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CONSISTENT ORDER ESTIMATION AND MINIMAL

PENALTIES

ELISABETH GASSIAT AND RAMON VAN HANDEL

Abstract. Consider an i.i.d. sequence of random variables whose distribution
f⋆ lies in one of a nested family of models Mq , q ≥ 1. The smallest index q⋆

such that Mq⋆ contains f⋆ is called the model order. We establish strong
consistency of the penalized likelihood order estimator in a general setting
with penalties of order η(q) log logn, where η(q) is a dimensional quantity.
Moreover, such penalties are shown to be minimal. In contrast to previous
work, an a priori upper bound on the model order is not assumed. The results
rely on a sharp characterization of the pathwise fluctuations of the generalized
likelihood ratio statistic under entropy assumptions on the model classes. Our
results are applied to the geometrically complex problem of location mixture
order estimation, which is widely used but poorly understood.

1. Introduction

Let (Xk)k≥1 be a sequence of random variables whose distribution f⋆ lies in one
of a nested family of models (Mq)q≥1, indexed (and ordered) by the integers. We
define the model order as the smallest index q⋆ such that the true distribution f⋆

lies in the corresponding model class. The model order typically determines the
most parsimonious representation of the true distribution of the underlying model
(for example, it might determine the parametrization of the model which has the
smallest possible dimension). On the other hand, the model order often has a
concrete interpretation in terms of the modelling of the underlying phenomenon
(for example, the estimation of the number of clusters in a data set, or the number
of regimes in an economic time series). Therefore, the problem of estimating the
model order from observed data is of significant practical, as well as theoretical,
interest.

Of course, a satisfactory solution to this problem must provide an estimation
method that does not assume prior knowledge on the unknown distribution f⋆. In
particular, prior bounds on model order and on parameter sets should be avoided.
Yet, in this light, even one of the most widely used model selection criteria—the
Bayesian Information Criterion (BIC) of Schwarz—is poorly understood. The chief
motivation for the use of BIC (as opposed to other model selection criteria, such
as Akaike’s Information Criterion) is that it is expected to yield a strongly consis-
tent estimator of the model order. However, almost all existing consistency proofs
assume a prior upper bound on the order as well as compactness of the parameter
set. As is emphasized by Csiszár and Shields [1], this is hardly satisfactory from
the theoretical point of view, and provides little confidence in the basic motivation
for this method. More delicate questions, such as the minimal penalty that yields
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a consistent order estimator in absence of a prior bound on the order, remain open
(the problem of identifying the minimal penalty, which minimizes the probability
of underestimating the order, is also raised in [1]).

In this paper we consider a general class of penalized likelihood order estimators
of the form

q̂n = argmax
q≥1

{

sup
f∈Mq

ℓn(f)− pen(n, q)

}

,

where pen(n, q) is a penalty function and ℓn(f) is the likelihood of (Xk)1≤k≤n

under the distribution f . Our aim is to understand what penalties yield strong
consistency of the order estimator, that is, q̂n → q⋆ as n → ∞ a.s. Characterizing
strong consistency hinges on a precise understanding of the pathwise fluctuations
of the likelihood ratio statistic

sup
f∈Mq

ℓn(f)− sup
f∈Mq⋆

ℓn(f),

as n → ∞, uniformly in the model order q > q⋆. When there is a known up-
per bound on the order q⋆ ≤ qmax < ∞ and the model classes Mq are regularly
parametrized by a compact subset of Euclidean space, an upper bound on the
pathwise fluctuations can be obtained by classical parametric methods: Taylor ex-
pansion of the likelihood and an application of a law of iterated logarithm. This
approach forms the basis for most consistency proofs for penalized likelihood order
estimators in the literature, for example [2, 3, 4, 5, 6]. However, such techniques fail
in the absence of a prior upper bound: even though each model class Mq is finite
dimensional, the full model M =

⋃

q Mq is infinite dimensional and, as such, the
problem in the absence of a prior upper bound is inherently nonparametric. When
the classes Mq are noncompact one must introduce sieves Mn

q ⊂ Mn+1
q ⊂ · · · ⊂ Mq,

complicating the problem further (in this case even the parametric theory remains
poorly understood [7, 8, 9]). An entirely different approach based on universal cod-
ing theory [4, 10, 11, 12, 13, 14] yields bounds on the pathwise fluctuations that do
not require prior bounds on the order or compactness of the models. However, these
bounds are far from tight and cannot even establish consistency of BIC, let alone
smaller penalties (this appears to be a fundamental limitation of this approach due
to Rissanen’s theorem, see [15, 16]).

The problem area that is investigated in this paper was initiated in the work
of Csiszár and Shields [1, 17], who proved consistency of BIC for Markov chain
order estimation in absence of a prior bound on the order (see also [18]). To our
knowledge, little progress has been made on this subject beyond their work. The
proofs in [1, 17] rely heavily on the availability of an explicit expression for the
maximum likelihood for Markov chains, and employ delicate estimates specific to
that setting. Their techniques are therefore not well suited to investigating such
problems in other settings. Moreover, the methods of [1, 17] do not yield minimal
penalties. However, the Markov chain case was recently reconsidered in [19] using
very different techniques based on empirical process theory, which are potentially
much more generally applicable and which shed light on minimal penalties.

The main results of this paper provide generally applicable upper and lower
bounds on the pathwise fluctuations of the likelihood ratio statistic uniformly in
the model order q > q⋆, for the case of i.i.d. observations (Xk)k≥1, without a prior
bound on the model order and in possibly noncompact parameter spaces. These
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results are then used to investigate strong consistency of penalized likelihood order
estimators. We use empirical process methods as in [19], but the difficulties to be
surmounted in the present setting are of a different nature. The main difficulty for
Markov chain models in [1, 17, 19] is their dependence structure; in the present
paper we assume i.i.d. models. On the other hand, the geometric structure of
Markov chains is exceedingly simple: the family of qth-order Markov chains in
the Hellinger distance is simply a Euclidean ball when viewed in the appropriate
parametrization. In contrast, in general order estimation problems, one is often
faced with model classes that are geometrically very complex. An important case
study that will be considered in this paper are location mixture models (widely used
in practice for clustering), which possess a notoriously complicated non-regular
geometry. We will be able, for example, to establish strong consistency of BIC
for mixture order estimation in absence of a prior bound on the order or on the
parameter set, providing a counterpart to the results of Csiszár and Shields [1] in
a setting very different than that of Markov chains.

The techniques developed here originate in our attempts to understand the or-
der estimation problem for hidden Markov models (HMM) [12]. In that setting,
consistency of BIC (even with a prior bound on the order) remains unknown. The
two cases considered here and in [19]—Markov chains and i.i.d. mixtures—can be
viewed as two extreme cases of HMM. While our approach provides a substan-
tial step towards understanding the HMM setting, a striking and as of yet poorly
understood breakdown in the ergodicity of HMM [20] has so far impeded further
progress in this direction.

The remainder of this paper is organized as follows. Section 2 introduces the
general model under consideration, and states our results on the pathwise fluctua-
tions of the likelihood ratio statistic. Section 3 derives the consequences for order
estimation, and considers also the special case of location mixture models. Proofs
are given in the appendices.

2. Pathwise fluctuations of the likelihood

2.1. Basic setting and notation. Let (E,E, µ) be a measure space. For each
q, n ≥ 1, let Mn

q be a given family of strictly positive probability densities with

respect to µ (that is, we assume that
∫

fdµ = 1 and that f > 0 µ-a.e. for every
f ∈ Mn

q ). Moreover, we assume that (Mn
q )q,n≥1 is a nested family of models in

the sense that Mn
q ⊆ Mn

q+1 and Mn
q ⊆ Mn+1

q for all q, n ≥ 1. Let Mq =
⋃

n M
n
q ,

M
n =

⋃

q M
n
q , M =

⋃

q,n M
n
q .

Consider an i.i.d. sequence of E-valued random variables (Xk)k≥1 whose common
distribution under the measure P⋆ is f⋆dµ, where f⋆ ∈ Mq⋆\ clMq⋆−1 for some
q⋆ ≥ 1 (here clMq denotes the L1(dµ)-closure of Mq). The index q⋆ is called the
model order. Let us define

ℓn(f) =

n
∑

i=1

log f(Xi), f ∈ M.

Evidently ℓn(f) is the log-likelihood of the i.i.d. sequence (Xk)k≤n when Xk ∼ fdµ.
Our aim is to study the pathwise fluctuations of the likelihood ratio statistic

sup
f∈Mn

q

ℓn(f)− sup
f∈Mn

q⋆

ℓn(f)
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as n → ∞, uniformly over the order parameter q ≥ q⋆. Pathwise upper and lower
bounds on the likelihood ratio statistic are the key ingredient in the study of strong
consistency of penalized likelihood order estimators (see section 3).

Example 2.1 (Location mixtures). The guiding example for our theory, the case
of location mixtures, will be studied in detail in section 3.2 below. We presently
introduce this example in order to clarify our basic setup.

Let E = R
d (with its Borel σ-field E) and let µ be the Lebesgue measure on

R
d. We fix a strictly positive probability density f0 with respect to µ, and define

fθ(x) = f0(x − θ) for x, θ ∈ R
d. Fix a sequence T (n) ↑ ∞ and define

M
n
q =

{

q
∑

i=1

πifθi : πi ≥ 0,

q
∑

i=1

πi = 1, ‖θi‖ ≤ T (n)

}

.

