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The Bethe Permanent of a Non-Negative Matrix
Pascal O. Vontobel

Abstract—It has recently been observed that the permanent of
a non-negative square matrix,i.e., of a square matrix containing
only non-negative real entries, can very well be approximated
by solving a certain Bethe free energy function minimization
problem with the help of the sum-product algorithm. We call the
resulting approximation of the permanent the Bethe permanent.

In this paper we give reasons why this approach to approx-
imating the permanent works well. Namely, we show that the
Bethe free energy function is convex and that the sum-product
algorithm finds its minimum efficiently. We then discuss the fact
that the permanent is lower bounded by the Bethe permanent,
and we comment on potential upper bounds on the permanent
based on the Bethe permanent. We also present a combinatorial
characterization of the Bethe permanent in terms of permanents
of so-called lifted versions of the matrix under consideration.

Moreover, we comment on possibilities to modify the Bethe per-
manent so that it approximates the permanent even better, and
we conclude the paper with some observations and conjectures
about permanent-based pseudo-codewords and permanent-based
kernels.

Index Terms—Bethe approximation, Bethe permanent, frac-
tional Bethe approximation, graph cover, partition function,
perfect matching, permanent, sum-product algorithm.

I. I NTRODUCTION

Central to the topic of this paper is the definition of the
permanent of a square matrix (see,e.g., [1]).

Definition 1 Let θ = (θi,j)i,j be a real matrix of sizen× n.
The permanent ofθ is defined to be the scalar

perm(θ) =
∑

σ

∏

i∈[n]

θi,σ(i), (1)

where the summation is over alln! permutations of the set
[n] , {1, 2, . . . , n}. �

Contrast this definition with the definition of thedetermi-
nant of θ, i.e.,

det(θ) =
∑

σ

sgn(σ)
∏

i∈[n]

θi,σ(i),

wheresgn(σ) equals+1 if σ is an even permutation and equals
−1 if σ is an odd permutation.
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A. Complexity of Computing the Permanent

Because the definition of the permanent looks simpler than
the definition of the determinant, it is tempting to conclude
that the permanent can be computed at least as efficiently
as the determinant. However, this does not seem to be the
case. Namely, whereas the arithmetic complexity (number of
real additions and multiplications) needed to compute the
determinant is inO(n3), Ryser’s algorithm (one of the most
efficient algorithms for computing the permanent) requires
Θ(n·2n) arithmetic operations [2]. This clearly improves upon
the brute-force complexityO(n · n!) = O

(
n3/2 · (n/e)n

)
for

computing the permanent, but is still exponential in the matrix
size.

In terms of complexity classes, the computation of the
permanent is in the complexity class #P (“sharp P” or “number
P”) [3], where #P is the set of the counting problems associated
with the decision problems in the class NP. Note that even
the computation of the permanent of matrices that contain
only zeros and ones is #P-complete. Therefore, the above-
mentioned complexity numbers for the computation of the
permanent are not surprising.

B. Approximations to the Permanent

Given the difficulty of computing the permanent exactly,
and given the fact that in many applications it is good enough
to compute anapproximation to the permanent, this paper
focuses on efficient methods to approximate the permanent.
This relaxation in requirements, from exact to approximate
evaluation of the permanent, allows one to devise algorithms
that potentially have much lower complexity.

Moreover, we will consider only the case where the matrixθ

in (1) is non-negative,i.e., where all entries ofθ are non-
negative. It is to be expected that approximating the permanent
is simpler in this case because with this restriction the sum
in (1) contains only non-negative terms,i.e., the terms in this
sum “interfere constructively.” This is in contrast to the general
case where the sum in (1) contains positive and negative
terms, i.e., the terms in this sum “interfere constructively
and destructively.”1 Despite this restriction to non-negative
matrices, many interesting counting problems can be captured
by this setup.

Earlier work on approximating the permanent of a non-nega-
tive matrix includes:

• Markov-chain-Monte-Carlo-based methods, which started
with the work of Broder [4] and ultimately lead to
a famous fully polynomial randomized approximation
scheme (FPRAS) by Jerrum, Sinclair, and Vigoda [5]

1Strictly speaking, there are also matricesθ with positive and negative
entries but where the product

∏

i∈[n] θi,σ(i) is non-negative for everyσ.
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(for more details, in particular for complexity estimates of
these and related methods, see for example the discussion
in [6]);

• Godsil-Gutman-estimator-based methods by Karmarkar,
Karp, Lipton, Lovász, and Luby [7] and by Barvinok [8];

• a divide-and-conquer approach by Jerrum and Vazi-
rani [9];

• a Sinkhorn-matrix-rescaling-based method by Linial,
Samorodnitsky, and Wigderson [10];

• Bethe-approximation / sum-product-algorithm (SPA)
based methods by Chertkov, Kroc, and Vergassola [11]
and by Huang and Jebara [12].

The study in this paper was very much motivated by these last
two papers on graphical-model-based methods, in particular
because the resulting algorithms arevery efficientand the
obtained permanent estimates have anaccuracy that is good
enough for many purposes.

The main idea behind this graphical-model-based approach
is to formulate a factor graph whose partition function equals
the permanent that we are looking for. Consequently, the
negative logarithm of the permanent equals the minimum of
the so-called Gibbs free energy function that is associatedwith
this factor graph. Although being an elegant reformulation
of the permanent computation problem, this does not yield
any computational savings yet. Nevertheless, it suggests to
look for a function that is tractable and whose minimum is
close to the minimum of the Gibbs free energy function. One
such function is the so-called Bethe free energy function [13],
and with this, paralleling the above-mentioned relationship
between the permanent and the minimum of the Gibbs free
energy function, theBethe permanentis defined such that its
negative logarithm equals the global minimum of the Bethe
free energy function. The Bethe free energy function is an
interesting candidate because a theorem by Yedidia, Freeman,
and Weiss [13] says that fixed points of the SPA correspond
to stationary points of the Bethe free energy function.

In general, this approach of replacing the Gibbs free energy
function by the Bethe free energy function comes with very
few guarantees, though.

• The Bethe free energy function might have multiple local
minima.

• It is unclear how close the (global) minimum of the Bethe
free energy function is to the minimum of the Gibbs free
energy function.

• It is unclear if the SPA converges, even to a local
minimum of the Bethe free energy function. (As we will
see, the factor graph that we use (see Fig. 1) is not sparse
and has many short cycles, in particular many four-cycles.
These facts might suggest that the application of the SPA
to this factor graph is rather problematic.)

Luckily, in the case of the permanent approximation problem,
one can formulate a factor graph where the Bethe free energy
function is very well behaved. In particular, in this paper we
discuss a factor graph that has the following properties.

• We show that the Bethe free energy function is, when
suitably parameterized, aconvexfunction; therefore it has
no non-global local minima.

• The minimum of the Bethe free energy function isquite
closeto the minimum of the Gibbs free energy function.
Namely, as was recently shown by Gurvits [14], [15],
the permanent is lower bounded by the Bethe permanent.
Moreover, we list conjectures on strict and probabilistic
Bethe-permanent-based upper bounds on the permanent.
In particular, for certain classes of square non-negative
matrices, empirical evidence suggests that the permanent
is upper bounded by some constant (that grows rather
modestly with the matrix size) times the Bethe perma-
nent.

• We show that the SPAfinds the minimum of the Bethe
free energy function under rather mild conditions. In
fact, the error between the iteration-dependent estimate
of the Bethe permanent and the Bethe permanent itself
decays exponentially fast, with an exponent depending
on the matrixθ. Interestingly enough, in the associated
convergence analysis a key role is played by a certain
Markov chain that maximizes the sum of its entropy rate
plus some average state transition cost.

Besides leaving some questions open with respect to (w.r.t.)
the Bethe free energy function (see,e.g., the above-mentioned
conjectures concerning permanent upper bounds), these results
by-and-large validate the empirical success, as observed by
Chertkov, Kroc, and Vergassola [11] and by Huang and
Jebara [12], of approximating the permanent by graphical-
model-based methods.

Let us remark that for many factor graphs with cycles the
Bethe free energy function is not as well behaved as the
Bethe free energy function under consideration in this paper.
In particular, as discussed in [16], every code picked from
an ensemble of regular low-density parity-check codes [17],
where the ensemble is such that the minimum Hamming
distance grows (with high probability) linearly with the block
length, has a Bethe free energy function that is non-convex
in certain regions of its domain. Nevertheless, decoding such
codes with SPA-based decoders has been highly successful
(see,e.g. [18]).

C. Related Work

The literature on permanents (and adjacent areas of counting
perfect matchings, counting zero/one matrices with specified
row and column sums,etc.) is vast. Therefore, we just mention
works that are (to the best of our knowledge) the most relevant
to the present paper.

Besides the already cited papers [11], [12] on Bethe-
approximation-based methods to the permanent of a non-
negative matrix, some aspects of the Bethe free energy
function were analyzed by Watanabe and Chertkov in [19]
and by Chertkov, Kroc, Krzakala, Vergassola, and Zdeborov´a
in [20]. (In particular, the paper [19] applied the loop calculus
technique by Chertkov and Chernyak [21].) Very recent work
in that line of research is presented in a paper by A. B. Yedidia
and Chertkov [22] that studies so-called fractional free energy
functionals, and resulting lower and upper bounds on the
permanent of a non-negative matrix.

Because computing the permanent is related to counting
perfect matchings, the paper by Bayati and Nair [23] on
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counting matchings in graphs with the help of the SPA is
very relevant. Note that their setup is such that the perfect
matching case can be seen as a limiting case (namely the zero-
temperature limit) of the matching setup. However, for the
perfect matching case (a case for which the authors of [23]
make no claims) the convergence proof of the SPA in [23]
is incomplete. Moreover, their matchings are weighted only
inasmuch as the weight of a matching depends on the size
of the matching. Consequently, because all perfect matchings
have the same size, they all are assigned the same weight. (See
also the related paper by Bayati, Gamarnik, Katz, Nair, and
Tetali [24], and an extension to counting perfect matchingsin
certain types of graph by Gamarnik and Katz [25].) For an
SPA convergence analysis of a slightly generalized weighted
matching setup, the interested reader is referred to a recent
paper by Williams and Lau [26].

Very relevant to the present paper are also papers on max-
product algorithm / min-sum algorithm based approaches to
the maximum weight perfect matching problem [27]–[30].
As shown in these papers, these algorithms find the desired
solution efficiently for bipartite graphs, a fact which is strongly
related to the observation that the linear programming re-
laxation of the underlying integer linear program is tight in
this case. This tightness in relaxation, which is an immediate
consequence of a theorem by Birkhoff and von Neumann (see
Theorem 3), goes also a long way towards explaining why the
Bethe free energy function under consideration in the present
paper is well behaved. Finally, let us remark that because the
difference between two perfect matchings corresponds to a
union of disjoint cycles, the max-product algorithm / min-
sum algorithm convergence analysis in [27]–[30] has some
resemblance with Wiberg’s max-product algorithm / min-sum
algorithm convergence analysis for so-called cycle codes [31].

Linial, Samorodnitsky, and Wigderson [10] published a
deterministic strongly polynomial algorithm to compute the
permanent of ann×n non-negative matrix within a multiplica-
tive factor ofen. This is related to the present paper because
their approach is based on Sinkhorn’s matrix rescaling method,
which can be seen as finding the minimum of a certain free
energy type function.

The present paper has some similarities with recent papers
by Barvinok on counting zero/one matrices with prescribed
row and column sums [32] and by Barvinok and Samorod-
nitsky on computing the partition function for perfect match-
ings in hypergraphs [33]. However, these papers pursue what
would be called a mean-field theory approach in the physics
literature [34]. An exception to the previous statement is
Section 3.2 in [32], which contains Bethe-approximation-type
computations. (See the references in that section for further
papers that investigate similar approaches.)

As mentioned in the abstract, the present paper discusses a
combinatorial characterization of the Bethe permanent in terms
of permanents of so-called lifted versions of the matrix under
consideration. For this we use results from [16] that give a
combinatorial characterization of the Bethe partition function
of a factor graph in terms of the partition function of graph
covers of this factor graph. Interestingly, very similar objects
were considered by Greenhill, Janson, and Ruciński [35]; we

will comment on this connection in Section VII-E.
Finally, as already mentioned in the previous subsection,

Gurvits’s recent papers [14], [15] contain important observa-
tions w.r.t. the relationship between the permanent and the
Bethe permanent of a non-negative matrix, and puts them into
the context of Schrijver’s permanental inequality.

D. Overview of the Paper

This paper is structured as follows. We conclude this intro-
ductory section with a discussion of some of the notation that
is used. In Section II we then introduce the main normal factor
graph (NFG) for this paper, in Section III we formally define
the Bethe permanent, in Section IV we discuss properties of
the Bethe entropy function and the Bethe free energy function,
in Section V we analyze the SPA, in Section VI we give
a “combinatorial characterization” of the Bethe permanent
in terms of graph covers of the above-mentioned NFG, in
Section VII we discuss Bethe-permanent-based bounds on the
permanent, in Section VIII we list some thoughts on using
the concept of the “fractional Bethe entropy function,” in
Section IX we list some observations and conjectures, and
we conclude the paper in Section X. Finally, the appendix
contains some of the proofs.

E. Basic Notations and Definitions

This subsection discusses the most important notations that
will be used in this paper. More notational definitions will be
given in later sections.

We let R be the field of real numbers,R>0 be the set of
non-negative real numbers,R>0 be the set of positive real
numbers,Z be the ring of integers,Z>0 be the set of non-
negative integers,Z>0 be the set of positive integers, and for
any positive integerL we define[L] , {1, . . . , L}. Scalars
are denoted by non-boldface characters, whereas vectors and
matrices by boldface characters. For any positive integerL,
the matrix1L×L is the all-one matrix of sizeL× L.

Assumption 2 Throughout this paper, if not mentioned other-
wise,n is a positive integer andθ = (θi,j)i,j is a non-negative
matrix of sizen×n. Moreover, we assume thatθ is such that
perm(θ) > 0, i.e., there is at least one permutationσ of [n]
such that

∏

i∈[n] θi,σ(i) > 0. �

We use calligraphic letters for sets, and the size of a setS
is denoted by|S|. For a finite setS, we letΠS be the set of
probability mass functions overS, i.e.,

ΠS ,

{

p =
(
ps
)

s∈S

∣
∣
∣
∣
∣
ps > 0 for all s ∈ S,

∑

s∈S

ps = 1

}

.

Moreover, for any positive integerL, we definePL×L to be
the set of allL× L permutation matrices,i.e.,

PL×L ,







P

∣
∣
∣
∣
∣
∣
∣
∣

P is a matrix of sizeL× L
P contains exactly one1 per row
P contains exactly one1 per column
P contains0s otherwise







.
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Clearly, there is a bijection betweenPL×L and the set of all
permutations of[L]. Finally, for any positive integerL, we let
ΓL×L be the set of doubly stochastic matrices of sizeL× L,
i.e.,

ΓL×L ,






γ =

(
γi,j
)

∣
∣
∣
∣
∣
∣

γi,j > 0 for all (i, j) ∈ [L]× [L]
∑

j∈[L] γi,j = 1 for all i ∈ [L]
∑

i∈[L] γi,j = 1 for all j ∈ [L]






.

The convex hull [36] of some subsetS of some multi-
dimensional real space is denoted byconv(S). In the follow-
ing, when talking about the interior of a polytope, we will
mean the relative interior [36] of that polytope.

When appropriate, we will identify the set ofL × L real
matrices with theL2-dimensional real space. In that sense,
ΓL×L can be seen as a polytope in theL2-dimensional real
space. Clearly,ΓL×L is a convex set, and every permutation
matrix of sizeL×L is a doubly stochastic matrix of sizeL×
L. Most interestingly, every doubly stochastic matrix of size
L×L can be written as a convex combination of permutation
matrices of sizeL × L; this observation is a consequence of
the important Birkhoff–von Neumann Theorem.

Theorem 3 (Birkhoff–von Neumann Theorem) For any
positive integerL, the set of doubly stochastic matrices of
sizeL × L is a polytope whose vertex set equals the set of
permutation matrices of sizeL× L, i.e.,

vertex-set(ΓL×L) = PL×L.

As a consequence, the set of doubly stochastic matrices of size
L×L is the convex hull of the set of all permutation matrices
of sizeL× L, i.e.,

ΓL×L = conv(PL×L).

Proof: See,e.g., [37, Section 8.7]. �

Finally, all logarithms will be natural logarithms and the
value of0 · log(0) is defined to be equal to0.

II. N ORMAL FACTOR GRAPH REPRESENTATION

Factor graphs are a convenient way to represent multivariate
functions [38]. In this paper we use a variant called “normal
factor graphs (NFGs)” [39] (also called “Forney-style factor
graphs” [40]), where variables are associated with edges.

As already mentioned in the introduction, the main idea
behind the graphical-model-based approach to estimating the
permanent is to formulate an NFG such that its partition
function equals the permanent. There are of course different
ways to do this and typically different formulations will yield
different results when estimating the permanent with sub-
optimal algorithms like the SPA. It is well known that when
the NFG has no cycles, then the SPA computes the partition
function exactly, however, for the given problem any NFG
without cycles yields highly inefficient SPA update rules for
reasonably largen (otherwise there would be a contradiction
to the considerations in Section I-A), and so we will focus on
NFGswith cycles. The NFG that is introduced in the following
definition and that is based on a complete bipartite graph with

3

2

1

2

4

1

3

4

55

Fig. 1. The NFGN(θ) is based on a complete bipartite graph with two times
n vertices (heren = 5). The function nodes on the left-hand side represent the
local functions{gi}i∈I , the function nodes on the right-hand side represent
the functions{gj}j∈J , and with the edgee = (i, j) we associate the variable
Ae = Ai,j . (See Definition 4 for more details.)

two timesn vertices, is a rather natural candidate, and, as we
will see, has very interesting and useful properties.

Definition 4 We define the NFGN(θ) , N(F , E ,A,G) as
follows (see also Fig. 1).

• The set of vertices (henceforth also called function nodes)
is F , I ∪̇ J , whereI , [n] will be called the set of
left vertices andJ , [n] will be called the set of right
vertices.2

• The set of full-edges isEfull , I × J =
{
(i, j)

∣
∣ i ∈

I, j ∈ J
}

and the set of half-edges isEhalf = ∅, i.e., the
empty set. (A full-edge is an edge connecting two vertices,
whereas a half-edge is an edge that is connected to only
one vertex.) The set of edges isE , Efull ∪ Ehalf = Efull.

• With every edgee = (i, j) ∈ E we associate the variable
Ae = Ai,j with alphabetAe = Ai,j , {0, 1}; a
realization ofAe = Ai,j will be denoted byae = ai,j .

• The setA ,
∏

eAe =
∏

i,j Ai,j will be called the
configuration set, and so

a , (ae)e∈E = (ai,j)(i,j)∈I×J ∈ A
will be called a configuration. For a given vectora, we
also define the sub-vectors

ai , (ai,j)j∈J and aj , (ai,j)i∈I .

When convenient, the vectora will be considered to be an
n×n matrix. Thenai corresponds to theith row ofa, and
aj corresponds to thejth column ofa. (Note that we will
also use the notationsai , (ai,j)j∈J andaj , (ai,j)i∈I

when there is not necessarily an underlying configuration
a of the whole NFG.)

• For everyi ∈ I we define the local functions3 4

gi :
∏

j′

Ai,j′ → R, ai 7→
{√

θi,j (if ai = uj)

0 (otherwise)

2Here,F , I ∪̇ J stands for the more cumbersomeF ,
(

{left}×I
)

∪
(

{right}×J
)

. In the following, i (and variations thereof) will refer to a left
vertex andj (and variations thereof) will refer to a right vertex. In that spirit,
variables likeηi andηj are different variables, also ifi = j.

3Here and in the following,uj , j ∈ J , stands for the length-n vector
where all entries are zero except for thejth entry that equals1. The vector
ui, i ∈ I, is defined similarly.

4Here and in the following, we will use the short-hands
∑

i,
∑

j ,
∑

i′ ,
∑

j′ ,
∑

e,
∑

e′ for
∑

i∈I ,
∑

j∈J ,
∑

i′∈I ,
∑

j′∈J ,
∑

e∈E ,
∑

e′∈E ,
respectively, with similar conventions for products.
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Similarly, for everyj ∈ J we define the local functions

gj :
∏

i′

Ai′,j → R, aj 7→
{√

θi,j (if aj = ui)

0 (otherwise)

• For everyi ∈ I we define the function node alphabetAi

to be the set

Ai ,






ai ∈

∏

j′

Ai,j′

∣
∣
∣
∣
∣
∣

gi(ai) 6= 0






= {uj | j ∈ J } .

Similarly, for everyj ∈ J we define the function node
alphabetAj to be the set

Aj ,

{

aj ∈
∏

i′

Ai′,j

∣
∣
∣
∣
∣
gj(aj) 6= 0

}

= {ui | i ∈ I} .

(The setsAi andAj are also known as the local con-
straint codes of the function nodesi and j, respectively.)

• The global functiong is defined to be

g : A → R, a 7→
(
∏

i

gi(ai)

)

·




∏

j

gj(aj)



 .

• A configurationc with g(c) 6= 0 will be called a valid
configuration. The set of all valid configurations,i.e.,

C ,
{
c ∈ A

∣
∣ g(c) 6= 0

}

=






(ci,j)i,j∈I×J

∣
∣
∣
∣
∣
∣

ci,j ∈ Ai,j , (i, j) ∈ I × J
ci ∈ Ai, i ∈ I
cj ∈ Aj , j ∈ J






,

will be called the global behavior ofN(θ). Considering
the elements ofC as n × n matrices, it can easily be
verified thatC = Pn×n. This allows us to associate with
c ∈ C the permutationσc : [n]→ [n] that mapsi ∈ I to
j ∈ J if ci,j = 1. �

Lemma 5 Consider the NFGN(θ) and letc ∈ C be a valid
configuration of it. Then

gi(ci) =
√

θi,σc(i), i ∈ I,

gj(cj) =
√

θσ−1
c (j),j , j ∈ J ,

g(c) =
∏

i

θi,σc(i) =
∏

j

θσ−1
c (j),j .

Proof: The first two expressions follow easily from the defi-
nitions of gi andgj in Definition 4. The third expression is a
consequence of

g(c) =

(
∏

i

gi(ci)

)

·




∏

j

gj(cj)





=

(
∏

i

√

θi,σc(i)

)

·




∏

j

√

θσ−1
c (j),j





=

(
∏

i

√

θi,σc(i)

)

·
(
∏

i′

√

θi′,σc(i′)

)

=
∏

i

θi,σc(i).
�

Definition 6 The (Gibbs) partition function of the NFGN(θ)
is defined to be the sum of the global function over all
configurations, or, equivalently, the sum of the global function
over all valid configurations,i.e.,

ZG ,
∑

a∈A

g(a) =
∑

c∈C

g(c). (2)

In the following, when confusion can arise what NFG a certain
Gibbs partition function is referring to, we will useZG

(
N(θ)

)
,

etc., instead ofZG.5 �

Definition 7 The Gibbs free energy function associated with
the NFGN(θ) is defined to be

FG : ΠC → R, p 7→ UG(p)−HG(p),

where

UG : ΠC → R, p 7→ −
∑

c∈C

pc · log
(
g(c)

)
,

HG : ΠC → R, p 7→ −
∑

c∈C

pc · log
(
pc
)
.

