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Computable Bounds for Rate Distortion with
Feed-Forward for Stationary and Ergodic

sources

Iddo Naiss and Haim Permuter

Abstract

In this paper we consider the rate distortion problem of réigctime, ergodic, and stationary sources with feed
forward at the receiver. We derive a sequence of achievatilecamputable rates that converge to the feed-forward
rate distortion. We show that, for ergodic and stationanyrces, the rate

Rn(D) = %minI(X’" — X"

is achievable for any:, where the minimization is taken over the transition cdnding probabilityp(z™|z™) such
that E [d(X”, X”)] < D. The limit of R, (D) exists and is the feed-forward rate distortion. We followll&ger's
proof where there is no feed-forward and, with appropriatalification, obtain our result. We provide an algorithm
for calculating R, (D) using the alternating minimization procedure, and preseweral numerical examples. We
also present a dual form for the optimization ®f,(D), and transform it into a geometric programming problem.

Index Terms

Alternating minimization procedure, Blahut-Arimoto atgbm, causal conditioning, concatenating code trees,
directed information, ergodic and stationary sourcesgenc programming, ergodic modes, rate distortion with
feed-forward.

|. INTRODUCTION

The rate distortion function for memoryless sources is Wwatbwn and was given by Shannon in his seminal
work [I]. Shannon([1] showed that the rate distortion fumetis the minimum of mutual information between the
sourceX and the reconstructioi’, where the minimization is over transition probabilitig&:|) such that the
distortion constraint is satisfied, i.€E, {d(X,X)} < D. In the case where the source is stationary and ergodic,

Gallager [2] showed that the rate distortion is the limit bé tfollowing sequence of rates. Each member of the
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sequence is theth order rate distortion function, which is the solution bé&tfollowing minimization problem
1. A
—min [(X"; X™).
n

The minimization is over all conditional probabilitie$z™|2™) such that the distortion constraint is satisfied, i.e.,
E {d(X",X")} < D. Gallager showed that the limit of the sequereein I(X™; X™) exists and is equal to the
infimum of the sequence.

The problem of source coding with feed-forward was intrastidoy Weissman and MerhaV][3] and by

Venataramanan and Pradhah [4], and is depicted i Fig. lssWein and Merhai/[3] named the problem Competitive

T(X") €{1,2,..,2"%} .
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Fig. 1: Source coding with feed-forward: the decoder kndwesgource with delay, and needs to reconstruct the
source within the constrairit {d(X",X")} < D.

Predictions. In their work, they defined a set of functionat thredict the followingX; given the previousy‘—'.
After defining theloss function betweenX; and the prediction, the objective was to minimizing the &tpe loss
over all sets of predictors of siz&/. An important result in[[3] is that in the case where the irat@mn process
W; = X' — F;(X* 1) is i.i.d. the distortion-rate with feed-forward functios the same as the distortion-rate
function of W;, where there is no feed-forward. In particularXf is an i.i.d. process, theW; = X; and thus the
distortion-rate with feed-forward for the sourég is the same as if there is no feed-forward.

Venkataramana and Pradhan [4] gave an explicit definitiothefrate distortion feed-forward for an arbitrary
normalized distortion function and a general source. Tge&l was to provide the rat® of a source given a
distortion D using causal conditioning and directed information. Tharse of information is modeled as the
process{X,} and is encoded in blocks of lengihinto a messagd” € {1,2,...,2"%}. The messagéd (after
n time units) is sent to the decoder that has to reconstrucptheess{ X,,} using the messag& and causal
information of the source with some delayas in Fig[1.

For that purpose, Venkataramanan and Pradhan [4] definethélasures

N 1 Xxn Xn
T(X — X) = lim sup ~ log — 2 X"
inprob 1 p(X"|X™5)p(X™)

and

X 1 xn X
I(X 5 X) = liminf * log — 25X
prab % (][ p(X7)

The limsup in probability of a sequence of random variall&s } is defined as the smallest extended real number



a such thatve > 0,

lim Pr[X,, > a+¢€ =0,

n—oo

and the liminf in probability is the largest extended reainer 5 such thatve > 0,

lim Pr[X,, <f—¢=0.
n—oo

The main result in[[4] is that for a general sourcE,,} and distortionD, the rate distortion with feed-forward
R(D) is given by

R(D) = i%fT(X — X),

where the infimum is evaluated over the $ebf probabilities{p(z"|z™)},>1 that satisfy the distortion constraint.

Moreover, if
I(X - X)=I(X - X),
Venkataramana and Pradhan showed In [4], that

R(D) = inf lim %I(X" — X™).

The work of Venkataramanan and Pradhan has made a significattibution since it gives a multi-letter
characteristic for the rate distortion function with fefedward. In [5], they evaluated these formulas for a stock-
market example and provided an analytical expression ferrétte distortion function. However, these types of
formulas are still very hard to evaluate for the general casehis paper we show that assuming ergodicity and
stationarity of the source, the rate distortion functiorthwieed-forward and delay = 1 is upper bounded by

R, (D), where

1 N
R,.(D)=— min I(X" = X"™). 1)
T p(&m|am):E[d(X ™, X™)|<D
We further show that the limit of the sequengR,, (D)} exists, is equal tanf,, R, (D), and is the rate distortion
feed-forward functionR(D). These expressions fdt,, (D) are computable using a Blahut-Arimoto-type algorithm

or using geometric programming, as demonstrated here.

In most models with causal constraints, such as feedbadkneli® or feed-forward rate distortion, the causal
conditioning probability, as well as the directed inforfoatcharacterizes the fundamental limits. In order to as&lre

these models, the causal conditioning probability wasthiced by Massey [6] and Kramér [7] and is defined as

n

p(e]2"=) = [ ol 2"). @)

=1

The difference between regular and causal conditionindnd in causal conditioning the dependencezpfon



future z; is not taken into account. Following the causal conditignimobability, Massey([6] (who was inspired

by Marko’s work [8] on Bidirectional Communication) intraded the directed information, defined as

I(X™ — X™) 2 H(X™) — H(X"||X™)
= Xn:I(Xi;XZ-|XH).

1=1

The directed information was used by Tatikonda and Mifté¢r F®rmuter, Weissman, and Goldsmith][10], and
Kim [LI] to characterize the point-to-point channel capawiith feedback. It is shown that the capacity of such
channels is characterized by the maximization of the di@dformation over the input probabiligy(z™). In a
previous paper [12], we used these results and obtaineddsdonestimate the feedback channel capacity using a
Blahut-Arimoto-type algorithm (BAA) for finding the globaptimum of the directed information.

The main contribution of this work lies in extending the ashibility proof given by Gallager iri [2] to the case
where feed-forward with delay = 1 exists. The extension is done by using the causal conditipdistribution,
p(2™||2™~*), rather than the regular reconstruction distributigf™ ), in order to construct the codebook. The proof
given is fors = 1, but can be extended straightforwardly to any delay 1. The difficulty in this modification is
that while in [2] the codebook was an ensemble of sequenceke (words) from the reconstruction alphabet using
p(2™), our codebook is an ensemble of code trees uging ||« *). This induced a major problem while showing
that the probability of error is small, as discussed in ®&dilll These difficulties were overcome by appropriate
modification to Gallager’s proofs.

Another contribution of this paper is the development of typtimization methods for obtaining,,(D); a BA-
type algorithm and a geometric programming(GP) form. Thef@h is given as a maximization problem, which
can be solved using standard convex optimization methaaishér, this maximization problem gives us a lower
bound to the rate distortion with feed-forward, which helgsdecide when to terminate the algorithm.

The remainder of the paper is organized as follows. In Seffllave describe the problem model, provide the
operational definition of the rate distortion function witred-forward, and state our main theorems. In Se¢fidn I
we show thatR,, (D) is an achievable rate for all and any distortionD, and in Sectiofi 1V we show that the limit
of R,(D) exists and is equal to the operational rate distortion fonctin SectionlV we present an alternative
optimization problem forR,, (D) in a standard geometric programming form that can be soluedenically using
convex optimization tools. In Sectign VI we give a descoptof the BAA for calculatingR,,(D) and present the
algorithm’s complexity and the memory required, and in BedV/Illwe derive the BAA and prove its convergence
to the optimum value. Numerical examples are given in Se@bIlto illustrate the performance of the suggested

algorithms.

Il. PROBLEM STATEMENT AND MAIN RESULTS

In this section we present notation, describe the problerdainand summarize the main results of the paper.

We first state the definitions of a few quantities that we useuncoding theorems. We denote By* the vector



(X1, Xs,...X,,). Usually we use the notatiai™ = X7 for short. Further, when writing a probability mass funatio
(PMF) we simply writePx (X = z) = p(x). An alphabet of any type is denoted by a calligraphic lefterand its
size is denoted byX|.

In the rate distortion problem with feed-forward of delay= 1, as shown in Fig[]1, we consider a general
discrete, stationary, and ergodic SOUfkcE, }, with the nth order probability distributiop(z™), alphabett and
reconstruction alphabet. The normalized bounded distortion measure is definedl:a¥” x X" — R* on pairs

of sequences.

Definition 1 (Code definition)A (n, 2", D) source code with feed-forward of block lengthand rateR consists

of an encoder mapping,
X" = {1,2,...,2"7},
and a sequence of decoder mappipgs = 1,2, ..., n,
g {1,2,..,2" " x Xl X, i =1,2, .. ()

The encoder maps a sequenceto an index in{1,2,...,2"#}. At time i, the decoder has the message that was

sent and causal information of the soure&; !, and reconstructs thgh symbol sentg;.
Definition 2 (Achievable rate) rate distortion with feed-forward paf, D) is achievable if there exists a sequence
of (n,2"%, D)-rate distortion codes with

lim E [d(X",X")} <D.

n—roo

Definition 3 (Rate distortion)The rate distortion with feed-forward functiaR(D) is the infimum of rates® such
that (R, D) is achievable.