Then Mq is the family of all q-component mixtures of translates of the density f0,
while Mn

q is the subset of the mixtures Mq whose translation parameters (θi)i=1,...,q

are restricted to a ball of radius T (n). The number of components q⋆ of the true
mixture f⋆ ∈ M can be estimated from observations using the order estimator

q̂n = argmax
q≥1

{

sup
f∈Mn

q

ℓn(f)− pen(n, q)

}

.

Pathwise control of the likelihood ratio statistic allows us to identify what penalties
pen(n, q) and cutoff sequences T (n) yield strong consistency of q̂n (cf. section 3.2).

Remark 2.2. To avoid measurability problems and other technical complications,
we employ throughout this paper the simplifying convention that all uncountable
suprema (such as supf∈Mn

q
ℓn(f)) are interpreted as essential suprema with respect

to the measure P⋆. In the majority of applications the model classes M
n
q will be

separable, in which case the supremum and essential supremum coincide.

In the sequel, we will denote by ‖ · ‖p the Lp(f⋆dµ)-norm, that is, ‖g‖pp =
∫

|g(x)|pf⋆(x)µ(dx), and we denote by 〈f, g〉 =
∫

f(x)g(x)f⋆(x)µ(dx) the Hilbert
space inner product in L2(f⋆dµ). Define the Hellinger distance

h(f, g)2 =

∫

(
√

f −√
g)2dµ, f, g ∈ M.

It is easily seen that h(f, f⋆) = ‖
√

f/f⋆ − 1‖2. Finally, we will denote by N(Q, δ)
for any class of functions Q and δ > 0 the minimal number of brackets of L2(f⋆dµ)-
width δ needed to cover Q: that is, N(Q, δ) is the smallest cardinality N of a
collection of pairs of functions {gLi , gUi }i=1,...,N such that maxi≤N ‖gUi − gLi ‖2 ≤ δ
and for every g ∈ Q we have gLi ≤ g ≤ gUi pointwise for some i ≤ N .

2.2. Upper bound. We aim to obtain a pathwise upper bound on the likelihood
ratio statistic that holds uniformly in q > q⋆. To this end, define for q, n ≥ 1 and
ε > 0 the Hellinger ball

H
n
q (ε) = {

√

f/f⋆ : f ∈ M
n
q , h(f, f⋆) ≤ ε}.

Note that the definition of Hn
q (ε) depends on f⋆ (which is fixed throughout the

paper). The following result shows that the geometry of the Hellinger balls Hn
q (ε)

controls the pathwise fluctuations of the likelihood ratio statistic.
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Theorem 2.3. Suppose that for all n sufficiently large

N(Hn
q (ε), δ) ≤

(

K(n)ε

δ

)η(q)

for all q ≥ q⋆ and δ ≤ ε, where K(n) ≥ 1 and η(q) ≥ q are increasing functions.
Then

lim
n→∞

1

logK(2n) ∨ log logn
sup
q≥q⋆

1

η(q)

{

sup
f∈Mn

q

ℓn(f)− sup
f∈Mn

q⋆

ℓn(f)

}

≤ C

P⋆-a.s., where C > 0 is a universal constant.

The proof of Theorem 2.3 is given in Appendix A.
The assumption of Theorem 2.3 on the entropy of the Hellinger balls H

n
q (ε)

states, roughly speaking, that the class of densities Mn
q endowed with the Hellinger

distance has the same metric structure as a Euclidean ball of dimension η(q) and
radius of order K(n), at least locally in a neighborhood of the true density f⋆. The
effective dimension η(q) controls the fluctuations of the likelihood ratio statistic as a
function of the model order, while the effective radiusK(n) controls the fluctuations
as a function of time up to a minimal rate of order log logn. In the following section
we will see that the minimal log logn rate is indeed optimal.

Remark 2.4. A bound on N(Hn
q (ε), δ) of the form required by Theorem 2.3 is

easily obtained if Mn
q are regularly parametrized classes. That is, suppose that we

can write

M
n
q = {fθ : θ ∈ Θn

q }, Θn
q ⊂ R

η(q),

where we have a pointwise Lipschitz estimate of the form

|
√

fθ(x)/f⋆(x)−
√

fθ′(x)/f⋆(x)| ≤ F (x) |||θ − θ′|||
for some function F in L2 and norm |||·||| on R

η(q), and

h(fθ, f
⋆) ≥ c |||θ − θ⋆|||

with c > 0. Then the requisite bound on N(Hn
q (ε), δ) follows easily (cf. [21, Example

19.7]). This covers many cases of practical interest. However, geometrically com-
plex models such as finite mixtures do not admit a regular parametrization, while
our results are nonetheless sufficiently general to apply to such models (section 3.2).
In non-regular models the entropy bound required by Theorem 2.3 is far from obvi-
ous, and the requisite geometric analysis is of independent interest. Such problems
are investigated by the authors in [22], and form the basis for the results in section
3.2 below.

2.3. Lower bound. Throughout this section, we specialize to the case that Mn
q =

Mq does not depend on n (this implies essentially that Mq is compact). In this
setting, Theorem 2.3 yields an upper bound of order log logn on the pathwise
fluctuations of the likelihood ratio statistic. The aim of this section is to obtain
a matching lower bound of order log logn, which shows that the minimal rate in
Theorem 2.3 is essentially optimal. For the purposes of a lower bound uniformity
in q is irrelevant, so it suffices to restrict attention to some fixed q > q⋆. We will
in fact obtain a much stronger result in this case that completely characterizes
the pathwise asymptotics of the likelihood ratio statistic for fixed q in sufficiently
smooth families.
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The geometric structure required in the present section is somewhat different
than that of Theorem 2.3. Instead of Hellinger balls, we consider the classes of
weighted densities Dq = {df : f ∈ Mq, f 6= f⋆} and D =

⋃

q Dq, where

df =

√

f/f⋆ − 1

h(f, f⋆)
, f ∈ M, f 6= f⋆.

Define for ε > 0 and q ≥ 1 the local weighted classes

Dq(ε) = {df : f ∈ Mq, 0 < h(f, f⋆) ≤ ε},
D̄q =

⋂

ε>0

clDq(ε),

where the closure clDq(ε) is in L2(f⋆dµ). Clearly D̄q is the set of all possible limit
points of df as h(f, f⋆) → 0 in Mq. If the neighborhoods of D̄q are sufficiently rich,
such limits can be taken along a continuous path in the following sense.

Definition 2.5. A point d ∈ D̄q is called continuously accessible if there is a path
(ft)t∈]0,1] ⊂ Mq\{f⋆} such that the map t 7→ h(ft, f

⋆) is continuous, h(ft, f
⋆) → 0

as t → 0, and dft → d in L2(f⋆dµ) as t → 0. The subset of all continuously
accessible points in D̄q is denoted as D̄c

q.

We can now formulate the main result of this section.

Theorem 2.6. Let q⋆ ≤ p < q. Assume that
∫ 1

0

√

logN(Dq , u)du < ∞,

and that |d| ≤ D for all d ∈ Dq with D ∈ L2+α(f⋆dµ) for some α > 0. Then

lim
n→∞

1

log logn

{

sup
f∈Mq

ℓn(f)− sup
f∈Mp

ℓn(f)

}

≥

sup
g∈L2

0
(f⋆dµ)

{

sup
f∈D̄c

q

(〈f, g〉)2+ − sup
f∈D̄p

(〈f, g〉)2+

}

P⋆-a.s.,

as well as

lim
n→∞

1

log logn

{

sup
f∈Mq

ℓn(f)− sup
f∈Mp

ℓn(f)

}

≤

sup
g∈L2

0
(f⋆dµ)

{

sup
f∈D̄q

(〈f, g〉)2+ − sup
f∈D̄c

p

(〈f, g〉)2+

}

P⋆-a.s.,

where L2
0(f

⋆dµ) = {g ∈ L2(f⋆dµ) : ‖g‖2 ≤ 1, 〈1, g〉 = 0}.
Only the first (lower bound) part of the theorem is needed to conclude optimality

of the minimal log logn rate in Theorem 2.3. Indeed, we will obtain as a corollary
the following lower bound counterpart to Theorem 2.3.

Corollary 2.7. Suppose there exists q > q⋆ such that the following hold.

(1) There is an envelope function D : E → R such that |d| ≤ D for all d ∈ Dq

and D ∈ L2+α(f⋆dµ) for some α > 0. Moreover,
∫ 1

0

√

logN(Dq , u)du <
∞.
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(2) D̄c
q\D̄q⋆ is nonempty.

Let η(q) > 0 be an arbitrary positive function. Then

lim
n→∞

1

log logn
sup
q≥q⋆

1

η(q)

{

sup
f∈Mq

ℓn(f)− sup
f∈Mq⋆

ℓn(f)

}

≥ C

P⋆-a.s., where C > 0 is nonrandom but may depend on f⋆, η.