Here,UG is called the Gibbs average energy function andHG

is called the Gibbs entropy function. In the following, when
confusion can arise what NFG a certain Gibbs free energy
function is referring to, we will useFG,N(θ), etc., instead of
FG. Similar comments apply toUG andHG. �

For more details on these functions we refer to,e.g., [13].
For a discussion of these functions in the context of NFGs we
refer to,e.g., [16]. Note thatHG is a concave function ofp,
thatUG is a linear function ofp, and that, consequently,FG

is a convex function ofp.

Lemma 8 The permanent ofθ can be expressed in terms of
the partition function or in terms of the minimum of the Gibbs
free energy function ofN(θ). Namely,

perm(θ) = ZG = exp

(

−min
p

FG(p)

)

, (3)

where the minimization is overp ∈ ΠC .

Proof: The first equality is a straightforward consequence of
Definitions 1 and 4, along with Lemma 5. For the second
equality we refer to,e.g., [13], [16]. �

The partition functionZG and the Gibbs free energy func-
tion FG were specified for temperatureT = 1 in the above
definitions. For a general temperature parameterT ∈ R>0,
these functions have to be replaced byZG ,

∑

c∈C g(c)
1/T

and by FG(p) , UG(p) − T · HG(p), respectively, and
Lemma 8 has to be replaced byZG = exp

(
− 1

T minp FG(p)
)
.

Of course,ZG = perm(θ) does not hold anymore, unless a
suitableT -dependence is built into the definition ofperm(θ).

5Note that “function” in “partition function” refers to the fact that the ex-
pression in (2) typically is a function of some parameters like the temperature
T (see the discussion below). A better word for “partition function” would
possibly be “partition sum” or “state sum,” which would moreclosely follow
the German “Zustandssumme” whose first letter is used to denote the partition
function.
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III. T HE BETHE PERMANENT

Although the reformulation of the permanent in Lemma 8
in terms of a convex minimization problem is elegant, from a
computational perspective it does not represent much progress.
However, it suggests to look for a minimization problem that
can be solved efficiently and whose minimum value is related
to the desired quantity. This is the approach that is taken in
this section and will be based on the Bethe approximation of
the Gibbs free energy function: the resulting approximation
of the permanent of a non-negative square matrix will be
called the Bethe permanent. (Note that in this section we give
the technical details only; for a general discussion w.r.t.the
motivations behind the Bethe approximation we refer to [13],
and for a discussion of the Bethe approximation in the context
of NFGs we refer to [16].)

Definition 9 Consider the NFGN(θ). We let

β ,
(
(βi)i∈I , (βj)j∈J , (βe)e∈E

)

be a collection of vectors based on the real vectors

βi , (βi,ai
)ai∈Ai

,

βj , (βj,aj
)aj∈Aj

,

βe , (βe,ae
)ae∈Ae

.

Moreover, we define the sets

Bi , ΠAi
, i ∈ I,

Bj , ΠAj
, j ∈ J ,

Be , ΠAe
, e ∈ E ,

and call Bi, Bj, and Be, the ith local marginal polytope,
the jth local marginal polytope, and theeth local marginal
polytope, respectively. (SometimesBi is also called theith
belief polytope, etc.)

With this, the local marginal polytope (or belief polytope)
B is defined to be the set

B =







β

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

βi ∈ Bi for all i ∈ I
βj ∈ Bj for all j ∈ J
βe ∈ Be for all e ∈ E
∑

a′
i∈Ai: a′

i,j=ae

βi,a′
i
= βe,ae

for all e = (i, j) ∈ E , ae ∈ Ae

∑

a′
j
∈Aj : a′

i,j
=ae

βj,a′
j
= βe,ae

for all e = (i, j) ∈ E , ae ∈ Ae







,

whereβ ∈ B is called a pseudo-marginal vector. (The two
constraints that were listed last in the definition ofB will be
called “edge consistency constraints.”) �

Definition 10 The Bethe free energy function associated with
the NFGN(θ) is defined to be the function

FB : B → R, β 7→ UB(β)−HB(β),

where

UB : B → R, β 7→
∑

i

UB,i(βi) +
∑

j

UB,j(βj)

HB : B → R, β 7→
∑

i

HB,i(βi) +
∑

j

HB,j(βj)

−
∑

e

HB,e(βe),

with6

UB,i : Bi → R, βi 7→ −
∑

ai

βi,ai
· log

(
gi(ai)

)
,

UB,j : Bj → R, βj 7→ −
∑

aj

βj,aj
· log

(
gj(aj)

)
,

HB,i : Bi → R, βi 7→ −
∑

ai

βi,ai
· log(βi,ai

),

HB,j : Bj → R, βj 7→ −
∑

aj

βj,aj
· log(βj,aj

),

HB,e : Be → R, βe 7→ −
∑

ae

βe,ae
· log(βe,ae

).

Here, UB is the Bethe average energy function andHB is
the Bethe entropy function. In the following, when confusion
can arise what NFG a certain Bethe free energy function is
referring to, we will useFB,N(θ), etc., instead ofFB. Similar
comments apply toUB andHB. �

With this, the Bethe partition function of an NFG isdefined
such that an equality analogous to the second equality in (3)
holds.

Definition 11 The Bethe partition function of the NFGN(θ)
is defined to be

ZB , exp

(

−min
β∈B

FB(β)

)

.

In the following, when confusion can arise what NFG a certain
Bethe partition function is referring to, we will useZB(N),
etc., instead ofZB. �

The next definition is the main definition of this paper and
was motivated by the work of Chertkov, Kroc, and Vergasso-
la [11] and by the work of Huang and Jebara [12].

Definition 12 Consider the NFGN(θ). The Bethe permanent
of θ, which will be denoted bypermB(θ), is defined to be

permB(θ) , ZB

(
N(θ)

)
. �

A similar comment w.r.t. a temperature parameterT ∈ R>0

as at the end of Section II applies also to the definition of the
Bethe partition function and the Bethe free energy function.
In the following, however, we will only consider the case
T = 1. An exception is Section VIII on the fractional Bethe
approximation: this approximation can be viewed as introduc-
ing multiple temperature parameters, namely one temperature
parameter for every term ofHB, and therefore includes the
single temperature parameter case as a special case.

6Here and in the following, we use the short-hand
∑

ai
for

∑

ai∈Ai
, etc..
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IV. PROPERTIES OF THEBETHE ENTROPY FUNCTION

AND THE BETHE FREE ENERGY FUNCTION

There are relatively few general statements about the shape
of the Bethe entropy function. In this section we show that
Bethe entropy function associated withN(θ) has many special
properties.

• In general, the Bethe entropy function is not a concave
function. However, here we show that the Bethe entropy
function associated withN(θ) is, when suitably parame-
terized, a concave function.
Similarly, the Bethe free energy function is in general
not a convex function. However, because the Bethe free
energy function is the difference of the Bethe average
energy function and the Bethe entropy function, because
the Bethe average energy function is linear in its argu-
ments, and because the Bethe entropy function is concave,
the Bethe free energy function associated withN(θ) is
convex and doesnot have non-global local minima.7

• In general, the Bethe entropy function can take on pos-
itive, zero, and negative values. However, here we show
that the Bethe entropy function associated withN(θ) is
non-negative.

• Very often, the directional derivative of the Bethe entropy
function away from a vertex of its domain is+∞ or
−∞. For the Bethe entropy function ofN(θ) we show
that the directional derivative away from any vertex of
its domain has a (non-negative) finite value. (As we will
see in Section V, this observation will have important
consequences for the SPA convergence analysis.)

A. Reformulation of the Bethe Entropy Function
and the Bethe Free Energy Function

As mentioned in Section I-C, the successes of max-product
algorithm / min-sum algorithm based approaches to the bipar-
tite graph maximum weight perfect matching problem in the
papers [27]–[30] was heavily based on a theorem by Birkhoff
and von Neumann (see Theorem 3). This theorem is equally
central to the results of the present paper. Namely, in the next
lemma we introduce a parameterization of the belief polytope
B based onΓn×n that will be used for the rest of the paper.

Lemma 13 Consider the NFGN(θ). Its belief polytopeB can
be parameterized byΓn×n, the set of doubly stochastic matri-
ces of sizen×n. In particular, we define the parameterization
such that the matrixγ = (γi,j)(i,j)∈I×J ∈ Γn×n indexes the
pseudo-marginal vectorβ ∈ B with

βi,ai

∣
∣
∣
ai=uj

= βj,aj

∣
∣
∣
aj=ui

= γi,j ,

and

βe,ae

∣
∣
∣
ae=0

= 1− γi,j , βe,ae

∣
∣
∣
ae=1

= γi,j ,

for everyi ∈ I, j ∈ J , ande = (i, j) ∈ E .

7The fact that convexity / non-convexity of a function depends on its param-
eterization might explain the non-convexity observationsin [12, Section 3.3]
w.r.t. the Bethe free energy function.

Proof: It is straightforward to verify that the pseudo-marginal
vectorβ which is specified in the lemma statement is indeed
in B. Moreover, one can verify that for every pseudo-marginal
vectorβ ∈ B there is aγ ∈ Γn×n such thatγ indexesβ. �

In the following, for a given matrixγ = (γi,j)(i,j)∈I×J ,
the ith row of γ will be denoted byγi = (γi,j)j∈J and the
jth column ofγ will be denoted byγj = (γi,j)i∈I .

The above observations allow us to express the Bethe free
energy function and related functions in terms ofγ ∈ Γn×n.

Lemma 14 Consider the NFGN(θ). Then

FB : Γn×n → R, γ 7→ UB(γ) −HB(γ),

where

UB : Γn×n → R, γ 7→
∑

i

UB,i(γi) +
∑

j

UB,j(γj),

HB : Γn×n → R, γ 7→
∑

i

HB,i(γi) +
∑

j

HB,j(γi)

−
∑

i,j

HB,(i,j)(γi,j),

with

UB,i : Π[n] → R, γi 7→ −
1

2

∑

j

γi,j · log(θi,j),

UB,j : Π[n] → R, γj 7→ −
1

2

∑

i

γi,j · log(θi,j),

HB,i : Π[n] → R, γi 7→ −
∑

j

γi,j · log(γi,j),

HB,j : Π[n] → R, γj 7→ −
∑

i

γi,j · log(γi,j),

HB,(i,j) : [0, 1]→ R

γi,j 7→ − γi,j log(γi,j)− (1−γi,j) log(1−γi,j),

Proof: This follows straightforwardly from Definition 10 and
Lemma 13. �

Corollary 15 It holds that

permB(θ) = exp

(

− min
γ∈Γn×n

FB(γ)

)

,

where

FB(γ) = UB(γ)−HB(γ),

UB(γ) = −
∑

i,j

γi,j log(θi,j),

HB(γ) = −
∑

i,j

γi,j log(γi,j) +
∑

i,j

(1 − γi,j) log(1− γi,j).

Proof: This follows from Definitions 11 and 12 and from
Lemma 14. �

If the sign in front of the second half of the expression
for HB(γ) in Corollary 15 were a minus sign, thenHB(γ)
could be expressed as a sum of binary entropy functions,
and therefore the concavity ofHB(γ) would be immediate.
However, the presence of the plus sign means that a more
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careful look atHB(γ) is required to determine if it is concave
or not.

Assumption 16 For the rest of this section we assume that
n > 2 and thatθ is a positive matrix of sizen × n. This
simplifies the wording of most results without hurting their
generality too much. In practice, two possible ways to deal
with the issue of zero entries inθ are the following.

• One can change the matrixθ so that zero entries become
tiny positive entries.

• One can redefineN(θ) by removing the edgee = (i, j),
along with redefining the local functionsgi and gj , if
θi,j = 0 �

B. Concavity of the Bethe Entropy Function
and Convexity of the Bethe Free Energy Function

Towards showing thatHB(γ) is a concave function ofγ,
and subsequently thatFB(γ) is a convex function ofγ, we
first study two useful functions. Namely, in Definition 17 and
Lemma 18 we look at a function calleds, and in Definition 19
and Theorem 20 we look at a function calledS. Note that in
this section we use the short-hands

∑

ℓ and
∑

ℓ 6=ℓ∗ for
∑

ℓ∈[n]

and
∑

ℓ∈[n]: ℓ 6=ℓ∗ , respectively.

Definition 17 Let s be the function

s : [0, 1]→ R, ξ 7→ −ξ log(ξ) + (1− ξ) log(1− ξ).

Note that in contrast to the binary entropy function, there is
a plus sign (not a minus sign) in front of the second term.�

Lemma 18 The functions that is specified in Definition 17
has the following properties.

• As can be seen from Fig. 2 (left), the graph of the function
s is s-shaped.

• The first-order derivative ofs is

d

dξ
s(ξ) = −2− log

(
ξ(1− ξ)

)
.

• The second-order derivative ofs is

d2

dξ2
s(ξ) = −1

ξ
+

1

1− ξ
= − 1− 2ξ

ξ(1− ξ)
.

Clearly, the functions(ξ) is strictly concave in the
interval 0 6 ξ < 1/2 and strictly convex in the interval
1/2 < ξ 6 1.

• The graph ofs has a point-symmetry at(1/2, 0).

Proof: The proof of this lemma is based on straightforward
calculus and is therefore omitted. �

Definition 19 Let S be the function

S : Π[n] → R, ξ 7→
∑

ℓ

s(ξℓ) =−
∑

ℓ

ξℓ log(ξℓ)

+
∑

ℓ

(1 − ξℓ) log(1 − ξℓ).

�

0 0.2 0.4 0.6 0.8 1

−0.1

−0.05

0

0.05

0.1

0.15

ξ

s(
ξ)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

ξ1

ξ 2

Fig. 2. Left: plot of the functions, see Definition 17. Right: contour plot
of the function(ξ1, ξ2) 7→ S(ξ1, ξ2, 1−ξ1−ξ2), see Definition 19.

Fig. 2 (right) shows the functionS for n = 3. More
precisely, that plot shows the contour plot of the function
(ξ1, ξ2) 7→ S(ξ1, ξ2, 1− ξ1 − ξ2).

Clearly, if the domain of the functionS were the set[0, 1]n,
then S would not be concave everywhere becauses is not
concave everywhere. Therefore, the observation that is made in
the following theorem, namely thatS is concave, is non-trivial.
(Note that because the functions is concave in[0, 1/2], the
functionS is concave inΠ[n]∩[0, 1/2]n. Therefore, as we will
see, most of the work in the proof of the following theorem
will be devoted to proving the concavity of the functionS in
Π[n] \ [0, 1/2]n.)

Theorem 20 The functionS from Definition 19 is concave
and satisfiesS(ξ) > 0 for all ξ ∈ Π[n]. Moreover,

• For n = 2, it holds thatS(ξ) = 0 for all ξ ∈ Π[n].
• For n > 3, the functionS is at almost all points in

its domain a strictly concave function. However there
are points in its domain and corresponding directions
in which the functionS is linear.

Proof: See Appendix A. �

After the original submission of the present paper, an
alternative proof of the concavity of the functionS has been
given by Gurvits, see [15, Section 5.1].

Interestingly, the functionss andS have recently appeared
also in another context [41]. (We refer to [41] for details.)In
particular, that paper gives a direct proof ofS(ξ) > 0 for all
ξ ∈ Π[n]; this is in contrast to the proof of that statement in
Theorem 20 which was mainly based on the concavity ofS.

Lemma 21 The Bethe entropy function can be expressed in
terms of the functionS as follows

HB : Γn×n → R

γ 7→ 1

2

∑

i

S(γi) +
1

2

∑

j

S(γj).
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Proof: This result follows from

HB(γ)
(a)
= −

∑

i,j

γi,j log(γi,j) +
∑

i,j

(1− γi,j) log(1− γi,j)

=
1

2

∑

i



−
∑

j

γi,j log(γi,j) +
∑

j

(1−γi,j) log(1−γi,j)



+

1

2

∑

j

(

−
∑

i

γi,j log(γi,j) +
∑

i

(1−γi,j) log(1−γi,j)
)

(b)
=

1

2

∑

i

S(γi) +
1

2

∑

j

S(γj),

where at step (a) we have used Corollary 15 and where at
step (b) we have used Definition 19. �

Theorem 22 The Bethe entropy functionHB(γ) is a concave
function ofγ ∈ Γn×n. Moreover, for allγ ∈ Γn×n it holds
that HB(γ) > 0.

Proof: Lemma 21 showed thatHB(γ) can be written as a sum
of S-functions. The concavity ofHB(γ) then follows from
Theorem 20 and the fact that the sum of concave functions
is a concave function. Similarly, the non-negativity ofHB(γ)
follows from Theorem 20 and the fact that the sum of non-
negative functions is a non-negative function. �

Corollary 23 The Bethe free energy functionFB(γ) is a
convex function ofγ ∈ Γn×n.

Proof: This follows from FB(γ) = UB(γ) − HB(γ) (see
Corollary 15), from the fact thatUB(γ) is a linear function
of γ (see Corollary 15), and from the fact thatHB(γ) is a
concave function ofγ (see Theorem 22). �

C. Behavior of the Bethe Entropy Function and the Bethe Free
Energy Function at a Vertex of their Domain

In this section we study the Bethe entropy function and
the Bethe free energy function near a vertex of their domain.
Because both functions can be expressed in terms of the
function S, we first study the behavior ofS near a vertex
of its domain.

Lemma 24 Let

ξ(τ) , ξ + τ · ξ̂,

where the vectorξ ∈ Π[n] is a vertex ofΠ[n] and whereξ̂ 6= 0

is such thatξ(τ) ∈ Π[n] for small non-negativeτ . This means
that there is anℓ∗ ∈ [n] such thatξ satisfiesξℓ∗ = 1 and
ξℓ = 0, ℓ 6= ℓ∗, and such that̂ξ satisfiesξ̂ℓ∗ < 0, ξ̂ℓ > 0,
ℓ 6= ℓ∗, and

∑

ℓ ξ̂ℓ = 0. Then, for0 < τ ≪ 1, we have

S
(
ξ(τ)

)
= τ · |ξ̂ℓ∗ | ·



−
∑

ℓ 6=ℓ′

|ξ̂ℓ|
|ξ̂ℓ∗ |

log

(

|ξ̂ℓ|
|ξ̂ℓ∗ |

)

+O(τ2),

(4)

i.e., the functionS
(
ξ(τ)

)
can very well be approximated by

a linear function for0 < τ ≪ 1. Note that the coefficient of
τ in (4) is non-negative.

Proof: See Appendix B. �

A word of caution: the behavior of the functionS is
somewhat special around a vertexξ of Π[n]: namely,in general
there is no gradient vectorG such thatS(ξ + τ · ξ̂) =
S(ξ) + τ · ∑ℓ Gℓξ̂ℓ + O(τ2) = τ · ∑ℓ Gℓξ̂ℓ + O(τ2) for
0 < τ ≪ 1 and for all possible direction vectorŝξ.

Lemma 24 has the following consequences for the behavior
of the Bethe entropy function at a vertex of its domain.

Lemma 25 Let

γ(τ) , γ + τ · γ̂,

whereγ ∈ C is a vertex ofΓn×n and whereγ̂ 6= 0 is such
thatγ(τ) ∈ Γn×n for small non-negativeτ . This means thatγ
corresponds to the permutationσγ . (In the following statement
we will use the short-handsσ , σγ and σ̄ , σ−1

γ .) Then, for
0 < τ ≪ 1, we have

HB

(
γ(τ)

)

= τ
∑

i

|γ̂i,σ(i)| ·



−
∑

j 6=σ(i)

|γ̂i,j |
|γ̂i,σ(i)|

log

( |γ̂i,j |
|γ̂i,σ(i)|

)


+O(τ2)

= τ
∑

j

|γ̂σ̄(j),j | ·



−
∑

i6=σ̄(j)

|γ̂i,j |
|γ̂σ̄(j),j |

log

( |γ̂i,j |
|γ̂σ̄(j),j |

)


+O(τ2),

i.e., the functionHB

(
γ(τ)

)
can very well be approximated by

a linear function for0 < τ ≪ 1. Note that the coefficient of
τ is non-negative.

Proof: See Appendix C. �

Assume that γ̂ in Lemma 25 is chosen such that
∑

i |γ̂i,σ(i)| = 1. (If this is not the case, then̂γ can be
rescaled by a positive real number such that this condition
is satisfied.) The coefficient ofτ in the first display equation
of Lemma 25 can be given the following meaning. It is the
entropy rate of the time-invariant Markov chain corresponding
to the (backtrackless) random walk on the NFGN(θ) (see
Fig. 1) with the following properties:8

• The probability of being at vertexi ∈ I is |γ̂i,σ(i)|.
• The probability of going to vertexj ∈ J \ {σ(i)},

conditioned on being at vertexi ∈ I, is |γ̂i,j |/|γ̂i,σ(i)|.
The probability of going to vertexσ(i) ∈ J , conditioned
on being at vertexi ∈ I, is 0.

• The probability of being at vertexj ∈ J is |γ̂σ̄(j),j |.
• The probability of going to vertex̄σ(j) ∈ I, conditioned

on being at vertexj ∈ J , is 1.
The probability of going to vertexi′ ∈ I \ {σ̄(j)},
conditioned on being at vertexj ∈ J , is 0.

8For a discussion of the entropy rate of a time-invariant Markov chain, see,
e.g., [42, Section 4.2].
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The above two half-steps of the random walk can be combined
into one step:

• The probability of being at vertexi ∈ I is |γ̂i,σ(i)|.
• For i, i′ ∈ I with i 6= i′, the probability of going to

vertexσ(i′) and then to vertexi′, conditioned on being
at vertexi, is |γ̂i,σ(i′)|/|γ̂i,σ(i)|.

An analogous interpretation can be given to the coefficient
of τ in the second display equation of Lemma 25. Observe that
the condition

∑

i |γ̂i,σ(i)| = 1 is equivalent to the condition
∑

j |γ̂σ̄(j),j | = 1.
Note that similar random walks appeared in the analysis of

the Bethe entropy function for so-called cycle codes (cf. [43])
and in the analysis of linear programming decoding of low-
density parity-check codes (cf. [44], which gives a ran-
dom walk interpretation of a result by Arora, Daskalakis,
Steurer [45] and its extensions by Halabi and Even [46]).
Actually, given the fact that the symmetric difference of two
perfect matchings corresponds to a union of cycles inN(θ),
the similarity of the random walks here and of the random
walks in the above-mentioned context of cycle codes is not
totally surprising.

