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Abstract

This article provides a central limit theorem for a consistent estimator of population eigenvalues with

large multiplicities based on sample covariance matrices.The focus is on limited sample size situations,

whereby the number of available observations is known and comparable in magnitude to the observation

dimension. An exact expression as well as an empirical, asymptotically accurate, approximation of the

limiting variance is derived. Simulations are performed that corroborate the theoretical claims. A specific

application to wireless sensor networks is developed.

I. INTRODUCTION

Problems of statistical inference based onM independent observations of anN -variate random variable

y, with E[y] = 0 andE[yyH ] = RN have drawn the attention of researchers from many fields for years:

Portfolio optimization in finance [1], gene coexistence in biostatistics [2], channel capacity in wireless

communications [3], power estimation in sensor networks [4], array processing [5], etc.

In particular, retrieving spectral properties of thepopulation covariance matrix RN , based on the

observation ofM independent and identically distributed (i.i.d.) samplesy(1), . . . ,y(M), is paramount

to many questions of general science. IfM is large compared toN , then it is known that almost surely

This work was partially supported by Agence Nationale de la Recherche (France), program ANR-07-MDCO-012-01 ’Sesame’.
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‖R̂N−RN‖ → 0, asM → ∞, for any standard matrix norm, wherêRN is thesample covariance matrix

R̂N , 1
M

∑M
m=1 y

(m)y(m)H . However, one cannot always afford a large number of samples, especially

in wireless communications where the number of available samples has often a size comparable to the

dimension of each sample. In order to cope with this issue, random matrix theory [6], [7] has proposed new

tools, mainly spurred by theG-estimators of Girko [8]. Other works include convex optimization methods

[9], [10] and free probability tools [11], [12]. Many of those estimators are consistent in the sense that

they are asymptotically unbiased asM,N grow large at the same rate. Nonetheless, only recently have

techniques been unveiled which allow to estimate individual eigenvalues and functionals of eigenvectors

of R. The main contributor is Mestre [13]-[14] who studies the case whereRN = UNDNUH
N with DN

diagonal with entries of large multiplicities andUN with i.i.d. entries. For this model, he provides an

estimator for every eigenvalue ofR with large multiplicity under some separability condition, see also

Vallet et al. [15], Couillet et al. [4] for more elaborate models.

These estimators, although proven asymptotically unbiased, have nonetheless not been fully character-

ized in terms of performance statistics. It is in particularfundamental to evaluate the variance of these

estimators for not-too-largeM,N . The purpose of this article is to study the fluctuations of the population

eigenvalue estimator of [14] in the case of structured population covariance matrices. A central limit

theorem (CLT) is provided to describe the asymptotic fluctuations of the estimators with exact expression

for the variance asM,N tend to infinity . An empirical approximation, asymptotically accurate is also

derived.

The results are applied in a cognitive radio context in whichwe assume the co-existence of a licensed

(primary) network and an opportunistic (secondary) network aiming at reusing the bandwidth resources

left unoccupied by the primary network. The eigenvalue estimator is used here by secondary users to

estimate the transmit power of primary users, while the fluctuations are used to provide a confidence

margin on the estimate.

The remainder of the article is structured as follows: In Section II, the system model is introduced

and the main results from [13], [14] are recalled. In SectionIII, the CLT for the estimator in [14] is

stated with the asymptotic variance. In Section IV, an empirical approximation for the variance is derived.

A cognitive radio application of these results is provided in Section V, with comparative Monte Carlo

simulations. Finally, Section VI concludes this article. Technical proofs are postponed to the appendix.
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II. ESTIMATION OF THE POPULATION EIGENVALUES

A. Notations

In this paper, the notationss,x,M stand for scalars, vectors and matrices, respectively. As usual,‖x‖
represents the Euclidean norm of vectorx and‖M‖ stands for the spectral norm ofM. The superscripts

(·)T and(·)H respectively stand for the transpose and transpose conjugate; the trace ofM is denoted by

Tr(M); the mathematical expectation operator, byE. If x is aN × 1 vector, thendiag(x) is theN ×N

matrix with diagonal elements the components ofx. If z ∈ C, thenℜ(z) andℑ(z) respectively stand

for z’s real and imaginary parts, whilei stands for
√
−1; z stands forz’s conjugate andδkℓ is denoted

as Kronecker’s symbol (whose value is1 if k = ℓ, 0 otherwise).

If the supportS of a probability measure overR is the finite union of closed compact intervalsSk for

1 ≤ k ≤ L, we will refer to each compact intervalSk as acluster of S.

If Z ∈ CN×N is a nonnegative Hermitian matrix with eigenvalues(ξi; 1 ≤ i ≤ N), we denote in the

sequel byeig(Z) = {ξi, 1 ≤ i ≤ N} the set of its eigenvalues and byFZ the empirical distribution of

its eigenvalues (also calledspectral distribution of Z), i.e.:

FZ(dλ) =
1

N

N
∑

i=1

δξi(dλ) ,

whereδx stands for the Dirac probability measure atx.

Convergence in distribution will be denoted by
D−→, in probability by

P−→; and almost sure convergence,

by
a.s.−−→.

B. Matrix Model

Consider aN × M matrix XN = (Xij) whose entries are independent and identically distributed

(i.i.d.) random variables, with distributionCN(0, 1), i.e. Xij = U + iV , whereU, V are both i.i.d.

real Gaussian random variablesN(0, 12). Let RN be aN ×N Hermitian matrix withL (L being fixed)

distinct eigenvaluesρ1 < · · · < ρL with respective multiplicitiesN1, · · · , NL (notice that
∑L

i=1Ni = N ).

Consider now

YN = R
1/2
N XN .

The matrix YN = [y1, · · · ,yM ] is the concatenation ofM independent observations[y1, · · · ,yM ],

where each observation writesyi = R
1/2
N xi with XN = [x1, · · · ,xM ]. In particular, the (population)

covariance matrix of each observationyi is RN = Eyiy
H
i . In this article, we are interested in recovering

October 16, 2018 DRAFT
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information onRN based on the observation

R̂N =
1

M
R

1/2
N XNXH

NR
1/2
N ,

which is referred to as thesample covariance matrix.

It is in general a complicated task to infer the spectral properties ofRN based onR̂N for all finite

N,M . Instead, in the following, we assume thatN andM are large, and consider the following asymptotic

regime:

Assumption 1 (A1):

N,M → ∞ , with
N

M
→ c ∈ (0,∞) , and

Ni

M
→ ci ∈ (0,∞) , 1 ≤ i ≤ L. (1)

This assumption will be shortly referred to asN,M → ∞.

Assumption 2 (A2):

We assume that the limiting supportS of the eigenvalue distribution of̂RN is formed ofL compact

disjoint subsets (cf. Figure 1). Following [14], one can also reformulate this condition in a more analytic

manner: The limiting support of̂RN is formed ofL clusters if and only if fori ∈ {1, .., L}, infN{M
N −

ΨN (i)} > 0, where

ΨN (i) =



























1
N

∑L
r=1Nr

(

ρr

ρr−α1

)2
m = 1,

max
{

1
N

∑L
r=1Nr

(

ρr

ρr−αm−1

)2
, 1
N

∑L
r=1Nr

(

ρr

ρr−αm

)2 }

1 < m < L,

1
N

∑L
r=1Nr

(

ρr

ρr−αL−1

)2
m = L

whereα1 ≤ · · · ≤ αL−1 areL− 1 different ordered solutions to the equation

1

N

L
∑

r=1

Nr
ρ2r

(ρr − x)3
= 0.

This condition is also called theseparability condition.

Figure 1 depicts the eigenvalues of a realization of the random matrixR̂N and the associated limiting

distribution asN,M grow large, forρ1 = 1, ρ2 = 3, ρ3 = 10 andN = 60 with equal multiplicity.

C. Mestre’s Estimator of the population eigenvalues

In [14], an estimator of the population covariance matrix eigenvalues(ρk; 1 ≤ k ≤ L) based on the

observationŝRN is proposed.
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Fig. 1. Empirical and asymptotic eigenvalue distribution of R̂N for L = 3, ρ1 = 1, ρ2 = 3, ρ3 = 10, N/M = c = 0.1,

N = 60, N1 = N2 = N3 = 20.

