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Abstract

In this paper we consider the rate distortion problem of discrete-time, ergodic, and stationary sources with feed

forward at the receiver. We derive a sequence of achievable and computable rates that converge to the feed-forward

rate distortion. We show that, for ergodic and stationary sources, the rate

Rn(D) =
1

n
min I(X̂n → X

n)

is achievable for anyn, where the minimization is taken over the transition conditioning probabilityp(x̂n|xn) such

that E
[

d(Xn, X̂n)
]

≤ D. The limit of Rn(D) exists and is the feed-forward rate distortion. We follow Gallager’s

proof where there is no feed-forward and, with appropriate modification, obtain our result. We provide an algorithm

for calculatingRn(D) using the alternating minimization procedure, and presentseveral numerical examples. We

also present a dual form for the optimization ofRn(D), and transform it into a geometric programming problem.

Index Terms

Alternating minimization procedure, Blahut-Arimoto algorithm, causal conditioning, concatenating code trees,

directed information, ergodic and stationary sources, geometric programming, ergodic modes, rate distortion with

feed-forward.

I. I NTRODUCTION

The rate distortion function for memoryless sources is wellknown and was given by Shannon in his seminal

work [1]. Shannon [1] showed that the rate distortion function is the minimum of mutual information between the

sourceX and the reconstruction̂X, where the minimization is over transition probabilitiesp(x̂|x) such that the

distortion constraint is satisfied, i.e.,E
[

d(X, X̂)
]

≤ D. In the case where the source is stationary and ergodic,

Gallager [2] showed that the rate distortion is the limit of the following sequence of rates. Each member of the
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sequence is thenth order rate distortion function, which is the solution of the following minimization problem

1

n
min I(Xn; X̂n).

The minimization is over all conditional probabilitiesp(x̂n|xn) such that the distortion constraint is satisfied, i.e.,

E

[

d(Xn, X̂n)
]

≤ D. Gallager showed that the limit of the sequence1
n min I(Xn; X̂n) exists and is equal to the

infimum of the sequence.

The problem of source coding with feed-forward was introduced by Weissman and Merhav [3] and by

Venataramanan and Pradhan [4], and is depicted in Fig. 1. Weissman and Merhav [3] named the problem CompetitivePSfrag replacements

Xn Decoder X̂n(T,X
n−s)

T (Xn) ∈ {1, 2, ..., 2nR}

Delay s

Encoder

Delay s
Xn−s

Fig. 1: Source coding with feed-forward: the decoder knows the source with delays, and needs to reconstruct the
source within the constraintE

[

d(Xn, X̂n)
]

≤ D.

Predictions. In their work, they defined a set of functions that predict the followingXi given the previousX i−1.

After defining theloss function betweenXi and the prediction, the objective was to minimizing the expected loss

over all sets of predictors of sizeM . An important result in [3] is that in the case where the innovation process

Wi = X i − Fi(X
i−1) is i.i.d. the distortion-rate with feed-forward function is the same as the distortion-rate

function ofWi, where there is no feed-forward. In particular, ifXi is an i.i.d. process, thenWi = Xi and thus the

distortion-rate with feed-forward for the sourceXi is the same as if there is no feed-forward.

Venkataramana and Pradhan [4] gave an explicit definition ofthe rate distortion feed-forward for an arbitrary

normalized distortion function and a general source. Theirgoal was to provide the rateR of a source given a

distortion D using causal conditioning and directed information. The source of information is modeled as the

process{X̂n} and is encoded in blocks of lengthn into a messageT ∈ {1, 2, ..., 2nR}. The messageT (after

n time units) is sent to the decoder that has to reconstruct theprocess{Xn} using the messageT and causal

information of the source with some delays as in Fig. 1.

For that purpose, Venkataramanan and Pradhan [4] defined themeasures

I(X̂ → X) = lim sup
inprob

1

n
log

p(Xn, X̂n)

p(X̂n||Xn−s)p(Xn)
,

and

I(X̂ → X) = lim inf
inprob

1

n
log

p(Xn, X̂n)

p(X̂n||Xn−s)p(Xn)
.

The limsup in probability of a sequence of random variables{Xn} is defined as the smallest extended real number
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α such that∀ǫ > 0,

lim
n→∞

Pr[Xn ≥ α+ ǫ] = 0,

and the liminf in probability is the largest extended real numberβ such that∀ǫ > 0,

lim
n→∞

Pr[Xn ≤ β − ǫ] = 0.

The main result in [4] is that for a general source{Xn} and distortionD, the rate distortion with feed-forward

R(D) is given by

R(D) = inf
P

I(X̂ → X),

where the infimum is evaluated over the setP of probabilities{p(x̂n|xn)}n≥1 that satisfy the distortion constraint.

Moreover, if

I(X̂ → X) = I(X̂ → X),

Venkataramana and Pradhan showed in [4], that

R(D) = inf
P

lim
n→∞

1

n
I(X̂n → Xn).

The work of Venkataramanan and Pradhan has made a significantcontribution since it gives a multi-letter

characteristic for the rate distortion function with feed-forward. In [5], they evaluated these formulas for a stock-

market example and provided an analytical expression for the rate distortion function. However, these types of

formulas are still very hard to evaluate for the general case. In this paper we show that assuming ergodicity and

stationarity of the source, the rate distortion function with feed-forward and delays = 1 is upper bounded by

Rn(D), where

Rn(D) =
1

n
min

p(x̂n|xn):E[d(Xn,X̂n)]≤D
I(X̂n → Xn). (1)

We further show that the limit of the sequence{Rn(D)} exists, is equal toinfn Rn(D), and is the rate distortion

feed-forward functionR(D). These expressions forRn(D) are computable using a Blahut-Arimoto-type algorithm

or using geometric programming, as demonstrated here.

In most models with causal constraints, such as feedback channels or feed-forward rate distortion, the causal

conditioning probability, as well as the directed information characterizes the fundamental limits. In order to address

these models, the causal conditioning probability was introduced by Massey [6] and Kramer [7] and is defined as

p(x̂n||xn−s) =

n
∏

i=1

p(x̂i|x̂
i−1, xi−s). (2)

The difference between regular and causal conditioning is that in causal conditioning the dependence ofx̂i on
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future xj is not taken into account. Following the causal conditioning probability, Massey [6] (who was inspired

by Marko’s work [8] on Bidirectional Communication) introduced the directed information, defined as

I(X̂n → Xn) , H(Xn)−H(Xn||X̂n)

=

n
∑

i=1

I(X̂ i;Xi|X
i−1).

The directed information was used by Tatikonda and Mitter [9], Permuter, Weissman, and Goldsmith [10], and

Kim [11] to characterize the point-to-point channel capacity with feedback. It is shown that the capacity of such

channels is characterized by the maximization of the directed information over the input probabilityp(xn). In a

previous paper [12], we used these results and obtained bounds to estimate the feedback channel capacity using a

Blahut-Arimoto-type algorithm (BAA) for finding the globaloptimum of the directed information.

The main contribution of this work lies in extending the achievability proof given by Gallager in [2] to the case

where feed-forward with delays = 1 exists. The extension is done by using the causal conditioning distribution,

p(x̂n||xn−s), rather than the regular reconstruction distributionp(x̂n), in order to construct the codebook. The proof

given is fors = 1, but can be extended straightforwardly to any delays ≥ 1. The difficulty in this modification is

that while in [2] the codebook was an ensemble of sequences (code words) from the reconstruction alphabet using

p(x̂n), our codebook is an ensemble of code trees usingp(x̂n||xn−s). This induced a major problem while showing

that the probability of error is small, as discussed in Section III. These difficulties were overcome by appropriate

modification to Gallager’s proofs.

Another contribution of this paper is the development of twooptimization methods for obtainingRn(D); a BA-

type algorithm and a geometric programming(GP) form. The GPform is given as a maximization problem, which

can be solved using standard convex optimization methods. Further, this maximization problem gives us a lower

bound to the rate distortion with feed-forward, which helpsus decide when to terminate the algorithm.

The remainder of the paper is organized as follows. In Section II we describe the problem model, provide the

operational definition of the rate distortion function withfeed-forward, and state our main theorems. In Section III

we show thatRn(D) is an achievable rate for alln and any distortionD, and in Section IV we show that the limit

of Rn(D) exists and is equal to the operational rate distortion function. In Section V we present an alternative

optimization problem forRn(D) in a standard geometric programming form that can be solved numerically using

convex optimization tools. In Section VI we give a description of the BAA for calculatingRn(D) and present the

algorithm’s complexity and the memory required, and in Section VII we derive the BAA and prove its convergence

to the optimum value. Numerical examples are given in Section VIII to illustrate the performance of the suggested

algorithms.

II. PROBLEM STATEMENT AND MAIN RESULTS

In this section we present notation, describe the problem model and summarize the main results of the paper.

We first state the definitions of a few quantities that we use inour coding theorems. We denote byXn
1 the vector
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(X1, X2, ...Xn). Usually we use the notationXn = Xn
1 for short. Further, when writing a probability mass function

(PMF) we simply writePX(X = x) = p(x). An alphabet of any type is denoted by a calligraphic letterX , and its

size is denoted by|X |.

In the rate distortion problem with feed-forward of delays = 1, as shown in Fig. 1, we consider a general

discrete, stationary, and ergodic source{Xn}, with the nth order probability distributionp(xn), alphabetX and

reconstruction alphabet̂X . The normalized bounded distortion measure is defined asd : Xn × X̂n → R
+ on pairs

of sequences.

Definition 1 (Code definition)A (n, 2nR, D) source code with feed-forward of block lengthn and rateR consists

of an encoder mappingf ,

f :Xn 7→ {1, 2, ..., 2nR},

and a sequence of decoder mappingsgi, i = 1, 2, ..., n,

gi :{1, 2, ..., 2
nR} × X i−1 7→ X̂ , i = 1, 2, ..., n. (3)

The encoder maps a sequencexn to an index in{1, 2, ..., 2nR}. At time i, the decoder has the message that was

sent and causal information of the source,xi−1, and reconstructs theith symbol sent,̂xi.

Definition 2 (Achievable rate)A rate distortion with feed-forward pair(R,D) is achievable if there exists a sequence

of (n, 2nR, D)-rate distortion codes with

lim
n→∞

E

[

d(Xn, X̂n)
]

≤ D.

Definition 3 (Rate distortion)The rate distortion with feed-forward functionR(D) is the infimum of ratesR such

that (R,D) is achievable.

In this paper, we define the mathematical expression for the rate distortion function as the following limit

R(I)(D) = lim
n→∞

Rn(D), (4)

whereRn(D) is thenth order rate distortion function given by

Rn(D) =
1

n
min

p(x̂n|xn):E[d(Xn,X̂n)]≤D
I(X̂n → Xn).

We show that the limit in (4) exists,Rn(D) is achievable and upper boundsR(I)(D) for all n. Further, we show

that the rate distortion feed-forward function,R(D), is equal toR(I)(D). We also provide two ways to calculate

numerically the valueRn(D); using a BA-type algorithm and a geometric programming form.

We now state our main theorems.

Theorem 1 (Achievability ofRn(D)) For a discrete, stationary, ergodic source, and for anyD, any n and delay

s = 1, Rn(D) is an achievable rate.
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Theorem 2 (Rate distortion feed-forward)For any distortionD, the operational rate distortion functionR(D) is

equal to the mathematical expression,R(I)(D), whereR(I)(D) is given by (4).

Theorem 3Thenth order rate distortion functionRn(D) can be written in a geometric programming standard form

as the following maximization problem

Rn(D) = max
λ,γ(xn),{p′(xi|xi−1,x̂i)}n

i=1

1

n

(

−λD +
∑

xn

p(xn) log γ(xn)

)

, (5)

subject to the constraints:

log(p(xn)) + log(γ(xn))− λd(xn, x̂n)−

n
∑

i=1

log p′(xi|x
i−1, x̂i) ≤ 0, ∀ xn, x̂n,

∑

xi

p′(xi|x
i−1, x̂i) = 1, ∀ i, ∀ xi−1, x̂i−1,

λ ≥ 0.

