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Abstract

In this paper, under mild assumptions, we derive a law of large numbers, a central

limit theorem with an error estimate, an almost sure invariance principle and a variant

of Chernoff bound in finite-state hidden Markov models. These limit theorems are of

interest in certain ares in statistics and information theory. Particularly, we apply the

limit theorems to derive the rate of convergence of the maximum likelihood estimator

in finite-state hidden Markov models.

1 Main Results and Related Work

Consider a discrete memoryless channel with a finite input alphabet Y and a finite output
alphabet Z. Assume that, at each time slot, the channel is characterized by the channel
transition probability matrix Π = (p(z|y)). Let Y = (Yi : i ∈ Z) be the input process over
Y , which is a stationary Markov chain with transition probability matrix ∆. Let Z denote
the output process over Z, which is often referred to as a hidden Markov chain. Assume
that ∆ is analytically parameterized by θ ∈ Ω, where Ω is an open, bounded and connected
subset of Rm.

Assume that the true parameter of ∆ is θ0, which is often assumed unknown in a statistical
context. For any l ∈ N ∪ {0}, we are interested in the limiting probabilistic behavior of the
l-th derivative of log pθ(Zn

1 ) with respect to any θ ∈ Ω, denoted by Dl
θ log p

θ(Zn
1 ); here Z

n
1

is used to denote the sequence of random variables (Z1, Z2, . . . , Zn), and similar notational
convention will be followed in the sequel. We will prove limit theorems for appropriately
normalized versions of Dl

θ log p
θ(Zn

1 ), for any fixed l and any θ ∈ Ω. Here, we remark that,
only for notational convenience, we are treating θ as a one-dimensional variable throughout
this paper.

Consider the following two conditions:

(I) Π is a strictly positive matrix, and for any θ ∈ Ω, ∆θ is irreducible and aperiodic;

(II) for any θ ∈ Ω, σ(l)(θ) , limn→∞

√

(σ
(l)
n (θ))2/n > 0, where σ

(l)
n (θ) =

√

Varθ0(D
l
θ log p

θ(Zn
1 ))

(the existence of this limit under Condition (I) will be established later).
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And we define
L(l)(θ) , lim

n→∞
Eθ0 [D

l
θ log p

θ(Zn
1 )]/n,

when the limit exists.
The following theorem is an analog of the law of large numbers (LLL).

Theorem 1.1. Assume Condition (I). Then, L(l)(θ) is well-defined, and for any θ ∈ Ω,

Dl
θ log p

θ(Zn
1 )

n
→ L(l)(θ) with probability 1.

For the case l = 0, Theorem 1.1 has already been observed in [2], where the convergence
is used to prove the consistency of the maximum likelihood estimator (MLE) in a hidden
Markov model. Note that when θ = θ0, we have L(0)(Z) = −Hθ0(Z), where Hθ0(Z) denotes
the entropy rate of the hidden Markov chain Z at the true parameter θ0. So, Theorem 1.1
is a (rather) special case of the celebrated Shannon-McMillan-Breiman theorem, which only
assumes the stationarity and ergodicity of Z. Entropy rate of a hidden Markov chain is of
great importance in many areas in mathematics and physics; in particular, the computation
of Hθ0(Z) is a first step to compute the capacity of a finite-state channel in information
theory. Unfortunately, it is notoriously difficult to compute such a fundamental quantity
(see [15, 27] and references therein). Recently, based on the Shannon-McMillan-Breiman
theorem, efficient Monte Carlo methods for approximating Hθ0(Z) were proposed indepen-
dently by Arnold and Loeliger [1], Pfister, Soriaga and Siegel [30], Sharma and Singh [39].

We will prove the following central limit theorem (CLT) for Dl
θ log p

θ(Zn
1 ) with an error

estimate, which is often referred to as Berry-Esseen bound [3, 16] in probability theory.
Here, we remark that, in this paper, to avoid notational cumbersomeness, while ensuring its
dependence on various variables, we often use C to denote a constant, which may not be the
same on each appearance.

Theorem 1.2. Assume Conditions (I) and (II) and consider any given compact subset
Ω0 ⊂ Ω. For any ε > 0, there exists C > 0 such that for any n and any θ ∈ Ω0,

sup
x

∣
∣
∣
∣
P

(
Dl

θ log p
θ(Zn

1 )− nL(l)(θ)√
nσ(l)(θ)

< x

)

−G(x)

∣
∣
∣
∣
≤ Cn−1/4+ε,

where G(x) =
∫ x

−∞
(2π)−1/2 exp(−y2/2)dy.

For the case l = 1, Theorem 1.2 (without the Berry-Esseen bound) has first been shown
in [2], which, together with Theorem 1.1 for the case l = 2, can be further used to derive
the asymptotic normality of the maximum likelihood estimator (MLE) for a hidden Markov
model. This asymptotic normality result is of great importance to the statistical estimation
aspects in hidden Markov models, and has been generalized extensively in [5, 6, 13, 14, 25,
28, 36, 37].

Theorem 1.2 for the case l = 0 and θ = θ0 (again without the Berry-Esseen bound) has
been considered in more probabilistic settings as well: a CLT for log pθ(Zn

1 ) assuming Z is
a Markov chain is first proven in [42]; this result is further generalized to obtain a refine-
ment of the Shannon-McMillan-Breiman theorem in [23] under some mixing assumptions;
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under somewhat similar conditions, an almost sure invariance principle, a deep result which,
among many other applications, implies a CLT, has been established in [33]; the almost sure
invariance principle is used to study the asymptotic behavior of the so-called recurrence and
waiting times in [24], where a CLT for log pθ(Zn

1 ) is embedded in the main results.
In a more information theoretical context, a CLT [31] for log pθ(Zn

1 ) is derived as a
corollary of a CLT for the top Lyapunov exponent of a product of random matrices; a
functional CLT is also established in [22]. In essence, both of these two CLTs are proved
using effective Martingale approximations of log pθ(Zn

1 ) (see [17] for this standard technique).
There is also a large body of work (see [21, 20] and references therein) on variants of the

CLT for the empirical entropy of some ergodic mappings in the language of ergodic theory,
among which, of great relevance to this work are [21, 20], where CLTs with Berry-Esseen
bounds are derived. Here, we remark that there are minor mistakes in the proof of the main
results in [21]; it appears that a modified proof, together with stronger assumptions, can
only yield weaker results than claimed in [21].

Note that the error estimate in the CLTs is of great significance in many scenarios, such
as characterizing the speed of convergence of the above mentioned Monte Carlo simulation
in [1, 30, 39] and deriving non-asymptotic coding theorems information theory [41] and so on.
Among all the previously mentioned related work, only [21, 20] give error estimates for the
CLTs. Compared to these two work, where only some mixing conditions are assumed for Z,
our assumptions are rather strong. On the other hand, our CLT is considerably stronger in
the sense that it is essentially for a class of functions including log pθ(Zn

1 ) and its derivatives
with tighter error estimate.

Following Phillip and Stout [33], we prove the following almost sure invariance principle.

Theorem 1.3. Assume Conditions (I) and (II). Define a continuous parameter process
{S(t), t ≥ 0} by setting

S(t) =
∑

n≤t

Dl
θ log p

θ(Zn
1 )− nL(l)(θ).

Then, for any given θ ∈ Ω, without changing the distribution of {S(t), t ≥ 0}, we can redefine
the process {S(t), t ≥ 0} on a richer probability space together with the standard Brownian
motion {B(t), t ≥ 0} such that for any ε > 0,

S(t)− B((σ(l)(θ))2t) = O(t1/3+ε) a.s. as t→ ∞.

As elaborated in [33], an almost sure invariance principle is a fundamental theorem with
many applications, which include, besides a CLT and some large deviation results, a law of
iterated logarithm (LIL). The following LIL immediately follows from Theorem 1.3.

Theorem 1.4. Assume Conditions (I) and (II). For any given θ ∈ Ω, we have

lim sup
n→∞

Dl
θ log p

θ(Zn
1 )− nL(l)(θ)

(2n(σ(l)(θ))2 log log n(σ(l)(θ))2)1/2
= 1 a.s.

Theorem 1.4 is not completely new: the almost sure invariance principle in [33], which is
established under much weaker conditions, implies Theorem 1.4 for the case l = 0. In [29],
it has been shown that with reasonable assumptions, a CLT with a sharp enough error esti-
mation term implies an LIL for i.i.d. sequences of random variables. For possibly dependent
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sequences of random variables, Petrov’s result may not be directly applied to derive an LIL,
however the spirit of the proof can be cautiously followed to establish Theorem 1.4 as an
alternative approach (see [34]). Using this idea, a law of iterated logarithm (again for the
case l = 0) has also been noted in [21, 20] under some mixing assumptions.

We also prove the following variant of the Chernoff bound (see [11]), giving a sub-
exponentially decaying upper bound for the tail probability of Sn.

Theorem 1.5. Assume Conditions (I) and (II) and consider any given compact subset
Ω0 ⊂ Ω. For any x > 0 and any 0 < ε < 1, there exist C > 0, 0 < γ < 1 such that for any
n and any θ ∈ Ω0,

P

(
Dl

θ log p
θ(Zn

1 )− nL(l)(θ)

n
≥ x

)

≤ Cγn
1−ε

.

Let θn ∈ Ω be the n-th order maximum likelihood estimator (MLE) for the considered
hidden Markov model, that is,

θn = argmaxθ∈Ω log pθ(Zn
1 ).

The consistency of the MLE in hidden Markov models have been extensively discussed in
statistical contexts (see representative work in [2, 25, 6]). As one of the principal applications
of the limit theorems above, assuming the consistency of the MLE, the following theorem
further gives the rate of convergence of the estimators θn to the true parameter θ0.

Theorem 1.6. Assume Conditions (I) and (II). Assume that there is a compact subset
Ω0 ⊂ Ω such that Ω0 contains θ0 and L(2)(θ) is non-singular for any θ ∈ Ω0. Then, on the
event that “Ω0 contains all θn” and “θn converges to θ0”, for any x, ε > 0, there exists C > 0
such that

P (|θn − θ0| ≥ x) ≤ Cn−1/4+ε.