In this paper, we define the mathematical expression forabte distortion function as the following limit

RUY(D) = lim R, (D), (4)

n—roo
where R, (D) is thenth order rate distortion function given by

1 A
Ru(D) = — min (X" = x™).
n p(i"|m"):]E[d(X"’,X")]§D

We show that the limit in[{4) existsR,, (D) is achievable and upper boun&?) (D) for all n. Further, we show
that the rate distortion feed-forward functioR(D), is equal toR)(D). We also provide two ways to calculate
numerically the valugR,,(D); using a BA-type algorithm and a geometric programming form

We now state our main theorems.

Theorem 1 (Achievability oR,,(D)) For a discrete, stationary, ergodic source, and for Anyany n and delay

s =1, R,(D) is an achievable rate.



Theorem 2 (Rate distortion feed-forwarBpr any distortionD, the operational rate distortion functiaR(D) is

equal to the mathematical expressidti!) (D), where RY)(D) is given by [@).
Theorem 3Thenth order rate distortion functioR,, (D) can be written in a geometric programming standard form
as the following maximization problem

1
R, (D) = max — | =D + z") lo ") |, 5
(D) (){()}n< > pa") log 5 )) (5)

Tn

subject to the constraints:
log(p(z")) +log(y(a™)) = Ad(z",3") = Y _logp/(z;|z""',&') <0, V2", 3",
=1

> P (ila™h ) =1, Vi, Vot

Tq

A>0.

Theorem 4 (Algorithm for calculating,,(D)) For a fixed source distributiop(z™), there exists an alternating

minimization procedure in order to compute

1 A
Ru(D) = — min I(X" 5 X, 6)
n p(i"|m"):]E[d(X”,X")]§D

Proofs to Theoreril1 arld 2 are given in Secfioh Il and Se€§8rréspectively. The proof for Theorelmh 3 is in
Sectior[Y, the algorithm in Theoreim 4 is described in Sedff@iand proved in Sectiof ViI.

[1l. ACHIEVABILITY PROOF (THEOREMI[T]).

In this section we show that if the source is stationary agdic, thenR, (D) as given in[(b) is achievable for
anyn. In order to do so, we first assume that the source is ergodiks of lengthn, and show achievability. A
source that is ergodic in blocks is one that, by looking aheatetters as a single letter from a super alphabet, we
obtain an ergodic super source (presented]in [2, Chapt§r J18en, for the general ergodic sources, we follow a
claim given in [2] about ergodic modes, as explained furtirerThe distortion is assumed to be normalized, finite,

and of the form
A" #") = = 3 d(wl ) ™
o, r) = — X, z;),
) n ‘ 1—m?
for somem. An example for such a distortion can be found[ih [5] and int®adVIIl] in an example called the

stock-market.

Theorem 5Consider a discrete stationary source that is ergodic inkisl@f lengthn. For any distortionD such
that R,,(D) < oo andd > 0, and for anyL sufficiently large, there exists a codebook of trggsof length L with
|| < 2L(Ea(D)+9) code trees for which the average distortion per letter fszgi& [d(XL,XL)} <D+54.



Proof: Let p(2"|z™) be the transition probability that achieves the miniméy(D) and letp(i"||z" 1) be
the causal conditioning probability that correspondg @™ )p(i"|x™).
« Code designFor anyL, consider the ensemble of cod®&s with |T¢| = [2F(F(P)+9) | code trees of length
L, where each code treé € T is a concatenation of /n sub-code trees of lengthh. Each sub-code tree is

generated independently accordingp{@”||z" 1) as in Fig[2.
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Fig. 2: Concatenation of two code trees, each of length 3. The upper branches are foy = 1, and the lower
branches are for; = 0.

« Encoder.The encoder assigns a code tree € 7¢ for everyz” such thatd(z’, 2L (71, 2L~=1)) is minimal.
The sequence” (77, 2%~1) is determined by walking on tree”, and following the branch’~1!.
« DecoderAt time i, the decoder possesses the index of the tfeand causal information of the soure&™?,

and returns the symbadl;(r£, z¢~1) that it produces.

Let us define a test channel as the conditional probability

L/n—1
L -
pr(Et|zh) H plEnitlenit), 8)
and the causal conditional probability
L/n—1
~L .. L— 1 5 i+n—1
pr(E” |z H Pl ™,

where the distribution is according to
Pninxnitn (@"[a") = Py (@"["),

Pan+n||X:ZiIz71 (i-"”xn—l) _ PXn||Xn71 (jn”x"_l)



Moreover, we define for every code treé of length L the measure

pr(@]a’)
pr(@latt)’

wherezt = 2L (7L, zE~1). Note thatl,, (7% — z%) is not the directed information between the sequendesz’,

9)

L(t" = 2%) = log

but simply a measure between a source sequehcand the outputi” of the test channel; (#7|z%), as defined
in @).

Let 7 be the set of all code trees of length and consider the following set,

A={rt eT, 2t e Xl eitherl, (% — 2*) > L(R,.(D) +§/2) or d(z* 2 (% 2271 > L(D +6/2)},
(10)

and letp;(A) be the probability of the setl on the test channel ensemble.

Let us use the notation

:%L(Tc,fol) =zl (arg min d(:vL,:%L(TL,:CLl)),xL) ,
TLleTe

where7¢ is the ensemble of code trees as described in the coding sctdow, letp.(d(X L, 2L (7o, XE~1)) >
LD) be the probability over the ensemble of codgsand source sequences such that the distortion exdeBds
We wish to give an upper bound to the probabifitfd(X~, 2L (Tc, X1 =1)) > LD); for this we use the following

lemma.

Lemma 1For a given sourc€ X;},>; and test channel, we have the following inequality

pe (d(X*,&" (T, X*71)) > LD) < pi(A) + exp{—|Te 27}, (11)
where the setd is described in[(10).
Proof. We first write p. (d(X*, 2% (7T¢, X*71)) > LD) as

pe (X", &5(To, X" 1) > LD) = Y p(a")p. (d(X*,#"(Te, X*71)) > LD|X" = 2%).

zlexrt

For everyz”, let us define the setl, . as the set of all code treed € T for which (7%, z%) € A,
Ar = {tl e T: eitherl, (7% — 1) > L(R,(D) +6§/2) or d(z% zL(rL, 22" > L(D +6/2)}. (12)

We observe thatl(z%, 2% (T¢,2271)) > LD for a givenz® only if d(z%, 25 (75, 25~1)) > LD for every
b e To. Thus,d(z®, 25 (Te,22=1)) > LD only if 7% € A, for everyr! € Tc. Sincer? are independently
chosen,

pe (d(XE, 25 (Te, XE7Y) > LD|XE = 2F) < (py(A,2)) ¢!

= (1 pe(Ac)) 7!,



where A¢, is the complement set ofl,.. We note that the probability that tre€" being in.4¢, depends only
on the branch associated wiiff. In other words, if a treel € A¢ ., then all other trees with the same branch
associated with:” is in A¢ . as well; the same goes fot,.. Hence, we can divide the set of all code trgés

into disjoint subsets3, . ;= that have the same branch associated with!, i.e.,
B, i1 = {rteT @l =2},
wherer”(z-~1) is a walk on treer’ over the branch:“~!. Clearly, the probability of each subsBt,. ;. is
pe(Byr zu) = pr(@F||z" 1)
since the left hand side is a summation of the probabilitieallotrees with the same branch associated with

and we are left with the probability of that one branch.

Now, for everyr’ ¢ Byv ;. C A¢,, and due to the definition ofl¢,, we have

~L|,.L
L(rE s oby = log PLE1T) 1 p by,
e =l Gy = D)
Therefore,
pL(i,L”xL—l) > pL(i,leL)2—LRn(D)’ (13)

and we obtain that

pe (X, 25(To, X271 > LDIXE = &) < (1 — pi(ASL)) !

[Tel
= 1-— Z pt(BIL7iL)
BmLyiLCA;L
[Tel
=[1- > pL(@[jz"")
mAL:BmLYiLC.A;L
[Tc|
(@) —LR.(D) A
< [ 127k Yoo @t

s»L . c
z .BIL,:EL CAmL

where (a) follows the inequality in equatidn {13).
Using the inequality1 —ab)* < 1—a+exp{-bk}, and takings = Y15 ,  cae, pL(@"]2"), b= 2~ LEn(D),
we find

pe (d(X", 2" (Te, X)) > LDIXF =2") <1 - Z pr (@l |zt) + exp{—|Te|2 L (D)},

+L . c
x 'BzL,iLC‘AIL



10

By taking a sum over* we remain with

pc(d(XL,iL(TC,XL 1 >LD Zp XL L(TC xL- 1))>LD|XL::CL)

<> (") (1 - > @b+ exp{—|Tc|2—LRn<D>})

+L . c
T 'BIL,:EL C'AZL

- 1_2 Z p(xL,jL)+eXp{—|TC|27LRn(D)}. (14)

L 4L. ¢
bl z -BmL,@LCAzL

Note, that

=

2. > wEhah=3 > )

zl 2L:B 1 .1 CAS, zl &#L:B p L CA°, TEET
1 (L' s T (E

=2 > >, phatTh)

L 4L. ¢ L
zl 2 'BmL,:f:LC‘AILT GBIL@L

(a) Z Z Z p(zt,75)

L c L
b B,r ;1 CAS, 7HEB 1 ;1

=2 >

ab TheAs,
= pe(A°),
where (a) follows the fact that if~ € B,. ;c, thenz” is determined by the tree’ and the branch:”. Now,
continuing from equatiori(14), we obtain
pe (d(X",3"(Te, XP71) > LD) < 1= pi(A°) + exp{—|Tc|27 " (P}

= p(A) + exp{—|To |27 EE(P)Y (15)

We now use the result i _(IL5) in order to complete the prooteftheorem. Furthermore, we can see that the
average distortion of the code satisfies
E [d(X", XE| (< (D +6/2) + pe (d(X "5 (Te, X571) > L(D +6/2) - sup d(a*,a%).
This arises, as ir [2, Th. 9.3.1], from upper bounding théodi®n by D + §/2 when thed(z%, #1) < D +4/2,
and by

sup d(z%, &%)

Ll 2L
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otherwise. By choosingJo| = |21((P)+9) | the last term in[{1l5) goes to zero with increasibgFurthermore,

the first term is bounded by

p(A) <plat e Xt 7L eT: L(+F = 2b) > L(R.(D) +6/2)}

+pdal e Xt tF e T d(at @l 2 ) > L(D +6/2)}. (16)

Note that

L/n 1 ~ni+n niJrn)

1 T x
P (In(TL — k) > L(ﬁRn(D) +6/2) ) =p Z log pA(m’_’,f:ﬁ | nﬁtj_l) > Rn(D) +6/2
nz+1 nz+1

As assumed, the source is ergodic in blocks of lengtRurthermore, the test channel is defined to be memoryless

for blocks of lengthn, and hence the joint process is ergodic in blocks of lengtiihus, with probability 1,

L/n—l Ani+n |, ni+n

xz xT, ; 1 AN | em
Z 10g pA(n:’_zil | n?—z’:;l_)l ) |:10g pA(:. |‘i_)1 :|
i=0 pEniy gy ) n p(@"|[z"—1)

1 .. 1
~Z lim ——
n L—oo L/TL

= R,(D).