Theorem 4 (Algorithm for calculatingRn(D)) For a fixed source distributionp(xn), there exists an alternating

minimization procedure in order to compute

Rn(D) =
1

n
min

p(x̂n|xn):E[d(Xn,X̂n)]≤D
I(X̂n → Xn). (6)

Proofs to Theorem 1 and 2 are given in Section III and Section IV, respectively. The proof for Theorem 3 is in

Section V, the algorithm in Theorem 4 is described in SectionVI and proved in Section VII.

III. A CHIEVABILITY PROOF (THEOREM 1).

In this section we show that if the source is stationary and ergodic, thenRn(D) as given in (6) is achievable for

anyn. In order to do so, we first assume that the source is ergodic inblocks of lengthn, and show achievability. A

source that is ergodic in blocks is one that, by looking at each n letters as a single letter from a super alphabet, we

obtain an ergodic super source (presented in [2, Chapter 9.8]). Then, for the general ergodic sources, we follow a

claim given in [2] about ergodic modes, as explained furtheron. The distortion is assumed to be normalized, finite,

and of the form

d(xn, x̂n) =
1

n

n
∑

i=1

d(xi
i−m, x̂i), (7)

for somem. An example for such a distortion can be found in [5] and in Section VIII, in an example called the

stock-market.

Theorem 5Consider a discrete stationary source that is ergodic in blocks of lengthn. For any distortionD such

thatRn(D) < ∞ andδ > 0, and for anyL sufficiently large, there exists a codebook of treesTC of lengthL with

|TC | ≤ 2L(Rn(D)+δ) code trees for which the average distortion per letter satisfiesE
[

d(XL, X̂L)
]

≤ D + δ.
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Proof: Let p(x̂n|xn) be the transition probability that achieves the minimumRn(D) and letp(x̂n||xn−1) be

the causal conditioning probability that corresponds top(xn)p(x̂n|xn).

• Code design.For anyL, consider the ensemble of codesTC with |TC | = ⌊2L(Rn(D)+δ)⌋ code trees of length

L, where each code treeτL ∈ TC is a concatenation ofL/n sub-code trees of lengthn. Each sub-code tree is

generated independently according top(x̂n||xn−1) as in Fig. 2.

PSfrag replacements

p(x̂1)

p(x̂2|x̂1, x1)

p(x̂3|x̂
2
1, x

2
1)

p(x̂4)

p(x̂5|x̂4, x4)

p(x̂6|x̂
5
4, x

5
4)

x̂1

x̂2

x̂2

x1 = 1

x1 = 0

Code tree 1 Code tree 2

Fig. 2: Concatenation of two code trees, each of lengthn = 3. The upper branches are forxi = 1, and the lower
branches are forxi = 0.

• Encoder.The encoder assigns a code treeτL ∈ TC for everyxL such thatd(xL, x̂L(τL, xL−1)) is minimal.

The sequencêxL(τL, xL−1) is determined by walking on treeτL, and following the branchxL−1.

• Decoder.At time i, the decoder possesses the index of the treeτL and causal information of the sourcexi−1,

and returns the symbol̂xi(τ
L, xi−1) that it produces.

Let us define a test channel as the conditional probability

pL(x̂
L|xL) =

L/n−1
∏

i=0

p(x̂ni+n
ni+1 |x

ni+n
ni+1 ), (8)

and the causal conditional probability

pL(x̂
L||xL−1) =

L/n−1
∏

i=0

p(x̂ni+n
ni+1 ||x

ni+n−1
ni+1 ),

where the distribution is according to

PX̂ni+n
ni+1 |Xni+n

ni+1
(x̂n|xn) = PX̂n|Xn(x̂

n|xn),

PX̂ni+n
ni+1 ||Xni+n−1

ni+1
(x̂n||xn−1) = PX̂n||Xn−1(x̂

n||xn−1).
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Moreover, we define for every code treeτL of lengthL the measure

In(τ
L → xL) = log

pL(x̂
L|xL)

pL(x̂L||xL−1)
, (9)

wherex̂L = x̂L(τL, xL−1). Note thatIn(τL → xL) is not the directed information between the sequencesx̂L, xL,

but simply a measure between a source sequencexL and the output,̂xL of the test channelpL(x̂L|xL), as defined

in (8).

Let T be the set of all code trees of lengthL, and consider the following set,

A = {τL ∈ T , xL ∈ XL : eitherIn(τL → xL) > L(Rn(D) + δ/2) or d(xL, x̂L(τL, xL−1)) > L(D + δ/2)},

(10)

and letpt(A) be the probability of the setA on the test channel ensemble.

Let us use the notation

x̂L(TC , x
L−1) = x̂L

(

arg min
τL∈TC

d
(

xL, x̂L(τL, xL−1)
)

, xL

)

,

whereTC is the ensemble of code trees as described in the coding scheme. Now, letpc(d(XL, x̂L(TC , X
L−1)) >

LD) be the probability over the ensemble of codesTC and source sequences such that the distortion exceedsLD.

We wish to give an upper bound to the probabilitypc(d(X
L, x̂L(TC , X

L−1)) > LD); for this we use the following

lemma.

Lemma 1 For a given source{Xi}i≥1 and test channel, we have the following inequality

pc
(

d(XL, x̂L(TC , X
L−1)) > LD

)

≤ pt(A) + exp{−|TC |2
−LRn(D)}, (11)

where the setA is described in (10).

Proof. We first writepc
(

d(XL, x̂L(TC , X
L−1)) > LD

)

as

pc
(

d(XL, x̂L(TC , X
L−1)) > LD

)

=
∑

xL∈XL

p(xL)pc
(

d(XL, x̂L(TC , X
L−1)) > LD|XL = xL

)

.

For everyxL, let us define the setAxL as the set of all code treesτL ∈ T for which (τL, xL) ∈ A,

AxL = {τL ∈ T : eitherIn(τL → xL) > L(Rn(D) + δ/2) or d(xL, x̂L(τL, xL−1)) > L(D + δ/2)}. (12)

We observe thatd(xL, x̂L(TC , x
L−1)) > LD for a givenxL only if d(xL, x̂L(τL, xL−1)) > LD for every

τL ∈ TC . Thus,d(xL, x̂L(TC , x
L−1)) > LD only if τL ∈ AxL for every τL ∈ TC . SinceτL are independently

chosen,

pc
(

d(XL, x̂L(TC , X
L−1)) > LD|XL = xL

)

≤ (pt(AxL))|TC |

= (1− pt(A
c
xL))

|TC |
,
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whereAc
xL is the complement set ofAxL . We note that the probability that treeτL being inAc

xL depends only

on the branch associated withxL. In other words, if a treeτL ∈ Ac
xL , then all other trees with the same branch

associated withxL is in Ac
xL as well; the same goes forAxL . Hence, we can divide the set of all code treesT

into disjoint subsetsBxL,x̂L that have the same branch associated withxL−1, i.e.,

BxL,x̂L = {τL ∈ T : τL(xL−1) = x̂L},

whereτL(xL−1) is a walk on treeτL over the branchxL−1. Clearly, the probability of each subsetBxL,x̂L is

pt(BxL,x̂L) = pL(x̂
L||xL−1)

since the left hand side is a summation of the probabilities of all trees with the same branch associated withxL,

and we are left with the probability of that one branch.

Now, for everyτL ∈ BxL,x̂L ⊂ Ac
xL , and due to the definition ofAc

xL , we have

In(τ
L → xL) = log

pL(x̂
L|xL)

pL(x̂L||xL−1)
≤ LRn(D).

Therefore,

pL(x̂
L||xL−1) ≥ pL(x̂

L|xL)2−LRn(D), (13)

and we obtain that

pc
(

d(XL, x̂L(TC , X
L−1)) > LD|XL = xL

)

≤ (1− pt(A
c
xL))

|TC |

=



1−
∑

B
xL,x̂L⊂Ac

xL

pt(BxL,x̂L)





|TC |

=






1−

∑

x̂L:B
xL,x̂L⊂Ac

xL

pL(x̂
L||xL−1)







|TC |

(a)

≤



1− 2−LRn(D)
∑

x̂L:B
xL,x̂L⊂Ac

xL

pL(x̂
L|xL)





|TC |

,

where (a) follows the inequality in equation (13).

Using the inequality(1−ab)k ≤ 1−a+exp{−bk}, and takinga =
∑

x̂L:B
xL,x̂L⊂Ac

xL
pL(x̂

L|xL), b = 2−LRn(D),

we find

pc
(

d(XL, x̂L(TC , X
L−1)) > LD|XL = xL

)

≤ 1−
∑

x̂L:B
xL,x̂L⊂Ac

xL

pL(x̂
L|xL) + exp{−|TC |2

−LRn(D)}.
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By taking a sum overxL we remain with

pc
(

d(XL, x̂L(TC , X
L−1)) > LD

)

=
∑

xL

p(xL)pc
(

d(XL, x̂L(TC , X
L−1)) > LD|XL = xL

)

≤
∑

xL

p(xL)



1−
∑

x̂L:B
xL,x̂L⊂Ac

xL

pL(x̂
L|xL) + exp{−|TC |2

−LRn(D)}





= 1−
∑

xL

∑

x̂L:B
xL,x̂L⊂Ac

xL

p(xL, x̂L) + exp{−|TC |2
−LRn(D)}. (14)

Note, that

∑

xL

∑

x̂L:B
xL,x̂L⊂Ac

xL

p(xL, x̂L) =
∑

xL

∑

x̂L:B
xL,x̂L⊂Ac

xL

∑

τL∈T

p(xL, x̂L, τL)

≥
∑

xL

∑

x̂L:B
xL,x̂L⊂Ac

xL

∑

τL∈B
xL,x̂L

p(xL, x̂L, τL)

(a)
=
∑

xL

∑

B
xL,x̂L⊂Ac

xL

∑

τL∈B
xL,x̂L

p(xL, τL)

=
∑

xL

∑

τL∈Ac

xL

p(xL, τL)

= pt(A
c),

where (a) follows the fact that ifτL ∈ BxL,x̂L , then x̂L is determined by the treeτL and the branchxL. Now,

continuing from equation (14), we obtain

pc
(

d(XL, x̂L(TC , X
L−1)) > LD

)

≤ 1− pt(A
c) + exp{−|TC |2

−LRn(D)}

= pt(A) + exp{−|TC |2
−LRn(D)}. (15)

We now use the result in (15) in order to complete the proof of the theorem. Furthermore, we can see that the

average distortion of the code satisfies

E

[

d(XL, X̂L
]

(≤ (D + δ/2) + pc
(

d(XL, x̂L(TC , X
L−1)) > L(D + δ/2)

)

· sup
xL,x̂L

d(xL, x̂L).

This arises, as in [2, Th. 9.3.1], from upper bounding the distortion byD + δ/2 when thed(xL, x̂L) ≤ D + δ/2,

and by

sup
xL,x̂L

d(xL, x̂L)
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otherwise. By choosing|TC | = ⌊2L(Rn(D)+δ)⌋, the last term in (15) goes to zero with increasingL. Furthermore,

the first term is bounded by

pt(A) ≤ pt{x
L ∈ XL, τL ∈ T : In(τ

L → xL) > L(Rn(D) + δ/2)}

+ pt{x
L ∈ XL, τL ∈ T : d(xL, x̂L(τL, xL−1)) > L(D + δ/2)}. (16)

Note that

pt

(

In(τ
L → xL) > L(

1

n
Rn(D) + δ/2)

)

= pt





1

L

L/n−1
∑

i=1

log
p(x̂ni+n

ni+1 |x
ni+n
ni+1 )

p(x̂ni+n
ni+1 ||x

ni+n−1
ni+1 )

> Rn(D) + δ/2



 .