2 Limit Theorems under Exponential Mixing and For-

getting Conditions

A stationary stochastic process T = T∞
−∞ is said to be ψ-mixing if

ψ(n) , sup
U∈B(T−n

∞ ),V ∈B(T∞

0 ),P (U)>0,P (V )>0

|P (V |U)− P (V )|/P (V ) → 0 as n→ ∞,

where B(T j
i ) denotes the σ-field generated by {Tk : k = i, i+ 1, · · · , j}. Let Z = (Zn)n∈Z be

a stationary ψ-mixing sequence of random variables over a finite alphabet Z satisfying the
following property:

(a) [exponential mixing] There exist C > 0, 0 < λ < 1 such that

ψ(n) ≤ Cλn

for all n.
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Let Z∗ be the set of all finite words over Z, and let f : Z∗ → R be a function satisfying the
following properties:

(b) There exist C ′, C ′′ > 0 such that for all z0−n ∈ Z∗,

C ′ ≤ f(z0|z−1
n−1) ≤ C ′′.

(c) [exponential forgetting] There exist C > 0, 0 < ρ < 1 such that for any two hidden
Markov sequences z0−m, ẑ

0
−m̂ with z0−n = ẑ0−n (here m, m̂ ≥ n ≥ 0), we have

|f(z0|z−1
−m)− f(ẑ0|ẑ−1

−m̂)| ≤ Cρn.

Define
Xi = f(Zi|Z i−1

1 )−E[f(Zi|Z i−1
1 )],

and

Sn =

n∑

i=1

Xi, σ2
n = V ar(Sn).

We will also consider

(d) σ , limn→∞

√

σ2
n/n > 0 (the existence of this limit under Conditions (a), (b) and (c)

will be established in Lemma 3.3 and Remark 3.4).

We will prove the following theorems under Conditions (a), (b), (c) and (d). Not only can
these theorems be used to prove the main results in Section 1, but also they are of interest
in their own right. The first theorem is a law of large numbers.

Theorem 2.1. Assume Conditions (b) and (c). With probability 1,

X1 +X2 + · · ·+Xn

n
→ 0 as n→ ∞.

We will also prove the following central limit theorem with a Berry-Esseen bound.

Theorem 2.2. Assume Conditions (a), (b), (c) and (d). For any ε > 0, there exists C > 0
such that for any n

sup
x

|P (Sn/σn < x)−G(x)| ≤ Cn−1/4+ε,

where G(x) =
∫ x

−∞
(2π)−1/2 exp(−y2/2)dy.

The following theorem is an almost sure invariance principle.

Theorem 2.3. Assume Conditions (a), (b), (c) and (d). Define a continuous parameter
process {S(t), t ≥ 0} by setting

S(t) =
∑

n≤t

Sn.

Then, for any given θ ∈ Ω, without changing the distribution of {S(t), t ≥ 0}, we can redefine
the process {S(t), t ≥ 0} on a richer probability space together we with the standard Brownian
motion {B(t), t ≥ 0} such that for any ε > 0

S(t)−B(σ2t) = O(t1/3+ε) a.s. as t→ ∞.

5



As one of many applications of Theorem 2.3, the following law of iterated logarithm imme-
diately follows.

Theorem 2.4. Assume Conditions (a), (b), (c) and (d). Then, we have

lim sup
n→∞

Sn

(2nσ2 log log nσ2)1/2
= 1 a.s.

We also prove the following variant of the Chernoff bound (see [11]), giving a sub-exponentially
decaying upper bound for the tail probability of Sn.

Theorem 2.5. Assume Conditions (a), (b) and (c). For any x > 0 and any 0 < ε < 1,
there exist C > 0, 0 < γ < 1 such that for any n,

P (Sn/n ≥ x) ≤ Cγn
1−ε

.

3 Proofs of the Theorems in Section 2

3.1 Key Lemmas

From now on, we rewrite f(zj |zj−1
i )−E[f(Zj|Zj−1

i )] as g(zji ) for notational simplicity.
The following lemma shows that for a fixed j > 0, E[XiXi+j ] exponentially converges as

i→ ∞, and for any i < j, E[XiXj] exponentially decays in j − i.

Lemma 3.1. Assume that Conditions (a), (b) and (c).

1. There exist C > 0, 0 < ρ < 1 (here ρ is as in Condition (c)) such that for all i, j ≥ 0,

|E[Xi+1Xi+1+j]−E[XiXi+j]| ≤ Cρi.

2. There exist C > 0, 0 < θ < 1 such that for any positive i < j,

|E[XiXj]| ≤ Cθj−i.

Proof. 1. Simple computations lead to

E[Xi+1Xi+1+j]− E[XiXi+j ] =
∑

zi+1+j
1

p(zi+1+j
1 )g(zi+1+j

1 )g(zi+1
1 )−

∑

zi+j
1

p(zi+j
1 )g(zi+j

1 )g(zi1)

=
∑

z0
−i−j

p(z0−i−j)g(z
0
−i−j)g(z

−j
−i−j)−

∑

z0
−i−j+1

p(z0−i−j+1)g(z
0
−i−j+1)g(z

−j
−i−j+1)

=
∑

z0
−i−j

p(z0−i−j)(g(z
0
−i−j)g(z

−j
−i−j)− g(z0−i−j+1)g(z

−j
−i−j+1))

=
∑

z0
−i−j

p(z0−i−j)g(z
0
−i−j)(g(z

−j
−i−j)− g(z−j

−i−j+1))

+
∑

z0
−i−j

p(z0−i−j)(g(z
0
−i−j)− g(z0−i−j+1))g(z

−j
−i−j+1). (1)
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By Condition (b), f(z0|z−1
−i ) and E[f(Z0|Z−1

−i )] are all bounded from above and below uni-
formly in i. It then follows from this fact and Condition (c) that there exist C > 0, 0 < ρ < 1
such that

|E[Xi+1Xi+1+j ]−E[XiXi+j]| ≤ Cρi.

Part 1 of the lemma then immediately follows.
2. Let l = ⌊i+ j⌋/2. By Conditions (a) and (c), there exist 0 < ρ, λ < 1 such that

E[XiXj ] =
∑

zj1

p(zj1)g(z
i
1)g(z

j
1)

=
∑

zj1

p(zj1)g(z
j
1)(g(z

j
l ) +O(ρj−l))

=
∑

zi1,z
j
l

p(zi1)g(z
i
1)p(z

j
l |zi1)g(zjl ) +O(ρj−l)

=
∑

zi1,z
j
l

p(zi1)g(z
i
1)(p(z

j
l ) +O(λl−i)p(zjl ))g(z

j
l ) +O(ρj−l)

=
∑

zi1,z
j
l

p(zi1)g(z
i
1)p(z

j
l )g(z

j
l ) +

∑

zi1,z
j
l

p(zi1)g(z
i
1)O(λ

l−i)p(zjl )g(z
j
l ) +O(ρj−l)

= 0 +O(λl−i) +O(ρj−l).

Notice that the constants in O(λl−i), O(ρj−l) above do not depend on zj1. Part 2 then
immediately follows .

Remark 3.2. By Part 1 of Lemma 3.1, for any fixed j, the sequence E[XiXi+j], i =
1, 2, · · · , is a Cauchy sequence that exponentially converges. For any fixed j, let aj =
limi→∞E[XiXi+j]. Then by Part 2, |aj| exponentially decays as j → ∞; consequently, we
deduce (for later use) that a0 + 2

∑∞
j=1 aj converges.

Lemma 3.3. Assume Conditions (a), (b) and (c). For any 0 < ε0 < 1, there exists C > 0
such that for any m and n,

∣
∣
∣
∣
∣

E[(Sn+m − Sm)
2]

n
− (a0 + 2

∞∑

j=1

aj)

∣
∣
∣
∣
∣
≤ Cn−ε0 ;

here, recall that, as defined in Remark 3.2, aj = limi→∞E[XiXi+j].

Proof. Letting β = n−ε0 for a fixed 0 < ε0 < 1, we then have

E[(Sn+m − Sm)
2]

n
=
E[(
∑n+m

i=m+1Xi)
2]

n
=

∑

m+1≤i, i+j≤n+m(
∑

j=0+2
∑

0<j≤βn+2
∑

j>βn)E[XiXi+j]

n
.

By Part 1 of Lemma 3.1 and Remark 3.2, for any j > 0, E[XiXi+j ] − aj = O(ρi) for some
0 < ρ < 1. It then follows that for 0 ≤ j ≤ βn,

∑

m+1≤i, i+j≤n+m

E[XiXi+j] = (n− j)aj +O(1);

7



here the constant in O(1) does not depend on j. Also, by Part 2 of Lemma 3.1 and Re-
mark 3.2, there exists 0 < θ < 1 such that for all j > βn, E[XiXi+j ] = O(θβn), and thus
aj = O(θβn). Continuing the computation, we have

E[(Sn+m − Sm)
2]

n
=

(na0 +O(1)) + (2(n− 1)a1 +O(1)) + · · ·+ (2(n− βn)aβn +O(1))

n
+
O(n2θβn)

n

= a0 + 2a1 + · · ·+ 2aβn − 2
a1 + 2a2 + · · ·+ βnaβn

n
+ βO(1) +O(nθβn).

The lemma then immediately follows if we let n go to infinity.

Remark 3.4. Choosing m in Lemma 3.3 to be 0, we deduce that limn→∞ σ2
n/n exists and

is equal to σ2 = a0 + 2
∑∞

j=1 aj .

Lemma 3.5. For any l ∈ N, there exists C > 0 such that for all m and n,

E[(Sn+m − Sm)
2l] ≤ Cnl.

Proof. By Condition (c) and the stationarity of Z, we observe that for any m, n,

E[(Sn+m − Sm)
2l] = E[(

n+m∑

i=m+1

g(Z i
1))

2l] = E[(
n+m∑

i=m+1

(g(Z i
m+1) +O(ρi−m−1)))2l]

= E[S2l
n ] +O(E[|Sn|2l−1]) +O(E[S2l−2

n ]) + · · ·+O(1). (2)

Notice that for any j,
E[|Sn|2l−1] ≤ E[S2l

n ]
1/2E[S2l−2

n ]1/2.

