(

P TQP
)

,

and thusψ(·) is invariant under permutation.
Now, the generalized Schur complement is matrix-concave over the set of positive semi-definite matrices

[21, Theorem 3.1] (see also [22, p. 469] for the corresponding result for positive definite matrices). More
precisely, ifQ = λ1Q

1 + λ2Q
2 with λ1 ∈ [0, 1], λ2 = 1− λ1, then

QS|Sc ≥ λ1Q
1
S|Sc + λ2Q

2
S|Sc,

i.e.,
QS|Sc −

(

λ1Q
1
S|Sc + λ2Q

2
S|Sc

)

is a positive semi-definite matrix. Therefore,

1
T
(

QS|Sc −
(

λ1Q
1
S|Sc + λ2Q

2
S|Sc

))

1 ≥ 0,

implying that

1
2
log

(

1 + h1TQS|Sc1
)

≥ 1
2
log

(

1 + λ1h1
TQ1

S|Sc1+ λ2h1
TQ2

S|Sc1
)

≥ λ1
1
2
log

(

1 + h1TQ1
S|Sc1

)

+ λ2
1
2
log

(

1 + h1TQ2
S|Sc1

)

.

ThusψS(Q) is concave inQ. Finally,

min
S⊂[N ]

(

1
2
log(1 + |Sc|g) + ψS(Q)

)

≥ min
S⊂[N ]

(

λ1
(

1
2
log(1 + |Sc|g) + ψS(Q

1)
)

+ λ2
(

1
2
log(1 + |Sc|g) + ψS(Q

2)
)

)

≥ λ1 min
S⊂[N ]

(

1
2
log(1 + |Sc|g) + ψS(Q

1)
)

+ λ2 min
S⊂[N ]

(

1
2
log(1 + |Sc|g) + ψS(Q

2)
)

,

and henceψ(Q) is also concave inQ.
Fix ε > 0, and assume thatQ⋆ achievesε-optimality, i.e.,Q⋆ ≥ 0, q⋆n,n ≤ 1 for all n ∈ [N ], and

ψ(Q⋆) ≥ sup
Q≥0:

qn,n≤1∀n∈[N ]

ψ(Q)− ε.

Set
Q =

1

N !

∑

P

P TQ⋆P ,

where the sum is over allN ! permutation matrices on[N ].
Note thatQ is positive semi-definite and satisfiesqn,n ≤ 1 for all n ∈ [N ]. Moreover, using the

concavity and invariance under permutation ofψ(·), we obtain

ψ(Q) ≥ 1

N !

∑

P

ψ
(

P TQ⋆P
)

= ψ(Q⋆),

4Note that the minimization overS ⊂ [N ] is crucial for this fact to hold. Indeed,ψS(Q) 6= ψS

(

P TQP
)

in general.
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and henceQ is also anε-optimal covariance matrix. Note that thisQ has the form

ρ1N,N + κIN ,

for κ ≤ 1 − ρ], and thus we can restrict the maximization ofψ(Q) to matrices of this form. Since the
generalized Schur complement is monotonically increasingover the set of positive semi-definite matrices
[21, Theorem 3.1], we can further restrict the value ofκ to be1− ρ. Denote the resulting matrix byQρ,
i.e.,

Qρ ,













1 ρ ρ . . . ρ
ρ 1 ρ . . . ρ
ρ ρ 1 . . . ρ
...

...
...

. . .
...

ρ ρ ρ . . . 1













.

Note thatQρ is positive semi-definite only ifρ ∈ [−1/(N − 1), 1] (since otherwise the eigenvalue
corresponding to the eigenvector1 is negative).