Therefore, the probability of the first term ih_{16) goes t@ozas L goes to infinity, and the same goes to the
second term due to the definition of the distortion. In oraefinish the proof, and due to the fact thatgoes to
zero with increasing. and the fact that the distortion is finite, we can chodskarge enough such that
pe (d(X", 2" (T, X271) > L(D +6/2)) - sup d(z*, &%) < 6/2.
xl gL
In this case, we obtai®;, < D+ 4§, and hence the rat®,, (D) is achievable for sources that are ergodic in blocks

of lengthn. |

Much like in Gallager’s proof for the case where there is nedféorward, we note that not all ergodic sources
are also ergodic in blocks, and we need to address these assssll. For that purpose, we neéd [2, Lemma
9.8.2] for ergodic sources. We recall, that a discretetatly source is ergodic if and only if every invariant set of
sequences under a shift operators of probability 1 or 0. In[[2, Chapter 9.8], the author loaksthe operatoi™,
i.e., a shift ofn places, and considers an invariant gt p(Sy) > 0, with respect taI'™. In Lemma 9.8.2 in[[2],

it is stated that one can separate the sourde n’ invariant subset$S; = T%(Sy) } 51, p(S;) = =7, with regard

n/ L
to 7™, such that’ dividesn and the sets5;, S; are disjoint except, perhaps, an intersection of zero fnitiha
These subsets are calledyodic modes, due to the fact that each invariant subset of them under fleeator?™ is
of probability 0 or# In other words, conditional on an ergodic masleeach invariant subset of it with respect

to T, is of probability 0 or 1.

Recall, that by definition,
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where the right-hand side is the average directed infoomabetween the source and reconstruction, determined
according top(&"|z™) that achievesk, (D). Let I,(X™ — X"|i) be the average directed information between
a source sequence from thin ergodic mode and the ensemble of codes, using the prabatili:™|z™) which
achievesR, (D). Note that the directed information can be written as

p(&"[z")

p(@"|lzn=t)

L(X" = X") = ) pla™)p(@"|2") log

n pn
",z

= Y pla")p(E"a")log pff”%”)p(:v"zl

p(@ e )p(a")
=D (p(z")p(@"|2")|lp(@"||lz"")p(a™)) ,
which is convex over the input probabilipy(z™). Thus,
1
L(X" = X™) ;; WX = X0, (17)

We observe that I, (X™ — X™|i) is an upper bound to theth order rate distortion function conditional on the
ith ergodic mode. From Theordth 5, we know that there existslalmmokTc, with |T¢, | = [2LG 10 (X=X )+0) |

code trees of lengtii such that the average distortion constraint holds. Anotihservation is that if a codebook
Te, satisfies the distortion constraint, conditional on theodig modes;, then it has the same effect conditional on

the ergodic modd’(S;_1). In other words, we can encode not only a source sequenceSropwith 7o but

i—17

also a shift of the a source sequencesin; with 7¢,. We use these observations while constructing the codebook

We can now prove Theorel 1, i.e., the achievabilityfgf( D), where the source is ergodic and stationary. An
equivalent version of Theorem 1 is the following: I, (D) be thenth order rate distortion function for a discrete,
stationary, and ergodic source. For abysuch thatR, (D) < oo, andé > 0, and anyL sufficiently large, there
exists a codebook of tre¢g of length L with |T¢| < 2L(E~(P)+9) code trees for which the average distortion per
letter satisfiesE {d(X”, X”} <D+39.

Proof of Theorem[l Let p(2"|z™) be the transition probability that achiev&s, (D) and letp(2"|[z"~1) be

the causal conditioning probability that correspondgte™)p(z™|z").

« Code designFor any L and any ergodic mod§;, 0 < i < n/, construct an ensemble of cod@g,, with

= [2LGIn(X"=X"10)+6) | little’ code trees of lengthL, where each 'little’ code tree is generated
according top(2%||z*~1), as in Fig[2 in Theoreil 5 above. Now, for evéryg i < »’, theith codebook is an
ensemble of 'big’ code trees, which are concatenation’dfittle’ code trees, starting from one iff,, and
followed by one from7c,,, to one from7¢ , . ., where the index is calculated modiolu$ In the example
of a ’'big’ code tree in Fig[13 we see additional letters at thel ef each little’ code tree, i.e., in positions
L+1, 2(L+1),..,n'(L+1), that are fixed. The purpose of the fixed letters is to shiftd¢bguence and
encode it with a codetree from the sequential codebook.,Nbét the overall length of a code tree sums up

to Ll =Ln +n'.
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—] 0 —EI—EIl—EZ—’EI
0 =0 SO O OO

Codetree fronf/g, Codetree fronT¢ Codetree fronT¢

\ 4
Y

i1 i+2

Fig. 3: A code tree from théth codebookp = n’ =3, L = 6.

« Encoder.For everyi, the encoder assigns for every source sequericec S; a code treer™’ from the
ith codebook, such that(z"", 2% (%", 2'~1)) is minimal. The sequence’ (r*', %' ~') is determined by
walking on treer”’, and following the branch:“'~*.

« DecoderThe decoder receives a tre& and causal information of~" and returns the sequenéé’ that it

produces.

Since the distortion constraint for every ergodic mode issfiad due to Theoreml 5, the overall distortion is
satisfied as well. The additional fixed letters are of unknaligtortion, but due to the face that the distortion is
bounded, their contribution is negligible for larde Moreover, note that for every, the ith codebook is of the

same size. Thus, the overall size of the codebook is

n'—1

17el=n" ] 17e.
1=0
n' —1 R
<n H QL(E L (X" =X "]i)+5)
1=0

7’ ~ ’
— 9L(% S L (R X ™ i) +n 5 108
< QL(E I (X" X" )45y 12ain))
— oLn/ (R (D)+o+1550)

Ln

< o(Ln'4n’)(Ra (D) o+ 12500y
Recall thatl’ = Ln’ +n’, and by lettingd’ = § + % we conclude thaf?,, (D) is an achievable rate for the

general ergodic source, as required. [ |

IV. PROOF THAT R(D) = RY)(D) (THEOREME).

In this section we show that the operational descriptionhef riate distortion with feed-forward is equal to the

mathematical one given if_(1L8). This will be done first by stigthat the mathematical expressi®’) (D) is
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achievable, and then by showing that it is a lower bound toréite distortion function. We recall that

1 .
RU(D) = lim — min (X" — X7). (18)
n—oo N p(j"‘m"):]E[d(X"an)]SD

To show thatR!)(D) is achievable we first need to show that the limit of the seqadi®, (D)} exists. For

this purpose, we use the following lemma.

Lemma 2The sequence,, (D),

1 N
R,(D)=— min I(X" = X"),
T p(an|zm):E[d(X™,X™)]|<D
is a sub-additive sequence, and thus
inf R, (D) = lim R,(D).

n—oo

Note, that a sequende:,, } is called sub-additive if for alin, !,
(m + Dam+; < may, + la;.

The proof for Lemmal2 is given in App]A.

We now state a lemma for the achievability Bf") (D).

Lemma 3 (Achievability o2'!) (D)) The mathematical expression for the rate distortion femdsdrd R\ (D) is
achievable, and thus upper boun@l&D).

Proof: We showed in Theorel 1 that for amny R,,(D) is achievable. Further, in Lemnia 2 we show that the
limit exists and equal to the infimum, and hence is achievidale Therefore, we conclude that the mathematical
expressionR() (D) is achievable, and forms an upper bound to the operatiorsaiigéion R(D). ]

To show thatR!)(D) is a lower bound to the rate distortion function, we provitle following lemma

Lemma 4 (Conversefhe mathematical expressioR()(D) is a lower bound to the operational rate distortion

function.

For the completeness of the paper, we provide the proof ofrhaf, this in App[B. However, similar proof was
presented by Venkataramana and Pradhahlin [4], and theiessipns involved limit in probability of the entropy
and directed information as described in Seckion I.

Proof of Theorem[Z Combining LemmaEgl314 provides us with the proof for our fundatal theorem, stated

in Sectior(]), i.e., the operational rate distortion fuocti?(D) is equal to the mathematical ong{")(D). [ |

V. GEOMETRIC PROGRAMMING FORM TOR,, (D) (THEOREMI3)

In this section we show that theth order rate distortion function with feed-forwaf®, (D) can be given as a
maximization problem, written in a standard form of geonggprogramming. For this purpose we first state the

following theorem.
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Theorem 6The nth order rate distortion function?,,(D), can be written as the following maximization problem

R,(D)= max _< )\D+Zp )log v(z )) (19)

A>0,y(zm) N

where, for some causal conditioned probabilityz™||z™), v(z™) satisfies the inequality constraint

p(a™)y(z™)27 MEED < pl (2] |27). (20)

In App.[Q we provide two proofs for Theorelm 6; the first is samito Berger’s proof in[[13] for the regular rate
distortion function based on the inequalitg(y) > 1— i and the second uses the Lagrange duality as presented in
[14] and [15] that transforms a minimization problem to a im@xation one.. Appl_C also includes the connection

between the rate distortion function and the paramgterhich states that the slope &, (D) in point D is —%.