So, in order to prove the lemma, it suffices to prove that for any l ∈ N, there exists C1 > 0
such that

E[S2l
n ] = E[(X1 +X2 + · · ·+Xn)

2l] ≤ C1n
l.

Now, for any l ∈ N, consider the term X l1
i1
X l2

i2
· · ·X lk

ik
, where 1 ≤ i1 < i2 < · · · < ik ≤ n and

lj ’s are all strictly positive satisfying l1 + l2 + · · · + lk ≤ 2l. Let v , v(i1, i2, . . . , ik) be the
smallest index such that for all j = 1, 2, . . . , k − 1,

iv+1 − iv ≥ ij+1 − ij . (3)

Now, for any v + 1 ≤ u ≤ k, recalling that

Xiu = f(Ziu|Z iu−1
1 )− E[f(Ziu|Z iu−1

1 )],

we define
X̃iu = f(Ziu |Z iu−1

(iv+iv+1)/2
)− E[f(Ziu|Z iu−1

(iv+iv+1)/2
)].

Applying Condition (c), we have for some 0 < ρ < 1

Xiu − X̃iu = O(ρ(iv+1−iv)/2).

8



We then have the following decomposition:

E[X l1
i1
· · ·X lv

iv
X

lv+1

iv+1
· · ·X lk

ik
] = E[X l1

i1
· · ·X lv

iv
(X̃iv+1 +O(ρ(iv+1−iv)/2))lv+1 · · · (Xik +O(ρ(iv+1−iv)/2))lk ]

= E[X l1
i1
· · ·X lv

iv X̃
lv+1

iv+1
· · · X̃ lk

ik
] + r(1)[X l1

i1
X l2

i2
· · ·X lk

ik
]

= E[X l1
i1
· · ·X lv

iv
]E[X̃

lv+1

iv+1
· · · X̃ lk

ik
] + r(2)[X l1

i1
X l2

i2
· · ·X lk

ik
]

= E[X l1
i1
· · ·X lv

iv
]E[(Xiv+1 +O(ρ(iv+1−iv)/2))lv+1 · · · (Xik +O(ρ(iv+1−iv)/2))lk ]

+ r(2)[X l1
i1
· · ·X lv

iv
X

lv+1

iv+1
· · ·X lk

ik
]

= E[X l1
i1
X l2

i2
· · ·X lv

iv ]E[X
lv+1

iv+1
X

lv+2

iv+2
· · ·X lk

ik
] + r[X l1

i1
X l2

i2
· · ·X lk

ik
],

where r(1)[X l1
i1
X l2

i2
· · ·X lk

ik
], r(2)[X l1

i1
X l2

i2
· · ·X lk

ik
] are some intermediate terms produced during

the decomposition and r[X l1
i1
X l2

i2
· · ·X lk

ik
] is the residual term resulted from the decomposition.

Using (3) and Conditions (a), (b), (c), we can verify that for some 0 < θ < 1

∑

lj>0,
∑

j lj≤2l

r[X l1
i1
X l2

i2
· · ·X lk

ik
] =

n−1∑

v=1

∑

j

O(θj((2l − 2)j)2l−2) = O(n). (4)

Note that the above decomposition can be recursively applied to E[X l1
i1
X l2

i2
· · ·X lv

ik
] and

E[X
lv+1

iv+1
X

lv+2

iv+2
· · ·X lk

ik
]. It then follows that E[X l1

i1
X l2

i2
· · ·X lk

ik
] can be decomposed into a sum

of at most 22l terms, each of which taking the following form

E[X
l′1
i′1
]E[X

l′2
i′2
] · · ·E[X l′k1

i′k1
]ri∗1ri∗2 · · · ri∗k2 ,

where each l′j ≥ 2, l′1 + l′2 + · · · + l′k1 + 2k2 ≤ 2l and ri∗1 , ri∗2 , · · · , ri∗k2 are the residual terms

resulted from the recursive decomposition. Then, similarly as in deriving (4), one checks
that E[S2l

n ] can be written as a sum of at most 22l terms, each of which is upper bounded by

(
∑

E[|Xi′1
|l′1 ]E[|Xi′2

|l′2] · · ·E[|Xi′k1
|l′k1 ])O(n) · · ·O(n)

︸ ︷︷ ︸

k2

,

where
l′j ≥ 2, l′1 + l′2 + · · ·+ l′k1 + 2k2 ≤ 2l, (5)

and the summation is over all possible X
l′1
i′1
X

l′2
i′2
· · ·X l′k1

i′k1
satisfying (5), which can be estimated

by
∑

E[|Xi′1
|l′1 ]E[|Xi′2

|l′2 ] · · ·E[|Xi′k1
|l′k1 ] = O(nl−k2).

It then follows that
E[S2l

n ] = O(nl−k2)O(nk2) = O(nl).

We then have established the lemma.

Lemma 3.6. For any l ∈ N, there exists C > 0 such that for all m and n,

E[|Sn+m − Sm|2l−1] ≤ Cnl−1/2.

Proof. The lemma immediately follows from Lemma 3.5 and the fact that for any m,n,

E[|Sn+m − Sm|2l−1] ≤ E[(Sn+m − Sm)
2l]1/2E[(Sn+m − Sm)

2l−2]1/2.

9



3.2 Proof of Theorem 2.1

It follows from Condition (c) that there exists 0 < ρ < 1 such that for any j < i,

|f(Zi|Z i−1
j )− f(Zi|Z i−1

j−1)| = O(ρi−j),

which implies that f(Zi|Z i−1
−∞) , limj→−∞ f(Zi|Z i−1

j ) exists, and

|f(Zi|Z i−1
j )− f(Zi|Z i−1

−∞)| = O(ρi−j),

and furthermore
|E[f(Zi|Z i−1

j )]−E[f(Zi|Z i−1
−∞)]| = O(ρi−j).

We then have

∑n
i=1Xi

n
=

n∑

i=1

f(Zi|Z i−1
1 )−E[f(Zi|Z i−1

1 )]

n
=

n∑

i=1

f(Zi|Z i−1
−∞)− E[f(Zi|Z i−1

−∞)] +O(ρi)

n
.

Here, we remark that the constants in all the above O-terms are independent of i, j. Note that
the sequence f(Zi|Z i−1

−∞) − E[f(Zi|Z i−1
−∞)] is stationary and ergodic. Applying the Birkhoff

ergodic theorem, and using the fact that
∑n

i=1 ρ
i/n → 0 as n → ∞, we then establish the

theorem.

3.3 Proof of Theorem 2.2

For any fixed 0 < β < α < 1, we consecutively partition the partial sum Sn into blocks
η1, ζ1, η2, ζ2, . . . such that each ηi is of length p = p(n) , nβ and each ζi is of length q =
q(n) , nα. In other words, for any feasible i,

ηi = X(i−1)q+(i−1)p+1 + · · ·+Xiq+(i−1)p,

and
ζi = Xiq+(i−1)p+1 + · · ·+Xiq+ip.

Then, Sn can be rewritten as a sum of η-“blocks” and ζ-“blocks”

Sn = S∗
n + S ′

n :=
k∑

i=1

ηi +
k∑

i=1

ζi,

where k = k(n) , n/(nα+nβ). The above so called Bernstein blocking method [4] is a stan-
dard technique for proving limit theorems for a variety of mixing sequences. Roughly speak-
ing, the partial sum Sn is partitioned into “short blocks” η1, η2, · · · , ηk and “long blocks”
ζ1, ζ2, · · · , ζk. Under certain mixing conditions, all long blocks are “weakly dependent” on
each other, while all short blocks are “negligible” in some sense.

Now, we will “truncate” ζi’s to obtain ζ̂i’s. In more detail, recall that for any j with
iq + (i− 1)p+ 1 ≤ j ≤ iq + ip, we have

Xj = f(Zj|Zj−1
1 )− E[f(Zj|Zj−1

1 )];

10



we then define

X̂j = f(Zj|Zj−1
(i−1)p+(i−1)q+⌊q/2⌋+1)− E[f(Zj|Z i−1

(i−1)p+(i−1)q+⌊q/2⌋+1)].

Applying Condition (c), we derive that

Xj − X̂j = O(ρq(n)/2). (6)

We then define,
ζ̂i = X̂iq+(i−1)p+1 + · · ·+ X̂iq+ip,

and

S ′
n =

k∑

i=1

ζi, σ̂′
n =

√

Var(Ŝ ′
n).

With lemmas in Section 3.1 established, the remainder of the proof of Theorem 2.2
becomes more or less standard, which can be roughly outlined as follows:

1. We first show E[exp(itŜ ′
n/σn)] and

∏k
j=1E[exp(itζ̂j/σn) are “close” (see Lemma 3.9).

2. Then by the standard Esseen’s Lemma, we show P (Ŝ ′
n/σn < x) and G(x) are “close”

(see Lemma 3.10).

3. Finally, since S∗
n are “negligible”, we conclude, in the proof of Theorem 2.2, that

P (Sn/σn < x) and P (Ŝ ′
n/σn < x) are “close”, and thus P (Sn/σn < x) and G(x) are

“close”.

Before proceeding, we first remind the reader the classical Esseen’s inequality (see, e.g.,
Lemma 5.1 on Page 147 of [32]).

Lemma 3.7 (Esseen’s Inequality). Let ζ̄1, ζ̄2, · · · , ζ̄n be independent random variables with
E[ζ̄j] = 0, E[|ζ̄j|3] <∞, j = 1, 2, · · · , n. Let

σ̄2
n =

n∑

j=1

E[ζ̄2j ], Ln = σ̄−3
n

n∑

j=1

E[|ζ̄j|3],

and let F̄n(x), φF̄n
(t) be the distribution, characteristic functions of the random variable

∑n
j=1 ζ̄j/σ̄n, respectively. Then

|φF̄n
(t)− e−t2/2| ≤ 16Ln|t|3e−t2/3 (7)

for |t| ≤ 1/(4Ln).

