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We study the quantum channel version of Shannon’s zero-error capacity problem. Moti-
vated by recent progress on this question, we propose to consider a certain operator space
as the quantum generalisation of the adjacency matrix, in terms of which the plain, quan-
tum and entanglement-assisted capacity can be formulated, and for which we show some
new basic properties.

Most importantly, we define a quantum version of Lovasz’ famous ¢ function, as the
norm-completion (or stabilisation) of a “naive” generalisation of ©J. We go on to show that
this function upper bounds the number of entanglement-assisted zero-error messages, that
it is given by a semidefinite programme, whose dual we write down explicitly, and that it
is multiplicative with respect to the natural (strong) graph product.

We explore various other properties of the new quantity, which reduces to Lovasz’ orig-
inal ¥ in the classical case, give several applications, and propose to study the operator
spaces associated to channels as “non-commutative graphs”, using the language of Hilbert
modules.

I. CLASSICAL CHANNELS, GRAPHS AND ZERO-ERROR COMMUNICATION

For a classical channel N : X — Y between discrete alphabets X and Y (in the following
assumed to be finite), i.e. a probability transition function N (y|z), Shannon [31] initiated the study
of zero-error capacities, i.e. of transmitting messages by one and asymptotically many uses of the
channel.

To transmit messages through this channel with no probability of confusion, different mes-
sages m need to be associated to different input symbols x in such a way that the output distri-
butions N (-|z) have disjoint supports. This motivates the introduction of the confusability graph
G of N, that has the vertex set X and an edge =z ~ 2z’ whenever = and 2’ can be confused via
the channel, i.e. if there exists y € Y such that N(y|z)N(y|z’) # 0. Clearly then, a code has to
consist of an independent set (also known as stable set, or anti-clique) Xy C X, i.e. a set of ver-
tices without edges between them. The maximum size | X| of an independent set in G is called
the independence number «(G), and by the preceding discussion it is the maximum number of
messages that can be transmitted through the channel without the possibility of confusing them.

Using two channels N; and N; in parallel means really that we have a product channel

Nix Ny: Xy x Xo =Yy xYs, with (Ny x No)(y1yz|z122) = Ni(y1|x1)Na(y2|x2).
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If the channels have confusability graphs G| and G, respectively, the confusability graph of the
product channel is the (strong) graph product GG; x G5 which has vertex set X; x X5 and edges

: / /
either z; ~ 2 and x9 ~ x5,
! ! :
1T ~ Ty iff or z1 ~ 2} and xo = 2},
orz; =z and zg ~ %.

(If this looks complicated, it does so because it has to encapsulate the idea that a symbol can be
confused with itself.) An integer n uses a channel with confusability graph G is thus described by
the n-fold graph product G". With this we can define the zero-error capacity of the graph as
1 . 1 .
Co(G) = nh_)ngo - log a(G") = stllp - log a(G™),

i.e. the asymptotically largest number of bits transmissible with certainty, per channel use
(throughout, log is understood as the binary logarithm). Note that in graph theory the convention
is prevalent to call O(G) := 2¢0(@) = sup, {/a(G") the zero-error capacity, but in this paper we
prefer to stay in keeping with the information theoretic usage.

For some graphs, Cy(G) = log a(G), but in general the zero-error capacity is larger — a well-
known example is the pentagon C5 whose capacity is % log 5 [26], and there are graphs such that
for every finite n, 1 log (G") < Co(G) [19]. Finding o(G) (and a maximal-size independent set)
is in general an NP-hard problem, and the calculation of the zero-error capacity is even worse as
it is not even known whether Cy(G) is computable.

It should be noted that Shannon [@] also considered (and solved) the problem of zero-error
transmission via many realisations of IV in the presence of instantaneous (passive and noiseless)
feedback. In that case, it is not sufficient to look at the confusability graph G of the channel, but
rather at the full bipartite graph that represents the possible input-output transitions. The capac-
ity Cop(IV) in that case is either 0, if Cp(N) = 0, or given by the logarithm of a linear programming
relaxation of the independence number, called fractional packing number. Note that Coys(NV), the
zero-error capacity in the presence of arbitrary non-signalling correlations [3] has the same prop-
erty, and in fact is always the logarithm of the fractional packing number [12].

A much better upper bound on «a(G) was given by Lovéasz [é] as a semidefinite programming
relaxation, and called ¥(G): rephrasing slightly [26, Thms. 5 and 6],

HG) =max{||[1 +T| : Tpp =0if =z orz~a', and 1+ 7T > 0}, 1)

where the maximum is over |X| x |X| complex (Hermitian) matrices 7', though one can show
that it is sufficient to consider real symmetric A in the above formula. In fact, via an expres-
sion of ¥ as the solution to a semidefinite programme, it can also be shown to be multiplicative
with respect to the graph product (i.e. (G x H) = 9¥(G)Y(H)). Thus, it also gives an upper
bound C’O% < log ¥(G) on the zero-error capacity. Apart from some special graphs exhibited by
Haemers [20] and a particular construction by Alon [&], it remains the best upper bound on the
zero-error capacity, and has been deeply studied ever since it appeared [23].

In the rest of the paper we will extend this theory to quantum channels and structures gen-
eralising the confusability graph (see section [[I). Instead of introducing only the mathematical
objects, we shall precede each definition by a motivating discussion of the zero-error information
theory; for instance in section MMM we will introduce zero-error codes for channels to motivate our
definitions of quantum independence numbers (there are at least three meaningful ones). Then
in section [[V] we introduce the quantum ¥ function, explore some of its properties, of which the
most important one is the semidefinite formulation (section [V). We end with highlighting sev-
eral applications (section [V]), and discussing future directions with non-commutative graphs, in
section[VII] where we propose an algebraic framework for them.



II. QUANTUM CHANNELS AND NON-COMMUTATIVE GRAPHS

To describe the quantum generalisations of the above combinatorial concepts, we start with
quantum communication channels, mapping quantum states to quantum states. The input and
output alphabets of a channel are replaced by (complex) Hilbert spaces A and B —in the present
paper of finite dimension |A| and |B| — with their spaces of linear operators £(A), etc. The Her-
mitian (self-adjoint) operators £(A)s, are the physical observables on A, while the states are the
density operators p € S(A) C L(A), i.e. p > 0 and Trp = 1. Note that the set of states is a
convex body whose extreme points are exactly the one-dimensional projectors |¢)(¢)| onto one-
dimensional subspaces C|¢) with a unit vector |¢)) € A. [We use Dirac notation throughout:
|) € Ais a vector, (] it’s adjoint (a linear form), (¢|¢)) denotes the Hilbert space inner product
(linear in the second argument), and |¢))(¢| is the corresponding outer product, a rank one opera-
tor in £(A), etc.] A quantum channel is now a linear map N : L(A) — L(B) that is additionally
completely positive and trace preserving (cptp). The latter means that Tr AV (p) = Trp; the former
means that not only NV maps positive semidefinite operators into positve semidefinite operators
(being a “positive” map, for short), but also all extensions N/ ® idp, for an arbitrary Hilbert space
R. The class of completely positive maps is the largest subset of positive maps containing the
identity and stable under tensor products ].

Cptp maps between Hilbert space operator algebras have several useful representations with
associated physical interpretation. One of them is the Kraus form N'(p) = >, E; pEj with Kraus
operators F; : A — B, which can be read as the state change under a generalised measurement
with “events” j. Every such form defines a completely positive map, and it is trace preserving iff
S ElE; =1.

Classical channels are embedded into this picture as follows: starting from the sample space,
e.g. the inputs X to a channel, we consider the Hilbert space CX, spanned by the orthonormal
basis {|z)},ex. The probability simplex is mapped to the convex hull of the pure basis states
|z)(z|, so that we focus only on density operators diagonal in the computational basis. A classical
channel V : X — Y has to be translated into a cptp map between the diagonal matrices over
A = CX and B = CY, which is done canonically by constructing it from the Kraus operators
VN (ylz)lyXz|, = € X,y € Y. Le., for each classical probabilistic transition + — y there is an event
in the quantum cptp map.

For the channel N : £(A) — L(B), with Kraus operators E; : A — B, we now define the
non-commutative (confusability) graph as the operator subspace

S :=span{ElE, : j,k} < L(A). )

In [11, [15] it is shown that a subspace S is associated in the above way to a channel iff 1 € S
and S = ST. That is why we shall call an operator space S < L(A) with these properties a non-
commutative graph, regarding the operator space S as the quantum generalization of the classical
confusability graph G. This idea is enforced by the observation that for two channels A; and
Na, with associated subspaces S and S, respectively, the tensor product channel N} @ N> has
operator subspace S7 ® S2. We shall come back to this notion, with a proper (and more subtle)
definition, in the last section [VIIl

Again, let us review this concept in the classical case: as we have seen, the Kraus operators

may be chosen as F,, = \/N(y|z)|y)z|, meaning that
Bl Eay = VN1 )N (yl2) ' 1y) |2 Ye
is nonzero iff y = ¥ and N (y|a’)N (y|z) # 0. Thus,
S =A{T:Vz ' (z|T|2') = 0},




which means that from the patterns of zeros in the | X | x | X |-matrix representation of the admissi-
ble T' we can read off the graph complement G of the confusability graph G. Note that an operator
space such as this is always a non-commutative graph, and that there is always a classical channel
N giving rise to S: simply choose as the output alphabet Y the set of edges of GG, and N maps an
input symbol to a random edge incident with it.

