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Abstract—MDS array codes are widely used in storage systems
to protect data against erasures. We address therebuilding ratio
problem, namely, in the case of erasures, what is the fraction
of the remaining information that needs to be accessed in order
to rebuild exactly the lost information? It is clear that when the
number of erasures equals the maximum number of erasures
that an MDS code can correct then the rebuilding ratio is 1
(access all the remaining information). However, the interesting
and more practical case is when the number of erasures is smaller
than the erasure correcting capability of the code. For example,
consider an MDS code that can correct two erasures: What is
the smallest amount of information that one needs to access in
order to correct a single erasure? Previous work showed that
the rebuilding ratio is bounded between 1

2 and 3
4 , however, the

exact value was left as an open problem. In this paper, we solve
this open problem and prove that for the case of a single erasure
with a 2-erasure correcting code, the rebuilding ratio is 1

2 . In
general, we construct a new family ofr-erasure correcting MDS
array codes that has optimal rebuilding ratio of e

r in the case of
e erasures,1 ≤ e ≤ r. Our array codes have efficient encoding
and decoding algorithms (for the caser = 2 they use a finite field
of size 3) and an optimal update property.

I. I NTRODUCTION

Erasure-correcting codes are the basis of the ubiquitous
RAID schemes for storage systems, where disks correspond
to symbols in the code. Specifically, RAID schemes are
based on MDS (maximum distance separable) array codes that
enable optimal storage and efficient encoding and decoding
algorithms. With r redundancy symbols, an MDS code is
able to reconstruct the original information if no more thanr
symbols are erased. An array code is a two dimensional array,
where each column corresponds to a symbol in the code and
is stored in a disk in the RAID scheme. We are going to refer
to a disk/symbol as a node or a column interchangeably, and
an entry in the array as an element. Examples of MDS array
codes are EVENODD [1], [2], B-code [3], X-code [4], RDP
[5], and STAR-code [6].

Suppose that some nodes are erased in a systematic MDS
array code, we will rebuild them by accessing (reading) some
information in the surviving nodes, all of which are assumed
to be accessible. The fraction of the accessed information in
the surviving nodes is called therebuilding ratio. If r nodes
are erased, then the rebuilding ratio is1 since we need to read
all the remaining information. Is it possible to lower this ratio
for less thanr erasures? Apparently, it is possible: Figure 1
shows an example of our new MDS code with2 information
nodes and2 redundancy nodes, every node has2 elements,

and operations are over a finite field of size3. Consider the
rebuilding of the first information node, it requires accessto 3
elements out of6 (a rebuilding ratio of12 ), becausea = (a +
b)− b and c = (c + b)− b. In practice, there is a difference
between erasures of the information (also called systematic)
and the parity nodes. An erasure of the former will affect
the information access time since part of the raw information
is missing, however erasure of the latter does not have such
effect, since the entire information is accessible. Moreover, in
most storage systems the number of parity nodes is negligible
compared to the number of systematic nodes. Therefore our
constructions focus on the optimally of the rebuilding ratio
related to the systematic nodes.

Figure 1. Rebuilding of a(4, 2) MDS array code overF3. Assume the first
node (column) is erased.

In [7], [8], a related problem is discussed: The nodes are
assumed to be distributed and fully connected in a network,
and the concept of arepair bandwidth is defined as the
minimum amount of data that needs to be transmitted in the
network in order to rebuild the erased nodes. In contrast to our
concept of therebuilding ratio a transmitted element of data
can be a function of a number of elements that are accessible
on the same node. In addition, in their general framework, an
acceptable rebuilding is one that retains the MDS property and
not necessarily rebuilds the original erased node, whereas, we
restrict our solutions toexact rebuilding. It is clear that our
framework is a special case of the general framework, hence,
the repair bandwidth is a lower bound on the rebuilding ratio.
What is known about lower bounds on the repair bandwidth?
In [7] it was proved that a lower bound on the repair bandwidth
for an (n, k) MDS code is:

M

k
·

n − 1

n − k
. (1)

Here the code has a total ofn nodes with k nodes of
information andr = n − k nodes of redundancy/parity, where
M is the total amount of information. Also all the surviving
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0 1 2 R Z
0 ♣ ♠ ♥ ♣
1 ♥ ♦ ♣ ♥
2 ♠ ♣ ♦ ♠
3 ♦ ♥ ♠ ♦

Figure 2. Permutations for zigzag sets in a(5, 3) code with4 rows. Columns
0, 1, and 2 are systematic nodes and columns R, and Z are paritynodes. Each
element in column R is a linear combination of the systematicelements in the
same row. Each element in column Z is a linear combination of the systematic
elements with the same symbol. The shaded elements are accessed to rebuild
column 1.

nodes are assumed to be accessible. It can be verified that
Figure 1 matches this lower bound. Note that Equation (1)
represents the amount of information, it should be normalized
to reach the ratio. A number of researchers addressed the
repair bandwidth problem [7]–[16], however the constructed
code achieving the lower bound all have low code rate, i.e.,
k/n < 1/2. And it was shown by interference alignment in
[14], [15] that this bound is asymptotically achievable forexact
repair.

Instead of trying to construct MDS codes that can be easily
rebuilt, a different approach [17], [18] was used by trying to
find ways to rebuild existing families of MDS array codes.
The ratio of rebuilding a single systematic node was shown
to be 3

4 + o(1) for EVENODD or RDP codes [1], [5], both
of which have 2 parities. However, based on the lower bound
of (1) the ratio can be as small as1/2. Moreover, related
work on constructing codes with optimal rebuilding appeared
independently in [19], [20]. Their constructions are similar to
this work, but only single erasure is considered.

Our main goal in this paper is to design(n, k) MDS array
codes withoptimal rebuilding ratio, for arbitrary number of
parities. We first consider the case of2 parities. We assume
that the code is systematic. In addition, we consider codes with
optimal update, namely, when an information element is writ-
ten, only the element itself and one element from each parity
node needs update, namely, there is optimal reading/writing
during writing of information. Hence, in the case of a code
with 2 parities only 3 elements are updated. Under such
assumptions, we will prove that every parity element is a linear
combination of exactly one information element from each
systematic column. We call this set of information elementsa
parity set. Moreover, the parity sets of a parity node form a
partition of the information array.

For example, Figure 2 shows a code with3 systematic
nodes and2 parity nodes. The parity sets corresponding to
parity nodeR are the sets of information elements in the same
row. The parity sets that correspond to the parity nodeZ are
the sets of information elements with the same symbol. For
instance the first element in columnR is a linear combination
of the elements in the first row and in columns0, 1, and 2.
And the ♣ in column Z is a linear combination of all the
♣ elements in columns0, 1, and 2. We can see that each
systematic column corresponds to a permutation of the four
symbols. In general, we will show that each parity relates toa
set of a permutations of the systematic columns. Without loss
of generality, we assume that the first parity node corresponds

to identity permutations, namely, it is linear combinationof
rows. In the case of codes with2 parities, we call the first
parity therow parity and the second parity thezigzag parity.
The corresponding sets of information elements for a parity
element are calledrow and zigzag sets, respectively.

It should be noted that in contrast to existing MDS array
codes such as EVENODD and X-code, the parity sets in our
codes are not limited to elements that correspond to straight
lines in the array, but can also include elements that correspond
to zigzag lines. We will demonstrate that this property is
essential for achieving an optimal rebuilding ratio.