Theorem 1: [14] Denote byλ̂1 ≤ · · · ≤ λ̂N the ordered eigenvalues of̂RN . Let M,N → ∞ in the

sense of the assumption (A1). Under the assumptions (A1)-(A2), the following convergence holds true:

ρ̂k − ρk
a.s.−−−−−−→

M,N→∞
0 , (2)

where

ρ̂k =
M

Nk

∑

m∈Nk

(

λ̂m − µ̂m

)

, (3)

with Nk = {
∑k−1

j=1 Nj + 1, . . . ,
∑k

j=1Nj} and µ̂1 ≤ · · · ≤ µ̂N the (real and) ordered solutions of:

1

N

N
∑

m=1

λ̂m

λ̂m − µ
=

M

N
. (4)

D. Integral representation of estimator ρ̂k - Stieltjes transforms

The proof of Theorem 1 relies on random matrix theory, and in particular, [16], [17] use as a key

ingredient theStieltjes transform.

The Stieltjes transform mP of a probability distributionP overR+ is aC-valued function defined by:

mP(z) =

∫

R+

P(dλ)

λ− z
, z ∈ C\R+ .

There also exists an inverse formula to recover the probability distribution associated to a Stieljes

transform: Leta < b be two continuity points of the cumulative distribution function associated to

P, then

October 16, 2018 DRAFT
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P([a, b]) =
1

π
lim
y↓0

ℑ
[∫ b

a
mP(x+ iy)dx

]

.

In the case whereFZ is the spectral distribution associated to a nonnegative Hermitian matrixZ ∈
CN×N with eigenvalues(ξi; 1 ≤ i ≤ N), the Stieltjes transformmZ of FZ takes the particular form:

mZ(z) =

∫

FZ(dλ)

λ− z

=
1

N

N
∑

i=1

1

ξi − z
=

1

N
Tr (Z− zIN )−1 ,

which can be seen as the normalized trace of the resolvent(Z− zIN )−1. Since the seminal paper of

Marčenko and Pastur [16], the Stieltjes transform has proved to be extremely efficient to describe the

limiting spectrum of large dimensional random matrices.

In the following, we recall some elements of the proof of Theorem 1, necessary for the remainder of

the article. The first important result is due to Bai and Silverstein [17] (see also [16]).

Theorem 2: [17] Denote byFR the limiting spectral distribution ofRN , i.e. FR(dλ) =
∑L

k=1
ck
c δρk

(dλ).

Under the assumption (A1), the spectral distributionF R̂N of the sample covariance matrix̂RN converges

(weakly and almost surely) to a probability distributionF asM,N → ∞, whose Stieltjes transformm(z)

satisfies:

m(z) =
1

c
m(z)−

(

1− 1

c

)

1

z
,

for z ∈ C+ = {z ∈ C, ℑ(z) > 0}, wherem(z) is defined as the unique solution inC+ of:

m(z) = −
(

z − c

∫

t

1 + tm(z)
dFR(t)

)−1

.

Note thatm(z) is also a Stieltjes transform whose associated distribution function will be denotedF ,

which turns out to be the limiting spectral distribution ofF R̂N whereR̂N is defined as:

R̂N ,
1

M
XH

NRNXN .

Denote bym
R̂N

(z) andm
R̂N

(z) the Stieltjes transforms ofF R̂N andF R̂N . Notice in particular that

m
R̂N

(z) =
M

N
m

R̂N

(z) −
(

1− M

N

)

1

z
.

Remark 1: This relation associated to (4) readily implies thatm
R̂N

(µ̂i) = 0. Otherwise stated, the

µ̂i’s are the zeros ofm
R̂N

. This fact will be of importance in the sequel.
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Denote bymN (z) and mN (z) the finite-dimensional counterparts ofm(z) and m(z), respectively,

defined by the relations:

mN (z) = −
(

z − N

M

∫

t

1 + tmN (z)
dFRN (t)

)−1

,

mN (z) =
M

N
mN (z)−

(

1− M

N

)

1

z
.

It can be shown thatmN andmN are Stieltjes transforms of given probability measuresFN andFN ,

respectively (cf. [7, Theorem 3.2]).

With these notations at hand, we can now derive Theorem 1. By Cauchy’s formula, write:

ρk =
N

Nk

1

2iπ

∮

Γk

(

1

N

L
∑

r=1

Nr
w

ρr − w
dw

)

,

whereΓk is a negatively oriented contour taking values onC \ {ρ1, · · · , ρL} and only enclosingρk.

With the change of variablew = − 1
mM (z) and the condition that the limiting supportS of the eigenvalue

distribution ofRN is formed ofL distinct clusters(Sk, 1 ≤ k ≤ L) (cf. Figure 1), we can write:

ρk =
M

2iπNk

∮

Ck

z
m′

N (z)

mN (z)
dz , 1 ≤ k ≤ L (5)

whereCk andCℓ denote negatively oriented contours which enclose the corresponding clustersSk and

Sℓ respectively. Defining

ρ̂k ,
M

2πiNk

∮

Ck

z
m′

R̂N

(z)

m
R̂N

(z)
dz , 1 ≤ k ≤ L , (6)

dominated convergence arguments ensure thatρk − ρ̂k → 0, almost surely. The integral form of̂ρk can

then be explicitly computed thanks to residue calculus, andthis finally yields (3).

The main objective of this article is to study the performance of the estimators(ρ̂k, 1 ≤ k ≤ L). More

precisely, we will establish a central limit theorem (CLT) for (M(ρ̂k − ρk), 1 ≤ k ≤ L) asM,N → ∞,

explicitly characterize the limiting covariance matrixΘ = (Θkℓ)1≤k,ℓ≤L, and finally provide an estimator

for Θ.

III. F LUCTUATIONS OF THE POPULATION EIGENVALUE ESTIMATORS

A. The Central Limit Theorem

The main result of this article is the following CLT which expresses the fluctuations of(ρ̂k, 1 ≤ k ≤ L).

Theorem 3: Under the assumptions (A1)-(A2) and with the same notations:

(M(ρ̂k − ρk), 1 ≤ k ≤ L)
D−−−−−−→

M,N→∞
x ∼ NL(0,Θ) ,

whereNL refers to a realL-dimensional Gaussian distribution, andΘ is aL× L matrix whose entries

Θkℓ are given by (7), whereCk andCℓ are defined as before (cf. Formula (5)).

October 16, 2018 DRAFT
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Θkℓ = − 1

4π2ckcℓ

∮

Ck

∮

Cℓ

[

m′(z1)m
′(z2)

(m(z1)−m(z2))2
− 1

(z1 − z2)2

]

1

m(z1)m(z2)
dz1dz2 . (7)

B. Proof of Theorem 3

We first outline the main steps of the proof and then provide the details.

Using the integral representation ofρ̂k andρk, we get: Almost surely,

M(ρ̂k − ρk) =
M2

2πiNk

∮

Ck

z

(

m′
R̂N

(z)

m
R̂N

(z)
− m′

N (z)

mN (z)

)

dz

Denote byC(Ck,C) the set of continuous functions fromCk to C endowed with the supremum norm

‖u‖∞ = supCk
|u|. Consider the process:

(XN ,X ′
N , uN , u′N ) : Ck → C

4

where

XN (z) = M
(

m
R̂N

(z)−mN (z)
)

,

X ′
N (z) = M

(

m′
R̂N

(z)−m′
N (z)

)

,

uN (z) = m
R̂N

(z) , u′N (z) = m′
R̂N

(z) .

Then due to ’no eigenvalue’ result (cf. [18], see also Proposition 1), (XN ,X ′
N , uN , u′N ) almost surely

belongs toC(Ck,C) andM(ρ̂k − ρk) writes:

M(ρ̂k − ρk) =
M

2πiNk

∮

Ck

z

(

mN (z)X ′
N (z) − u′N (z)XN (z)

mN (z)uN (z)

)

dz

△
= ΥN (XN ,X ′

N , uN , u′N ) ,

where

ΥN (x, x′, u, u′) =
M

2πiNk

∮

Ck

z

(

mN (z)x′(z)− u′(z)x(z)

mN (z)u(z)

)

dz . (8)

If needed, we shall explicitly indicate the dependence in the contourCk and writeΥN (x, x′, u, u′,Ck).

The main idea of the proof of the theorem lies in three steps:

(i) To prove the convergence in distribution of the process(XN ,X ′
N , uN , u′N ) to a Gaussian process.

(ii) To transfer this convergence to the quantityΥN (XN ,X ′
N , uN , u′N ) with the help of the continuous

mapping theorem [19].
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(iii) To check that the limit (in distribution) ofΥN (XN ,X ′
N , uN , u′N ) is Gaussian and to compute the

limiting covariance betweenΥN(XN ,X ′
N , uN , u′N ,Ck) andΥN (XN ,X ′

N , uN , u′N ,Cℓ).