The upper bound on capacity in (12) can thus be simplified to

C ≤ sup
ρ∈[−1/(N−1),1]

min
S⊂[N ]

(

1
2
log(1 + |Sc|g) + 1

2
log

(

1 + h1TQ
ρ
S|Sc1

))

= sup
ρ∈[−1/(N−1),1]

min
n∈{0,...,N}

(

1
2
log(1 + (N − n)g) + 1

2
log

(

1 + h1TQ
ρ
[n]|[n]c1

))

, (13)

where [0] is understood as the empty set and[0]c , [N ]. Observe that the minimization in (13) is over
integersn ∈ {0, . . . , N} as opposed to subsetsS ⊂ [N ] due to the symmetry inQρ. Note furthermore
that instead of maximizing over arbitrary input distributions, we only have to maximize over the single
real numberρ.

We now compute the expression in parentheses in (13) analytically. To this end, we need to compute
Q

ρ
[n]|[n]c, which, by (10), involves the computation of the generalized inverse(Qρ

[n]c,[n]c)
−. We will first

consider the case whenQρ
[n]c,[n]c is invertible, and then consider the remaining cases in which Q

ρ
[n]c,[n]c is

not invertible. Ifn ∈ {1, . . . , N − 1} andρ ∈ [−1/(N − 1), 1), thenQρ
[n]c,[n]c is invertible, and after some

algebra, we obtain

1
TQ

ρ
[n]|[n]c1 = n

(

1 + (n− 1)ρ− n(N − n)ρ2

1 + (N − n− 1)ρ

)

. (14)

We now consider the remaining cases, in whichQ
ρ
[n]c,[n]c is not invertible. Ifρ = 1 andn ∈ {1, . . . , N−

1}, then
1
TQ1

[n]|[n]c1 = 0. (15)

If n = 0, then
1
TQ

ρ
[0]|[0]c1 = 0, (16)

and if n = N , then

1
TQ

ρ
[N ]|[N ]c1 = 1

TQρ
1 = N(1 + (N − 1)ρ), (17)

both for anyρ ∈ [−1/(N − 1), 1].
Denote by

η(ρ, n) , n
(

1 + (n− 1)ρ− n(N − n)ρ2

1 + (N − n− 1)ρ

)

the right-hand side of (14). Note thatη(ρ, n) is well defined for allρ ∈ [−1/(N − 1), 1], n ∈ {0, . . . , N}
except forη(1, N) and η(−1/(N − 1), 0) (for which the expression involves dividing zero by zero).
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Moreover, from (14)–(17) we see that wheneverη(ρ, n) is well defined, it is equal to1TQ
ρ
[n]|[n]c1. For

the two cases in whichη(ρ, n) is not well defined, we have from (15)–(17) that for anyn ∈ [N ],

lim
ρ↑1

η(ρ, n) = 1
TQ1

[n]|[n]c1, (18a)

lim
ρ↓−1/(N−1)

η(ρ, n) = 1
TQ

−1/(N−1)
[n]|[n]c 1, (18b)

and in particular this holds forn = 0 and n = N . Thus we can write1TQ
ρ
[n]|[n]c1 compactly as a

function of η(ρ, n) for any n ∈ [N ] and do not need to consider the boundary casesn = 0, n = N , and
ρ = −1/(N − 1), ρ = 1 separately. Substituting (14) and (18) into (13), we obtain

C ≤ sup
ρ∈(−1/(N−1),1)

min
n∈{0,...,N}

(

1
2
log(1+(N −n)g)+ 1

2
log

(

1+n
(

1+(n−1)ρ− n(N − n)ρ2

1 + (N − n− 1)ρ

)

h
)

)

.

(19)
Observe that the supremum in (19) is only overρ ∈ (−1/(N − 1), 1) as opposed toρ ∈ [−1/(N − 1), 1]
as in (13).

We finally argue that the supremum can be restricted to be overvaluesρ ∈ [0, 1). Consider the derivative
with respect toρ of the multiplier of theh term in (19),

d

dρ
n
(

1 + (n− 1)ρ− n(N − n)ρ2

1 + (N − n− 1)ρ

)

= n
(

(n− 1)− n(N − n)ρ
2 + (N − n− 1)ρ

(

1 + (N − n− 1)ρ
)2

)

.