The following lemma is a version of Esseen’s lemma, which gives an upper bound on
the difference between two distribution functions using the difference between the two cor-
responding characteristic functions. We refer to page 314 of [40] for a standard proof.
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Lemma 3.8 (Esseen’s Lemma). Let F (x) and G(x) be distribution functions with charac-
teristic functions φF (t) and φG(t), respectively. Suppose that the distributions corresponding
to F (x) and G(x) each has mean 0, and G(x) is differentiable and for any x, |G′(x)| ≤ M
for some M > 0. Then

sup
x

|F (x)−G(x)| ≤ 1

π

∫ T

−T

∣
∣
∣
∣

φF (t)− φG(t)

t

∣
∣
∣
∣
dt+

24M

πT

for every T > 0.

We will need the following lemma.

Lemma 3.9. There exist C > 0, 0 < ρ1 < 1 such that for all n and |t| ≤ n1/2,

|E[exp(itŜ ′
n/σ̂

′
n)]−

k∏

j=1

E[exp(itζ̂j/σ̂
′
n)]| ≤ Cρ

q(n)
1 .

Proof. Let l = (k − 1)p + (k − 1)q + ⌊q/2⌋ + 1. By Condition (a), there exists 0 < λ < 1
such that

E[exp(it

k∑

j=1

ζ̂j/σ̂
′
n)] = E[exp(it

k−1∑

j=1

ζ̂j/σ̂
′
n) exp(itζ̂k/σ̂

′
n)]

= E[exp(it

k−1∑

j=1

ζ̂j/σ̂
′
n) exp(it

kq+kp
∑

i=kq+(k−1)p+1

g(zil )/σ̂
′
n)]

= E[exp(it

k−1∑

j=1

ζ̂j/σ̂
′
n)]E[exp(it

kq+kp
∑

i=kq+(k−1)p+1

g(zil)/σ̂
′
n)] +O(λq(n)/2)

= E[exp(it
k−1∑

j=1

ζ̂j/σ̂
′
n)]E[exp(itζ̂k/σ̂

′
n)] +O(λq(n)/2),

where, again, f(zj|zj−1
i )−E[f(Zj |Zj−1

i )] is rewritten as g(zji ). Noticing that |E[exp(itζ̂j/σ̂′
n)]| ≤

1 and applying an inductive argument, we conclude that

E[exp(itŜ ′
n/σ̂

′
n)] = E[exp(it

k∑

j=1

ζ̂j/σ̂
′
n)] =

k∏

j=1

E[exp(itζ̂j/σ̂
′
n)]|+O(kλq(n)/2),

which immediately implies the lemma.

Now, applying Lemma 3.8, we can derive the following lemma.

Lemma 3.10. There exists C > 0 such that for all n

sup
x

∣
∣
∣P (Ŝ ′

n/σ̂
′
n < x)−G(x)

∣
∣
∣ ≤ Cn−1/2+α/2.
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Proof. Note that all ζ̂j’s have the same distribution. So, Lemma 3.9 in fact implies that

|E[exp(itŜ ′
n/σ̂

′
n)]− (E[exp(itζ̂1/σ̂

′
n)])

k| = O(ρ
q(n)
1 ), (8)

for some 0 < ρ1 < 1. Consider a sequence of i.i.d. random variables ζ̄j , j = 1, 2, · · · , k, each
of which is distributed according to ζ̂1. It then follows from (8) that

|E[exp(itŜ ′
n/σ̂

′
n)]− (E[exp(itζ̄1/σ̂

′
n)])

k| = O(ρ
q(n)
1 ). (9)

Now, let

σ̄2
n =

k∑

j=1

E[ζ̄2j ]. (10)

It follows from Condition (a) that for some 0 < λ < 1

(σ̂′
n)

2 − σ̄2
n = O(k2E2[|ζ̂1|]λq(n)),

which implies that

(E[exp(itζ̄1/σ̂
′
n)])

k − (E[exp(itζ̄1/σ̄n)])
k = O(ρ

q(n)
2 ), (11)

for some 0 < ρ2 < 1. Therefore, combining (9) and (11), we deduce that

|E[exp(itŜ ′
n/σ̂

′
n)]− (E[exp(itζ̄1/σ̄n)])

k| = O(ρ
q(n)
3 ), (12)

for some 0 < ρ3 < 1. So, in the sense of (12), we can approximate Ŝ ′
n/σ̂

′
n using the sum of

i.i.d random variables ζ̄j/σ̄n, j = 1, 2, · · · , k, each of which is distributed according to ζ̂1/σ̄n.
Applying Lemma 3.7 to the i.i.d. sequence ζ̄j/σ̄n, we deduce that for |t| ≤ 1/(4Ln),

|(E[exp(itζ̄1/σ̄n)])k − e−t2/2| ≤ 16Ln|t|3e−t2/3 (13)

where

Ln =

k∑

j=1

E[|ζ̄j|3]/σ̄3
n = kE[|ζ̂1|3]/σ̄3

n.

Note that, by (10) and Lemma 3.3, we have

σ̄3
n = Θ(n3/2).

Furthermore, by (6) and Lemma 3.6, we have

kE[|ζ̂1|3] = kO(p(n)3/2) = O(n1+α/2).

It then follows that there exists C1 > 0 such that for all n,

Ln ≤ C1n
−1/2+α/2. (14)
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From now on, let φF̄n
(t), φF̂ ′

n
(t) be the characteristic functions of the random variable

∑k
j=1 ζ̄j/σ̄n, Ŝ

′
n/σ̂

′
n, respectively. Then, by Lemma 3.8, we have

sup
x

|P (Ŝ ′
n/σ̂

′
n < x)−G(x)| ≤ 1

π

∫ T

−T

∣
∣
∣
∣
∣

φF̂ ′
n
(t)− φG(t)

t

∣
∣
∣
∣
∣
dt+

24M

πT

for every T > 0. It then follows that for any T > 0

sup
x

|P (Ŝ ′
n/σ̂

′
n < x)−G(x)| ≤ 1

π

∫ T

−T

∣
∣
∣
∣
∣

φF̂ ′
n
(t)− φF̄n

(t)

t

∣
∣
∣
∣
∣
dt+

1

π

∫ T

−T

∣
∣
∣
∣

φF̄n
(t)− φG(t)

t

∣
∣
∣
∣
dt+

24M

πT

≤ 1

π

∫

|t|≤n−1/2

∣
∣
∣
∣
∣

φF̂ ′
n
(t)− φF̄n

(t)

t

∣
∣
∣
∣
∣
dt+

1

π

∫

n−1/2≤|t|≤T

∣
∣
∣
∣
∣

φF̂ ′
n
(t)− φF̄n

(t)

t

∣
∣
∣
∣
∣
dt+

1

π

∫ T

−T

∣
∣
∣
∣

φF̄n
(t)− φG(t)

t

∣
∣
∣
∣
dt+

24M

πT
.

Note that there exists C2 > 0 such that for all t,

|φF̂ ′
n
(t)− φF̄n

(t)| ≤ C2t. (15)

Now, setting T = 1/(4C1n
−1/2+α/2) and applying (13), (15) and (12), we then have

sup
x

|P (Ŝ ′
n/σ̂

′
n < x)−G(x)| ≤ 2C2

π
n−1/2+

2− α

π
lognρ

q(n)
3 −2

π
log(4C1)ρ

q(n)
3 +

16Ln

π

∫ ∞

−∞

t2e−t2/3dt+
96MC1

π
n−1/2+α/2,

which immediately implies the lemma.

We are now ready to prove Theorem 2.2. The key point is P (Sn/σn ≤ x) is close to
P (Ŝ ′

n/σ̂
′
n ≤ x).

Proof of Theorem 2.2. Applying Conditions (a), (c) and Lemma 3.3, we deduce that for any
small ε0 > 0,

σ2
n = σn +O(nε0),

and

(σ̂′
n)

2 = E[(

k∑

i=1

ζ̂i)
2]

=

k∑

i=1

E[ζ̂i
2
] + 2

∑

i<j

E[ζ̂iζ̂j]

= kE[ζ̂1
2
] + 2

∑

i<j

E[ζ̂iζ̂j] = kE[(ζ1 +O(nαρq(n)/2))2] + 2
∑

i<j

E[ζ̂iζ̂j ]

= kE[ζ21 ] +O(kn2αρq(n)) +O(knαE[|ζ1|]ρq(n)) +O(k2E2[|ζ̂1|]λq(n)/2)
= k(σnα +O(nε0)) +O(kn2αρq(n)) +O(knαE[|ζ1|]ρq(n)) +O(k2E2[|ζ̂1|]λq(n)/2)
= σ

n

nα + nβ
nα +

n

nα + nβ
O(nε0) +O(kn2αρq(n)) +O(knαE[|ζ1|]ρq(n)) +O(k2E2[|ζ̂1|]λq(n)/2).
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It then follows that
σ2
n − (σ̂′

n)
2 = O(n1−α+β).

Next, applying Condition (b) and Lemma 3.3, we have, through simple computations, that

Ŝ ′
n = O

(
nα

nα + nβ
n

)

= O(n), Sn − Ŝ ′
n = O

(
nβ

nβ + nα
n

)

= O(n1+β−α)

and

σn = Θ(n1/2), σ̂′
n = Θ

(
n1/2

(nα + nβ)1/2
nα/2

)

= Θ(n1/2).

We then observe that

Sn/σn − Ŝ ′
n/σ̂

′
n = Sn/σn − Ŝ ′

n/σn + Ŝ ′
n/σn − Ŝ ′

n/σ̂
′
n

= (Sn − Ŝ ′
n)/σn + Ŝ ′

n(1/σn − 1/σ̂′
n)

= (Sn − Ŝ ′
n)/σn + Ŝ ′

n

σ̂′
n − σn
σnσ̂′

n

= (Sn − Ŝ ′
n)/σn + Ŝ ′

n

(σ̂′
n)

2 − σ2
n

σnσ̂′
n(σ̂

′
n + σn)

= (Sn − Ŝ ′
n)/σn + Ŝ ′

n

O(n1+β−α)

Θ(n1/2)Θ(n1/2)Θ(n1/2)

= (Sn − Ŝ ′
n)/σn + Ŝ ′

nO(n
β−α−1/2).

For some τ < 0, let A1 denote the event that
∣
∣
∣
∣
∣

Sn − Ŝ ′
n

σn

∣
∣
∣
∣
∣
≥ nτ ,

and let A2 denote the event that
∣
∣
∣
∣
Ŝ ′
n

(σ̂′
n)

2 − σ2
n

σ̂′
nσn(σ̂

′
n + σn)

∣
∣
∣
∣
≥ nτ .