As assumed, the source is ergodic in blocks of lengthn. Furthermore, the test channel is defined to be memoryless

for blocks of lengthn, and hence the joint process is ergodic in blocks of lengthn. Thus, with probability 1,

1

n
lim

L→∞

1

L/n

L/n−1
∑

i=0

log
p(x̂ni+n

ni+1 |x
ni+n
ni+1 )

p(x̂ni+n
ni+1 ||x

ni+n−1
ni+1 )

=
1

n
E

[

log
p(x̂n|xn)

p(x̂n||xn−1)

]

= Rn(D).

Therefore, the probability of the first term in (16) goes to zero asL goes to infinity, and the same goes to the

second term due to the definition of the distortion. In order to finish the proof, and due to the fact thatpc goes to

zero with increasingL and the fact that the distortion is finite, we can chooseL large enough such that

pc
(

d(XL, x̂L(TC , X
L−1)) > L(D + δ/2)

)

· sup
xL,x̂L

d(xL, x̂L) ≤ δ/2.

In this case, we obtainDL ≤ D+ δ, and hence the rateRn(D) is achievable for sources that are ergodic in blocks

of lengthn.

Much like in Gallager’s proof for the case where there is no feed-forward, we note that not all ergodic sources

are also ergodic in blocks, and we need to address these casesas well. For that purpose, we need [2, Lemma

9.8.2] for ergodic sources. We recall, that a discrete stationary source is ergodic if and only if every invariant set of

sequences under a shift operatorT is of probability 1 or 0. In [2, Chapter 9.8], the author looksat the operatorT n,

i.e., a shift ofn places, and considers an invariant setS0, p(S0) > 0, with respect toT n. In Lemma 9.8.2 in [2],

it is stated that one can separate the sourceS to n′ invariant subsets{Si = T i(S0)}
n′−1
i=0 , p(Si) =

1
n′

, with regard

to T n, such thatn′ dividesn and the setsSi, Sj are disjoint except, perhaps, an intersection of zero probability.

These subsets are calledergodic modes, due to the fact that each invariant subset of them under the operatorT n is

of probability 0 or 1
n′

. In other words, conditional on an ergodic modeSi each invariant subset of it with respect

to T n, is of probability 0 or 1.

Recall, that by definition,

Rn(D) =
1

n
In(X̂

n → Xn),
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where the right-hand side is the average directed information between the source and reconstruction, determined

according top(x̂n|xn) that achievesRn(D). Let In(X̂n → Xn|i) be the average directed information between

a source sequence from theith ergodic mode and the ensemble of codes, using the probability p(x̂n|xn) which

achievesRn(D). Note that the directed information can be written as

In(X̂
n → Xn) =

∑

xn,x̂n

p(xn)p(x̂n|xn) log
p(x̂n|xn)

p(x̂n||xn−1)

=
∑

xn,x̂n

p(xn)p(x̂n|xn) log
p(x̂n|xn)p(xn)

p(x̂n||xn−1)p(xn)

= D
(

p(xn)p(x̂n|xn)||p(x̂n||xn−1)p(xn)
)

,

which is convex over the input probabilityp(xn). Thus,

In(X̂
n → Xn) ≥

1

n′

n′−1
∑

i=0

In(X̂
n → Xn|i). (17)

We observe that1nIn(X̂
n → Xn|i) is an upper bound to thenth order rate distortion function conditional on the

ith ergodic mode. From Theorem 5, we know that there exists a codebookTCi
with |TCi

| = ⌊2L( 1
n
In(X̂

n→Xn|i)+δ)⌋

code trees of lengthL such that the average distortion constraint holds. Anotherobservation is that if a codebook

TCi
satisfies the distortion constraint, conditional on the ergodic modeSi, then it has the same effect conditional on

the ergodic modeT (Si−1). In other words, we can encode not only a source sequence fromSi−i with TCi−1 , but

also a shift of the a source sequence inSi−1 with TCi
. We use these observations while constructing the codebook.

We can now prove Theorem 1, i.e., the achievability ofRn(D), where the source is ergodic and stationary. An

equivalent version of Theorem 1 is the following: letRn(D) be thenth order rate distortion function for a discrete,

stationary, and ergodic source. For anyD such thatRn(D) < ∞, andδ > 0, and anyL sufficiently large, there

exists a codebook of treesTC of lengthL with |TC | ≤ 2L(Rn(D)+δ) code trees for which the average distortion per

letter satisfiesE
[

d(Xn, X̂n
]

≤ D + δ.

Proof of Theorem 1: Let p(x̂n|xn) be the transition probability that achievesRn(D) and letp(x̂n||xn−1) be

the causal conditioning probability that corresponds top(xn)p(x̂n|xn).

• Code design.For anyL and any ergodic modeSi, 0 ≤ i ≤ n′, construct an ensemble of codesTCi
, with

|TCi
| = ⌊2L( 1

n
In(X̂

n→Xn|i)+δ)⌋ ’little’ code trees of lengthL, where each ’little’ code tree is generated

according top(x̂L||xL−1), as in Fig. 2 in Theorem 5 above. Now, for every0 ≤ i ≤ n′, theith codebook is an

ensemble of ’big’ code trees, which are concatenation ofn′ ’little’ code trees, starting from one inTCi
, and

followed by one fromTCi+1 to one fromTCn′+i−1
, where the index is calculated modiolusn′. In the example

of a ’big’ code tree in Fig. 3 we see additional letters at the end of each ’little’ code tree, i.e., in positions

L + 1, 2(L + 1), ..., n′(L + 1), that are fixed. The purpose of the fixed letters is to shift thesequence and

encode it with a codetree from the sequential codebook. Note, that the overall length of a code tree sums up

to L′ = Ln′ + n′.
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PSfrag replacements

Codetree fromTCi Codetree fromTCi+1 Codetree fromTCi+2

Fixed letters

Code tree 1
Code tree 2

Fig. 3: A code tree from theith codebook,n = n′ = 3, L = 6.

• Encoder.For every i, the encoder assigns for every source sequencexL′

∈ Si a code treeτL
′

from the

ith codebook, such thatd(xL′

, x̂L′

(τL
′

, xL′−1)) is minimal. The sequencêxL′

(τL
′

, xL′−1) is determined by

walking on treeτL
′

, and following the branchxL′−1.

• Decoder.The decoder receives a treeτL
′

and causal information ofxL′

and returns the sequencex̂L′

that it

produces.

Since the distortion constraint for every ergodic mode is satisfied due to Theorem 5, the overall distortion is

satisfied as well. The additional fixed letters are of unknowndistortion, but due to the face that the distortion is

bounded, their contribution is negligible for largeL. Moreover, note that for everyi, the ith codebook is of the

same size. Thus, the overall size of the codebook is

|TC | = n′
n′−1
∏

i=0

|TCi
|

≤ n′
n′−1
∏

i=0

2L( 1
n
In(X̂

n→Xn|i)+δ)

= 2L( 1
n

∑n′
−1

i=0 In(X̂
n→Xn|i)+n′δ+ log(n′)

L
)

≤ 2L(n′

n
In(X̂

n→Xn)+n′δ+ log(n′)
L

)

= 2Ln′(Rn(D)+δ+ log(n′)

Ln′
)

≤ 2(Ln′+n′)(Rn(D)+δ+ log(n′)

Ln′
).

Recall thatL′ = Ln′ + n′, and by lettingδ′ = δ + log(n′)
Ln′

we conclude thatRn(D) is an achievable rate for the

general ergodic source, as required.

IV. PROOF THATR(D) = R(I)(D) (THEOREM 2).

In this section we show that the operational description of the rate distortion with feed-forward is equal to the

mathematical one given in (18). This will be done first by showing that the mathematical expressionR(I)(D) is
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achievable, and then by showing that it is a lower bound to therate distortion function. We recall that

R(I)(D) = lim
n→∞

1

n
min

p(x̂n|xn):E[d(Xn,X̂n)]≤D
I(X̂n → Xn). (18)

To show thatR(I)(D) is achievable we first need to show that the limit of the sequence {Rn(D)} exists. For

this purpose, we use the following lemma.

Lemma 2 The sequenceRn(D),

Rn(D) =
1

n
min

p(x̂n|xn):E[d(Xn,X̂n)]≤D
I(X̂n → Xn),

is a sub-additive sequence, and thus

inf
n

Rn(D) = lim
n→∞

Rn(D).

Note, that a sequence{an} is called sub-additive if for allm, l,

(m+ l)am+l ≤ mam + lal.

The proof for Lemma 2 is given in App. A.

We now state a lemma for the achievability ofR(I)(D).

Lemma 3 (Achievability ofR(I)(D)) The mathematical expression for the rate distortion feed-forwardR(I)(D) is

achievable, and thus upper boundsR(D).

Proof: We showed in Theorem 1 that for anyn, Rn(D) is achievable. Further, in Lemma 2 we show that the

limit exists and equal to the infimum, and hence is achievabletoo. Therefore, we conclude that the mathematical

expressionR(I)(D) is achievable, and forms an upper bound to the operational descriptionR(D).

To show thatR(I)(D) is a lower bound to the rate distortion function, we provide the following lemma

Lemma 4 (Converse)the mathematical expressionR(I)(D) is a lower bound to the operational rate distortion

function.

For the completeness of the paper, we provide the proof of Lemma 4, this in App. B. However, similar proof was

presented by Venkataramana and Pradhan in [4], and their expressions involved limit in probability of the entropy

and directed information as described in Section I.

Proof of Theorem 2: Combining Lemmas 3, 4 provides us with the proof for our fundamental theorem, stated

in Section II, i.e., the operational rate distortion function R(D) is equal to the mathematical one,R(I)(D).

V. GEOMETRIC PROGRAMMING FORM TORn(D) (THEOREM 3)

In this section we show that thenth order rate distortion function with feed-forwardRn(D) can be given as a

maximization problem, written in a standard form of geometric programming. For this purpose we first state the

following theorem.
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Theorem 6The nth order rate distortion function,Rn(D), can be written as the following maximization problem

Rn(D) = max
λ≥0,γ(xn)

1

n

(

−λD +
∑

xn

p(xn) log γ(xn)

)

, (19)

where, for some causal conditioned probabilityp′(xn||x̂n), γ(xn) satisfies the inequality constraint

p(xn)γ(xn)2−λd(xn,x̂n) ≤ p′(xn||x̂n). (20)

In App. C we provide two proofs for Theorem 6; the first is similar to Berger’s proof in [13] for the regular rate

distortion function based on the inequalitylog(y) ≥ 1− 1
y , and the second uses the Lagrange duality as presented in

[14] and [15] that transforms a minimization problem to a maximization one.. App. C also includes the connection

between the rate distortion function and the parameterλ, which states that the slope ofRn(D) in point D is −λ
n .

Proof of Theorem 3: Considering the theorem above, our interest now is to adjustthe constraints in order

to obtain a geometric programming form. We note that the optimization problem in (19) does not change if we

maximize overp′(xn||x̂n) as well, and the constraint (20) is no longer for somep′, i.e.,

Rn(D) = max
λ≥0,γ(xn),p′(xn||x̂n)

1

n

(

−λD +
∑

xn

p(xn) log γ(xn)

)

, (21)

whereγ(xn), p′(xn||x̂n) satisfy the inequality constraint

p(xn)γ(xn)2−λd(xn,x̂n) ≤ p′(xn||x̂n). (22)

The above statement is true since, on the one hand, the maximization in (19) increases upon maximizing over

another variable,p′(xn||x̂n), as in (21); on the other hand, the variableγ∗(xn), p′∗(xn||x̂n) that achieves (21)

satisfy the constraint (20) in Theorem 6, and hence the maximization problem in (21) cannot be greater than the

one in (19).

To obtain a geometric programming standard form we transform the constraint in (22), such that

p(xn)γ(xn)2−λd(xn,x̂n)p′(xn||x̂n)−1 ≤ 1.