Coming back to the general case: An alternative way of thinking about the state change due
to the channel N is to view it as a pulling-back of observables on B to observables on A: the
linear map effecting this translation is the adjoint N*(X) = 3~ E}X E; (in physics often called
the “Heisenberg picture”, in contrast to the “Schrodinger picture” A), and indeed one may think
of the channel \V as allowing the receiver to make (generally distorted) measurements on A. The
adjoint map is characterised by being completely positive and unital, i.e. N*(1) = 1.

Every channel has a Stinespring dilation, representing the dynamics as an isometry followed
by a partial trace: i.e., there exists V : A — B ® C such that

N(p) =Trc VpVT,

and up to isometric equivalence, C (the “environment”) and V' are unique. Then one has a unique
complementary channel

N(p) = Trg VpVT,

representing the information loss of the original channel to the environment. Note that the adjoint
maps of N and N can be written compactly using the Stinespring isometry V'

N(X)=VI(X ®1)V,
V Vil oY)V

=
=
[

recalling that VT is a projection.

Lemma 1 For any channel N with complementary channel N, S = N'* (L(C)). In words: S is the space
of operators on A measurable by the channel environment.

Proof We can write a Stinespring dilation of A via the injective V : A — B® C,
Vie) =Y (Bjle)? ),
J

so that for an arbitrary operator X € L£(C') the Heisenberg map of the complementary channel
reads

N (X)=viae X)V =" ElE.(j|X]k).
7.k

Now, since the operators |k)(j| form a basis of £L(C),
N* (£(C)) = span{E]T-Ek gk} =15,

i.e., the image of N/* is indeed S. 0

Note that this lemma also shows that our definition of S was sound: it doesn’t depend on the
particular choice of Kraus operators, and can be entirely understood in terms of the channel map
(or rather its complement).



Remark In general, S does not uniquely define the channel N from which it originates. Already
classical graphs and channels show this, as the confusability graphs records only which pairs of
inputs can lead to the same output with the same probability, but it doesn’t remember the value of
this probability, nor can it tell us about the triples of inputs which can end up at the same output
(note that even if there is a triangle in G, there may not be a single output symbol which can be
reached by all of its vertices).

Returning to the channel motivation, we can ask what happens to a non-commutative graph
S = N*(£(C)) if we add post-processing or pre-processing to the channel N’ : £(A) — L(B).
Le., considering channels R : £L(B) — L(B') and T : L(A") — L(A), let us look at the non-
commutative graphs § < £(A) and S’ < £(A’) belonging to the compositions RoA and NoT,
respectively.

Regarding the former, looking at the definition eq. () shows that S < S, which is the natural
relation of S being a subgraph of S. Regarding the latter, fix a Stinespring isometry U : A" —
A ® D, and observe that

S' = NoT (£L(C® D)) =U'(S® L(D))U.

The projection UT : A® D — A’ can be understood as giving rise to an induced subgraph (much as
a subset of the vertices of a classical graph would). Note that in this way, every non-commutative
graph S is an induced subgraph of the product 15 ® £(C) of an empty and a complete graph, by
virtue of the Stinespring dilation V' of an appropriate channel N. We come back to the issue of
(induced) subgraphs again in section [VII

III. ZERO-ERROR COMMUNICATION WITH AND WITHOUT ENTANGLEMENT

Zero-error information transmission via general quantum channels was considered first by
Medeiros et al. [27], and then by Beigi and Shor 5] (in those investigations, communication sig-
nals were, implicitly or explicitly, restricted to product states across multiple channel uses); more
recently in full generality by Cubitt, Chen and Harrow [Iﬂ], Duan [IE] and Cubitt and Smith [IE] ;
Duan and Shi [@] present results on multi-user quantum zero-error capacity, while quantum ef-
fects for classical channels were discovered by Cubitt, Leung, Matthews and Winter Eﬂ].

Let NV : L(A) — L(B) be a quantum channel, i.e. a linear c.p.t.p. map, with Kraus operators
E;j: A— B,sothat N(p) =3, E; pE]T.. Then to send messages m one has to associate them with
states p such that different states p, o lead to orthogonal channel output states: N(p) L N (o),
because it is precisely the orthogonal states that can be distinguished with certainty. Clearly,
these states may, w.l.o.g., be taken as pure, as the orthogonality is preserved when going to any
states in the support (i.e., the range) of p, o, etc.

Now we make the elementary observation, made in previous work, that two input pure states
© = |e)p| and ¥ = ) 9| for unit vectors |p), [¢)) € A, lead to orthogonal output states V' (¢) and
N () iff

0=TrN(PNW) =Y |(el Bl Eplv)|*,
jk

which says that for all j, &, (cp]EJEklw = 0. In other words,

)| L S = span{ElEy : j,k},



the non-commutative confusability graph of the channel A/, where the orthogonality is with re-
spect to the Hilbert-Schmidt inner product Tr A B of operators.

From the above formula it is clear that the maximum number a(N') of one-shot zero-error
distinguishable messages down the channel is given as the maximum size of a set of (orthogonal)
vectors {|¢y,) : m =1,..., N} such that

vm 7£ ’I’)’Ll |¢m><¢m’| € SJ_' (3)

Since it is only a property of S, we shall denote « (/) also as «(S), and we call it the independence
number of S. Note that the defining property of the operators | ¢y, ¢,/ | in eq. (@) is that they are
rank-one and an orthonormal system orthogonal to S, with respect to the Hilbert-Schmidt inner
product. [In [5] it was proved that computing the independence number «(S) is QMA-complete,
much like a(G) is known to be NP-complete for graphs.]

There are at least two further reasonable notions of independence number possible for quan-
tum channels and their confusability graphs. They are motivated by entanglement-assisted zero-
error communication, and by the zero-error transmission of quantum information.

First, to transmit quantum information, one needs a subspace A’ of A with projection operator
P such that PSP = CP - this is exactly the Knill-Laflamme error correction condition [é]. For
the channel this is precisely the necessary and sufficient condition for the existence of a decoding
cptp map D : L(B) — L(A’) such that the composition

LAY = £(A) Y £B) 2 £4)

is the identity map. Let a(S) be the largest dimension of such a quantum error correcting code
A’, which we call the quantum independence number.

Finally, a(S) is defined to be the largest integer NV such that there exist Hilbert spaces Ay and
By, a state w € S(Ap ® By) and cptp maps &, : L(Ag) — L(A) (m = 1,...,N) such that the N
states p, = (N o &, ® idp, )w are pairwise orthogonal. This definition of the entanglement-assisted
independence number is motivated by the scenario where sender and receiver share the state w
beforehand, and the sender uses the encoding maps &, to modulate the state before sending her
share into the channel. The receiver has to be able to recover the message from his final state,
pm- As before, we can argue that the shared state is w.l.o.g. pure, i.e. w = |Q)(Q?] for a unit vector
I?) € Ay ® By, either by picking |2) from the support of w, or by purification. In this way, we
can already assume Ay ~ By. Furthermore, all &, have Stinespring dilations V;,, : A9 — A® R
(w.L.o.g. using the same extension R), so that &,,(p) = Trr VpV1. Now it is easily seen that the
orthogonality condition on the p,, is equivalent to the the states

forming an independent set for S ® L(R)®1pg,. We can reformulate this in turn without referring
to By, by noting that there is a state p € S(A ® R) and unitaries U,;, on A ® R such that

TrBo |Gm )X Pmr| = UmpU.

so that we may regard an entanglement-assisted independent set as a state p € S(A ® R) and a
collection of unitaries U,,, such that for all m # m/, Uy, pU;, 1 S®L(R).

A special case is when the encoding modulation is only unitary, and the extension system is
trivial, R = C. The largest number of messages under this additional restriction we denote & (.5),
and call it the unitary entanglement-assisted independence number.

On the other hand, if we lift the restriction that the encoding maps &, have to be trace pre-
serving (but demanding it for the decoding), we obtain the generalised entanglement-assisted inde-
pendence number o/(S): we demand instead that £,,(0) = >_; EjmaE]T-m is such that 3 E}mEjm €



GL(Ay) is invertible. Since such cp maps still have a Stinespring dilation, only that V' is no longer
isometry by invertible, we arrive at the notion of a generalised entanglement-assisted independent set,
consisting as before of a state p € S(4A ® R) and invertible operators W,, € GL(A ® R), such
that for m # m/, meWnt, 1 S ® L(R). Note that this concept even makes sense for generalised
non-commutative graphs: S = S, without the condition that 1 € S but only assuming that there is
a positive definite element M € S.