We come now to the main result of this subsection. Al-
though this result is interesting in its own right, it will be
especially important for the convergence analysis of the SPA
in Section V.

Theorem 26 Let

γ(τ) , γ + τ · γ̂,

whereγ ∈ C is a vertex ofΓn×n and whereγ̂ 6= 0 is such
thatγ(τ) ∈ Γn×n for small non-negativeτ . This means thatγ
corresponds to the permutationσγ . (In the following statement
we will use the short-handsσ , σγ and σ̄ , σ−1

γ .) We also
assume that̂γ is normalized as follows

∑

i

|γ̂i,σ(i)| =
∑

j

|γ̂σ̄(j),j | = 1. (5)

Then, for0 < τ ≪ 1, we have

FB

(
γ(τ)

)
> −

∑

i

log(θi,σ(i))− τ · log(ρ) +O(τ2), (6)

whereρ is the maximal (real) eigenvalue of then× n matrix
A with entries

Ai,i′ ,

{
θi,σ(i′)

θi,σ(i)
(if i 6= i′)

0 (otherwise)
.

Note that equality holds in(6) for the matrixγ̂ with entries

γ̂i,σ(i′) ,

{

+κ · u
L
i ·Ai,i′ ·u

R
i′

ρ (if i 6= i′)

−κ · uL
i · uR

i (otherwise)
,

whereuL and uR are, respectively, the left and right eigen-
vectors ofA with eigenvalueρ, and whereκ is a suitable
normalization constant such that(5) is satisfied.

Proof: See Appendix D. �

Corollary 27 Consider a vertexγ of Γn×n and defineρ for
γ as in Theorem 26.

• If ρ < 1 thenFB has its unique minimum atγ.
• If ρ > 1 thenFB is not minimal atγ.

Proof: Consider the setup of Theorem 26. From that theorem
we know that

FB

(
γ(τ)

)
> −

∑

i

log(θi,σ(i))− τ · log(ρ) +O(τ2),

with equality for the direction matrix̂γ that was specified
there. Moreover, from Corollary 23 we know thatFB is convex
overΓn×n. Therefore, iflog(ρ) < 0 (i.e., ρ < 1) thenFB has
a unique minimum atγ. On the other hand, iflog(ρ) > 0
(i.e., ρ > 1) thenFB cannot be minimal atγ.

Note that for log(ρ) = 0 (i.e., ρ = 1), the minimality /
non-minimality ofFB at γ is determined by theO(τ2) term.

�

Typically, the Bethe entropy function and the Bethe free
energy function have a positive or negative infinite directional
derivative away from a vertex of their domain because of the
appearance of terms likec·τ ·log(τ). However, because for the
functionS all thesec·τ ·log(τ) terms cancel in the vicinity of a
vertex of its domain (see the proof of Theorem 20, in particular
Eq. (19) in Appendix A-B), the directional derivatives of the
Bethe entropy function and the Bethe free energy function are
finite away from a vertex of their domain.

Let us conclude this section by pointing out that the obser-
vations that were made in this subsection give an alternative
viewpoint of some of the results that were presented in [19,
Section 3].

V. SUM-PRODUCT-ALGORITHM-BASED SEARCH OF THE

M INIMUM OF THE BETHE FREE ENERGY FUNCTION

Assumption 28 In this section we make the following two
assumptions, both with the goal of simplifying the wording of
most results without hurting their generality too much.9

• We assume thatn > 3 and thatθ is a positivematrix of
sizen× n.

• We assume that the minimum of the Bethe free energy
function FB is either in the interior ofΓn×n or at a
vertex ofΓn×n, but not at a non-vertex boundary point
ofΓn×n. A possibility to guarantee this with probability1
is to apply tiny random perturbations to the entries ofθ.

�

In Definition 12 we have defined the Bethe permanent of
a square matrixθ via the minimum of the Bethe free energy

9The purpose of these assumptions is, in particular, to avoiddealing with
matricesθ which have the following property. Namely, consider the subgraph
induced by the edge subset

{

(i, j) ∈ E
∣

∣ θi,j > 0}. Assume that one of
the connected components of this subgraph is a cycle (necessarily of even
length), and consider the partition of the edge set of this cycle into two sets
E ′ andE ′′ such that the edges of this cycle are alternatingly placed into E ′

and E ′′, respectively. If
∏

(i,j)∈E′ θi,j =
∏

(i,j)∈E′′ θi,j holds, then the
SPA exhibits a periodic behavior unless the initial messages correspond to
SPA fixed point messages. A matrix having this property is,e.g., the matrix
θ =

(

1 1
1 1

)

. Here, the relevant cycle(1, 1)− (1, 2)− (2, 2)− (2, 1)− (1, 1)
has length four and one verifies thatθ1,1 · θ2,2 = θ1,2 · θ2,1.
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function of the NFGN(θ). In Corollary 23 we have seen that
the Bethe free energy function is a convex function,i.e., it
behaves very favorably. This means that we could use any
generic optimization algorithm (see,e.g., [36], [47]) to find
the minimum of the Bethe free energy function, and with that
the Bethe permanent ofθ. However, given the special structure
of the optimization problem, there is the hope that there are
more efficient approaches.

A natural candidate for searching this minimum is the
SPA [38]–[40]. The reason for this is that a theorem by
Yedidia, Freeman, and Weiss [13] says that fixed points of
the SPA correspond to stationary points of the Bethe free
energy function.10 Given the convexity of the Bethe free
energy function, the following two questions must therefore
be answered:

• If the minimum ofFB is in the interior ofΓn×n, does
the SPA always converge to a fixed point?

• If the minimum ofFB is at a vertex ofΓn×n, does the
SPA find that vertex?

In this section we answer both questions affirmatively, inde-
pendently of the matrixθ, and (nearly) independently of the
chosen initial messages.

The rest of this section is structured as follows. First
we discuss the details of the SPA message update rules in
Section V-A. Afterwards, we state the SPA convergence result
in Section V-B.

A. Sum-Product Algorithm Message Update Rules

In this subsection we derive the SPA message update rules
for the NFGN(θ) in Fig. 1. Here we only give the technical
details; for a general discussion w.r.t. the motivations behind
the SPA we refer to [38]–[40]. Note that analogous SPA
message update rules were already stated in [12], [20]. (In
contrast to [12], we use an undampened version of the SPA.)

On a high level, the SPA works as follows. With every
edge in Fig. 1 we associate a right-going message and a left-
going message. Every iteration of the SPA consists then of
two half-iterations, in the first half-iteration the right-going
messages are updated based on the left-going messages and
in the second half-iteration the left-going messages are updated
based on the right-going messages. Finally, once some suitable
convergence criterion is met or a fixed number of iterations
has been reached, the pseudo-marginal vector (belief vector)
is computed based on the messages at the last iteration.

Mathematically, we define for everyt > 0 and every edge
(i, j) ∈ I × J a left-going message←−µ (t)

i,j : Ai,j → R, and
for every t > 1 and every edge(i, j) ∈ I × J a right-going
message−→µ (t)

i,j : Ai,j → R.
For every left-going and for every right-going message it

10Strictly speaking, for NFGs with hard constraints,i.e., NFGs that contain
local functions that can assume the value zero for certain points in their
domain (which is the case forN(θ)), this statement has only been proven
for interior stationary points of the Bethe free energy function (see [13,
Theorem 2]). For SPA fixed points with some beliefs equal to zero it is only
conjectured that they correspond to edge-stationary points of the Bethe free
energy function (cf. discussion in [13, Section VI.D]).

turns out to be sufficient to keep track of the likelihood ratios

−→
Λ

(t)
i,j ,

−→µ (t)
i,j (0)

−→µ (t)
i,j (1)

,
←−
Λ

(t)
i,j ,

←−µ (t)
i,j (0)

←−µ (t)
i,j (1)

,

respectively. Actually, for the NFG under consideration itis
more convenient to deal with the inverses of these quantities,
and so we define the inverse likelihood ratios as follows

−→
V

(t)
i,j ,

(−→
Λ

(t)
i,j

)−1

,
←−
V

(t)
i,j ,

(←−
Λ

(t)
i,j

)−1

.

Lemma 29 Consider the NFGN(θ). The inverse likelihood
ratio update rules for the left-hand side and right-hand side
function nodes ofN(θ) are given by, respectively,

−→
V

(t)
i,j =

√
θi,j

∑

j′ 6=j

√
θi,j′ ·

←−
V

(t−1)
i,j′

, t > 1, (i, j) ∈ I × J ,

←−
V

(t)
i,j =

√
θi,j

∑

i′ 6=i

√
θi′,j ·

−→
V

(t)
i′,j

, t > 1, (i, j) ∈ I × J .

The beliefs at the left-hand side and right-hand side function
nodes ofN(θ) are given by, respectively,

β
(t)
i,ai

∣
∣
∣
ai=uj

∝
√

θi,j ·
←−
V

(t)
i,j , t > 0, (i, j) ∈ I × J ,

β
(t)
j,aj

∣
∣
∣
aj=ui

∝
√

θi,j ·
−→
V

(t)
i,j , t > 1, (i, j) ∈ I × J .

Here the proportionality constants are defined such that for
every function node the beliefs sum to1. At a fixed point of
the SPA, the beliefs satisfy the edge consistency constraints,
i.e., for everye = (i, j) ∈ E and everyae ∈ Ae, it holds that
∑

a′
i
∈Ai: a′

i,j
=ae

β
(t)
i,a′

i
=
∑

a′
j
∈Aj : a′

i,j
=ae

β
(t)
j,a′

j
.

Proof: See Appendix E. �

Let us remark on the side that the above update equations
can be reformulated such that we only multiply by factors like
θi,j instead of by factors like

√
θi,j . We leave the details to

the reader.

Remark 30 The SPA messages for the NFGN(θ) exhibit the
following property, a property that we will henceforth call
“message gauge invariance.” Namely, consider the messages

{←−
V

(t)
i,j

}

i,j,t
and

{−→
V

(t)
i,j

}

i,j,t

that are connected by the update equations in Lemma 29. It
is then easy to show that for anyC ∈ R>0 the messages

{

C · ←−V (t)
i,j

}

i,j,t
and

{
1

C
· −→V (t)

i,j

}

i,j,t

also satisfy the update equations in Lemma 29. Moreover, the
beliefs

{
β
(t)
i,ai

}

i,ai,t
and

{
β
(t)
j (aj)

}

j,aj ,t
are left unchanged

by this rescaling of the inverse likelihood ratios. This is
because the normalization that appears in the definition of
{
β
(t)
i,ai

}

i,ai,t
and

{
β
(t)
j (aj)

}

j,aj ,t
removes the influence of this

message rescaling. �

Strictly speaking, the Bethe free energy function can only
be evaluated at fixed points of the SPA. However, very often it
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is desirable to track the progress towards the minimum Bethe
free energy function value. This can be done via the so-called
pseudo-dual function of the Bethe free energy function [48],
[49]. This function has the following two properties: it can
be evaluated at any point during the SPA computations, and
at a fixed point of the SPA its value equals the value of the
Bethe free energy function. However, in general it isnot a
non-increasing or a non-decreasing function of the iteration
number.

Lemma 31 Consider the NFGN(θ). For any set of left-
going messages

{←−
Vi,j

}

i,j
and any set of right-going messages

{−→
Vi,j

}

i,j
, the pseudo-dual function of the Bethe free energy

function is

F#
Bethe

({←−
Vi,j

}
,
{−→
Vi,j

})

= −
∑

i

log




∑

j

√

θi,j ·
←−
Vi,j





−
∑

j

log

(
∑

i

√

θi,j ·
−→
Vi,j

)

+
∑

i,j

log
(

1 +
←−
Vi,j ·

−→
Vi,j

)

Proof: See Appendix F. �

In particular, if desired, we can evaluateF#
Bethe af-

ter every half-iteration of the SPA,i.e., we can compute
F#
Bethe

({←−
V

(t−1)
i,j

}
,
{−→
V

(t)
i,j

})
andF#

Bethe

({←−
V

(t)
i,j

}
,
{−→
V

(t)
i,j

})
for

everyt > 1.

B. Convergence of the Sum-Product Algorithm

Note that there are rather few general results concerning the
behavior of message-passing type algorithms for NFGs with
cycles. For certain classes of graphical models and message-
passing type algorithms, early results showed that under the
assumption that the algorithm converges then the obtained
estimates are correct (see,e.g., the results in [50], [51]). Later,
conditions for convergence were established for a variety of
graphical models and message-passing type algorithms (see,
e.g., [52]–[55] and references therein). However, these results
do not seem to be applicable to the NFG under consideration
in this paper.

The SPA convergence proof that is the most relevant for the
present paper is the one in the paper by Bayati and Nair [23]
(see also the comments that we made about this paper in
Section I-C). However, the fact that the graphical model in [23]
counts matchings (and not only perfect matchings like here),
implies a different behavior of the Bethe free energy function
near the boundary of its domain, and so no separate analysis
of interior and boundary minima of the Bethe free energy is
required in the convergence proof in [23]. The SPA conver-
gence analysis for a slightly generalized weighted matching
setup was recently presented by Williams and Lau [26].

Note that, interestingly enough, establishing convergence for
the SPA onN(θ) is independent of the choice ofθ, which
is in contrast to, say, Gaussian graphical models where the
convergence behavior not only depends on the connectivity

of the underlying graph but also on the values of the non-
zero entries of the information matrix describing the Gaussian
graphical model. (Of course, the convergencespeedof the SPA
on N(θ) does depend on the choice ofθ.)

Theorem 32 Consider the SPA for NFGN(θ), for which the
message update rules were established in Lemma 29. For
any initial set of inverse likelihood ratios

{←−
V

(0)
i,j

}

i,j
that

satisfies0 <
←−
V

(0)
i,j < ∞, (i, j) ∈ I × J , the pseudo-

marginals computed by the SPA converge to the pseudo-
marginals that minimize the Bethe free energy function of
N(θ). More precisely, we can make the following statements.
(We remind the reader of the assumptions that were made in
Assumption 28.)

• If the minimum ofFB is in the interior ofΓn×n, then the
inverse likelihood ratios

{←−
V

(t)
i,j

}

i,j,t

∣
∣
∣
t→∞

and
{−→
V

(t)
i,j

}

i,j,t

∣
∣
∣
t→∞

stay bounded and converge (modulo the message gauge
invariance mentioned in Remark 30) to the fixed point
inverse likelihood ratios corresponding to the minimum
of FB.

• If the minimum ofFB is at the vertexγ of Γn×n, then
the inverse likelihood ratios satisfy

←−
V

(t)
i,j

∣
∣
∣
j=σγ (i)

t→∞−−−→ ∞,
−→
V

(t)
i,j

∣
∣
∣
j=σγ (i)

t→∞−−−→ ∞,

←−
V

(t)
i,j

∣
∣
∣
j 6=σγ (i)

t→∞−−−→ 0,
−→
V

(t)
i,j

∣
∣
∣
j 6=σγ (i)

t→∞−−−→ 0.

Finally,
∣
∣
∣
∣
exp

(

− F#
Bethe

({←−
V

(t)
i,j

}
,
{−→
V

(t)
i,j

})
)

− permB(θ)

∣
∣
∣
∣
6 C · e−ν·t

for some constantsC, ν ∈ R>0 that depend on the matrixθ
and the initial messages.

Proof: See Appendix G. �

Explicit convergence speed estimates (in particular, values
for C andν) can be extracted from the proof of Theorem 32.
However, we think that a more sophisticated analysis might
yield tighter convergence speed estimates; we leave this asan
open problem for future research.

VI. F INITE-GRAPH-COVER INTERPRETATION

OF THE BETHE PERMANENT

Note that the definition of the permanent ofθ in Definition 1
has a “combinatorial flavor.” In particular, it can be seen as
a sum over all weighted perfect matchings of a complete
bipartite graph. This is in contrast to the definition of the
Bethe permanent ofθ (see Definitions 11 and 12) that has an
“analytical flavor.” In this section we show that it is possible
to represent the Bethe permanent by an expression that has
a “combinatorial flavor.” We do this by applying the results
from [16], that hold for general NFGs, to the NFGN(θ). The
key concept in that respect are so-called finite graph covers.
(We keep the discussion here somewhat brief and we refer
to [16] for all the details. See also [56].)
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Besides being of interest in its own right, we think that the
combinatorial interpretation of the Bethe permanent discussed
in this section can lead to alternative proofs of known results
or to proofs of new results for the Bethe permanent. See,e.g.,
Appendix I that gives an alternative proof of a special case of
Theorem 49 in the next section.

This section is structured as follows. In Section VI-A we
define the degree-M Bethe permanent of a non-negative square
matrix with the help of finite graph covers and show that in the
limit M → ∞ the degree-M Bethe permanent converges to
the Bethe permanent. Towards obtaining a better understanding
of the degree-M Bethe permanent, we then study various
examples of2 × 2 matrices in Sections VI-B–VI-E. Because
the Bethe permanent can be computed with the help of the
SPA, and because the SPA is a locally operating algorithm on
the relevant NFG, it is not surprising that finite graph covers
play a central role in the above-mentioned combinatorial
interpretation of the Bethe permanent; this aspect will be
discussed in Section VI-F.

A. The Degree-M Bethe Permanent of a Non-Negative Matrix

Definition 33 (see,e.g., [57], [58]) A cover of a graph G

with vertex setV and edge setE is a graphG with vertex set
Ṽ and edge set̃E , along with a surjectionπ : Ṽ → V which
is a graph homomorphism (i.e., π takes adjacent vertices of
G to adjacent vertices ofG) such that for each vertexv ∈ V
and eachṽ ∈ π−1(v), the neighborhood∂(ṽ) of ṽ is mapped
bijectively to ∂(v). A cover is called anM -cover, where
M ∈ Z>0, if

∣
∣π−1(v)

∣
∣ = M for every vertexv in V .11 �

Because NFGs are graphs, it is straightforward to extend
this definition to NFGs. (Of course, the variables that are
associated with theM copies of an edge are allowed to take on
different values.) For anM -cover, the left-hand side function
nodes will be labeled by elements ofI × [M ], the right-hand
side function nodes will be labeled by elements ofJ × [M ],
and the edges will be labeled by elements of a cover-dependent
subset ofI × [M ] × J × [M ]. We will denote the set of all
M -coversÑ of N(θ) by ÑM (θ). (Note that we distinguish
two M -covers with different function node labels, even if the
underlying graphs are isomorphic; see also the comments on
labeled graph covers after [16, Definition 19].)

Example 34 Letn = 3. The NFGN(θ) is shown in Fig. 3(a).
There is only one1-cover ofN(θ), namelyN(θ) itself. Two
possible4-covers ofN(θ) are shown in Figs. 3(b)–(c). The
4-cover in Fig. 3(b) is “trivial” in the sense that it consistsof
4 disconnected copies ofN(θ). On the other hand, the4-cover
in Fig. 3(c) is “nontrivial” in the sense that it consists of4
copies ofN(θ) that are intertwined. �

Lemma 35 It holds that
∣
∣ÑM (θ)

∣
∣ = (M !)(n

2). (7)

11The numberM is also known as the degree of the cover. (Not to be
confused with the degree of a vertex.)

1

2 2

33

1

(a)

(1, 4)

(1, 3)

(1, 2)

(1, 1)

(1, 4)

(1, 3)

(1, 2)

(1, 1)

(2, 1)

(2, 2)

(2, 3)

(2, 4)

(2, 1)

(2, 2)

(2, 3)

(2, 4)

(3, 1)

(3, 2)

(3, 3)

(3, 1)

(3, 1)

(3, 2)

(3, 3)

(3, 4)

(b)

(1, 4)

(1, 3)

(1, 2)

(1, 1)

(1, 4)

(1, 3)

(1, 2)

(1, 1)

(2, 1)

(2, 2)

(2, 3)

(2, 4)

(2, 1)

(2, 2)

(2, 3)

(2, 4)

(3, 1)

(3, 2)

(3, 3)

(3, 1)

(3, 1)

(3, 2)

(3, 3)

(3, 4)

(c)

Fig. 3. (a) NFGN(θ) for n = 3. (b) “Trivial” 4-cover of N(θ) (c) A
possible4-cover ofN(θ).

Proof: This follows from [16, Lemma 20] and the fact that
the NFGN(θ) hasn2 full-edges. �

The following definition is the main definition of this
section.

Definition 36 For any M ∈ Z>0 we define the degree-M
Bethe permanent ofθ to be

permB,M (θ) , M

√〈

ZG(Ñ)
〉

Ñ∈ÑM

,

where the angular brackets represent the arithmetic average
of ZG(Ñ) over all Ñ ∈ ÑM . (Note that the right-hand side is
based on the Gibbs partition function, not the Bethe partition
function.) �

As we will now show, one can expressZG(Ñ) for anyM -
cover Ñ of N(θ) as the permanent of some matrix that is
derived fromθ.

Definition 37 For anyM ∈ Z>0 we defineΨ̃M to be the set

Ψ̃M ,
{

P̃ =
{
P̃ (i,j)

}

i∈I,j∈J

∣
∣
∣ P̃

(i,j) ∈ PM×M

}

.

Moreover, forP̃ ∈ Ψ̃M we define theP̃ -lifting of θ to be the
following (nM)× (nM) matrix

θ↑P̃ ,






θ1,1P̃
(1,1) · · · θ1,nP̃

(1,n)

...
...

θn,1P̃
(n,1) · · · θn,nP̃

(n,n)




 .

�

For any positive integerM it is straightforward to see that
there is a bijection between the set̃NM (θ) of all M -covers
of N(θ) and the set{θ↑P̃ }P̃∈Ψ̃M

. In particular, because of
Lemma 8, for anM -cover Ñ and its corresponding matrix
θ↑P̃ it holds thatZG(Ñ) = perm(θ↑P̃ ). Therefore, we have
the following reformulation of Definition 36.
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Definition 38 (Reformulation of Definition 36) For any
M ∈ Z>0 we define the degree-M Bethe permanent ofθ to
be

permB,M (θ) , M

√〈

perm
(

θ↑P̃
)〉

P̃∈Ψ̃M

, (8)

where the angular brackets represent the arithmetic average
of perm

(
θ↑P̃

)
over all P̃ ∈ Ψ̃M . (Note that the permanent,

not the Bethe permanent, appears on the right-hand side of
the above expression.) �

In order to better appreciate the right-hand side of the
above expression, it is worthwhile to make the following two
observations.

• ForM = 1, the averaging is trivial becausẽΨM contains
only one element. Moreover, letting̃P be this single
element, it holds thatθ↑P̃ = θ. Therefore

permB,1(θ) = perm(θ).