Then, by the Markov inequality, we have, for any l ∈ N

P (A1) = P (|Sn − Ŝ ′
n| ≥ nτ+1/2) ≤ E[|Sn − Ŝ ′

n|2l]
n(τ+1/2)2l

.

Note that there exist 0 < θ1, θ2 < 1 such that

E[|Sn − Ŝ ′
n|2l] = E[|Sn − S ′

n +O(θ
q(n)/2
1 ))|2l]

= E[|η1 + η2 + · · ·+ ηk|2l] +O(θ
q(n)/2
2 )

=
∑

l1+l2+···+lk=2l

O(E[|η1|l1 ]E[|η2|l2 ] · · ·E[|ηk|lk ]) +O(θ
q(n)/2
2 ).
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Then, by Lemmas 3.5 and 3.6, we obtain, through some further computations, that

E[|Sn − Ŝ ′
n|2l] = O((knβ)l).

Now, applying Lemma 3.5, 3.6 and Conditions (a) and (c), one can verify that

P (A1) =
O((knβ)l)

n(2τ+1)l
= O(nl(β−α−2τ)). (16)

Again, by the Markov inequality, we have, for any l,

P (A2) = P (|Ŝ ′
n| ≥ nτ+1/2−β+α) ≤ E[Ŝ ′

n|2l]
n(τ+1/2−β+α)2l

.

Similarly, applying Lemma 3.5, 3.6 and Conditions (a), (c), one can verify that

P (A2) = O

(
(knα)l

n(2τ+1−2β+2α)l

)

= nl(−2τ+2β−2α). (17)

Apparently,

P (Sn/σn ≤ x) = P (Sn/σn ≤ x,Ac
1 ∩ Ac

2) + P (Sn/σn ≤ x,A1 ∪A2),

and

P (Sn/σn ≤ x) = P (Ŝ ′
n/σ̂

′
n ≤ x+ Ŝ ′

n/σ̂
′
n − Sn/σn)

= P

(

Ŝ ′
n/σ̂

′
n ≤ x+

Sn − Ŝ ′
n

σn
+ Ŝ ′

n

(σ̂′
n)

2 − σ2
n

σ̂′
nσn(σ̂

′
n + σn)

)

.

It then follows from (16) and (17) that for any x > −α/2, there exists β > 0 sufficiently
small and l ∈ N sufficiently large such that

P (Sn/σn ≤ x,A1 ∪ A2) ≤ P (A1) + P (A2) = O(n−1/4), (18)

and

P (Sn/σn ≤ x,Ac
1 ∩Ac

2) ≥ P (Ŝ ′
n/σ̂

′
n ≤ x− C1n

τ , Ac
1 ∩ Ac

2)

≥ P (Ŝ ′
n/σ̂

′
n ≤ x− C1n

τ ) + P (Ac
1 ∩Ac

2)− 1

= P (Ŝ ′
n/σ̂

′
n ≤ x− C1n

τ )− C2n
−1/4.

for some C1, C2 > 0. On the other hand, it is easy to check that there exists C3 > 0 such
that

P (Sn/σn ≤ x,Ac
1 ∩ Ac

2) ≤ P (Ŝ ′
n/σ̂

′
n ≤ x+ C3n

τ ).

Noticing that

|P (Sn/σn ≤ x)−G(x)| ≤ max{P (Ŝ ′
n/σ̂

′
n ≤ x+C3n

x)−G(x), G(x)−P (Ŝ ′
n/σ̂

′
n ≤ x−C1n

x)+C2n
−1/4},
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and applying Lemma 3.10, we derive

|P (Ŝ ′
n/σ̂

′
n ≤ x+ C3n

τ )−G(x)| ≤ |P (Ŝ ′
n/σ̂

′
n ≤ x+ C3n

τ )−G(x+ C3n
τ )|

+|G(x+ C3n
τ )−G(x)| = O(n−1/2+α/2) +O(nτ),

and similarly,

|G(x)− P (Ŝ ′
n/σ̂

′
n ≤ x− C1n

τ ) + C2n
−1/4| = O(n−1/2+α/2) +O(nτ) +O(n−1/4).

Setting α = 1/2, τ slightly larger than −1/4, and choosing β > 0 sufficiently small, we then
have established the theorem.

Remark 3.11. If Condition (II) fails, i.e., limn→∞ σ2
n/n = 0, then a CLT of degenerated

form holds for (Xi, i ∈ N); more precisely, the distribution of (X1 + X2 + · · · + Xn)/
√
n

converges to that of a centered normal distribution with variance 0, i.e., a point mass at 0,
as n→ ∞. This is can be readily checked since for any ε > 0, by the Markov inequality, we
have

P (|(X1 +X2 + · · ·+Xn)|/
√
n ≥ ε|) ≤ σ2

n/(nε
2) → 0 as n→ ∞.

3.4 Proof of Theorem 2.3

Consider the following Bernstein blocking method with variable block lengths: we consec-
utively partition the partial sum Sn into blocks η1, ζ1, η2, ζ2, . . . such that ηj is of length
qj = qj(n) , jβ and ζj is of length pj = pj(n) , jα. Similarly as in the proof of Theo-
rem 2.2, we have

Sn = S∗
n + S ′

n,

where S∗
n is the sum of all feasible η-blocks and S ′

n is the sum of all feasible ζ-blocks. Let Li

denote the σ-algebra generated by all Xj’s contained in ζi. It is well known that S ′
n can be

approximated using a Martinagle in the following manner

ζi = ξi + νi − νi+1,

where

ξi =

∞∑

k=0

(E[ζi+k|Li]− E[ζi+k|Li−1])

is a Martingale difference sequence, and

νi =

∞∑

k=0

E[ζi+k|Li−1].

Similarly as in the proof of Theorem 2.2, we truncate ζ-blocks in the following way:
Consider a ζ-block taking the following form

ζi = Xj1 +Xj1+1 + · · ·+Xj2

17



For any j = j1, j1 + 1, · · · , j2, define

X̂j = f(Zj|Zj−1
j1−qj/2

)− E[f(Zj|Zj−1
j1−qj/2

)],

and further
ζ̂i = X̂j1 + X̂j1+1 + · · ·+ X̂j2.

Before proving Theorem 2.3, we need to establish several lemmas. The following lemma
states that νi is sub-exponentially small with respect to i.

Lemma 3.12. There exist C > 0, 0 < θ < 1 and 0 < δ < β such that for all i,

|νi| ≤ Cθi
δ

Proof. Recall that for some 0 < ρ < 1,

ζi − ζ̂i = O(ρqi/2).

We then have

νi =

∞∑

k=0

E[ζi+k|Li−1] =

∞∑

k=0

(E[ζ̂i+k|Li−1] +O(pi+kρ
qi+k/2))

=

∞∑

k=0

(E[ζ̂i+k] +O(λqi+k/2)E[|ζ̂i+k|]) +
∞∑

k=0

O(pi+kρ
qi+k/2).

Noting that E[ξ̂i+k] = 0 and the constants in the above O-terms are independent of k, we
conclude that νi is sub-exponentially small with respect to i.

By the classical Skorokhod representation theorem (see [7]), there exist non-negative
random variables Ti such that for all feasible M ,

∑

i≤M

ξi = B(
∑

i≤M

Ti) a.s.

and
E[Ti|Li−1] = E[ξ2i |Li−1] a.s., E[T p

i ] = O(E[|ξi|2p]) for each p > 1.

Let MN denote the index of the ζ-block or the η-block containing XN . Then, depending on
XN is contained in a ζ-block or a η-block, we have either

MN−1∑

i=1

iα +

MN∑

i=1

iβ ≤ N ≤
MN∑

i=1

iα +

MN∑

i=1

iβ ,

or
MN−1∑

i=1

iα +

MN−1∑

i=1

iβ ≤ N ≤
MN−1∑

i=1

iα +

MN∑

i=1

iβ .
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Using the fact that
∫ n

0

xαdx ≤ 1α + 2α + · · ·+ nα ≤
∫ n+1

1

xαdx,

we deduce that
nα+1

α + 1
≤ 1α + 2α + · · ·+ nα ≤ (n+ 1)α+1 − 1

α + 1
.

We then have either

(MN − 1)α+1

α + 1
+
Mβ+1

N

β + 1
≤ N ≤ (MN + 1)α+1 − 1

α + 1
+

(MN + 1)β+1 − 1

β + 1
,

or
(MN − 1)α+1

α + 1
+

(MN − 1)β+1

β + 1
≤ N ≤ Mα+1

N − 1

α + 1
+

(MN + 1)β+1 − 1

β + 1
.

Apparently, we have, for either of the above cases,

MN = Θ(N1/(α+1)).

As elaborated in [33], a somewhat standard procedure can be followed to establish an almost
sure invariance principle. For Theorem 2.3 in this paper, it suffices to prove that

1. for any ε > 0,
MN∑

i=1

ηi = O(N1/3+ε) a.s.; (19)

2. for any ε > 0,
MN∑

j=1

Tj = σ2N +O(N2/3+ε) a.s., (20)

as N tends to infinity.

We will establish (19) in Lemma 3.14. To establish (20), consider the following decomposition

MN∑

i=1

Ti − σ2N =

MN∑

i=1

(Ti −E[Ti|Li−1]) +

MN∑

i=1

(E[ξ2i |Li−1]− ξ2i ) + (

MN∑

i=1

ξ2i − σ2N).

It is then clear that we only need to prove all the above three terms are of O(N2/3+ε), for
any ε > 0.

We need the following well-known lemma, whose proof can be found in [33].

Lemma 3.13. Let {xj} be a sequence of centered random variables with finite second mo-
ments. Suppose that there exists a constant s > 0 such that all integers k ≥ j,

E[(

k∑

i=j

xi)
2] = O(ks − js).

Then for each δ > 0, we have

N∑

i=1

xj = O(N s/2 log2+δN) a.s.

19



The following lemma establishes (19).

Lemma 3.14. With probability 1,

MN∑

i=1

ηi = O(N1/3+ε),

for any ε > 0.