The following proposition records some elementary properties of the independence numbers.

Proposition 2 For all non-commutative graphs S < L(A),
0y(S) < alS) < &y (S) < &(S) < a(S).

Ifdim S+ < k(k — 1), then o(S) < k; in particular o(S) < |A|. Furthermore, a(S) < 1 + dim S+, even
for generalised non-commutative graphs.

Finally, all these independence numbers are monotonic (non-increasing) under pre- and postprocessing (see
section [II).

Proof The ordering of the five numbers is clear from the definition, and so is the monotonicity.

For the bound on «(S), note that an independent set requires |, )¢,| € S*, for 1 < m #
m’ < k. But these operators are clearly mutually orthogonal with respect to the Hilbert-Schmidt
inner product, hence k(k — 1) < dim St.

For the bound on a(S), we first present a simple argument for a;(S): Consider an
entanglement-assisted independent set with trivial R: we need a state p € S(A) and unitaries
Ui,...,Uy such that for all m # m/, UmpUL, € St . In particular, all the operators U,,,/p are
mutually orthogonal, implying their linear independence. But then also the UmpUlT are linearly
independent, and they are all in S+, Thus, N — 1 < dim S+.

To bound the generalised independence number, assume that there are NV cp maps &1,...,En
from L(Ap) to L(A), and a state p € S(Ap). In order to write out the condition for a gener-
alised independent set explicitly, let us make some additional assumptions. First, we can write
Em(o) = z;(ﬂ) Emjannj, where {Ep,; : Ao = A}y—1,_r(m) is a set of Kraus operators for &,,.
It is convenient to denote K,,, := span{E,,; : 1 < j < r(m)}, the Kraus operator space of &,,,
and d,,, := dim K,,,. Furthermore, E,,, := >_ y Ejn iEm; is a positive definite operator in £(Ay). We
can also assume that p is invertible in £(Aj) as we can always choose Ay to be the support of p
without changing N. Now by a simple calculation, the condition for a generalised independent
set can be rewritten as follows:

EnjpE!, € 8*, for1<m#m/ <N, 1<j<r(m), 1<k<r(m).
Noticing that there is a positive definite operator M € S, this implies
Tr(MEmjpEjn,k) =0, forl<m#m' <N, 1<j<r(m),1<k<r(m).
That is, the spaces of linear operators K,,,/p = span{E,,; /p : 1 < j < r(m)} are mutually
orthogonal for different m, with respect to the generalised inner product given by (X,Y )y =

Tr(MXYT). In particular, the IC,,, are linearly independent, and /C,;, N K,y = 0 for m # m/. Now
let us focus on m’ = 1, and w.l.o.g. assume d; < d,, for all m. Then we have

EmipEl, = Xpir €S, for2<m < N, 1<j<r(m), 1<k<r(l).



Multiplying both sides of the above from the right by E;, and summing over k, we obtain

(1)
EnjpEl = Xpj 1= Zij,kElk € S*K1,
k=1

for2 <m < Nand 1 < j <r(m). Since p and E; are invertible, this can be rewritten as
Enj € S*Ki(pE1)™, for2<m <N, 1<j<r(m),
or equivalently -~ _, K,,, < span{SK; } (pE1)~'. Noticing that
dimspan{S*K;} < (dim S*)(dim K1) = d; dim(S™),

and dim 3>~ _, K, = SN, d,,, (because of linear independence of the K,,), we finally arrive at
(N —=1)d; < N_, d,, < dy dim(S+), completing the proof. 0

About the independence numbers «(.5), a,(S) and @(S), and their associated operational ca-
pacities

1
Co(S) = li_{n - log a(5®”) [(classical) zero-error capacity],

1
Qo(S) = lim —log ay (S¥™)  [quantum zero-error capacity],

Cop(S) = lim % log & (S") [entanglement-assisted zero-error capacity],
quite a bit is known: In [15] examples of S are found such that a(S) = 1 but o(S ® S) > 2,
and examples of S; and S such that Cy(S1) = 0 but Cp(S1 ® S2) > Cy(S2); furthermore, non-
commutative graphs S such that Cy(S) = 0 but Cyg(S) > 1 (all of which are impossible for
classical graphs). In fact, while a(S) can be 1 (and even Cy(S) = 0) for highly nontrivial graphs
S, any non-trivial S 5 £(A) (i.e. not a complete graph) is easily seen to have a(S) > ay(S) > 2.
In [ﬁ], even non-commutative graphs S; and Sy are shown to exist such that C(S1) = Cy(S2) =0,
yet a(S1 ® S2) > 2; this result is further improved in ] to yield even oy (S1 ® S2) > 2.

We can similarly define the generalised entanglement-assisted zero-error capacity

. R SR
Cor(S) :Jinéoﬁloga(SQ@ )

which is evidently an upper bound on Cyz(.S). Both a(S) and Cor(S) have, by their very defini-
tion, an important symmetry property: for any invertible W € GL(A),

a(s) =a(Wwswh) and Cop(S) = Cop(WSWH), (4)

which are meaningful because 5" = WS WT contains WIWT > 0, and S’ = §'1. (Note at the same
time that &(S) and Cyr(S) satisfy these equations only if W is a unitary.) We call S and S’ as
above congruent, S ~ S’, and denote the congruence class of S by [5].

The independence numbers o, (5), o(S), a(S) and a(S) are computable: this is obvious for
the first two, since they are formulated in terms of the solvability of a set of real polynomial
equations and inequalities in a finite number of variables. For the latter two, the potentially un-
bounded dimension of the entangled state needed appears to create an issue. However, noting
that the existence of a zero-error code with IV messages can be cast as real algebraic problem in
non-commuting variables with polynomial constraints, we can invoke recent results by Pironio et



al. [28]: these state that a certain hierarchy of semidefinite programmes asymptotically charac-
terises the solvability of such constraints by Hilbert space operators for some sufficiently large
dimension. More precisely, one finds zero-error codes by solving polynomial equations for in-
creasingly higher dimensional entangled states and measurements, and finds increasingly better
witnesses that certain numbers of messages cannot be sent with zero-error by climbing higher in
the hierarchy:.

The algorithms implicit in these remarks are very inefficient (in fact, we cannot even give an
upper bound on the runtime for @ and @), but apart from the QMA-completeness of a no results
concerning the complexity of the independence numbers have been reported. In contrast, as far
as we know, none of the asymptotic capacities are even known to be decidable — cf. [21.

IV. A QUANTUM LOVASZ FUNCTION

For the any non-commutative graph S < £(A),i.e. 1 € S and S = ST, we make, motivated by
eq. (1), the following definition.

9(S) :==max{||[1+T|: T €S+, 1+T >0}, (5)

where the norm is the operator norm (i.e. the largest singular value). Note that all elements in S+
are traceless, hence for d = |A| the norm on the right hand side is at most that of the case where T’
has d — 1 eigenvalues —1 and a single eigenvalue d — 1; hence ¥(S) < |A|.

By the discussion in sections [[[and [[Il for a classical channel N : X — Y with confusability
graph G, we can model the channel as a cptp map with Kraus operators /N (y|z)|y)x|, so S is
spanned by all |2')(x| such that z ~ 2’ or z = 2. Thus, the space S is exactly the set of matrices
T with zeros in all entries T,,» = 0 whenever z2’ € G or z = 2. Thus, the eligible 1 + 7" in the
definition (B) are positive semidefinite matrices with ones along the diagonal and zeroes in all
entries (z,z") where x and 2z’ are confusable. The maximum norm in eq. (B) coincides thus with
the expression for J(G) in [26, Thms. 5 and 6], and we conclude that 9(S) = I(G).

The above definition has some desirable properties:

Lemma 3 For any non-commutative graph S, a(S) < 9(S). Furthermore, ¥ is monotonic with respect
to subgraphs, i.e. when S C S’ for two non-commutative graphs, then ¥(S) > 9(S’).

Proof The monotonicity is clear from the definition. For the relation to «, consider a maximal
size indendent set {|¢y,) : m = 1,..., N}, ie. N = a(S). Then, ' = >/ |6m)¢m| € S+
Furthermore,

11+T>Z\¢m (Sl + D |bm)dm| = Y [$mm| 20,

m¥#£m/ m,m’

so T is eligible in the definition of ¥(.S). On the other hand,

11+ 7] = Z (o ||| =

and we are done. O

Lemma 4 9 is supermultipicative, i.e. for non-commutative graphs S1 < L(A;) and Sy < L(A3),

9(S1 ® S) > 9(51)9(S).
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Proof Observing that the operator subspace associated to the tensor product N7 @ N> of channel
N; with operator subspaces S;, respectively, is given by S} ® S, we can show
Namely, for T; € SZ-l and 1 + 7; > 0, we have

T::T1®11+11®T2+T1®T2eSf®S2+Sl®Sj+Sf®SQL:(51®52)L,

and 1+7 = (1+T71)® (1+4T>) > 0. At the same time it follows that |1+ T'|| = (|1 + 71| |1 + T3||,
and we are done. 0

It turns out however that, unlike the classical Lovéasz function, our definition (§) is not multi-
plicative. In fact, it fails even for tensoring certain channels with a trivial channel. (A channel is
called trivial if it maps all states p on A to a constant state oy on B, thus having associated operator
subspace L(A), which corresponds to the complete non-commutative graph.)