The proofs of Theorem 2.6 and Corollary 2.7 are given in Appendix B below.
The fact that the geometric assumptions in Theorem 2.6 and Corollary 2.7 are

expressed in terms of weighted classes is not surprising, as the sharp asymptotic
expression provided by Theorem 2.6 for the pathwise fluctuations of the likelihood
are expressed in terms of a variational problem on the weighted classes. Nonethe-
less, we are naturally led to ask whether there is any relation between the geometric
assumptions imposed in the upper bound Theorem 2.3 and the lower bound Theo-
rem 2.6, which appear to be quite different at first sight. In [22], we show that the
global entropy of the weighted class is closely related to local entropy, so that the
geometric assumptions for the upper and lower bounds are not too far apart.

Remark 2.8. When D̄q and D̄p each contain an L2(f⋆dµ)-dense subset of contin-
uously accessible points (which is typically the case in sufficiently smooth models),
then Theorem 2.6 provides the exact characterization

lim
n→∞

1

log logn

{

sup
f∈Mq

ℓn(f)− sup
f∈Mp

ℓn(f)

}

=

sup
g∈L2

0
(f⋆dµ)

{

sup
f∈D̄q

(〈f, g〉)2+ − sup
f∈D̄p

(〈f, g〉)2+

}

P⋆-a.s.

Beside its intrinsic interest, this result has a surprising consequence. In the case
that Mq and Mp are regular parametric models with dim(Mq) > dim(Mp), one can
choose g ∈ D̄q which is orthogonal to D̄p. As D̄q, D̄p ⊆ L2

0(f
⋆dµ) (see the proof of

Corollary 2.7), it follows easily that in this case the right-hand side of the previous
equation display is precisely equal to 1. In particular, we obtain the curious con-
clusion that in regular parametric models, the magnitude of the fluctuations of the
likelihood ratio statistic does not depend on the dimensions dim(Mq) and dim(Mp).
In contrast, it is well known that in regular parametric models, the likelihood ratio
statistic itself converges weakly to a chi-square distribution with dim(Mq)−dim(Mp)
degrees of freedom, so the tails of the distribution of the likelihood ratio statistic do
in fact depend strongly on the dimensions dim(Mq) and dim(Mp). Of course, the
dimension independence of the pathwise fluctuations will also cease to hold if we
are interested in a result that is uniform in the order q, as in Theorem 2.3. This
highlights the fact that the problems investigated in this paper are fundamentally dif-
ferent depending on whether or not one assumes a prior upper bound on the model
order.

3. Strongly consistent order estimation

The goal of this section is to apply the results of section 2 to identify what
penalties and cutoffs yield strongly consistent order estimators. We first develop
some general consistency and inconsistency results, and then consider specifically
the challenging problem of mixture order estimation.
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3.1. Consistency and minimal penalties. In this section we consider the gen-
eral setting introduced in section 2.1. We now suppose, however, that the true
model order q⋆ (as well as the true density f⋆) is not known, so that we must es-
timate q⋆ from an observation sequence (Xk)k≥1. To this end, define the penalized
likelihood order estimator

q̂n = argmax
q≥1

{

sup
f∈Mn

q

ℓn(f)− pen(n, q)

}

,

where pen(n, q) is a penalty function. Our goal is to show that the penalized
likelihood order estimator is strongly consistent, that is, q̂n → q⋆ as n → ∞ P⋆-
a.s., for a suitable choice of the penalty (that does not depend on q⋆ or f⋆). Let us
emphasize that the maximum in the definition of q̂n is taken over all model orders
q ≥ 1, that is, we do not assume that an a priori upper bound on the order is
available, in contrast to most previous work on this topic.

We obtain the following general result.

Theorem 3.1. Suppose that for all n sufficiently large

N(Hn
q (ε), δ) ≤

(

K(n)ε

δ

)η(q)

for all q ≥ q⋆ and δ ≤ ε, where K(n) ≥ 1 and η(q) ≥ q are increasing functions
and we assume that logK(n) = o(n). Let pen(n, q) be a penalty that is increasing
in q and

lim
n→∞

sup
q>q⋆

η(q){logK(2n) ∨ log logn}
pen(n, q)− pen(n, q⋆)

= 0,

lim
n→∞

max
q<q⋆

pen(n, q)

n
= 0.

Then q̂n → q⋆ as n → ∞ P⋆-a.s.

Theorem 3.1 is proved in Appendix C.
Let us now specialize to the case that Mn

q = Mq does not depend on n, as in
section 2.3. In this case, Theorem 3.1 immediately yields the following corollary.

Corollary 3.2. Suppose that for all q ≥ q⋆ and δ ≤ ε

N(Hq(ε), δ) ≤
(

Kε

δ

)η(q)

,

where K ≥ 1 and η(q) ≥ q is a strictly increasing function. Define the penalty

pen(n, q) = η(q)̟(n),

where ̟(n) is any function such that

lim
n→∞

log logn

̟(n)
= 0, lim

n→∞

̟(n)

n
= 0.

Then q̂n → q⋆ as n → ∞ P⋆-a.s.

Corollary 3.2 states that, when Mn
q = Mq does not depend on n, the penalized

likelihood order estimator is strongly consistent provided the penalty grows faster
than log logn and slower than n. Clearly the log logn rate is the minimal one at-
tainable by applying Theorem 3.1. This raises the question whether the log log n
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rate is indeed minimal, in the sense that smaller penalties yield inconsistent esti-
mators. The following result shows that this is indeed the case, so that the result
of Corollary 3.2 is essentially optimal.

Corollary 3.3. Suppose there exists q > q⋆ such that

(1) there is an envelope function D : E → R such that |d| ≤ D for all d ∈ Dq,

D ∈ L2+α(f⋆dµ) for some α > 0, and
∫ 1

0

√

logN(Dq , u)du < ∞;

(2) D̄
c
q\D̄q⋆ is nonempty.

Let η(q) > 0 be any strictly increasing function, and let

pen(n, q) = C η(q) log logn.

If C > 0 is sufficiently small, q̂n 6= q⋆ infinitely often P⋆-a.s.

The proof of Corollary 3.3 is given in Appendix C. Let us note that the proof
of Corollary 3.3 actually shows that supf∈Mq

ℓn(f)−pen(n, q) > supf∈Mq⋆
ℓn(f)−

pen(n, q⋆) infinitely often P⋆-a.s., so Corollary 3.3 is not altered even if we were to
impose a prior upper bound on the order.

In conclusion, we have shown that when Mn
q = Mq does not depend on n, penal-

ties growing faster than log logn are consistent while the penalty C η(q) log log n
is inconsistent when the constant C is sufficiently small. From the proof of The-
orem 3.1, we can also see that the penalty C η(q) log log n is consistent when C is
sufficiently large. However, the critical value of C may depend on the unknown
parameter f⋆, so that this minimal penalty may not be implementable. On the
other hand, assuming that η(q) does not depend on f⋆ (as is typically the case),
penalties satisfying the assumptions of Theorem 3.1 obviously do not depend on
the unknown parameter f⋆ and therefore define admissible estimators. When Mn

q

depends on n, larger penalties may be required to ensure consistency, depending
on the growth rate of K(n).

3.2. Location mixture order estimation. We finally apply our general results
to location mixture order estimation. Throughout this section, let E = R

d and let
µ be the Lebesgue measure on R

d. Fix a strictly positive probability density f0
with respect to µ, and define

M
n
q =

{

q
∑

i=1

πifθi : πi ≥ 0,

q
∑

i=1

πi = 1, θi ∈ Θ(n)

}

,

where fθ(x) = f0(x − θ) and · · · ⊆ Θ(n) ⊆ Θ(n + 1) ⊆ · · · ⊂ R
d is an increasing

family of bounded subsets of Rd. We fix f⋆ ∈ M throughout this section. Let

H0(x) = sup
θ∈Θ

fθ(x)/f
⋆(x),

H1(x) = sup
θ∈Θ

max
i=1,...,d

|∂fθ(x)/∂θi|/f⋆(x),

H2(x) = sup
θ∈Θ

max
i,j=1,...,d

|∂2fθ(x)/∂θ
i∂θj |/f⋆(x),

H3(x) = sup
θ∈Θ

max
i,j,k=1,...,d

|∂3fθ(x)/∂θ
i∂θj∂θk|/f⋆(x)

when f0 is sufficiently differentiable, and let

Assumption A. The following hold:

(1) f0 ∈ C3 and f0(x), (∂f0/∂θ
i)(x) vanish as ‖x‖ → ∞.
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(2) Hk ∈ L4(f⋆dµ) for k = 0, 1, 2 and H3 ∈ L2(f⋆dµ).

In the following, we consider two separate cases. The first case is that of a com-
pact parameter set, where Θ(n) = Θ does not depend on n. In this setting, we
obtain a general result. Then, we consider the noncompact case in the setting of
Gaussian mixtures, and illustrate how Theorem 3.1 can be used to obtain consis-
tency results in this case. To be able to use Theorem 3.1, we need suitable estimates
on the local entropy of mixtures. The following result is given in [22].

Theorem 3.4. Suppose that Assumption A holds. Then if Θ(n) = Θ is a bounded
subset of Rd with diameter 2T ,

N(Hn
q (ε), δ) ≤

(

CΘ ε

δ

)18(d+1)q+1

for all q ≥ q⋆ and δ/ε ≤ 1, where

CΘ = L⋆ (T ∨ 1)1/6 (‖H0‖44 ∨ ‖H1‖44 ∨ ‖H2‖44 ∨ ‖H3‖22)5/4

and L⋆ is a constant that depends only on d, q⋆ and f⋆.