Remark 2: Note that the convergence in step (i) is a distribution convergence at a process level, hence

one has to first establish the finite dimensional convergenceof the process and then to prove that the

process is tight overCk. Tightness turns out to be difficult to establish due to the lack of control over

the eigenvalues of̂RN whenever the contour crosses the real line. In order to circumvent this issue, we

shall introduce, following Bai and Silverstein [20], a process that approximatesXN andX ′
N .

Let us now start the proof of Theorem 3.

Lemma 1: Under the assumptions (A1)-(A2), the process

(XN ,X ′
N ) : Ck → C

4

converges in distribution to a Gaussian process(X,Y ) with mean function zero and covariance function:

cov(X(z),X(z̃)) =
m′(z)m′(z̃)

(m(z)−m(z̃))2
− 1

(z − z̃)2
△
= κ(z, z̃) , (9)

cov(Y (z),X(z̃)) =
∂

∂z
κ(z, z̃) ,

cov(X(z), Y (z̃)) =
∂

∂z̃
κ(z, z̃) ,

cov(Y (z), Y (z̃)) =
∂2

∂z∂z̃
κ(z, z̃) .

Lemma 1 is the cornerstone to the proof of Theorem 3. The proofof Lemma 1 is postponed to Appendix

B and relies on the following proposition, of independent interest:

Proposition 1: Under the assumptions (A1)-(A2) and denote byS the support of the probability

distribution associated to the Stieltjes transformm. Then, for everyε > 0, ℓ ∈ N∗:

P

(

sup
λ∈eig(R̂N)

d(λ,S) > ε

)

= O

(

1

N ℓ

)

,

whered(λ,S) = infx∈S |λ− x|.
The proof of Proposition 1 is postponed to Appendix A.

As (uN , u′N )
a.s.−−−−−−→

N,M→∞
(m,m′), a straightforward corollary of Lemma 1 yields the convergence in

distribution of (XN ,X ′
N , uN , u′N ) to (X,Y,m,m′). This concludes the proof of step (i).

A direct consequence of Lemma 1 yields that(XN ,X ′
N , uN , u′N ) : Ck → C4 converges in distribution

to the Gaussian process(X,Y,m,m′) defined as before. We are now in position to transfer the con-

vergence of(XN ,X ′
N , uN , u′N ) to ΥN(XN ,X ′

N , uN , u′N ) via the continuous mapping theorem, whose

statement as expressed in [19] is reminded below.
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Proposition 2 (cf. [19, Th. 4.27]): For any metric spacesS1 andS2, let ξ, (ξn)n≥1 be random elements

in S1 with ξn
D−−−→

n→∞
ξ and consider some measurable mappingsf , (fn)n≥1: S1 7→ S2 and a measurable

setΓ ⊂ S1 with ξ ∈ Γ a.s. such thatfn(sn) → f(s) assn → s ∈ Γ. Thenfn(ξn)
D−−−→

n→∞
f(ξ).

It remains to apply Theorem 2 to the process(XN ,X ′
N , uN , u′N ) and to the functionΥN as defined

in (8). Denote by1

Υ(x, y, v, w) =
1

2πick

∮

Ck

z

(

m(z)y(z) − w(z)x(z)

m(z)v(z)

)

dz ,

and consider the set

Γ =

{

(x, y, v, w) ∈ C4(Ck,C) , inf
Ck

|v| > 0

}

.

Then, it is shown in [6, Section 9.12.1] thatinfCk
|m| > 0, and, by a dominated convergence theorem

argument, that(xN , yN , vN , wN ) → (x, y, v, w) ∈ Γ implies thatΥN (xN , yN , vN , wN ) → Υ(x, y, v, w).

Therefore, Theorem 2 applies toΥN (xN , yN , vN , wN ) and the following convergence holds true:

ΥN (XN ,X ′
N , uN , u′N )

D−−−−−−→
M,N→∞

Υ(X,Y,m,m′) ,

and step (ii) is established.

It now remains to prove step (iii),i.e. to check the Gaussianity of the random variableΥ(X,Y,m,m′)

and to compute the covariance betweenΥ(X,Y,m,m′,Ck) andΥ(X,Y,m,m′,Cℓ).

In order to propagate the Gaussianity of the deviations in the integrands of (6) to the deviations of

the integral which defineŝρk, it suffices to notice that the integral can be written as the limit of a finite

Riemann sum and that a finite Riemann sum of Gaussian random variables is still Gaussian. Therefore

M(ρ̂k − ρk) converges to a Gaussian distribution. Asinfz∈Ck
|m(z)| > 0, a straightforward application

of Fubini’s theorem together with the fact thatE(X) = E(Y ) = 0 yields:

E

∮ (

z
m

′

(z)X(z)

m2(z)
− z

Y (z)

m(z)

)

dz = 0 .

It remains to compute the covariance betweenΥ(X,Y,m,m′,Ck) andΥ(X,Y,m,m′,Cℓ) for possibly

different contoursCk andCℓ. We shall therefore evaluate, for1 ≤ k, ℓ ≤ L:

Θkℓ = E
(

Υ(X,Y,m,m′,Ck)Υ(X,Y,m,m′,Cℓ)
)

,

(a)
= − 1

4π2ckcl

∮

Ck

∮

Cℓ

z1z2

(m
′

(z1)m
′

(z2)κ(z1, z2)

m2(z1)m2(z2)
− m

′

(z1)∂2κ(z1, z2)

m2(z1)m(z2)

−m
′

(z2)∂1κ(z1, z2)

m(z1)m2(z2)
+

∂2
12κ(z1, z2)

m(z1)m(z2)

)

dz1dz2 ,

1As previously, we shall explicitly indicate the dependenceon the contourCk if needed and writeΥ(x, x′, u, u′,Ck).
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Θ̂kℓ = − M2

4π2NkNℓ

∮

Ck

∮

Cℓ

(

m′
R̂N

(z1)m
′
R̂N

(z2)

(m
R̂N

(z1)−m
R̂N

(z2))2
− 1

(z1 − z2)2

)

× 1

m
R̂N

(z1)mR̂N

(z2)
d z1d z2 .

(10)

where(a) follows from the fact thatinfz∈Ck
|m(z)| > 0 together with Fubini’s theorem, and∂1, ∂2, ∂2

12

respectively stand for∂/∂z1, ∂/∂z2 and∂2/∂z1∂z2.

By integration by parts, we obtain

∮

z1z2m
′(z2)∂1κ(z1, z2)

m(z1)m2(z2)
dz1

=

∮
(

−z2m
′(z2)κ(z1, z2)

m(z1)m2(z2)
+

z1z2m
′(z1)m

′(z2)κ(z1, z2)

m2(z1)m2(z2)

)

dz1 .

Similarly,
∮

z1z2m(z2)∂1,2κ(z1, z2)

m(z1)m2(z2)
dz1

= −
∮

z2∂2κ(z1, z2)

m(z1)m(z2)
dz1 +

∮

z1z2m
′(z1)∂2κ(z1, z2)

m2(z1)m(z2)
dz1 .

Hence

Θkℓ = − 1

4π2ckcl

{∮

Ck

∮

Cℓ

z2m
′(z2)κ(z1, z2)

m(z1)m2(z2)
dz1dz2 −

∮

Ck

∮

Cℓ

z2∂2κ(z1, z2)

m(z1)m(z2)
dz1dz2

}

.

Another integration by parts yields
∮

z2∂2κ(z1, z2)

m(z1)m(z2)
dz2 = −

∮

κ(z1, z2)

m(z1)m(z2)
dz2 +

∮

z2m
′(z2)κ(z1, z2)

m(z1)m2(z2)
dz2 .

Finally, we obtain:

Θkℓ = − 1

4π2ckcl

∮

Ck

∮

Cℓ

κ(z1, z2)

m(z1)m(z2)
d z1d z2 ,

and (7) is established.

IV. ESTIMATION OF THE COVARIANCE MATRIX

Theorem 3 describes the limiting performance of the estimator of Theorem 1, with an exact charac-

terization of its variance. Unfortunately, the varianceΘ depends upon unknown quantities. We provide

hereafter consistent estimatesΘ̂ for Θ based on the observationŝRN .
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Θ̂kℓ =
M2

NkNℓ





∑

(i,j)∈Nk×Nℓ, i 6=j

−1

(µ̂i − µ̂j)2m
′
R̂N

(µ̂i)m
′
R̂N

(µ̂j)

+δkℓ
∑

i∈Nk

(

m′′′
R̂N

(µ̂i)

6m′
R̂N

(µ̂i)3
−

m′′
R̂N

(µ̂i)
2

4m′
R̂N

(µ̂i)4

)]

. (11)

Theorem 4: Assume that the assumptions (A1)-(A2) hold true, and recallthe definition ofΘkℓ given

in (7). Let Θ̂kℓ be defined by (11), where(Nk) and (µ̂k) are defined in Theorem 1, then:

Θ̂kℓ −Θkℓ
a.s.−−→ 0

asN,M → ∞.