We shall show that one may even take the identity channel id : £(C%) — £(C%), which has
subspace S = C1,4. We claim that

sgpﬁ(]ld ® L(C)) = d2. (6)

Proof First we show that the value d? can be attained with n = d. Namely, for any orthogonal
operator basis of unitaries, including the identity, 1 = Uy, Uy, ... Ugp_4, let

d?—1
T=> Us@Us=dd—-131,

a=1

so that 1 ® 1 + T is, up to a normalisation factor of d?, the maximally entangled state ®,. Since
the latter is positive semidefinite, and

T e (1,0 L(CH)" =15 @ £(CY,

because all U, are traceless, we obtain indeed ¥ (1, ® £(C%)) > d.

Second, it remains to show that for all n, 19(]1d ® ﬁ((C")) < d?. For this consider any T' €
]lj ® L(C") such that 1; ® 1,, + T > 0. On the one hand, clearly Tr;(14 ® 1,, + T') = d1,, — which
has norm d —, on the other hand, it is well-known that the partial trace over a d-dimensional
system can change the operator norm (in fact, any p-norm) by at most a factor of d [14]. Thus,
Mg ® 1, + T < d O

This motivates the following better definition, a kind of norm completion of ¥:
Definition 5 Observing that (S ® E((C"))l = S+ ® L(C"), let the quantum Lovdsz function be

5(5) = supﬂ(S ® ﬁ((cn))

)
=supmax{||[1+7T|: T € ST ® L(C"), 1+ T >0},

where the supremum is over all integers n, and the maximum in the second line is again over Hermitian
operators T'.

Note that by our above result on the ideal channel, also J(S) < |AJ2. And for classical graphs G,

since 9 is multiplicative and £(C") is the operator space version of the complete graph, 9(5) =
9(S) = ¥(G).
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Remark From the point of view of operator spaces it might appear rather natural and pleasing
that we have to consider the norm completion 3, so to speak, of ¥, by taking the supremum over
tensor products with arbitrary full matrix spaces.

There seems to be an analogy to the construction of the completely bounded norm from the
“naive” norm of operator maps [29]. Much like completely bounded norms [33], also our defini-
tion via completion will turn out to be given by a semidefinite programme (see the next section).

From the definition it is clear that in general ¥ inherits the supermultiplicativity from 9

Lemma 6 o is supermultipicative, i.e. for non-commutative graphs Sy < L(Ay) and Sy < L£(As),

Y(S1 ® Sa) > ¥(S1)9(S2).
O
More importantly, however, it is related to the entanglement-assisted independence number:
Lemma 7 For any non-commutative graph S, a(S) < O(S). Furthermore, 9 is monotonic with respect
to subgraphs, i.e. when S C S’ for two non-commutative graphs, then ¥(S) > 9(S’).

Proof The monotonicity is inherited from +J. For the relation to &, the argument is an extension of
the one we made for the unassisted case and 9(.5). Namely, recall that we may pad the channel by
a sufficiently large dummy register that goes into a trivial channel, and find a state p € S(A ® R)
and unitaries U,,, on A ® R such that for 1 < m # m/ < N,

UnpU!, € St @ R.

Evidently this is unchanged under rescaling p, so we replace it by a multiple X with largest
eigenvalue 1: X = |p)¢| + X', where X’ L |p)(¢| is a rest which satisfies || X’|] < 1. Now we
consider the candidate

T= Y UnXU, ®|m}m| €St ®L(R®C).

m¥#m/

This is an eligible operator in eq. (7) because

1+T =1+ Y UnXU, @ m)m/|

m##m/

> > Un XU, @ [m)m/|

mm/

= (Z UnVX & rm>> <Z VXUL, @ <m’\> = MMF >0,

where in the second line we haveused 1 > > U, X UL, @ |m)ml.
Finally, to bound the norm, define the unit vector |¢) = \/_1ﬁ Y Unle) @ |m). Then observe

I +7) > [MMY| > (p|MMT|¢) = N,

which completes the proof. O
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V. SEMIDEFINITE FORMULATION AND OTHER PROPERTIES

We shall now simplify the expression for 5, putting an a priori limit on the dimension n of the
extension system. Namely, for fixed n, we have

Me1+T[ = ax Gl(L @1 +T)¢),

forT € St ® L(C"),1® 1+ T > 0, where the maximum is over unit vectors in A ® C". Now
we can use a trick analogous to Lovész’ [26, Theorem 4]: with the maximally entangled vector
|®) = ZL’i'l i)4]i)A" there exists an operator M : A’ — C" such that |¢) = (1 ® M)|®). Thanks to
Try ® = 1 4/, the normalisation of |¢) translates into p = M M being a state (i.e. of trace 1) on A’.
Thus,

BAe1+T)¢)=(@|(1ep+ (1o M)T(1e M))),

and the crucial observation is that 7" = (1 ® M) T(1 ® M) € S+ ® L(A’). As a consequence, we
have proved

Theorem 8 For any non-commutative graph S < L(A),

9(S) = max (®|(1 @ p+T")|®) 8)
st. T'e St@L(A), Trp=1,
I®p+T >0, p=>0,

which is a semidefinite characterisation of ¥. 0

This has two important consequences: first, we have now an optimisation with a bounded di-
mension of the extension (namely |A|) and furthermore it is semidefinite [32], so it is computable
efficiently. Second, and much deeper, we have a dual semidefinite programme for the same value
that is a minimisation problem and allows us to put upper bounds on 9(9).

Theorem 9 The dual of the semidefinite programme (8) gives

J(S) = min || Tra Y| )
st. YeS®L(A), Y >,

where A’ is isomorphic to A.

Before we prove this, we record an immediate corollary:

Corollary 10 o is multiplicative: for non-commutative graphs Sy < L(A;) and Sy < L(Ay),

J(S1 @ Sa) = V(51)9(S2). (10)

Indeed, we know already that it is supermultiplicative, so we only have to show that it is also
submultiplicative. Le., for two subspaces S; < L£(4;), 9(S1 ® S2) < 9(S1)9(S2). But that we can
read off from the dual: if Y7 is dual feasible for S; and Y5 for Sy, then clearly Y7 ® Y5 is dual feasible
for S1®S55. At the same time, H Tra, A, Y1®Y2H = H(TrA1 Y1)®(Tr 4, YQ)H = ”(TI‘Al Yl)H H(TrA2 Yg)”,
and we are done. O
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Proof (of Theorem[@ The primal is a semidefinite programme of the general form
max TrCX s.t. {(X)=0b, X >0,
with a linear vector-valued function ¢ : £(H )s, — R™. The dual of such a form is given by
min b’ - y st l(y) >C,

where ¢/ : R" — L(H )s, is the adjoint linear map to ¢ [32].
In the present case, let d = | A|; the matrix X will be

X — X 11 * | *
- * X 29 B * ]1 ® P —+ T/ ’
and the linear constraint has to ensure this form of the matrix, the trace normalisation of X; and

the fact that 7" is orthogonal to S ® £(A’). The objective function is given by C' = [ 8 C(I)D ] .

Thus, fixing an operator basis { F}, }, of S, and a basis {Gg} 3 of L(A’), the components of ¢ are

10

KQ(X) = TI‘Xll =TrX |: 00

] = TI‘XLQ,

F)Gs 0

—Tr
faB(X):TY(Fa®G6)(X22—]1®X11)=TrX[( R

} —:Tr X Lag,

while by = 1 and all other b,s = 0. With these notations, the adjoint map ¢’ can be constructed as

U'(y) = yoLo + ZyaﬁLaB'
af

Using that the second term in ¢’ is a generic element of S® £(A’), we can simplify our expressions,
and find that the objective function is y, and that

(="

0 Yo
Yoo € S @ L(A'),
Y11 = yoll — Tra Yoo.

] , Where

Le., the constraints are Y22 > ® and yoTl > Try Ya9, proving the form of the dual, since the optimal
Yo is the norm (maximum eigenvalue) of Tr 4 Y2».

To finish, we only need to verify feasibility of both primal and dual; for the primal this is
shown by 77 = 0, for the dual by Y = d1l ® 1. Thus, the conditions of strong duality are fulfilled,
both primal and dual optimal values are finite and equal. O

Using this dual, we can now show that ¥ is monotonic under pre- and post-processings of
the channel defining S, and more generally under enlarging the graph and going to induced
subgraphs.