Example 3.5 (Gaussian mixtures). Consider mixtures of standard Gaussian den-

sities f0(x) = (2π)−d/2e−‖x‖2/2, and let Θ(T ) = {θ ∈ R
d : ‖θ‖ ≤ T }. Fix a

nondegenerate mixture f⋆, and define T ⋆ = maxi=1,...,q⋆ ‖θ⋆i ‖. Denote by Hq(ε, T )
the Hellinger ball associated to the parameter set Θ(T ). Then

N(Hq(ε, T ), δ) ≤
(

C⋆
1 e

C⋆
2T

2

ε

δ

)18(d+1)q+1

for all q ≥ q⋆, T ≥ T ⋆, and δ/ε ≤ 1, where C⋆
1 , C

⋆
2 are constants that depend on d,

q⋆ and f⋆ only. To prove this, it suffices to show that Assumption A holds and that

‖Hk‖4 for k = 0, 1, 2 and ‖H3‖2 are of order eCT 2

. These facts are readily verified
by a straightforward computation.

Let us first consider the case of a compact parameter set. We obtain a general
consistency result under Assumption A.

Proposition 3.6. Suppose that the parameter set Θ(n) = Θ is a bounded subset of
R

d independent of n, and that Assumption A holds. If we choose a penalty of the
form

pen(n, q) = q ω(n), lim
n→∞

log logn

ω(n)
= lim

n→∞

ω(n)

n
= 0,

then q̂n → q⋆ as n → ∞ P⋆-a.s. On the other hand, if

pen(n, q) = C q log logn

where C > 0 is a sufficiently small constant, then we have q̂n 6= q⋆ infinitely often
P⋆-a.s.

We therefore find that in the setting of location mixtures with a compact pa-
rameter set, the minimal penalty is of order log logn. Moreover, the popular BIC
penalty

(3.1) pen(n, q) =
dq + q − 1

2
logn
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yields a strongly consistent mixture order estimator in this setting, without a prior
upper bound on the order. The requisite Assumption A is mild, which highlights the
broad applicability of this result. However, the assumption of a compact parameter
space can be quite restrictive in practice.

Let us therefore consider a case where the parameter space is noncompact. For
simplicity we restrict our attention to Gaussian mixtures, that is, we choose f0(x) =

(2π)−d/2e−‖x‖2/2, and we choose the restricted parameter sets Θ(n) = {θ ∈ R
d :

‖θ‖ ≤ T (n)} for some sequence T (n) ↑ ∞. Our aim is to choose the penalty
pen(n, q) and cutoff T (n) so that the penalized likelihood order estimator is strongly
consistent.

In this setting, we obtain the following result.

Proposition 3.7. For the case f0(x) = (2π)−d/2e−‖x‖2/2 and Θ(n) = {θ ∈ R
d :

‖θ‖ ≤ T (n)}, consider a penalty of the form pen(n, q) = q ω(n). If

lim
n→∞

log logn

ω(n)
= lim

n→∞

ω(n)

n
= 0, T (n) = O(

√

log log n),

then q̂n → q⋆ as n → ∞ P⋆-a.s.
On the other hand, the BIC penalty (3.1) yields a strongly consistent order esti-

mator if T (n) = o(
√
logn).

This result illustrates that our theory can establish consistency of the penalized
likelihood mixture order estimator without any prior upper bounds on the model
order or the magnitude of the true parameters. Let us note that there is nothing
particularly special about the Gaussian case: a similar result can be obtained,
in principle, for any mixture distribution f0, as long as one can obtain suitable
estimates on the quantities ‖Hi‖4 that appear in Theorem 3.4 (see Example 3.5 for
the Gaussian case).

The proofs of Propositions 3.6 and 3.7 are given in Appendix D below.

Appendix A. Proof of Theorem 2.3

The proof of Theorem 2.3 is based on the following deviation bound for the
log-likelihood ratio. This bound is essentially from [23, Corollary 7.5], but the
additional maximum inside the probability is essential for our purposes.

Theorem A.1. Let M be a family of strictly positive probability densities with
respect to a reference measure µ, fix some f⋆ ∈ M, and define the Hellinger ball
H(ε) = {

√

f/f⋆ : f ∈ M, h(f, f⋆) ≤ ε} where h(f, g)2 =
∫

(
√
f −√

g)2dµ. Suppose
that for some constants K ≥ 1, p ≥ 1 and all δ ≤ ε

N(H(ε), δ) ≤
(

Kε

δ

)p

,

where N(H(ε), δ) is the minimal number of brackets of L2(f⋆dµ)-width δ needed to
cover H(ε). Let (Xi)i∈N be i.i.d. with distribution f⋆dµ. Then

P



 max
n≤k≤2n

sup
f∈M

k
∑

j=1

log

(

f(Xj)

f⋆(Xj)

)

≥ α



 ≤ C e−α/C

for all α ≥ Cp(1 + logK), n ≥ 1 [C is a universal constant ].



12 ELISABETH GASSIAT AND RAMON VAN HANDEL

Proof. Define f̄ = (f + f⋆)/2 for any f ∈ M, and define the empirical process
νn(g) = n−1/2

∑n
k=1{g(Xk)−E[g(Xk)]}. Using concavity of log x we have

k
∑

j=1

log

(

f(Xj)

f⋆(Xj)

)

≤ 2k1/2νk(log(f̄ /f
⋆))− 2kD(f⋆||f̄),

where D(f⋆||f) =
∫

log(f⋆/f)f⋆dµ is relative entropy. As D(f⋆||f) ≥ h(f, f⋆)2,
we can estimate

P

[

max
n≤k≤2n

sup
f∈M

k
∑

j=1

log

(

f(Xj)

f⋆(Xj)

)

≥ α

]

≤ P

[

max
n≤k≤2n

sup
f∈M

{
√
k νk(log(f̄ /f

⋆))− kh(f̄ , f⋆)2} ≥ α

2

]

≤
S
∑

s=0

P

[

max
n≤k≤2n

sup
f∈Ms

|
√
k νk(log(f̄ /f

⋆))| ≥ α2s−1

]

≤ 3

S
∑

s=0

max
n≤k≤2n

P

[

sup
f∈Ms

|νk(log(
√

f̄ /f⋆))| ≥ α2s−5/
√
n

]

where Ms = {f ∈ M : nh(f̄ , f⋆)2 ≤ α2s}, S = min{s : α2sn−1 > 2}, and we
have used Lemma A.2 below for the last inequality. The remainder of the proof is

identical to that of [23, Theorem 7.4], provided we show that for H̄(ε) = {
√

f̄ /f⋆ :
f ∈ M, h(f̄ , f⋆) ≤ ε}

N(H̄(ε), δ) ≤
(

2
√
2Kε

δ

)p

.

To this end, fix δ ≤ ε, and note that h(f, f⋆) ≤ 4h(f̄ , f⋆) by [23, Lemma 4.2], so
that {f ∈ M : h(f̄ , f⋆) ≤ ε} ⊆ {f ∈ M : h(f, f⋆) ≤ 4ε}. By assumption, there exist

N ≤ (2
√
2Kε/δ)p and functions g1, . . . , gN , h1, . . . , hN such that ‖hi − gi‖2 ≤ δ

√
2

for every i, and for every u ∈ H(4ε) there is an i such that gi ≤ u ≤ hi. But for
every f ∈ M such that h(f̄ , f⋆) ≤ ε, we then have for some i

2−1/2
√

g2i + 1 ≤
√

f̄ /f⋆ ≤ 2−1/2
√

h2
i + 1.

Using |√a+ c−
√
b+ c| ≤ |√a−

√
b| for a, b, c ≥ 0 we have

∥

∥

∥

∥

2−1/2
√

h2
i + 1− 2−1/2

√

g2i + 1

∥

∥

∥

∥

2

≤ 2−1/2‖hi − gi‖2 ≤ δ.

The result now follows directly. �

The following variant of Etemadi’s inequality was used in the proof. The proof
follows closely that of the classical Etemadi inequality, see [24, Appendix M19].

Lemma A.2. Let Q be a family of measurable functions f : E → R. Then we have
for every α > 0 and m,n ∈ N, m ≤ n

P⋆

[

max
k=m,...,n

sup
f∈Q

|Sk(f)| ≥ 3α

]

≤ 3 max
k=m,...,n

P⋆

[

sup
f∈Q

|Sk(f)| ≥ α

]

,

where Sn(f) = n1/2νn(f).
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Proof. Define the stopping time

τ = inf

{

k ≥ m : sup
f∈Q

|Sk(f)| ≥ 3α

}

.

Then

P⋆

[

max
k=m,...,n

sup
f∈Q

|Sk(f)| ≥ 3α

]

= P⋆[τ ≤ n]

≤ P⋆

[

sup
f∈Q

|Sn(f)| ≥ α

]

+

n
∑

k=m

P⋆

[

τ = k and sup
f∈Q

|Sn(f)| < α

]

.

But on the event {τ = k and supf∈Q |Sn(f)| < α}, we have

2α ≤ sup
f∈Q

|Sk(f)| − sup
f∈Q

|Sn(f)| ≤ sup
f∈Q

|Sk(f)− Sn(f)|.