Theorem 4 is useful in practice as one can obtain simultaneously an estimatêρk of the values ofρk

as well as an estimation of the degree of confidence for eachρ̂k.

Proof: In view of formula (7), and taking into account the fact thatm
R̂N

andm′
R̂N

are consistent

estimates form andm′, it is natural to definêΘkℓ by replacing the unknown quantitiesm andm′ in (7)

by their empirical counterpartsm
R̂N

andm′
R̂N

, hence the definition of̂Θkℓ in (10).

The proof of Theorem 4 now breaks down into two steps: The convergence of̂Θkℓ to Θkℓ, which relies

on the definition (10) of̂Θkℓ and on a dominated convergence argument, and the effective computation

of the integral in (10) which relies on Cauchy’s residue theorem [21], and yields (11).

We first address the convergence ofΘ̂kℓ to Θkℓ. Due to [18], [22], almost surely, the eigenvalues of

R̂N will eventually belong to anyε-blow-up of the supportS of the probability measure associated tom,

i.e. the set{x ∈ R : d(x,S) < ε}. Hence, ifε is small enough, the distance between these eigenvalues

and anyz ∈ Ck will be eventually uniformly lower-bounded. By [14, Lemma 1], the same result holds

true for the zeros ofm
R̂N

(which are real). In particular, this implies thatm
R̂N

is eventually uniformly

lower-bounded onCk (if not, then by compacity, there would existz ∈ Ck such thatm
R̂N

(z) = 0 which

yields a contradiction because all the zeroes ofm
R̂N

are strictly within the contour). With these arguments

at hand, one can easily apply the dominated convergence theorem and conclude that a.s.Θ̂kℓ → Θkℓ.

We now evaluate the integral (10) by computing the residues of the integrand withinCk andCℓ. There

are two cases to discuss depending on whetherk 6= ℓ andk = ℓ. Denote byh(z1, z2) the integrand in

(10), that is:
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h(z1, z2) =

(

m′
R̂N

(z1)m
′
R̂N

(z2)

(m
R̂N

(z1)−m
R̂N

(z2))2
− 1

(z1 − z2)2

)

× 1

m
R̂N

(z1)mR̂N

(z2)
. (12)

We first consider the case wherek 6= ℓ.

In this case, the two integration contours are different andit can be assumed that they never intersect

(so it can always be assumed thatz1 6= z2). Let z2 be fixed, and denote bŷµi the zeroes (labeled in

increasing order) ofm
R̂N

, then the computation of the residueRes(h(·, z2), µ̂i) of h(·, z2) at a zeroµ̂i

of m
R̂N

which is located withinCk is straightforward and yields:

r(z2)
△
= Res(h(·, z2), µ̂i) =

(

m′
R̂N

(µ̂i)m
′
R̂N

(z2)

m2
R̂N

(z2)
− 1

(µ̂i − z2)2

)

1

m′
R̂N

(µ̂i)mR̂N

(z2)
. (13)

Similarly, if one computesRes(r, µ̂j) at a zeroµ̂j of m
R̂N

located withinCk, one obtains:

Res(r, µ̂j) = − 1

(µ̂i − µ̂j)2 m′
R̂N

(µ̂i)m′
R̂N

(µ̂j)
.

Then we need to consider the residueξ on the setRz2 = {z1 : m
R̂N

(z1) = m
R̂N

(z2) 6= 0, z1 6= z2}.

(If this set is empty, then the residue is zero.) Notice thatξ is not a residue of 1
(z1−z2)2

1
m

R̂N
(z1)mR̂N

(z2)
,

hence one needs to compute

g(z1, z2) =
m′

R̂N

(z1)m
′
R̂N

(z2)

(m
R̂N

(z1)−m
R̂N

(z1))2
1

m
R̂N

(z1)mR̂N

(z2)

for the residueξ. By integration by parts, one gets

∮

g(z1, z2)dz1 = −
∮ m′

R̂N

(z1)m
′
R̂N

(z2)

(m
R̂N

(z1)−m
R̂N

(z2))

dz1
m2

R̂N

(z1)mR̂N

(z2)
.

Let k = min{i ∈ N∗ : m
(i)

R̂N

(ξ) 6= 0}, then by a Taylor expansion

m
R̂N

(z1) = m
R̂N

(z2) +
(z1 − ξ)k

k!
m

(k)

R̂N

(ξ) + o(z1 − ξ)k,

and

m′
R̂N

(z1) =
(z1 − ξ)k−1

(k − 1)!
m

(k)

R̂N

(ξ) + o(z1 − ξ)k−1.

Hence

Res(g, ξ) = −
km′

R̂N

(z2)

m3
R̂N

(z2)
.

As it is the derivative function of k
2m2

R̂N
(z2)

, the integration with respect toz2 is zero.

October 16, 2018 DRAFT



14

It remains to count the number of zeros within each contour. By [14, Lemma 1], eventually, there are

exactly as many zeros as eigenvalues within each contour. Ithas been proved that the contribution of the

residues ofξ on Rz2 is null, hence the result in the casek 6= ℓ:

Θ̂kℓ = − M2

NkNℓ

∑

(i,j)∈Nk×Nℓ

− 1

(µ̂i − µ̂j)2m′
R̂N

(µi)m′
R̂N

(µj)
.

We now compute the integral (10) in the case wherek = ℓ, and begin by the computation of the

residues at̂µi. The definition (13) ofr and the computation ofRes(r, µ̂j) still hold true in the case

whereµ̂j is within Ck but different fromµ̂i. It remains to computeRes(r, µ̂i). Takingz2 → µi, we get:

lim
z2→µ̂i

(z2 − µ̂i)
3

(

1

m′
R̂N

(µ̂i)mR̂N

(z2)(µ̂i − z2)2

)

=
1

m′2
R̂N

(µ̂i)
,

lim
z2→µ̂i

(z2 − µ̂i)
2





1

m′
R̂N

(µ̂i)mR̂N

(z2)(µ̂i − z2)2
− 1

m′
R̂N

2(µ̂i)(z2 − µ̂i)3



 = −
m′′

R̂N

(µ̂i)

2m′
R̂N

3(µ̂i)
.

Finally,

lim
z2→µ̂i

(z2 − µ̂i)

(

1

m′
R̂N

(µ̂i)mR̂N

(z2)(µ̂i − z2)2
− 1

m′2
R̂N

(µ̂i)(z2 − µ̂i)3
+

m′′
RN

(µ̂i)

2m′3
RN

(µ̂i)(z2 − µ̂i)2

)

=
m′′′

R̂N

(µ̂i)

6m′
R̂N

(µ̂i)3
−

m′′
R̂N

(µ̂i)
2

4m′
R̂N

(µ̂i)4
.

Hence the residue:

Res(r, µ̂i) =
m′′′

RN
(µ̂i)

6m′
RN

(µ̂i)3
−

m′′
RN

(µ̂i)
2

4m′
RN

(µ̂i)4
.

There are two other residues that should be taken into account for the computation of the integral: The

residues ofξ on Rz2 , and the residue forz1 = z2. The first case can be handled as before. Forz1 = z2,

the calculus ofg(z1, z2) for the residuez1 = z2 is exactly the same as before. It remains to compute

1
(z1−z2)2

1
m

R̂N
(z1)mR̂N

(z2)
for the residuez1 = z2. The integration by parts yields that:

∮

1

(z1 − z2)2
dz1

m
R̂N

(z1)mR̂N

(z2)
=

∮

−
m′

R̂N

(z1)

(z1 − z2)

dz1
m2

R̂N

(z1)mR̂N

(z2)
.

Then the residue forz1 = z2 is:

−
m′

R̂N

(z2)

m3
R̂N

(z2)
.

Again, this is the derivative function of 1
2m2

R̂N
(z2)

, then the integration is zero.
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Finally both have a null contribution, hence the formula:

Θ̂kk =
M2

N2
k





∑

(i,j)∈N2
k, i 6=j

−1

(µ̂i − µ̂j)2m
′
R̂N

(µ̂i)m
′
R̂N

(µ̂j)
+
∑

i∈Nk

(

m′′′
R̂N

(µ̂i)

6m′
R̂N

(µ̂i)3
−

m′′
R̂N

(µ̂i)
2

4m′
R̂N

(µ̂i)4

)]

.