Corollary 11 For non-commutative graphs S < S, I(S) > 5(§)

For a non-commutative graph S, let U : Ay — A be an isometry and consider the induced subgraph
S'=U'SU < L(Ag). Then, 9(S") < 0(S). N

As a consequence, let S = N*(L(C)) with a channel N : L(A) — L(B). Then, 9 is non-increasing
when going to non-commutative graphs obtained by either pre- or post-processing N.
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Proof For alarger graph S > S, we know already 9(S) < 9(); and post-processing gives exactly
rise to a larger graph 5> 8.

Induced subgraphs are more interesting: Let Y € S ® £(A’) be an optimal solution of the dual
semidefinite programme for (S), according to Theorem[] i.e. Y > ® 44 and || Tra Y| = 9(S).
ButthenY' = (UT @ 1)Y(U®1) € &' ® L(A),Y' > D apay and || Tra, Y'[| < [ Tra Y.

Finally, any graph S’ < L£(A’) originating from a pre-processing of A is obtained from an
isometry U : A’ < A® D, via ' = U'(S ® L(D))U. But S and S ® £(D) have the same J, by
definition, and since S’ is an induced subgraph of the latter, we are done. O

We end this section by remarking that the dual in Theorem[simplifies considerably in the case
of classical channels, i.e. S = span{|z)z/| : © = 2’ or z ~ 2’} < L(CX). Note that |®) € A A’
is invariant under unitaries of the form U ® U, and that S is stabilised by diagonal unitaries
Z = Y, e%=|z)z|. Hence, with every dual feasible Y, we get an equally good dual feasible
solution (Z ® Z)Y(Z ® Z)1, so by the triangle inequality, we can find a dual optimal solution
among the operators invariant under conjugation with Z ® Z,i.e. Y = Y, Yo |zz)a'2'|. The
constraints are Y > ® = >, |zz)(a’2’| and Y,,» = 01if x ¢ 2/, while the objective function is the
norm of the partial trace Tra Y = ) Y., |z)(x|. Thus, we arrive at

Corollary 12 For a classical graph G, Lovdsz” 1 is given by the semidefinite programme
I(G) = min{ma}:é(Ym YeS Y> J},
S

where S is the non-commutative graph associated to G, meaning Yy, = 0 whenever x o «', and J is the
all-1 matrix. 0

VI. APPLICATIONS AND DISCUSSION

There are a few immediate consequences, the most obviously important being obtained by
putting together Lemma[/land Corollary

Corollary 13 For any non-commutative graph S < L(A), Cog(S) < log J(S). 0

Then, for a classical channel with confusability graph GG, we observed earlier that 9(S) = 9(G).
Hence, a(G) < ¥(G) and so:

Corollary 14 For any graph G, Cog(G) < log 9(G). O

This answers an open question from [12], which is nontrivial because there it is shown that a(G)
may be strictly larger than o(G).

E.g., we can now compute the entanglement-assisted zero-error capacity of the “Bell-Kochen-
Specker” channels discussed in [12]. These are all disjoint unions of n copies of K4, with some
extra edges between the complete components, such that G is exactly the orthogonality graph
of a set of nd vectors in C%. If the set of vectors gives rise to a Kochen-Specker proof of non-
contextuality, this means a(G) < n—1. On the other hand, in [@] it is shown that a(G) > n, using
a rank-d maximally entangled state 2®,. Here, we can now see n < &(G) < 9(G) < n, as shown
by the dual feasible solution Y = n @ ®4, which has || Tr4 Y|| = n. Thus, a(G) = ¥(G) = n and
we also learn that Cyr(G) = logn. (One could, however, see this also directly by noting that G
contains a disjoint union of n complete graphs as a subgraph.)
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While we do not have a separating upper bound for the unassisted capacity Cy(G) of these
graphs, of course even as a bound on the independence number, our Corollary [[3]is an improve-
ment over Lovasz [@], since we find that J(G) is even larger or equal than @. In this sense,
the increase of independence number from o to & due to entanglement-assistance somehow “ex-
plains” the fact that Lovész’ ¢ is not always a tight bound [20] - and in fact, it is quite possible
that Cyr(G) can be strictly larger than Cy(G).

There are, furthermore, other quantum channels for which 9(S) = 9(S). For instance, perhaps
the simplest one is S = A+, where S+ = CA (with a traceless Hermitian operator A) is one-
dimensional. In that case one has evidently ay(S) = a(S) = a(S) = 2 (see Proposition[2). In fact,
the gap between &(S) and 9(S) can be made arbitrarily large, since the latter can be up to d as
shown by the example of

and in fact similar examples show that every real value between 2 and d is realised as some J(AdL).
We do not know a better upper bound on Cy(S) for this channel other than log ¥(.5).

Non-commutative graphs for which we can determine Cyg include all S < £(C?):

e If S = C1, then the channel is perfect, and by superdense coding we can achieve a(S) =

4 = 9(S5), hence Cyp(S) = 2.
e The other extreme is § = £(C2), then J(S) = 1 and hence Cyz = 0.

e In the intermediate case, 2 < dim S < 3, and we claim Cyr(S) = 1. Indeed, the capacity
is largest for the smallest subspace, hence we consider only dim S = 2. The subspace is
spanned by 1 and another operator, which we may take to be diagonal and traceless, thus
w.Lo.g. Z. This is the subspace corresponding to the noiseless classical (i.e. Z-dephasing)
channel NV (p) = 37, [bXblp|b)bl, which clearly has entanglement-assisted capacity 1,
even in the Shannon setting [6], which can be achieved error-free and without entangle-
ment since a(S) = 2, Cyp(S) = 1. For dimS = 3, we still have a(S) = ay(S) = 2, by
Proposition 2]

Yet another one can be found in [@, Thm. 3, eq. (8)], where a channel is constructed with non-
commutative graph S = 1, ® 14+ 1+t ®L(C%),so that S+ =1, ® ]lj. It was shown that a(S) > d?,
and indeed, because S contains £(C2) ® 14, 9(S) < J(L(C?) @ 14) = d2, hence Cop(S) = 2log d.

Perhaps the most interesting open question regarding the entanglement-assisted zero-error
capacity is whether Cyg(S) = log J(S). Note that this would imply that Cyg is multiplicative
(whereas C is not [E|]) ; one might recall that entanglement-assistance has made also the theory of
communication via quantum channels more elegant [Ia], and likewise so-called XOR games [|§], for
which a semidefinite characterisation lead to multiplicativity of the optimal winning probability.
A most challenging test case is presented by the above non-commutative graphs S = A+, for
which we do not even know (S ® ) at the time of writing, nor in fact @(S ® S). Does it perhaps
hold that C £(S) < log(1l+ dim S*) in general? — which by the above examples would imply a

separation between log ¥(S) and Cyx(.S).
Another question pertains to a possible generalisation of a property of Lovasz’ ¥(G): Is it true
that ¥(S; N S2) < 9(S1)9(S2)? Note that it holds for classical graphs — because the intersection is
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an induced subgraph of the strong product along the diagonal —, and that it would be an extension
of the multiplicativity statement.

Third, it is a bit unsatisfactory that we have three entanglement-assisted independence num-
bers. Are they really different? Is it perhaps true that at least they lead to the same asymptotic
capacities? What is in general the relation between a(S) and 9(S)?

Finally, looking back at our path, it may seem odd and in fact a bit arbitrary that we arrived at
a Lovasz type bound on the entanglement-assisted independence number. Do there exist similar
bounds for the unassisted zero-error capacity and the zero-error quantum capacity that are strictly
better than 9(S5)?

VII. NON-COMMUTATIVE GRAPH THEORY?

In this last section, no longer concerned with zero-error communication but driven by the idea
of developing a proper theory of non-commutative graphs, we will finally give the proper defini-
tion of graphs, of subgraphs, induced substructures, etc. For this purpose, we have to come back
to the characterisation of S in terms of the adjoint A'* of the complementary channel (Lemma ).
Such maps, by being completely positive and unital, obey the Kadison-Schwarz (operator) in-
equality

N(X)TN*(X) < N*(XTX),

forall X € £(C). The set of operators which satisfy this with equality is, by Choi’s theorem [7,2d],
the so-called multiplicative domain

M = {X € L(O) s.t. VY N*(X)N* (V) = N*(XY)}, (11)

which is in fact a *-subalgebra (containing 1) of £(C'), and restricted to it, N oM = So =
N*(M) is a x-algebra homomorphism. The image S is clearly a subspace of S, a x-algebra itself,
and by eq. (1)) it satisfies

SoS =SSy = S,

i.e., Sisa (left and right) Sp-module, all presented explicitly as operator subspaces of £(A). In fact,
it is even a so-called Hilbert-Sy-module E]; all we need is to choose an Sp-valued inner product
(-,-) - 8 x 8§ — Sy, which we shall however always assume to be defined on £(A). The inner
product should be linear in the first, and conjugate linear in the second element, (X,Y)* = (Y, X),
it should respect the module structure (from the right) as (X,Ya) = (X,Y)a for X,Y € S and
a € Sy (which is equivalent to (Xa,Y) = a'(X,Y)), and (X, X) > 0 with equality iff X = 0. This
defines a very strong notion of orthogonality in £(A).