Proof of Theorem[3 Considering the theorem above, our interest now is to adpestconstraints in order
to obtain a geometric programming form. We note that thenaigtition problem in[{719) does not change if we

maximize overp’(z"||2™) as well, and the constrairfi (20) is no longer for sophei.e.,

R,(D) = ax AD + )lo 21
D)= 150, @) [em) 1 < Zp el )> (&9
where~(z™), p’(2"||2™) satisfy the inequality constraint

p(a" )y (a™) 2 <l (an|3"). (22)

The above statement is true since, on the one hand, the nzatiani in [19) increases upon maximizing over
another variablep’(z™||2"), as in [21); on the other hand, the variable(z™), p™*(2"||2") that achieves(21)
satisfy the constrainf_(20) in Theordr 6, and hence the miaation problem in[(211) cannot be greater than the

one in [19).
To obtain a geometric programming standard form we transfitie constraint in((22), such that
pla™)y(@m)2 7 "2y (2 ]gm) < 1.

Taking thelog of both sides, we obtain
log(p(z™)) + log(y(a™)) — Ad(z",2") = Y logp/(a"||") < 0
i=1

Note that maximizing ovep’(z"||2") is the same as maximizing over its produ¢fs(z;|=*~*, 2)}*, [10,
Lemma 3]. Therefore, we can conclude that the rate distortith feed-forwardR,, (D) can be given as a geometric

programming maximization form,

R,(D) = max D + )lo
D) Ay (@m) {p (zslei=1,2%) }po < Zp 8@ )>

xn
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subject to
log(p(z")) +log(y(2")) — Ad(z",&") = > logp/(w;|"~*, &) <0, V", ",
i=1

Zp'(:vi|xi_1,:%i) =1, Vi Vo't

Zq

A>0.

Hence, we obtain a standard form of geometrical programniiihngs GP problem can be solved using standard

convex optimization tools. |

VI. EXTENSION OF THEBAA FOR RATE DISTORTION WITH FEEBFORWARD
In this section we describe an algorithm for calculatiRg(D), where

1 N
R,.(D)=— min I(X" — X", (23)
T p (& |om):E[d(X™, X )| <D
using the alternating minimization procedure. This metivag first used by Blahut and Arimotio [16], [17] to obtain
a numerical solution for the i.i.d. source rate distortion dor the memoryless channel capacity. Recently,_in [12]

we extended this method for finding the global maximum of @ieWwing optimization problem-

C=l max (X" —=Y"),

nop@r|lyn—*)
and we apply similar methods here.
Before we describe the algorithm, let us denote by (2" |2™), ¢ = q(2"||]2"~!) the PMFs that are participating

in the minimization. Further, let us consider the doublamojation problem given by

R,(D) = % [—)\D + n;liqn K(r, q)] ) (24)

where
K(r,q) = Trr(r,q) + 2B, [d(X", X")]

and Irr(r, q) is the directed information that can be written as

r(z™z™)

Ipp(r,q) = (X" = X™) = Z p(z™)r(z"|2") log 2

) n
z",x

(25)

In Section[VI] we show that the double optimization probleieg in (23) is equal to the one given ih_{23).
Equations[(2K),[(25) allow us to apply the alternating miaation procedure.

A. Description of the algorithm

In Algorithm[I we present the steps required to minimize theated information where the input PMKx™)

is fixed. The parametex is used in the Lagrangian with which we optimize the diredtédrmation. The value of
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Algorithm 1 Iterative algorithm for calculatind?,, (D), wherep(z™) is fixed.

(a) Fix a value of\ > 0 that determines a point on the, (D) curve.

(b) Start from a random causally conditioned pajfiti™||="~1). Usually we start from a uniform distribution,
i.e., ¢°(2"||z"~t) = 27" for every (z™,3").

(c) Setk =1.

(d) Computer®(2™|z™) using the formula
qk—l(£n||xn—l)2—>\d(1",i")
Zi" qkfl(in||xn71)27)\d(z",i") '

(e) Calculate the joint probability(z”,2") = p(z™)rF(2"|2"), and deduce the causal conditioned PMF
¢"(@"[]z"~") as in [2).

rk(E"z") =

() Calculate the parameter

K __d@le" )

Cgn gn-1 = (@ |z 1)

(g) Calculate

F=log max ck, o= Y p(a)rt(@"a") og ek .
AL A ’ N ’
™,z

(h) If F >¢, setk:=k+ 1, and return to (d).

(i) The rate distortion function, with distortioM, = > ., .. p(z™)rk (27 |z™)d(z™, "), is

1 AN ,.n
Ry, (Dy) = > ")t (E|a") log 7

. pn

Dy, and henceR,, (D;,) depends on\; thus choosing\ appropriately sweeps out th, (Dj;) curve. The algorithm
stops whenF' < e. In App.[D we provide upper and lower bounds, used show thdt i ¢, we ensure that
|RE (D) — Rn(Dy)| < e.

Now, let us present a special case and a few extensions farifig[1.
(1) Regular BAA, i.e, the delay s = n. For delays = n, the algorithm suggested here meets the original BAA,
where instead of step (d) we have

k(An| n) B qk—l(i.n)2—>\d(m",i")
A S S R (g2 A )

and in step (e)¢*(2™) corresponds to the joint probabilip(z™)r*(2"|z") as well. Moreover, the expression

for ¢k, .. is reduced to
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and the termination of the algorithm in step (g) is defined by

F = logmaxck, — Z p(z™)r* (&"z") log ek, < e,
I’Vl

as in the regular Blahut-Arimoto algorithm [16].
(2) Function of the feed-forward with general delay s. We present a generalization of the algorithm, where the
feed-forward is a deterministic function of the source wetime delays, =% = f(2°~*). In that case, step
(d) is replaced by
qk—l(imHZn—s)Q—)\d(z",i")
T gF @ [[en )2 MG

rk (@ z") =

and in step (e) we have

n

" (@) = [ p(@ala ™, 27),
i=1

where we calculate(;|4°~1, i) from the joint distributionp(z™, #") = p(x™)r*(2"|z™). The algorithm

is terminated in the same way, where

K _ @]z )

Cgn zn-s = qkfl(:&nHznfs) )

B. Complexity and Memory needed

Computation complexity and memory needed for the algorigimove is presented in Takile I.

TABLE I: Memory and operations needed extended BAA for seurading with feed-forward.

Operation Memory

Wit s e o< (S1(X7 X)), regular BAA | O((1X12)") | (X]1&])" + 1" + |

M o o)< (RTCE = X)), Alg || OXIEN") | 20X112)" + "

VII. DERIVATION OF ALGORITHM [l

In this section, we first describe the alternating minimatrocedure, and then (as given in Alg. 1) prove its

convergence to the global minimum given by

R.(D) = min I(X™ — X™).

r(@n||zn=1):E[d(X ", X™)|<D

SN
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Throughout this section, note that the input probability™) is fixed in all minimization calculations. Further, we
denote bylrr(r,q) the directed information, given by

r(z™|a™)

Irp(r,q) = Z p(a”)r(2"[z")log W

Tm,xm

The alternating maximization procedure is described ir) fl2two maximization functionsgs(uy) € Az which
is the point that achievesip,,, - 4, f(u1,u2), ande; (u2) € A; which is the one that achievesp,, 4, f(u1,u2).
Although in this paper we wish to solve a minimization prableits negative can be used in the alternating

maximization procedure. We now state the alternating mepgtion procedure lemma.

Lemma 5 (Lemmas 9.4, 9.5 in[18], "Convergence of the altimganaximization procedure”) Let f(uy,uz2) be a
real, concave, bounded from above function, that is coontistand has continuous partial derivatives, and let the
sets A, As, over which we maximize be convex. Further, assume th&t;) € Ay and ¢;(u2) € A; for all

uy € Ay, us € As. Let us define an iteration as the following equation

(ulfvug) = (Cl(ug_l)’CQ(cl(ug_l))) )

and in each iteration we consider the valffe= f(u¥, u%). Under these conditiondimy._.., f* = f*, where f*

is the solution to the optimization problem.

The rate-distortion function with feed-forward can be,m§lig], carried out parametrically in terms of parameter
A, which is introduced as a Lagrange multiplier. In Apg. D wewlthat this parameter defines the slope of the
curve R, (D) at the point it parameterizes, and the slope is given‘—nléy We now write the following parametric
expression forRk,, (D).

Ru(D) =~ min [1(X™ = X™) + A (ET [d(X",X")} - D)] , (26)
n r(En|zn)
where D is the distortion at the point*(z"|2™) that achievesR, (D). Here, the value oD is not an input to the

minimization, but is determined by the parameker

Note that the directed information is a function of the jofistribution p(z™)r(2™|2™). Since the source
distribution is given, the directed informatiofrr is determined byr = r(iZ"|2™) alone. Let us define by

q = q(2#"||2"~1) the causal conditioning probability. Now, let us define thadtional
K(r,q) = Irr(r,q) + XE, [d(X", X™)] . (27)

From [28) and[(27) we can see, that (D) can be written as

Ru(D) = 1 [—)\D + min K (7, q)} ,

n

where ¢(2"~1||z™) corresponds to the joint distributiop(z™)r(2"|2"), and D is the distortion at the point

r*(2"]2™) that achievesk, (D).
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In this section, we show that we can use the alternating nimaition procedure for computing,, (D). For this
purpose, we present several lemmas that assist in provinmain goal. In Lemma&l6é we show that the expression
we minimize satisfies the conditions in Lemia 5. In Lenltha 7 Wwewsthat we are allowed to minimize the
functional K overr(2"|z") andq(2"||z"~!) together, rather than ove(z™|z™) alone, and thus use the alternating
minimization procedure to achieve the optimum value. Lerfghia a supplementary claim that helps us to prove
LemmalT, in which we find an expression fg{i"||x"~1) that minimizes the functionak’ wherer(3"|z") is
fixed. In Lemmd® we find an explicit expression fdri™ |z™) that minimizes the functionak whereq(z"||z" 1)
is fixed. Theorenil4 combines all lemmas to show that the altgrg minimization procedure, as described in Alg.
[0, converges. We end with a supplementary claim about therugpd lower bounds to the rate distortion, and then
prove that the stopping condition described in Alh. 1 enstinat the errofRX (D) — R,,(D)| < e. From here on,

we denote the probabilities over which we minimizeras r(2"|2"), ¢ = q(2"|]z"1).