• For anyM ∈ Z>0, the “trivial” M -cover ofN(θ) is given
by the choiceP̃ =

{
P̃ (i,j)

}

i∈I,j∈J
with P̃ (i,j) = Ĩ,

(i, j) ∈ I × J , where Ĩ is the identity matrix of size
M ×M . For thisM -cover we obtain

perm(θ↑P̃ ) = perm(θ)M ,

i.e.

M

√

perm(θ↑P̃ ) = perm(θ).

With this, we are ready for the main result of this section.

Theorem 39 It holds that

lim sup
M→∞

permB,M (θ) = permB(θ).

Proof: This follows from Definitions 12 and 38, along with
the application of [16, Theorem 33] toN = N(θ). �

Theorem 39, together with the relationpermB,1(θ) =
perm(θ), are visualized in Fig. 4. Because the permanents
that appear on the right-hand side of (8) are combinatorial
objects, Definition 38 and Theorem 39 give the promised
“combinatorial characterization” of the Bethe permanent.

B. The Bethe Permanent for Matrices of Size2× 2

In this and the following subsections we illustrate the
concepts and results that have been presented so far in this
section by having a detailed look at the casen = 2, i.e., we
study the permanent, the Bethe permanent, and the degree-M
Bethe permanent for the matrix

θ =

(
θ1,1 θ1,2
θ2,1 θ2,2

)

.

The corresponding NFGN(θ) is shown in Fig. 5(a). Of course,
nobody would use the Bethe permanent to approximate the
permanent of a2 × 2 matrix, however, it gives some good
insights into the strengths and the weaknesses of the Bethe
approximation to the permanent.

permB,M (θ)
∣
∣
∣
M→∞

= permB(θ)
∣
∣
∣

permB,M (θ)
∣
∣
∣

permB,M (θ)
∣
∣
∣
M=1

= perm(θ)

Fig. 4. The degree-M Bethe permanent of the non-negative matrixθ for
different values ofM .

Lemma 40 For n = 2 it holds that

perm(θ) = θ1,1θ2,2 + θ2,1θ1,2,

permB(θ) = max(θ1,1θ2,2, θ2,1θ1,2).

Proof: The result forperm(θ) follows from Definition 1.
On the other hand, in order to obtainpermB(θ), we apply
Corollary 15. The crucial step in Corollary 15 is to minimize
FB(γ) over γ ∈ Γ2×2. BecauseHB(γ) = 0, γ ∈ Γ2×2,
minimizing FB(γ) is equivalent to minimizingUB(γ) =
−∑i,j γi,j log(θi,j).

• For θ1,1θ2,2 = θ1,2θ2,1 the minimum is achieved at every
γ ∈ Γ2×2.

• For θ1,1θ2,2 > θ1,2θ2,1 the minimum is achieved atγ =
(
1 0
0 1

)
.

• For θ1,1θ2,2 < θ1,2θ2,1 the minimum is achieved atγ =
(
0 1
1 0

)
.

�

Example 41 For n = 2 andθi,j = 1, (i, j) ∈ I×J , we have

perm(θ) = 2,

permB(θ) = 1.

Recall thatperm(θ) represents the sum of all the weighted
perfect matchings of the complete bipartite graphN(θ), and
so, for the special choiceθi,j = 1, (i, j) ∈ I × J , the
quantityperm(θ) represents the number of perfect matchings
of N(θ). As is illustrated in Figs. 5(b)–(c), the graphN(θ)
has two perfect matchings, thereby combinatorially verifying
perm(θ) = 2. �

C. The Degree-M Bethe Permanent for Matrices of Size2×2
— Initial Considerations

One of the goals of this and the next subsections is to obtain
a better combinatorial understanding of the resultpermB(θ) =
1 for n = 2, in particular, why it is different fromperm(θ),
yet not too different.

Towards this goal, let us study the degree-M Bethe perma-
nent ofθ as specified in Definition 38. Therein, the average
is taken over

∣
∣
∣Ψ̃M

∣
∣
∣ = (M !)4 matrices

θ↑P̃ =

(
θ1,1P̃1,1 θ1,2P̃1,2

θ2,1P̃2,1 θ2,2P̃2,2

)

, θ↑P̃ ∈ Ψ̃M .
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Fig. 5. Graphs (NFGs) that are discussed in Sections VI-C–VI-E. (a) Base graph. (b)–(c) Perfect matchings of the graph in(a). (d) A possible double cover
of the graph in (a). (e)–(h) Perfect matchings of the graph in(d). (i) A possible double cover of the graph in (a). (j)–(k) Perfect matchings of the graph in (i).

We can simplify the analysis by realizing that the permanent
of θ↑P̃ equals the permanent of a modified matrixθ↑P̃ , where
the first block row is multiplied from the left bỹP−1

1,1 , where
the second block row is multiplied from the left bỹP−1

2,1 , and
where the second block column is multiplied from the right
by P̃−1

1,2 · P̃1,1, i.e.,

perm
(
θ↑P̃

)
= perm

(
θ1,1Ĩ θ1,2Ĩ

θ2,1Ĩ θ2,2P̃
−1
2,1 P̃2,2P̃

−1
1,2 P̃1,1

)

,

whereĨ is the identity matrix of sizeM ×M . Therefore, we
can rewritepermB,M (θ) as follows

permB,M (θ) , M

√
〈

perm

(
θ1,1Ĩ θ2,1Ĩ

θ2,1Ĩ θ2,2P̃
′
2,2

)〉

P̃ ′
2,2∈PM×M

,

(9)

i.e., an average over theM ! permutation matrices of sizeM×
M .

D. The Degree-M Bethe Permanent for Matrices of Size2×2
— All-One Matrix

In this subsection we consider the casesM = 2, M = 3,
and generalM for the special choice

θ =

(
1 1
1 1

)

.

Example 42 Letn = 2, M = 2, andθi,j = 1, (i, j) ∈ I×J .
We make the following observations.

• The average in(9) is over2! = 2 matrices, namely over

θ↑(1) ,







1 0 1 0
0 1 0 1
1 0 1 0
0 1 0 1







, θ↑(2) ,







1 0 1 0
0 1 0 1
1 0 0 1
0 1 1 0







.

• The matrixθ↑(1) corresponds to the double cover ofN(θ)
shown in Fig. 5(d). Because that graph has4 perfect
matchings, see Figs. 5(e)–(h), we have

perm(θ↑(1)) = 4.

• The matrixθ↑(2) corresponds to the double cover ofN(θ)
shown in Fig. 5(i). Because that graph has2 perfect
matchings, see Figs. 5(j)–(k), we have

perm(θ↑(1)) = 2.

Putting everything together, we obtain the degree-2 Bethe
permanent ofθ, i.e.,

permB,2(θ) =
2

√

1

2!
· (4 + 2) =

2

√

1

2!
· 6 =

2
√
3 ≈ 1.732.

We note that the graph in Fig. 5(d) consists ofM independent
copies of the graph in Fig. 5(a), therefore it is not surprising
that perm(θ↑(1)) = perm(θ)M = 22 = 4. On the other hand,
the graph in Fig. 5(i) consists ofM coupled copies of the
graph in Fig. 5(a), which implies that we cannot choose the
perfect matchings independently. Therefore, it is not surprising
that we haveperm(θ↑(2)) 6= perm(θ)M = 22 = 4, which
finally results inpermB,2(θ) 6= perm(θ). Nevertheless, these
considerations also show whypermB,2(θ) is not too different
from perm(θ). �

Example 43 Letn = 2, M = 3, andθi,j = 1, (i, j) ∈ I×J .
The average in(9) is over 3! = 6 matrices. These matrices
correspond to the triple covers ofN(θ) shown in Fig. 6(b)–
(g). Computing the number of perfect matchings for each of
these cases, we obtain

permB,3(θ) =
3

√

1

3!
· (8 + 4 + 4 + 4 + 2 + 2)

=
3

√

1

3!
· 24 =

3
√
4 ≈ 1.587.

In particular, for the triple cover in Fig. 6(c) we show its4
perfect matchings explicitly in Fig. 7.

Overall, we can make similar observations as at the end
of Example 42 concerning thecoupling of theM copies of
N(θ) that make up a degree-M cover and its influence on the
number of perfect matchings. �

Example 44 Let n = 2, M ∈ Z>0, and θi,j = 1, (i, j) ∈
I×J . The average in(9) is overM ! matrices that correspond
to the M -covers ofN(θ). For each of these matrices, their
permanent equals the number of perfect matchings in the
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Fig. 6. Graphs (NFGs) that are discussed in Sections VI-C–VI-E. (a) Base graph. (b)–(g) Possible triple covers of the graph in (a). (“pms.” stands for “perfect
matchings”.)
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Fig. 7. The four perfect matchings of the triple cover in Fig.6(c).

correspondingM -cover. We make the following observations
(see Figs. 5–7 for illustrations for the casesM = 2 and
M = 3).

• EveryM -cover consists of up toM cycles.
• Every cycle supports two perfect matchings (indepen-

dently of the cycle length and independently of the perfect
matchings chosen on the rest of the graph).

Therefore, if anM -cover hasc cycles then it has2c perfect
matchings. The average in(9) can then be evaluated with
suitable combinatorial tools, for example by using the so-
called cycle index of the symmetric group overM elements
(see,e.g., [59]), and we obtain

permB,M (θ) =
M
√
M + 1.

Therefore, in the limitM →∞, we get

permB(θ) = lim sup
M→∞

permB,M (θ) = 1.

This confirms the result forpermB(θ) in Example 41, which
was obtained by analytical means. �

E. The Degree-M Bethe Permanent for Matrices of Size2×2
— General Non-Negative Matrix

In this subsection we consider the casesM = 2, M = 3,
and generalM for the general non-negative matrix

θ =

(
θ1,1 θ1,2
θ2,1 θ2,2

)

.

A particular goal of this subsection is to compare the degree-
M Bethe permanent ofθ with the permanent ofθ. In fact, as
we will see, for every considered case in this subsection we
havepermB,M (θ) 6 perm(θ).

Example 45 Let n = 2 and M = 2. We perform similar
computations as in Example 42, but for a general non-negative
matrix θ. Towards computingpermB,2(θ) as given in(9), we
make the following observations.

• The average in(9) is over2! = 2 matrices, namely over

θ↑(1) ,







θ1,1 0 θ1,2 0
0 θ1,1 0 θ1,2

θ2,1 0 θ2,2 0
0 θ2,1 0 θ2,2







,

θ↑(2) ,







θ1,1 0 θ1,2 0
0 θ1,1 0 θ1,2

θ2,1 0 0 θ2,2
0 θ2,1 θ2,2 0







.

• We obtain

perm
(
θ↑(1)

)
= (θ1,1θ2,2 + θ1,2θ2,1)

2

= θ21,1θ
2
2,2 + 2θ1,1θ1,2θ2,1θ2,2 + θ21,2θ

2
2,1.

Note that the coefficients add up to4 becauseθ↑(1) cor-
responds to the double cover ofN(θ) shown in Fig. 5(d),
which admits4 (weighted) perfect matchings.

• We obtain

perm
(
θ↑(2)

)
= θ21,1θ

2
2,2 + θ21,2θ

2
2,1.

Note that the coefficients add up to2 becauseθ↑(2) cor-
responds to the double cover ofN(θ) shown in Fig. 5(i),
which admits2 (weighted) perfect matchings.

Putting everything together, we obtain for the square of the
degree-2 Bethe partition function ofθ

(
permB,2(θ)

)2
=

1

2
·
(
perm(θ↑(1)) + perm(θ↑(2))

)

= θ21,1θ
2
2,2 + θ1,1θ1,2θ2,1θ2,2 + θ21,2θ

2
2,1.

Given the observations that

perm
(
θ↑(1)

)
6
(
perm(θ)

)2
,

perm
(
θ↑(2)

)
6
(
perm(θ)

)2
,

it is not surprising that we also have the inequality
(
permB,2(θ)

)2
6
(
perm(θ)

)2
,
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i.e.,

permB,2(θ) 6 perm(θ).

�

Example 46 Let n = 2 and M = 3. We perform similar
computations as in Example 43, but for a general non-negative
matrix θ. Towards computingpermB,3(θ) as given in(9), we
make the following observations.

• The average in(9) is over 3! = 6 matrices. These
matrices correspond to the triple covers ofN(θ) shown
in Fig. 6(b)–(g).

• For example, for the matrixθ↑(2) corresponding to the
triple cover in Fig. 6(c), we obtain

perm
(
θ↑(2)

)
= θ31,1θ

3
2,2 + θ11,1θ

2
1,2θ

2
2,1θ

1
2,2

+ θ21,1θ
1
1,2θ

1
2,1θ

2
2,2 + θ31,2θ

3
2,1,

where each (weighted) perfect matching in Fig. 7 con-
tributes one monomial to the above expression. One can
verify that

perm
(
θ↑(2)

)
=
(
θ21,1θ

2
2,2+θ21,2θ

2
2,1

)
·(θ1,1θ2,2+θ1,2θ2,1)

6
(
θ1,1θ2,2+θ1,2θ2,1

)2· (θ1,1θ2,2+θ1,2θ2,1)

=
(
θ1,1θ2,2+θ1,2θ2,1

)3

=
(
perm(θ)

)3
.

(The product expression in the first line is not surprising
given the fact that graph in Fig. 6(c) contains two
independent components, each contributing one factor to
the above product.)

Similar observations can be made for the other five triple
covers in Fig. 6(b)–(g), and so we obtain

(
permB,3(θ)

)3
6
(
perm(θ)

)3
,

i.e.,

permB,3(θ) 6 perm(θ).

�

Example 47 Let n = 2 and M ∈ Z>0. We perform similar
computations as in Example 44, but for a general non-
negative matrixθ. The observations that we made there can
be generalized (beyond the all-one matrix), and we obtain

(
permB,M (θ)

)M
=

M∑

ℓ=0

(θ1,1θ2,2)
M−ℓ(θ1,2θ2,1)

ℓ.

Because

(
perm(θ)

)M
=

M∑

ℓ=0

(
M

ℓ

)

(θ1,1θ2,2)
M−ℓ(θ1,2θ2,1)

ℓ,

we see that
(
permB,M (θ)

)M
6
(
perm(θ)

)M
,

i.e.,

permB,M (θ) 6 perm(θ).

Moreover, in the limitM →∞, we have

permB(θ) = lim sup
M→∞

permB,M (θ)

= max(θ1,1θ2,2, θ2,1θ1,2).

This confirms the result forpermB(θ) in Lemma 40, which
was obtained by analytical means. �

For n > 2, we leave it as an open problem to obtain an
“explicit expression” forpermB,M (θ), M ∈ Z>0, either for
the all-one matrix case, or for the general non-negative matrix
case.

In conclusion, the above examples shows that in general
permB(θ) 6= perm(θ), however, they also show that the
Bethe permanent has the potential to give reasonably good
estimates, in particular in the cases where the “coupling effect”
in the average graph cover is not too strong. Heuristically,this
“coupling effect” seems actually to be the worst forn = 2 and
to become weaker the largern is.

F. Relevance of Finite Graph Covers

If the NFG N(θ) had no cycles then the SPA could
be used to exactly compute the partition function. Namely,
after a finite number of iterations, the SPA would reach a
fixed point and the partition functionZG

(
N(θ)

)
= perm(θ)

could be computed with the help of an expression like
exp

(
− F#

Bethe

(
{←−V (t)

i,j }, {
−→
V

(t)
i,j }

))
, where F#

Bethe is defined
in Lemma 31. However,N(θ) has cycles: the use of this
expression at a fixed point of the SPA is still possible but
usually it does not yield the correct partition function. Inthis
subsection, we would like to better understand the source of
this suboptimality.

To that end, observe that the SPA is an algorithm that
processes information locally onN(θ), i.e., messages are sent
along edges, function nodes take incoming messages from
incident edges, do some computations, and send out new
messages along the incident edges. On the one hand, this
locality explains the main strengths of the SPA, namely its low
complexity and its parallelizability, two key factors for making
the SPA a popular algorithm. On the other hand, this locality
explains also the main weakness of the SPA. Namely, a locally
operating like SPA “cannot distinguish” if it is operating on
N(θ) or any of its covers [16], [60], [61].

More precisely, letÑ be anM -cover Ñ of N(θ). Such an
M -cover “looks locally the same” asN(θ) in the sense that
the local structure of̃N is exactly the same as the one of
N(θ). (Of course, globallỹN andN(θ) are different because
the former NFG containsM times as many function nodes
and M times as many edges.) Consequently, if the SPA is
run on Ñ with the same initialization as the SPA onN(θ)
(every initial message is replicatedM times), we observe that,
because both graphs look locally the same and because the
SPA is a locally operating algorithm, after every iterationthe
messages oñN are exactly the same as the messages onN(θ),
simply replicatedM times. In that sense, the SPA “cannot
distinguish” if it is operating onN(θ), or, implicitly, on Ñ,
or any otherM -cover ofN(θ). This observation allows us to
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give the following interpretation of (8) (which is reproduced
here for the ease of reference)

permB,M (θ) , M

√〈

perm
(

θ↑P̃
)〉

P̃∈Ψ̃M

. (10)

Namely, because the SPA implicitly tries to compute in parallel
the partition functionZG

(
N(θ↑P̃ )

)
= perm(θ↑P̃ ) for all M -

covers ofN(θ), yet it has to give back one real number only,
the “best it can do” is to give back the average of these
partition functions,i.e.,

〈
perm

(

θ↑P̃
) 〉

P̃∈Ψ̃M
. (TheM th root

that appears in (10) is included so that the result is properly
normalized w.r.t.ZG

(
N(θ)

)
= perm(θ).)

Let us conclude this subsection by commenting on two
recent papers.

• Translating the results of a paper by Greenhill, Janson,
and Ruciński [35] to graphical models, it turns out that
the authors compute a high-order approximation to the
quantity

〈
ZG(Ñ

′)
〉

Ñ′∈Ñ ′
M

for some NFGN
′(θ) with

ZG(N
′(θ)) = perm(θ). The NFGN

′(θ) is in general
different fromN(θ), where the latter NFG was specified
in Definition 4. We will elaborate on this interesting
connection in Section VII-E.

• The paper [32] by Barvinok presents bounds on the
number of zero/one matrices with prescribed row and
column sums. (As already mentioned in Section I-C, in
statistical physics terms the approach taken therein can
be considered as a mean-field approach.) In terms of
NFGs, the quantity of interest is expressed as the partition
function of an NFG that has the same topology asN(θ)
but different function nodes.
Section 3.1 of [32] then presents an interpretation of
these bounds that has a similar flavor of the graph cover
interpretation of the Bethe permanent, however, it also has
stark differences. Namely, in terms of NFGs, Section 3.1
of [32] presents an NFG where every function node of
the base graph is replicatedM times and every edge is
replicatedM2 times, i.e., all Mn left-hand side function
nodes are connected by exactly one edge to all theMn
right-hand side function nodes. In order for this to make
sense, the local functions are adapted so that they have
Mn arguments instead ofn arguments. It is then shown
that theM2th root of the partition function of this new
NFG, M → ∞, yields the relevant number in which
the bounds are expressed. Despite all the similarities, the
differences to finite graph covers are clear:

– There is only one suchM -fold version of the base
graph, whereas the number ofM -covers ofN(θ) is
(M !)(n

2).
– The number of edges isM2n2, whereas the number

of edges in anM -cover ofN(θ) is Mn2.
– The local functions need to be adapted in order to

allow for Mn instead ofn arguments, whereas the
local functions of anM -cover ofN(θ) are the same
as the local functions ofN(θ).

VII. T HE RELATIONSHIP BETWEEN THEPERMANENT

AND THE BETHE PERMANENT

In this section we explore the relationship betweenperm(θ)
and permB(θ), in particular, if and howperm(θ) can be
upper and lower bounded by expressions that are functions
of permB(θ). For an additional/complementary discussion on
this topic we refer to [22].

We start with a lemma that shows that there are non-negative
square matrices for which the Bethe permanent can give rather
accurate estimates of the permanent, thereby showing the
overall potential of the Bethe permanent to be the basis for
good upper and lower bounds on the permanent of general
non-negative square matrices.

Lemma 48 Let1n×n be the all-one matrix of sizen×n. Then

perm(1n×n)

permB(1n×n)
=

√

2πn

e
·
(
1 + o(1)

)
,

whereo(1) is w.r.t. n.

Proof: See Appendix H. �

Although the factor
√

2πn/ e is non-negligible, compared
to perm(1n×n) = n! it is rather small.

A. Lower Bounds on the Permanent of the Matrixθ

In this subsection we study lower bounds onperm(θ) based
on permB(θ).

Theorem 49 (Gurvits [14], [15]) It holds that

perm(θ)

permB(θ)
> 1.

Proof: This result was recently shown by Gurvits [14], [15].
Roughly speaking, its elegant proof is based on first expressing
θ in terms of a stationary point ofFB,N(θ) and then applying
an inequality due to Schrijver [62]. �

For more details, along with a discussion of this result’s
relationship to the results in [63], [64], we refer to [14], [15].
For a somewhat different approach to proving this theorem,
we refer the interested reader to [22].

Corollary 50 (Gurvits [14], [15]) For any γ ∈ Γn×n it
holds that

perm(θ)

exp
(
− FB,N(θ)(γ)

) > 1.

Proof: This is a straightforward consequence of Theorem 49
and Definitions 11 and 12. �

Some comments on Theorem 49 and Corollary 50:
• Corollary 50 has its significance when one is not willing

to run the SPA algorithm, but one has a reasonably good
estimate of theγ ∈ Γn×n that minimizesFB,N(θ). This
approach is for example interesting when one wants to
obtain analytical lower bounds on the permanent of some
parameterized class of non-negative square matrices.
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• Chertkov, Kroc, and Vergassola [11] observed in 2008
thatperm(θ) > permB(θ) holds for all the matrices that
they experimented with. They also outlined a potential
approach to proving this inequality via the loop calculus
technique by Chertkov and Chernyak [21], which in the
case ofN(θ) states thatperm(θ) equalspermB(θ) plus
certain correction terms (see [65] for a reformulation of
the loop calculus in terms of NFGs). However, given
the fact that forN(θ) these correction terms happen
to be positiveand negative, it is at present unclear if
Theorem 49 can be proven with this technique.

• In the Allerton 2010 version of this paper we stated the
inequality that appears in Theorem 49 as a theorem. How-
ever, while writing the present paper we realized that our
“proof” had a flaw, which, so far, we have not been able
to fix. Nevertheless, we still think that our proof strategy
can work out and possibly give an alternative viewpoint
of Schrijver’s inequality that features prominently in [14],
[15]. In that respect, we list below some special cases of
matricesθ for which our proof strategy works, along with
conjectures that, if true, would give an alternative proof
of Theorem 49 in its full generality.