In the first part of the paper, we effectively treated every non-commutative graph as if it had
trivial So = C1.. In this case, there is a whole family of inner products (X,Y) = (Tr XTRY S)1 for
some positive definite 0 < R, S € L(A)sa, but there are many more. Because of its importance for
the independent set question discussed above, and its relation to matrix multiplication, we assign
special status to the Hilbert-Schmidt inner product (i.e. R = S = 1), which shall be the default
when no inner product is specified.

To obtain some more structure, note that since, Sy < S it is reasonable to demand that (1,Y") =
Y and (X, 1) = X' for X,Y € Sy (which is equivalent to asking (X,Y) = XTY). Motivated
by this, and using also the left module structure, we could ask for the even stronger property
(X,aY) = (' X,Y) for a € Sy (together with (1, 1) = 1).
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In general, the structure theorem for finite dimensional *-algebras implies

So=EP L) ey, with A=PA4; ez,
j=1 j=1
while (-, ) gives rise to a conditional expectation £(X) = (1, X) (satisfying E(X A) = E(X)A for
X € Sand A € Sy and E(A) = A, by the above additional assumption). The general form of the
conditional expectation is

T

E(X) = D[z, (P @ VX (P @ /G)] @1,
j=1
with the projectors P; = 14, onto A; and Q; = 1z, onto Z;, and states (; € S(Z;). For the
conditional expectation to be faithful,i.e. X > 0 and E(X) = 0 implying X = 0, it is necessary and
sufficient that all the (; are faithful.
Now, from the left and right module structure,

S= (P ©Q))S(P: ® Qi), and for each j, k,
k= (12)
(P; ® Q;)S(Pr ® Qr) = (L(Aj) ® Qj)S(L(Ar) ® Qr)
= L(Ax — A4j) ® S,

where S, < L(Z,, — Zj) such that S; = S]T.k and Q; € S;;. From this we see that each non-
commutative graph gives rise to an underlying classical graph “skeleton”

G(So < 8):=(V=[r],E=jk:Sj,#0).

A general inner product is not uniquely defined by its conditional expectation, but each con-
ditional expectation E gives rise to the following canonical inner product

T

(X,Y)p = EXTY) = P[Trz, (P @ VXY (P @ /)] @1, (13)
j=1

As before for the Hilbert-Schmidt inner product, the tracial states (; = ‘71]_‘]1 z,; are distinguished
because of the symmetry of the resulting inner product

E(UXU') = UE(X)U', for unitaries U s.t. USUT = Sy,

which characterises them uniquely. (And hence its relation to the usual matrix product.) This
choice is understood as the default if we only specify Sy but not an inner product.

We did not need all this additional structure before, but it motivates our eventual definition:

Definition 15 A non-commutative graph is a pair Sy < S of operator subspaces of some L(A), with
a complex Hilbert space A, equipped with an inner product (X,Y) that makes S a Hilbert left and right
So-module.

That is, Sy is a x-subalgebra of L(A) containing 1 and contained in S, S = ST and S is a left and
right So-module with respect to matrix multiplication, i.e. SoS = SSy = S. The inner product satisfies
(X, Y)*=(Y,X) forall X, Y € L(A), (1,1) =1, (X,Ya) = (X,Y)afor X,Y € Sand a € Sy (which
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is equivalent to (Xa,Y) = a"(X,Y)), (X,aY) = (a'X,Y), for a € Sy, and (X, X) > 0, with equality
iff X =0.

In fact, with the conditional expectation E(X) = (1, X) from L(A) to Sy, we shall only look at inner
products of the form (X,Y) = E(X1Y).

To emphasise the dependence on Sy and E, we shall call S a (non-commutative) Sy-graph (if we don’t
specify the inner product), or more precisely an E-graph.

We do not have a sufficient overview over the literature to claim that this concept is entirely new
and unexplored. The term — apart from a single occurrence in the context of non-commutative
geometry (18] - appears not to have been used before. And while there is some literature re-
garding finitely generated Hilbert-modules over finite-dimensional x-algebras, to the best of our
knowledge no-one seems to ever have made the connection to graph theory.

Remark Abstractly, there seems no reason to insist on A being trace preserving, which would
correspond to S not necessarily containing the identity matrix 1. In the first part of the paper
we could indeed have relaxed the definition of non-commutative graph to be an operator space
S = ST < £(A) containing some positive definite element D > 0.

However, the above concepts do not go well with this generalisations, as for non-unital N* we
do not have unital *-subalgebra structure of Sy, nor is it characterised by Choi’s theorem. Thus
we stick with our original definition for now, leaving an exploration of alternative definitions for
later.

Clearly, the same operator subspace S can originate from different channels, which might how-
ever have different Sy. All pairs Sy < S according to the above definition occur, however. The
x-subalgebra Sy serves as a kind of “diagonal” in the operator space S, in fact, whereas S gener-
alises the edges of a graph, .S, is representative of the vertices (their number being remembered in
the dimension |A| of the underlying Hilbert space). It is perhaps helpful to remember, for the sake
of intuition, to recall one of the original motivations to consider Hilbert modules ] as an abstract
version of vector bundles over manifolds, represented as the module of vector fields over the al-
gebra of continuous functions, where the inner product originates from a Riemannian structure of
the vector bundle; this intuition has been immensely fruitful in the creation of non-commutative
geometry and its applications [9].

The basic example of course is once more the classical graph: we saw before that starting from
a noisy channel, one can arrive at the confusability graph in its non-commutative guise

S = span{|z)z’| : 2 = 2’ or x ~ 2’} < L(CX),

but that made no distinction between vertices (z = z’) and proper edges. Looking at the quan-
tum version of the channel as discussed in section [[l, one can see that Sy will contain all |z)(z|.
By appropriately modifying the channel N, for instance by considering N = 3N & 1idx (with

the same input alphabet X and the larger output alphabet X U Y), one can indeed enforce
So = span{|z)(z| : x € X}, with the canonical conditional expectation diag(X) = > |z)x|X |z)(x|.
Now, it is clear that one can recover the graph G from Sy < .S up to isomorphism. Thus, the clas-
sical graphs are precisely the diag-graphs, the graph structure recovered precisely as the skeleton
G(Sp < 9) of the algebraic data.

Furthermore, the module S over diag is generated by a single element (using left and right
multiplication), for instance by the Laplacian of the graph. This property is shared by all non-
commutative graphs where in eq. (I2), S;; is at most one-dimensional for all j, k.

A class of examples that are already more “quantum” are graphs S < L(A), with Sy = C1
and a conditional expectation of the form E,(X) = Tr(pX)1 for a state p € S(A). Such a non-
commutative graph we call p-graph, and all we require for itis 1 € S = ST.
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Going back once more to the motivation of our concepts from channels, one may recall that

each classical channel N : X — Y also gives rise to a bipartite graph with vertex set X ° Y,
where z € X and y € Y are connected by an edge iff N(y|z) > 0. This bipartite graph captures
much more about the channel than the confusability graph, and indeed Shannon’s zero-error
feedback result [31] and Cubitt et al.’s regarding assistance by non-signalling resources [12] can be
formulated in terms of this bipartite graph. As its quantum version we propose to consider, for a

quantum channel N : £(A) — L(B) with N'(p) = >_, E pE!, the operator subspace
Z :=span{E;} < L(A — B). (14)

This space was crucial in the proof of Proposition 2] and it is evident that the non-commutative

graph of the channel is obtained as S = Z1Z < £(A). Furthermore, one can confirm that indeed Z

is still a right Sp-module, and that the above conditional expectation £ makes it indeed a Hilbert

module, via the same rule (X,Y) = E(XTY) for X,Y € Z.

Proof This is essentially only an extension of Choi’s reasoning [7]. We use the Stinespring repre-

sentation of the channel, with isometry V' : A — B ® C, such that N*(m) = VT(1g @ me)V.
Then, a generic element of Z can be written X = (15 ® ({|c)V = >_, §;E; for an appropriate

vector |£) € C. A generic element of S instead is a = N*(m), for an element m € M < L£(C) of
the multiplicative domain. We wish to show that Xa € Z, and indeed we will find that

Xa=(1p® ¢c)V, with ) =ml¢).
First, noting Xa = (1 ® (¢|¢)VV (15 ® mc)V, Choi’s theorem tells us

' XTXa = Vi(lp @mb)VViig e leXEo)VViie @ me)V
= Vig @ mije)glom)V = Viig @) o)V,
hence Xa = (Ug’a ® (¢'|¢)V for some unitary UX% € U(B). But for another Y € Z, b € Sy, once
more by Choi’s theorem,
bYTXa=Vi(g@nl)VVids e [v)eo)VVip © me)V
= V(g @ nlo)elem)V.
showing UX:@ = UY** for all X,Y and a,b, which concludes the proof. 0
This motivates the following definition, for which each cptp map yields an example:
Definition 16 A non-commutative (directed) bipartite graph with “vertex spaces” A and B is a sub-
space Z < L(A — B) together with a unital x-subalgebra Sy < S = Z1Z < L(A), and a conditional

expectation E : L(A) — So, such that Z is a right Sy-module, and indeed a Hilbert module for the inner
product (X,Y) = B(X1Y).