Lemma 6For a fixed input PMF(z"), the functionalK given in [2T) as a function ofr, ¢} is convex in{r, ¢},
continuous and with continuous partial derivatives. Meerothe sets of probabilities ¢ (denoted byA;, As)

over which we optimize are convex.

Proof: Since the functionak’ consists of a linear (and thus convex) expression ire., [, {d(X", X")}, we
only need to verify that the directed information is convi@se first write the directed information in the following
form

IX = X" == 3 pla”, 4" log -2
p(an||z")

pz")g(@"[]z" ")
(@n[|27)q (@ ||z —1)

Il

|
g
s
\.&:

") log
) p

g(@™|Jz" ")
p(z™, ") /p(a")

Il

|
=

S
LS
=
3
)

09

_ N Cad i
= - nznp(:v Jr(@"a") log = s
—IFF(T7Q)

This form is the negative of a concave function as proven #) [lemma 2]. Furthermore, in the same lemma we
show that the directed information is continuous with comtius partial derivatives; the same explanation applies

here. It is also simple to verify that both sets we minimizeroare convex, i.e., setd;, A,, where

Ay = {r(@"z") : r(&"]z"™) > 0 is a regular conditioned PMF

Ay = {q(@"]|z" ") : q(2"||2" ') is a causally conditioned PMF (28)
|

Recall that in order to use the alternating minimizationgedure we minimize ovefr(i™|z"), ¢(2"|lz"~1)}
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instead of over(z"|z™) alone, and thus need the following lemma.

Lemma 7 For any discrete random variablég®, X", the following holds

1
R,.(D) = — [—)\D + min K(r,q)| ,
n ,q
where D is the distortion at the point*(2"|2™) that achievesk,, (D)
To prove this lemma, we note that {d(X", X")} , Which does not contain the variahjgis part of the functional
K. Hence, it suffices to show that

S |
min —/(X" - X") = min  min —[(X"— X" (29)
r(@nlan) g(@|lzn=1) r(@nfan) 1

The proof is given after the following supplementary claimwhich we calculate the specifigz™||z" 1) that

minimizes the directed information wheiz™|2™) is fixed.

Lemma 8For fixedr(2"[2z"), there exists a unique(r) that achievesning(znjzn-1 I(X™ — X™), and is given
by

(0 Infl :p(
¢ @) = PR, (30)

wherep(z™||2™) is calculated using the joint distributigi(z™)r(z™|x™).

Proof for Lemma [&

Irp(r,q) — Irr(r,q")

= 3 Pl ) log

NS e ) Lo )
> pla)r(a ) log e

n pn n pn
A ", T

_ (5 1og T E ")
= Y pla™)r(@"|a")log )

xm "
P £ oY e s
= p(z™||12™)g* (272" 1) log = S —
2 P8 ") o8 e ey

=D (p(a"||z")g" (@"[|«"~") | p(z"||2")q (2" []=" "))

(a)

> 0,
where (a) follows from the non-negativity of the divergenEquality holds if and only if the joint PMFs are the
same, i.e.g = ¢*. [ |

Proof of Lemma [Z# The PMF that minimizes the directed information is the onat ttorresponds to the joint
distributionr (2" |z™)p(z™); thus [29) holds, and thus the functiorfdlcan be minimized over both ¢ combined.

In the following lemma, we derive an explicit expression f¢#" |2™) that achievesk,,(D), whereq(2"||z" 1)

is fixed.
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Lemma 9For fixedq(2"||z"~1), there exists:; (¢) that achievesk,, (D), and is given by

q(:&n| |In71)27)\d(x",2")
S on a2

r(@"a") =

Proof: Following [14, Ch. 5.5.3], since we are solving a convex mjation problem, we can apply the KKT

conditions with the constrainfs_ ., 7(¢"|2") = 1, and set up the functional
J= Z p(z™)r(2" |z )log%—kz\ Z p(z™)r(2"z™)d(z", &™) — +Z Z "am).
Solving W;f‘n) = 0 yields the expression far(i"|z") as

q(i.n| |xn—1)2—)\d(;ﬂ",£")

R S P L)

(31)

Another lemma that is required is one that states that thaxigthgn, when converges, remains fixed on its variables.
we already know that the variablethat optimize the directed information is unique; we havehow that within

the algorithm, the variable is unique as well.
Lemma 10Using the iterations in Ald.]1, the variableis unique, and does not change if convergence is achieved.

Proof: The uniqueness is proven in a similar way to a proof given bghBt in [16, Theorem 6], and we

follow it with appropriate modifications. We recall that inetkth iteration,

K(*,¢") = Tep(r*, ") + B [d(x, X™)]
rk (&7 2")

_ ny,.k(an|,.n
= Z p(z")r* (2" |z")log gk (@ [[gn—1)2-Ad(=" @)

n pn
™, T

Further, from [16, Theorem 6] we can see that

k(sn||l,.n—1
n n "n n— T "n q T €
KO, g = = 37 pla)r (@ o log<§jq Jata G >>+§j 3o tog S

",z ", "

Hence,

k(sn|.n k(sn||l,n—1\9—XAd(z™ &™)
Kk, ¢") — K@kt "ty = E p(z™)rF(2"]z") log (o [z D)2 )

™ "
k4+1/an||n—1
k+1 77" %
+ nzn |z™) log ¢ (@] |znT)
",
QS play ey (1 - o @l )2
Zn @n rk(zn|zm) Zﬁm qk (f"||l‘"—1)2—>\d(mn@n)

k ik In—l
* 2 et ) (1 )

",z
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TkJrl N
® Z p(z™)rk (&"z") (1 — 7rk(£n|;n)))

™ "
k(~n n—1
R . _ g (@™ ||z 1)
£ Y pan g @ ) (1— g @)
S )

=040,

where (a) follows from the inequalityg(y) > 1— i and (b) follows from Equatiori (31) whete= ¢*, r = rF+1,
Note, that we have strict inequality unlegs= ¢***, r¥ = r*+1. Thus, K (¥, ¢*) is non-increasing and is strictly

decreasing unless the distribution stabilizes, and hame@iniqueness of the optimum parameteemerges. |
Now, we can prove Theorefd 4 as stated in Sedfibn II.

Proof of Theorem[d First, we have to show the existence of a double minimizatimilem, i.e., an equivalent
problem where we minimize over two variables instead of amlg; this was shown in Lemnia 7. Now, in order for
the alternating minimization procedure to work on this oytiation problem, we need to show that the conditions
given in Lemmab are satisfied for the functiodd] this was shown in Lemnid 6. The steps described in[8lg. 1 are
proved in Lemmagl8 arld 9, thus giving us an algorithm to compt(D), where the minimization is evaluated

according to parametex. [ |

Our last step in proving the convergence of Alh. 1 is to show tie stopping condition ensures a small error. For
this reason we state a lemma introducing the existence afdsto the rate distortion with feed-forward function, and
then conclude that the stopping condition does ensure d smat in the algorithm, i.e ,R* (D) — R,,(Dy)| < e,
where RF(Dy,) is the upper bound in th&th iteration, andD;, = E,« {d(X",X")}. For this purpose, we define

the following expressions in each iteration,

P il T
",z qk—l(jn”xn—l)
—1
,yk(xn) _ <Z qk_l(:ﬁn||xn_1)2_>‘d(mn’in)> ) (32)

Lemma 11Let the parametek > 0 be given, and let®, . ., 7¥(z") be as in[(3R) in theth iteration of Alg.

x

[@. Then, at point
Dy =E,. [d(X",X")] :
we have the following bounds.

IF(Dy) < Ru(Dy) < If;(Dy),
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where

I5(Dy) = = —AD+ZP Ylogy*(z") = Y p(a™)rF (@) log ki o |
If(Dk)__< )\D—i-Zp )log ¥ (2™) — log max LS ) (33)

Note, thatRE (Dy) = I} (Dy,).

The proof for Lemma&1 is given in ApplD.

From Lemmd_Ill we can conclude the following claim
Corollary 1 Let us define the error in the algorithm g8F (D) — R,,(D)|. The error defined here is smaller than
if the following inequality is satisfied:

F =log max c%, ane1 Z p(x")rk(£"|x")logcgnymn,l <e,

g1
™,z

whereck is defined in thekth iteration by Equation (32).

Proof: The proof follows from Equatiod (33), in which the upper bdwand lower bound differ only in their

last expression. Thus, I < ¢, thenR,,(D) is close to the upper bounl” (D) by, at most.. [ |

VIIl. N UMERICAL EXAMPLES

In this section we present several examples for the ratertlimt source coding with feed-forward. First, by using
Alg. [[lwe demonstrate, for a specific example, that feed-@ndvdoes not decrease the rate distortion function where
the source is memoryless (i.i.d.) as shown[in [3]. Then weridetwo explicit examples for a Markovian source;
one where the distortion is single letter, and one with a gEristortion function as presented [n [5]. Geometric
programming is used as well, to verify our results.

In all of the examples, we run Al@] 1 with various values)gfand thus construct the graph &f,(D) using
interpolations. Alternatively, one can use the geometragpamming form and find, for every distortial given

as input, the ratev.