If ρ ∈ (−1/(N − 1), 0), then this derivative is non-negative, and thus the multiplier of h in (19) is non-
decreasing in that range ofρ. Since this is true simultaneously for alln ∈ {0, . . . , N}, we can restrict the
supremum to be over the rangeρ ∈ [0, 1). This proves the lemma.

We now proceed to the proof of Theorem 2. As before, we denote the capacity of the diamond network
by

C , C(N, g, h).

We again consider the casesmax{g,Nh} ≥ 1 and max{g,Nh} < 1 separately. Assume first that
max{g,Nh} ≥ 1. Capacity is upper bounded by the minimum of the simple broadcast and multiple-
access cuts

C ≤ min
{

1
2
log(1 +Ng), 1

2
log(1 +N2h)

}

= 1
2
log

(

1 +N min{g,Nh}
)

. (20)

Observe that (20) is valid regardless of the value ofmax{g,Nh}.
Assume in the following thatmax{g,Nh} < 1. As before, we treat the casesg ≤ h, g ∈ (h,N2h),

andg ≥ N2h separately. Consider firstg ≤ h. Using the upper bound in (20), we obtain

C ≤ 1
2
log

(

1 +Ng
)

.

Consider theng ∈ (h,N2h). If N
√
gh ≥ 1, then the simplified form (4) of Lemma 7 withN − n =

⌈N2h⌉ ∈ {0, . . . , N} (sinceNh ≤ 1) yields

C ≤ 1
2
log(1 + (N − n)g) + 1

2
log

(

1 +
N2

N − n
h
)

= 1
2
log(1 + ⌈N2h⌉g) + 1

2
log

(

1 +
N2

⌈N2h⌉h
)

≤ 1
2
log(1 + g +N2gh) + 1

2

≤ 1
2
log(1 + 2N2gh) + 1

2
,
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where we have used thatg ≤ N2gh since

N2h ≥
√
g
√
N2h = N

√
gh ≥ 1.

Still assumingg ∈ (h,N2h), if N
√
gh < 1, then the simplified form (4) of Lemma 7 withN − n =

⌈N√
h/g ⌉ ∈ {0, . . . , N} (sinceg ≥ h and hence

√
h/g ≤ 1) shows that

C ≤ 1
2
log(1 + (N − n)g) + 1

2
log

(

1 +
N2

N − n
h
)

= 1
2
log

(

1 + ⌈N√
h/g ⌉g

)

+ 1
2
log

(

1 +
N2

⌈N
√
h/g ⌉h

)

≤ 1
2
log

(

1 + g +N
√
gh

)

+ 1
2
log

(

1 +N
√
gh

)

≤ log
(

1 + 2N
√
gh

)

,

where we have used that
g ≤

√
g
√
N2h = N

√
gh.

Finally, considerg ≥ N2h. The upper bound (20) yields

C ≤ 1
2
log

(

1 +N2h
)

,

concluding the proof.

C. Proof of Corollary 3 (Capacity Approximation for Symmetric Networks)

The corollary follows directly from Theorems 1 and 2 using the inequalities

log(1 + ax)

{

≥ a log(1 + x), for a ∈ [0, 1], x ≥ 0

≤ a log(1 + x), for a ≥ 1, x ≥ 0,

and

log(1 + ax)

{

≥ log(a) + log(1 + x), for a ∈ [0, 1], x ≥ 0

≤ log(a) + log(1 + x), for a ≥ 1, x ≥ 0.

D. Proof of Theorem 4 (Capacity Approximation for Asymmetric Networks)

The idea of the proof is as follows. Group the relays into classes such that all relays in the same class
have approximately the same channel gains. We argue that thenumber of classes needed is on the order
Θ(log2(N)). Choose one such class, and set the constantsαn = 0 for all relays not in this class. This
effectively reduces the network to a (almost) symmetric one, which we have already analyzed in the earlier
parts of this paper. By maximizing over which class to choose, we get the largest rate achievable in this
manner. This yields a lower bound onRδ

(

N, (gn), (hn)
)

. We then argue that this approach is close to
optimal, by showing that capacityC

(

N, (gn), (hn)) is upper bounded byΘ(log4(N)) times the maximum
of the capacities of these classes.