V. PERFORMANCE IN THE CONTEXT OF COGNITIVE RADIOS

We introduce below a practical application of the above result to the telecommunication field of

cognitive radios. Consider a communication network implementing orthogonal code division multiple

access (CDMA) in the uplink, which we refer to as theprimary network. The primary network is

composed ofK transmitters. The data of transmitterk are modulated by thenk orthogonalN -chip

codeswk,1, . . . ,wk,nk
∈ CN . Consider also a secondary network, in sensor mode, that we assume

time-synchronized with the primary network, and whose objective is to determine the distances of the

primary transmitters in order to optimally reuse the frequencies used by the primary transmitters2. From

the viewpoint of the secondary network, primary userk has powerPk. Then, at symbol timem, any

secondary user receives theN -dimensional data vector

y(m) =

K
∑

k=1

√

Pk

nk
∑

j=1

wk,jx
(m)
k,j + σn(m) (14)

with σn(m) ∈ CN an additive white Gaussian noiseCN(0, σ2I) received at timem and x
(m)
k,j ∈ C

the signal transmitted by userk on the carrier codej at timem, which we assumeCN(0, 1) as well.

The propagation channel is considered frequency flat on the CDMA transmission bandwidth. We do not

assume that the sensor knowsσ2 neither the vectorswk,j. The secondary users may or may not be aware

of the number of codewords employed by each user.

Equation (14) can be compacted under the form

y(m) = WP
1

2x(m) + σn(m)

with W = [w1,1, . . . ,w1,n1
,w2,1, . . . ,wK,nK

] ∈ CN×n, n ,
∑K

k=1 nk, P ∈ Cn×n the diagonal matrix

with entry P1 of multiplicity n1, P2 of multiplicity n2, etc. andPK of multiplicity nK , andx(m) =

[x
(m)T
1 , . . . ,x

(m)T
K ]T ∈ Cn wherex(m)

k ∈ Cnk is a column vector withj-th entryx(m)
k,j .

2the rationale being that far transmitters will not be interfered with by low power communications within the secondary

network.
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GatheringM successive independent observations, we obtain the matrixY = [y(1), . . . ,y(M)] ∈
CN×M given by

Y = WP
1

2X+ σN =
[

WP
1

2 σIN

]





X

N





whereX = [x(1), . . . ,x(M)] andN = [n(1), . . . ,n(M)].

The y(m) are therefore independent Gaussian vectors of zero mean andcovarianceR , WPWH +

σ2IN . Since the objective is to retrieve the powersPk, while σ2 is known, the problem boils down to

finding the eigenvalues ofWPWH +σ2IN . However, the sensors only have access toY, or equivalently

to the sample covariance matrix

RN ,
1

M
YYH =

1

M

M
∑

m=1

y(m)y(m)H .

AssumingRN conveys a good appreciation of the eigenvalue clustering tothe secondary user (as in

Figure 1), Theorem 1 enables the detection of primary transmitters and the estimation of their transmit

powersP1, . . . , PK ; this boils down to estimating the largestK eigenvalues ofWPWH + σ2IN , i.e.

thePk + σ2, and to subtractσ2 (optionally estimated from the smallest eigenvalue ofWPWH + σ2IN

if n < N ). Call P̂k the estimate ofPk.

Based on these power estimates, the secondary user can determine the optimal coverage for secondary

communications that ensures no interference with the primary network. A basic idea for instance is to

ensure that the closest primary user, i.e. that with strongest received power, is not interfered with. Our

interest is then cast onPK . Now, since the power estimator is imperfect, it is hazardous for the secondary

network to state thatK has powerP̂K or to add some empirical security margin tôPK . The results of

Section III partially answer this problem.

Theorems 3 and 4 enable the secondary sensor to evaluate the accuracy ofP̂k. In particular, assume

that the cognitive radio protocol allows the secondary network to interfere the primary network with

probability q and denoteA the value

A , inf
a
{P(PK − P̂K > a) ≤ q}.

According to Theorem 3, forN,M large,A is well approximated bŷΘK,KQ−1(q), with Q the Gaussian

cumulative distribution function. If the secondary users detect a user with powerPK , estimated byP̂K ,

P(P̂K + A < PK) < q and then it is safe for the secondary network to assume the worst case scenario

where userK transmits at power̂PK +A ≃ P̂K + Θ̂KQ−1(q).

In Figure 2, the performance of Theorem 3 is compared against10, 000 Monte Carlo simulations of

a scenario of three users, withP1 = 1, P2 = 3, P3 = 10, n1 = n2 = n3 = 20, N = 60 andM = 600.
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Fig. 2. Comparison of empirical against theoretical variances, based on Theorem 3, for three users,P1 = 1, P2 = 3, P3 = 10,

n1 = n2 = n3 = 20 codes per user,N = 60, M = 600 and SNR= 20 dB.

It appears that the limiting distribution is very accurate for these values ofN,M . We also performed

simulations to obtain empirical estimatesΘ̂k of Θk from Theorem 4, which suggest thatΘ̂k is an accurate

estimator as well.

VI. CONCLUSION

In this article, we derived an exact expression and an approximation of the limiting performance of

a statistical inference method that estimates the population eigenvalues of a class of sample covariance

matrices. These results are applied in the context of cognitive radios to optimize secondary network

coverage based on measures of the primary network activity.

APPENDIX

A. Proof of Proposition 1

Let us first begin by considerations related to the supports of the probability distributions associated

to m(z) andmN (z). Denote byS andSN these supports and recall thatS is the union ofL clusters:

S = (a1, b1) ∪ · · · ∪ (aL, bL) .

The following proposition clarifies the relations betweenSN andS.
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Proposition 3: LetN,M → ∞, then forN large enough, the supportSN of the probability distribution

associated to the Stieltjes transformmN (z) is the union ofL clusters:

SN = (aN1 , bN1 ) ∪ · · · ∪ (aNL , bNL ) .

Moreover, the following convergence holds true :

aNℓ −−−−−−→
N,M→∞

aℓ , bNℓ −−−−−−→
N,M→∞

bℓ ,

for 1 ≤ ℓ ≤ L.

Remark 3: If the supportSN contains zero, (ex:N > M ), then zero is also in the supportS, the

conclusion is still true.

Proof of Proposition 3: Recall the relations:

mN (z) = −
(

z − N

M

∫

t

1 + tmN (z)
dFRN (t)

)−1

(15)

and

mN (z) =
M

N
mN (z)−

(

1− M

N

)

1

z
. (16)

As the inverse of Stieltjes transform of−1
z is δ0 (the Dirac mass on 0) andmN (z) is a continuous

function overR∗
+, for a,b with 0 < a < b, by the inverse formula of Stieltjes transform, one gets:

FN ([a, b]) =
M

N
FN ([a, b]).

So it suffices to study the supportSN associated toFN .

From the definition ofmN (z) (see formula (15)), we obtain:

zRN
(mN ) = − 1

mN

+
N

M

∫

tdFRN(t)

1 + tmN (z)
.

Denote byB = {m ∈ R : m 6= 0,−m−1 /∈ {ρ1, · · · , ρL}}. In [23, Theorem 4.1 and Theorem 4.2],

Silverstein and Choi show that for a real numberx, x ∈ S
c
N ⇐⇒ mx ∈ B and z′RN

(mx) = 1
m2

x

−
N
M

∫ t2dFRN(t)
(1+tmx)

2 > 0 with mN (x) = mx andzRN
(mx) = x.

Then ifa ∈ ∂SN , ma /∈ B or z′RN
(ma) ≤ 0 with ma = mN (a). Now we will show thatma ∈ B. In [23,

Theorem 5.1],ma 6= 0. If −m−1
a ∈ SFRN , asFRN is discrete, we get thatlimm→ma

∫ t2dFRN(t)
(1+tm)2 −→ ∞.

So on the neighborhood to the left and to the right ofma, z′RN
< 0 which contradicts [23, Theorem 5.1].

Hencez′RN
(ma) ≤ 0. By the continuity, we get
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z′RN
(ma) =

1

m2
a

− N

M

∫

t2dFRN (t)

(1 + tma)2
= 0.

It is equivalent to the following equation:

z′RN
(ma) =

1

m2
a

− 1

M

L
∑

i=1

Ni
ρ2i

(1 + ρima)2
= 0. (17)

By multiplying the common denominator, one will get a polynomial of the degree 2L inma. Now we

will show that these 2L roots are real. At first, notice that

1

m2
− N

M

∫

t2dFRN (t)

(1 + tm)2
−−−−−→
m→− 1

ρi

−∞,

and

z′′RN
(m) = − 2

m3
+

N

M

∫

2t3dFRN (t)

(1 + tm)3
.