Taking thelog of both sides, we obtain

log(p(xn)) + log(γ(xn))− λd(xn, x̂n)−

n
∑

i=1

log p′(xn||x̂n) ≤ 0.

Note that maximizing overp′(xn||x̂n) is the same as maximizing over its products{p′(xi|x
i−1, x̂i)}ni=1 [10,

Lemma 3]. Therefore, we can conclude that the rate distortion with feed-forwardRn(D) can be given as a geometric

programming maximization form,

Rn(D) = max
λ,γ(xn),{p′(xi|xi−1,x̂i)}n

i=1

1

n

(

−λD +
∑

xn

p(xn) log γ(xn)

)

,
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subject to

log(p(xn)) + log(γ(xn))− λd(xn, x̂n)−

n
∑

i=1

log p′(xi|x
i−1, x̂i) ≤ 0, ∀ xn, x̂n,

∑

xi

p′(xi|x
i−1, x̂i) = 1, ∀ i, ∀ xi−1, x̂i−1,

λ ≥ 0.

Hence, we obtain a standard form of geometrical programming. This GP problem can be solved using standard

convex optimization tools.

VI. EXTENSION OF THEBAA FOR RATE DISTORTION WITH FEED-FORWARD

In this section we describe an algorithm for calculatingRn(D), where

Rn(D) =
1

n
min

r(x̂n|xn):E[d(Xn,X̂n)]≤D
I(X̂n → Xn), (23)

using the alternating minimization procedure. This methodwas first used by Blahut and Arimoto [16], [17] to obtain

a numerical solution for the i.i.d. source rate distortion and for the memoryless channel capacity. Recently, in [12]

we extended this method for finding the global maximum of the following optimization problem-

Cn =
1

n
max

p(xn||yn−1)
I(Xn → Y n),

and we apply similar methods here.

Before we describe the algorithm, let us denote byr = r(x̂n|xn), q = q(x̂n||xn−1) the PMFs that are participating

in the minimization. Further, let us consider the double optimization problem given by

Rn(D) =
1

n

[

−λD +min
r,q

K(r, q)

]

, (24)

where

K(r, q) = IFF (r, q) + λEr

[

d(Xn, X̂n)
]

,

andIFF (r, q) is the directed information that can be written as

IFF (r, q) = I(X̂n → Xn) =
∑

x̂n,xn

p(xn)r(x̂n|xn) log
r(x̂n|xn)

q(x̂n||xn−1)
. (25)

In Section VII we show that the double optimization problem given in (24) is equal to the one given in (23).

Equations (24), (25) allow us to apply the alternating minimization procedure.

A. Description of the algorithm

In Algorithm 1 we present the steps required to minimize the directed information where the input PMFp(xn)

is fixed. The parameterλ is used in the Lagrangian with which we optimize the directedinformation. The value of
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Algorithm 1 Iterative algorithm for calculatingRn(D), wherep(xn) is fixed.

(a) Fix a value ofλ ≥ 0 that determines a point on theRn(D) curve.

(b) Start from a random causally conditioned pointq0(x̂n||xn−1). Usually we start from a uniform distribution,
i.e., q0(x̂n||xn−1) = 2−n for every(xn, x̂n).

(c) Setk = 1.

(d) Computerk(x̂n|xn) using the formula

rk(x̂n|xn) =
qk−1(x̂n||xn−1)2−λd(xn,x̂n)

∑

x̂n qk−1(x̂n||xn−1)2−λd(xn,x̂n)
.

(e) Calculate the joint probabilityp(xn, x̂n) = p(xn)rk(x̂n|xn), and deduce the causal conditioned PMF
qk(x̂n||xn−1) as in (2).

(f) Calculate the parameter

ckx̂n,xn−1 =
qk(x̂n||xn−1)

qk−1(x̂n||xn−1)
.

(g) Calculate

F = log max
x̂n,xn−1

ckx̂n,xn−1 −
∑

xn,x̂n

p(xn)rk(x̂n|xn) log ckx̂n,xn−1.

(h) If F ≥ ǫ, setk := k + 1, and return to (d).

(i) The rate distortion function, with distortionDk =
∑

x̂n,xn p(xn)rk(x̂n|xn)d(xn, x̂n), is

Rk
n(Dk) =

1

n

∑

xn,x̂n

p(xn)rk(x̂n|xn) log
rk(x̂n|xn)

qk(x̂n||xn−1)
.

Dk and henceRn(Dk) depends onλ; thus choosingλ appropriately sweeps out theRn(Dk) curve. The algorithm

stops whenF < ǫ. In App. D we provide upper and lower bounds, used show that ifF < ǫ, we ensure that

|Rk
n(Dk)−Rn(Dk)| < ǫ.

Now, let us present a special case and a few extensions for Algorithm 1.

(1) Regular BAA, i.e., the delay s = n. For delays = n, the algorithm suggested here meets the original BAA,

where instead of step (d) we have

rk(x̂n|xn) =
qk−1(x̂n)2−λd(xn,x̂n)

∑

x̂n qk−1(x̂n)2−λd(xn,x̂n)
,

and in step (e),qk(x̂n) corresponds to the joint probabilityp(xn)rk(x̂n|xn) as well. Moreover, the expression

for ckx̂n,xn−1 is reduced to

ckx̂n =
qk(x̂n)

qk−1(x̂n)
,
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and the termination of the algorithm in step (g) is defined by

F = logmax
x̂n

ckx̂n −
∑

xn,x̂n

p(xn)rk(x̂n|xn) log ckx̂n ≤ ǫ,

as in the regular Blahut-Arimoto algorithm [16].

(2) Function of the feed-forward with general delay s. We present a generalization of the algorithm, where the

feed-forward is a deterministic function of the source withsome delays, zi−s = f(xi−s). In that case, step

(d) is replaced by

rk(x̂n|xn) =
qk−1(x̂n||zn−s)2−λd(xn,x̂n)

∑

x̂n qk−1(x̂n||zn−s)2−λd(xn,x̂n)
,

and in step (e) we have

qk(x̂n||zn−s) =

n
∏

i=1

p(x̂i|x̂
i−1, zi−s),

where we calculatep(x̂i|x̂
i−1, zi−s) from the joint distributionp(xn, x̂n) = p(xn)rk(x̂n|xn). The algorithm

is terminated in the same way, where

ckx̂n,zn−s =
qk(x̂n||zn−s)

qk−1(x̂n||zn−s)
.

B. Complexity and Memory needed

Computation complexity and memory needed for the algorithmabove is presented in Table I.

TABLE I: Memory and operations needed extended BAA for source coding with feed-forward.

Operation Memory

minp(x̂n|xn):E[d(Xn,X̂n)]≤D

(

1
nI(X̂

n;Xn)
)

, regular BAA O((|X ||X̂ |)
n
) (|X ||X̂ |)

n
+ |X |

n
+ |X̂ |

n

minp(x̂n|xn):E[d(Xn,X̂n)]≤D

(

1
nI(X̂

n → Xn)
)

, Alg. 1 O((|X ||X̂ |)
n
) 2(|X ||X̂ |)

n
+ |X |

n

VII. DERIVATION OF ALGORITHM 1.

In this section, we first describe the alternating minimization procedure, and then (as given in Alg. 1) prove its

convergence to the global minimum given by

Rn(D) =
1

n
min

r(x̂n||xn−1):E[d(Xn,X̂n)]≤D
I(X̂n → Xn).
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Throughout this section, note that the input probabilityp(xn) is fixed in all minimization calculations. Further, we

denote byIFF (r, q) the directed information, given by

IFF (r, q) =
∑

x̂n,xn

p(xn)r(x̂n|xn) log
r(x̂n|xn)

q(x̂n||xn−1)
.

The alternating maximization procedure is described in [12] by two maximization functions;c2(u1) ∈ A2 which

is the point that achievessupu2∈A2
f(u1, u2), andc1(u2) ∈ A1 which is the one that achievessupu1∈A1

f(u1, u2).

Although in this paper we wish to solve a minimization problem, its negative can be used in the alternating

maximization procedure. We now state the alternating maximization procedure lemma.

Lemma 5 (Lemmas 9.4, 9.5 in [18], ”Convergence of the alternating maximization procedure”). Let f(u1, u2) be a

real, concave, bounded from above function, that is continuous and has continuous partial derivatives, and let the

setsA1, A2, over which we maximize be convex. Further, assume thatc2(u1) ∈ A2 and c1(u2) ∈ A1 for all

u1 ∈ A1, u2 ∈ A2. Let us define an iteration as the following equation

(uk
1 , u

k
2) =

(

c1(u
k−1
2 ), c2(c1(u

k−1
2 ))

)

,

and in each iteration we consider the valuefk = f(uk
1 , u

k
2). Under these conditions,limk→∞ fk = f∗, wheref∗

is the solution to the optimization problem.

The rate-distortion function with feed-forward can be, as in [16], carried out parametrically in terms of parameter

λ, which is introduced as a Lagrange multiplier. In App. D we show that this parameter defines the slope of the

curveRn(D) at the point it parameterizes, and the slope is given by−λ
n . We now write the following parametric

expression forRn(D).

Rn(D) =
1

n
min

r(x̂n|xn)

[

I(X̂n → Xn) + λ
(

Er

[

d(Xn, X̂n)
]

−D
)]

, (26)

whereD is the distortion at the pointr∗(x̂n|xn) that achievesRn(D). Here, the value ofD is not an input to the

minimization, but is determined by the parameterλ.

Note that the directed information is a function of the jointdistribution p(xn)r(x̂n|xn). Since the source

distribution is given, the directed informationIFF is determined byr = r(x̂n|xn) alone. Let us define by

q = q(x̂n||xn−1) the causal conditioning probability. Now, let us define the functional

K(r, q) = IFF (r, q) + λEr

[

d(Xn, X̂n)
]

. (27)

From (26) and (27) we can see, thatRn(D) can be written as

Rn(D) =
1

n

[

−λD +min
r

K(r, q)
]

,

where q(x̂n−1||xn) corresponds to the joint distributionp(xn)r(x̂n|xn), and D is the distortion at the point

r∗(x̂n|xn) that achievesRn(D).
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In this section, we show that we can use the alternating minimization procedure for computingRn(D). For this

purpose, we present several lemmas that assist in proving our main goal. In Lemma 6 we show that the expression

we minimize satisfies the conditions in Lemma 5. In Lemma 7 we show that we are allowed to minimize the

functionalK overr(x̂n|xn) andq(x̂n||xn−1) together, rather than overr(x̂n|xn) alone, and thus use the alternating

minimization procedure to achieve the optimum value. Lemma8 is a supplementary claim that helps us to prove

Lemma 7, in which we find an expression forq(x̂n||xn−1) that minimizes the functionalK wherer(x̂n|xn) is

fixed. In Lemma 9 we find an explicit expression forr(x̂n|xn) that minimizes the functionalK whereq(x̂n||xn−1)

is fixed. Theorem 4 combines all lemmas to show that the alternating minimization procedure, as described in Alg.

1, converges. We end with a supplementary claim about the upper and lower bounds to the rate distortion, and then

prove that the stopping condition described in Alg. 1 ensures that the error|Rk
n(D)−Rn(D)| < ǫ. From here on,

we denote the probabilities over which we minimize asr = r(x̂n|xn), q = q(x̂n||xn−1).

Lemma 6 For a fixed input PMFp(xn), the functionalK given in (27) as a function of{r, q} is convex in{r, q},

continuous and with continuous partial derivatives. Moreover, the sets of probabilitiesr, q (denoted byA1, A2)

over which we optimize are convex.