If a single systematic node is erased, we will rebuild each
element in the erased node either by its corresponding row
parity or zigzag parity, referred to asrebuild by row (or
by zigzag). In particular, we access the row (zigzag) parity
element, and all the elements in this row (zigzag) set, except
the erased element. For example, consider Figure 2, suppose
that the column labeled1 is erased, one can access the8
shaded elements and rebuild its first two elements by rows,
and the rest by zigzags. Namely, only half of the remaining
elements are accessed. It can be verified that for the code in
Figure 2, all the three systematic columns can be rebuilt by
accessing half of the remaining elements. Thus the rebuilding
ratio is 1/2, which is the lower bound expressed in (1).

The key idea in our construction is that for each erased
node, the row sets and the zigzag sets have a large inter-
section - resulting in a small number of accesses. So the
question is: How do we find permutations such that the row
sets and zigzag sets intersect as much as possible? In this
paper, we will present an optimal solution to this question
by constructing permutations that are derived from binary
vectors. This construction provides an optimal rebuildingratio
of 1/2 for any erasure of a systematic node. How do we define
permutations on integers from a binary vector? We simply add
to each integer the binary vector and use the sum as the image
of this integer. Here each integer is expressed as its binary
expansion. For example, in order to define the permutation
on integers{0, 1, 2, 3} from the binary vectorv = (1, 1),
we express each integer in binary:(0, 0), (0, 1), (1, 0), (1, 1).
Then add (mod2) the vectorv = (1, 1) to each integer,
and get(1, 1), (1, 0), (0, 1), (0, 0). At last change each binary
expansion back to integer and define it as the image of the per-
mutation:3, 2, 1, 0. Hence,(0, 1, 2, 3) are mapped to(3, 2, 1, 0)
in this permutation, respectively. This simple technique for
generating permutations is the key in our construction. We can
generalize our construction for arbitraryr (number of parity
nodes) by generating permutations usingr-ary vectors. Our
constructions are optimal in the sense that we can construct
codes withr parities and a rebuilding ratio of1/r.

So far we focused on the optimal rebuilding ratio, however,
a code with two parity nodes should be able to correct two
erasures, namely, it needs to be an MDS code. We will present
that for large enough field size the code can be made MDS.
In particular, another key result in this paper is that for the
case of a code with two parity nodes, the field size is3, and
this field size is optimal.

In addition, our codes have an optimal array size in the
sense that for a given number of rows, we have the maximum
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number of columns among all systematic codes with optimal
ratio and update. However, the length of the array is expo-
nential in the width. We introduce techniques for making the
array wider while having a rebuilding ratio that is very close
to 1/r.

We also considered the following generalization: Suppose
that we have an MDS code with three parity nodes, if we have
a single erasure, using our codes, we can rebuild the erasure
with rebuilding ratio of1/3. What happens if we have two
erasures? What is the rebuilding ratio in this case? Our codes
can achieve the optimal rebuilding ratio of2/3. In general, if
we haver ≥ 3 parity nodes ande erasures happen,1 ≤ e ≤ r,
we will prove that the lower bound of repair bandwidth ise/r
(normalized by the size of the remaining array), and so is the
rebuilding ratio. And the code we constructed achieves this
lower bound for anye.

In summary, the main contribution of this paper is the first
explicit construction of systematic(n, k) MDS array codes for
any constantr = n − k, which achieves optimal rebuilding
ratio of 1

r . Moreover, our codes achieve optimal rebuilding
ratio of e

r when e systematic erasures occur,1 ≤ e ≤ r.
The parity symbols are constructed by linear combinations
of a set of information symbols, such that each information
symbol is contained exactly once in each parity node. These
codes have a variety of advantages: 1) they are systematic
codes, hence it is easy to retrieve information; 2) they have
high code ratek/n, which is commonly required in storage
systems; 3) the encoding and decoding of the codes can be
easily implemented (forr = 2, the code uses finite field of size
3); 4) they match the lower bound of the ratio when rebuilding
e systematic nodes; 5) the rebuilding of a failed node requires
simple computation and access to only1/r of the data in each
node (no linear combination of data); 6) they haveoptimal
update, namely, when an information element is updated, only
r + 1 elements in the array need update; and 7) they have
optimal array size.

The remainder of the paper is organized as follows. Section
II constructs(k+ 2, k) MDS array codes with optimal rebuild-
ing ratio. Section III gives formal definitions and some general
observations on MDS array codes. Section IV introduces code
duplication and thus generates(k + 2, k) MDS array codes for
arbitrary number of columns. We discuss the size of the finite
field needed for these constructions in Section V. Decoding
algorithms for erasures and errors are discussed in Section
VI. Section VII generalizes the MDS code construction to
arbitrary number of parity columns. These generalized codes
have properties that are similar to the(k + 2, k) MDS array
codes, likewise some of them has optimal rebuilding ratio.
Rebuilding of multiple erasures and generalization of the
rebuilding algorithms are presented in Section VIII. Finally
we provide concluding remarks in Section IX.

II. (k + 2, k) MDS ARRAY CODE CONSTRUCTIONS

In the rest of the paper, we are going to use[i, j] to denote
{i, i + 1, . . . , j} and [i] to denote{1, 2, . . . , i}, for integers
i ≤ j. And denote the complement of a subsetX ⊆ M as
X = M\X. For a matrix A, AT denotes the transpose of

A. For a binary vectorv = (v1, ..., vn) we denote byv =
(v1 + 1 mod 2, ..., vn + 1 mod 2) its complement vector.
The standard vector basis of dimensionm will be denoted
as {ei}

m
i=1 and the zero vector will be denoted ase0. For an

integern denote bySn the set of permutations over the integers
[0, n− 1], namely the symmetric group. For two functionsf , g,
denote their composition byf g or f ◦ g.

Recall thatrebuilding ratio is the average fraction of ac-
cesses in the surviving systematic and parity nodes while
rebuilding one systematic node. More specific definition will
be given in the next section. In this section we give the
construction of MDS array code with two parities and optimal
rebuilding ratio1/2 for one erasure, which uses an optimal
finite field of only size3.

We mentioned in the introduction that each(k + 2, k) MDS
array code with optimal update can be constructed by defining
the row and zigzag parities (proofs are given in Section
III). More specifically, the row parity corresponds to identity
permutation in each systematic column, and the zigzag parity
corresponds to a set of permutations{ f0, f1, . . . , fk−1} for the
systematic columns{0, 1, . . . , k}. From the example in Figure
2, we know that in order to get low rebuilding ratio, we need
to find f0, ..., fk−1 such that the row and zigzag sets used in
rebuilding intersect as much as possible. In addition, since
each parity element is a linear combination of elements in
its parity set, we need to define the coefficients of the linear
combination such that the code is MDS. Noticing that all
elements and all coefficients are from some finite field, we
would like to choose the coefficients such that the finite field
size is as small as possible. So our construction of the code
includes two steps:

1) Find zigzag permutations to minimize the ratio.
2) Assign the coefficients such that the code is MDS.