Conjecture 51 For anyM ∈ Z>0 it holds that
〈

perm
(

θ↑P̃
)〉

P̃∈Ψ̃M

6
(
perm(θ)

)M
.

Possibly also the following, stronger, statement is true: for any
M ∈ Z>0 and anyP̃ ∈ Ψ̃M it holds that

perm
(

θ↑P̃
)

6
(
perm(θ)

)M
.

�

Theorem 49 would then follow from

permB(θ)
(a)
= lim sup

M→∞
permB,M (θ)

(b)
= lim sup

M→∞

M

√〈

perm
(

θ↑P̃
)〉

P̃∈Ψ̃M

(c)
6 lim sup

M→∞

M

√

perm(θ)M

= lim sup
M→∞

perm(θ)

(d)
= perm(θ),

where at step (a) we have used Theorem 39, where at step (b)
we have used Definition 38, where at step (c) we have used
the weaker part of Conjecture 51, and where step (d) follows
from evaluating the (now trivial) limitM →∞.

We now list some special matricesθ for which Conjec-
ture 51 is true.

• Conjecture 51 is true forθ = 1n×n. (The proof is given
in Appendix I.)

• Conjecture 51 is true for all matricesθ that were studied
in Section VI.

Actually, the results in Section VI suggest the following,
stronger version of Conjecture 51.

Conjecture 52 Fix someM ∈ Z>0 and consider the expres-
sions

〈

perm
(

θ↑P̃
)〉

P̃∈Ψ̃M

and
(
perm(θ)

)M

as polynomials in the indeterminates{θi,j}i,j . We conjecture
that the coefficient of every monomial of the first polynomial
is upper bounded by the coefficient of the corresponding
monomial of the second polynomial.

Possibly also the following, stronger, statement is true. Fix
someM ∈ Z>0 and P̃ ∈ Ψ̃M , and consider the expressions

perm
(

θ↑P̃
)

and
(
perm(θ)

)M

as polynomials in the indeterminates{θi,j}i,j . We conjecture
that the coefficient of every monomial of the first polynomial
is upper bounded by the coefficient of the corresponding
monomial of the second polynomial. �

Let us conclude this subsection by noting that the inequali-
tiesZG(Ñ) 6 ZG(N)

M , M ∈ Z>0, Ñ ∈ ÑM , i.e., inequalities
of the type that appear in Conjecture 51, have recently been
used to proveZB(N) 6 ZG(N) for graphical modelsN
appearing in other contexts. We refer the interested readerto
[16, Example 34 and Lemma 35] and [66] for details.

B. Upper Bounds on the Permanent of the Matrixθ

In this subsection we list conjectures and open problems
w.r.t. upper bounds onperm(θ) based onpermB(θ).

Conjecture 53 (Gurvits [14], [15]) Let θ be an arbitrary
non-negative matrix of sizen×n. For evenn it is conjectured
that

perm(θ)

permB(θ)
6
√
2
n
, (11)

with a similar conjecture for oddn. Note that(11) holds with
equality for the matrixθ = I(n/2)×(n/2) ⊗ 12×2, i.e., the
Kronecker product of an identity matrix of size(n/2)× (n/2)
and the all-one matrix of size2× 2. �

We refer the interested reader to [14], [15] for a discussion
of families of non-negative matrices for which the above
conjecture has been verified.

Note that Conjecture 53 replaces the conjecture that we
made in the Allerton 2010 version of this paper where, for
fixed n, the largest ratioperm(θ)/ permB(θ) was thought to
be obtained for the all-one matrix of sizen× n.

Besides proving the bound in Conjecture 53, it would be
desirable to prove statements of the form

Pr

{

θ ∈ Θ :
perm(θ)

permB(θ)
6 τ

}

> 1− ε,

whereΘ is some ensemble of random matrices of sizen×n,
whereτ is some positive real number, and whereε is some
small positive number. For example, for the ensemble of
n × n matrices where the matrix entries are chosen uni-
formly and independently between0 and1, we conjecture that
perm(θ)/ permB(θ) is, with high probability, upper bounded
by the ratio that appears in Lemma 48. (Note that this ratio is
much smaller than the ratio that appears in Conjecture 53.)
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C. Closeness of the Permanent to the Bethe Permanent

In this subsection we list some cases whereperm(θ) is
relatively close topermB(θ). We start with an auxiliary result
that relates the Bethe permanent of a lifted matrix to the Bethe
permanent of the base matrix.

Lemma 54 For any M ∈ Z>0 and anyP̃ ∈ Ψ̃M it holds
that

permB

(

θ↑P̃
)

=
(
permB(θ)

)M
.

Proof: See Appendix J. �

Theorem 55 For anyα > 1 and anyM > Mα, the majority
of the matrices in

{
θ↑P̃

}

P̃∈Ψ̃M
satisfies

1 6
perm

(

θ↑P̃
)

permB

(

θ↑P̃
) < αM .

HereMα is a parameter that depends onα.

Proof: The first inequality follows from Theorem 49. We prove
the second inequality by contradiction. So, assume that there
is anα > 1 and a constantMα such that for allM > Mα

the setΨ̃′
M ⊆ Ψ̃M of all lifted matricesθ↑P̃ that satisfy

perm
(
θ↑P̃

)
> αM · permB

(
θ↑P̃

)
has size at least|Ψ̃M |/2.

Then

permB,M (θ)
(a)
= M

√〈

perm
(

θ↑P̃
)〉

P̃∈Ψ̃M

(b)
= M

√
√
√
√

1

|Ψ̃M |
∑

P̃∈Ψ̃M

perm
(

θ↑P̃
)

> M

√
√
√
√

1

|Ψ̃M |
∑

P̃∈Ψ̃′
M

perm
(

θ↑P̃
)

(c)
> M

√
√
√
√

1

|Ψ̃M |
∑

P̃∈Ψ̃′
M

αM · permB

(

θ↑P̃
)

(d)
= M

√
√
√
√

1

|Ψ̃M |
∑

P̃∈Ψ̃′
M

αM ·
(
permB(θ)

)M

= M

√

|Ψ̃′
M |

|Ψ̃M |
· α · permB(θ)

(e)
> 2−1/M · α · permB(θ),

where at step (a) we have used Definition 38, where at step (b)
we have replaced the angular brackets by the corresponding
normalized sum, where at step (c) we have used the assump-
tion, where at step (d) we have used Lemma 54, and where at
step (e) we have again used the assumption. However, taking
lim supM→∞ on both sides of the above expression, we see
that we obtain a contradiction w.r.t. Theorem 39. �

The following example partially corroborates Theorem 55.

Example 56 For some positive integerM , consider the ma-
trix

θ↑P̃ =

(
θ1,1Ĩ θ1,2Ĩ

θ2,1Ĩ θ2,2P̃
′
2,2

)

,

whereĨ is the identity matrix of sizeM ×M and whereP̃ ′
2,2

is a once cyclically left-shifted identity matrix of sizeM ×M .
Then

perm
(
θ↑P̃

)
= θM1,1θ

M
2,2 + θM1,2θ

M
2,1,

permB

(
θ↑P̃

)
=
(
permB(θ)

)M

=
(
max(θ1,1θ2,2, θ1,2θ2,1)

)M
,

where the first result is a consequence of the observation that
the underlying graph has exactly one cycle,i.e., only two
perfect matchings, and where the second result follows from
Lemmas 40 and 54. Therefore,

1 6
perm

(
θ↑P̃

)

permB

(
θ↑P̃

) 6 2.

Note that the right-hand side of the above expression does not
only grow sub-exponentially inM , it does not grow at all.�

Let us conclude this subsection with the following remark.
As already mentioned, the proof of Theorem 49 takes ad-
vantage of an inequality by Schrijver [62], and therefore the
closeness ofperm(θ) to permB(θ) is linked with the tightness
of Schrijver’s inequality. Now, interestingly enough, when
Schrijver demonstrates a certain asymptotic tightness of his
inequality, see [62, Section 3], heimplicitly evaluates and
compares both sides of his inequality for some finite cover
of a certain graph.

D. Open Problems on the Relationship between the Permanent
and the Bethe Permanent

There are also classes of structured matrices for which
it would be interesting to better understand the relationship
between the permanent and the Bethe permanent. For example,
the permanent of the matrix

θ =








αµ1

1 αµ2

1 · · · αµm

1 1 · · · 1
αµ1

2 αµ2

2 · · · αµm

2 1 · · · 1
...

...
...

...
...

αµ1
n αµ2

n · · · αµm
n 1 · · · 1








,

with 0 6 m 6 n, real numbersαℓ > 0, ℓ ∈ [n], and real
numbersµℓ, ℓ ∈ [m], turns up in a variety of contexts.

• When
∑

ℓ∈[n] αℓ = 1 and µℓ are non-negative integers
thenperm(θ) corresponds to the probability of the pat-
tern of a sequence (see,e.g., [67], [68]).

• Whenm = n andµℓ = n− 1− ℓ, ℓ ∈ [n], thenperm(θ)
appears in the analysis of list ordering algorithms (see,
e.g., [69]) or in the analysis of source coding algorithms
(see,e.g., [70]). Note that in this case,θ is a Vander-
monde matrix.

Moreover, given the fact that the aboveθ depends only on (at
most)2n parameters (and not onn2 parameters asθ in (1)),
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one wonders if speed-ups in the SPA-based computation of
permB(θ) are possible.

In some applications one is not interested in the absolute
value of the permanent, only the relative value in the sense
that for two matricesθ and θ′ one wants to know which
one has the larger permanent. Therefore, for some suitable
stochastic setting it would be desirable to state with what prob-
ability perm(θ) 6 perm(θ′) is equivalent topermB(θ) 6
permB(θ

′). Some very encouraging initial investigations of
this topic have been presented in [12, Section 4.2].

E. Connections to Results by Greenhill, Janson, and Ruciński

After the initial submission of the present paper, we became
aware of the paper by Greenhill, Janson, and Ruciński [35] on
counting perfect matchings in random graph covers. Using the
findings of [16] and the present paper, their results can, once
they have been translated to factor graphs, be seen as defining
an NFGN

′ , N
′(θ) with ZG(N

′) = perm(θ) and computing
ZB(N

′), along with approximately computingZB,M (N′). The
NFGN

′ is in general different fromN , N(θ), where the latter
NFG was specified in Definition 4 and shown in Figure 1.

The advantage ofN′ is that minimizing its Bethe free energy
function towards determiningZB(N

′) is quite straightforward.
Moreover, high-order approximations toZB,M (N′) can be
given. The disadvantage ofN′ is that ZB(N

′) is a weaker
lower bound toperm(θ) thanpermB(θ) = ZB(N).

Let us elaborate on these comments. Namely, consider a
matrix like

θ ,

(
3 1
1 3

)

, (12)

where all entries are non-negative integers and where all row
and all column sums are equal to some constantd. Here,
n = 2, d = 4, and perm(θ) = 10. Its NFG N , N(θ) as
specified in Definition 4 is shown in Figure 8 (a). In terms of
factor graphs, the paper [35] considers the NFGN

′ , N
′(θ)

shown in Figure 8 (b): likeN it hasn function nodes on the
left-hand side andn function nodes on the right-hand side.
However, for every(i, j) ∈ I × J , there ared · θi,j edges
connecting function nodei on the left-hand side to function
node j on the right-hand side. The variable associated with
an edge ofN′ takes on values in the set{0, 1}. Moreover,
a local function takes on the value1 if exactly one of the
variables associated with the incident edges is1, and takes on
the value0 otherwise. One can show that these definitions
yield Z(N′) = perm(θ). Indeed, this result follows from
observing that valid configurations ofN′ correspond to perfect
matchings of the graph underlyingN′, that the global function
value of every valid configurations ofN′ is 1, and that the
graph underlyingN′ hasperm(θ) perfect matchings.

Note that in the case ofN, the graph structure isindependent
of θ but the local function valuesdependon θ, whereas in
the case ofN′, the graph structuredependson θ but the local
function node values areindependentof θ.

The Bethe free energy function ofN′ is minimized by
(β′

e,0, β
′
e,1) = (1−1/d, 1/d), e ∈ E(N′), with corresponding

beliefs for the function nodes. (This can,e.g., be verified
with the help of symmetry arguments, along with suitably

2

11

2

(a) NFGN , N(θ).

2

11

2

(b) NFG N
′ , N

′(θ).

Fig. 8. NFGs used in Section VII-E.

generalizing the convexity results of Corollary 23 fromN to
N

′.) With this, after a few manipulations,

ZB(N
′) =

(
(d− 1)d−1

dd−2

)n

. (13)

Interestingly, the expression on the right-hand side of (13)
appears also in Corollary 1a in [62]. (One of the main results
of Schrijver’s paper [62] is to show that this expression is a
lower bound onperm(θ).)

Clearly, the advantage ofN′ is that we can explicitly
computeZB(N

′). However,ZB(N
′) is a weaker lower bound

on perm(θ) thanpermB(θ) = ZB(N). (For example, for the
matrix θ in (12) we obtainperm(θ) = 10 > permB(θ) =
ZB(N) = 9 > ZB(N

′) = 729/256 = 2.848 . . . .) This is not
totally surprising given the fact that the right-hand side of (13)
depends only onθ inasmuch asθ determinesn andd. Indeed,
observing that1d · θ is a doubly stochastic matrix, we get

log
(
ZB(N)

)

(a)
> − FB,N(γ)

∣
∣
γ= 1

d
·θ

(b)
= − UB,N(γ) +HB,N(γ)

∣
∣
γ= 1

d
·θ

(c)
=
∑

i,j

θi,j
d

log(θi,j)

−
∑

i,j

θi,j
d

log

(
θi,j
d

)

+
∑

i,j

(

1− θi,j
d

)

log

(

1− θi,j
d

)

= n log(d) +
∑

i,j

(

1− θi,j
d

)

log

(

1− θi,j
d

)

(d)
= n log(d) +

∑

i





n∑

j=1

u

(
θi,j
d

)

+

max(n,d)
∑

j=n+1

u(0)





(e)
> n log(d) +

∑

i





d∑

j=1

u

(
1

d

)

+

max(n,d)
∑

j=d+1

u(0)





= n(d−1) log(d−1)− n(d−2) log(d)
(f)
= log

(
ZB(N

′)
)
,

where at step (a) we have used Definition 11, where at steps (b)
and (c) we have used Lemma 14, where at step (d) we have
used the functionu : [0, 1]→ R, ξ 7→ (1−ξ) log(1−ξ), where
at step (e) we have used Karamata’s inequality [71] (note that u
is convex and that, after sorting,(θi,1/d, . . . , θi,n/d, 0, . . . , 0)
majorizes(1/d, . . . , 1/d, 0, . . . , 0)), and where at step (f) we
have used (13). (See also [15, Section 3] for similar inequali-
ties as in the above display equation.)
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Interestingly enough, as shown by the authors of [35], for
any M ∈ Z>0 one can give a high-order approximation
of
〈
ZG(Ñ

′)
〉

Ñ′∈Ñ ′
M

, and therefore of the degree-M Bethe

partition function [16]ZB,M (N′) =
(〈
ZG(Ñ

′)
〉

Ñ′∈Ñ ′
M

)1/M
.

For the corresponding expressions we refer the interested
reader to [35].

Near the beginning of this subsection we assumed thatθ is
a non-negative integral matrix where all row and all column
sums are equal to some constantd. This is less restrictive than
it appears. Namely, Sinkhorn’s theorem states that any positive
n×n matrix θ can be written asθ = D1 ·θ′ ·D2 whereθ′ is
doubly stochastic and whereD1 andD2 are diagonal matrices
with strictly positive diagonal elements (see,e.g., [72], which
presents also some generalizations of this statement). If there
is a positive integerd such thatd ·θ′ has only integral entries,
then we can writeθ = 1

d ·D1 · (d · θ′) ·D2. (If there is no
suchd, thend can be chosen large enough so thatd · θ′ is as
close to an integral matrix as desired.) With this,perm(θ) =
1
dn ·

(∏

i∈[n](D1)i,i
)
·perm(d ·θ′) ·

(∏

i∈[n](D2)i,i
)
, and we

have reduced the problem of (approximately) computing the
permanent ofθ to (approximately) computing the permanent
of d · θ′, a non-negative integral matrix where all row and all
column sums are equal to some constantd. The complexity of
(approximately) computing the decompositionθ = D1 ·θ′ ·D2

is discussed in [10].

VIII. T HE FRACTIONAL BETHE PERMANENT

The terms that appear inHB(β) in Definition 10 all have
either coefficient+1 or −1, with obvious implications for the
coefficients of the terms ofHB(γ) in Lemma 14. The main
idea behind the fractional Bethe entropy function is to allow
these coefficients to take on also other values. This is done
towards the goal of obtaining a modified Bethe free energy
function whose minimum resembles the minimum of the Gibbs
free energy function even more.12 Such generalizations of the
Bethe entropy function were for example considered in [73]–
[78] and a combinatorial characterization of the fractional
Bethe entropy function was discussed in [56]. In particular,
for the permanent estimation problem such generalizationsare
extensively studied in the very recent paper by A. B. Yedidia
and Chertkov [22], to which we refer for additional discussion
on this topic.

As we will see in this section, if the modifications to the
Bethe entropy function are applied within some suitable limits,
the concavity of the modified Bethe entropy function (and
therefore the convexity of the modified Bethe free energy
function) will be maintained.

Definition 57 Let

κ ,
{
{κi}i∈I , {κj}j∈J , {κi,j}(i,j)∈I×J

}

be a collection of real values. We define theκ-fractional Bethe

12One might also modifyUB(γ), however, we do not pursue this option
here.

entropy function to be

H
(κ)
B : Γn×n→ R,

γ 7→
∑

i

κi ·HB,i(γi) +
∑

j

κj ·HB,j(γi)

−
∑

i,j

κi,j ·HB,(i,j)(γi,j).

(Clearly, if all values inκ equal1 thenH
(κ)
B (γ) = HB(γ),

with HB(γ) as shown in Lemma 14.) �

Lemma 58 The fractional Bethe entropy function from Defi-
nition 57 can also be expressed as follows

H
(κ)
B (γ) = −

∑

i,j

(κi+κj−κi,j) · γi,j log(γi,j)

+
∑

i,j

κi,j · (1−γi,j) log(1−γi,j).

(If all values in κ equal 1 then H
(κ)
B (γ) = HB(γ), with

HB(γ) as shown in Corollary 15.)

Proof: Follows from combining Definition 57 and Lemma 14.
�

The following definition generalizes Definitions 11 and 12
and Corollary 15.

Definition 59 We define theκ-fractional Bethe free energy
function to be

F
(κ)
B : Γn×n→ R,

γ 7→ UB(γ) −H
(κ)
B (γ),

and theκ-fractional Bethe permanent to be

perm
(κ)
B (θ) , exp

(

−min
β∈B

F
(κ)
B (β)

)

.

�

The following theorem gives a sufficient condition onκ so
that theκ-fractional Bethe entropy function is concave inγ,
thereby generalizing Theorem 22.

Theorem 60 If κ is such that

κi > 0 (i ∈ I),
κj > 0 (j ∈ J ),

κi + κj > 2κi,j ((i, j) ∈ I × J ).

thenH
(κ)
B (γ) is a concave function ofγ and F

(κ)
B (γ) is a

convex function ofγ.
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Proof: We have

H
(κ)
B (γ)

(a)
= −

∑

i,j

(
κi+κj

2
+

κi+κj

2
− κi,j

)

·γi,j log(γi,j)

+
∑

i,j

(
κi+κj

2
− κi+κj

2
+ κi,j

)

·(1−γi,j) log(1−γi,j)

(b)
=
∑

i

κi

2
· S(γi) +

∑

j

κj

2
· S(γj)

+
∑

i,j

(
κi+κj

2
− κi,j

)

· h(γi,j),

where at step (a) we have used Lemma 58, and where at
step (b) we have used theS-function as specified in Def-
inition 19 and have introduced the binary entropy function
h : [0, 1]→ R, ξ 7→ −ξ log(ξ)− (1−ξ) log(1−ξ). If κi > 0,
κj > 0, and κi+κj

2 − κi,j > 0 (the latter being equivalent
to κi + κj > 2κi,j), then the concavity ofH(κ)

B (γ) in γ

follows from Theorem 20, the well-known concavity of the
binary entropy function, and the fact that the sum of concave
functions is a concave function.

The convexity ofF (κ)
B (γ) in γ follows from the concavity

of H(κ)
B (γ) in γ and the linearity ofUB(γ) in γ. �

Lemma 61 An interesting choice forκ is

κi = 1 (i ∈ I),
κj = 1 (j ∈ J ),

κi,j = 1− 1

2n
((i, j) ∈ I × J ).

The resultingH(κ)
B (γ) is a concave function ofγ and the

resultingF (κ)
B (γ) is a convex function ofγ. Moreover, letting

1n×n be the all-one matrix of sizen× n, we obtain

perm(1n×n)

perm
(κ)
B (1n×n)

=

√
2π

e
·
(
1 + o(1)

)
= 0.922 . . .·

(
1+o(1)

)
,

whereo(1) is w.r.t. n. (Note that, in contrast to Lemma 48,
there is no

√
n-factor on the right-hand side of the above

expression.)

Proof: See Appendix K. �

Let us make a few comments about the choice ofκ in
Lemma 61.

• Fig. 9 shows the exact ratios forn from 2 to 50. In
particular, note that forn = 2 we have

perm(12×2)

perm
(κ)
B (12×2)

= 1.

• For even integersn and for the choice ofκ from
Lemma 61, the matrixθ = I(n/2)×(n/2) ⊗ 12×2 yields
the ratio perm(θ)

perm
(κ)
B (θ)

= 1. This is in stark contrast to

Conjecture 53 whereθ represents the conjectured “worst-
case” matrix for the ratioperm(θ)

permB(θ) .
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Fig. 9. Illustration of the ratioperm(1n×n)/ perm
(κ)
B (1n×n) for the

special choice ofκ in Lemma 61, whenn varies from2 to 50.

• For integersn andk such thatk dividesn we have

(0.922 . . .)n/k 6
perm(θ)

perm
(κ)
B (θ)

6 1

for the matrixθ , I(n/k)×(n/k) ⊗ 1k×k.

Let us conclude this section on the fractional Bethe entropy
function with a few comments.

• The SPA message update equations in Section V need
to be modified so that its fixed points correspond to
stationary points of the fractional Bethe free energy,i.e.,
so that a modified version of the theorem by Yedidia,
Freeman, and Weiss [13] holds. In contrast to the SPA
message update equations in Section V, the modified
SPA message update equations will be such that the
right-going messages depend not only on the previous
left-going messages but also on the previous right-going
messages, and such that the left-going messages depend
not only on the previous right-going messages but also on
the previous left-going messages. (We omit the details.)
Moreover, the convergence analysis in Section V has to
be revisited.