Again, all non-commutative bipartite graphs originate from some cptp channel.

We call an E-graph S < £(A) and an E’-graph S’ < L(A’) isomorphic, if there exists a unitary
isomorphism U between A and A’ such that

USUT=S8', USU' =5, and UEX)U'=E(UXU").

This implies a definition of automorphism, too, and we denote the automorphism group of S as
Aut(S) < U(A). We say that the automorphism group acts (vertex) transitively if the only operators
in the commutant of Sj that also commute with the automorphism group, are C1.
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Now we can start defining the usual graph notions: we call a complete graph a pair Sy < S =
L(A) together with any faithful conditional expectation £ : £(A) — Sp. To be precise, it is the
complete E-graph.

The complement of an E-graph S is defined to be the subspace

So < 8¢ =8y +SHE) = Sy +{X € L(A): VY € S (X,Y)p =0},

which by virtue of the Hilbert-module property is again an E-graph. The definition is made in
such a way that (5¢)¢ = S and S NS¢ = Sy; in particular the complete E-graph is the complement
of Sp (which we call the empty E-graph). Note that the notion of complement depends on the
conditional expectation £ and its image Sy.

Also graph products are defined easily: and E-graph S < L(A) (with subalgebra Sp) and an
E’-graph S" < L(A’) (with subalgebra S))) give rise to the (strong) product, which is the £ @ E'-
graph S ® S" < L(A ® A’), with subalgebra Sy ® S),. Thus we also have the powers 5", which
are E®"-graphs.

The disjoint union of an E-graph S < L(A) and an E’-graph S’ < L(4’) is the direct sum
S& S < L(A® A) (with subalgebra Sy & Sj)). Denoting the projections onto A and A’ in A ¢ A’
by P and P’ = 1 — P, this is an E @& E’-graph, where (E @ E')(X) := E(PXP) @ E'(P'XP’). If
the graphs originate from channels, their direct sum originates from the direct sum channel. Note
that the corresponding orthogonal sectors in the direct sum are always perfectly distinguishable;
one can make them indistinguishable by adding the full operator sets £L(A — A’) and L(A" — A)
to the direct sum, “filling up the off-diagonal blocks”:

SES =S®S + LA A)+ LA — A) < LADA),

which we call the complete union of the graphs (because it corresponds to placing a complete
bipartite graph between the vertex spaces A and A’).

Clearly, products, disjoint and complete unions are associative, and both unions are distribu-
tive with respect to the graph product.

Proposition 17 Both 9 and ¥ are additive under disjoint unions:
IS @) =0(S)+9(S), HSDS)=13(S)+ I(S).
Furthermore, « is additive, and & and & are superadditive under disjoint unions:
a(S®S) =a(S)+a(s), alSas)>als)+als), alS®s)>als)+a(s).
Finally, all f € {a,@,a,9,0} satisfy the following identity:
F(SBS) = max{ £(S), £(5")}.
Proof We only need to show the first claim for ¢. By eq. (@),

1+T M

ﬁ(S@S’):maX{H[ Mt 14T

}H:TGSL,TIGS'J'},

where the maximum is restricted to positive semidefinite block matrices. It is an easy observation
that for all positive semidefinite L, Lo,

e[ ] (3 2] 20} =0t
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from which the assertion follows.

The independence numbers are clearly superadditive, so it is left to show that o(S & 5’) <
a(S) + a(S"). For this, let {|¢,,) : m = 1,..., N} be an independent set of S & 5, so that for all
m #m’,

(S@ S/)J_ 2 ’¢m><¢m" - (P ©® P/)’¢m><¢m"(P @ Pl)a

which is equivalent to

Plom)dm|P € St and  P'|gy ) |P' € S"

Thus, up to normalisation, the set A = {m : P|¢,,) # 0} gives rise to an independent set in S,
and likewise B = {m : P'|¢,,,) # 0} for S’. Because each m is in at least one of A or B, the claim
follows.

Finally, the B-max-identities follow almost immediately from (S 8 §')+ = 5+ & §'+. O

Another easy notion is the distance-<t-graph of an E-graph S < L(A): this is the subspace
St = 8.8 (the t-fold product), which is indeed an E-graph. By convention, here S° := .

It may happen that the same S is an F-graph (with subalgebra Sy) and an F-graph (with
subalgebra S; > 5)), such that E factors through F), i.e. there is a conditional expectation G :
S1 — Sp such that £ = G o F'. We call then the F-graph S < S a refinement of the E-graph Sy < S.
(The idea being that with F' and S;, the graph has more vertices.) Conversely, by concatenating
the conditional expectation E with another one E’ : Sy — S} < Sp, we can obtain coarse grainings
of any E-graph as E’ o E-graphs.

The notions of subgraph and induced subgraph are more subtle, because we have to take care
of the conditional expectation. The simplest is when S’ is a proper subgraph of an E-graph S, which
means that Sy < S’ < S and that S’ is a sub-Hilbert-Sy-module of S with the same inner product:
SoS" = 5'Sy = S’. We call proper subgraphs also E-subgraphs. Less strict, we call an E’-graph
S" with subalgebra S|, a (generally: improper) subgraph of the E-graph S < L(A) if S’ < S and
Sé < Sy, and E/’S’ = E’S/

Induced subgraphs of an E-graph S < L(A) (with algebra Sy) are defined with respect to a
subspace A" < A with projector P: the E’-graph S’ := PSP < L(A") (with algebra S)) is called
proper induced subgraph if PSyP = S|, and the restriction to A’ commutes with the conditional
expectations: E'(PX P) = PE(X)P forall X € £L(A). Again, there is a less strict notion of induced
subgraph, which only demands PSyP < S| and that S{, < S’ is a refinement of PSyP < 5.

To illustrate these notions, we note that the Stinespring dilation theorem implies that every
E-graph Sy < S < L(A) is a proper induced subgraph of the strong product between a complete
F-graph £(C') an empty p-graph C1 < £(B). We can also re-interpret the independence numbers
of a non-commutative graph S as the largest dimensions of (improper) induced subgraphs: an
induced empty p-graph Cl1 < L(A’) for a4(S) [and such A" we should hence call a quantum
independent set], and an induced diag-graph span{|m)(m|:m =1,... |A'|} < L(4) for a(S) [and
such A" we should call an independent set]. Cliques are defined analogously.

Going back to eq. (I2), recall that a non-commutative graph S has the form

@ﬁ(Aj) & ]12]. =Sy < S = @ ﬁ(Ak — Aj) & Sjk.
j=1 k=1

From this we can construct the graph So,

T T

@(C]IZ]. =: §0 < § = @ Sjk,

J=1 J,k=1
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which is an induced subgraph of S over a commutative diagonal So. In addition, S itself is an
induced subgraph of S ® L(R) for large enough |R|. One can think of S as obtained from S by
“blowing up the vertices”: each vertex becomes a complete graph K 4|, and each edge a complete

bipartite graph K 4, 4,- Because of these relations, S and S share the values of o, &@. @ and 9
(though not of ).

As yet, we do not have many illuminating examples of non-commutative graphs, nor can we
offer applications to classical graph theory. Instead, we close with highlighting several questions
motivated by the above definitions.

o Algorithmic consequences: Non-commutative graph isomorphism is at least as hard as clas-
sical graph isomorphism, but are they of the same order? Similarly, graph non-isomorphism
has efficient interactive proofs, does this extend to non-commutative graphs? Finally, in-
duced substructures such as independent sets are NP-complete for classical graphs, and
QMA-complete for non-commutative graphs (again for independent sets) — but is it still
QMA-complete for quantum independent sets? Or for entanglement-assisted independent
sets? An interesting question in particular is, whether one can put a priori bounds on the
dimension of the entangled state referred to in the definitions for & and a.

e For classical graphs on n vertices, the largest known ratio between independence number
and Lovdsz function occurs for random graphs and is 2(y/n/log n), which is conjectured
to be maximal. What is the largest value of 9(S)/a(S) for non-commutative graphs? (Our
example S = A+ in section[VI shows a lower bound of |A]|/2.)

e Random graphs are a powerful tool in combinatorics; what would be the natural non-
commutative random graphs? The simplest one can think of is to fix the dimension D
of a subspace S = ST < £(C") containing 1, and to choose it uniformly at random ac-
cording to the Haar-induced measure on the Grassmannian (very much like what is done
in ]). What are the expected values of clique and independence numbers, and of our 0
as functions of n and D?

e The bipartite graphs Z < L(A — B) play a central role in the zero-error capacity of classical
channels assisted by feedback or non-signalling correlation, as we have mentioned. Does
this extend to quantum channels in the appropriate sense? For this, one first has to confirm
that the classical noiseless feedback-assisted zero-error capacity, Cor(N'), can be expressed
in terms of Z alone. This is indeed possible, even when the feedback is allowed to be an
arbitrary quantum message after each channel use. We are currently exploring fractional
packing/covering numbers for non-commutative bipartite graphs, with the motivation of
extending Shannon’s zero-error capacity theory to quantum channels with feedback.

e There are many other graph notions we didn’t generalise yet: Perhaps the most interesting
ones are chromatic number and perfectness of a graph. Is there a Laplacian operator with
distinguished properties in each non-commutative graph? Finally, is there a good notion of
edge contraction which would lead to a theory of graph minors?