The following construction constructs a family of MDS
array codes with2 parities using binary vectors. From any
set T ⊆ F

m
2 , |T| = k, we construct a(k + 2, k) MDS array

code of size2m × (k + 2). We will show that some of these
codes have the optimal ratio of1

2 .
In this section all the calculations are done overF2. By

abuse of notation we usex ∈ [0, 2m − 1] both to represent the
integer and its binary representation. It will be clear fromthe
context which meaning is in use.

Construction 1 Let A = (ai,j) be an array of size2m × k for
some integersk, m andk < 2m. Let T ⊆ F

m
2 be a set of vectors

of size k which does not contain the zero vector. Forv ∈ T
we define the permutationfv : [0, 2m − 1] → [0, 2m − 1] by
fv(x) = x + v, wherex is represented in its binary represen-
tation. One can check that this is actually a permutation. For
example whenm = 2, v = (1, 0), x = 3,

f(1,0)(3) = 3 + (1, 0) = (1, 1) + (1, 0) = (0, 1) = 1.

One can check that the permutationfv in vector notation is
[2, 3, 0, 1]. In addition, we defineXv = {x ∈ [0, 2m − 1] :
x · v = 0} as the set of integers orthogonal tov. For example,
X(1,0) = {0, 1}. The construction of the two parity columns
is as follows: The first parity is simply the row sums. The
second parity is the linear combination of elements in the
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zigzag set. The zigzag setsZ0, ..., Z2m−1 are defined by the
permutations{ fv j

: vj ∈ T} as ai,j ∈ Zl if fv j
(i) = l. We

will denote the permutationfv j
as f j and the setXv j

as Xj.
Assume columnj is erased, and defineSr = {ai,j : i ∈ Xj}
andSz = {ai,j : i /∈ Xj}. Rebuild the elements inSr by rows
and the elements inSz by zigzags.

Theorem 1 Construct permutations f0, ..., fm and sets
X0, ..., Xm by the vectors{ei}

m
i=0 as in Construction1, where

X0 is modified to beX0 = {x ∈ F
m
2 : x · (1, 1, ..., 1) = 0}.

Then the corresponding(m + 3, m + 1) code hasoptimalratio
of 1

2 .

Before proving the theorem, we first give an example.
Actually, this example is the code in Figure 2 with more
details.

Example 1 Let A be an array of size4 × 3. We construct a
(5, 3) MDS array code forA as in Theorem1 that accesses
1
2 of the remaining information in the array to rebuild any
systematic node (see Figure3). For example,X1 = {0, 1}, and
for rebuilding of node1 (columnC1) we access the elements
a0,0, a0,2, a1,0, a1,2, and the following four parity elements

r0 = a0,0 + a0,1 + a0,2

r1 = a1,0 + a1,1 + a1,2

z f1(2)
= z0 = a0,0 + 2a2,1 + 2a1,2

z f1(3)
= z1 = a1,0 + 2a3,1 + a0,2.

It is trivial to rebuild node1 from the accessed information.
Note that each of the surviving node accesses exactly1

2 of
its elements. It can be easily verified that the other systematic
nodes can be rebuilt the same way. Rebuilding a parity node is
easily done by accessing all the information elements.

In order to prove Theorem 1, we first prove the following
lemma. We use a binary vector to represent its corresponding
systematic node. And define|v\u| = ∑i:vi=1,ui=0 1 as the
number of coordinates at whichv has a1 but u has a0.

Lemma 2 (i) For anyv, u ∈ T, to rebuild nodev, the number
of accessed elements in nodeu is

2m−1 + | fv(Xv) ∩ fu(Xv)|.

(ii) For any0 6= v, u ∈ T,

| fv(Xv) ∩ fu(Xv)| =

{

|Xv|, |v\u| mod 2 = 0

0, |v\u| mod 2 = 1.
(2)

Proof: (i) In rebuilding of nodev we rebuild the elements
in rows Xv by rows, thus the row parity column accesses
the values of the sum of rowsXv. Moreover, the surviving
nodeu also accesses its elements in rowsXv. Hence, by now
|Xv| = 2m−1 elements are accessed. The elements of nodev in
rows Xv are rebuilt by zigzags, thus the zigzag parity column
accesses the values of the zigzags sums{z fv(l) : l ∈ Xv}, and
each surviving systematic node accesses the elements of these
zigzags from its column, unless these elements are already
included in the rebuilding by rows. The zigzag elements in
{Z fv(l) : l ∈ Xv} of nodeu are in rows f−1

u ( fv(Xv)), where

f−1
u is the inverse function offu. Thus the extra elements node

u needs to access are in rowsf−1
u ( fv(Xv))\Xv. But,

| f−1
u ( fv(Xv))\Xv|

= | f−1
u ( fv(Xv)) ∩ Xv|

= | f−1
u ( fv(Xv)) ∪ Xv|

= 2m − | f−1
u ( fv(Xv)) ∪ Xv|

= 2m − (| f−1
u ( fv(Xv))|+ |Xv| − | f−1

u ( fv(Xv)) ∩ Xv|)

= | f−1
u ( fv(Xv)) ∩ Xv|

= | fv(Xv) ∩ fu(Xv)|,

where we used the fact thatfv, fu are bijections, and|Xv| =
2m−1.

(ii) Consider the group(Fm
2 ,+). Recall thatfv(X) = X +

v = {x + v : x ∈ X}. The sets fv(Xv) = Xv + v and
fu(Xv) = Xv + u are cosets of the subgroupXv = {w ∈
F

m
2 : w · v = 0}, and they are either identical or disjoint.

Moreover, they are identical iffv − u ∈ Xv, namely (v −
u) · v = ∑i:vi=1,ui=0 1 ≡ 0 mod 2. However, by definition
|v\u| ≡ ∑i:vi=1,ui=0 1 mod 2, and the result follows.

Let { f0, ..., fk−1} be a set of permutations over the set
[0, 2m − 1] with associated subsetsX0, ..., Xk−1 ⊆ [0, 2m − 1],
where each|Xi| = 2m−1. We say that this set is a set of
orthogonal permutations if for any i, j ∈ [0, k − 1],

| fi(Xi) ∩ f j(Xi)|

2m−1
= δi,j,

where δi,j is the Kronecker delta. For a set of orthogonal
permutations, in order to rebuild any systematic node, only
2m−1 elements are accessed from each surviving systematic
node by Lemma 2. And only2m−1 elements are accessed from
each parity node, too. Hence codes generated by orthogonal
permutations has optimal rebuilding ratio1/2. Now we are
ready to prove Theorem 1.

Proof of Theorem 1: Since|ei\ej| = 1 for anyi 6= j 6= 0,
we get by lemma 2

fi(Xi) ∩ f j(Xi) = ∅.

Now considerei ande0, for i 6= 0. Note thatfi(Xi) = {x+ ei :
x · ei = 0} = {y : y · ei = 1}, so

fi(Xi) ∩ f0(Xi) = {y : y · ei = 1} ∩ {x : x · ei = 0} = ∅.

Similarly, fi(X0) = {x + ei : x · (1, 1, . . . , 1) = 0} = {y :
y · (1, 1, · · · , 1) = 1}, and

f0(X0) ∩ fi(X0)

= {x : x · (1, · · · , 1) = 0} ∩ {y : y · (1, · · · , 1) = 1}

= ∅.

Hence the permutationsf0, . . . , fm are orthogonal permuta-
tions, and the ratio is1/2.