A. A memoryless (i.i.d.) source

Analogous to the memoryless channel, it was shown by Weissme Merhav([3] that for an i.i.d. source feed-
forward does not decrease the rate distortion functionhis éxample, the source is distributéd ~ B(3), and

the distortion function is single letter, i.e.,
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Running our algorithm with delay = 1 and block length. = 5, we would expect to obtain the same result as

with no feed-forward at all (as shown in[19, ch. 10.3.1])ie¥his given by

Hy(p) — Hy(D), 0< D < min{p,1~
R(D) = v(p) — Hy(D) min{p, 1 — p} (34)
0, D > min{p,1 — p}
Note thatH,(p), H,(D) are the binary entropies with parametgrsD, respectively. Indeed, the function above

and the performance of Alf] 1 coincide, as illustrated in Big\Note that the joint distributiop(x™)r (2" |2") is the

]
0.8\\
__ 06
S
& 04
0.2
.
N
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0 01 02 03 04 05
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Fig. 4: Rate distortion function for a binary source, anddféerward with delay 1. The circles represent the
performance of Alglll, regular line is the plot 6f (34).

same as the one that achieves the analytical calculatiomhich p(z;) = 0.5, and X @ X ~ B(D). For D = 0.2
andn = 3, solving the geometrical programming form using a Matlallee@roduces the rat& = 0.278072,
which is close toR(0.2) using Equation[(34). The value afturns out to be 6, which means that the slope at point
(R =0.278072,D = 0.2) is -2.

In the following example, we present the performance of Blfpr a Markov source and a single letter distortion.

B. Markov source and single letter distortion

The Markov source is presented in Fid. 5. This model was solwe Weissman and Merhav inl[3] for the

Fig. 5: A symmetrical Markov chain.

symmetrical cas@ = ¢q. We extend this model for the case of general transition gvdilties p, . The analytical

solution for this example is detailed in Adpl E; there we shbat for anyn

Ra(D) = Hy(m) + "% (m Hy(p) + mHi(a)) — (D). (35)
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By taking n to infinity, we have
R(D) = mHy(p) + maHy(q) — Hy(D),

wheren = [r1, 7o is the stationary distribution of the source. In Hig. 6 (a) present the graphs dt,, (D) for
n=1upton = 12, wherep = 0.3, ¢ = 0.2, and X, has the stationary distributiojf.4,0.6]. It is evident that

R, (D) decreases as increases and converges to the analytical calculation.

In [12, Lemma 6] we provided another estimator for the feetbehannel capacities, namely, the directed
information rate. There, we show that if the limit existserth

1
lim ~I(X" = ¥Y") = lim (I(X" = Y") = I(X"" —y").

n—oco n n— 00

We can also use the directed information rate to estinkateD). This is applied in two ways: either when the rate
value is fixed or when the distortion value is fixed. In bothesawe first have to fix an axes vector and interpolate

the other vector with respect to the fixed one; then we carutzk differences between the interpolated vectors.

In Fig.[d (b) we present this estimator only far= 12 where the vector of the distortion is interpolated, i.e.,

12D15(R) — 11 D11 (R). We can see that this estimation is much more accurate tieaarté in Fig[h (a).

0 0.1 0.2 0.3 0.4 0.5
D

(b)

Fig. 6: R(D) for the Markov source example and feed-forward with delay 1.
(a) Graph ofR,,(D); the arrow marks the way,,(D) responds ta: increasing. The dashed line is the analytical
calculation.
(b) Graph of12D;5(R) — 11D4;(R). The circles represent the performance of Alg. 1.

This is a good opportunity to present the performance of ffeuand lower bounds to a specific rate distortion
pair (R, D), and the geometrical programming solution to this probl&ve. ran our BA-type algorithm for the
specific parameters = 9.216, n = 3 that corresponds to the rate distortion pai = 0.35884, D = 0.10627) at
slope%16 ~ 3, this presented in Fid.] 7 (a). We also ran ten distortion {goirsing GP fromD = 0 to D = 0.27
and compared it td?3(D) as in [35%) and the BAA performance, the solution is in Elg. Y. (b
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Fig. 7: Bounds forRs(D) and performance of GP and BAA fdis(D).
(a) Graph of the upper and lower bounds as a function of thatite forn = 3, A = 9.216 as given in

Equation(3B).
(b) Graph of the solution using the GP and BAA methodfoe 3. The solid line isR3(D) as in [35), the
circles represent the performance of the GP, and the dasiedsIthe BAA result.

C. Sock market example. Markov source and general distortion

The stock market example, in which we wish to observe thebehaf a particular stock over aiv-day period,
was introduced and solved inl[5]. Assume the stock can takd values,0 < i < k, and is modulated as/a+ 1
state Markov chain. On a given daythe probability for the stock value to increase by bjsto decrease by 1 is
¢, and to remain the same 1s— p;, — ¢;. When the stock value is in state 0, the value cannot decr&asdarly,
when in state k the value cannot increase. If an investor dvtiké to be forewarned whenever the stock value
drops, he is advised with a binary decisidf. X,, = 1 if the value drops from day. — 1 to dayn, and X,, = 0

otherwise. The distortion is modulated in the followingrfor

1 n

n An E
- € (EZ,CEZ laxz

i=1

wheree(., .,.) is given in Tabldl. It was shown in [5] that the rate-distont function of a general Markov-chain

3

TABLE II: Distortion e(&;,z;—1,;), j € {0,1, ..., k}

(w51, 24)
;=0 0 0 1
;=1 1 1 0

source withk states, is given by

D) = Zﬂ'i (H(pi,qi, 1 — pi — q;) — Hy(€)) + m (Hp(qr) — Hp(€)) ,

wherern = [, m1, ..., ;] IS the stationary distribution of the Markov chain, ane- 1—Dm)'
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In our special case we have= 2, i.e.,2 states for the Markov chain, and transition probabilifies- 0.3, ¢; =

0.2 as illustrated in Figld5. The stationary distribution of lswc source ist = [0.4, 0.6], and we are left with
R(D) = (Hy(q) — Hy(e))

D).

= 0.6(H,(02) ~ Hy (5

Since the rate cannot be less than zero, and is a descendictipfuof the distortion, the rate-distortion function

is as above whett,(0.2) > H, (&), i.e., whenD < 0.12, and thus we obtain

R(D) = 0.6(H,(0.2) — Hy(&)), D <0.12 (36)
0, otherwise.

In Fig.[8(a) we present the graphs &f,(D) for n = 1 up ton = 12 with the distortion described here and
where X, has the stationary distributioj0.4, 0.6]. We can see thaR, (D) decreases as increases as expected
and converges to the analytical calculation. In [Elg. 8 (b)present the directed information rate estimator only
for n = 12, where the vector of the distortion is interpolated, il2D12(R) — 11D11(R). We can see that this

estimator is much more accurate than the one in[Hig. 8 (a).

045 | d
0.49
03 0.3 K
2 a |
< 02 T 020 b
1y
0.1 0.1 k\{.
0 ‘ 0 AN ‘ ‘ ‘
0.4 05 0 0.1 0.2 0.3 0.4 0.5

D
(b)

Fig. 8: R(D) for the stock market example and feed-forward with delay 1.
(a) Graph ofR,,(D); the arrow marks the way,,(D) responds ta: increasing. The dashed line is the analytical
calculation.
(b) Graph of12D;5(R) — 11D4;(R). The circles represent the performance of Alg. 1.

D. The effects of the delay on R,,(D)

In this example we use the Markov source (Ifiy. 5) example wittingle letter distortion. We run Al§] 1 with
delayss € {1,2,..,10} and block lengthn = 10, where X, has the stationary distribution. We expect the rate
distortion function to increase with the delay This is expected because as the delagcreases the value of the
directed information increases as well. Due to the fact tbat € {3,4,...,10} all graphs are close together, we

presentR, (D) only for s = 1,2, 10, and the results are shown in Fig. 9.
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se{1,2,10}

Fig. 9: R1o(D) for a Markov source as a function of the delay.

IX. CONCLUSIONS

In this paper we considered the rate distortion problem sdréite-time, ergodic, and stationary sources with feed
forward at the receiver. We first derived a sequence of aabiewrates{R,,(D)},>1, that converge to the feed-
forward rate distortion. By showing that the sequence is-atitive, we proved that the limit oR,, (D) exists
and thus equals to the feed-forward rate distortion. We igealsan algorithm for calculatingz,, (D) using the
alternating minimization procedure, and also presentedishfdrm for the optimization oR,,(D), and transformed

it into a geometric programming maximization problem.

APPENDIXA

PROOF OFLEMMA 2]

We start by showing that the sequerd®, (D)} is sub additive; the methodology is similar to Gallager'sgdrin
[2, Th. 9.8.1] for the case of no feed-forward. Then, by simgithat the sequend, (D) is sub-additive, following

[2, Lemma 4A.2] we obtain our main objective, i.e.,
li7rln R,.(D) = iI711f R, (D).
To commence, we recall that a sequefag} is called sub-additive if for alin,(,
(m 4D amyr < mapy, + lag.

Let I,n be arbitrary positive integers and, for a givén let p,(2"|z") and p;(2!|z') be the conditional PMFs
that achieve the minimum of the directed information witledd length ofn andl, i.e., that achiever,, (D) and

R;(D), respectively. Suppose we transmit= n + [ samples as follows; the first samples are transmitted using
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pn, @and the sequentidlsamples are transmitted usipg Hence, the overall conditional PMF is

n+l|xn+l) ~n+l | n+l )

D1 (2 = pn (2" |2")py (‘Tn-‘rl |‘Tn+1

We can see in Sectidn VI that the directed information can kittem as
I(X™ — X™) = H(X™|X™ 1) — HX™|X™).
From the construction of the conditional overall PMFE,;, its clear that

H(X™H|X7) = H(X"|X™) + H(XH X

Furthermore,
A n+l A~ A . .
HX™|X™ ) =Y H(X| X X
=1
A~ n+l A~ A . .
=HX"|X"H+ Y HXIXHL X
i=n—+1
n+l . )
SHXMX™ N+ Y HXIXG X
1=n+1
= HX"||X™ Y+ HX X0,

Thus, it follows that

Since the source is stationary, we can start the input blbekygiven time index; thus the PMg andp; achieve
nR,(D)+1R;(D) on the right-hand side of Equatidn {37), while the left-haittk is greater thatn +1)R,,+;(D)

since we attempt to minimize the expression to achieve tteediatortion function. Hence, we obtain
(n+1)Rp41(D) < nR, (D) + IR(D).
Using [2, Lemma 4A.2] for sub-additive sequences, we obtain

inf R, (D) = lim R, (D).

n—00
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APPENDIXB

PROOF OFLEMMA [4l.