Proof. Note that for any j, k,

E[(
k∑

i=j

ηi)
2] =

k∑

i=j

E[η2i ] + 2
∑

i<j

E[ηiηj ].

First, notice that an argument parallel to the proof for Part 2 of Lemma 3.1 with Conditions
(a) and (c) implies that E[ηiηj] sub-exponentially small in j − i, and thus

∑

i<j

E[ηiηj ] = O(1).

Applying Lemma 3.3, we have for some small ε0 > 0,

E[(

k∑

i=j

ηi)
2] =

k∑

i=j

(σ2iβ +O(iε0)) +O(1) = O(kβ+1 − jβ+1) +O(kε0+1 − jε0+1).

It then follows from Lemma 3.13 that for any β ′ > β, ε′0 > ε0,

MN∑

i=1

ηi = O(M
(β′+1)/2
N ) +O(M

(ε′0+1)/2
N ) = O(N (β′+1)/(2(α+1))) +O(M

(ε′0+1)/(2(α+1))
N ),

where we have applied the fact thatMN = Θ(N1/(α+1)). Choosing β, ε0, β
′, ε′0 > 0 sufficiently

small and setting α = 1/2, the lemma then immediately follows.

The following three lemmas collectively establish (20).

Lemma 3.15. With probability 1,

MN∑

i=1

ξ2i − σ2N = O(N2/3+ε)

for any ε > 0.

Proof. Note that by Lemma 3.12, ζi and ξi are sub-exponentially close. So, we only need to
prove that

MN∑

i=1

ζ2i − σ2N = O(N2/3+ε) a.s.
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for any ε > 0.
Depending on whether XN is contained in a ζ-block or a η-block, we have either

−Mα
N +

MN∑

i=1

iβ ≤ N −
MN∑

i=1

iα ≤
MN∑

i=1

iβ ,

which implies that

−Mα
N +

Mβ+1
N

β + 1
≤ N −

MN∑

i=1

iα ≤ (MN + 1)β+1 − 1

β + 1
,

or
MN−1∑

i=1

iβ −Mα
N ≤ N −

MN∑

i=1

iα ≤
MN∑

i=1

iβ −Mα
N ,

which implies that

(MN − 1)β+1

β + 1
−Mα

N ≤ N −
MN∑

i=1

iα ≤ (MN + 1)β+1 − 1

β + 1
−Mα

N .

In any case, applying Lemma 3.3, we have for some small ε0 > 0,

E[

MN∑

i=1

ζ2i ]− σ2N =

MN∑

i=1

(σ2iα +O(iε0))− σ2N

= σ2(

MN∑

i=1

iα −N) +O(

MN∑

i=1

iε0)

= O(Mα
N) +O(Mβ+1

N ) +O(Mε0+1
N )

= O(Nα/(α+1)) +O(N (β+1)/(α+1)) +O(N (ε0+1)/(α+1)),

where we have applied the fact that MN = Θ(N1/(α+1)). Choosing β, ε0 > 0 small enough
and setting α = 1/2, we then have

E[

MN∑

i=1

ζ2i ]− σ2N = O(N2/3+ε)

for any ε > 0.
So, to prove the lemma, it suffices to prove that with probability 1,

MN∑

i=1

(ζ2i − E[ζ2i ]) = O(N2/3+ε)

for any ε > 0. Using Conditions (a) and (c), we derive that with probability 1,

|E[ζ2i ]− E[ζ2i |Li−1]| = |E[ζ̂2i ]−E[ζ̂2i |Li−1]|+O(E[|ζ̂i|]iαρqi/2) +O(i2αρqi)

= O(E[ζ̂2i ]λ
qi−1) +O(E[|ζ̂i|]iαρqi/2) +O(i2αρqi).
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Applying Lemma 3.5, we then have for any j, k,

E[(

k∑

i=j

(ζ2i − E[ζ2i ]))
2] = E[(

k∑

i=j

(ζ2i − E[ζ2i |Li−1]))
2] +O(1)

=

k∑

i=j

E[(ζ2i −E[ζ2i |Li−1])
2] +O(1)

≤
k∑

i=j

E[ζ4i ] +O(1)

= O(j2α + (j + 1)2α + · · ·+ k2α) +O(1)

= O(k2α+1 − j2α+1),

where we have used the fact that for i1 6= i2,

E[(ζ2i1 − E[ζ2i1|Li1−1])(ζ
2
i2 − E[ζ2i2|Li2−1])] = 0.

Applying Lemma 3.13, we then have, for any α′ > α,

MN∑

i=1

(ζ2i − E[ζ2i ]) = O(M
(2α′+1)/2
N ) = O(N (2α′+1)/(2(1+α))) a.s.

Setting α = 1/2 and choosing α′ slightly larger than 1/2, we then have proven the lemma.

Lemma 3.16. With probability 1,

MN∑

i=1

(E[ξ2i |Li−1]− ξ2i ) = O(N2/3+ε)

for any ε > 0.

Proof. Note that by Lemma 3.12, ζi and ξi are sub-exponentially close. So, we only need to
prove that

MN∑

i=1

(E[ζ2i |Li−1]− ζ2i ) = O(N2/3+ε) a.s.

for any ε > 0. But this has been established in the proof of the previous lemma.

Lemma 3.17. With probability 1,

MN∑

i=1

(Ti −E[Ti|Li−1]) = O(N2/3+ε)

for any ε > 0.
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Proof. Similarly as in the proof of Lemma 3.15, we have that for any j, k,

E[(
k∑

i=j

(Ti − E[Ti|Li−1]))
2] =

k∑

i=j

E[(Ti −E[Ti|Li−1])
2]

≤
k∑

i=j

E[T 2
i ]

≤
k∑

i=j

E[ζ4i ]

≤ O(j2α + (j + 1)2α + · · ·+ k2α)

= O(k2α+1 − j2α+1).

Then, similarly as in the proof of Lemma 3.16, we deduce that

MN∑

i=1

(Ti − E[Ti|Li−1]) = O(N2/3+ε) a.s.

for any ε > 0.

3.5 Proof of Theorem 2.5

In this proof, we assume the Bernstein blocking as in Theorem 2.2. Notice that

P (Sn/n ≥ ε) = P (Sn ≥ nε) = P (Ŝ ′
n + Sn − Ŝ ′

n ≥ nε) = P (Ŝ ′
n ≥ nε− (Sn − Ŝ ′

n)).

Notice that Sn − Ŝ ′
n = O(n1+α−β), so we have

P (Sn/n ≥ ε) ≤ P (Ŝ ′
n ≥ nε′) = P (tŜ ′

n/p ≥ tnε′/p) ≤ E[etŜ
′

n/p]

etnε′/p
, (21)

for some 0 < ε′ < ε. Applying Condition (a), we then have

E[etŜ
′

n/p] = E[et
∑k−1

i=1 ζ̂i/petζ̂k/p] = (1 +O(λq(n)/2))E[et
∑k−1

i=1 ζi/p]E[etζ̂k ]. (22)

An iterative application of (22) gives us that for any 0 < t < 1

E[etŜ
′

n/p] = E[et
∑k

i=1 ζ̂i/p]

= (1 +O(λq(n)/2))k−1(E[etζ̂1/p])k, (23)

as n goes to infinity. If Condition (d) holds, by Lemma 3.3, as n goes to infinity (and hence
p, q go to infinity), we have

E[ζ̂21 ]/p
2 = o(1),

which trivially holds when Condition (d) fails. It then follows that for any 0 < t < 1,

E[etζ̂1/p] = 1 + o(1)t2,
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and furthermore, for t > 0 sufficiently small, we have

E[etζ̂1/p]

etε′
=

1 + o(1)t2

1 + tε′ +O(1)t2
< 1. (24)

Now, from (21), (23) and (24), we deduce that for any ε > 0, there exists ε′ > 0 such that

P (Sn/n ≥ ε) ≤ E[etŜ
′

n/p]

etnε′/p

≤ (1 +O(λq(n)/2))k(E[etζ1/p]/etε
′

)k.

Notice that for sufficiently large n, we have

(1 +O(λq(n)/2))E[etζ1/p]/etε
′

< 1,

which, together with α > 0 chosen sufficiently small, we conclude that for any x, ε > 0, there
exists 0 < γ < 1 such that

P (Sn/n ≥ x) = O(γn
1−ε

).

The proof is then complete.

3.6 Alternatives for Condition (d)

Note that for the case Z is in fact a Markov chain, a rather explicit alternative condition for
Condition (d) has been derived in [42]. This section only assumes Conditions (a), (b), (c)
and gives alternatives for Condition (d) provided Conditions (a), (b), (c) are satisfied.

Let (Ω,F , P ) be the probability space on which Z is defined, and let H0 = H(Zk, k ∈ Z)
be the subspace of L2(F) spanned by the equivalence classes of the random variables Zk,
k ∈ Z, with inner product defined as

< V,W >= E[VW ],

for any V,W ∈ H0.

Lemma 3.18. If lim infn→∞E[S2
n] < ∞, then there exists a sequence of random variables

(Vi, i ∈ N) such that Xi = Vi − Vi+1 with E[V 2
i ] = O(1) uniformly for all i, and thus

supnE[S
2
n] <∞.

Proof. Let Q be an infinite subset of N such that supn∈QE[S
2
n] < ∞. Applying Condition

(c), we have for any n,m,

E[(Sn+m − Sm)
2] = E[(

n+m∑

i=m+1

g(Z i
1))

2] = E[(
n+m∑

i=m+1

(g(Z i
m+1) +O(ρi−m−1)))2]

= E[S2
n] +O(E[|Sn|]) +O(1) = E[S2

n] +O(E[S2
n]

1/2) +O(1).