Note that the optimal code can be shortened by removing
some systematic columns and still retain an optimal ratio, i.e.,
for any k ≤ m + 1 we have a code with optimal rebuilding.

Having found the set of orthogonal permutations, we need
to specify the coefficients in the parities such that the codeis
MDS.
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Figure 3. (a) The set of orthogonal permutations as in Theorem 1 with setsX0 = {0, 3}, X1 = {0, 1}, X2 = {0, 2}. (b) A (5, 3) MDS array code generated
by the orthogonal permutations. The first parity columnC3 is the row sum and the second parity columnC4 is generated by the zigzags. For example, zigzag
z0 contains the elementsai,j that satisfy f j(i) = 0.

Consider the(m + 3, m + 1) codeC constructed by Theo-
rem 1 and the vectors{ei}

m
i=0. Let F be the finite field we use.

Let the information in rowi, columnj be ai,j ∈ F. Let its row
and zigzag coefficients beαi,j, βi,j ∈ F. For a row setRu =
{au,0, au,1, . . . , au,m}, the row parity isru = ∑

m
j=0 αu,jau,j.

For a zigzag setZu = {au,0, au+e1,1, . . . , au+em,m}, the zigzag
parity is zu = ∑

m
j=0 βu+e j,jau+e j,j.

Recall that the(m + 3, m + 1) code is MDS iff we can
recover the information from up to2 columns erasures. It
is clear that none of the coefficientsαi,j, βi,j can be zero.
Moreover, if we assign all the coefficients asαi,j = βi,j = 1
we get that in an erasure of two systematic columns the set
of equations derived from the parity columns are linearly
dependent and thus not solvable (the sum of the equations from
the row parity and the sum of those from the zigzag parity will
both be the sum of the entire information array). Therefore
the coefficients need to be from a field with more than1
nonzero element, thus a field of size at least3 is necessary.
The construction below surprisingly shows that in factF3 is
sufficient.

Construction 2 For the codeC in Theorem1 overF3, define
uj = ∑

j
l=0 el for 0 ≤ j ≤ m. Assign row coefficients asαi,j =

1 for all i, j, and zigzag coefficients as

βi,j = 2i·uj

wherei = (i1, . . . , im) is represented in binary and the calcula-
tion in the exponent is done overF2.

The coefficients in Figure 3 are assigned by Construction
2. The following theorem shows that the code is MDS.

Theorem 3 Construction2 is an (m + 3, m + 1) MDS code
with optimal finite field size of3.

Proof: It is easy to see that if at least one of the two
erased columns is a parity column then we can recover the
information. Hence we only need to show that we can recover
from any erasure of two systematic columns. In an erasure
of two systematic columnsi, j ∈ [0, m], i < j, we access the
entire remaining information in the array. Forr ∈ [0, 2m − 1]
setr′ = r+ ei + ej, and recall thatar,i ∈ Zl iff l = r+ ei, thus
ar,i, ar′,j ∈ Zr+ei

and ar,j, ar′,i ∈ Zr+e j
. From the two parity

columns we need to solve the following equations (for some

y1, y2, y3, y4 ∈ F3)








1 1 0 0
0 0 1 1

βr,i 0 0 βr′,j

0 βr,j βr′,i 0

















ar,i

ar,j

ar′,i

ar′,j









=









y1

y2

y3

y4









.

This set of equations is solvable iff

βr,iβr′,i 6= βr,jβr′,j. (3)

Note that the multiplicative group ofF3\0 is isomorphic to
the additive group ofF2, hence multiplying two elements in
F3\0 is equivalent to summing up their exponent inF2 when
they are represented as a power of the primitive element of the
field F3. For columns0 ≤ i < j ≤ m and rowsr, r′ defined
above, we have

βr,iβr′,i = 2r·ui+r′·ui = 2(r+r′)·ui = 2(ei+e j)·∑
i
l=0 el = 2e2

i = 2.

However in the same manner we derive that

βr,jβr′,j = 2(r+r′)·uj = 2(ei+e j)·∑
j
l=0 el = 2

e2
i +e2

j = 20 = 1.

Hence (3) is satisfied and the code is MDS.
Remark: The above proof shows thatβr,i 6= βr′,i, and

βr,j = βr′,j for i < j. And (3) is a necessary and sufficient
condition for a MDS code for vectorsvi 6= vj.

In addition to optimal ratio and optimal field size, we will
show in the next section that the code in Theorem 1 is also
of optimal array size, namely, it has the maximum number of
columns, given the number of rows.

III. F ORMAL PROBLEM SETTINGS AND CONSTRUCTIONS

In this section, we first give some observations of an
arbitrary MDS array code with optimal update. Then we
prove some properties and give some examples of our code in
Construction 1.

Let us define an MDS array code with 2 parities. Let
A = (ai,j) be an array of sizep × k over a finite field
F, where i ∈ [0, p − 1], j ∈ [0, k − 1], and each of its
entry is an information element. We add to the array two
parity columns and obtain an(n = k + 2, k) MDS code of
array size p × n. Each element in these parity columns is
a linear combination of elements fromA. More specifically,
let the two parity columns beCk = (r0, r1, ..., rp−1)

T and
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Ck+1 = (z0, z1..., zp−1)
T. Let R = {R0, R1, ..., Rp−1} and

Z = {Z0, Z1, ..., Zp−1} be two sets such thatRl , Zl are
subsets of elements inA for all l ∈ [0, p − 1]. Then for all
l ∈ [0, p− 1], definerl = ∑a∈Rl

αaa andzl = ∑a∈Zl
βaa, for

some sets of coefficients{αa}, {βa} ⊆ F. We call R and Z
as the sets that generate the parity columns.

We assume the code has optimal update, meaning that only3
elements in the code are updated when an information element
is updated. Under this assumption, the following theorem
characterizes the setsR and Z.

Theorem 4 For an(k + 2, k) MDS code with optimal update,
the setsR andZ are partitions ofA into p equally sized sets of
sizek, where each set inR or Z contains exactly one element
from each column.

Proof: Since the code is a(k + 2, k) MDS code, each
information element should appear at least once in each parity
columnCk, Ck+1. However, since the code has optimal update,
each element appears exactly once in each parity column.

Let X ∈ R, note that ifX contains two entries ofA from the
systematic columnCi, i ∈ [0, k − 1], then rebuilding is impos-
sible if columnsCi and Ck+1 are erased. ThusX contains at
most one entry from each column, therefore|X| ≤ k. However
each element ofA appears exactly once in each parity column,
thus if |X| < k, X ∈ R, there isY ∈ R, with |Y| > k, which
leads to a contradiction. Therefore,|X| = k for all X ∈ R.
As each information element appears exactly once in the first
parity column,R = {R0, . . . , Rp−1} is a partition ofA into
p equally sized sets of sizek. Similar proof holds for the sets
Z = {Z0, . . . , Zp−1}.

By the above theorem, for thej-th systematic column
(a0, . . . , ap−1)

T, its p elements are contained inp distinct
setsRl, l ∈ [0, p− 1]. In other words, the membership of the
j-th column’s elements in the sets{Rl} defines a permutation
gj : [0, p − 1] → [0, p − 1], such thatgj(i) = l iff ai ∈ Rl.
Similarly, we can define a permutationf j corresponding to
the second parity column, wheref j(i) = l iff ai ∈ Zl . For
example, in Figure 2 each systematic column corresponds to
a permutation of the four symbols.