Proof: Since the functionalK consists of a linear (and thus convex) expression inr, i.e.,Er

[

d(Xn, X̂n)
]

, we

only need to verify that the directed information is convex.We first write the directed information in the following

form

I(X̂n → Xn) = −
∑

x̂n,xn

p(xn, x̂n) log
p(xn)

p(xn||x̂n)

= −
∑

x̂n,xn

p(xn, x̂n) log
p(xn)q(x̂n||xn−1)

p(xn||x̂n)q(x̂n||xn−1)

= −
∑

x̂n,xn

p(xn, x̂n) log
q(x̂n||xn−1)

p(xn, x̂n)/p(xn)

= −
∑

x̂n,xn

p(xn)r(x̂n|xn) log
q(x̂n||xn−1)

r(x̂n|xn)

= IFF (r, q).

This form is the negative of a concave function as proven in [12, Lemma 2]. Furthermore, in the same lemma we

show that the directed information is continuous with continuous partial derivatives; the same explanation applies

here. It is also simple to verify that both sets we minimize over are convex, i.e., setsA1, A2, where

A1 = {r(x̂n|xn) : r(x̂n|xn) > 0 is a regular conditioned PMF},

A2 = {q(x̂n||xn−1) : q(x̂n||xn−1) is a causally conditioned PMF}. (28)

Recall that in order to use the alternating minimization procedure we minimize over{r(x̂n|xn), q(x̂n||xn−1)}
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instead of overr(x̂n|xn) alone, and thus need the following lemma.

Lemma 7 For any discrete random variablesXn, X̂n, the following holds

Rn(D) =
1

n

[

−λD +min
r,q

K(r, q)

]

,

whereD is the distortion at the pointr∗(x̂n|xn) that achievesRn(D)

To prove this lemma, we note thatEr

[

d(Xn, X̂n)
]

, which does not contain the variableq, is part of the functional

K. Hence, it suffices to show that

min
r(x̂n|xn)

1

n
I(X̂n → Xn) = min

q(x̂n||xn−1)
min

r(x̂n|xn)

1

n
I(X̂n → Xn) (29)

The proof is given after the following supplementary claim,in which we calculate the specificq(x̂n||xn−1) that

minimizes the directed information whenr(x̂n|xn) is fixed.

Lemma 8 For fixedr(x̂n|xn), there exists a uniquec2(r) that achievesminq(x̂n||xn−1) I(X̂
n → Xn), and is given

by

q∗(x̂n||xn−1) =
p(xn)r(x̂n|xn)

p(xn||x̂n)
, (30)

wherep(xn||x̂n) is calculated using the joint distributionp(xn)r(x̂n|xn).

Proof for Lemma 8:

IFF (r, q)− IFF (r, q
∗)

=
∑

xn,x̂n

p(xn)r(x̂n|xn) log
r(x̂n|xn)

q(x̂n||xn−1)
−
∑

xn,x̂n

p(xn)r(x̂n|xn) log
r(x̂n|xn)

q∗(x̂n||xn−1)

=
∑

xn,x̂n

p(xn)r(x̂n|xn) log
q∗(x̂n||xn−1)

q(x̂n||xn−1)

=
∑

xn,x̂n

p(xn||x̂n)q∗(x̂n||xn−1) log
p(xn||x̂n)q∗(x̂n||xn−1)

p(xn||x̂n)q(x̂n||xn−1)

= D
(

p(xn||x̂n)q∗(x̂n||xn−1) ‖ p(xn||x̂n)q(x̂n||xn−1)
)

(a)

≥ 0,

where (a) follows from the non-negativity of the divergence. Equality holds if and only if the joint PMFs are the

same, i.e.,q = q∗.

Proof of Lemma 7: The PMF that minimizes the directed information is the one that corresponds to the joint

distributionr(x̂n|xn)p(xn); thus (29) holds, and thus the functionalK can be minimized over bothr, q combined.

In the following lemma, we derive an explicit expression forr(x̂n|xn) that achievesRn(D), whereq(x̂n||xn−1)

is fixed.
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Lemma 9 For fixedq(x̂n||xn−1), there existsc1(q) that achievesRn(D), and is given by

r(x̂n|xn) =
q(x̂n||xn−1)2−λd(xn,x̂n)

∑

x̂n q(x̂n||xn−1)2−λd(xn,x̂n)
.

Proof: Following [14, Ch. 5.5.3], since we are solving a convex optimization problem, we can apply the KKT

conditions with the constraints
∑

x̂n r(x̂n|xn) = 1, and set up the functional

J =
∑

xn,x̂n

p(xn)r(x̂n|xn) log
r(x̂n|xn)

q(x̂n||xn−1)
+ λ





∑

xn,x̂n

p(xn)r(x̂n|xn)d(xn, x̂n)−D



+
∑

xn

ν(xn)
∑

x̂n

r(x̂n|xn).

Solving ∂J
∂r(x̂n|xn) = 0 yields the expression forr(x̂n|xn) as

r(x̂n|xn) =
q(x̂n||xn−1)2−λd(xn,x̂n)

∑

x̂n q(x̂n||xn−1)2−λd(xn,x̂n)
. (31)

Another lemma that is required is one that states that the algorithm, when converges, remains fixed on its variables.

we already know that the variableq that optimize the directed information is unique; we have toshow that within

the algorithm, the variabler is unique as well.

Lemma 10Using the iterations in Alg. 1, the variabler is unique, and does not change if convergence is achieved.

Proof: The uniqueness is proven in a similar way to a proof given by Blahut in [16, Theorem 6], and we

follow it with appropriate modifications. We recall that in the kth iteration,

K(rk, qk) = IFF (r
k, qk) + λErk

[

d(Xn, X̂n)
]

=
∑

xn,x̂n

p(xn)rk(x̂n|xn) log
rk(x̂n|xn)

qk(x̂n||xn−1)2−λd(xn,x̂n)
.

Further, from [16, Theorem 6] we can see that

K(rk+1, qk+1) = −
∑

xn,x̂n

p(xn)rk(x̂n|xn) log

(

∑

x̂n

qk(x̂n||xn−1)2−λd(xn,x̂n)

)

+
∑

xn,x̂n

p(xn)rk+1(x̂n|xn) log
qk(x̂n||xn−1)

qk+1(x̂n||xn−1)
.

Hence,

K(rk, qk)−K(rk+1, qk+1) =
∑

xn,x̂n

p(xn)rk(x̂n|xn) log
rk(x̂n|xn)

∑

x̂n qk(x̂n||xn−1)2−λd(xn,x̂n)

qk(x̂n||xn−1)2−λd(xn,x̂n)

+
∑

xn,x̂n

p(xn)rk+1(x̂n|xn) log
qk+1(x̂n||xn−1)

qk(x̂n||xn−1)

(a)

≥
∑

xn,x̂n

p(xn)rk(x̂n|xn)

(

1−
qk(x̂n||xn−1)2−λd(xn,x̂n)

rk(x̂n|xn)
∑

x̂n qk(x̂n||xn−1)2−λd(xn,x̂n)

)

+
∑

xn,x̂n

p(xn)rk+1(x̂n|xn)

(

1−
qk(x̂n||xn−1)

qk+1(x̂n||xn−1)

)
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(b)
=
∑

xn,x̂n

p(xn)rk(x̂n|xn)

(

1−
rk+1(x̂n|xn)

rk(x̂n|xn)

)

+
∑

xn,x̂n

p(xn||x̂n)qk+1(x̂n||xn−1)

(

1−
qk(x̂n||xn−1)

qk+1(x̂n||xn−1)

)

= 0+ 0,

where (a) follows from the inequalitylog(y) ≥ 1− 1
y , and (b) follows from Equation (31) whereq = qk, r = rk+1.

Note, that we have strict inequality unlessqk = qk+1, rk = rk+1. Thus,K(rk, qk) is non-increasing and is strictly

decreasing unless the distribution stabilizes, and hence the uniqueness of the optimum parameterr∗ emerges.

Now, we can prove Theorem 4 as stated in Section II.

Proof of Theorem 4: First, we have to show the existence of a double minimizationproblem, i.e., an equivalent

problem where we minimize over two variables instead of onlyone; this was shown in Lemma 7. Now, in order for

the alternating minimization procedure to work on this optimization problem, we need to show that the conditions

given in Lemma 5 are satisfied for the functionalK; this was shown in Lemma 6. The steps described in Alg. 1 are

proved in Lemmas 8 and 9, thus giving us an algorithm to compute Rn(D), where the minimization is evaluated

according to parameterλ.

Our last step in proving the convergence of Alg. 1 is to show why the stopping condition ensures a small error. For

this reason we state a lemma introducing the existence of bounds to the rate distortion with feed-forward function, and

then conclude that the stopping condition does ensure a small error in the algorithm, i.e.,|Rk
n(Dk)−Rn(Dk)| < ǫ,

whereRk
n(Dk) is the upper bound in thekth iteration, andDk = Erk

[

d(Xn, X̂n)
]

. For this purpose, we define

the following expressions in each iteration,

ckx̂n,xn−1 =
qk(x̂n||xn−1)

qk−1(x̂n||xn−1)

γk(xn) =

(

∑

x̂n

qk−1(x̂n||xn−1)2−λd(xn,x̂n)

)−1

. (32)

Lemma 11Let the parameterλ ≥ 0 be given, and letckx̂n,xn−1 , γk(xn) be as in (32) in thekth iteration of Alg.

1. Then, at point

Dk = Erk

[

d(Xn, X̂n)
]

,

we have the following bounds.

IkL(Dk) ≤ Rn(Dk) ≤ IkU (Dk),
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where

IkU (Dk) =
1

n



−λD +
∑

xn

p(xn) log γk(xn)−
∑

xn,x̂n

p(xn)rk(x̂n|xn) log ckx̂n,xn−1



 ,

IkL(Dk) =
1

n

(

−λD +
∑

xn

p(xn) log γk(xn)− log max
x̂n,xn−1

ckx̂n,xn−1

)

. (33)

Note, thatRk
n(Dk) = IkU (Dk).

The proof for Lemma 11 is given in App. D.

From Lemma 11 we can conclude the following claim

Corollary 1 Let us define the error in the algorithm as|Rk
n(D)−Rn(D)|. The error defined here is smaller thanǫ

if the following inequality is satisfied:

F = log max
x̂n,xn−1

ckx̂n,xn−1 −
∑

xn,x̂n

p(xn)rk(x̂n|xn) log ckx̂n,xn−1 ≤ ǫ,

whereckx̂n,xn−1 is defined in thekth iteration by Equation (32).

Proof: The proof follows from Equation (33), in which the upper bound and lower bound differ only in their

last expression. Thus, ifF < ǫ, thenRn(D) is close to the upper boundRk
n(D) by, at most,ǫ.

VIII. N UMERICAL EXAMPLES

In this section we present several examples for the rate distortion source coding with feed-forward. First, by using

Alg. 1 we demonstrate, for a specific example, that feed-forward does not decrease the rate distortion function where

the source is memoryless (i.i.d.) as shown in [3]. Then we provide two explicit examples for a Markovian source;

one where the distortion is single letter, and one with a general distortion function as presented in [5]. Geometric

programming is used as well, to verify our results.

In all of the examples, we run Alg. 1 with various values ofλ, and thus construct the graph ofRn(D) using

interpolations. Alternatively, one can use the geometric programming form and find, for every distortionD given

as input, the rateR.

A. A memoryless (i.i.d.) source

Analogous to the memoryless channel, it was shown by Weissman and Merhav [3] that for an i.i.d. source feed-

forward does not decrease the rate distortion function. In this example, the source is distributedX ∼ B(12 ), and

the distortion function is single letter, i.e.,

d(xn, x̂n) =
1

n

n
∑

i=1

d(xi, x̂i).
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Running our algorithm with delays = 1 and block lengthn = 5, we would expect to obtain the same result as

with no feed-forward at all (as shown in [19, ch. 10.3.1]),which is given by

R(D) =







Hb(p)−Hb(D), 0 ≤ D ≤ min{p, 1− p}

0, D ≥ min{p, 1− p}
(34)

Note thatHb(p), Hb(D) are the binary entropies with parametersp, D, respectively. Indeed, the function above

and the performance of Alg. 1 coincide, as illustrated in Fig. 4. Note that the joint distributionp(xn)r(x̂n|xn) is the
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Fig. 4: Rate distortion function for a binary source, and feed-forward with delay 1. The circles represent the
performance of Alg. 1, regular line is the plot of (34).

same as the one that achieves the analytical calculation, inwhich p(xi) = 0.5, andX ⊕ X̂ ∼ B(D). For D = 0.2

and n = 3, solving the geometrical programming form using a Matlab code produces the rateR = 0.278072,

which is close toR(0.2) using Equation (34). The value ofλ turns out to be 6, which means that the slope at point

(R = 0.278072, D = 0.2) is -2.