• We leave it as an open problem to explore theκ parameter
space and to find fractional Bethe permanents for which
interesting statements can be made, in particular for
which a statement like the one in Theorem 49 can be
made.

IX. COMMENTS AND CONJECTURES

It is an interesting challenge to look at theorems involving
permanents and to prove that the theorems still hold if the per-
manents in these theorems are replaced by Bethe permanents.
Let us mention two conjectures along these lines that were
listed in [43].
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A. Perm-Pseudo-Codewords

The following conjecture is based on a theorem in [79]
involving permanents of submatrices of a parity-check matrix.

Definition 62 Let C be a binary linear code described by
a parity-check matrixH ∈ F

m×n
2 , m < n. For a size-

(m+1) subsetS of the column index setI(H) we define
the Bethe perm-vector based onS to be the vectorω ∈ Z

n

with components

ωi ,

{

permB

(
HS\i

)
if i ∈ S

0 otherwise
,

where HS\i is the submatrix ofH consisting of all the
columns ofH whose index is in the setS \ {i}. �

Conjecture 63 Let C be a binary linear code described by
the parity-check matrixH ∈ F

m×n
2 , m < n, let K(H) be

the fundamental cone associated withH [60], [61], and let
S be a size-(m+1) subset ofI(H). The Bethe perm-vector
ω based onS is a pseudo-codeword ofH , i.e.,

ω ∈ K(H), (14)

�

A proof of this conjecture has recently been presented by
Smarandache [80].

B. Permanent-Based Kernels

Based on a result by Cuturi [81], Huang and Jebara [12]
made the following conjecture.

Conjecture 64 (Huang and Jebara [12])Let n be a posi-
tive integer and letX be a set endowed with a kernelκ. Let
X = {x1, . . . , xn} ∈ Xn and Y = {y1, . . . , yn} ∈ Xn. Then

κpermB
: (X,Y ) 7→ permB

([
κ(xi, yj)

]

16i6n, 16j6n

)

is a positive definite kernel onXn ×Xn. �

X. CONCLUSIONS

In this paper, we have pursued a graphical-model-based
approach to approximating the permanent of a non-negative
square matrix, the resulting approximation being called the
Bethe permanent. We have seen that the associated functions,
like the Bethe entropy function and the Bethe free energy
function, are remarkably well behaved for a graphical model
with a non-trivial cycle structure. In that respect, an important
part is played by a theorem by Birkhoff and von Neumann (see
Theorem 3). Moreover, the SPA can be used to efficiently find
the minimum of the Bethe free energy function and thereby the
Bethe permanent. We have also presented a graph-cover-based
analysis that gives additional insights into the inner workings
of the Bethe permanent, its strengths, and its weaknesses,
and we have commented on Bethe-permanent-based upper
and lower bounds on the permanent. Along the way we have
stated several conjectures and open problems, that, if answered
one way or the other, could further elucidate the relationship
between the permanent and the Bethe permanent.
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APPENDIX A
PROOF OFTHEOREM 20

Observe that once the concavity ofS is established, it is
straightforward to verify the claim in the theorem statement
that S(ξ) > 0 for all ξ ∈ Π[n]. Indeed, becauseΠ[n] is a
polytope withn vertices, becauseS takes on the value0 at
each of these vertices, and becauseS is concave, this statement
is true.

Therefore, let us focus on the concavity statement. Clearly,
for n = 2 the statement can easily be verified and so the rest
of this appendix will only discuss the casen > 3.

By definition, a multi-dimensional function is concave if
it is a concave function along any straight line in its domain.
Towards showing that this is indeed the case forS, let us fix an
arbitrary pointξ ∈ Π[n] and an arbitrary direction̂ξ ∈ R

n\{0}
such that the functionξ(τ) , ξ + τ · ξ̂ satisfiesξ(τ) ∈ Π[n]

for a suitableτ -interval around0 (to be defined later). We
need to distinguish three different cases that will be discussed
separately in the following subsections:

1) The pointξ is in the interior ofΠ[n].
2) The pointξ is at a vertex ofΠ[n].
3) The pointξ is neither in the interior nor at a vertex

of Π[n].

A. The Pointξ is in the Interior ofΠ[n]

It is straightforward to see that the direction vectorξ̂ must
satisfy

∑

ℓ

ξ̂ℓ = 0, (15)

otherwiseξ(τ) ∈ Π[n] holds only for τ = 0. Therefore,
we assume that (15) is satisfied. Moreover, becauseξ ∈
interior(Π[n]), we have0 < ξℓ < 1, ℓ ∈ [n], and we can
find an ε > 0 such thatξ(τ) ∈ Π[n] for −ε 6 τ 6 ε. We
will now show that the functionτ 7→ S

(
ξ(τ)

)
is concave at

τ = 0.
We start by computing the first-order derivative

d

dτ
S
(
ξ(τ)

)
= −

∑

ℓ

d

dξℓ(τ)
s
(
ξℓ(τ)

)
· ξ̂ℓ,

and the second-order derivative

d2

dτ2
S
(
ξ(τ)

)
=
∑

ℓ

d2

dξℓ(τ)
2 s
(
ξℓ(τ)

)
· ξ̂2ℓ

(a)
= −

∑

ℓ

ξ̂2ℓ
ξℓ(τ)

+
∑

ℓ

ξ̂2ℓ
1− ξℓ(τ)

,
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where at step (a) we have used Lemma 18. In particular, at
τ = 0 we have

d2

dτ2
S
(
ξ(τ)

)
∣
∣
∣
∣
τ=0

=
∑

ℓ

δℓ,

whereδℓ, ℓ ∈ [n], is defined as

δℓ , −
∑

ℓ

ξ̂2ℓ
ξℓ

+
∑

ℓ

ξ̂2ℓ
1− ξℓ

= −
∑

ℓ

ξ̂2ℓ ·
1− 2ξℓ

ξℓ(1 − ξℓ)
. (16)

The proof will be finished once we have shown that
d2

dτ2S
(
ξ(τ)

)
6 0 at τ = 0, which is equivalent to the condition

that
∑

ℓ

δℓ 6 0. (17)

We show this by separately considering two cases, the first
case beingξ ∈ interior(Π[n]) ∩ [0, 1/2]n, the second case
beingξ ∈ interior(Π[n]) \ [0, 1/2]n.

The first case,ξ ∈ interior(Π[n]) ∩ [0, 1/2]n, is relatively
straightforward. Namely, for allℓ ∈ [n] we have0 < ξℓ 6 1/2,
which implies1− 2ξℓ > 0, which in turn impliesδℓ 6 0, and
so (17) is satisfied.

The second case,ξ ∈ interior(Π[n]) \ [0, 1/2]n, needs
somewhat more work. We start by observing that there is a
unique ℓ∗ ∈ [n] such thatξℓ∗ > 1/2. (Note that there can
only be one suchℓ∗ ∈ [n] because

∑

ℓ ξℓ = 1.) Consequently,
1− 2ξℓ∗ < 0 and1− 2ξℓ > 0, ℓ 6= ℓ∗.

In the following, it is sufficient to consider only directions ξ̂
that satisfyξ̂ℓ∗ > 0 and ξ̂ℓ 6 0, ℓ 6= ℓ∗, or that satisfyξ̂ℓ∗ < 0
and ξ̂ℓ > 0, ℓ 6= ℓ∗. This follows from contemplating (15)
and (16) and from observing that for a givenξ and given
directional magnitudes

{
|ξ̂ℓ|
}

ℓ 6=ℓ∗
, the left-hand side of (17) is

maximized by âξ that satisfies the conditions that we have just
mentioned.13 From (15) it follows that such direction vectors
ξ̂ satisfy

|ξ̂ℓ∗ | =
∑

ℓ 6=ℓ∗

|ξ̂ℓ|. (18)

Before continuing, let us introduce

δ′ , − ξ̂2ℓ∗

ξℓ∗
+
∑

ℓ 6=ℓ∗

ξ̂2ℓ
1− ξℓ

,

δ′′ , +
ξ̂2ℓ∗

1− ξℓ∗
−
∑

ℓ 6=ℓ∗

ξ̂2ℓ
ξℓ
.

Note that
∑

ℓ δℓ = δ′+ δ′′, and so, if we can show thatδ′ 6 0
andδ′′ 6 0 then we have verified the desired result (17).

The factδ′ 6 0 is a consequence of the equation

∑

ℓ 6=ℓ∗

ξ̂2ℓ
1− ξℓ

(a)
6

1

ξℓ∗

∑

ℓ 6=ℓ∗

ξ̂2ℓ
(b)
6

1

ξℓ∗
·




∑

ℓ 6=ℓ∗

|ξ̂ℓ|





2

(c)
=

ξ̂2ℓ∗

ξℓ∗
,

where step (a) follows fromξ being inΠ[n], which implies that
ξℓ∗ = 1−∑ℓ′ 6=ℓ∗ ξℓ′ , which in turn implies thatξℓ∗ 6 1−ξℓ for

13In other words, such âξ produces the “worst-case” left-hand side in (17):
if we can show non-positivity for such direction vectors, wehave implicitly
shown non-positivity for any other direction vector.

all ℓ 6= ℓ∗. Moreover, step (b) follows from a simple inequality
and step (c) follows from (18).

The factδ′′ 6 0 is shown as follows. We start by observing
that

(1− ξℓ∗) ·




∑

ℓ 6=ℓ∗

ξ̂2ℓ
ξℓ




(a)
=




∑

ℓ 6=ℓ∗

ξℓ



 ·




∑

ℓ 6=ℓ∗

ξ̂2ℓ
ξℓ





=




∑

ℓ 6=ℓ∗

√

ξℓ
2



 ·




∑

ℓ 6=ℓ∗

(

|ξ̂ℓ|√
ξℓ

)2




(b)
>




∑

ℓ 6=ℓ∗

|ξ̂ℓ|





2

(c)
= ξ̂2ℓ∗ ,

where step (a) follows fromξ being inΠ[n] (which implies
that ξℓ∗ = 1 − ∑ℓ 6=ℓ∗ ξℓ), where at step (b) we use the
Cauchy-Schwarz inequality, and where at step (c) we use (18).
Rearranging this inequality, we see that it is equivalent tothe
inequalityδ′′ℓ 6 0.

B. The Pointξ is at a Vertex ofΠ[n]

Clearly, the direction vector̂ξ must satisfy (15). Moreover,
becauseξ is at a vertex ofΠ[n], there is anℓ∗ ∈ [n] such that
ξℓ∗ = 1 andξℓ = 0, ℓ 6= ℓ∗, and such that̂ξℓ∗ < 0 and ξ̂ℓ > 0,
ℓ 6= ℓ∗. Then we can find anε > 0 such thatξ(τ) ∈ Π[n] for
0 6 τ 6 ε. We will now show that the functionτ 7→ S

(
ξ(τ)

)

is concave atτ = 0.
We start by plugging in the definition ofξ(τ) into S

(
ξ(τ)

)
,

i.e.,

S
(
ξ(τ)

)
= −

∑

ℓ

ξℓ(τ) log
(
ξℓ(τ)

)

+
∑

ℓ

(
1− ξℓ(τ)

)
log
(
1− ξℓ(τ)

)

= − (1 + τ ξ̂ℓ∗) log(1 + τ ξ̂ℓ∗)−
∑

ℓ 6=ℓ∗

(τ ξ̂ℓ) log(τ ξ̂ℓ)

+ (−τ ξ̂ℓ∗) log(−τ ξ̂ℓ∗) +
∑

ℓ 6=ℓ∗

(1 − τ ξ̂ℓ) log(1− τ ξ̂ℓ).

From this we compute the first-order derivative

d

dτ
S
(
ξ(τ)

)
= − ξ̂ℓ∗ log(1 + τ ξ̂ℓ∗)− ξ̂ℓ∗

−
∑

ℓ 6=ℓ∗

ξ̂ℓ log(τ) −
∑

ℓ 6=ℓ∗

ξ̂ℓ log(ξ̂ℓ)−
∑

ℓ 6=ℓ∗

ξ̂ℓ

− ξ̂ℓ∗ log(τ) − ξ̂ℓ∗ log(−ξ̂ℓ∗)− ξ̂ℓ∗

−
∑

ℓ 6=ℓ∗

ξ̂ℓ log(1 − τ ξ̂ℓ)−
∑

ℓ 6=ℓ∗

ξ̂ℓ

(a)
= − ξ̂ℓ∗ log(1 + τ ξ̂ℓ∗)−

∑

ℓ 6=ℓ∗

ξ̂ℓ log(ξ̂ℓ)

− ξ̂ℓ∗ log(−ξ̂ℓ∗)−
∑

ℓ 6=ℓ∗

ξ̂ℓ log(1− τ ξ̂ℓ), (19)

where at step (a) we have used
∑

ℓ ξ̂ℓ = 0 multiple times. The
second-order derivative is then

d2

dτ2
S
(
ξ(τ)

)
= − ξ̂2ℓ∗

1 + τ ξ̂ℓ∗
+
∑

ℓ 6=ℓ∗

ξ̂2ℓ
1− τ ξ̂ℓ

.
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For τ ↓ 0 we obtain

d2

dτ2
S
(
ξ(τ)

)
∣
∣
∣
∣
τ↓0

= −ξ̂2ℓ∗ +
∑

ℓ 6=ℓ∗

ξ̂2ℓ

(a)
= −



−
∑

ℓ 6=ℓ∗

ξ̂ℓ





2

+
∑

ℓ 6=ℓ∗

ξ̂2ℓ

(b)
6 0,

where at step (a) we have used (15) and where step (b) follows
from a simple inequality and the fact thatξ̂ℓ > 0 for ℓ 6= ℓ∗.
Therefore, the functionτ 7→ S

(
ξ(τ)

)
is concave atτ = 0.

C. The Pointξ is Neither in the Interior nor at a Vertex ofΠ[n]

The fact thatξ is neither in the interior nor at a vertex of
Π[n] means that there is anℓ∗ ∈ [n] such that0 < ξℓ∗ < 1.
Clearly, the direction vector̂ξ must satisfy (15), plus some
additional constraints that are irrelevant for the discussion
here. Then we can find anε > 0 such thatξ(τ) ∈ Π[n] for
0 6 τ 6 ε. The concavity of the functionτ 7→ S

(
ξ(τ)

)
at

τ = 0 follows then from the observation that, for small non-
negativeτ , the second-order derivative ofS

(
ξ(τ)

)
w.r.t. τ is

dominated by the second-order derivative of the expression
−∑ℓ: ξℓ=0, ξ̂ℓ>0 ξℓ(τ) log

(
ξℓ(τ)

)
, a function that is concave

in τ .

APPENDIX B
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We obtain the expression in the lemma statement by evaluat-
ing S

(
ξ(τ)

)
and the first-order derivative ofS

(
ξ(τ)

)
w.r.t. τ

at τ = 0. Clearly, S
(
ξ(τ)

)
= 0 and so we can focus on

computing the first-order derivative.
Fortunately, in Appendix A-B we have already computed

the first-order derivative for exactly the same setup. Namely,
from (19) we obtain

d

dτ
S
(
ξ(τ)

)
= −ξ̂ℓ∗ log(1 + τ ξ̂ℓ∗)−

∑

ℓ 6=ℓ∗

ξ̂ℓ log(ξ̂ℓ)

− ξ̂ℓ∗ log(−ξ̂ℓ∗)−
∑

ℓ 6=ℓ∗

ξ̂ℓ log(1 − τ ξ̂ℓ).

In the limit τ ↓ 0 this simplifies to

d

dτ
S
(
ξ(τ)

)
∣
∣
∣
∣
τ↓0

= −
∑

ℓ 6=ℓ∗

ξ̂ℓ log(ξ̂ℓ) + (−ξ̂ℓ∗) log(−ξ̂ℓ∗). (20)

This can be rewritten as follows

d

dτ
S
(
ξ(τ)

)
∣
∣
∣
∣
τ↓0

= |ξ̂ℓ∗ | ·



−
∑

ℓ 6=ℓ∗

|ξ̂ℓ|
|ξ̂ℓ∗ |

log

(

|ξ̂ℓ|
|ξ̂ℓ∗ |

)

 ,

where we have used−ξ̂ℓ∗ = |ξ̂ℓ∗ |, ξ̂ℓ = |ξ̂ℓ|, ℓ 6= ℓ∗, and
|ξ̂ℓ∗ | =

∑

ℓ 6=ℓ∗ |ξ̂ℓ|, i.e.,
∑

ℓ 6=ℓ∗ |ξ̂ℓ|/|ξ̂ℓ∗ | = 1. This verifies
the expressions forS

(
ξ(τ)

)
in the lemma statement.

Finally, the non-negativity of the coefficient ofτ in (4)
follows from |ξ̂ℓ∗ | > |ξ̂ℓ|, ℓ 6= ℓ∗, which is a consequence
of the above-mentioned relation|ξ̂ℓ∗ | =

∑

ℓ 6=ℓ∗ |ξ̂ℓ|.
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Clearly we haveγi,j = 1 if j = σ(i) andγi,j = 0 otherwise.
From the condition that̂γ is such thatγ(τ) ∈ Γn×n for small
non-negativeτ , it follows that

∑

j γ̂i,j = 0 for all i ∈ I and
∑

i γ̂i,j = 0 for all j ∈ J . Moreover, for everyi ∈ I we have
γ̂i,j 6 0 if j = σ(i) and γ̂i,j > 0 otherwise. Then

HB

(
γ(τ)

)

(a)
=

1

2

∑

i

S
(
γi(τ)

)
+

1

2

∑

j

S
(
γj(τ)

)

(b)
= −τ

2

∑

i

∑

j 6=σ(i)

γ̂i,j log(γ̂i,j) +
τ

2

∑

i

(−γ̂i,σ(i)) log(−γ̂i,σ(i))

− τ

2

∑

j

∑

i6=σ̄(j)

γ̂i,j log(γ̂i,j) +
τ

2

∑

j

(−γ̂σ̄(j),j) log(−γ̂σ̄(j),j)

+O(τ2),

where step (a) follows from Lemma 21 and where at step (b)
we have usedS(γi) = 0, S(γj) = 0, and (20).

We observe that in the above expression there are exactly
two terms for every edgee = (i, j) ∈ I ×J . Rewriting these
summations such that all the main summations are overi ∈ I,
we obtain

HB

(
γ(τ)

)

= −τ
∑

i

∑

j 6=σ(i)

γ̂i,j log(γ̂i,j) + τ
∑

i

(−γ̂i,σ(i)) log(−γ̂i,σ(i))

+O(τ2)

(a)
= τ

∑

i

|γ̂i,σ(i)| ·



−
∑

j 6=σ(i)

|γ̂i,j |
|γ̂i,σ(i)|

log

( |γ̂i,j |
|γ̂i,σ(i)|

)


+O(τ2),

which is the first display equation in the lemma state-
ment. Here, at step (a) we have used−γ̂i,σ(i) = |γ̂i,σ(i)|,
γ̂i,j = |γ̂i,j |, j 6= σ(i), and |γ̂i,σ(i)| =

∑

j 6=σ(i) |γ̂i,j |, i.e.,
∑

j 6=σ(i) |γ̂i,j |/|γ̂i,σ(i)| = 1.

The non-negativity of the coefficient ofτ in the above
expression follows from|γ̂i,σ(i)| > |γ̂i,j |, j 6= σ(i), which
is a consequence of the above-mentioned relation|γ̂i,σ(i)| =∑

j 6=σ(i) |γ̂i,j |.
On the other hand, rewriting these summations such that all

the main summations are overj ∈ J , we obtain the second
display equation in the lemma statement.

APPENDIX D
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From the assumptions in the theorem statement it follows
that |γ̂i,σ(i)| = −γ̂i,σ(i) for all i ∈ I and that|γ̂i,j | = γ̂i,j for
all i ∈ I, j ∈ J \ {σ(i)} (see also the proof of Lemma 25 in
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Appendix C). Then,

UB

(
γ(τ)

)

(a)
= −

∑

i

(1+τ γ̂i,σ(i)) log(θi,σ(i))−
∑

i

∑

j 6=σ(i)

(τ γ̂i,j) log(θi,j)

(b)
= −

∑

i

log(θi,σ(i))− τ
∑

i

∑

j 6=σ(i)

|γ̂i,j | log
(

θi,j
θi,σ(i)

)

(c)
= C − τ

∑

i

∑

j 6=σ(i)

|γ̂i,j | log
(

θi,j
θi,σ(i)

)

,

where at step (a) we have used Corollary 15, where at step (b)
we have used that

∑

j γ̂i,j = 0 holds for everyi ∈ I,
i.e., that −γ̂i,σ(i) =

∑

j 6=σ(i) γ̂i,j =
∑

j 6=σ(i) |γ̂i,j | holds
for every i ∈ I, and where at step (c) we have defined
C , −∑i log(θi,σ(i)). (Note that there is noO(τ2) term
in the above expressions.) Then

FB

(
γ(τ)

)

(a)
= UB(γ)−HB(γ)

(b)
= C − τ

∑

i

∑

j 6=σ(i)

|γ̂i,j | log
(

θi,j
θi,σ(i)

)

− τ
∑

i

|γ̂i,σ(i)| ·



−
∑

j 6=σ(i)

|γ̂i,j |
|γ̂i,σ(i)|

log

( |γ̂i,j |
|γ̂i,σ(i)|

)




+O(τ2)

(c)
= C − τ

∑

i

∑

i′ 6=i

|γ̂i,σ(i′)| log
(
θi,σ(i′)

θi,σ(i)

)

− τ
∑

i

|γ̂i,σ(i)| ·



−
∑

i′ 6=i

|γ̂i,σ(i′)|
|γ̂i,σ(i)|

log

( |γ̂i,σ(i′)|
|γ̂i,σ(i)|

)




+O(τ2)
(d)
= C − τ

∑

i

∑

i′ 6=i

µi · pi,i′
︸ ︷︷ ︸

= Qi,i′

·
[
− log(pi,i′) + Ti,i′

]
+O(τ2),

(21)

where at step (a) we have used Corollary 15, where at step (b)
we have inserted the above expression forUB(γ) and the
expression forHB(γ) from Lemma 25, where at step (c) we
have replaced the summations overj ∈ J , j 6= σ(i), by
summations overi′ ∈ I, σ(i′) 6= σ(i), i.e., by summations
over i′ ∈ I, i′ 6= i, and where at step (d) we have introduced
the definitions

µi , |γ̂i,σ(i)| (22)

pi,i′ ,
|γ̂i,σ(i′)|
|γ̂i,σ(i)|

, (23)

Qi,i′ , µi · pi,i′ = |γ̂i,σ(i′)|, (24)

Ti,i′ , log

(
θi,σ(i′)

θi,σ(i)

)

, (25)

1

2

3

4

5

Fig. 10. Trellis for the random walk described in Appendix D.(Heren = 5.)
Highlighted is an instance of a possible walk.

for all (i, i′) ∈ I × I with i 6= i′. One can verify that the
assumptions on̂γ imply that

∑

i

µi = 1,

∑

i′ 6=i

pi,i′ = 1 (for all i ∈ I),

∑

i′ 6=i

Qi,i′ = µi (for all i ∈ I),

∑

i6=i′

Qi,i′ = µi′ (for all i′ ∈ I),

∑

i

∑

i′ 6=i

Qi,i′ = 1.