Therefore, we can estimate

P⋆

[

max
k=m,...,n

sup
f∈Q

|Sk(f)| ≥ 3α

]

≤ P⋆

[

sup
f∈Q

|Sn(f)| ≥ α

]

+

n
∑

k=m

P⋆

[

τ = k and sup
f∈Q

|Sn(f)− Sk(f)| ≥ 2α

]

≤ P⋆

[

sup
f∈Q

|Sn(f)| ≥ α

]

+ max
k=m,...,n

P⋆

[

sup
f∈Q

|Sn(f)− Sk(f)| ≥ 2α

]

,

where we have used that supf∈Q |Sn(f) − Sk(f)| and {τ = k} are independent to
obtain the last inequality. The remainder of the proof is now easily completed. �

We can now complete the proof of Theorem 2.3.

Proof of Theorem 2.3. By assumption, we have f⋆ ∈ Mn
q for all q ≥ q⋆ when n is

sufficiently large. Then by Theorem A.1, we have for n sufficiently large

P⋆

[

max
n≤k≤2n

sup
f∈M2n

q

{ℓk(f)− ℓk(f
⋆)} ≥ α

]

≤ C e−α/C

for all α ≥ Cη(q)(1 + logK(2n)) and q ≥ q⋆. Define

∆k(q, q
⋆) = sup

f∈Mk
q

ℓk(f)− sup
f∈Mk

q⋆

ℓk(f).

Using that Mk
q ⊆ M2n

q for n ≤ k ≤ 2n and ℓk(f
⋆) ≤ supf∈Mk

q⋆
ℓk(f), we have for n

sufficiently large

P⋆

[

max
n≤k≤2n

sup
q≥q⋆

1

η(q)
∆k(q, q

⋆) ≥ α

]

≤
∞
∑

q=q⋆

C e−αη(q)/C

for all α ≥ C(1 + logK(2n)). Let β(n) be an increasing function. Then for all n
sufficiently large

P⋆

[

max
2n≤k≤2n+1

1

β(k)
sup
q≥q⋆

1

η(q)
∆k(q, q

⋆) ≥ 2C

]

≤ 2C

n2
,
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provided that β(2n) ≥ logK(2n+1) ∨ log log 2n. The proof is now easily completed
using the Borel-Cantelli lemma. �

Appendix B. Proof of Theorem 2.6

The proof of Theorem 2.6 is based on a sequence of auxiliary results. First, we
will need a compact law of iterated logarithm for the Strassen functional

In(g) =
1√

2n log log n

n
∑

i=1

{g(Xi)−E⋆(g(X1))} .

We state the requisite result for future reference.

Theorem B.1. Let Q be a family of measurable functions from E to R such that
∫ 1

0

√

logN(Q, u) du < ∞.

Then, P⋆-a.s., the sequence (In)n≥0 is relatively compact in ℓ∞(Q), and its set of
cluster points coincides precisely with the set K = {f 7→ 〈f, g〉 : g ∈ L2

0(f
⋆dµ)}.

Proofs of this result can be found in [25, Theorem 4.2] or in [26, Theorem 9].
We will also need the following simple well-known fact, whose proof is omitted.

Lemma B.2. Let (Xi)i≥1 be an i.i.d. sequence such that E[|X1|p] < ∞. Then

n−1/p maxi=1,...,n |Xi| → 0 a.s.

Finally, we will need the following likelihood inequality that relates the log-
likelihood ratio ℓn(f)−ℓn(f

⋆) to the empirical process. Related inequalities appear
in [27, 28, 6], but the following form is perhaps the most natural.

Lemma B.3. For any probability density f 6= f⋆

ℓn(f)− ℓn(f
⋆) ≤ |νn(df )|2,

where νn(g) = n−1/2
∑n

k=1{g(Xk)−E⋆[g(Xk)]}.
Proof. Note that

h(f, f⋆)2 = 2−
∫

2
√

ff⋆ dµ = −2 h(f, f⋆)E⋆(df (X1)).

Using log(1 + x) ≤ x, we can estimate

ℓn(f)− ℓn(f
⋆) =

n
∑

i=1

2 log(1 + h(f, f⋆) df (Xi))

≤
n
∑

i=1

2 h(f, f⋆) df (Xi)

= 2 νn(df )h(f, f
⋆)

√
n− h(f, f⋆)2 n

≤ sup
p∈R

{

2 νn(df ) p− p2
}

.

The proof is easily completed. �

We can now obtain the following asymptotic expansion of the log-likelihood,
which provides a pathwise counterpart to the weak convergence theory in [27, 28].
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Proposition B.4. Let q ≥ q⋆. Assume that
∫ 1

0

√

logN(Dq , u)du < ∞.

Moreover, suppose that |d| ≤ D for all d ∈ Dq with D ∈ L2+α(f⋆dµ) for some
α > 0. Then

sup
f∈Mq(4

√
log logn/n)

{

2 In(df )h(f, f
⋆)

√

2n

log logn
− h(f, f⋆)2

2n

log logn

}

− 1

log logn

{

sup
f∈Mq

ℓn(f)− ℓn(f
⋆)

}

n→∞−−−−→ 0 P⋆-a.s.,

where we have defined Mq(ε) = {f ∈ Mq : h(f, f
⋆) ≤ ε}.

Proof. We proceed in several steps.
Step 1 (localization). As q ≥ q⋆ (hence f⋆ ∈ Mq), clearly

sup
f∈Mq

ℓn(f)− ℓn(f
⋆) = sup

f∈Mq :ℓn(f)−ℓn(f⋆)≥0

{ℓn(f)− ℓn(f
⋆)} .

Now note that, as in the proof of Lemma B.3,

ℓn(f)− ℓn(f
⋆) ≤ 2 νn(df )h(f, f

⋆)
√
n− h(f, f⋆)2 n.

Therefore, we can estimate

sup
f∈Mq :ℓn(f)−ℓn(f⋆)≥0

h(f, f⋆)

≤ sup
f∈Mq :ℓn(f)−ℓn(f⋆)≥0

{

h(f, f⋆) +
ℓn(f)− ℓn(f

⋆)

nh(f, f⋆)

}

≤ 2√
n

sup
f∈Mq:ℓn(f)−ℓn(f⋆)≥0

νn(df )

≤
√

8 log logn

n
sup
d∈Dq

In(d).

Now note that we can estimate

sup
d∈Dq

In(d) ≤ inf
g∈L2

0
(f⋆dµ)

sup
d∈Dq

|In(d)− 〈d, g〉|+ sup
d∈Dq

sup
g∈L2

0
(f⋆dµ)

〈d, g〉.

The first term on the right converges to zero P⋆-a.s. as n → ∞ by Theorem B.1,
while the second term is easily seen to equal supd∈Dq

‖d− 〈1, d〉‖2 ≤ 1. Therefore

sup
f∈Mq:ℓn(f)−ℓn(f⋆)≥0

h(f, f⋆) ≤ (1 + ε)

√

8 log log n

n

eventually as n → ∞ P⋆-a.s. for any ε > 0. In particular,

{f ∈ Mq : ℓn(f)− ℓn(f
⋆) ≥ 0} ⊆

{

f ∈ Mq : h(f, f⋆) ≤ 4
√

log logn/n
}

eventually as n → ∞ P⋆-a.s. This implies that

sup
f∈Mq

ℓn(f)− ℓn(f
⋆) ≤ sup

f∈Mq :h(f,f⋆)≤4
√

log logn/n

{ℓn(f)− ℓn(f
⋆)}
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eventually as n → ∞ P⋆-a.s. But the reverse inequality clearly holds for all n ≥ 0,
so that in fact

sup
f∈Mq

ℓn(f)− ℓn(f
⋆) = sup

f∈Mq(4
√

log logn/n)

{ℓn(f)− ℓn(f
⋆)}

eventually as n → ∞ P⋆-a.s.
Step 2 (Taylor expansion). Taylor expansion gives 2 log(1 + x) = 2x − x2 +

x2R(x), where R(x) → 0 as x → 0. Thus we can write, for any f ∈ Mq,

ℓn(f)− ℓn(f
⋆) =

n
∑

i=1

2 log(1 + h(f, f⋆) df (Xi)) =

2 h(f, f⋆)
n
∑

i=1

{

df (Xi) +
1

2
h(f, f⋆)

}

− h(f, f⋆)2
n
∑

i=1

(df (Xi))
2 − nh(f, f⋆)2

+ h(f, f⋆)2
n
∑

i=1

(df (Xi))
2R(h(f, f⋆) df (Xi)).

Using that E⋆(df (X1)) = −h(f, f⋆)/2, we therefore have

1

log logn
{ℓn(f)− ℓn(f

⋆)} =

Rf,n
nh(f, f⋆)2

log logn
+ 2 In(df )h(f, f

⋆)

√

2n

log logn
− h(f, f⋆)2

2n

log logn

where we have defined

Rf,n =
1

n

n
∑

i=1

{1− (df (Xi))
2}+ 1

n

n
∑

i=1

(df (Xi))
2R(h(f, f⋆) df (Xi)).