In the following example, we present the performance of Alg.1 for a Markov source and a single letter distortion.

B. Markov source and single letter distortion

The Markov source is presented in Fig. 5. This model was solved by Weissman and Merhav in [3] for the

PSfrag replacements p

q

1− p

1− q

0 1

Fig. 5: A symmetrical Markov chain.

symmetrical casep = q. We extend this model for the case of general transition probabilities p, q. The analytical

solution for this example is detailed in App. E; there we showthat for anyn

Rn(D) =
1

n
Hb(π) +

n− 1

n
(π1Hb(p) + π2Hb(q))−Hb(D). (35)
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By takingn to infinity, we have

R(D) = π1Hb(p) + π2Hb(q)−Hb(D),

whereπ = [π1, π2] is the stationary distribution of the source. In Fig. 6 (a) wepresent the graphs ofRn(D) for

n = 1 up to n = 12, wherep = 0.3, q = 0.2, andX0 has the stationary distribution[0.4, 0.6]. It is evident that

Rn(D) decreases asn increases and converges to the analytical calculation.

In [12, Lemma 6] we provided another estimator for the feedback channel capacities, namely, the directed

information rate. There, we show that if the limit exists, then

lim
n→∞

1

n
I(Xn → Y n) = lim

n→∞

(

I(Xn → Y n)− I(Xn−1 → Y n−1)
)

.

We can also use the directed information rate to estimateRn(D). This is applied in two ways: either when the rate

value is fixed or when the distortion value is fixed. In both cases we first have to fix an axes vector and interpolate

the other vector with respect to the fixed one; then we can calculate differences between the interpolated vectors.

In Fig. 6 (b) we present this estimator only forn = 12 where the vector of the distortion is interpolated, i.e.,

12D12(R)− 11D11(R). We can see that this estimation is much more accurate than the one in Fig. 6 (a).
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Fig. 6: R(D) for the Markov source example and feed-forward with delay 1.
(a) Graph ofRn(D); the arrow marks the wayRn(D) responds ton increasing. The dashed line is the analytical

calculation.
(b) Graph of12D12(R)− 11D11(R). The circles represent the performance of Alg. 1.

This is a good opportunity to present the performance of the upper and lower bounds to a specific rate distortion

pair (R,D), and the geometrical programming solution to this problem.We ran our BA-type algorithm for the

specific parametersλ = 9.216, n = 3 that corresponds to the rate distortion pair(R = 0.35884, D = 0.10627) at

slope 9.216
3 ≈ 3, this presented in Fig. 7 (a). We also ran ten distortion points using GP fromD = 0 to D = 0.27

and compared it toR3(D) as in (35) and the BAA performance, the solution is in Fig. 7 (b).
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Fig. 7: Bounds forR3(D) and performance of GP and BAA forR3(D).
(a) Graph of the upper and lower bounds as a function of the iteration forn = 3, λ = 9.216 as given in

Equation(33).
(b) Graph of the solution using the GP and BAA method forn = 3. The solid line isR3(D) as in (35), the

circles represent the performance of the GP, and the dashed line is the BAA result.

C. Stock market example. Markov source and general distortion

The stock market example, in which we wish to observe the behavior of a particular stock over anN -day period,

was introduced and solved in [5]. Assume the stock can takek+1 values,0 ≤ i ≤ k, and is modulated as ak+1

state Markov chain. On a given dayi, the probability for the stock value to increase by 1 ispi, to decrease by 1 is

qi, and to remain the same is1− pi − qi. When the stock value is in state 0, the value cannot decrease. Similarly,

when in state k the value cannot increase. If an investor would like to be forewarned whenever the stock value

drops, he is advised with a binary decision̂Xn. X̂n = 1 if the value drops from dayn− 1 to dayn, andX̂n = 0

otherwise. The distortion is modulated in the following form

d(xn, x̂n) =
1

n

n
∑

i=1

e(x̂i, xi−1, xi),

wheree(., ., .) is given in Table II. It was shown in [5] that the rate-distortion function of a general Markov-chain

TABLE II: Distortion e(x̂i, xi−1, xi), j ∈ {0, 1, ..., k}

(xi−1, xi)
j, j + 1 j, j j, j − 1

x̂i = 0 0 0 1
x̂i = 1 1 1 0

source withk states, is given by

R(D) =

k−1
∑

i=1

πi (H(pi, qi, 1− pi − qi)−Hb(ǫ)) + πk (Hb(qk)−Hb(ǫ)) ,

whereπ = [π0, π1, ..., πk] is the stationary distribution of the Markov chain, andǫ = D
1−π0

.
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In our special case we havek = 2, i.e.,2 states for the Markov chain, and transition probabilitiespi = 0.3, qi =

0.2 as illustrated in Fig. 5. The stationary distribution of such a source isπ = [0.4, 0.6], and we are left with

R(D) = π1 (Hb(q) −Hb(ǫ))

= 0.6(Hb(0.2)−Hb(
D

0.6
)).

Since the rate cannot be less than zero, and is a descending function of the distortion, the rate-distortion function

is as above whenHb(0.2) ≥ Hb(
D
0.6 ), i.e., whenD ≤ 0.12, and thus we obtain

R(D) =







0.6(Hb(0.2)−Hb(
D
0.6 )), D ≤ 0.12

0, otherwise.
(36)

In Fig. 8(a) we present the graphs ofRn(D) for n = 1 up to n = 12 with the distortion described here and

whereX0 has the stationary distribution[0.4, 0.6]. We can see thatRn(D) decreases asn increases as expected

and converges to the analytical calculation. In Fig. 8 (b) wepresent the directed information rate estimator only

for n = 12, where the vector of the distortion is interpolated, i.e.,12D12(R) − 11D11(R). We can see that this

estimator is much more accurate than the one in Fig. 8 (a).

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

PSfrag replacements

R
(D

)

D

n

(a)

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

PSfrag replacements
R(D)

D
n

R
(D

)

D

(b)

Fig. 8: R(D) for the stock market example and feed-forward with delay 1.
(a) Graph ofRn(D); the arrow marks the wayRn(D) responds ton increasing. The dashed line is the analytical

calculation.
(b) Graph of12D12(R)− 11D11(R). The circles represent the performance of Alg. 1.

D. The effects of the delay on Rn(D)

In this example we use the Markov source (Fig. 5) example witha single letter distortion. We run Alg. 1 with

delayss ∈ {1, 2, .., 10} and block lengthn = 10, whereX0 has the stationary distribution. We expect the rate

distortion function to increase with the delays. This is expected because as the delays increases the value of the

directed information increases as well. Due to the fact thatfor s ∈ {3, 4, ..., 10} all graphs are close together, we

presentRn(D) only for s = 1, 2, 10, and the results are shown in Fig. 9.
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Fig. 9: R10(D) for a Markov source as a function of the delay.

IX. CONCLUSIONS

In this paper we considered the rate distortion problem of discrete-time, ergodic, and stationary sources with feed

forward at the receiver. We first derived a sequence of achievable rates,{Rn(D)}n≥1, that converge to the feed-

forward rate distortion. By showing that the sequence is sub-additive, we proved that the limit ofRn(D) exists

and thus equals to the feed-forward rate distortion. We provided an algorithm for calculatingRn(D) using the

alternating minimization procedure, and also presented a dual form for the optimization ofRn(D), and transformed

it into a geometric programming maximization problem.

APPENDIX A

PROOF OFLEMMA 2

We start by showing that the sequence{Rn(D)} is sub additive; the methodology is similar to Gallager’s proof in

[2, Th. 9.8.1] for the case of no feed-forward. Then, by showing that the sequenceRn(D) is sub-additive, following

[2, Lemma 4A.2] we obtain our main objective, i.e.,

lim
n

Rn(D) = inf
n

Rn(D).

To commence, we recall that a sequence{an} is called sub-additive if for allm, l,

(m+ l)am+l ≤ mam + lal.

Let l, n be arbitrary positive integers and, for a givenD, let pn(x̂n|xn) and pl(x̂
l|xl) be the conditional PMFs

that achieve the minimum of the directed information with block length ofn and l, i.e., that achieveRn(D) and

Rl(D), respectively. Suppose we transmitm = n+ l samples as follows; the firstn samples are transmitted using
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pn, and the sequentiall samples are transmitted usingpl. Hence, the overall conditional PMF is

pn+l(x̂
n+l|xn+l) = pn(x̂

n|xn)pl(x̂
n+l
n+1|x

n+l
n+1).

We can see in Section VI that the directed information can be written as

I(X̂m → Xm) = H(X̂m||Xm−1)−H(X̂m|Xm).

From the construction of the conditional overall PMFpn+l, its clear that

H(X̂n+l|Xn+l) = H(X̂n|Xn) +H(X̂n+l
n+1|X

n+l
n+1).

Furthermore,

H(X̂m||Xm−1) =

n+l
∑

i=1

H(X̂i|X̂
i−1, X i−1)

= H(X̂n||Xn−1) +

n+l
∑

i=n+1

H(X̂i|X̂
i−1, X i−1)

≤ H(X̂n||Xn−1) +

n+l
∑

i=n+1

H(X̂i|X̂
i−1
n+1, X

i−1
n+1)

= H(X̂n||Xn−1) +H(X̂n+l
n+1||X

n+l−1
n+1 ).

Thus, it follows that

I(X̂n+l → Xn+l) ≤ I(X̂n → Xn) + I(X̂n+l
n+1 → Xn+l

n+1). (37)

Since the source is stationary, we can start the input block at any given time index; thus the PMFspn andpl achieve

nRn(D)+ lRl(D) on the right-hand side of Equation (37), while the left-handside is greater than(n+ l)Rn+l(D)

since we attempt to minimize the expression to achieve the rate distortion function. Hence, we obtain

(n+ l)Rn+l(D) ≤ nRn(D) + lRl(D).

Using [2, Lemma 4A.2] for sub-additive sequences, we obtain

inf
n

Rn(D) = lim
n→∞

Rn(D).



31

APPENDIX B

PROOF OFLEMMA 4.

In this Appendix we prove Lemma 4, which provides for us that the mathematical expression for the rate distortion

feed-forward

R(I)(D) = lim
n→∞

1

n
min

p(x̂n|xn):E[d(Xn,X̂n)]≤D
I(X̂n → Xn), (38)

is a lower bound to the operational definitionR(D).

Proof: Consider any(n, 2nR, D) rate distortion with feed-forward code defined by the mappings f, {gi}
n
i=1

as given in Section II, Equation (3), and distortion constraint E
[

d(Xn, X̂n)
]

≤ D + ǫn, whereǫn → 0 asn goes

to infinity. Let the message sent be a random variableT = f(Xn), and assume that the distortion constraint is

satisfied. Then we have the following chain of inequalities:

nR
(a)

≥ H(T )

≥ I(Xn;T )

(b)
=

n
∑

i=1

I(Xi;T |X
i−1)

=
n
∑

i=1

(

H(Xi|X
i−1)−H(Xi|X

i−1, T )
)

(c)
=

n
∑

i=1

(

H(Xi|X
i−1)−H(Xi|X

i−1, T, X̂ i)
)

(d)

≥

n
∑

i=1

(

H(Xi|X
i−1)−H(Xi|X

i−1, X̂ i)
)

=
n
∑

i=1

I(Xi; X̂
i|X i−1)

(e)
= I(X̂n → Xn),

where (a) follows from the fact that the alphabet ofT is nR, (b) follows from the chain rule for mutual information,

(c) is due to the fact that givenX i−1, T , we knowX̂ i, and (d) is since conditioning reduces the entropy. Step (e)

follows the chain rule for directed information. Takingn to infinity, we obtainR ≥ R(I)(D), and the distortion

constraint satisfies

lim
n→∞

E

[

d(Xn, X̂n)
]

≤ D.
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APPENDIX C

PROOF OFTHEOREM 6.