Observing that there is no importance of the elements’
ordering in each column, w.l.o.g. we can assume that the first
parity column contains the sum of each row ofA and gj’s
correspond to identity permutations, i.e.ri = ∑

k−1
j=0 αi,jai,j

for some coefficients{αi,j}. We refer to the first and the
second parity columns as the row parity and the zigzag parity
respectively, likewiseRl and Zl , l ∈ [0, p − 1], are referred
to as row sets and zigzag sets respectively. We will callf j,
j ∈ [0, k − 1], zigzag permutations. By assuming that the first
parity column contains the row sums, we want to (1) find
zigzag permutations to minimize the rebuilding ratio; and (2)
assign the coefficients such that the code is MDS.

First we show that any set of zigzag setsZ =
{Z0, ..., Zp−1} defines a(k + 2, k) MDS array code over a
field F large enough.

Theorem 5 Let A = (ai,j) be an array of sizep × k and the
zigzag sets beZ = {Z0, ..., Zp−1}, then there exists a(k+ 2, k)
MDS array code forA with Z as its zigzag sets over the fieldF

of size greater thanp(k − 1) + 1.

The proof is shown in Appendix A. The above theorem
states that there exist coefficients such that the code is MDS,
and thus we will focus first on finding proper zigzag per-
mutations{ f j}. The idea behind choosing the zigzag sets
is as follows: assume a systematic column(a0, a1, ..., ap−1)

T

is erased. Each elementai is contained in exactly one row
set and one zigzag set. For rebuilding of elementai, access
the parity of its row set or zigzag set. Moreover access the
values of the remaining elements in that set, exceptai. We
say that an elementai is rebuilt by a row (zigzag) if the
parity of its row set (zigzag set) is accessed. For example,
in Figure 2 supposing column1 is erased, one can access the
shaded elements and rebuild its first two elements by rows, and
the rest by zigzags. The setS = {S0, S1, ..., Sp−1} is called
a rebuilding set for column(a0, a1, ..., ap−1)

T if for each i,
Si ∈ R ∪ Z and ai ∈ Si. In order to minimize the number of
accesses to rebuild the erased column, we need to minimize
the size of

| ∪
p−1
i=0 Si|, (4)

which is equivalent to maximizing the number of intersections
between the sets{Si}

p−1
i=0 . More specifically, the intersections

between the row sets inS and the zigzag sets inS.
For a (k + 2, k) MDS code C with p rows define the

rebuilding ratio R(C) as the average fraction of accesses in
the surviving systematic and parity nodes while rebuildingone
systematic node, i.e.,

R(C) =
∑j minS0,...,Sp−1 rebuildsj | ∪

p−1
i=0 Si|

p(k + 1)k
.

Notice that in the two parity nodes, we accessp elements
because each erased element must be rebuilt either by row
or by zigzag. And∪p−1

i=0 Si containsp elements in the erased
column. Thus the above expression is exactly the rebuilding
ratio. Define theratio function for all (k + 2, k) MDS codes
with p rows as

R(k) = min
C

R(C),

which is the minimal average portion of the array needed to
be accessed in order to rebuild one erased column.

Theorem 6 R(k) is no less than1
2 and is a monotone nonde-

creasing function.

The proof is given in Appendix B. For example, the code in
Figure 3 achieves the lower bound of ratio1/2, and therefore
R(3) = 1/2. Moreover, We will see in Corollary 10 thatR(k)
is almost1/2 for all k and p = 2m, wherem is large enough.

So far we have discussed the characteristics of an arbitrary
MDS array code with optimal update. Next, let us look at our
code in Construction 1.

Recall that by Theorem 5 this code can be an MDS code
over a field large enough. The ratio of the constructed code
will be proportional to the size of the union of the elements in
the rebuilding set in (4). The following theorem gives the ratio
for Construction 1 and can be easily derived from Lemma 2
part (i).



7

Theorem 7 The code described in Construction1 and gener-
ated by the vectorsv0, v1, ..., vk−1 is a (k + 2, k) MDS array
code with ratio

R =
1

2
+

∑
k−1
i=0 ∑j 6=i | fi(Xi) ∩ f j(Xi)|

2mk(k + 1)
. (5)

Next we show the optimal code in Theorem 1 is optimal in
size, namely, it has the maximum number of columns given
the number of rows.

Theorem 8 Let F be an orthogonal set of permutations over the
integers[0, 2m − 1], then the size ofF is at mostm + 1.

Proof: We will prove it by induction onm. For m = 0
there is nothing to prove. LetF = { f0, f1, ..., fk−1} be a
set of orthogonal permutations over the set[0, 2m − 1]. We
only need to show that|F| = k ≤ m + 1. It is trivial to
see that for any permutationsg, h on [0, 2m − 1], the set
hFg = {h f0g, h f1g, ..., h fk−1g} is also a set of orthogo-
nal permutations with setsg−1(X0), g−1(X1), ..., g−1(Xk−1).
Thus w.l.o.g. we can assume thatf0 is the identity permutation
and X0 = [0, 2m−1 − 1]. From the orthogonality we get that

∪k−1
i=1 fi(X0) = X0 = [2m−1, 2m − 1].

We claim that for anyi 6= 0, |Xi ∩ X0| = |X0|
2 = 2m−2.

Assume the contrary, thus w.l.o.g we can assume that|Xi ∩
X0| > 2m−2, otherwise|Xi ∩ X0| > 2m−2. For anyj 6= i 6= 0
we get that

f j(Xi ∩ X0), fi(Xi ∩ X0) ⊆ X0, (6)

| f j(Xi ∩ X0)| = | fi(Xi ∩ X0)| > 2m−2 =
|X0|

2
. (7)

From equations (6) and (7) we conclude thatf j(Xi ∩ X0) ∩
fi(Xi ∩ X0) 6= ∅, which contradicts the orthogonality prop-
erty. Define the set of permutationsF∗ = { f ∗i }

k−1
i=1 over the

set of integers[0, 2m−1 − 1] by f ∗i (x) = fi(x)− 2m−1, which
is a set of orthogonal permutations with sets{Xi ∩ X0}

k−1
i=1 .

By inductionk − 1 ≤ m and the result follows.
The above theorem implies that the number of rows has to

be exponential in the number of columns in any systematic
code with optimal ratio and optimal update. Notice that the
code in Theorem 1 achieves themaximum possible number of
columns,m + 1. Besides, an exponential number of rows is
still practical in storage systems, since they are composedof
dozens of nodes (disks) each of which has size in an order
of gigabytes. In addition, increasing the number of columns
can be done using duplication (Theorem 9) or a larger set of
vectors (the following example) with a cost of a small increase
in the ratio.

Example 2 Let T = {v ∈ F
m
2 : ‖v‖1 = 3} be the set of

vectors with weight 3 and lengthm. Notice that|T| = (m
3 ).