Recall the notation
[N ] , {1, . . . , N}

and, forS ⊂ [N ],
Sc , [N ] \ S.

Furthermore, in this section, we will use

gS , (gn)n∈S,

hS , (hn)n∈S
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for S ⊂ [N ], and
ahS , (ahn)n∈S

for scalara ∈ R.
We want to partition[N ] into subsets such that forn andñ in the same subset the relaysvn andvñ have

approximately the same channel gains. Moreover, we want thenumber of required subsets to be small.
This is not directly possible if the channel gains are very different. For example, considergn = hn = 2n;
note, however, that in this case most of the relays are very weak compared to the strongest one, and could
hence be disregarded without too much loss in rate. We formalize this idea by allowing some “overload”
subsets (in the language of quantization theory) in the partition of [N ], which correspond to relays that
may have very different channel gains, but that are all too weak to have much impact on achievable rates.

Define

g⋆ , max
n∈[N ]

min{gn, N2hn},

h⋆ , max
n∈[N ]

min{hn, gn}.

The quantitiesg⋆ andh⋆ are essentially the largest channel gains, accounting for situations in which one
of the channel gainsgn, hn clearly dominates the other one. If we letn be such thath⋆ = min{hn, gn},
then

g⋆ ≥ min{gn, N2hn} ≥ min{gn, hn} = h⋆. (21)

Similarly, if n is such thatg⋆ = min{gn, N2hn}, then

h⋆ ≥ min{hn, gn} ≥ N−2 min{N2hn, gn} = N−2g⋆. (22)

Thus,g⋆ andh⋆ can not be too different.
We are now ready to introduce the partition of[N ] mentioned above. We start with the “overload”

subsets. Define the sets

T 1 ,
{

n ∈ [N ] : gn ≤ N−3g⋆
}

,

T 2 ,
{

n ∈ [N ] \ T 1 : hn ≤ N−3h⋆
}

,

i.e., T 1 andT 2 correspond to those relays that have channel gains that are very weak compared to the
strongest one in the network. Set

L , ⌊3 log(N)⌋.
For ℓ ∈ {0, . . . , L}, define

T 1
ℓ ,

{

n ∈ [N ] \ (T 1 ∪ T 2) : gn ∈ (2−ℓ−1g⋆, 2−ℓg⋆], hn ≥ gn,
}

,

T 2
ℓ ,

{

n ∈ [N ] \ (T 1 ∪ T 2 ∪ℓ̃ T
1
ℓ̃
) : gn ≥ N2hn, hn ∈ (2−ℓ−1h⋆, 2−ℓh⋆]

}

,

i.e.,{T 1
ℓ } and{T 2

ℓ } quantize those channel gains for which one ofgn, hn dominates the other one. Finally,
define fork, ℓ ∈ {0, . . . , L},

Sk,ℓ ,
{

n ∈ [N ] \
(

T 1 ∪ T 2 ∪ℓ̃ (T
1
ℓ̃
∪ T 2

ℓ̃
)
)

: gn ∈ (2−k−1g⋆, 2−kg⋆], hn ∈ (2−ℓ−1h⋆, 2−ℓh⋆]
}

.

The subsets{Sk,ℓ} quantize the remaining channel gains. The number of setsT 1, T 2, {T 1
ℓ }, {T 2

ℓ }, {Sk,ℓ}
is equal to

L̃ , (L+ 1)2 + 2(L+ 1) + 2 = Θ(log2(N)).