In this Appendix we prove Lemnid 4, which provides for us thatinathematical expression for the rate distortion
feed-forward

1 ~
RY(D) = lim = min I(X™ = X™), (38)
n—o0 N p(jn‘wn):]E[d(Xn7Xn)]§D

is a lower bound to the operational definitidt{D).

Proof: Consider any(n, 2", D) rate distortion with feed-forward code defined by the magpify {g;}",
as given in Sectioflll, Equationl(3), and distortion coriatr& {d(X",X")} < D + ¢, wheree,, — 0 asn goes
to infinity. Let the message sent be a random varidble: f(X™), and assume that the distortion constraint is

satisfied. Then we have the following chain of inequalities:

VE
=
=

nRk

v
=
>~
\.-ﬁ
3

=
Mﬁ
P}
>
=
>

= Z( (Xi| X1 = H(X,[ X1, T))
(H XX (XZ-|X1'*1,T,X1'))

H(X;| XY (Xi|Xi*1,Xi))

= zn:I(Xi;XﬂXi‘l)

|
~

(X" — XM,

where (a) follows from the fact that the alphabetiofs nR, (b) follows from the chain rule for mutual information,
(c) is due to the fact that giveA~*, 7", we knowX*, and (d) is since conditioning reduces the entropy. Step (e)
follows the chain rule for directed information. Takimgto infinity, we obtainR > R)(D), and the distortion
constraint satisfies

lim E [a(x", X")| < D.

n—roo
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APPENDIXC

PROOF OFTHEOREM[@.

In this appendix we provide a proof for Theordém 6. We recadlt tiiheoren{ 6 states that the rate distortion

function can be written as the following optimization prei:

R,(D) = omax < AD + Zp ) logy(x )) (39)

where, for some causal conditioned probabifityxz"||2™), v(2™) satisfies the inequality constraint
pla" )y ()2 M) <l (@ ][2). (40)

We prove this theorem in two ways. One is similar to Bergerspin [13], based on the inequalityg(y) > 1—%,
for the regular rate distortion function. The other is usihg Lagrange duality between the minimization problem
we are familiar with and a maximization problem as preseimefl4] and [15]. We also provide the connection
between the curve ok, (D) and the parametey; this is embodied in LemmialL2.
Before we begin, we recall that a step in Alg. 1 is defined byftilewing equality
gF (@7 |Jan )2 M e
S o gL (@ |2n1)2- d(zm,2'™)

(@ [z") = (41)

This equality is the outcome of differentiating the Lagramgwheng(z"||z"~1) is fixed, as given in Sectidn VII.
We shall use this equality throughout the proof.
As mentioned, the first proof follows the one [n]13].
Proof of Theorem[@ First, we show that for every(2"|x=™) for which the distortion constraint is satisfied,

the following chain of inequalities holds

(@)
Ipp(r,q) + AD — Zp )logy(z )ZIFF(T7Q)+)\ET(£"\1")[ (X" X"} Zp ) logy(2™)

Tn

’f'(i'nlfb )2)\d(z &™)
q(@" |zt (z")

2 Y bl (1 - q((jn”“f“wxn) )

r(gn |xn)2)\d(z",i")

= Z p(z™)r(z"|a") log

=1— Y q(@"|lz" " )p(a")y(@m)2 e
© ~n n—1 n

S1- 3 g@ |l @8

@,

where (a) follows from the fact that the distortidn exceedsE, (;n ;) {d(X",X")} for everyr(i™|z™) as has
been assumed, (b) follows from the inequalidsg% >1- % (c) is due to the constraint in Equatidn40), and (d)

follows from the fact thay (2" ||z~ 1)p’(2™||2™) is equal to some joint distributiop(z™, ") [6]. Since the chain
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of inequalities is true for every(i™|z™), we can choose the one that achievgg D), and then divide by to

obtain the inequality in Equatiof (B9) in our Theorem.

To complete the proof of Theorelmh 6, we need to show that eguadids in the chain of inequalities above for
somey(z™) that satisfies the constraint. If so, let us denotetiyi” |«™) the conditional PMF that achievés, (D).

Further, we denote by*(2"||z"~!) the corresponding causal conditioned PMF. Now, considefdHowing chain

of equalities.
nR,(D) = Z p(a")r (2" |z Nch
(a) n 27)\d(zn.in)
z;n |:C )log Zm/nq ( MlHIn 1)2 Ad(zn,2m)

© AE (5 [d(X" £ +Zp )log (")

=—/\D+Zp )log~y(z™),

where (a) is due to a step in the algorithm given byl (41), antheyuniqueness af*(i"|z") in the algorithm, as

shown in Lemma10, and (b) follows the expression+6r™) given by
<Zq /n||xn 1 2 Ad(z™, m'")) (42)

Therefore, we are left with verifying that thgz") above satisfies the constraint:

2= Ad(z™,z"™)

n 92 Ad(z"™,2") _ n _
p(x")y(=") p(x )Zznq (&n||zn—1)2- Ad(z™,z™)

(@) p(z"™)r* (&"|2")
g (@"|z"=)
__p@",2")
g (@"]|z"1)
(b) nilAn
= p'("2"),

where (a) follows from Equatio (#1), and (b) is due to thesedheonditioning chain rule. Hence, we showed that

R, (D) is the solution to the optimization problem given in Equati{@9). [ |
We also present an alternative proof for Theofém 6, thisquie Lagrange duality, as i [14], [15].

Alternative proof for Theorem[@ Recall thatR,, (D) is the result of

. PP r(d"|=")
min p(z")r(2"|z")log ——=~,
r(iﬂ\wﬂ)i,;n @) 108 ey

whereq(2"||z"~1) is defined byp(z™)r(2"|2™), subject to the following conditions:

Y pla™)r(E"|a")d(=", ") < D,

",z
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Vo Zr(ﬁc”bc”) =1,

an

Vo, 2" r(@"a") > 0.

Let us define the Lagrangian as

kon 13 n r i‘n xn n n n n sn
S A = 3 pla)r(a e og D 10 (X pla e laden ) D
+y (") <Zr(fi"|x") - 1) = > ula" @)@ a"),
wherep (2™, &™) > 0 for all ™, &". Differentiating the Lagrangianf(r, A,~, i), over the variable:(z"|z™), we
obtain
aJ r(z™|a™) . .
———— =p(a") log —————~ + A\p(z™)d(z", ") + y(«™) — p(z™, ™).
5o = P 108 oy AR 2 (") — a3

Solving the equationdr(f% = 0 in order to find the optimum value, yields the following exgs®n
(mnyi_n) n an
r(@"[a") = q(@"||le" )y (am)2 e A, (43)

(™) _ _ n . .
wherey/(z™) = 97 pem Multiplying both sides by% we are left with the constraint

(") = p(a™)y! ()2 “FET AEE
> pla )y (@")2 M, (44)

wherep(2"||2™) is induced byr(z™|z™)p(z™).

From [14, Chapter 5.1.3] we know that\, v, u) = J(r*, \, v, 1) is a lower bound taR,, (D). Substituting the
minimizerr(Z"|z™) using Equation[{43), and the condition given by Equatior) {4tb .7, we obtain the Lagrange

dual function

—AD + 3. p(a™)logy/ (™),  p(a™)y/(am)27 A < p(zn||2m)
gy = _ (45)
—00, otherwise.

By making the constraints explicit, and since the minimaatproblem is convex, we obtain the Lagrange dual

problem, i.e.,R, (D) is the solution to

max ! <—)\D + Zp(:c”)logy(x”)) , (46)

y(zm),An
subject to
V2™, @ p(a)y (a2 MEE) < plan|Em),

A>0
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for the p(2™||2™) that is induced by (" |2™)p(z™), andr(2™|2™) is the optimal PMF.

We use the notation of aoptimal PMF if it achieves the optimal value. For example, the PME™|z™) that
achieves the minimum of the directed information given thgadtion constraint, is optimal. we say that the PMF,
p(z™||2™) is optimal, if it is induced by the optimal(z™|z™). Another example is the maximization problem in
(48). We say thah,y(z") are optimal if they achieve the maximum value. Therefpfe?||2") is optimal as well
if it satisfies Equation[{44).

Now, we wish to substitute the constraint to
Vet dn s p(a)y (@2 M < 1@, (47

for somep/(2"||4™). First, note that we always achieve equality[in](47) sincecame increase the value ofz")
and thus increase the objective. This, combined with thetfat for (2" |«™) > 0, u(z™, ™) must be zero, we
have equality in[(44) as well (if("|2z") = 0, theng(2"||z"~!) = 0, and Equation[{43) holds too). Now, let us
assume that the maximum in{46) with the constrainfin (4 @cisieved at aon-optimal p’(z"||2™), i.e., one that
is not achieved using the optimal (z™). Thus, the value obtained ii_(46) is larger then the valueezeld by
p(z™||z"™), i.e., R,(D) (since the maximization includegx"||2™)). However, from the lagrange duality it should
be a lower bound t®,, (D), thus contradicting the fact that the maximum is achievea mbn-optimap’(z"||Z™).

[

Note, that we can construct the optimal PME&"|z™) from the solution to the maximization problem presented

here. Consider the parameters ~v(z™), that achieve[(46), and calculatgéz"||2") according to Equatior (44).

The calculation of-(2"|2™) is done recursively om(#¢|x?). Fori = 1, calculater(#!|z!) using
r(@tad) ||x Zp r(@tad).
Further, calculate(;) using
Zp r(@t|zt).
Now, once we have(#7|z7), q(#;|27~127~1) for everyj < i, calculater(z?|z?) using

(@) = IR | T gy 1 g9ty | e

p(I’L) p(xifl)r(:&iflkcifl)’

j=1

and then

~i—1 z 1) Zmp(xl) (Al|xz)

p(l’i_l)T (EZ l|xz 1)

q(Z:|@

Do so untili = n, and we obtain our optimal(z™|z™).
Another lemma we wish to provide is the connection betweenciivve of R, (D) and the parametex. This

lemma is similar to the one given by Berger in[13, Th. 2.5dr] the case of no feed-forward.