Construct the codeC by T according to Construction1. Given
v ∈ T, |{u ∈ T : |v\u| = 3}| = (m−3

3 ), which is the number
of vectors with 1’s in different positions asv. Similarly, |{u ∈
T : |v\u| = 2}| = 3(m−3

2 ) and |{u ∈ T : |v\u| = 1}| =
3(m − 3). By Theorem7 and Lemma2, for largem the ratio is

1

2
+

2m−1(m
3 )3(

m−3
2 )

2m(m
3 )((

m
3 ) + 1)

≈
1

2
+

9

2m
.

Note that this code reaches the lower bound of the ratio as
m tends to infinity, and hasO(m3) columns.

IV. CODE DUPLICATION

In this section, we are going to duplicate the code to increase
the number of columns in the constructed(k + 2, k) MDS
codes, such thatk does not depend on the number of rows,
and ratio is approximately12 . Then we will show the optimality
of the duplication code based on the standard basis.

Let C be a (k + 2, k) array code withp rows, where the
zigzag sets{Zl}

p−1
l=0 are defined by the set of permutations

{ fi}
k−1
i=0 on [0, p − 1]. For an integers, an s-duplication code

C ′ is an (sk + 2, sk) MDS code with zigzag permutations
defined by duplicating thek permutationss times each, and
the first parity column is the row sums. In order to make the
code MDS, the coefficients in the parities may be different
from the codeC. For ans-duplication code, denote the column
corresponding to thet-th f j as columnj(t), 0 ≤ t ≤ s − 1.
Call the columns{j(t) : j ∈ [0, k − 1]} the t-th copy of the
original code. An example of a2-duplication of the code in
Figure 3 is illustrated in Figure 4.

Theorem 9 If a (k + 2, k) codeC has ratioR(C), then itss-
duplication codeC ′ has ratioR(C)(1+ s−1

sk+1).

Proof: We propose a rebuilding algorithm forC ′ with
ratio of R(C)(1+ s−1

sk+1 ), which will be shown to be optimal.
Suppose in the optimal rebuilding algorithm ofC, for

column i, elements of rowsJ = {j1, j2, . . . , ju} are rebuilt
by zigzags, and the rest by rows. InC ′, all the s columns
corresponding tofi are rebuilt in the same way: the elements
in rows J are rebuilt by zigzags.

W.l.o.g. assume columni(0) is erased. Since columni(t),
t ∈ [1, s − 1] corresponds to the same zigzag permutation
as the erased column, for the erased element in thel-th
row, no matter if it is rebuilt by row or by zigzag, we
have to access the element in thel-th row and columni(t)

(e.g. permutationsf (0)0 , f
(1)
0 and the corresponding columns

0(0), 0(1) in Figure 4). Hence all the elements in columni(t)

must be accessed. Moreover, the optimal way to access the
other surviving columns can not be better than the optimal
way to rebuild in the codeC. Thus the proposed algorithm
has optimal rebuilding ratio.

When column i(0) is erased, the average (over alli ∈
[0, k − 1]) of the number of elements needed to be accessed
in columnsl(t), for all l ∈ [0, k − 1], l 6= i and t ∈ [0, s − 1]
is

R(C)p(k + 1)− p.

Here the term−p corresponds to the access of the parity nodes
in C. Moreover, we need to access all the elements in columns
i(t), 0 < t ≤ s − 1, and accessp elements in the two parity
columns. Therefore, the rebuilding ratio is

R(C ′) =
s(R(C)p(k + 1)− p) + (s − 1)p + p

p(sk + 1)

= R(C)
s(k + 1)

sk + 1

= R(C)(1+
s − 1

sk + 1
)
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Figure 4. A 2-duplication of the code in Figure 3. The code has6 information nodes and2 parity nodes. The ratio is4/7.

and the proof is completed.
Theorem 9 gives us the ratio of thes- duplication of a code

C as a function of its ratioR(C). As a result, for the optimal-
ratio code in Theorem 1, the ratio of its duplication code is
slightly more than1/2, as the following corollary suggests.

Corollary 10 The s-duplication of the code in Theorem1 has
ratio 1

2 (1 +
s−1

s(m+1)+1
), which is 1

2 + 1
2(m+1)

for larges.

For example, we can rebuild the column1(0) in Figure
4 by accessing the elements in rows{0, 1} and in columns
0(0), 2(0), 0(1), 2(1), R, Z, and all the elements in column1(1).
The rebuilding ratio for this code is4/7.

Using duplication we can havearbitrarily large number of
columns, independent of the number of rows. Moreover the
above corollary shows that it also has an almost optimal ratio.

Next we will show that if we restrict ourselves to codes con-
structed using Construction 1 and duplication, the code using
the standard basis and duplication has optimal asymptotic rate.

In order to show that, we define a related graph. Define the
directed graphDm = Dm(V, E) asV = {w ∈ F

m
2 : w 6= 0},

and E = {(w1, w2) : |w2\w1| = 1 mod 2}. Hence the
vertices are the nonzero binary vectors of lengthm, and
there is a directed edge fromw1 to w2 if |w2\w1| is odd
size. From any induced subgraphH of Dm, we construct
the codeC(H) from the vertices ofH using Construction
1. By Lemma 2 we know that a directed edge fromw1 to
w2 in H means fw2(Xw2) ∩ fw1(Xw2) = ∅, so only half
of the information from the column corresponding tow1 is
accessed while rebuilding the column corresponding tow2.
For a directed graphD = D(V, E), let S and T be two
disjoint subsets of its vertices. We define the density of the
set S to be dS = ES

|S|2
and the density betweenS and T to be

dS,T =
ES,T

2|S||T|
, whereES is the number of edges with both of

its endpoints inS, and ES,T is the number of edges incident
with a vertex inS and a vertex inT. The following theorem
shows that the asymptotic ratio of any code constructed using
Construction 1 and duplication is a function of the density of
the corresponding graphH.

Theorem 11.Let H be an induced subgraph ofDm. LetCs(H)
be thes-duplication of the code constructed using the vertices

of H and Construction1. Then the asymptotic ratio ofCs(H) is

lim
s→∞

R(Cs(H)) = 1 −
dH

2

Proof: Let the set of vertices and edges ofH beV(H) =
{vi} and E(H) respectively. Denote byvl

i, vi ∈ V(H), l ∈
[0, s − 1], the l-th copy of the column corresponding to the
vector vi. In the rebuilding of columnvl

i, l ∈ [0, s − 1] each
remaining systematic columnvk

j , k ∈ [0, s− 1], needs to access
all of its 2m elements unless|vi\vj| is odd, and in that case
it only has to access2m−1 elements. Hence the total amount
of accessed information for rebuilding this column is

(s|V(H)| − 1)2m − deg+(vi)s2m−1,

wheredeg+ is the indegree ofvi in the induced subgraphH.
Averaging over all the columns inCs(H) we get the ratio:

R(Cs(H))

=
∑vl

i∈Cs(H)(s|V(H)| − 1)2m − deg+(vi)s2m−1

s|V(H)|(s|V(H)|+ 1)2m

=
s|V(H)|(s|V(H)| − 1)2m − s2 ∑vi∈V(H) deg+(vi)2

m−1

s|V(H)|(s|V(H)|+ 1)2m

=
s|V(H)|(s|V(H)| − 1)2m − s2|E(H)|2m−1

s|V(H)|(s|V(H)|+ 1)2m
.

Hence

lim
s→∞

R(Cs(H)) = 1 −
|E(H)|

2|V(H)|2
= 1 −

dH

2
.