In this appendix we provide a proof for Theorem 6. We recall that Theorem 6 states that the rate distortion

function can be written as the following optimization problem:

Rn(D) = max
λ≥0,γ(xn)

1

n

(

−λD +
∑

xn

p(xn) log γ(xn)

)

, (39)

where, for some causal conditioned probabilityp′(xn||x̂n), γ(xn) satisfies the inequality constraint

p(xn)γ(xn)2−λd(xn,x̂n) ≤ p′(xn||x̂n). (40)

We prove this theorem in two ways. One is similar to Berger’s proof in [13], based on the inequalitylog(y) ≥ 1− 1
y ,

for the regular rate distortion function. The other is usingthe Lagrange duality between the minimization problem

we are familiar with and a maximization problem as presentedin [14] and [15]. We also provide the connection

between the curve ofRn(D) and the parameterλ; this is embodied in Lemma 12.

Before we begin, we recall that a step in Alg. 1 is defined by thefollowing equality

rk(x̂n|xn) =
qk−1(x̂n||xn−1)2−λd(xn,x̂n)

∑

x̂′n qk−1(x̂′n||xn−1)2−λd(xn,x̂′n)
. (41)

This equality is the outcome of differentiating the Lagrangian whenq(x̂n||xn−1) is fixed, as given in Section VII.

We shall use this equality throughout the proof.

As mentioned, the first proof follows the one in [13].

Proof of Theorem 6: First, we show that for everyr(x̂n|xn) for which the distortion constraint is satisfied,

the following chain of inequalities holds

IFF (r, q) + λD −
∑

xn

p(xn) log γ(xn)
(a)

≥ IFF (r, q) + λEr(x̂n|xn)

[

d(Xn, X̂n)
]

−
∑

xn

p(xn) log γ(xn)

=
∑

xn,x̂n

p(xn)r(x̂n|xn) log
r(x̂n|xn)2λd(x

n,x̂n)

q(x̂n||xn−1)γ(xn)

(b)

≥
∑

xn,x̂n

p(xn)r(x̂n|xn)

(

1−
q(x̂n||xn−1)γ(xn)

r(x̂n|xn)2λd(xn,x̂n)

)

= 1−
∑

xn,x̂n

q(x̂n||xn−1)p(xn)γ(xn)2−λd(xn,x̂n)

(c)

≥ 1−
∑

xn,x̂n

q(x̂n||xn−1)p′(xn||x̂n)

(d)
= 0,

where (a) follows from the fact that the distortionD exceedsEr(x̂n|xn)

[

d(Xn, X̂n)
]

for every r(x̂n|xn) as has

been assumed, (b) follows from the inequalitylog 1
y ≥ 1− 1

y , (c) is due to the constraint in Equation (40), and (d)

follows from the fact thatq(x̂n||xn−1)p′(xn||x̂n) is equal to some joint distributionp(xn, x̂n) [6]. Since the chain
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of inequalities is true for everyr(x̂n|xn), we can choose the one that achievesRn(D), and then divide byn to

obtain the inequality in Equation (39) in our Theorem.

To complete the proof of Theorem 6, we need to show that equality holds in the chain of inequalities above for

someγ(xn) that satisfies the constraint. If so, let us denote byr∗(x̂n|xn) the conditional PMF that achievesRn(D).

Further, we denote byq∗(x̂n||xn−1) the corresponding causal conditioned PMF. Now, consider the following chain

of equalities.

nRn(D) =
∑

xn,x̂n

p(xn)r∗(x̂n|xn) log
r∗(x̂n|xn)

q∗(x̂n||xn−1)

(a)
=
∑

xn,x̂n

p(xn)r∗(x̂n|xn) log
2−λd(xn,x̂n)

∑

x̂′n q∗(x̂′n||xn−1)2−λd(xn,x̂′n)

(b)
= −λErk(x̂n|xn)

[

d(Xn, X̂n)
]

+
∑

xn

p(xn) log γ(xn)

= −λD +
∑

xn

p(xn) log γ(xn),

where (a) is due to a step in the algorithm given by (41), and bythe uniqueness ofr∗(x̂n|xn) in the algorithm, as

shown in Lemma 10, and (b) follows the expression forγ(xn) given by

γ(xn) =

(

∑

x̂′n

q∗(x̂′n||xn−1)2−λd(xn,x̂′n)

)

. (42)

Therefore, we are left with verifying that theγ(xn) above satisfies the constraint:

p(xn)γ(xn)2−λd(xn,x̂n) = p(xn)
2−λd(xn,x̂n)

∑

x̂n q∗(x̂n||xn−1)2−λd(xn,x̂n)

(a)
=

p(xn)r∗(x̂n|xn)

q∗(x̂n||xn−1)

=
p(xn, x̂n)

q∗(x̂n||xn−1)

(b)
= p′(xn||x̂n),

where (a) follows from Equation (41), and (b) is due to the causal conditioning chain rule. Hence, we showed that

Rn(D) is the solution to the optimization problem given in Equation (39).

We also present an alternative proof for Theorem 6, this using the Lagrange duality, as in [14], [15].

Alternative proof for Theorem 6: Recall thatRn(D) is the result of

min
r(x̂n|xn)

∑

x̂n,xn

p(xn)r(x̂n|xn) log
r(x̂n|xn)

q(x̂n||xn−1)
,

whereq(x̂n||xn−1) is defined byp(xn)r(x̂n|xn), subject to the following conditions:

∑

xn,x̂n

p(xn)r(x̂n|xn)d(xn, x̂n) ≤ D,
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∀ xn :
∑

x̂n

r(x̂n|xn) = 1,

∀ xn, x̂n : r(x̂n|xn) ≥ 0.

Let us define the Lagrangian as

J(r, λ, γ, µ) =
∑

xn,x̂n

p(xn)r(x̂n|xn) log
r(x̂n|xn)

q(x̂n||xn−1)
+ λ





∑

xn,x̂n

p(xn)r(x̂n|xn)d(xn, x̂n)−D





+
∑

xn

γ(xn)

(

∑

x̂n

r(x̂n|xn)− 1

)

−
∑

xn,x̂n

µ(xn, x̂n)r(x̂n|xn),

whereµ(xn, x̂n) ≥ 0 for all xn, x̂n. Differentiating the Lagrangian,J(r, λ, γ, µ), over the variabler(x̂n|xn), we

obtain

∂J

∂r(x̂n|xn)
= p(xn) log

r(x̂n|xn)

q(x̂n||xn−1)
+ λp(xn)d(xn, x̂n) + γ(xn)− µ(xn, x̂n).

Solving the equation ∂J
∂r(x̂n|xn) = 0 in order to find the optimum value, yields the following expression

r(x̂n|xn) = q(x̂n||xn−1)γ′(xn)2
µ(xn,x̂n)

p(xn) −λd(xn,x̂n), (43)

whereγ′(xn) = 2−
γ(xn)
p(xn) . Multiplying both sides by p(xn)

q(x̂n||xn−1) we are left with the constraint

p(xn||x̂n) = p(xn)γ′(xn)2
µ(xn,x̂n)

p(xn) −λd(xn,x̂n)

≥ p(xn)γ′(xn)2−λd(xn,x̂n), (44)

wherep(xn||x̂n) is induced byr(x̂n|xn)p(xn).

From [14, Chapter 5.1.3] we know thatg(λ, γ, µ) = J(r∗, λ, γ, µ) is a lower bound toRn(D). Substituting the

minimizer r(x̂n|xn) using Equation (43), and the condition given by Equation (44) into J , we obtain the Lagrange

dual function

g(λ, γ′) =







−λD +
∑

xn p(xn) log γ′(xn), p(xn)γ′(xn)2−λd(xn,x̂n) ≤ p(xn||x̂n)

−∞, otherwise.
(45)

By making the constraints explicit, and since the minimization problem is convex, we obtain the Lagrange dual

problem, i.e.,Rn(D) is the solution to

max
γ(xn),λ

1

n

(

−λD +
∑

xn

p(xn) log γ(xn)

)

, (46)

subject to

∀ xn, x̂n : p(xn)γ(xn)2−λd(xn,x̂n) ≤ p(xn||x̂n),

λ ≥ 0
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for the p(xn||x̂n) that is induced byr(x̂n|xn)p(xn), andr(x̂n|xn) is the optimal PMF.

We use the notation of anoptimal PMF if it achieves the optimal value. For example, the PMFr(x̂n|xn) that

achieves the minimum of the directed information given the distortion constraint, is optimal. we say that the PMF,

p(xn||x̂n) is optimal, if it is induced by the optimalr(x̂n|xn). Another example is the maximization problem in

(46). We say thatλ, γ(xn) are optimal if they achieve the maximum value. Therefore,p(xn||x̂n) is optimal as well

if it satisfies Equation (44).

Now, we wish to substitute the constraint to

∀ xn, x̂n : p(xn)γ(xn)2−λd(xn,x̂n) ≤ p′(xn||x̂n), (47)

for somep′(xn||x̂n). First, note that we always achieve equality in (47) since wecan increase the value ofγ(xn)

and thus increase the objective. This, combined with the fact that for r(x̂n|xn) > 0, µ(xn, x̂n) must be zero, we

have equality in (44) as well (ifr(x̂n|xn) = 0, thenq(x̂n||xn−1) = 0, and Equation (43) holds too). Now, let us

assume that the maximum in (46) with the constraint in (47) isachieved at anon-optimal p′(xn||x̂n), i.e., one that

is not achieved using the optimalλ, γ(xn). Thus, the value obtained in (46) is larger then the value achieved by

p(xn||x̂n), i.e.,Rn(D) (since the maximization includesp(xn||x̂n)). However, from the lagrange duality it should

be a lower bound toRn(D), thus contradicting the fact that the maximum is achieved ata non-optimalp′(xn||x̂n).

Note, that we can construct the optimal PMFr(x̂n|xn) from the solution to the maximization problem presented

here. Consider the parametersλ, γ(xn), that achieve (46), and calculatep(xn||x̂n) according to Equation (44).

The calculation ofr(x̂n|xn) is done recursively onr(x̂i|xi). For i = 1, calculater(x̂1|x1) using

r(x̂1|x1) =
p(x1||x̂1)

p(x1)

∑

x1

p(x1)r(x̂1|x1).

Further, calculateq(x̂1) using

q(x̂1) =
∑

x1

p(x1)r(x̂1|x1).

Now, once we haver(x̂j |xj), q(x̂j |x̂
j−1xj−1) for everyj < i, calculater(x̂i|xi) using

r(x̂i|xi) =
p(xi||x̂i)

p(xi)





i−1
∏

j=1

q(x̂j |x̂
j−1xj−1)





∑

xi
p(xi)r(x̂i|xi)

p(xi−1)r(x̂i−1|xi−1)
,

and then

q(x̂i|x̂
i−1xi−1) =

∑

xi
p(xi)r(x̂i|xi)

p(xi−1)r(x̂i−1 |xi−1)
.

Do so until i = n, and we obtain our optimalr(x̂n|xn).

Another lemma we wish to provide is the connection between the curve ofRn(D) and the parameterλ. This

lemma is similar to the one given by Berger in [13, Th. 2.5.1] for the case of no feed-forward.
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Lemma 12Consider the expression forRn(D) given by

Rn(D) =
1

n

(

−λD +
∑

xn

p(xn) log γ(xn)

)

,

whereγ(xn) andλ are the variables that maximize (46). We have seen thatγ(xn) is of the form

γ(xn) =

(

∑

x̂n

q∗(x̂n||xn−1)2−λd(xn,x̂n)

)−1

.