Remark A final comment on the definition 9 (S): There, it would seem more natural to consider
the subspace orthogonal with respect to the Hilbert-module inner product (-, ) (in particular
excluding the entire diagonal Sy from S-#)). This highlights the dependence of the notion of
orthogonality on the inner product chosen. In our definition of the independence numbers — and
then again when we defined v, 1 — we relied on the underlying Hilbert space structure, which
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led us to consider the Hilbert-Schmidt inner product on £(A), and more generally the conditional
expectations with tracial ¢;. This seems to suggest that there are privileged conditional expecta-
tions to define the Hilbert module. We leave an investigation of this issue to future explorations
of non-commutative graphs.

Acknowledgments

It is a pleasure to thank many people for discussions and feedback on the present work, in-
cluding Toby Cubitt, Debbie Leung, Will Matthews, Ashley Montanaro, Tomasz Paterek, Marcin
Pawtowski, and Aram Harrow.

While completing this paper, we learned of a direct proof by Salman Beigi [4] that the
entanglement-assisted independence number of a classical channel (and hence a classical graph)
is bounded by Lovész’ ¢ (Corollary [14). We are grateful to him for sharing his manuscript with
us prior to publication.

RD is partly supported by QCIS, University of Technology, Sydney, and the NSF of China
(Grant Nos. 60736011 and 60702080). SS is supported by a Newton International Fellowship.
AW is supported by the European Commission, the U.K. EPSRC, the Royal Society and a Philip
Leverhulme Prize. The Centre for Quantum Technologies is funded by the Singapore Ministry
of Education and the National Research Foundation as part of the Research Centres of Excellence
programme.

[1] N. Alon, “The Shannon capacity of a union”, Combinatorica 18(3):301-310 (1998).

[2] N. Alon, E. Lubetzky, “The Shannon Capacity of a Graph and the Independence Number of its Pow-
ers”, IEEE Trans. Inf. Theory 52(5):2172-2176 (2006).

[3] J. Barrett, N. Linden, S. Massar, S. Pironio, S. Popescu, D. Roberts, “Nonlocal correlations as an
information-theoretic resource”, Phys. Rev. A 71:022101 (2005).

[4] S. Beigi, “Entanglement-assisted zero-error capacity is upper bounded by the Lovész theta function”,
arXiv[quant-ph] :1002.2488 (2010).

[5] S. Beigi, P. W. Shor, “On the Complexity of Computing Zero-Error and Holevo Capacity of Quantum
Channels”, arXiv[quant-ph] : 0709.2090 (2007).

[6] C. H. Bennett, P. W. Shor, J. A. Smolin, A. V. Thapliyal, “Entanglement-assisted classical capacity of
noisy quantum channels”, Phys. Rev. Lett. 83(15):3081-3084 (1999); “Entanglement-assisted capacity
of a quantum channel and the reverse Shannon theorem”, IEEE Trans. Inf. Theory 46(10):2637-2655
(2002).

[7] M.-D. Choi, “A Schwarz inequality for positive linear maps on C*-algebras”, Illinois J. Math. 18:565-
574 (1974).

[8] R. Cleve, W, Slofstra, F. Unger, S. Upadhyay, “Strong Parallel Repetition Theorem for Quantum XOR
Proof Systems”, [arXiv:quant-ph/0608146 (2006).

[9] A.Connes, Noncommutative Geometry, Academic Press, 1994.

[10] I. Csiszar, J. Korner, Information Theory: Coding Theorems for Discrete Memoryless Systems, Academic
Press, New York, 1982.

[11] T.S. Cubitt, J. Chen, A. W. Harrow, “Superactivation of the Asymptotic Zero-Error Classical Capacity
of a Quantum Channel”, arXiv [quant-ph] :0906.2547 (2009).

[12] T.S. Cubitt, D. W. Leung, W. Matthews, A. Winter, “Improving zero-error classical communication
with entanglement”, arXiv[quant-ph]:0911.5300 (2009).

[13] T. S. Cubitt, G. Smith, “Super-Duper-Activation of Quantum Zero-Error Capacities”, arXiv
[quant-ph] :0912.2737 (2009).

[14] W. van Dam, P. Hayden, “Rényi-entropic bounds on quantum communication”, arXiv:quant-ph/
0204093 (2002).


http://arxiv.org/abs/quant-ph/0608146

24

[15]

[16]

[29]
(30]
(31]

(32]
(33]

R. Duan, “Super-Activation of Zero-Error Capacity of Noisy Quantum Channels”, arXiv [quant-ph] :
0906.2527 (2009).

R. Duan, Y. Shi, “Entanglement between Two Uses of a Noisy Multipartite Quantum Channel Enables
Perfect Transmission of Classical Information”, Phys. Rev. Lett. 101:020501 (2008).

E. G. Effros, Z.-]. Ruan, Operator Spaces, Oxford University Press, Oxford, New York, 2000.

T. Filk, “Connes Distance Function for Commutative and Noncommutative Graphs”, Int. ]J. Theor.
Phys. 39(2):223-230 (2000).

F. Guo, Y. Watanabe, “On graphs in which the Shannon capacity is unachievable by finite product”,
IEEE Trans. Inf. Theory 36(3):622-623 (1990).

W. Haemers, “On Some Problems of Lovbz Concerning the Shannon Capacity of a Graph”, IEEE
Trans. Inf. Theory 25(2):231-232 (1979); “ An upper bound for the Shannon capacity of a graph”, Coll.
Math. Soc. J. Bolyai 25:267-272 (1978).

I. Kaplansky, “Modules over operator algebras”, Amer. J. Math. 75:839-853 (1953).

E. Knill, R. Laflamme, “Theory of quantum error-correcting codes”, Phys. Rev. A 55(2):900-911 (1997).
D. Knuth, “The Sandwich Theorem”, Electr. J. Comb. 1(1):A1 (1994).

J. Korner, A. Orlitsky, “Zero-Error Information Theory”, IEEE Trans. Inf. Theory 44(6):2207-2229
(1998).

E. C. Lance, Hilbert C*-Modules: A toolkit for operator algebraists, LMS Lecture Notes Series 210, Cam-
bridge University Press, Cambridge, 1995.

L. Lovész, “On the Shannon Capacity of a Graph”, IEEE Trans. Inf. Theory 25(1):1-7 (1979).

R. A. C. Medeiros, R. Alleaume, G. Cohen, FE. M. de Assis, “Zero-error capacity of quantum channels
and noiseless subsystems”, VI Int. Telecommunications Symposium (ITS), 3-6 Sept 2006, Fortaleza CE,
Brazil (2006); R. A. C. Medeiros, R. Alleaume, G. Cohen, F. M. de Assis, “Quantum states characteri-
zation for the zero-error capacity”,jarXiv:quant-ph/0611042 (2006).

S. Pironio, M. Navascués, A. Acin, “Convergent relaxations of polynomial optimization problems with
non-commuting variables”, arXiv [math.0C] : 0903.4368(2009); M. Navascués, S. Pironio, A. Acin, “A
convergent hierarchy of semidefinite programs characterizing the set of quantum correlations”, New
J. Phys. 10:073013 (2008).

V. Paulsen, Completely Bounded Maps and Operator Algebras, Cambridge Studies in Advanced Mathe-
matics 78, Cambridge University Press, 2003.

C. E. Shannon, “A mathematical theory of communication”, Bell Syst. Tech. J. 27:379-423 & 623-656
(1948).

C. E. Shannon, “The zero-error capacity of a noisy channel”, IRE Trans. Inform. Theory, IT-2(3):8-19
(1956).

L. Vandenberghe, S. Boyd, “Semidefinite Programming”, SIAM Review 38(1):49-95 (1996).

J. Watrous, “Semidefinite programs for completely bounded norms”, arXiv[quant-ph]:0901.4709
(2009).


http://arxiv.org/abs/quant-ph/0611042

	I Classical channels, graphs and zero-error communication
	II Quantum channels and non-commutative graphs
	III Zero-error communication with and without entanglement
	IV A quantum Lovász function
	V Semidefinite formulation and other properties
	VI Applications and discussion
	VII Non-commutative graph theory?
	 Acknowledgments
	 References