We conclude from Theorem 11 that the asymptotic ratio of
any code using duplication and a set of binary vectors{vi} is a
function of the density of the corresponding induced subgraph
of Dm with {vi} as its vertices. Hence the induced subgraph
of Dm with maximal density corresponds to the code with
optimal asymptotic ratio. It is easy to check that the induced
subgraph with its vertices as the standard basis{ei}

m
i=1 has

density m−1
m . In fact this is the maximal possible density

among all the induced subgraph as Theorem 13 suggests, but
in order to show it we will need the following technical lemma.
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Lemma 12 Let D = D(V, E) be a directed graph andS, T be
a partition ofV, i.e.,S ∩ T = ∅, S ∪ T = V, then

dV ≤ max{dS, dT, dS,T}

Proof: Note thatdV =
|S|2dS+|T|2dT+2|S||T|dS,T

|V|2
. W.l.o.g

assume thatdS ≥ dT therefore ifdS ≥ DS,T,

dV =
|S|2dS + |T|2dT + 2|S||T|dS,T

|V|2

≤
|S|2dS + |T|2dS − |T|2dS + |T|2dT + 2|S||T|dS

|V|2

=
dS(|S|+ |T|)2 − |T|2(dS − dT)

|V|2

≤ dS.

If dS,T ≥ max {dS, dT} then,

dV =
|S|2dS + |T|2dT + 2|S||T|dS,T

|V|2

≤
|S|2dS,T + |T|2dS,T + 2|S||T|dS,T

|V|2

= dS,T

and the result follows.
Now we are ready to prove the optimality of the duplication

of the code using standard basis, if we assume that the number
of copiess tends to infinity.

Theorem 13 For any induced subgraphH of Dm, dH ≤ m−1
m .

So the optimal asymptotic ratio among all codes constructedus-
ing duplication and Construction1 is 1

2 (1+
1
m ) and is achieved

using the standard basis.

Proof: We say that a binary vector is an even (odd) vector
if it has an even (odd) weight. For two binary vectorsw1, w2,
|w2\w1| being odd is equivalent to

1 = w2 · w1 = w2 · ((1, ..., 1) + w1) = ‖w2‖1 + w2 · w1.

Hence, one can check that whenw1, w2 have the same parity,
there are either no edges or2 edges between them. Moreover,
when their parities are different, there is exactly one edge
between the two vertices.

When m = 1, the graphD1 has only one vertex and the
only nonempty induced subgraph is itself.dH = dD1

= 0 =
m−1

m . Whenm = 2, the graphD2 has three vertices and one
can check that the induced subgraph with maximum density
containsw1 = (1, 0), w2 = (0, 1), and the density is1/2 =
(m − 1)/m.

For m > 2, assume to the contrary that there exists a
subgraph ofDm with density higher thanm−1

m . Let H be
the smallest subgraph ofDm (with respect to the number of
vertices) among the subgraphs ofDm with maximal density.
Hence for any subset of verticesS ( V(H), we have
dS < dH. Therefore from Lemma 12 we conclude that for
any partitionS, T of V(H), dH ≤ dS,T. If H contains both
even and odd vectors, denote byS and T the set of even and
odd vectors ofH respectively. Since between any even and

any odd vertex there is exactly one directed edge we get that
dH ≤ dS,T = 1

2 . However

1

2
<

m − 1

m
< dH ,

and we get a contradiction. ThusH contains only odd vectors
or even vectors.

Let V(H) = {v1, ..., vk}. If this set of vectors is indepen-
dent thenk ≤ m and the outgoing degree for each vertex
vi is at mostk − 1 hencedH = E(H)

|V(H)|2
≤ k(k−1)

k2 ≤ m−1
m

and we get a contradiction. Hence assume that the dimension
of the subspace spanned by these vectors inF

m
2 is l < k

wherev1, v2, ...vl are basis for it. DefineS = {v1, ...vl}, T =
{vl+1, ..., vk}. The following two cases show that the density
can not be higher thanm−1

m .
H contains only odd vectors: Let u ∈ T. Since u ∈

span{S} there is at least onev ∈ S such thatu · v 6= 0 and
thus (u, v), (v, u) /∈ E(H), therefore the number of directed
edges betweenu and S is at most2(l − 1) for all u ∈ T,
which means

dH ≤ dS,T ≤
2(l − 1)|T|

2|S||T|
=

l − 1

l
≤

m − 1

m

and we get a contradiction.
H contains only even vectors: Since the vi’s are

even the dimension ofspan{S} is at most m − 1 (since
for example (1, 0, ..., 0) /∈ span{S}) thus l ≤ m − 1.
Let H∗ be the induced subgraph ofDm+1 with vertices
V(H∗) = {(1, vi)|vi ∈ V(H))}. It is easy to see
that all the vectors ofH∗ are odd, ((1, vi), (1, vj)) ∈
E(H∗) if and only if (vi, vj) ∈ E(H), and the dimension of
span{V(H∗)} is at mostl + 1 ≤ m. Having already proven
the case for odd vectors, we conclude that

dH = dH∗ ≤
dim(span{V(H∗)})− 1

dim(span{V(H∗)})

≤
l + 1 − 1

l + 1

≤
m − 1

m
,

and we get a contradiction.

V. FINITE FIELD SIZE OF A CODE

In this section, we address the problem of finding proper
coefficients in the parities in order to make the code MDS. We
have already shown that if a code is over some large enough
finite field F, it can be made MDS (Theorem 5). And we have
shown that the optimal code in Theorem 1 needs only field
of size 3. In the following, we will discuss in more details
on the field size required to make two kinds of codes MDS:
(1) duplication of the optimal code in Corollary 10, and (2)
a modification of the code in Example 2. Note that both the
codes have asymptotic optimal ratio.

Consider the duplication of the optimal code (the code in
Corollary 10). For thes-duplication codeC ′ in Theorem 10,
denote the coefficients for the element in rowi and column
j(t) by α

(t)
i,j and β

(t)
i,j , 0 ≤ t ≤ s − 1. Let Fq be a field of size
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q, and suppose its elements are{0, a0, a1, . . . , aq−2} for some
primitive elementa.

Construction 3 For thes-duplication codeC ′ in Theorem10
overFq, assignα

(t)
i,j = 1 for all i, j, t. For oddq, let s ≤ q − 1

and assign for allt ∈ [0, s − 1]

β
(t)
i,j =

{

at+1, if uj · i = 1

at, o.w.

whereuj = ∑
j
l=0 el. For evenq (power of 2), lets ≤ q − 2 and

assign for allt ∈ [0, s − 1]

β
(t)
i,j =

{

a−t−1, if uj · i = 1

at+1, o.w.

Notice that the coefficients in each duplication has the same
pattern as Construction 2 except that values 1 and 2 are
replaced byat and at+1 if q is odd (or at+1 and a−t−1 if
q is even).

Theorem 14 Construction3 is an (s(m + 1) + 2, s(m + 1))
MDS code.