It follows easily that
∣

∣

∣

∣

∣

sup
f∈Mq(4

√
log logn/n)

{

2 In(df )h(f, f
⋆)

√

2n

log log n
− h(f, f⋆)2

2n

log logn

}

− 1

log logn

{

sup
f∈Mq

ℓn(f)− ℓn(f
⋆)

}
∣

∣

∣

∣

∣

≤ sup
f∈Mq(4

√
log logn/n)

|Rf,n|
nh(f, f⋆)2

log logn

≤ 16 sup
f∈Mq(4

√
log logn/n)

|Rf,n|

eventually as n → ∞ P⋆-a.s.
Step 3 (end of proof ). We can easily estimate

sup
f∈Mq(4

√
log logn/n)

|Rf,n| ≤ sup
f∈Mq

∣

∣

∣

∣

∣

1

n

n
∑

i=1

{df (Xi)
2 − 1}

∣

∣

∣

∣

∣

+

(

sup
|x|≤4

√
log logn/nmaxi≤n D(Xi)

|R(x)|
)

1

n

n
∑

i=1

(D(Xi))
2.
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As N(Dq , δ) < ∞ for every δ > 0, the class {d2 : d ∈ Dq} can be covered by
a finite number of brackets with arbitrary small L1(f⋆dµ)-norm and is therefore
P⋆-Glivenko-Cantelli. Moreover, by construction E⋆[(df (Xi))

2] = 1 for all f ∈ Mq.
Therefore, the first term in this expression converges to zero as n → ∞ P⋆-a.s. On
the other hand, by Lemma B.2 and the fact that D ∈ L2+α(f⋆dµ), we have P⋆-a.s.

√

log logn/n max
i=1,...,n

D(Xi) =

√
log logn

nα/2(2+α)
n−1/(2+α) max

i=1,...,n
D(Xi)

n→∞−−−−→ 0.

Therefore the second term converges to zero also, and the proof is evidently com-
plete. �

Proposition B.5. Let q ≥ q⋆. Assume that

∫ 1

0

√

logN(Dq , u)du < ∞.

Moreover, suppose that |d| ≤ D for all d ∈ Dq with D ∈ L2+α(f⋆dµ) for some
α > 0. Then

lim
n→∞

{

sup
d∈D̄q

(In(d))
2
+ − 1

log logn

{

sup
f∈Mq

ℓn(f)− ℓn(f
⋆)

}}

is nonnegative P⋆-a.s.

Proof. By Proposition B.4, we have

lim
n→∞

{

sup
d∈D̄q

(In(d))
2
+ − 1

log logn

{

sup
f∈Mq

ℓn(f)− ℓn(f
⋆)

}}

≥ lim
n→∞

{

sup
d∈D̄q

(In(d))
2
+ − sup

f∈Mq(4
√

log logn/n)

sup
p≥0

{

2 In(df ) p− p2
}

}

= lim
n→∞

{

sup
d∈D̄q

(In(d))
2
+ − sup

f∈Mq(4
√

log logn/n)

(In(df ))
2
+

}

.

Suppose that the right hand side is negative with positive probability. Then there
exists ε > 0 and a sequence τn ↑ ∞ of random times such that

(B.1) sup
d∈D̄q

(Iτn(d))
2
+ − sup

f∈Mq(4
√

log log τn/τn)

(Iτn(df ))
2
+ ≤ −ε

for all n with positive probability. We will show that this entails a contradiction.
By Theorem B.1 (which can be applied here as N(Dq , δ) = N(clDq, δ) for all

δ > 0), the process (Iτn)n≥0 is P⋆-a.s. relatively compact in ℓ∞(clDq) with

(B.2) inf
g∈L2

0
(f⋆dµ)

sup
d∈clDq

|Iτn(d)− 〈d, g〉| n→∞−−−−→ 0 P⋆-a.s.

Then there is a set of positive probability on which (B.1) and (B.2) hold simul-
taneously. We now concentrate our attention on a single sample path in this set.
For any such path, we can clearly find a further subsequence σn ↑ ∞ such that
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supd∈clDq
|Iσn

(d) − 〈d, g〉| → 0 as n → ∞ for some element g ∈ L2
0(f

⋆dµ). There-
fore, we obtain

sup
d∈clDq

|(Iσn
(d))2+ − (〈d, g〉)2+| ≤ sup

d∈clDq

|Iσn
(d)− 〈d, g〉|2

+ 2 sup
d∈clDq

|Iσn
(d)− 〈d, g〉| sup

d∈clDq

|〈d, g〉| n→∞−−−−→ 0,

where we have used the elementary estimate |a2+ − b2+| = |a+ − b+|(a+ + b+) ≤
|a+ − b+|(|a+ − b+| + 2b+) ≤ |a − b|(|a − b| + 2|b|) for any a, b ∈ R, and the fact
that supd∈clDq

|〈d, g〉| ≤ supd∈clDq
‖d‖2‖g‖2 ≤ 1. Thus (B.1) gives

lim
n→∞

{

sup
d∈D̄q

(〈d, g〉)2+ − sup
f∈Mq(4

√
log log σn/σn)

(〈df , g〉)2+

}

=

lim
n→∞

{

sup
d∈D̄q

(Iσn
(d))2+ − sup

f∈Mq(4
√

log log σn/σn)

(Iσn
(df ))

2
+

}

≤ −ε.

But as the map d 7→ 〈d, g〉 is continuous in L2(f⋆dµ) and clDq(4
√

log log σn/σn)
is compact in L2(f⋆dµ) (this follows from N(Dq, δ) < ∞ for all δ > 0), we have

sup
f∈Mq(4

√
log log σn/σn)

(〈df , g〉)2+ = sup
d∈clDq(4

√
log log σn/σn)

(〈d, g〉)2+
n→∞−−−−→

sup
d∈

⋂
n≥0

clDq(4
√

log log σn/σn)

(〈d, g〉)2+ = sup
d∈D̄q

(〈d, g〉)2+.

Thus we have a contradiction, completing the proof. �

We now obtain a converse to the previous result.

Proposition B.6. Let q ≥ q⋆. Assume that
∫ 1

0

√

logN(Dq , u)du < ∞.

Moreover, suppose that |d| ≤ D for all d ∈ Dq with D ∈ L2+α(f⋆dµ) for some
α > 0. Then

lim
n→∞

{

sup
d∈D̄c

q

(In(d))
2
+ − 1

log logn

{

sup
f∈Mq

ℓn(f)− ℓn(f
⋆)

}}

is nonpositive P⋆-a.s.

Proof. Suppose the result is false. By Proposition B.4, there is ε > 0 and a sequence
τn ↑ ∞ of random times so that

sup
d∈D̄c

q

(Iτn(d))
2
+ − sup

f∈Mq(4
√

log log τn/τn)

{

− h(f, f⋆)2
2τn

log log τn

+ 2 Iτn(df )h(f, f
⋆)

√

2τn
log log τn

}

≥ ε
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for all n with positive probability. Proceeding as in the proof of Proposition B.5,
we can then show that there is a sequence of times σn ↑ ∞ and some g ∈ L2

0(f
⋆dµ)

such that

lim
n→∞

{

sup
d∈D̄c

q

(〈d, g〉)2+ − sup
f∈Mq(4

√
log log σn/σn)

{

− h(f, f⋆)2
2σn

log log σn

+ 2 〈df , g〉h(f, f⋆)

√

2σn

log log σn

}}

≥ ε.

We will show that this entails a contradiction.
Let d0 ∈ D̄q be a continuously accessible point. Then there exists an α0 > 0

(depending on d0) and a path (fα)α∈]0,α0] such that h(fα, f
⋆) = α for all α ∈ ]0, α0]

and dfα → d0 in L2(f⋆dµ) as α → 0. Now choose the sequence

αn = {(〈d0, g〉)+ + σ−1
n }

√

log log σn

2σn
.

As (〈d0, g〉)+ ≤ ‖d0‖2‖g‖2 ≤ 1, we clearly have

0 < αn < α0 ∧ 4
√

log log σn/σn

for all n sufficiently large. In particular, it follows that fαn
∈ Mq(4

√

log log σn/σn),
so that

sup
f∈Mq(4

√
log log σn/σn)

{

2 〈df , g〉h(f, f⋆)

√

2σn

log log σn
− h(f, f⋆)2

2σn

log log σn

}

≥ 2 〈dfαn
, g〉 {(〈d0, g〉)+ + σ−1

n } − {(〈d0, g〉)+ + σ−1
n }2.

Therefore, we have

lim
n→∞

{

sup
d∈D̄c

q

(〈d, g〉)2+ − sup
f∈Mq(4

√
log log σn/σn)

{

− h(f, f⋆)2
2σn

log log σn

+ 2 〈df , g〉h(f, f⋆)

√

2σn

log log σn

}}

≤ sup
d∈D̄c

q

(〈d, g〉)2+ − (〈d0, g〉)2+

for any continuously accessible element d0 ∈ D̄q. But clearly we can choose d0 to
make the right hand side of this expression arbitrarily small. Thus we have the
desired contradiction. �

We can now complete the proof of Theorem 2.6.