Lemma 12Consider the expression fdt,, (D) given by

R, (D) = <AD+Zp )logy(z ))

Tn

where~(z") and \ are the variables that maximiZe{46). We have seen+hat) is of the form

(:Cn) _ <Z q*(i,n||xn—l)2—>\d(m",i")>

A
o

-1

Hence, the slope at distortial is R/, (D) = —

Proof: The proof is given simply by differentiating the expressfon R,,(D).

dR, (?Rn OR, d/\ (™)
db ~ @D " ondD " a dD
_ 1 p(z™) dy(a™)
n [ A D Z ~y(z®) dD
A1 p(z™) dy(a™) | dX
N n+n D+;”y(:c”) d\ ]dD'

Now, consider the following expression

F= 3 plam)g" @]fe"y(am)z 26,

n pn
AN

i n i _ OF __
Using they(2™) given above, we havé' = 1 and thusgzy = 0. However,

o [‘“ﬁ"’ - e () e (@)

n pn
AL

Zq An||xn 1 2 Ad(z™,z") Z p(xn)q*(i,n||xn71)27)\d(z”,i”),y(xn)d(xnjjn)

- ; d’ycgin) :Eizg - x;np(x”)r* (@"[z")d(z", 2")
dy(z") p(z")
> dx  y(am) b

Hence, we can conclude that

dR, A1 p(z™) dy(x™) | dX
= —— — —D _—
dD + * Z; ~(@™) dx | dD

31>
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APPENDIXD

PROOF FORLEMMA [I1]

In this appendix we prove the existence of a sequence of uppklower bounds tdz,, (D), the rate distortion
function with feed-forward. These bounds correspond tdenation in Alg[1, and both converge &, (D). To this
end, we present and prove a few supplementary claims thiat as®btaining our main goal. Theordm 6 provides
an alternating form (Lagrange dual form) of an optimizatfwoblem achieving?,, (D), that is proved in Apjp L.

In LemmalIB, we show that in each iteration we can obtain nreaghat satisfy the constraint in TheorEm 6 to
form a lower bound, and that the bound is tight and achieveth@asipper bound converges. We also provide a
proof for the existence of a an upper bound in each iteration.

Before we begin, we recall that a step in Alg. 1 is defined byftilewing equality

qk—l (jn | |xn—1)2—)\d(m",£")

k(isn| n\ __

r (&) = S L@ [an )2 (48)

We shall use this equality throughout the proof.

As mentioned, we use Theordm 6 that provides us with theviiig alternating optimization problem.
R,.(D) = AD )1 49
(D) - »1513@)”( R >> )
where~(z™) satisfies the inequality constraint

p(a™ )y ()27 M) < pf (a7|27) (50)

for some causal conditioned probabilj$(x™||Z™).

We now show that in each iteration in Algl. 1, choosin@™) appropriately forms a lower bound fdt,, (D).

Lemma 13In the kth iteration in Alg.[1, by letting

—1
vh") = (Zq’“‘1<a@"||:v"‘1>2—“<1”@”>> , (51)
and
k(sn n—1
k g~ (@"|]z" ")
Ny = ———— L 52
Cign gn-1 ¢F= (@ ||znT) (52)
and defining
1k "
S o g 0 — (53)
maXgn Lz 161" pn—1

the constraint in Equation_(b0) is satisfied, and forms a tdwaind given by

1
R, (D) > _< )\D+Zp logy x2") —log max an Sz 1)-
n

gr,gn—1
I’Vl
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Furthermore, this lower bound is tight, and is achieved?iéD) converges tak,, (D), where RX (D) is the upper

bound.

Proof: Let us fix the parametey’”(z") as in [51). Hence,

9—Ad(z",3")
p(fcn)ZA q]g_l(xn”xn—l)Q—)\d(;E",:ﬁ")
) pla™)rk (@"|z")
g (@ |zt
) P (@"[[2")g" (@ []a" )

— e

k(sn n—1
o g~ (@"|la" ")
<p/(a"][z") X T Gl D)

p(x”)'y’k (In)zf)\d(m”,fc”) _

S

—~

where (a) follows from the definition of a step in Ald. 1 andeyivabove in Equatioh_(#8), and (b) follow the chain
n)Tk(In‘:E )

rule of causal conditioning, angd (z"||z") = p(kil is a causal conditioned PMF. Hence, combined with
[CRIEE)

(53), we obtain
p(xn),yk(xn)2—>\d(m",i") _ p(xn),y/(xn)2—>\d(m",i")

k
maxgn gn-1Csp an—1

<p'("12").

Thus, we can use Theordr 6, and obtain a lower boundfdiD), i.e

Rn(D)Z% —)\D+Zp ) log 7"( )1

xn

—AD + Zp log%n Zp ) log ( p%xl cﬁn Inl)]

1
= - —)\D—i—Zp )log v'™*( )—log< max cF wnl)] (54)

|
S|

n
znzn 1 T

To complete the proof of this lemma, we are left to show that &screases, i.e., the upper bound converges to
R, (D), the lower bound is tight. For that matter, we note that theFBNhat achieve the optimum valgé, r*
are unique, as shown in Lemrhal 10. Thus, it is clear that

. _ @ []a")

Coman =t = e )

— 1, (55)

and

-1
,Yk(xn) (Zq n||xn 1 2 Ad(z™, m")) ) (56)

Placing Equation[{36) and (b5) in Equatidn](54), as shownheoren B, achieves equality instead of the chain
of inequalities given. Thu®,, (D) is, in fact, the solution to the optimization problem givenEquation[(4D), and

we have demonstrated the existence of the lower bound [ |
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Lemma 14In the kth iteration in Alg.[1, the upper bound to the rate distortisrgiven by

R, (Dy) < — < )\Dk—i-Zp ) log v*( Zp (2"|2"™)log ck,. zn— 1>,

where D), = E,.. [d(X”,X”)}
Proof: Note, that if7* (2", z™) produces a distortiol, then

nR,(D) < Ipp(r*, ")

rF (2" z™)
= Y pla")rt(@"[z") log o~

@S plam)rt (@) log —

qkfl (jj" | |xn71)27)\d(m",2")

T I S E P P
_ n n k—1/~m||,mn—1\o—Ad(z" &™) n\..k(sn q ( n||xn 1)
® —)\Dk-i-Zp )log v*(z™) — Z p(:c”)rk(:%”|x”)1ogc§n7ﬂl71, (57)

where (a) follows from the definition of a step in Ald. 1 and igemn above in Equatioh (48), and (b) follows from the
definition of y* (27), an,mn—l- Hence, we have formed an upper bound to the rate distortiom the lemma. Note
that the only inequality is in the first line of the chain, aisddue to the fact thakrr (r*, ¢*) > min, ¢ Ipp(r, q).
However, upon convergence, this inequality is tight. [ |

We can now conclude our main objective in this appendix.

Proof of Lemma[11l Proving this lemma requires us to present upper and lowendmthat converge t®,, (D).
LemmalIB provides us with a lower bound and its tightness redseLemma 14 provides us with a tight upper
bound as well, as required. [ |

APPENDIXE

SOLUTION TO R(D) FOR AN ASYMMETRICAL MARKOV SOURCE
The Markov source is presented in Hig. 5 above. We can destiibproces$ X} using the equation
Xi = XZ',1W1 + (1 — Xifl)WQ
= (Xi1 (W @ Wa)) @ Wy,
whereW; ~ B(q), Wy ~ B(p). This allows us to evaluat& (X, |X,,_1):
H(Xn|Xn1) = H(Xn-1(W1 @ W2)) & Wa|Xp1)

= p(In,1 = 1)H(W1 (&) W2 S WQ) +p(xn71 - O)H(WQ)

= 7T1H(W1) + 7T2H(W2),
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wherer is the stationary distribution of the source. Now, to find tate distortion of this model, we start with the

converse

lI(X” — X" = H(X") - H(X"||X™)

n
—Laoa)+ P m(x, X, - lZn:H(X'IXH X’
= o 1 n|An—1 n P ¢ ’
(@) 1 n—1 ¢ ;
@1 oy 1 e
> = Hy(r) + T H (X Xo1) n;ff(leXz)
® 1 n—1
> EHb(ﬂ')—f— H(Xn|Xn-1) — Hy(D)
1 ~1
= ~Hy(n) + (m1 Hy(p) + maHy(q)) — HD),

where (a) follows from the fact that conditioning reducesr@py, and (b) follows the fact thaP(X; # XZ-) <D

and H,(D) increases withD for D < %

However, we can achieve it by letting; depend onX; and X;_; as in Fig.[I0, where;, p» must hold for

1-— 1-D
0 P1 0 0
D
1 1 1
1—p1 1—D
Xi1 X; X;

Fig. 10: Distribution ofX; given X,_; and X;.

the following equation

pD+(1—p1)(1=D)=1-p,

p2D + (1 —p2)(1—D)=1—-gq,

ie.,
D—p
P1 2D_17
_D—q
P2=5p "1

Note, that under this construction, the sou’te is still Markovian. Further, from Fid.__10 we can see tigt | —
X, — X, forms a Markov chain, andi (X;|X;) = H,(D). Thus, we obtain equality in (a), (b) in the above chain
of inequalities, and hence showed that

n—1

Ru(D) = %H,,@T) + 5= (m Hy(p) + maH(q)) — Hy(D).
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By taking n to infinity we obtain

(1]
(2]
(3]

(4]
(5]
(6]
(7]
(8]

El
[20]

[11]
[12]

(23]
[14]
[15]

[16]
[17]

(18]
[19]

R(D) = 7T1Hb(p) + 7T2Hb(q) — Hb(D)
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