We argue thatT 1, T 2, {T 1
ℓ }, {T 2

ℓ }, {Sk,ℓ} partition [N ]. The sets are clearly disjoint, so we only need
to show that their union covers[N ]. If either gn ≤ N−3g⋆ or hn ≤ N−3h⋆ thenn ∈ T 1 ∪ T 2. Assume
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in the following discussion thatgn > N−3g⋆ and hn > N−3h⋆. If gn ≤ g⋆ and hn ≤ h⋆, thenn is an
element of{T 1

ℓ }, {T 2
ℓ }, or {Sk,ℓ}. If gn > g⋆, then

hn ≤ N2hn ≤ g⋆ ≤ gn,

so thatgn ≥ N2hn andhn = min{hn, gn} ≤ h⋆. This implies thatn ∈ ∪ℓT
2
ℓ . If hn > h⋆, then

gn ≤ h⋆ ≤ hn,

so thathn ≥ gn and gn = min{gn, N2hn} ≤ g⋆. This implies thatn ∈ ∪ℓT
1
ℓ . Together, this proves that

we have properly partitioned[N ].
We are now ready for the proof of the upper bound on capacity. We argue that the capacity of the

diamond network withN relays cannot be much larger than the sum of the capacities oftheL̃ subchannels
induced by the partition of[N ] defined above. Formally, we argue that

C
(

N, g[N ], h[N ]

)

≤ C
(

|T 1|, gT 1, 2L̃hT 1

)

+ C
(

|T 2|, gT 2, 2hT 2

)

+

2
∑

i=1

L
∑

ℓ=0

C
(

|T i
ℓ |, gT i

ℓ
, 2L̃hT i

ℓ

)

+

L
∑

k,ℓ=0

C
(

|Sk,ℓ|, gSk,ℓ
, 2L̃hSk,ℓ

)

. (23)

To see this, note that the right-hand side is the capacity ofL̃ parallel diamond networks each with unit
input power constraint. Moreover, increasing each channelgain

√
hn by a factor of

√

2L̃ (or
√
2 in the

case ofT 2) is equivalent to reducing the power of the additive noise atthe destination node of the parallel
networks by a factor1/(2L̃) (or 1/2 for T 2). We can now use these parallel networks to simulate the
originalN-relay diamond network by forcing the input (at the source nodeu) to all the parallel networks
to be identical, and by summing up the outputs (at the destination nodew) of the parallel networks. This
proves (23).

Next, we argue that the capacities of the asymmetric subnetworks in (23) can be upper bounded by the
capacities of symmetric diamond networks. Consider the subsetSk,ℓ. Since capacity is increasing in the
channel gains,

C
(

|Sk,ℓ|, gSk,ℓ
, 2L̃hSk,ℓ

)

≤ C
(

|Sk,ℓ|, 2−kg⋆, L̃21−ℓh⋆
)

. (24)

Observe that the right-hand side is the capacity of asymmetric diamond network. Consider thenT i
ℓ . By

the same argument
C
(

|T 1
ℓ |, gT 1

ℓ
, 2L̃hT 1

ℓ

)

≤ C
(

|T 1
ℓ |, 2−ℓg⋆,∞

)

, (25)

and
C
(

|T 2
ℓ |, gT 2

ℓ
, 2L̃hT 2

ℓ

)

≤ C
(

|T 2
ℓ |,∞, L̃21−ℓh⋆

)

. (26)

It remains to considerT 1 andT 2. For the setT 1, we have

C
(

|T 1|, gT 1, 2L̃hT 1

)

≤ C
(

N,N−3g⋆,∞
)

.

From Theorem 2,
C
(

N,N−3g⋆,∞
)

≤ 1
2
log(1 +N−2g⋆).