So z′′RN
(m) has one and only one zero in the open set(− 1

ρi
,− 1

ρi+1
) for i ∈ {1, · · · , L − 1}. Then

for βi ∈ (− 1
ρi
,− 1

ρi+1
) such thatz′′RN

(βi) = 0, it suffices to show thatz′RN
(βi) > 0 in order to prove

that there will be two zeros forz′RN
(m) in the set(− 1

ρi
,− 1

ρi+1
). From the separability condition (cf.

Assumption (A2)),infN{M
N −ΨN (i)} > 0, and

z′RN
(− 1

αi
) = α2

i −
N

M

∫

t2dFRN(t)

(1− t
αi
)2

= α2
i

(

1− 1

M

L
∑

r=1

Ni
ρ2i

(αi − ρi)2

)

> 0

Thus we obtain2(L− 1) roots. Besides, in the open set(−ρ−1
L , 0),

1

m2
− N

M

∫

t2dFRN (t)

(1 + tm)2
−−−−−→
ma→0−

+∞,

there exists another root in this set. In the open set(−∞,−ρ−1
1 ),

1

m2
− N

M

∫

t2dFRN (t)

(1 + tm)2
−−−−−→
m→−∞

0

and
1

m2
− N

M

∫

t2dFRN (t)

(1 + tm)2
∼

m→−∞

1

m2
(1− L

M
) > 0.

Hence the last root in this open set. This proves thatSN = (aN1 , bN1 ) ∪ · · · ∪ (aNL , bNL ).

To proveaNℓ −−−−−−→
N,M→∞

aℓ andbNℓ −−−−−−→
N,M→∞

bℓ , notice thatai bi satisfy the same type of the equation

by replacingN
M by c andFRN by FR. As N

M → c and Ki

M → ci, the roots of Equation (17) converge to

those of the limit equation (see [24]). Thus we achieve the second conclusion.
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We are now in position to establish the proof of Proposition 1.

Denote byS(ε) the ε-blow-up of S, i.e. S(ε) = {x ∈ R, d(x, S) < ε}. Let ε > 0 be small enough

and consider a smooth functionφ equal to zero onS(ε/3), equal to 1 ifx /∈ S(ε), equal to zero again

if |x| ≥ τ (as we shall see,τ will be chosen to be large), and smooth in-between with0 ≤ φ ≤ 1:

φ(x) =



























0 if d(x,S) < ε/3 ,

1 if d(x,S) > ε , |x| ≤ τ − ǫ

0 if |x| > τ .

Notice that if N,M → ∞ andN is large enough, then by Proposition 3,φ(x) = 0 for all x ∈ SN .

Now if Z is aM ×M hermitian matrix with spectral decompositionZ = Udiag (γi; 1 ≤ i ≤ M)) UH ,

whereU is unitary anddiag (γi; 1 ≤ i ≤ M)) stands for theM ×M diagonal matrix whose entries are

Z’s eigenvalues, writeφ(Z) = Udiag (φ(γi); 1 ≤ i ≤ M)) UH .

We have:

P(sup
n

d(λn, S) > ε) ≤ P(‖R̂N‖ > τ − ε) + P(Trφ(R̂N ) ≥ 1)

= P(‖R̂N‖ > τ − ε) + P([Trφ(R̂N )]p ≥ 1)

(a)

≤ P(‖R̂N‖ > τ − ε) + E[Trφ(R̂N )]p ,

for everyp ≥ 1, where(a) follows from Markov’s inequality. The fact thatP(‖R̂N‖ > τ) = O(N−ℓ)

for τ large enough and everyℓ ∈ N∗ is well-known (see for instance [6, Section 9.7]). We shall therefore

establish estimates overE[Trφ(R̂N )]p. Takep = 2k; we prove the following statement by induction: For

k ≥ 1 and for every integerβ < 2k and for every smooth functionf with compact support whose value

on S(ε/3) is zero ,

E

(

Trf(R̂N )
)2k

= O

(

1

Nβ

)

.

First notice that due to Proposition 3,
∫

SN
f(λ)FN (dλ) = 0 (whereFN is the probability distribution

associated tomN ) for N,M large enough (N,M → ∞). A minor modification of [25, Lemma 2] (whose

model is slightly different) with the help of [26, Proposition 5] yields that forN,M → ∞ andN large

enough,ETr f(R̂N ) = O(N−1), and the property is verified fork = 0.
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Let k > 0 be fixed and assume that the result holds true forβ < 2k. We want to show that

E[Trf(R̂N )]2
(k+1)

= O(N−2β). At stepk + 1, the expectation writes:
∣

∣

∣E[Tr f(R̂N )]2
(k+1)

∣

∣

∣ (18)

=

∣

∣

∣

∣

E

(

[Trf(R̂N )]2
k

+ E[trf(R̂N )]2
k − E[Trf(R̂N )]2

k
)2
∣

∣

∣

∣

≤ 2
(

Var[Tr f(R̂N )]2
k

+ |E[Trf(R̂N )]2
k |2
)

. (19)

The second term of the right hand side (r.h.s.) of the equation can be handled by the induction hypothesis:
∣

∣

∣
E[Trf(R̂N )]2

k
∣

∣

∣

2
= O

(

1

N2β

)

.

We now rely on Poincaré-Nash inequality (see for instance [26, Section II-B]) to handle the first term of

the r.h.s. Applying this inequality, we obtain:

Var
(

(Tr f(R̂N ))2
k
)

≤ K
∑

i,j

E





∣

∣

∣

∣

∣

∂[Tr f(R̂N )]2
k

∂Yi,j

∣

∣

∣

∣

∣

2

+

∣

∣

∣

∣

∣

∂[Tr f(R̂N )]2
k

∂Y i,j

∣

∣

∣

∣

∣

2


 , (20)

whereK is a constant which does not depend onN,M and which is greater thanRN ’s eigenvalues. In

order to compute the derivatives of the r.h.s., we rely on [27, Lemma 4.6]. This yields:

∂

∂Yi,j
[Tr f(R̂N )]2

k

=
2k

M
[Tr f(R̂N )]2

k−1[Y∗
Nf ′(R̂N )]j,i ,

∂

∂Yi,j

[Tr f(R̂N )]2
k

=
2k

M
[Tr f(R̂N )]2

k−1[f ′(R̂N )YN ]i,j .

Plugging these derivatives into (20), we obtain:

Var(Tr[f(R̂N )]2
k

)

≤ K 22k+1

M2
E

[

(Tr f(R̂N ))(2
k+1−2)Tr (f ′(R̂N )YNY∗

Nf ′(R̂N ))
]

,

=
K 22k+1

M
E

[

(Tr f(R̂N ))(2
k+1−2)Tr (f ′(R̂N )2R̂N )

]

,

≤ K 22k+1

M

∣

∣

∣
E[Trf(R̂N )]2

k+1
∣

∣

∣

2k+1
−2

2k+1 ×
∣

∣

∣
E[Trf ′(R̂N )2R̂N ]2

k
∣

∣

∣

1

2k

,

where the last inequality is a consequence of Hölder’s inequality.

As the functionh(λ) = λ[f ′(λ)]2 satisfies the induction hypothesis, we have for everyα < 1:
∣

∣

∣
ETr[f ′(R̂N )2R̂N ]2

k
∣

∣

∣

1

2k

= O(N−α).

Plugging this estimate into (18), we obtain:
∣

∣

∣E[Tr f(R̂N )]2
(k+1)

∣

∣

∣ ≤ K

(

1

N1+α
|E[Tr f(R̂N )]2

(k+1) | 2
k+1

−2

2k+1

)

+ O(N−2β) , (21)
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whereK is a constant independent ofM,N, k. Notice that inequality (21) involves twice the quantity

of interestE[Tr f(R̂N )]2
(k+1)

that we want to upper bound byO(N−2β). We shall proceed iteratively.

Notice thatTr [f(R̂N )] ≤ supx∈R |f(x)| ×N becausef is bounded onR; hence the rough estimate:

E[Trf(R̂N )]2
(k+1)

= O(N2k+1

).