We then deduce that there exists C > 0 such that for all i ∈ N,

sup
n∈Q

E[(Sn+i−1 − Si−1)
2] ≤ C,
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where S0 is interpreted as 0. It follows from the Banach-Alaoglu theorem (which states that
every bounded and closed set in a Hilbert space is weakly compact; see Section 3.15 of [35])
that for any i ∈ N, there exists Vi ∈ H0 with E[V 2

i ] ≤ C, and Qi, an infinite subset of Q
such that for all W ∈ H0,

lim
n→∞,n∈Qi

< W,Sn+i−1 − Si−1 >=< W, Vi >;

here, without loss of generality, we can assume that Qi+1 ⊂ Qi for all i. Then one verifies
that for any W ∈ H0, we have that for any i,

< W,Xi−Vi+Vi+1 >= lim
n→∞,n∈Qi+1

< W,Xi−(Sn+i−1−Si−1)+(Sn+i−Si) >= lim
n→∞,n∈Q

< W,Xn+i >= 0,

where we have applied Lemma 3.1 for the last equality. Choosing W = Xi − Vi + Vi+1, we
then obtain that

‖Xi − Vi + Vi+1‖2 = 0,

which implies that
Xi = Vi − Vi+1, a.s.

It then follows that

E[S2
n] = E[(V1 − Vn+1)

2] = E[V 2
1 ] + E[V 2

n+1]− 2E[V1Vn+1],

which, together with E[V 2
i ] ≤ C, implies the theorem.

A sequence of positive numbers, (h(i), i ∈ N), is said to be slowly varying if for every
positive integer m,

lim
n→∞

h(mn)/h(n) = 1,

and it is said to be slowly varying in the strong sense if

lim
m→∞

minm≤n≤2m h(n)

maxm≤n≤2m h(n)
= 1.

Lemma 3.19. If limn→∞E[S2
n] = ∞, then E[S2

n] = nh(n), where (h(i), i ∈ N) is a sequence
of slowly varying positive numbers.

Proof. We only need to show that for every positive integer l,

lim
n→∞

σ2
ln/σ

2
n = l.

Following [26], we use the Bernstein blocking method in the following way: We consecutively
partition the partial sum Sln into blocks ζ1, η1, ζ2, η2, . . . such that each ζi is of length n and
each ηi is of length r = ⌊log σ2

n⌋. In other words, for any feasible i,

ζi =
n∑

s=1

X(i−1)n+(i−1)r+s, ηi =
r∑

s=1

Xin+(i−1)r+s.
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Now,

σ2
ln = E[S2

ln] =
l∑

j=1

E[ζ2j ] + 2
∑

i 6=j

E[ζiζj] +
∑

i,j

E[ζiηj ] +
∑

i,j

E[ηiηj ].

It follows from Lemma 3.3 that for any j,

E[ζ2j ] = σ2
n +O(σn). (25)

Using an argument similar to the proof for Part 2 of Lemma 3.1, one has that there exists
0 < θ < 1 such that for i 6= j,

|E[ζiζj]| = O(θ⌊logσ
2
n⌋σ2

n),

where we also used (25). Using the Schwartz inequality and (25), we also have

|E[ζiηj ]| ≤ E[ζ2i ]
1/2E[η2j ]

1/2 = O(σnσr) = O(σn log σn),

and
|E[ηiηj]| ≤ O(σ2

r) = O((log σn)
2).

It then follows that for any positive integer l,

σ2
ln = lσ2

n + o(σ2
n),

which immediately implies the lemma.

Lemma 3.20. If limn→∞E[S2
n] = ∞, then E[S2

n] = nh(n), where (h(i), i ∈ N) is a sequence
of slowly varying positive numbers in the strong sense.

Proof. Note that by Lemma 3.3, we have that for any j,

lim
n→∞

E[(Sn+j − Sj)
2]

E[S2
n]

= 1, (26)

uniformly in j. The lemma then follows from (26), Lemma 3.19 and an almost the same
proof for Theorem 8.13 of [10].

The following lemma is well-known; see, e.g., Proposition 0.16 in [10].

Lemma 3.21. Suppose (h(n), n ∈ N) is a sequence of positive numbers which is slowly
varying in the strong sense. Then for every ε > 0, one has that nεh(n) → ∞ as n→ ∞.

Lemma 3.22. If limn→∞E[S2
n] = ∞, then σ > 0.

Proof. Assume, by contradiction, that σ = 0. Since limn→∞E[S2
n] = ∞, we deduce, by

Lemma 3.20, that E[S2
n]/n is slowly varying in the strong sense. Then, by Lemma 3.21,

for any α > 0, nαE[S2
n]/n → ∞ as n → ∞. However, by Lemma 3.3, when σ = 0,

nαE[S2
n]/n→ 0 as n→ ∞ for any 0 < α < 1, which is a contradiction.

The following theorem immediately follows from Lemma 3.18 and Lemma 3.22, which
gives alternatives for Condition (d) given Conditions (a), (b) and (c) are satsified.

Theorem 3.23. Under Conditions (a), (b) and (c), the following statements are equivalent

1. σ > 0.

2. limn→∞E[S2
n] = ∞.

3. lim supn→∞E[S2
n] = ∞.
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4 Proofs of the Main Results

Unless specified otherwise, all the lemmas in this section only assume Condition (I).
For each z ∈ Z, let ∆z denote the matrix such that ∆z(i, j) = ∆(i, j)p(z|j) for all feasible

i, j; obviously
∑

z∈Z ∆z = ∆. One also observes that for any zm2
m1

,

p(zm2
m1

) = π∆z
m2
m1

1,

where π is the stationary vector of Y , 1 denotes the all one column vector and ∆z
m2
m1

,

∆zm1
∆zm1+1 · · ·∆zm2

. Since ∆ is irreducible and aperiodic, ∆m2
m1

is strictly positive if m2−m1

is large enough. Notice that Π is strictly positive, by reblocking the process Z if necessary,
we may assume that all ∆z are positive. It then follows from the argument in [18] and the
quotient rule (for taking the derivatives) that

Lemma 4.1. For any l ≥ 0 and any compact subset Ω0 ⊂ Ω, there exists C > 0 such that
for any z0−n and any θ ∈ Ω0,

|Dl
θ log p(z0|z−1

−n)| < C.

For δ > 0, let CR+ [δ] denote the “relative” δ-neighborhood of R+ , {x ∈ R : x > 0}
within C, i.e.,

CR+ [δ] = {z ∈ C : |z − x| ≤ δx, for some x > 0}.
Let Cm

θ (r) denote the r-neighborhood of θ in Cm. It turns out that for r > 0 small enough,

pθ(z0|z−1
−n), H

θ(Z0|Z−1
−n) can be analytically continued to pθ̃(z0|z−1

−n), H
θ̃(Z0|Z−1

−n) for all θ̃ ∈
Cm

θ (r), respectively. With the fact that an n × n positive matrix induces a contraction
mapping on the interior of the (n−1)-dimensional real simplex under the Hilbert metric [38],
the following lemma has been established in [18] (see also a more direct proof in [19] using
a complex Hilbert metric).

Lemma 4.2. 1. For any δ > 0, there exists r > 0 such that for any θ̃ ∈ Cm
θ0
(r) and for

any z0−n ∈ Zn+1,

pθ̃(z0|z−1
−n) ∈ CR+ [δ].

2. There exist C > 0, 0 < ρ < 1 and r > 0 such that for any two hidden Markov sequences
z0−m, ẑ

0
−m̂ with z0−n = ẑ0−n (here m, m̂ ≥ n ≥ 0) and all θ̃ ∈ Cm

θ (r), we have

|pθ̃(z0|z−1
−m)− pθ̃(ẑ0|ẑ−1

−m̂)| ≤ Cρn,

and

| log pθ̃(z0|z−1
−m)−log pθ̃(z0|z−1

−m̂)| ≤ Cρn, |Eθ0 [log p
θ̃(Z0|Z−1

−m)]−Eθ0 [log p
θ̃(Z0|Z−1

−m̂)]| ≤ Cρn.

Together with the Cauchy integral formula, the above lemma immediately implies the fol-
lowing corollary.
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Corollary 4.3. For any l ≥ 0 and any compact subset Ω0 ⊂ Ω, there exist C > 0, 0 < ρ < 1
such that for any two hidden Markov sequences z0−m, ẑ

0
−m̂ with z0−n = ẑ0−n (herem, m̂ ≥ n ≥ 0)

and any θ ∈ Ω0,
|Dl

θp
θ(z0|z−1

−m)−Dl
θp

θ(ẑ0|ẑ−1
−m̂)| ≤ Cρn,

and

|Dl
θ log p

θ(z0|z−1
−m)−Dl

θ log p
θ(z0|z−1

−m̂)| ≤ Cρn, |Eθ0[D
l
θ log p

θ(Z0|Z−1
−m)]−Eθ0 [D

l
θ log p

θ(Z0|Z−1
−m̂)]| ≤ Cρn.

It is well known [9] that a finite-state irreducible and aperiodic Markov chain is a ψ-
mixing sequence, and the corresponding ψ(n) exponentially decays as n→ ∞. The following
lemma asserts that under Condition (I), Z is a ψ-mixing sequence and the corresponding
ψ(n) exponentially decays as n → ∞. An excellent survey on various mixing sequences can
be found in [9]; for a comprehensive exposition to the vast literature on this subject, we refer
to [10].

Lemma 4.4. Zθ is a ψ-mixing sequence, and for any compact subset Ω0 ⊂ Ω, there exist
C > 0 and 0 < λ < 1 such that for any positive n and any θ ∈ Ω0,

ψ(n) ≤ Cλn.

Proof. Note that for any positive n,m, l and any zm0 , z
−n
−n−l, we have

p(zm0 |z−n
−n−l) =

∑

z−1
−n+1

π∆zm
−n−l

1

π∆z−n
−n−l

1
=

π∆z−n
−n−l

π∆z−n
−n−l

1
(
∑

z∈Z

∆z)
n−1∆zm0

1 =
π∆z−n

−n−l

π∆z−n
−n−l

1
∆n−1∆zm0

1.

Let λ2 denote the second largest (in modulus) eigenvalue of ∆. By the Perron-Frobenius
theory (see, e.g., [38]), |λ2| < 1; furthermore, for any λ with |λ2| < λ < 1, there exists C1 > 0
such that for any probability vector x, we have

|x∆n − π| ≤ C1λ
n.

It then follows that

p(zm0 |z−n
−n−l) = π∆zm0

1+O(λn)∆zm0
1 = p(zm0 ) +O(λn)p(zm0 ).

Noting that the constant in O(λn) is independent of n,m, l and zm0 , z
−n
−n−l, we then conclude

that for any U ∈ B(Z−n
−∞), V ∈ B(Z∞

0 ),

P (V |U) = P (V ) +O(λn)P (V ),

which immediately implies the lemma.