By the definition ofg⋆, there exists at least onen such thatgn ≥ g⋆ andhn ≥ N−2g⋆. Using just this
one relayvn, a rate of at least

1
2
log(1 +N−2g⋆)

is achievable.5 For thisn, we have
gn ≥ g⋆ > N−3g⋆,

5This rate is achievable, for example, with decode-and-forward. Note that we use decode-and-forward here only as a prooftechnique to
obtain the upper bound on capacity. Achievability is based exclusively on (bursty) amplify-and-forward.
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and hencen /∈ T 1. Moreover, using (21),

hn ≥ N−2g⋆ ≥ N−2h⋆ > N−3h⋆,

and hencen /∈ T 2. Thisn is therefore an element of one of the subsets{T 1
ℓ }, {T 2

ℓ }, {Sk,ℓ}, and we obtain
from (24)–(26),

C
(

|T 1|, gT 1, L̃hT 1

)

≤ max

{

max
ℓ∈{0,...,L}

C
(

|T 1
ℓ |, 2−ℓg⋆,∞

)

, max
ℓ∈{0,...,L}

C
(

|T 2
ℓ |,∞, L̃21−ℓh⋆

)

,

max
k,ℓ∈{0,...,L}

C
(

|Sk,ℓ|, 2−kg⋆, L̃21−ℓh⋆
)

}

. (27)

Similarly,

C
(

|T 2|, gT 2, 2hT 2

)

≤ C
(

N,∞, 2N−3h⋆
)

≤ 1
2
log(1 + 2N−1h⋆)

≤ 1
2
log(1 + h⋆).

By the definition ofh⋆ there exists at least onen such thathn ≥ h⋆ and gn ≥ h⋆. Using this relayvn
alone, we achieve at least a rate of

1
2
log(1 + h⋆).

For thisn,
hn ≥ h⋆ > N−3h⋆,

and hencen /∈ T 2. Moreover, using (22),

gn ≥ h⋆ ≥ N−2g⋆ > N−3g⋆,

and hencen /∈ T 1. Thisn is therefore an element of one of the subsets{T 1
ℓ }, {T 2

ℓ }, {Sk,ℓ}, and we obtain
again from (24)–(26),

C
(

|T 2|, gT 2, 2hT 2

)

≤ max

{

max
ℓ∈{0,...,L}

C
(

|T 1
ℓ |, 2−ℓg⋆,∞

)

, max
ℓ∈{0,...,L}

C
(

|T 2
ℓ |,∞, L̃21−ℓh⋆

)

,

max
k,ℓ∈{0,...,L}

C
(

|Sk,ℓ|, 2−kg⋆, L̃21−ℓh⋆
)

}

. (28)

Substituting (24)–(28) into (23), we obtain

C
(

N, g[N ], h[N ]

)

≤ L̃max

{

max
ℓ∈{0,...,L}

C
(

|T 1
ℓ |, 2−ℓg⋆,∞

)

, max
ℓ∈{0,...,L}

C
(

|T 2
ℓ |,∞, L̃21−ℓh⋆

)

,

max
k,ℓ∈{0,...,L}

C
(

|Sk,ℓ|, 2−kg⋆, L̃21−ℓh⋆
)

}

. (29)

This concludes the proof of the upper bound on capacity.
We continue with the proof of achievability. Fixk, ℓ ∈ {0, . . . , L}, and recall thatαn is the constant

determining the amplification at relayvn. Assume we setαn = 0 for all n /∈ Sk,ℓ. This results in a network
in which all but the relays inSk,ℓ are removed. Thus

Rδ

(

N, g[N ], h[N ]

)

≥ Rδ

(

|Sk,ℓ|, gSk,ℓ
, hSk,ℓ

)

. (30)

Moreover, sinceRδ is increasing in the channel gains,

Rδ

(

|Sk,ℓ|, gSk,ℓ
, hSk,ℓ

)

≥ Rδ

(

|Sk,ℓ|, 2−k−1g⋆, 2−ℓ−1h⋆
)

. (31)
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With this, we have lower bounded the rate achievable for the asymmetric diamond network by the one
of a symmetric diamond network (with fewer relays and smaller channel gains). We can thus apply the
results from Section III-A to obtain

sup
δ∈(0,1]

Rδ

(

|Sk,ℓ|, 2−k−1g⋆, 2−ℓ−1h⋆
)

≥ 1

112L̃
C
(

|Sk,ℓ|, 2−kg⋆, L̃21−ℓh⋆
)

, (32)

where the factor1/(112L̃) = 1/(8L̃×14) is composed of a factor8L̃ to offset the increase of the channel
gains to the relay by two and the increase of the channel gainsfrom the relays by4L̃ (see Theorem 1)
and of a factor14 to go from rate achievable with bursty amplify-and-forwardto capacity (see Theorem 2
and Corollary 3).