Proof of Theorem 2.6. We obtain separately the lower and upper bounds.
Lower bound. By Propositions B.5 and B.6, we have

lim
n→∞

1

log logn

{

sup
f∈Mq

ℓn(f)− sup
f∈Mp

ℓn(f)

}

≥

lim
n→∞

{

sup
d∈D̄c

q

(In(d))
2
+ − sup

d∈D̄p

(In(d))
2
+

}

P⋆-a.s.
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Now fix any g ∈ L2
0(f

⋆dµ). By Theorem B.1 (which applies here as N(Dq, δ) =
N(clDq, δ) ≥ N(D̄q, δ) for all δ > 0), there is a sequence τn ↑ ∞ of random times
such that Iτn → 〈 · , g〉 in ℓ∞(D̄q) P

⋆-a.s. Therefore

sup
d∈D̄c

q

(Iτn(d))
2
+ − sup

d∈D̄p

(Iτn(d))
2
+

n→∞−−−−→ sup
d∈D̄c

q

(〈d, g〉)2+ − sup
d∈D̄p

(〈d, g〉)2+ P⋆-a.s.,

so that certainly

lim
n→∞

1

log log n

{

sup
f∈Mq

ℓn(f)− sup
f∈Mp

ℓn(f)

}

≥ sup
d∈D̄c

q

(〈d, g〉)2+ − sup
d∈D̄p

(〈d, g〉)2+

P⋆-a.s. But as this inequality holds for every g ∈ L2
0(f

⋆dµ), taking the supremum
over g gives the requisite lower bound.

Upper bound. By Propositions B.5 and B.6, we have

lim
n→∞

1

log logn

{

sup
f∈Mq

ℓn(f)− sup
f∈Mp

ℓn(f)

}

≤

lim
n→∞

{

sup
d∈D̄q

(In(d))
2
+ − sup

d∈D̄c
p

(In(d))
2
+

}

P⋆-a.s.

It is elementary that for any d, d′ ∈ D̄q and g ∈ L2
0(f

⋆dµ)

(In(d))
2
+ − (In(d

′))2+

≤ |(In(d))2+ − (〈d, g〉)2+|+ |(In(d′))2+ − (〈d′, g〉)2+|+ (〈d, g〉)2+ − (〈d′, g〉)2+
≤ 2 sup

d∈D̄q

|(In(d))2+ − (〈d, g〉)2+|+ (〈d, g〉)2+ − (〈d′, g〉)2+.

Taking the supremum over d ∈ D̄q and the infimum over d′ ∈ D̄
c
p, we find that

sup
d∈D̄q

(In(d))
2
+ − sup

d∈D̄c
p

(In(d))
2
+

≤ 2 sup
d∈D̄q

|(In(d))2+ − (〈d, g〉)2+|+ sup
d∈D̄q

(〈d, g〉)2+ − sup
d∈D̄c

p

(〈d, g〉)2+

≤ 2 sup
d∈D̄q

|(In(d))2+ − (〈d, g〉)2+|+ sup
g∈L2

0
(f⋆dµ)

{

sup
d∈D̄q

(〈d, g〉)2+ − sup
d∈D̄c

p

(〈d, g〉)2+

}

.

But as this holds for any g ∈ L2
0(f

⋆dµ), we finally obtain

sup
d∈D̄q

(In(d))
2
+ − sup

d∈D̄c
p

(In(d))
2
+ ≤ 2 inf

g∈L2
0
(f⋆dµ)

sup
d∈D̄q

|(In(d))2+ − (〈d, g〉)2+|

+ sup
g∈L2

0
(f⋆dµ)

{

sup
d∈D̄q

(〈d, g〉)2+ − sup
d∈D̄c

p

(〈d, g〉)2+

}

.

It follows as in the proof of Proposition B.5 that the first term in this expression
converges to zero P⋆-a.s. The requisite upper bound follows immediately. �

Finally, we now complete the proof of Corollary 2.7
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Proof of Corollary 2.7. It evidently suffices to prove that

(B.3) Γ := sup
g∈L2

0
(f⋆dµ)

{

sup
d∈D̄c

q

(〈d, g〉)2+ − sup
d∈D̄q⋆

(〈d, g〉)2+

}

> 0.

To this end, note that by direct computation

〈1, df 〉 =
∫ √

ff⋆ dµ− 1

h(f, f⋆)
= −h(f, f⋆)

2
.

Choose (fn)n≥0 ⊂ Mq\{f⋆} such that h(fn, f
⋆) → 0 and dfn → d0 ∈ D̄q, then

〈1, d0〉 = lim
n→∞

〈1, dfn〉 = − lim
n→∞

h(fn, f
⋆)

2
= 0.

Moreover, it is immediate that ‖d0‖2 ≤ 1. We have therefore shown that D̄q ⊂
L2
0(f

⋆dµ). Now choose g ∈ D̄c
q\D̄q⋆ . As D̄q⋆ is closed, it follows directly that

sup
d∈D̄c

q

(〈d, g〉)2+ = 1, sup
d∈D̄q⋆

(〈d, g〉)2+ < 1.

Therefore (B.3) holds, and the proof is complete. �

Appendix C. Proof of Theorem 3.1

The proof of Theorem 3.1 is based on Theorem 2.3 and the following result.

Proposition C.1. Let M
n for n ≥ 1 be a family of strictly positive probability

densities with respect to a reference measure µ such that Mn ⊆ Mn+1 for all n.
Define M =

⋃

n M
n, and let f⋆ be another probability density with respect to µ such

that f⋆ 6∈ clM, where clM denotes the L1(dµ)-closure of M. Let Hn = {
√

f/f⋆ :
f ∈ Mn}, and suppose there exist K(n) ≥ 1 and p ≥ 1 so that

N(Hn, δ) ≤
(

K(n)

δ

)p

for all δ ≤ 1 and n ≥ 1, where N(Hn, δ) is the minimal number of brackets of
L2(f⋆dµ)-width δ needed to cover Hn. Let (Xi)i∈N be i.i.d. with distribution f⋆dµ.
If in addition logK(n) = o(n), then we have

lim
n→∞

sup
f∈Mn

1

n

n
∑

j=1

log

(

f(Xj)

f⋆(Xj)

)

< 0 a.s.

Proof. As in the proof of Theorem A.1, we have

1

n

n
∑

j=1

log

(

f(Xj)

f⋆(Xj)

)

≤ 4n−1/2νn(log({f̄ /f⋆}1/2))− 2D(f⋆||f̄).

The following claim will be proved below:

lim
n→∞

sup
f∈Mn

n−1/2νn(log({f̄ /f⋆}1/2)) = 0 a.s.

Using the claim, the proof is easily completed: indeed, if the claim holds, then we
have a.s.

lim
n→∞

sup
f∈Mn

1

n

n
∑

j=1

log

(

f(Xj)

f⋆(Xj)

)

≤ −2 inf
f∈M

D(f⋆||f̄) < 0

where the last inequality follows from Pinsker’s inequality and f⋆ 6∈ clM.
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It therefore remains to prove the claim. To this end we apply [23, Theorem 5.11]
as in the proof of [23, Theorem 7.4] (cf. Theorem A.1 above), which yields

P

[

sup
f∈Mn

|n−1/2νn(log({f̄/f⋆}1/2))| ≥ α

]

≤ C e−nα2/C

for every α > 0 such that C
√
p (1 +

√

logK(n)) ≤ α
√
n ≤ 32

√
n and n ≥ 1, where

C is a universal constant. As logK(n) = o(n), we have

∑

n≥1

P

[

sup
f∈Mn

|n−1/2νn(log({f̄/f⋆}1/2))| ≥ α

]

< ∞

for 0 < α ≤ 32, so the claim follows from Borel-Cantelli. �

We can now complete the proof of Theorem 3.1.

Proof of Theorem 3.1. Define

∆n(q, q
⋆) = sup

f∈Mn
q

ℓn(f)− sup
f∈Mn

q⋆

ℓn(f).

By Theorem 2.3 and easy manipulations, P⋆-a.s.

lim
n→∞

sup
q>q⋆

1

pen(n, q)− pen(n, q⋆)
∆n(q, q

⋆)

≤ lim
n→∞

sup
q>q⋆

η(q){logK(2n) ∨ log logn}
pen(n, q)− pen(n, q⋆)

×

lim
n→∞

1

logK(2n) ∨ log logn
sup
q>q⋆

1

η(q)
∆n(q, q

⋆) = 0.

Therefore, P⋆-a.s. eventually as n → ∞
sup

f∈Mn
q

ℓn(f)− pen(n, q) < sup
f∈Mn

q⋆

ℓn(f)− pen(n, q⋆)

for all q > q⋆. It follows that limn→∞ q̂n ≤ q⋆ P⋆-a.s., that is, the penalized
likelihood order estimator does not asymptotically overestimate the order.