In order to obtain the theorem statement, we need to
maximize the coefficient of(−τ) in (21). Before doing this,
let us quickly discuss the meaning of this coefficient.

Namely, consider the trellis in Fig. 10 with state spaceI
(i.e., with n states) and where a trellis section has a branch
from statei ∈ I to statei′ ∈ I if and only if i 6= i′. It is
straightforward to see that there is a bijection between, onthe
one hand, the set of all left-to-right walks in the time-invariant
trellis shown in Fig. 10, and, on the other hand, the set of
backtrackless walks inN(θ) (see Fig. 1) that were mentioned
after Lemma 25. In particular, going from statei ∈ I to state
i′ ∈ I\{i} in the trellis of Fig. 10 corresponds to the two half-
steps of going from nodei ∈ I to nodeσ(i′) ∈ J and then
to nodei′ ∈ I in N(θ). With this, translating (backtrackless)
random walks to left-to-right random walks in the trellis in
Fig. 10, we obtain that

• µi is the probability of being in statei,
• pi,i′ is the probability of going to statei′ 6= i, conditioned

on being in statei,
• Qi,i′ is the probability of being in statei and then going

to statei′ 6= i,
• −∑i

∑

i′ 6=i µipi,i′ log(pi,i′) is the entropy rate of (the
Markov chain corresponding to) the random walk on this
trellis,

• Ti,i′ is a branch metric,
•
∑

i

∑

i′ 6=i µipi,i′Ti,i′ is the average branch metric of the
random walk on this trellis,
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• and maximizing the coefficient of(−τ) in the above
expression forFB

(
γ(τ)

)
(see (21)) means to find the

(time-invariant) left-to-right random walk on this trellis
that maximizes

∑

i

∑

i′ 6=i

µi · pi,i′ ·
[
− log(pi,i′ ) + Ti,i′

]
,

i.e., the sum of the entropy rate and the average branch
metric of the random walk. (In statistical physics terms,
this expression can be considered to be some negative
free energy function.)

The purpose of rewriting the above expression in the way
we did, was so that it is very close to the notation used
in [82, Lemma 44] that solved exactly the above maximization
problem. (Note that related problems were also solved in [83]
and [84].)

As was shown in [82, Lemma 44], the maximal value of

∑

i

∑

i′ 6=i

µi · pi,i′
︸ ︷︷ ︸

= Qi,i′

·
[
− log(pi,i′) + Ti,i′

]

is log(ρ) and is attained by

µ∗
i = κ · uL

i · uR
i ,

p∗i,i′ =

{
uR
i′

uR
i

· Ai,i′

ρ (if i 6= i′)

0 (otherwise)
,

Q∗
i,i′ = µ∗

i · p∗i,i′ =
{

κ · u
L
i ·Ai,i′ ·u

R
i′

ρ (if i 6= i′)

0 (otherwise)
,

whereA, ρ, uL, anduR are defined in the theorem statement,
and whereκ is a normalization constant such that

∑

i µ
∗
i =

1. Note thatA, called the noisy adjacency matrix in [82,
Lemma 44], is such thatAi,i′ = exp(Ti,i′) for i 6= i′ and
such thatAi,i = 0.

BecauseA contains only non-negative entries,ρ is the so-
called Perron eigenvector ofA, anduL anduR are the so-
called left and right, respectively, Perron eigenvectors of A;
one can show that these two vectors contain only non-negative
entries.

Translating this result back using (22), (23), and (24), we
obtain the result given in the theorem statement.
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We start by formulating the SPA message update rule for
functions nodegi, i ∈ I, at iterationt > 1. Following [38]–
[40], we have for everyi ∈ I, everyj ∈ J , and everȳai,j ∈
Ai,j ,

−→µ (t)
i,j (āi,j) ,

1

Ci,j
·
∑

ai∈Ai
ai,j=āi,j

fi(ai) ·
∏

j′ 6=j

←−µ (t−1)
i,j′ (ai,j′ ),

whereCi,j is some suitable normalization constant. Conse-
quently, the update of the likelihood ratio reads

−→
Λ

(t)
i,j ,

−→µ (t)
i,j (0)

−→µ (t)
i,j (1)

=

∑
ai∈Ai
ai,j=0

fi(ai) ·
∏

j′′ 6=j
←−µ (t−1)

i,j (ai,j′′ )

∑
ai∈Ai
ai,j=1

fi(ai) ·
∏

j′′ 6=j
←−µ (t−1)

i,j′′ (ai,j′′ )

(a)
=

∑

j′ 6=j

√
θi,j′ · ←−µ (t−1)

i,j′ (1) ·∏j′′ 6=j,j′
←−µ (t−1)

i,j′′ (0)
√
θi,j ·

∏

j′′ 6=j
←−µ (t−1)

i,j′′ (0)

(b)
=

1
√
θi,j
·
∑

j′ 6=j

√

θi,j′ ·
(←−
Λ

(t−1)
i,j′

)−1

,

where at step (a) we have usedAi = {uj | j ∈ J } for
simplifying the numerator, and where at step (b) we have
used the definition of

←−
Λ

(t−1)
i,j′ , j′ 6= j. This yields the first

expression in the lemma statement. The second expression is
obtained analogously by considering the SPA message update
rule for function nodesgj , j ∈ J , at iterationt > 1.

Now we turn our attention to computing the beliefs at the
function nodesgi, i ∈ I, at iterationt > 0. Following [38]–
[40], we have for everyi ∈ I and everyai ∈ Ai,

β
(t)
i,ai

=
1

Ci
· fi(ai) ·

∏

j

←−µ (t)
i,j (ai,j),

whereCi is chosen such that
∑

ai
β
(t)
i,ai

= 1. In particular, for
ai = uj, j ∈ J , we get

β
(t)
i,ai

=
1

Ci
· fi(ai) ·

∏

j′

←−µ (t)
i,j′(ai,j′ )

=
1

Ci
· fi(ai) ·




∏

j′

←−µ (t)
i,j′ (0)



 ·
∏

j′

←−µ (t)
i,j′ (ai,j′ )

←−µ (t)
i,j′(0)

=
1

Ci
·
√

θi,j ·




∏

j′

←−µ (t)
i,j′ (0)



 · ←−V (t)
i,j .

BecauseCi and the expression in the parentheses are inde-
pendent ofj, we have just verified the third expression in
the lemma statement. The fourth expression in the lemma
statement is obtained analogously by considering the beliefs
at function nodesgj , j ∈ J , at iterationt > 1.

APPENDIX F
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The pseudo-dual function of the Bethe free energy function
is given by evaluating the Lagrangian of the Bethe free energy
function at a stationary point [48]. Therefore, in a first step, we
want to write down the Lagrangian of the Bethe free energy
function. To that end, we take the Bethe free energy function
as in Definition 10,i.e.,

FB

(
{βi}, {βj}, {βe}

)
=
∑

i

UB,i(βi) +
∑

j

UB,j(βj)

−
∑

i

HB,i(βi)−
∑

j

HB,j(βj) +
∑

e

HB,e(βe).

(For the purposes of this appendix, the expression forFB in
Definition 10 is somewhat more convenient than the one in
Lemma 14.)
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Now, introducing a Lagrange multiplier for the edge con-
sistency constraints (but not for the other constraints imposed
by the local marginal polytopeB, see Definition 9), we obtain
the relevant Lagrangian

LBethe

(
{βi}, {βj}, {βe}, {

←−
λe}, {

−→
λe}

)

= FB({βi}, {βj}, {βe})

−
∑

e=(i,j)

∑

ae

←−
λe,ae

·




∑

ai: ai,e=ae

βi,ai
− βe,ae





−
∑

e=(i,j)

∑

ae

−→
λe,ae

·




∑

aj : aj,e=ae

βj,aj
− βe,ae



 ,

BecauseFB is convex in{βi}i and {βj}j , but concave in
{βe}e, the pseudo-dual function ofFB is given by

F#
Bethe

(
{←−λe}, {

−→
λe}

)

= max
{βe}

min
{βi}, {βj}

LBethe

(
{βi}, {βj}, {βe}, {

←−
λe}, {

−→
λe}

)
,

where the maximization/minimization is over all{βe}e, {βi}i,
{βj}j that satisfy the constraints imposed by the local
marginal polytopeB, except for the edge consistency con-
straints. We obtain the maximizing{βe}e and the minimizing
{βi}i, {βj}j by setting suitable partial derivatives to zero.
This yields,

βi,ai
=

1

Zi
· gi(ai) ·

∏

e: i(e)=i

exp
(←−
λe,ai,j(e)

)

,

βj,aj
=

1

Zj
· gj(aj) ·

∏

e: j(e)=j

exp
(−→
λe,ai(e),j

)

,

βe,ae
=

1

Ze
· exp

(←−
λe,ae

)

· exp
(−→
λe,ae

)

,

where i(e) and j(e) give the label of the, respectively, left
and right vertex to whiche is incident, and where{Zi}i,
{Zj}j , and {Ze}e are suitable normalization constants such
that relevant sums are equal to one.

Now, plugging these beliefs into the Lagrangian, we obtain
(after cancelling several terms) the expression

F#
Bethe

(
{←−λe}, {

−→
λe}

)

= −
∑

i

log(Zi)−
∑

j

log(Zj) +
∑

e

log(Ze)

= −
∑

i

log




∑

ai

gi(ai) ·
∏

e: i(e)=i

exp
(←−
λe,ai,j(e)

)





−
∑

j

log




∑

aj

gj(aj) ·
∏

e: j(e)=j

exp
(−→
λe,ai(e),j

)





+
∑

e

log

(
∑

ae

exp
(←−
λe,ae

+
−→
λe,ae

)
)

.

We proceed by using some details of the definition ofN(θ).
Namely, using the definition of the local function nodes and

taking advantage of the binary alphabetAe = {0, 1}, e ∈ E ,
we obtain (after some simplifications)

F#
Bethe

(
{←−λe}, {

−→
λe}

)

= −
∑

i

log




∑

j

√

θi,j · exp
(←−
λ(i,j),1 −

←−
λ(i,j),0

)





−
∑

j

log

(
∑

i

√

θi,j · exp
(−→
λ(i,j),1 −

−→
λ(i,j),0

)
)

+
∑

e

log
(

1 + exp
((←−

λe,1 −
←−
λe,0

)
+
(−→
λe,1 −

−→
λe,0

)))

From the results in [13] it follows that at a fixed point of
the SPA, the quantity

←−
λ(i,j),0 −

←−
λ(i,j),1 represents the log-

likelihood ratio of the left-going message along the edge(i, j),
and the quantity

−→
λ(i,j),0−

−→
λ(i,j),1 represents the log-likelihood

ratio of the right-going message along the edge(i, j). Clearly,
for every edge(i, j) ∈ I × J , these quantities are related to
the inverse likelihood ratios by

←−
Vi,j = exp

(←−
λ(i,j),1 −

←−
λ(i,j),0

)

,

−→
Vi,j = exp

(−→
λ(i,j),1 −

−→
λ(i,j),0

)

,

respectively. Therefore, we get

F#
Bethe

(
{←−Vi,j}, {

−→
Vi,j}

)

= −
∑

i

log
(√

θi,j ·
←−
Vi,j

)

−
∑

j

log
(√

θi,j ·
−→
Vi,j

)

+
∑

i,j

log
(

1 +
←−
Vi,j ·

−→
Vi,j

)

,

which is the expression in the lemma statement.
Although the interpretation of the log-likelihood ratios was

given by looking at fixed points of the SPA, it is not difficult
to see that we can evaluate this last expression for any set of
inverse likelihood ratios.

APPENDIX G
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This appendix has two subsections. The first subsection con-
siders the case where the global minimum ofFB is achieved
at a vertex ofΓn×n, whereas the second subsection considers
the case where the global minimum ofFB is achieved in the
interior of Γn×n.

For ease of reference, we reproduce here the SPA message
update rules from Lemma 29,i.e.,

−→
V

(t)
i,j =

√
θi,j

∑

j′ 6=j

√
θi,j′ ·

←−
V

(t−1)
i,j′

, t > 1, (i, j) ∈ I × J , (26)

←−
V

(t)
i,j =

√
θi,j

∑

i′ 6=i

√
θi′,j ·

−→
V

(t)
i′,j

, t > 1, (i, j) ∈ I × J . (27)

In both parts of this appendix, the main task will be to exhibit
a contraction operation of a suitably chosen subset of the SPA
messages.
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A. Global Minimum ofFB is Achieved at a Vertex ofΓn×n

Let γ ∈ C be the vertex ofΓn×n that uniquely minimizes
FB. This means thatγ corresponds to the permutationσγ .
(In the following, we will use the short-handsσ , σγ and
σ̄ , σ−1

γ .)

From (26) it follows that
−→
Λ

(t)
i,σ(i) = 1/

−→
V

(t)
i,σ(i), i ∈ I, can be

written as14

−→
Λ

(t)
i,σ(i) =

1
√
θi,σ(i)

·
∑

j 6=σ(i)

√

θi,j ·
←−
V

(t−1)
i,j , t > 1, i ∈ I.

On the other hand, fori ∈ I and j 6= σ(i) the SPA message
update equation in (27) implies

←−
V

(t−1)
i,j =

√
θi,j

∑

i′ 6=i

√
θi′,j ·

−→
V

(t−1)
i′,j

=

√
θi,j

√
θσ̄(j),j ·

−→
V

(t−1)
σ̄(j),j

· 1

1 +
∑

i′ 6=i,σ̄(j)

√
θi′,j ·

−→
V

(t−1)

i′,j√
θσ̄(j),j ·

−→
V

(t−1)

σ̄(j),j

6

√
θi,j

√
θσ̄(j),j ·

−→
V

(t−1)
σ̄(j),j

=

√
θi,j

√
θσ̄(j),j

· −→Λ (t−1)
σ̄(j),j , t > 1, i ∈ I, j 6= σ(i),

where the inequality follows from the fact that all terms in the
summation

∑

i′ 6=i,σ̄(j) are non-negative. Then, combining the
two above expressions, we obtain

−→
Λ

(t)
i,σ(i) 6

∑

j 6=σ(i)

θi,j
√
θi,σ(i)

√
θσ̄(j),j

· −→Λ (t−1)
σ̄(j),j , t > 1, i ∈ I.

Rearranging terms, we obtain
−→
Λ

(t)
i,σ(i)

√
θi,σ(i)

6
∑

j 6=σ(i)

θi,j
θi,σ(i)

·
−→
Λ

(t−1)
σ̄(j),j

√
θσ̄(j),j

=
∑

i′ 6=i

θi,σ(i′)

θi,σ(i)
·
−→
Λ

(t−1)
i′,σ(i′)

√
θi′,σ(i′)

, t > 1, i ∈ I.

Now, for everyt > 0, consider the length-n vector−→m(t) whose
ith entry is

−→
Λ

(t)
i,σ(i)/

√
θi,σ(i). Grouping several of the above

inequalities together, we obtain the vector inequality

−→m(t) 6 A · −→m(t−1), t > 1, (28)

where the vector inequality has to be understood component-
wise, and where then×n matrixA was defined in Theorem 26
for the vertex γ of Γn×n. Let ρ be the maximal (real)
eigenvalue ofA. Then, Corollary 27 and the assumption that
γ is the unique minimizer ofFB allow us to conclude that
ρ < 1. However, becauseρ < 1 implies that all eigenvalues of
A have magnitude strictly smaller than1, the update equation
in (28) represents a contraction, and so

∥
∥−→m(t)

∥
∥
2

t→∞−−−→ 0.

14For simplicity, becausej does not appear on the left-hand side of this
equation, we usej as a summation variable on the right-hand side. This
is in contrast to (26) wherej appears on the left-hand side and where the
summation variable on the right-hand side isj′.

Therefore,
−→
Λ

(t)
i,σ(i)

t→∞−−−→ 0, i ∈ I.

A similar argument shows that
←−
Λ

(t)
σ̄(j),j

t→∞−−−→ 0, j ∈ J .

Finally, from (26) and (27) and the above results it follows
that

−→
V

(t)
i,j

t→∞−−−→ 0, i ∈ I, j ∈ J , j 6= σ(i),
←−
V

(t)
i,j

t→∞−−−→ 0, i ∈ I, j ∈ J , j 6= σ(i).

All these quantities converge to zero exponentially fast.
When FB achieves its minimum in the interior ofΓn×n,

then we have equality betweenFB andF#
Bethe at stationary

points of the SPA. However, we also have equality in the
present case. Namely, evaluatingF#

Bethe (see Lemma 31) for
the above messages, we obtain

F#
Bethe

({←−
V

(t)
i,j

}
,
{−→
V

(t)
i,j

}) t→∞−−−→ −
∑

i

log(θi,σ(i)),

which indeed equalsFB(γ). From ρ < 1 and FB(γ) =
− log

(
permB(θ)

)
it also follows that

∣
∣
∣
∣
exp

(

− F#
Bethe

({←−
V

(t)
i,j

}
,
{−→
V

(t)
i,j

})
)

− permB(θ)

∣
∣
∣
∣
6 C · e−ν·t

for some suitable constantsC, ν ∈ R>0.

B. Global Minimum ofFB is Achieved in the Interior ofΓn×n

In Corollary 23 we established that the Bethe free energy
function of N(θ) is convex,i.e., it does not have stationary
points besides the global minimum. Therefore, using a theorem
by Yedidia, Freeman, Weiss [13], we know that fixed points
of the SPA correspond to the global minimum of the Bethe
free energy function.

Let
{←−
Vi,j

}

i,j
,
{−→
Vi,j

}

i.j
be inverse likelihood ratios that

constitute a fixed point of the SPA update rules in (26)–(27).
As such, these inverse likelihoods must satisfy

−→
Vi,j =

√
θi,j

∑

j′ 6=j

√
θi,j′ ·

←−
Vi,j′

, (29)

←−
Vi,j =

√
θi,j

∑

i′ 6=i

√
θi′,j ·

−→
Vi′,j

, (30)

for every (i, j) ∈ E . Note that these SPA fixed point inverse
likelihood ratios satisfy0 <

−→
Vi,j < ∞ and 0 <

←−
Vi,j < ∞,

otherwise the assumption that we are dealing with an interior
point of Γn×n would be violated.

It follows from the message gauge invariance mentioned in
Remark 30 that, for any positive real numberC, the inverse
likelihoods

{
C ·←−Vi,j

}

i,j
,
{

1
C ·
−→
Vi,j

}

i.j
also constitute a fixed

point of the SPA update rules. We will use this fact later on.
On the other hand, let

{←−
V

(t)
i,j

}

i,j,t
,
{−→
V

(t)
i,j

}

i,j,t
be a set of

inverse likelihoods obtained by running the SPA onN(θ) ac-
cording to the SPA update rules in (26)–(27). In the following,
we will not work with

{←−
V

(t)
i,j

}

i,j,t
,
{−→
V

(t)
i,j

}

i,j,t
directly, but
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with
{←−ε (t)

i,j

}

i,j,t
,
{−→ε (t)

i,j

}

i,j,t
, which are implicitly defined by

the equations
−→
V

(t)
i,j =

−→
Vi,j ·

(

1 +−→ε (t)
i,j

)

, (31)

←−
V

(t)
i,j =

←−
Vi,j ·

(

1 +←−ε (t)
i,j

)

. (32)

(Note that−1 < ←−ε (t)
i,j < ∞ and −1 < −→ε (t)

i,j < ∞.)

Clearly,
{←−ε (t)

i,j

}

i,j,t
,
{−→ε (t)

i,j

}

i,j,t
can be considered to be a

“measure” of the distance of the SPA messages to the fixed-
point messages. In particular, we have established convergence
of the SPA if we can show that these values converge to zero
for t→∞.

In a first step, we express the SPA message update rules in
terms of

{←−ε (t)
i,j

}

i,j,t
and

{−→ε (t)
i,j

}

i,j,t
.

Lemma 65 For the right-going messages it holds that

−→
δ

(t)
i,j ,

∑

j′ 6=j

√
θi,j′ ·

←−
Vi,j′ · ←−ε (t−1)

i,j′

∑

j′ 6=j

√
θi,j′ ·

←−
Vi,j′

, (33)

−→ε (t)
i,j = −

−→
δ

(t)
i,j

1 +
−→
δ

(t)
i,j

. (34)

For the left-going messages it holds that

←−
δ

(t)
i,j ,

∑

i′ 6=i

√
θi′,j ·

−→
V

(t)
i′,j · −→ε

(t)
i′,j

∑

i′ 6=i

√
θi′,j ·

−→
V

(t)
i′,j

, (35)

←−ε (t)
i,j = −

←−
δ

(t)
i,j

1 +
←−
δ

(t)
i,j

. (36)

Proof: Let us establish (34). The expression in (36) then
follows analogously. We compute

−→
Vi,j ·

(

1 +−→ε (t)
i,j

)
(a)
=
−→
V

(t)
i,j

(b)
=

√
θi,j

∑

j′ 6=j

√
θi,j′ ·

←−
V

(t−1)
i,j′

(c)
=

√
θi,j

∑

j′ 6=j

√
θi,j′ ·

←−
Vi,j′ ·

(

1 +←−ε (t−1)
i,j′

)

(d)
=

√
θi,j

(
∑

j′ 6=j

√
θi,j′ ·

←−
Vi,j′

)

·
(

1 +
−→
δ

(t)
i,j

)

(e)
=

−→
Vi,j

1 +
−→
δ

(t)
i,j

,

where at step (a) we have used (31), where at step (b) we
have used (26), where at step (c) we have used (32), where
at step (d) we have used (33), and where at step (e) we have
used (29). Dividing both sides by

−→
Vi,j , and then subtracting1

from both sides, yields the expression in (34). �

Note that
−→
δ

(t)
i,j is a weighted arithmetic average of the error

values
{←−ε (t−1)

i,j′

}

j′ 6=j
, and that

←−
δ

(t)
i,j is a weighted arithmetic

average of the error values
{−→ε (t)

i′,j

}

i′ 6=i
.

Note also that the expressions in (34) and (36) have the
following peculiarity. Namely, solvingε = −δ/(1 + δ) for

δ we obtainδ = −ε/(1 + ε), which is structurally the same
expression as the first expression but with the roles ofε and
δ interchanged.

Lemma 66 Fix an iteration numbert > 1. Taking advantage
of the message gauge invariance that was mentioned in Re-
mark 30, we can rescale the left-going and right-going fixed-
point messages such that all{←−ε (t−1)

i,j }i,j are non-negative.