Combining (30), (31), and (32) yields

sup
δ∈(0,1]

Rδ

(

N, g[N ], h[N ]

)

≥ 1

112L̃
C
(

|Sk,ℓ|, 2−kg⋆, L̃21−ℓh⋆
)

. (33)

A similar argument, settingαn = 0 for n outsideT i
ℓ , shows that

sup
δ∈(0,1]

Rδ

(

N, g[N ], h[N ]

)

≥ sup
δ∈(0,1]

Rδ

(

|T 1
ℓ |, gT 1

ℓ
, hT 1

ℓ

)

,

≥ sup
δ∈(0,1]

Rδ

(

|T 1
ℓ |, 2−ℓ−1g⋆, 2−ℓ−1g⋆

)

,

≥ 1

28
C
(

|T 1
ℓ |, 2−ℓg⋆,∞

)

, (34)

and

sup
δ∈(0,1]

Rδ

(

N, g[N ], h[N ]

)

≥ sup
δ∈(0,1]

Rδ

(

|T 2
ℓ |, gT 2

ℓ
, hT 2

ℓ

)

,

≥ sup
δ∈(0,1]

Rδ

(

|T 2
ℓ |, N22−ℓ−1h⋆, 2−ℓ−1h⋆

)

,

≥ 1

56L̃
C
(

|T 1
ℓ |,∞, L̃21−ℓh⋆

)

, (35)

for all ℓ ∈ {0, . . . , L}.
We can optimize over the lower bounds in (33), (34), and (35) to obtain

sup
δ∈(0,1]

Rδ

(

N, g[N ], h[N ]

)

≥ 1

112L̃
max

{

max
ℓ∈{0,...,L}

C
(

|T 1
ℓ |, 2−ℓg⋆,∞

)

, max
ℓ∈{0,...,L}

C
(

|T 2
ℓ |,∞, L̃21−ℓh⋆

)

,

max
k,ℓ∈{0,...,L}

C
(

|Sk,ℓ|, 2−kg⋆, L̃21−ℓh⋆
)

}

.

Comparing this with the upper bound (29) shows that

C(N, g[N ], h[N ]) ≤ 112L̃2 sup
δ∈(0,1]

Rδ(N, g[N ], h[N ]).

Using that
L̃ ≤ (3 log(N) + 1)2 + 6 log(N) + 4

shows that there exists a universal constantK <∞ (and, in particular, independent ofg[N ], h[N ], andN)
such that112L̃2 ≤ K log4(N) for N ≥ 2. This concludes the proof of the theorem.
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V. CONCLUSION

We presented an approximation of the capacity of the symmetric GaussianN-relay diamond network.
The capacity was characterized up to a1.8 bit additive gap and a factor14 multiplicative gap uniformly
for all channel gains and number of relays. The inner bound inthis approximate characterization relies
on bursty amplify-and-forward, showing that this scheme isgood simultaneously at low and high rates,
uniformly in the channel gains and in the number of relaysN . The upper bound resulted from a careful
evaluation of the cut-set bound. We argued that all2N possible cuts in the diamond network need to
be evaluated simultaneously, and that the standard approach of only considering the minimum of the
broadcast and multiple-access cuts is insufficient to derive uniform capacity approximations. We extended
this approach to asymmetric diamond networks, for which we showed that bursty amplify-and-forward
achieves capacity up to a multiplicative gap of a factorO(log4(N)) with pre-constant in the order notation
independent of the channel gains.

The results in this paper show that, at least for symmetric diamond networks, it is possible to de-
rive capacity approximations that are independent of the network size. Deriving such uniform capacity
approximations for general networks remains an open problem.
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