In the following, we shall establish the main results by invoking the limit theorems in
Section 2. Before doing so, we set

f(Zi|Z i−1
1 ) = Dl

θ log p(Zi|Z i−1
1 ), Xi = f(Zi|Z i−1

1 )− Eθ0 [f(Zi|Z i−1
1 )], (27)

and

Sn =
n∑

i=1

Xi, σ2
n = V ar(Sn), σ = lim

n→∞
σ2
n/n. (28)

Then, by Corollary 4.3 and Lemma 4.4, Conditions (a), (b) and (c) are satisfied.
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4.1 Proof of Theorem 1.1

Note that for any i ≥ j, applying Corollary 4.3, we have

Eθ0 [D
l
θ log p

θ(Zi|Z i−1
j )]− Eθ0 [D

l
θ log p

θ(Zi|Z i−1
j−1)] = O(ρi−j),

which implies that as j → −∞, Eθ0 [D
l
θ log p

θ(Zi|Z i−1
j )] converges to a limit, say Eθ0 [D

l
θ log p

θ(Zi|Z i−1
−∞)],

such that
Eθ0 [D

l
θ log p

θ(Zi|Z i−1
j )]−Eθ0 [D

l
θ log p

θ(Zi|Z i−1
−∞)] = O(ρi−j).

It then follows that

Eθ0 [D
l
θ log p

θ(Zn
1 )]

n
=

∑n
i=1Eθ0 [D

l
θ log p

θ(Zi|Z i−1
1 )]

n

=

∑n
i=1(Eθ0 [D

l
θ log p

θ(Zi|Z i−1
−∞)] +O(ρi))

n

which converges to Eθ0 [D
l
θ log p

θ(Z0|Z−1
−∞)] as n tends to infinity. This implies the well-

definedness of L(l)(θ).
Now, with (27) and (28), invoking Theorem 2.1, we have

Dl
θ log p

θ(Zn
1 )

n
− Eθ0 [D

l
θ log p

θ(Zn
1 )]

n
→ 0 as n→ ∞,

which, by the definition of L(l)(θ), implies the theorem.

4.2 Proof of Theorem 1.2

We will need the following lemma, whose proof follows from Corollary 4.3 and Lemma 4.4
and a completely parallel argument as in the proof of Lemma 3.3, and thus omitted.

Lemma 4.5. Assume Conditions (I) and (II) and consider a compact subset Ω0 ⊂ Ω and
any l ≥ 0. For any 0 < ε0 < 1, there exists C > 0 such that for any m,n and any θ ∈ Ω0,

∣
∣
∣
∣
∣

(σ
(l)
n (θ))2

n
− (σ(l)(θ))2

∣
∣
∣
∣
∣
≤ Cn−ε0 .

Lemma 4.5 immediately implies that

|σ(l)
n (θ)| = Θ(

√
n), (29)

and furthermore, for any small ε0 > 0, any m,n and any θ ∈ Ω0,

|σ(l)
n (θ)−√

nσ(l)(θ)| = O(n−1/2+ε0). (30)

Notice that by Corollary 4.3,

Eθ0 [D
l
θ log p(Z

n
1 )]− nL(l)(θ) = O(

∞∑

i=1

ρi) = O(1), (31)
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and by Lemma 4.1,
|Dl

θ log p(Z
n
1 )− Eθ0 [D

l
θ log p(Z

n
1 )]| = O(n). (32)

Applying (30), (31), (32) and (29), we then have, for some ε0 > 0 sufficiently small,

∣
∣
∣
∣
∣

Dl
θ log p(Z

n
1 )− nL(l)(θ)√

nσ(l)(θ)
− Dl

θ log p(Z
n
1 )− Eθ0 [D

l
θ log p(Z

n
1 )]

σ
(l)
n (θ)

∣
∣
∣
∣
∣

≤
∣
∣
∣
∣

Dl
θ log p(Z

n
1 )− nL(l)(θ)√

nσ(l)(θ)
− Dl

θ log p(Z
n
1 )−Eθ0 [D

l
θ log p(Z

n
1 )]√

nσ(l)(θ)

∣
∣
∣
∣

+

∣
∣
∣
∣
∣

Dl
θ log p(Z

n
1 )−Eθ0 [D

l
θ log p(Z

n
1 )]√

nσ(l)(θ)
− Dl

θ log p(Z
n
1 )− Eθ0 [D

l
θ log p(Z

n
1 )]

σ
(l)
n (θ)

∣
∣
∣
∣
∣

=

∣
∣
∣
∣

Eθ0 [D
l
θ log p(Z

n
1 )]− nL(l)(θ)√

nσ(l)(θ)

∣
∣
∣
∣
+|Dl

θ log p(Z
n
1 )−Eθ0 [D

l
θ log p(Z

n
1 )]|

|σ(l)
n (θ)−√

nσ(l)(θ)|
√
nσ(l)(θ)σ

(l)
n (θ)

= O(n−1/2+ε0).

(33)
Finally, with (27) and (28), invoking Theorem 2.2, we have

P

(
Dl

θ log p(Z
n
1 )− nL(l)(θ)√

nσ(l)(θ)
< x

)

= P

(

Dl
θ log p(Z

n
1 )− Eθ0 [D

l
θ log p(Z

n
1 )(θ)]

σ
(l)
n (θ)

< x+
Dl

θ log p(Z
n
1 )−Eθ0 [D

l
θ log p(Z

n
1 )(θ)]

σ
(l)
n (θ)

− Dl
θ log p(Z

n
1 )− nσ

(l)
n (θ)√

nσ(l)(θ)

)

= G

(

x+
Dl

θ log p(Z
n
1 )− Eθ0 [D

l
θ log p(Z

n
1 )(θ)]

σ
(l)
n (θ)

− Dl
θ log p(Z

n
1 )− nσ

(l)
n (θ)√

nσ(l)(θ)

)

+O(n−1/4+ε0)

It then follows from (33) that for any small ε0 > 0

P

(
Dl

θ log p(Z
n
1 )− nL(l)(θ)√

nσ(l)(θ)
< x

)

= G(x)+O(n−1/2+ε0)+O(n−1/4+ε0) = G(x)+O(n−1/4+ε0).

We then have established the theorem.

4.3 Proof of Theorem 1.3

With (27) and (28), invoking Theorem 2.3, we can redefine the process {S(t), t ≥ 0} on a
richer probability space together with the standard Brownian motion {B(t), t ≥ 0} such that
for any ε > 0,

∑

n≤t

Dl
θ log p

θ(Zn
1 )−

∑

n≤t

Eθ0 [D
l
θ log p

θ(Zn
1 )]− B((σ(l)(θ))2t) = O(t1/3+ε) a.s. as t→ ∞.

The theorem then follows from (31).
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4.4 Proof of Theorem 1.4

With (27) and (28), invoking Theorem 2.4, we have

lim sup
n→∞

Dl
θ log p

θ(Zn
1 )−Eθ0 [D

l
θ log p

θ(Zn
1 )]

(2n(σ(l)(θ))2 log log n(σ(l)(θ))2)1/2
= 1 a.s.

The theorem then follows from (31).

4.5 Proof of Theorem 1.5

With (27) and (28), invoking Theorem 2.5, we deduce that for any x, ε > 0, there exist
C > 0, 0 < γ < 1 such that

P

(
Dl

θ log p
θ(Zn

1 )− Eθ0 [D
l
θ log p

θ(Zn
1 )]

n
≥ x

)

= O(γn
1−ε

).

The theorem then follows from (31).

4.6 Proof of Theorem 1.6

Again, in this proof, we treat θ as a one dimensional variable; without loss of generality, we
further assume that L(2)(θ) > 0 for all θ ∈ Ω0.

By the mean value theorem, for any θn, there exists a θ̄n, a convex combination of θ0 and
θn, such that

Dθ log p
θn(Zn

1 ) = Dθ log p
θ0(Zn

1 ) +D2
θ log p

θ̄n(Zn
1 )(θn − θ0).

And, by the definition of θn,
Dθ log p

θn(Zn
1 ) = 0.

It then follows that for any x > 0

P (|θn − θ0| ≥ x) = P

(∣
∣
∣
∣

Dθ log p
θ0(Zn

1 )/
√
n

D2
θ log p

θ̄n(Zn
1 )/n

∣
∣
∣
∣
≥ √

nx

)

.

It follows from negativity of the relative entropy [12] that for all θ ∈ Ω and for all n,

Eθ0 [log p
θ(Zn

1 )] ≤ Eθ0[log p
θ0(Zn

1 )],

which implies that

Eθ0 [Dθ log p
θ0(Zn

1 )] = 0, and thus L(1)(θ0) = 0.

Then, by Theorem 1.5, for any x1, ε1 > 0, there exist C1 > 0, 0 < γ1 < 1 such that for any
n and any θ ∈ Ω0,

P (F (x1)) ≤ C1γ
n1−ε1

1 ,
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where F (x1) denotes the event that

∣
∣
∣
∣

D2
θ log p

θ(Zn
1 )

n
− L(2)(θ)

∣
∣
∣
∣
≥ x1.

By Theorem 1.2, for any x1, ε2 > 0, there exists C2 > 0 such that

P (|θn − θ0| ≥ x, F c(x1)) ≤ P (|N | ≥ (L(2)(θ̄n)− x1)
√
nx) + C2n

−1/4+ε2 ,

where N denotes the standard normal random variable. It then follows that

P (|θn − θ0| ≥ x) = P (|θn − θ0| ≥ x, F c(x1)) + P (|θn − θ0| ≥ x, F (x1))

≤ P (|N | ≥ (L(2)(θ̄n)− x1)
√
nx) + C2n

−1/4+ε2 + P (F (x1))

≤ e−n(L(2)(θ̄n)−x1)2 + C2n
−1/4+ε2 + C1γ

n1−ε1

1 ,

where we have used the fact that for any y > 0

P (|N | ≥ y) ≤ e−y2 .

The theorem then immediately follows if we choose x1 > 0 sufficiently small such that for
all θ ∈ Ω0,

L(2)(θ)− x1 > 0.
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