Plugging this into (21) yields:

E[Tr f(R̂N )]2
(k+1)

= O(Na1) ,

wherea0 = 2k+1 anda1 = a0
2k+1−2
2k+1 − (1 + α). Iterating the procedure, we obtain:

E[Tr f(R̂N )]2
(k+1)

= O

(

Naℓ∨(−2β)
)

,

whereaℓ = aℓ−1
2k+1−2
2k+1 − (1+α) andx∨ y stands forsup(x, y). Now, in order to conclude the proof, it

remains to prove that i) the sequence(aℓ) converges to some limita∞, ii) for some well-chosenα < 1,

a∞ ∈ (−2k+1,−2β). Write:

aℓ+1 + 2k(1 + α) =
2k − 1

2k
(aℓ + 2k(1 + α)) ,

henceaℓ converges to−2k(1+α) which readily belongs to(−2k+1,−2β) for a well-chosenα ∈ (0, 1).

Finally E[Tr f(R̂N )]2
(k+1)

= O(N−2β) which ends the induction.

It remains to apply this estimate toE[Trφ(R̂N )]ℓ in order to get the desired result.

B. Proof of Lemma 1

As explained in Section III, there are two conditions to prove (Billingsley [28, Theorem 13.1]):

• Finite-dimensional convergence of the process(XN ,X ′
N ).

• Tightness on the contourCk.

Remark 4: As uN (resp.u′N ) converges almost surely tou (resp.u′) (see Silverstein and Bai [17]),

the convergence of the process(XN ,X ′
N , uN , u′N ) is achieved as soon as the convergence of the process

(XN ,X ′
N ) is proved.

In [20], Bai and Silverstein establish a central limit theorem for FRN with the complex Gaussian

entriesXij . We recall below their main result.

Proposition 4: [20] With the notations introduced in Section II, forf1, . . . , fp, analytic on an open

region containingR,

1)
(

N
∫

fi(x)d(F
R̂N − FN )(x)

)

1≤i≤p
forms a tight sequence onN ,
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2)
(

N

∫

fi(x)d(F
R̂N − FN )(x)

)

1≤i≤p

D−→ N(0,V),

whereV = (Vij) and

Vij = − 1

4π2

∮ ∮

fi(z1)fj(z2)vij(z1, z2)dz1dz2,

with

vij(z1, z2) =
m′(z1)m

′(z2)

(m(z1)−m(z2))2
− 1

(z1 − z2)2

where the integration is over positively oriented contoursthat circle around the supportS.

Now we apply this proposition to show the finite-dimensionalconvergence. For allzi ∈ Ck\R, notice

that

m
R̂N

(z)−mN (z) =
1

2iπ

∮

1

x− z
d(F R̂N − FN )(x)

with the contour who contains the supportS andXN (z) = M(m
R̂N

(z) −mN (z)). Then Proposition 4

implies directly that for allp ∈ N, the random vector

(

XN (z1),X
′

N (z1), · · · ,XN (zp),X
′

N (zp)
)

converges to a centered Gaussian vector by considering the functions:
(

f1(x) =
1

x− z1
, f2(x) =

1

(x− z1)2
, · · · , f2p−1(x) =

1

x− zp
, f2p(x) =

1

(x− zp)2

)

.

Thus the finite dimensional convergence is achieved.

The proof of the tightness is based on Nash-Poincaré inequality ([25] and [26]). In Appendix A, it is

proved that for allǫ > 0 and allℓ ∈ N,

P

(

sup
λ∈eig(R̂N )

d(λ,S) > ǫ

)

= o(N−ℓ).

Following the same idea as Bai and Silverstein [20, Section 3and 4], it is indeed a tight sequence. The

details of the proof are in Appendix C. Thus Lemma 1 is achieved.

C. Proof of the tightness

We will show the tightness of the sequenceM(m
R̂N

− mN ) andM(m
′

R̂N

− m
′

N ) by using Nash-

Poincaré’s inequality [26]. First, denote byM(m
R̂N

(z) −mN (z)) = M1
N (z) +M2

N (z) with M1
N (z) =

M(m
R̂N

(z)− E[m
R̂N

(z)]) andM2
N (z) = M(E[m

R̂N

(z)]−mN (z)).
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As 1
ρ̂k−z can converge to infinite if z is close to the real axis, there will be a little trouble for the

tightness. Then we need a truncated version of the process. More precisely, letεN be a real sequence

decreasing to zero satisfying for someδ ∈]0, 1[:

εN ≥ N−δ .

Remark 5: Notice thatXN (z) = M(m
R̂N

−mN ) = XN (z) for z ∈ C+. So it suffices to verify the

arguments forz ∈ C+.

Denote by([x2k−1, x2k], k = 1, · · · , L) thek-th cluster of the support of the limiting spectral measure;

and takel2k−1, l2k such thatx2k−2 < l2k−1 < x2k−1 and x2k < l2k < x2k+1 for k ∈ {1, .., L} with

conventionsx0 = 0 andx2L+1 = ∞, i .e. , [l2k−1, l2k] only contains the k-th cluster. Letd > 0. Consider:

Cu = {x+ id : x ∈ [l2k−1, l2k]}.

and

Cr = {l2k−1 + iv : v ∈ [N−1εN , d]}.

Also

Cl = {l2k + iv : v ∈ [N−1εN , d]}.

ThenCN = Cl ∪ Cu ∪ Cr. The processM̂1
N (·) is defined by

M̂1
N (z) =



























M1
N (z) for z ∈ CN ,

M1
N (l2k + iN−1εN ) for x = l2k, v ∈ [0, N−1εN ],

M1
N (l2k−1 + iN−1εN ) for x = l2k−1, v ∈ [0, N−1εN ].

This partition ofCN is identical to that used in [20, Section 1]. With probability one (see [18] and [22]),

for all ǫ > 0,

lim sup
λ∈eig(R̂N )

d(λ,SN ) < ǫ

with d(x, S) the Euclidean distance ofx to the setS. So with probability one, for allN large, ([20, page

563])
∣

∣

∣

∣

∮

(

M1
N (z)− M̂1

N (z)
)

dz

∣

∣

∣

∣

≤ K1εN ,

and
∣

∣

∣

∣

∮

(

M1
N

′
(z)− M̂2′

N (z)
)

dz

∣

∣

∣

∣

≤ K2εN

for some constantsK1 andK2. Both terms converge to zero asM → ∞. Then it suffices to ensure the

tightness forM̂1
N (z) andM̂1′

N (z).
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We now prove tightness based on [28, Theorem 13.1], i.e.

1) Tightness at any point of the contour (hereCN ).

2) Satisfaction of the condition

sup
N,z1,z2∈CN

E|(M̂1
N (z1)− M̂1

N (z2))|2
|z1 − z2|2

≤ K.

Condition 1) is achieved by an immediate application of Proposition 4. We now verify the second

condition.

We evaluateE|(M̂
1
N (z1)−M̂1

N (z2))|2

|z1−z2|2
. Notice that

m
R̂N

(z1)−m
R̂N

(z2) =
z1 − z2
M

N
∑

i=1

1

(λ̂i − z1)(λ̂i − z2)

=
z1 − z2
M

Tr(D−1
N (z1)D

−1
N (z2))

with DN (z) = R̂N − zIN . We have

∂

∂Yi,j

(

m
R̂N

(z1)−m
R̂N

(z2)

z1 − z2

)

=
∂

∂Yi,j
Tr(R̂N − z1I)

−1(R̂N − z2I)
−1

=
1

M

[

−Y∗
ND−2

N (z1)D
−1
N (z2)−Y∗

ND−1
N (z1)D

−2
N (z2)

]

j,i
,

and

∂

∂Ȳi,j

(

m
R̂N

(z1)−m
R̂N

(z2)

z1 − z2

)

=
1

M
[−D−2

N (z1)D
−1
N (z2)YN −D−1

N (z1)D
−2
N (z2)YN ]i,j.

Then by the Nash-Poincaré inequality and the fact thatR̂N is uniformly bounded in spectral norm almost

surely, one gets

E|M̂1(z1)− M̂1(z2)|2
|z1 − z2|2

≤ C1

N
E

[

Tr(LN )
]

=
C1

N
E(Tr(LN )Isupn d(λ̂n,S)≤ε) +

C1

N
E(Tr(LN )Isupn d(λ̂n,S)>ε)

with

LN = R̂ND−4
N (z1)D

−2
N (z2) + 2R̂ND−3

N (z1)D
−3
N (z2) + R̂ND−2

N (z1)D
−4
N (z2)
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andC1 a constant which does not depend onN or M . For the first term,Tr(LN ) is bounded on the set

supn d(λ̂n,S) ≤ ε. For the second term, since for alli ∈ N and allz ∈ CN , 1
|λ̂n−z|i

≤ N i

εiN
, it leads that

N
∑

n=1

1

|λ̂n − z|i
≤ N i+1

εiN
.

Then

|Tr(LN )| ≤ O

(

N7

ε6N

)

.