With this we define the numbers←−ε (t−1)
max > 0 and←−ε (t)

max > 0
to be the smallest numbers that satisfy

←−ε (t−1)
i,j 6←−ε (t−1)

max , (i, j) ∈ E ,
←−ε (t)

i,j 6←−ε (t)
max, (i, j) ∈ E .

Then

0 6←−ε (t)
i,j 6←−ε (t)

max 6←−ε (t−1)
max (i, j) ∈ E .

Proof: It follows immediately from (33) that

0 6
−→
δ

(t)
i,j 6←−ε (t−1)

max , (i, j) ∈ E ,

and so, because of (34), we have

−1 < −
←−ε (t−1)

max

1 +←−ε (t−1)
max

6 −→ε (t)
i,j 6 0, (i, j) ∈ E . (37)

Using (35), this implies

−1 < −
←−ε (t−1)

max

1 +←−ε (t−1)
max

6
←−
δ

(t)
i,j 6 0, (i, j) ∈ E ,

and so, because of (36), we have

0 6←−ε (t)
i,j 6←−ε (t−1)

max , (i, j) ∈ E . (38)

This proves the statement in the lemma. �

This shows that the errors stay bounded but it does not
prove convergence yet. (This result is essentially equivalent
to the result that is obtained by taking the zero-temperature
limit of the contraction coefficient that is computed in the
SPA convergence analysis of [23]: the result is a contraction
coefficient of1, which is non-trivial, but not good enough to
show that the message update map is a contraction.15)

It turns out that in order to improve these bounds we have
to track the error values over two iteration,i.e., four half
iterations. (We suspect that this is related to the fact thatthe
girth of N(θ), i.e., the length of the shortest cycle ofN(θ),
is 4.)

Lemma 67 Fix an iteration numbert > 1. Taking advantage
of the message gauge invariance that was mentioned in Re-
mark 30, we can rescale the left-going and right-going fixed-
point messages such that all{←−ε (t−1)

i,j }i,j are non-negative and

such that, additionally,mini,j
←−ε (t−1)

i,j = 0. With this, we define

15Given the difference in the graphical model in [23] and the graphical
model considered here, some care is required when comparingthe temperature
that is mentioned here and the temperature that is mentionedin Sections II
and III.
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the numbers←−ε (t−1)
max > 0 and←−ε (t+1)

max > 0 to be the smallest
numbers that satisfy

←−ε (t−1)
i,j 6←−ε (t−1)

max , (i, j) ∈ E ,
←−ε (t+1)

i,j 6←−ε (t+1)
max , (i, j) ∈ E .

Then

0 6←−ε (t+1)
i,j 6←−ε (t+1)

max 6 ν′ · ←−ε (t−1)
max (i, j) ∈ E ,

for some constant0 6 ν′ < 1 that depends only onθ and
the fixed-point messages{←−Vi,j}i,j and {−→Vi,j}i,j , i.e., ν′ is
independent oft.

Proof: The statement←−ε (t+1)
i,j > 0, (i, j) ∈ E follows from

applying Lemma 66 twice. Therefore, we can focus on the
proof of←−ε (t+1)

max 6 ν′ · ←−ε (t−1)
max .

For a given edge(i, j) ∈ E , we observe that−←−ε (t−1)
max

/(
1+

←−ε (t−1)
max

)
6 −→ε (t)

i,j in (37) holds with equality only if←−ε (t−1)
i,j′ =

←−ε (t−1)
max for all edges(i, j′) with j′ 6= j. Similarly, for a given

edge(i, j) ∈ E we observe that←−ε (t)
i,j 6←−ε (t−1)

max in (38) holds

with equality only if −→ε (t)
i′,j = −←−ε (t−1)

max

/(
1 + ←−ε (t−1)

max

)
for

all edges(i′, j) with i′ 6= i. This motivates the definition of
the following sets where we track the edges for which a strict
inequality holds w.r.t. the inequalities just mentioned. Namely,
for t > 1 we define

−→E (t) ,

{

(i, j) ∈ E
∣
∣
∣
∣

there is at least one edge(i, j′),

j′ 6= j, such that(i, j′) ∈ ←−E (t−1)

}

,

←−E (t) ,

{

(i, j) ∈ E
∣
∣
∣
∣

there is at least one edge(i′, j),

i′ 6= i, such that(i′, j) ∈ −→E (t)

}

.

With this, assume that
←−E (t−1) contains all the edges for

which←−ε (t−1)
i,j <←−ε (t−1)

max . Clearly,
−→E (t) then contains all edges

(i, j) for which −→ε (t)
i,j > −←−ε (t−1)

max

/(
1 +←−ε (t−1)

max

)
. Similarly,

←−E (t) contains all edges(i, j) for which←−ε (t)
i,j <←−ε (t−1)

max .

If ←−ε (t−1)
max = 0 then the lemma is clearly true. So, assume

that←−ε (t−1)
max > 0. Let

←−E (t−1) contain all edges(i, j) for which
−→ε (t−1)

i,j < ←−ε (t−1)
max . The assumptions in the lemma statement

guarantee that there is at least one such edge, namely the
edge(s)(i, j) for which −→ε (t−1)

i,j = 0, and so the set
←−E (t−1)

is non-empty. It can then be verified that four half-iterations
later we have

←−E (t+1) = E .
The fact that there is, as mentioned in the lemma statement,

a constantν′ that is t-independent and strictly smaller than1
is then established by tracking the differences between the
left- and the right-hand sides in the above-mentioned strict
inequalities. This is done with the help of (33) and (35).�

The convergence proof is then completed by applying
Lemma 67 repeatedly. One detail needs to be mentioned,
though. Namely, ifmini,j

←−ε (t+1)
i,j > 0, and a non-trivial

re-gauging occurs at the beginning of the next application
of Lemma 67, then in this re-gauging process the value
of maxi,j

←−ε (t+1)
i,j > 0 never increases (in fact, it always

decreases).
Finally, we have

∣
∣
∣
∣
exp

(

− F#
Bethe

({←−
V

(t)
i,j

}
,
{−→
V

(t)
i,j

})
)

− permB(θ)

∣
∣
∣
∣
6 C · e−ν·t

for suitable constantsC, ν ∈ R>0. This follows from, on the
one hand, the fact that whenFB achieves its minimum in the
interior ofΓn×n then we have equality betweenFB andF#

Bethe

at stationary points of the SPA [13], and, on the other hand,
the above convergence analysis.

APPENDIX H
PROOF OFLEMMA 48

In a first step we evaluateperm(1n×n). Namely, we obtain

perm(1n×n) = n!
(a)
=
√
2πn ·

(n

e

)n

·
(
1 + o(1)

)
, (39)

where at step (a) we have used Stirling’s approximation ofn!.
In a second step we evaluatepermB(1n×n). From Defini-

tions 11 and 12 it follows that

permB(1n×n) , exp

(

−min
γ

FB(γ)

)

.

From Corollary 23 and symmetry considerations it follows that
the minimum in the above expression is achieved byγi,j =
1/n, (i, j) ∈ I × J . Therefore,

log
(
permB(1n×n)

)

= − FB(γ)
∣
∣
γi,j=1/n, (i,j)∈I×J

(a)
= − UB(γ) +HB(γ)

∣
∣
γi,j=1/n, (i,j)∈I×J

(b)
= −n2 · 1

n
· log

(
1

n

)

+ n2 ·
(

1− 1

n

)

· log
(

1− 1

n

)

= n · log(n) + n · (n− 1) · log
(

1− 1

n

)

= n · log(n) + n · (n− 1) ·
(

− 1

n
− 1

2n2
+ o

(
1

n2

))

= n · log(n)− (n− 1)− n− 1

2n
+ o(1)

= n · log(n)− n+
1

2
+ o(1),

where at steps (a) and (b) we have used Corollary 15.
Consequently,

permB(1n×n) =
√
e ·
(n

e

)n

·
(
1 + o(1)

)
. (40)

Combining (39) and (40) we obtain the promised result in
the lemma statement.

APPENDIX I
PROOF OFCONJECTURE51 FORθ = 1n×n

Let θ = 1n×n. In this appendix we prove that for any
M ∈ Z>0 and anyP̃ ∈ Ψ̃M it holds that

perm
(

θ↑P̃
)

6
(
perm(θ)

)M
. (41)

Although the proof is somewhat lengthy, the combinatorial
idea behind it is quite straightforward. Moreover, the only
inequality that we use is the AM–GM inequality, which
says that the arithmetic mean of a list of non-negative real
numbers is at least as large as the geometric mean of this
list of numbers. Notably, there is no need to use Stirling’s
approximation of the factorial function.
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Towards showing (41), let us fix some positive inte-
ger M , fix some collection of permutation matrices̃P =
{
P̃ (i,j)

}

i∈I,j∈J
∈ Ψ̃M , defineθ̃ , θ↑P̃ as in Definition 37,

and let the row and column index sets ofθ↑P̃ beI × [M ] and
J × [M ], respectively. With this, it follows from Definition 1
that

perm(θ) =
∑

σ

∏

i∈I

θi,σ(i), (42)

perm(θ̃) =
∑

σ̃

∏

(i,m)∈I×[M ]

θ̃(i,m),σ̃((i,m)), (43)

whereσ ranges over all permutations of the setI and where
σ̃ ranges over all permutations of the setI × [M ].

Note that, because all entries of̃θ are either equal to
zero or to one, the products in (43) evaluate either to zero
or to one. Computingperm(θ̃) is therefore equivalent to
counting theσ̃’s for which these products evaluate to one.
Equivalently,perm(θ̃) equals the number of perfect matchings
in the NFGN(θ̃).

Example 68 Some of the steps of the proof will be illustrated
with the help of the NFGs in Fig. 3 (which are reproduced in
Fig. 11 for ease of reference), wheren = 3 andM = 4.

• Fig. 11(a) shows the NFGN(θ); perm(θ) equals
the number of perfect matchings in Fig. 11(a). Note:
perm(θ) = n! .

• If P̃ =
{
P̃ (i,j)

}

i∈I,j∈J
=
{
Ĩ
}

i∈I,j∈J
, where Ĩ is

the identity matrix of sizeM × M , then we obtain
the M -cover shown in Fig. 11(b), which is a “trivial”
M -cover of N(θ); perm

(
θ↑P̃

)
equals the number of

perfect matchings in Fig. 11(b). Note:perm
(
θ↑P̃

)
=

(
perm(θ)

)M
= (n!)M .

• For a “non-trivial” collection of permutation matrices
P̃ =

{
P̃ (i,j)

}

i∈I,j∈J
we obtain anM -cover like in

Fig. 11(c); perm
(
θ↑P̃

)
equals the number of perfect

matchings in Fig. 11(c). �

Let us therefore count the number of perfect matchings in
N(θ̃), see Fig. 11(c). Before continuing, we define∂̃((i,m)),
(i,m) ∈ I × [M ], to be the set of neighbors of the vertex
(i,m) in N(θ̃), i.e.,

∂̃((i,m)) ,
{

(j,m′) ∈ J × [M ]
∣
∣
∣ P̃

(i,j)
m,m′ = 1

}

.

One can easily verify that for everyi ∈ I, the sets∂̃((i,m)),
m ∈ [M ], form a partition ofJ × [M ]. (See Figs. 11(b)–(c)
that highlight this partitioning fori = 1.) This observation
will be the crucial ingredient of the following steps.

We count the number of perfect matchings inN(θ̃) by
considering the vertices

{
(i,m)

}

m∈[M ]
for i = 1, i = 2, up to

i = n, thereby counting in how many ways we can specifyσ̃
such that the product in (43) equals one. Note that because of
the above partitioning observation, we can, conditioned onthe
selection of a perfect matching up to and including stepi− 1
(which we shall symbolically denote bỹσi−1

1 ), consider the
vertices

{
(i,m)

}

m∈[M ]
independently. Then we define

d̃i,m|σ̃i−1
1

, (i,m) ∈ I × [M ],

1

2 2
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1

(a)

(1, 4)

(1, 3)

(1, 2)

(1, 1)

(1, 4)

(1, 3)

(1, 2)

(1, 1)

(2, 1)

(2, 2)

(2, 3)

(2, 4)

(2, 1)

(2, 2)

(2, 3)

(2, 4)

(3, 1)

(3, 2)

(3, 3)

(3, 1)

(3, 1)

(3, 2)

(3, 3)

(3, 4)

(b)

(1, 4)

(1, 3)

(1, 2)

(1, 1)

(1, 4)

(1, 3)

(1, 2)

(1, 1)

(2, 1)

(2, 2)

(2, 3)

(2, 4)

(2, 1)

(2, 2)

(2, 3)

(2, 4)

(3, 1)

(3, 2)

(3, 3)

(3, 1)

(3, 1)

(3, 2)

(3, 3)

(3, 4)

(c)

Fig. 11. (a) NFGN(θ) for n = 3. (b) “Trivial” 4-cover of N(θ) (c)
A possible4-cover ofN(θ). The coloring of the edges in (b) and (c) show
visually the fact that he sets̃∂((i,m)), m ∈ [M ], form a partition ofJ×[M ]
(here fori = 1). (For more details, see the text in Appendix I).

to be the number of possibilities of choosingσ̃((i,m)), i.e.,
the number of ways that the edge of the perfect matching of
N(θ̃) that is incident on(i,m) can be chosen.

• Let i = 1. Then d̃i,m|σ̃i−1
1

, m ∈ [M ], is the number of
possibilities of choosing the edge of the perfect matching
of N(θ̃) that is incident on(i,m). Because theith
row of θ contains only ones, and because of the above
partitioning observation, we find that̃di,m = n for all
m ∈ [M ], and so,

∑

m∈[M ]

d̃i,m|σ̃i−1
1

= Mn.

We observe that, whatever the selection of theseM edges
is, M vertices on the right-hand side will be incident on
a selected edge, and therefore be “not available anymore”
in the following steps. This reduces the number of “avail-
able” right-hand side vertices toMn−M = M · (n−1).

• Let i = 2. Then d̃i,m|σ̃i−1
1

, m ∈ [M ], is the number of
possibilities of choosing the edge of the perfect matching
of N(θ̃) that is incident on(i,m). Because theith row of
θ contains only ones, because of the above partitioning
observation, and because of the observation at the end of
the above step, we find that

∑

m∈[M ]

d̃i,m|σ̃i−1
1

6 M · (n− 1). (44)

(If all permutation matrices inP̃ are identity matrices,
then it can be verified that the inequality in (44) is
an equality. However, for general̃P , equality in (44)
does not need to hold.) Similar to the end of the above
step, we observe that whatever the selection of these
M edges is,M vertices on the right-hand side will
be incident on a selected edge, and therefore be “not
available anymore” in the following steps. This reduces
the number of “available” right-hand side vertices to
M · (n− 1)−M = M · (n− 2).

• Continuing as above, we observe that for generali ∈ I
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it holds that
∑

m∈[M ]

d̃i,m|σ̃i−1
1

6 M · (n− i+ 1). (45)

Note that fori ∈ I we have

∏

m∈[M ]

d̃i,m|σ̃i−1
1

=




∏

m∈[M ]

d̃
1/M

i,m|σ̃i−1
1





M

(a)
6




1

M

∑

m∈[M ]

d̃i,m|σ̃i−1
1





M

(b)
6

(
1

M
·M · (n− i + 1)

)M

= (n− i+ 1)M , (46)

where at step (a) we have used the fact that the geometric mean
of a collection of non-negative numbers is upper bounded by
the arithmetic mean of the same collection of numbers, and
where at step (b) we have used (45).

With this, we obtain the following upper bound onperm(θ̃).
Namely,

perm(θ̃)
(a)
=
∑

σ̃1
1

∑

σ̃2
1 |σ̃

1
1

· · ·
∑

σ̃n−1
1 |σ̃n−2

1

∑

σ̃n
1 |σ̃n−1

1

1

(b)
=
∑

σ̃1
1

∑

σ̃2
1 |σ̃

1
1

· · ·
∑

σ̃n−1
1 |σ̃n−2

1

∏

mn∈[M ]

d̃n,mn|σ̃
n−1
1

(c)
6
∑

σ̃1
1

∑

σ̃2
1 |σ̃

1
1

· · ·
∑

σ̃n−1
1 |σ̃n−2

1

(n− n+ 1)M

(d)
6 (n− n+ 1)M ·

∑

σ̃1
1

∑

σ̃2
1 |σ̃

1
1

· · ·
∑

σ̃n−1
1 |σ̃n−2

1

1

...
(e)
6
∏

i∈I

(n− i+ 1)M

= (n!)M

(f)
= perm(θ)M ,

where at step (a) we have used the fact thatperm(θ̃) equals
the number of perfect matchings inN(θ̃), where at step (b)
we have used the definition of̃dn,m|σ̃n−1

1
, where at step (c) we

have used (46) fori = n, where at step (d) we take advantage
of the fact that(n−n+1)M is independent of̃σn−1

1 , where at
step (e) we apply similar results as at steps (b)–(d) (note that
for all i, the quantity(n−i+1)M is independent of̃σi−1

1 ), and
where at step (f) we have used the observationperm(θ) = n!.
This shows that the desired inequality (41) indeed holds for
arbitrary positive integerM and P̃ ∈ Ψ̃M .

APPENDIX J
PROOF OFLEMMA 54

We first provepermB

(
θ↑P̃

)
>
(
permB(θ)

)M
and then

permB

(
θ↑P̃

)
6
(
permB(θ)

)M
, from which the promised

equality follows.

For the rest of the proof, we will use the short-handθ̃ for
θ↑P̃ . We remind the reader of Assumption 2,i.e., we will
assume that there is at least one permutationσ : [n]→ [n] such
that

∏

i θi,σ(i) > 0 (otherwise,permB(θ̃) = permB(θ) = 0).
Moreover,N(θ̃) will be the NFG associated with̃θ.16

Towards proving the first inequality, letγ ∈ Γn×n be a
matrix that minimizesFB,N(θ). Based onγ, we define the
(Mn)× (Mn) matrix γ̃ with entries

γ̃(i,m),(j,m′) , γi,j · P̃ (i,j)
m,m′

for all (i,m, j,m′) ∈ I×[M ]×J×[M ]. One can easily verify
that γ̃ ∈ Γ(Mn)×(Mn) and thatFB,N(θ̃)(γ̃) = M ·FB,N(θ)(γ).
From this and Corollary 15 it then follows that

permB(θ̃) >
(
permB(θ)

)M
.

Towards proving the second inequality, letγ̃ ∈ Γ(Mn)×(Mn)

be a matrix that minimizesFB,N(θ̃). One can easily verify

that γ̃(i,m),(j,m′) = 0 wheneverP̃ (i,j)
m,m′ = 0, (i,m, j,m′) ∈

I × [M ]×J × [M ]. Based oñγ, we define then× n matrix
γ with entries

γi,j ,
1

M

∑

m

∑

m′

γ̃(i,m),(j,m′) · P̃ (i,j)
m,m′

for all (i, j) ∈ I×J . One can easily verify thatγ ∈ Γn×n. Let
γ̃(i,m) be the length-n vector based on the(i,m)th row of γ̃,

where we include an entry only if̃P (i,j)
m,m′ = 1. Similarly, define

the length-n vector γ̃(j,m′) based on the(j,m′)th column
of γ̃. One can verify that theith row of γ, i.e., γi, equals
1
M

∑

m γ̃(i,m). Similarly, thejth column ofγ, i.e., γj , equals
1
M

∑

m′ γ̃(j,m′). Then

HB,N(θ̃)(γ̃)
(a)
=

1

2

∑

i

∑

m

S(γ̃(i,m)) +
1

2

∑

j

∑

m′

S(γ̃(j,m′))

(b)
6

M

2

∑

i

S(γ̃i) +
M

2

∑

j

S(γ̃j)

(c)
= M ·HB,N(θ)(γ),

where at step (a) we have used Lemma 21, where at step (b)
we have used the concavity of theS-function (see Theo-
rem 20), and where at step (c) we have used once again
Lemma 21. Moreover, one can easily show thatUB,N(θ̃)(γ̃) =
M · UB,N(θ)(γ), and soFB,N(θ̃)(γ̃) > M · FB,N(θ)(γ). From
this and Corollary 15 it then follows that

permB(θ̃) 6
(
permB(θ)

)M
.

16Let Ñ be theM -cover ofN(θ) corresponding toP̃ . Note that, strictly
speaking,Ñ and N(θ̃) are not the same NFG. The former is anM -cover
of N(θ) (therefore it has two timesMn function nodes, all of them with
degreen), whereas the latter is a complete bipartite graph with two times
Mn function nodes. However, with the above condition onθ, for all practical
purposes they are the same becauseFB,N(θ̃)(γ̃) < ∞ only for matrices

γ̃ ∈ Γ(Mn)×(Mn) for which γ̃(i,m),(j,m′) = 0 wheneverP̃ (i,j)
m,m′ = 0,

(i,m, j,m′) ∈ I × [M ]× J × [M ].
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APPENDIX K
PROOF OFLEMMA 61

Becauseκ satisfies the conditions listed in Theorem 60, the
concavity statement for the Bethe entropy function and the
convexity statement for the Bethe free energy function follow
immediately.

Therefore, let us turn our attention to evaluating the ratio
perm(1n×n)/ perm

(κ)
B (1n×n). In a first step we evaluate

perm(1n×n). Namely, as in the proof of Lemma 48 in
Appendix H we have

perm(1n×n) = n! =
√
2πn ·

(n

e

)n

·
(
1 + o(1)

)
. (47)

In a second step we evaluateperm(κ)
B (1n×n). From The-

orem 60 and symmetry considerations it follows that the
minimum in the above expression is achieved byγi,j = 1/n,
(i, j) ∈ I × J . Therefore,

log
(
permB(1n×n)

)

(a)
= −UB(γ) +H

(κ)
B (γ)

(b)
= −n2 ·

(

1 +
1

2n

)

· 1
n
· log

(
1

n

)

+ n2 ·
(

1− 1

2n

)

·
(

1− 1

n

)

· log
(

1− 1

n

)

=

(

n+
1

2

)

· log(n) +
(

n− 1

2

)

· (n− 1) · log
(

1− 1

n

)

=

(

n+
1

2

)

· log(n)

+

(

n− 1

2

)

· (n− 1) ·
(

− 1

n
− 1

2n2
+ o

(
1

n2

))

=

(

n+
1

2

)

· log(n)− n+ 1 + o(1),

where at step (a) we have usedF (κ)
B (γ) = UB(γ)−H

(κ)
B (γ),

where at (b) we have usedUB(γ) = −
∑

i,j γi,j log(θi,j) = 0

and the expression forH(κ)
B (γ) from Lemma 58. Therefore,

perm
(κ)
B (1n×n) = e ·√n ·

(n

e

)n

·
(
1 + o(1)

)
. (48)

By combining (47) and (48) we obtain the promised result.
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