On the other hand, we note that for every q < q⋆

lim
n→∞

1

n

{

sup
f∈Mn

q

ℓn(f)− sup
f∈Mn

q⋆

ℓn(f)

}

≤ lim
n→∞

sup
f∈Mn

q

1

n

n
∑

j=1

log

(

f(Xj)

f⋆(Xj)

)

which is strictly negative P⋆-a.s. by Proposition C.1, where we have used that
logK(n) = o(n) and that N(Hn

q (2), δ) ≤ N(Hn
q⋆ (2), δ) ≤ (2K(n)/δ)η(q

⋆) for all
δ ≤ 2 and n sufficiently large. As pen(n, q)/n → 0 as n → ∞ for q < q⋆

lim
n→∞

max
q<q⋆

1

n
{∆n(q, q

⋆)− pen(n, q) + pen(n, q⋆)} < 0

P⋆-a.s. In particular, we find that P⋆-a.s. eventually as n → ∞
sup

f∈Mn
q

ℓn(f)− pen(n, q) < sup
f∈Mn

q⋆

ℓn(f)− pen(n, q⋆)

for all q < q⋆. It follows that limn→∞ q̂n ≥ q⋆ P⋆-a.s., that is, the penalized
likelihood order estimator does not asymptotically underestimate the order. �

Finally, let us prove Corollary 3.3.
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Proof of Corollary 3.3. It is shown in the proof of Corollary 2.7 that

Γ := sup
g∈L2

0
(f⋆dµ)

{

sup
d∈D̄c

q

(〈d, g〉)2+ − sup
d∈D̄q⋆

(〈d, g〉)2+

}

> 0.

By Theorem 2.6, we have P⋆-a.s.

lim
n→∞

1

pen(n, q)− pen(n, q⋆)

{

sup
f∈Mq

ℓn(f)− sup
f∈Mq⋆

ℓn(f)

}

≥ 1

C{η(q)− η(q⋆)} sup
g∈L2

0
(f⋆dµ)

{

sup
d∈D̄c

q

(〈d, g〉)2+ − sup
d∈D̄q⋆

(〈d, g〉)2+

}

.

Therefore, choosing C < Γ/{η(q)− η(q⋆)}, we find that

sup
f∈Mq

ℓn(f)− pen(n, q) > sup
f∈Mq⋆

ℓn(f)− pen(n, q⋆)

infinitely often P⋆-a.s., so q̂n 6= q⋆ infinitely often P⋆-a.s. �

Appendix D. Proof of Proposition 3.6

The proofs of consistency in Propositions 3.6 and 3.7 follow almost immediately
from Theorem 3.1, Theorem 3.4, and Example 3.5. Let us begin with Proposition
3.7.

Proof of Proposition 3.7. By Example 3.5, the assumption of Theorem 3.1 holds
with η(q) = 18(d+1)q+1 and logK(n) = logC⋆

1+C⋆
2T (n)

2. The desired consistency
results now follow immediately from Theorem 3.1. �

The consistency part of Proposition 3.6 follows similarly. The main difficulty
here is to establish the condition D̄

c
q\D̄q⋆ 6= ∅ of Corollary 3.3, which is needed to

prove the inconsistency part of Proposition 3.6. In the proof of the latter condition,
we rely on the geometric results on mixtures established in [22]. In the remainder
of this section, we always assume that we are in the setting of Proposition 3.6.

Lemma D.1. Suppose that Assumption A holds. Then we have

D̄q⋆ =

{

L

‖L‖2
: L =

q⋆
∑

i=1

{

ηi
fθ⋆

i

f⋆
+ β∗

i

D1fθ⋆
i

f⋆

}

, ηi ∈ R, βi ∈ R
d,

q⋆
∑

i=1

ηi = 0

}

.

Proof. Let (fn)n≥1 ⊂ Mq⋆ be such that h(fn, f
⋆) → 0 and dfn → d0 ∈ D̄q⋆ . By

[22, Theorem 3.7], we may assume without loss of generality that fn =
∑q⋆

i=1 π
n
i fθn

i

with θni → θ⋆i and πn
i → π⋆

i for i = 1, . . . , q⋆. Taylor expansion gives

fn − f⋆

f⋆
= Ln +Rn, |Rn| ≤

d

2
H2

q⋆
∑

i=1

πn
i ‖θni − θ⋆i ‖2,

where

Ln =

q⋆
∑

i=1

{

(πn
i − π⋆

i )
fθ⋆

i

f⋆
+ πn

i (θ
n
i − θ⋆i )

∗ D1fθ⋆
i

f⋆

}

.

Proceeding as in [22, Lemma 3.12–3.13], we can estimate
∥

∥

∥

∥

dfn − Ln

‖Ln‖2

∥

∥

∥

∥

2

≤ 2‖S‖24{2‖S‖2 + 1} h(fn, f⋆) + {‖S‖2 + 1} ‖Rn‖2
‖Ln‖2

.
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But using [22, Theorem 3.7], we have for n sufficiently large

‖Ln‖2 ≥ ‖Ln‖1 ≥ c⋆
q⋆
∑

i=1

πn
i ‖θni − θ⋆i ‖.

Thus we have

‖Rn‖2
‖Ln‖2

≤ d‖H2‖2
2c⋆

∑q⋆

i=1 π
n
i ‖θni − θ⋆i ‖2

∑q⋆

i=1 π
n
i ‖θni − θ⋆i ‖

≤ d‖H2‖2
2c⋆

max
i=1,...,q⋆

‖θni − θ⋆i ‖
n→∞−−−−→ 0.

Therefore Ln/‖Ln‖2 → d0 in L2(f⋆dµ). Now define

ηni =
πn
i − π⋆

i

Zn
, βn

i =
πn
i (θ

n
i − θ⋆i )

Zn
,

Zn =

q⋆
∑

i=1

{|πn
i − π⋆

i |+ ‖πn
i (θ

n
i − θ⋆i )‖}.

As
∑q⋆

i=1{|ηni | + ‖βn
i ‖} = 1 for all n, we may extract a subsequence such that

ηni → ηi, β
n
i → βi, and

∑q⋆

i=1{|ηi|+ ‖βi‖} = 1. We obtain immediately

d0 =
L

‖L‖2
, L =

q⋆
∑

i=1

{

ηi
fθ⋆

i

f⋆
+ β∗

i

D1fθ⋆
i

f⋆

}

.

Clearly
∑q⋆

i=1 ηi = 0. Thus we have shown that any d0 ∈ D̄q⋆ has the desired form.
It remains to show that any function of the desired form is in fact an element of

D̄q⋆ . To this end, fix ηi ∈ R, βi ∈ R
d with

∑q⋆

i=1 ηi = 0, and define ft for t > 0 as

ft =

q⋆
∑

i=1

(π⋆
i + tηi) fθ⋆

i
+βit/π⋆

i
.

Clearly ft ∈ Mq⋆ for all t sufficiently small, and ft → f⋆ as t → 0. But

ft − f⋆

t
=

q⋆
∑

i=1

π⋆
i

fθ⋆
i
+βit/π⋆

i
− fθ⋆

i

t
+

q⋆
∑

i=1

ηi fθ⋆
i
+βit/π⋆

i
.

Therefore clearly

1

t

ft − f⋆

f⋆

t→0−−−→
q⋆
∑

i=1

{

ηi
fθ⋆

i

f⋆
+ β∗

i

D1fθ⋆
i

f⋆

}

= L.

Using [22, Lemma 3.12], we obtain

lim
t→0

dft = lim
t→0

(ft − f⋆)/tf⋆

‖(ft − f⋆)/tf⋆‖2
=

L

‖L‖2
.

Thus any function of the desired form is in D̄q⋆ . �

Remark D.2. The above proof in fact shows that D̄q⋆ = D̄c
q⋆ .

We can now complete the proof of Proposition 3.6.
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Proof of Proposition 3.6. We first prove consistency of the penalty pen(n, q) =
q ω(n). Note that by Theorem 3.4, the assumption of Corollary 3.2 holds with
η(q) = 18(d+ 1)q + 1 ≤ 19(d+ 1)q. Thus consistency of pen(n, q) = q ω(n) follows
directly from Corollary 3.2 using ̟(n) = ω(n)/19(d+ 1).

To prove that the penalty pen(n, q) = C q log logn is inconsistent for C > 0
sufficiently small, it suffices to show that D̄c

q⋆+1\D̄q⋆ is nonempty. Indeed, if this
is the case then we can apply Corollary 3.3 with q = q⋆ + 1, where the requisite
entropy assumption follows from Theorem 3.1.

Fix v ∈ R
d, and consider ft defined for t > 0 as follows:

ft =
π⋆
1

2
(fθ⋆

1
+vt + fθ⋆

1
−vt) +

q⋆
∑

i=2

π⋆
i fθ⋆

i
.

Clearly ft ∈ Mq⋆+1 for all t sufficiently small, ft → f⋆ as t → 0, and

ft − f⋆

t2
=

π⋆
1

2

fθ⋆
1
+vt − 2 fθ⋆

1
+ fθ⋆

1
−vt

t2
t→0−−−→ π⋆

1

2
v∗D2fθ⋆

1
v.

As in the proof of Lemma D.1, we find that

lim
t→0

dft = lim
t→0

(ft − f⋆)/t2f⋆

‖(ft − f⋆)/t2f⋆‖2
=

v∗D2fθ⋆
1
v

‖v∗D2fθ⋆
1
v‖2

= d0.

By construction, d0 ∈ D̄c
q⋆+1. But by [22, Theorem 3.7], the functions fθ⋆

i
, D1fθ⋆

i
,

and v∗D2fθ⋆
i
v (i = 1, . . . , q⋆) are all linearly independent. Together with Lemma

D.1, this shows that d0 6∈ D̄q⋆ . Thus d0 ∈ D̄
c
q⋆+1\D̄q⋆ . �
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