As P(sup d(λ̂n,S) ≥ ε) = o(N−16), takeεN = N−0.01, one obtains
∣

∣

∣
E(Tr(LN )Isupn d(λ̂n,S)>ε)

∣

∣

∣
≤ E

∣

∣

∣
Tr(LN )Isup d(λ̂n,S)>ε

∣

∣

∣

≤ O

(

N7

ǫ6N
P(sup d(λ̂n,S) > ε)

)

≤ O
(

N7−0.06−16
)

→ 0.

The second condition of tightness is achieved.

For M2
N (z), following exactly the same method in [6, Section 9.11], onecan show thatM2

N (z) is

bounded and forms an equicontinuous family that converges to 0. Hence the tightness forM(m
R̂N

(z)−
mN (z)).

The next step is to prove the tightness ofM(m′
R̂M

(z)−m′
N (z)). We have

m′
R̂N

(z1)−m′
R̂N

(z2)

=
z1 − z2
M

N
∑

i=1

2λ̂i − z1 − z2

(λ̂i − z1)2(λ̂i − z2)2

=
z1 − z2
M

Tr
(

D−2
N (z1)D

−2
N (z2)(DN (z1) +DN (z2))

)

.

Following the same method as derived before, one obtains

∂

∂Yij
D−1

N (z1)D
−2
N (z2)

= − 1

M

[

Y∗
ND−2

N (z1)D
−2
N (z2) + 2Y∗

ND−1
N (z1)D

−3
N (z2)

]

j,i
,

and
∣

∣

∣

∣

∂

∂Yij
TrD−2

N (z1)D
−2
N (z2)(D(z1) +DN (z2))

∣

∣

∣

∣

2

=
1

M
Tr(L2)

with

L2 =4R̂N

(

3D−4
N (z1)D

−4
N (z2) + 2D−3

N (z1)D
−5
N (z2) + 2D−5

N (z1)D
−3
N (z2)

+D−2
N (z1)D

−6
N (z2) +D−6

N (z1)D
−2
N (z2)

)

.

DRAFT October 16, 2018



27

Then Nash-Poincaré inequality yields that

Var
|M̂1′

N (z1)− M̂1′

N (z2)|
|z1 − z2|

≤ C1

N
E(Tr(L2)Isupn d(λ̂n,S)≤ε) +

C1

N
E(Tr(L2)Isupn d(λ̂n,S)>ε)

with C1 the same constant defined as before. The termTr(L2) is bounded on the setsup d(λ̂n,S) ≤ ε.

For the second term,|Tr(L2)| ≤ O

(

N9

ε8N

)

. As P(sup d(λ̂n,S) ≥ ε) = o(N−16) and εN = N−0.01, the

proof of the tightness ofM1
N

′
(z) is achieved as before.

The proof of the tightness is completed with the verificationof M2
N

′
(z) for z ∈ Cn to be bounded

and forms an equicontinuous family, and convergence to 0. Wewill use the same method for the process

M2
N (z) (see [6, Section 9.11]).

By Formula (9.11.1) in [6, Section 9.11], they show that

(Em
R̂N

−mN )



1−
N
M

∫ mN t2dFRN(t)
(1+tEm

R̂N
)(1+tmN )

−z + N
M

∫

tdFRN

1+tEm
R̂N

− TN



 = Em
R̂N

mNTN (22)

where

TN =
N

M2

M
∑

j=1

Eβjdj(EmR̂N

)−1,

dj = dj(z) = −q∗
jR

1/2(R̂(j) − zI)−1(Em
R̂N

R+ I)−1R1/2qj + (1/M)Tr(Em
R̂N

R+ I)−1R(R̂N − zI)−1,

βj =
1

1 + 1
M y∗

j (R̂(j) − zI)−1yj

,

qj = 1/
√
Nxj,

R̂(j) = R̂N − 1

M
yjy

∗
j .

If one derives (22) with respect toz, the equation becomes

(Em′
R̂N

−m′
N )



1−
N
M

∫ mN t2dFRN(t)
(1+tEm

R̂N
)(1+tmN )

−z + N
M

∫

tdFRN

1+tEm
R̂N

− TN



+ (Em
R̂N

−mN )



1−
N
M

∫ mN t2dFRN(t)
(1+tEm

R̂N
)(1+tmN )

−z + N
M

∫

tdFRN

1+tEm
R̂N

− TN





′

= Em′
R̂N

mNTN + Em
R̂N

m′
NTN + Em

R̂N

mNT ′
N .

In the work of [6, Section 9.11], they show that whenN tends to infinity,

1) supz∈CN
|Em

R̂N

(z)−m(z)| → 0 and supz∈CN
|mN (z)−m(z)| → 0,

2)
N

M

∫ t2mNdFRN (t)

(1+tEm
R̂N

)(1+tmN )

−z+ N

M

∫
tdFRN

1+tEm
R̂N

−TN

converges ,

3) M2
N (z) → 0, TN → 0.
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With the same method, one can show easily that

4) supz∈CN
|Em′

R̂N

(z)−m′(z)| → 0,

5) supz∈CN
|m′

N (z)−m′(z)| → 0,

6) N
M

(

∑M
j=1 Eβjdj

)′
converges.

With these results, it suffices to show thatT ′
N → 0, andM2

N
′ is equicontinuous.

In [6, Section 9.9], they show that form, p ∈ N and a non-randomN × N matrix Ak, k = 1, ..,m

andBl, ℓ = 1, .., q, we have

∣

∣

∣

∣

∣

E

(

m
∏

k=1

r∗tAkrt

q
∏

ℓ=1

(r∗tRℓrt −M−1TrRBℓ)

)∣

∣

∣

∣

∣

≤ KM−(1∧q)
m
∏

k=1

‖Ak‖
q
∏

ℓ=1

‖Bℓ‖. (23)

We have also that for any positivep,

max(E‖D−1(z)‖p,E‖D−1
j (z)‖p,E‖D−1

ij (z)‖p) ≤ Kp (24)

and

sup
n,z∈Cn

‖(Em
R̂N

(z)R + I)−1‖ < ∞ (25)

whereKp is a constant which depends only onp.

With all these preliminaries, asTN → 0, by the dominated convergence theorem of derivation, it

suffices to show thatT ′
N is bounded overCN . In [6, Section 9.11], it is sufficient to show that(f ′

M (z))

is bounded where

fM (z) =

M
∑

j=1

E[(r∗jD
−1
j rj−M−1TrD−1

j R)(r∗jD
−1
j (Em

R̂N

R+I)−1rj−M−1TrD−1
j (Em

R̂N

R+I)−1R)].

With the help of (23)-(25),f ′
M (z) is indeed bounded inCN .

Now we will show thatM2
N

′ is equicontinuous. With the light work as before, it is sufficient to show

that f ′′
M(z) is bounded. Using (23), we obtain
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|f ′′(z)| ≤KM−1
[(

E(TrD−3
1 RD̄−3

1 R)E(TrD−1
1 (EmR

N
R+ I)−1R(Em̄

R̂N

R+ I)−1D̄−1
1 R)

)1/2

+ 2
(

E(TrD−2
1 RD̄−2

1 R)E(TrD−2
1 (Em

R̂N

R+ I)−1R(Em̄
R̂N

R+ I)−1D̄−2
1 R)

)1/2

+ 2|Em′
R̂N

|
(

E(TrD−2
1 RD̄−2

1 R)E(TrD−1
1 (Em

R̂N

R+ I)−2R(Em̄
R̂N

R+ I)−2D̄−1
1 R)

)1/2

+
(

E(TrD−1
1 RD̄−1

1 R)E(TrD−3
1 (Em

R̂N

R+ I)−1R(Em̄
R̂N

R+ I)−1D̄−3
1 R)

)1/2

+ 2|Em′
R̂N

|
(

E(TrD−1
1 RD̄−1

1 R)E(TrD−2
1 (Em

R̂N

R+ I)−2R(Em̄
R̂N

R+ I)−2D̄−2
1 R)

)1/2

+ |Em′′
R̂N

|
(

E(TrD−1
1 RD̄−1

1 R)E(TrD−1
1 (Em

R̂N

R+ I)−2R(Em̄
R̂N

R+ I)−2D̄−1
1 R)

)1/2

+ |Em′
R̂N

|2
(

E(TrD−1
1 RD̄−1

1 R)E(TrD−1
1 (Em

R̂N

R+ I)−3R(Em̄
R̂N

R+ I)−3D̄−1
1 R)

)1/2]

.

Thanks to (24) and (25), the right side is indeed bounded. This ends the proof of the tightness.
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