Hence, the slope at distortionD is R′
n(D) = −λ

n .

Proof: The proof is given simply by differentiating the expressionfor Rn(D).

dRn

dD
=

∂Rn

∂D
+

∂Rn

∂λ

dλ

dD
+
∑

xn

∂Rn

∂γ(xn)

dγ(xn)

dD

=
1

n

[

−λ−D
dλ

dD
+
∑

xn

p(xn)

γ(xn)

dγ(xn)

dD

]

= −
λ

n
+

1

n

[

−D +
∑

xn

p(xn)

γ(xn)

dγ(xn)

dλ

]

dλ

dD
.

Now, consider the following expression

F =
∑

xn,x̂n

p(xn)q∗(x̂n||xn−1)γ(xn)2−λd(xn,x̂n).

Using theγ(xn) given above, we haveF = 1 and thus∂F
∂λ = 0. However,

∂F

∂λ
=
∑

xn,x̂n

[

dγ(xn)

dλ
− d(xn, x̂n)γ(xn)

]

p(xn)q∗(x̂n||xn−1)2−λd(xn,x̂n)

=
∑

xn

dγ(xn)

dλ
p(xn)

∑

x̂n

q∗(x̂n||xn−1)2−λd(xn,x̂n) −
∑

xn,x̂n

p(xn)q∗(x̂n||xn−1)2−λd(xn,x̂n)γ(xn)d(xn, x̂n)

=
∑

xn

dγ(xn)

dλ

p(xn)

γ(xn)
−
∑

xn,x̂n

p(xn)r∗(x̂n|xn)d(xn, x̂n)

=
∑

xn

dγ(xn)

dλ

p(xn)

γ(xn)
−D

= 0.

Hence, we can conclude that

dRn

dD
= −

λ

n
+

1

n

[

−D +
∑

xn

p(xn)

γ(xn)

dγ(xn)

dλ

]

dλ

dD

= −
λ

n
.



37

APPENDIX D

PROOF FORLEMMA 11

In this appendix we prove the existence of a sequence of upperand lower bounds toRn(D), the rate distortion

function with feed-forward. These bounds correspond to an iteration in Alg. 1, and both converge toRn(D). To this

end, we present and prove a few supplementary claims that assist in obtaining our main goal. Theorem 6 provides

an alternating form (Lagrange dual form) of an optimizationproblem achievingRn(D), that is proved in App C.

In Lemma 13, we show that in each iteration we can obtain measures that satisfy the constraint in Theorem 6 to

form a lower bound, and that the bound is tight and achieved asthe upper bound converges. We also provide a

proof for the existence of a an upper bound in each iteration.

Before we begin, we recall that a step in Alg. 1 is defined by thefollowing equality

rk(x̂n|xn) =
qk−1(x̂n||xn−1)2−λd(xn,x̂n)

∑

x̂′n qk−1(x̂′n||xn−1)2−λd(xn,x̂′n)
. (48)

We shall use this equality throughout the proof.

As mentioned, we use Theorem 6 that provides us with the following alternating optimization problem.

Rn(D) = max
λ≥0,γ(xn)

1

n

(

−λD +
∑

xn

p(xn) log γ(xn)

)

, (49)

whereγ(xn) satisfies the inequality constraint

p(xn)γ(xn)2−λd(xn,x̂n) ≤ p′(xn||x̂n) (50)

for some causal conditioned probabilityp′(xn||x̂n).

We now show that in each iteration in Alg. 1, choosingγ(xn) appropriately forms a lower bound forRn(D).

Lemma 13 In the kth iteration in Alg. 1, by letting

γ′k(xn) =

(

∑

x̂n

qk−1(x̂n||xn−1)2−λd(xn,x̂n)

)−1

, (51)

and

ckx̂n,xn−1 =
qk(x̂n||xn−1)

qk−1(x̂n||xn−1)
, (52)

and defining

γk(xn) =
γ′k(xn)

maxx̂n,xn−1 ckx̂n,xn−1

, (53)

the constraint in Equation (50) is satisfied, and forms a lower bound given by

Rn(D) ≥
1

n

(

−λD +
∑

xn

p(xn) log γk(xn)− log max
x̂n,xn−1

ckx̂n,xn−1

)

.
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Furthermore, this lower bound is tight, and is achieved asRk
n(D) converges toRn(D), whereRk

n(D) is the upper

bound.

Proof: Let us fix the parameterγ′k(xn) as in (51). Hence,

p(xn)γ′k(xn)2−λd(xn,x̂n) = p(xn)
2−λd(xn,x̂n)

∑

x̂n qk−1(x̂n||xn−1)2−λd(xn,x̂n)

(a)
=

p(xn)rk(x̂n|xn)

qk−1(x̂n||xn−1)

(b)
=

p′(xn||x̂n)qk(x̂n||xn−1)

qk−1(x̂n||xn−1)

≤ p′(xn||x̂n) max
x̂n,xn−1

qk(x̂n||xn−1)

qk−1(x̂n||xn−1)

where (a) follows from the definition of a step in Alg. 1 and given above in Equation (48), and (b) follow the chain

rule of causal conditioning, andp′(xn||x̂n) = p(xn)rk(x̂n|xn)
qk(x̂n||xn−1)

is a causal conditioned PMF. Hence, combined with

(53), we obtain

p(xn)γk(xn)2−λd(xn,x̂n) =
p(xn)γ′(xn)2−λd(xn,x̂n)

maxx̂n,xn−1 ckx̂n,xn−1

≤ p′(xn||x̂n).

Thus, we can use Theorem 6, and obtain a lower bound forRn(D), i.e.,

Rn(D) ≥
1

n

[

−λD +
∑

xn

p(xn) log γk(xn)

]

=
1

n

[

−λD +
∑

xn

p(xn) log γ′k
xn −

∑

xn

p(xn) log

(

max
x̂n,xn−1

ckx̂n,xn−1

)

]

=
1

n

[

−λD +
∑

xn

p(xn) log γ′k(xn)− log

(

max
x̂n,xn−1

ckx̂n,xn−1

)

]

. (54)

To complete the proof of this lemma, we are left to show that ask increases, i.e., the upper bound converges to

Rn(D), the lower bound is tight. For that matter, we note that the PMFs that achieve the optimum valueq∗, r∗

are unique, as shown in Lemma 10. Thus, it is clear that

c∗x̂n,xn−1 =
q∗(x̂n||xn−1)

q∗(x̂n||xn−1)
= 1, (55)

and

γk(xn) = γ′k(xn) =

(

∑

x̂n

q∗(x̂n||xn−1)2−λd(xn,x̂n)

)−1

. (56)

Placing Equation (56) and (55) in Equation (54), as shown in Theorem 6, achieves equality instead of the chain

of inequalities given. ThusRn(D) is, in fact, the solution to the optimization problem given in Equation (49), and

we have demonstrated the existence of the lower bound
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Lemma 14 In the kth iteration in Alg. 1, the upper bound to the rate distortionis given by

Rn(Dk) ≤
1

n

(

−λDk +
∑

xn

p(xn) log γk(xn)−
∑

xn

p(xn)rk(x̂n|xn) log ckx̂n,xn−1

)

,

whereDk = Erk

[

d(Xn, X̂n)
]

.

Proof: Note, that ifrk(x̂n, xn) produces a distortionD, then

nRn(D) ≤ IFF (r
k, qk)

=
∑

xn,x̂n

p(xn)rk(x̂n|xn) log
rk(x̂n|xn)

qk(x̂n||xn−1)

(a)
=
∑

xn,x̂n

p(xn)rk(x̂n|xn) log
qk−1(x̂n||xn−1)2−λd(xn,x̂n)

qk(x̂n||xn−1)
∑

x̂′n qk−1(x̂′n||xn−1)2−λd(xn,x̂′n)

= −λErk

[

d(Xn, X̂n)
]

−
∑

xn

p(xn) log
∑

x̂′n

qk−1(x̂′n||xn−1)2−λd(xn,x̂′n) −
∑

xn,x̂n

p(xn)rk(x̂n|xn) log
qk(x̂n||xn−1)

qk−1(x̂n||xn−1)

(b)
= −λDk +

∑

xn

p(xn) log γk(xn)−
∑

xn,x̂n

p(xn)rk(x̂n|xn) log ckx̂n,xn−1, (57)

where (a) follows from the definition of a step in Alg. 1 and is given above in Equation (48), and (b) follows from the

definition ofγk(xn), ckx̂n,xn−1 . Hence, we have formed an upper bound to the rate distortion as in the lemma. Note

that the only inequality is in the first line of the chain, and is due to the fact thatIFF (r
k, qk) ≥ minr,q IFF (r, q).

However, upon convergence, this inequality is tight.

We can now conclude our main objective in this appendix.

Proof of Lemma 11 Proving this lemma requires us to present upper and lower bounds that converge toRn(D).

Lemma 13 provides us with a lower bound and its tightness, whereas Lemma 14 provides us with a tight upper

bound as well, as required.

APPENDIX E

SOLUTION TO R(D) FOR AN ASYMMETRICAL MARKOV SOURCE.

The Markov source is presented in Fig. 5 above. We can describe the process{Xi} using the equation

Xi = Xi−1W1 + (1−Xi−1)W2

= (Xi−1(W1 ⊕W2))⊕W2,

whereW1 ∼ B(q), W2 ∼ B(p). This allows us to evaluateH(Xn|Xn−1):

H(Xn|Xn−1) = H((Xn−1(W1 ⊕W2))⊕W2|Xn−1)

= p(xn−1 = 1)H(W1 ⊕W2 ⊕W2) + p(xn−1 = 0)H(W2)

= π1H(W1) + π2H(W2),
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whereπ is the stationary distribution of the source. Now, to find therate distortion of this model, we start with the

converse

1

n
I(X̂n → Xn) = H(Xn)−H(Xn||X̂n)

=
1

n
H(X1) +

n− 1

n
H(Xn|Xn−1)−

1

n

n
∑

i=1

H(Xi|X
i−1, X̂ i)

(a)

≥
1

n
Hb(π) +

n− 1

n
H(Xn|Xn−1)−

1

n

n
∑

i=1

H(Xi|X̂i)

(b)

≥
1

n
Hb(π) +

n− 1

n
H(Xn|Xn−1)−Hb(D)

=
1

n
Hb(π) +

n− 1

n
(π1Hb(p) + π2Hb(q))−H(D),

where (a) follows from the fact that conditioning reduces entropy, and (b) follows the fact thatP (Xi 6= X̂i) ≤ D

andHb(D) increases withD for D ≤ 1
2 .

However, we can achieve it by lettingXi depend onX̂i andXi−1 as in Fig. 10, wherep1, p2 must hold for

0 0

1 1

0

1

PSfrag replacements

1− p1

D

D

p1

p1
1−D

1−D

1− p1

1− p1
p2

1− p2

Xi−1 X̂i Xi

Fig. 10: Distribution ofXi givenXi−1 andX̂i.

the following equation

p1D + (1− p1)(1 −D) = 1− p,

p2D + (1− p2)(1−D) = 1− q,

i.e.,

p1 =
D − p

2D − 1
,

p2 =
D − q

2D − 1
.

Note, that under this construction, the sourceXn is still Markovian. Further, from Fig. 10 we can see thatXi−1 −

X̂i −Xi forms a Markov chain, andH(Xi|X̂i) = Hb(D). Thus, we obtain equality in (a), (b) in the above chain

of inequalities, and hence showed that

Rn(D) =
1

n
Hb(π) +

n− 1

n
(π1Hb(p) + π2Hb(q))−Hb(D).
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By takingn to infinity we obtain

R(D) = π1Hb(p) + π2Hb(q)−Hb(D).
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