Proof: For the two elements in columnsi(t1), i(t2) and
row r, t1 6= t2, we can see that they are in the same row
set and the same zigzag set. The corresponding two equations
from the two parities are linearly independent iff

β
(t1)
r,i 6= β

(t2)
r,i , (8)

which is satisfied by the construction.
For the four elements in columnsi(t1), j(t2) and rowsr, r′ =

r + ei + ej, 0 ≤ t1, t2 ≤ s − 1, 0 ≤ i < j ≤ m, the code is
MDS if

β
(t1)
r,i β

(t1)
r′,i 6= β

(t2)
r,j β

(t2)
r′,j

by (3). By the remark after Theorem 3, we know thatβ
(t1)
r,i 6=

β
(t1)
r′,i

, andβ
(t2)
r,j = β

(t2)
r′,j

= ax for somex. Whenq is odd,

β
(t1)
r,i β

(t1)
r′,i

= at1 at1+1 = a2t1+1 6= a2x

for any x and t1. Whenq is even,

β
(t1)
r,i β

(t1)
r′,i

= at1+1a−t1−1 = a0 6= a2x

for any t1 and1 ≤ x ≤ q − 2 (mod q − 1). And by construc-
tion, x = t2 + 1 or x = −t2 − 1 for 0 ≤ t2 ≤ s − 1 ≤ q − 3,
so 1 ≤ x ≤ q − 2 (mod q − 1). Hence, the construction is
MDS.

Remark: For two identical permutationsf (t1)
i = f

(t2)
i , (8)

is necessary and sufficient condition for an MDS code.

Theorem 15 For an MDSs-duplication code, we need a finite
field Fq of sizeq ≥ s + 1. Therefore, Theorem14 is optimal
for oddq.

Proof: Consider the two information elements in rowi
and columnsj(t1), j(t2), which are in the same row and zigzag
sets, fort1 6= t2 ∈ [0, s − 1]. The code is MDS only if





α
(t1)
i,j α

(t2)
i,j

β
(t1)
i,j β

(t2)
i,j





has full rank. All the coefficients are nonzero (consider
erasing a parity column and a systematic column). Thus,
(α

(t1)
i,j )−1β

(t1)
i,j 6= (α

(t2)
i,j )−1β

(t2)
i,j , and(α(t)

i,j )
−1β

(t)
i,j are distinct

nonzero elements inFq, for t ∈ [0, s − 1]. So q ≥ s + 1.
For instance, the coefficients in Figure 4 are assigned as

Construction 3 andF3 is used. One can check that any two
column erasures can be rebuilt in this code.

Consider for example ans-duplication of the code in Theo-
rem 1 withm = 10, the array is of size1024× (11s+ 2). For
s = 2 ands = 6, the ratio is0.522 and0.537 by Corollary 10,
the code length is24 and68, and the field size needed can be
4 and 8 by Theorem 14, respectively. Both of these two sets
of parameters are suitable for practical applications.

As noted before the optimal construction yields a ratio of
1/2 + 1/m by using duplication of the code in Theorem 1.
However the field size is a linear function of the number of
duplications of the code. Is it possible to extend the number
of columns in the code while using a constant field size? We
know how to getO(m3) columns by usingO(m2) duplications
of the optimal code, however, the field size isO(m2). The
following code construction has roughly the same parameters:
O(m3) columns and an ratio of12 +O( 1

m ), however it requires
only a constant field size of9. Actually this construction is a
modification of Example 2.

Construction 4 Let 3|m, and consider the following set of
vectorsS ⊆ F

m
2 : for each vectorv = (v1, . . . , vm) ∈ S,

‖v‖1 = 3 andvi1, vi2, vi3 = 1 for somei1 ∈ [1, m/3], i2 ∈
[m/3 + 1, 2m/3], i3 ∈ [2m/3 + 1, m]. For simplicity, we
write v = {i1, i2, i3}. Construct the(k + 2, k) code as in
Construction1 using the set of vectorsS, hence the number
of systematic columns isk = |S| = (m

3 )
3 = m3

27 . For any
i ∈ [jm/3+ 1, (j+ 1)m/3] and somej = 0, 1, 2 , define a row
vectorMi = ∑

i
l=jm/3+1 el . Then define am × 3 matrix

Mv =
[

MT
i1

MT
i2

MT
i3

]

for v = {i1, i2, i3}. Let a be a primitive element ofF9. Assign
the row coefficients as1 and the zigzag coefficient for rowr,
columnv asat, wheret = rMv ∈ F

3
2 (in its binary expansion).

For example, let m = 6, and v = {1, 4, 6} =
(1, 0, 0, 1, 0, 1) ∈ S. The corresponding matrix is

Mv =





1 0 0 0 0 0
0 0 1 1 0 0
0 0 0 0 1 1





T

.

For row r = 26 = (0, 1, 1, 0, 1, 0), we have

t = rMv = (0, 1, 1) = 3,

and the zigzag coefficient isa3.

Theorem 16 Construction4 is a (k + 2, k) MDS code with
array size2m × (k + 2) and k = m3/27. Moreover, the
rebuilding ratio is1

2 + 9
2m for largem.

Proof: For each vectorv ∈ S, there are3(m/3 − 1)2

vectorsu ∈ S such that they have one1 in the same location
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as v, i.e. |v\u| = 2. Hence by Theorem 7 and Lemma 2, for
largem the ratio is

1

2
+

3((m
3 )− 1)2

2(m3

27 + 1)
≈

1

2
+

9

2m
.

Next we show that the MDS property of the code
holds. Consider columnsu, v for some u = {i1, i2, i3} 6=
v = {j1, j2, j3} and i1, j1 ∈ [1, m/3], i2, j2 ∈ [m/3 +
1, 2m/3], i3, j3 ∈ [2m/3 + 1, m]. Consider rowsr and r′ =
r + u + v. The condition for the MDS property from (3)
becomes

arMT
u+r′MT

u mod 8 6= arMT
v +r′MT

v mod 8 (9)

where each vector of length3 is viewed as an integer in[0, 7]
and the addition is usual addition mod 8. Sincev 6= u, let
l ∈ [1, 3] be the largest index such thatil 6= jl. W.l.o.g. assume
that il < jl, hence by the remark after Theorem 3

rMT
il
6= r′MT

il
(10)

and
rMT

jl
= r′MT

jl
. (11)

Note that for allt, l < t ≤ 3, it = jt, then sincer′MT
it
=

(r + eit
+ ejt)MT

it
= rMT

it
, we have

rMT
it
= r′MT

it
= rMT

jt
= r′MT

jt
. (12)

It is easy to infer from (10),(11),(12) that thel-th bit in the
binary expansions ofrMT

u + r′MT
u mod 8 andrMT

v + r′MT
v

mod 8 don’t equal. Hence (9) is satisfied, and the result
follows.

Notice that if we do mod15 in (9) instead of mod8,
the proof still follows because15 is greater than the largest
possible sum in the equation. Therefore, a field of size16 is
also sufficient to construct an MDS code, and it is easier to
implement in a storage system.

Construction 4 can be easily generalized to any constant
c such that it containsO(mc) columns and it uses the field
of size at least2c + 1. For simplicity assume thatc|m, and
simply construct the code using the set of vectors{v} ⊂ F

m
2

such that‖v‖1 = c, and for anyj ∈ [0, c− 1], there is unique
ij ∈ [jm/c + 1, (j+ 1)m/c] andvi j

= 1. Moreover, the finite

field of size2c+1 is also sufficient to make it an MDS code.
When c is odd the code has ratio of

1

2
+

c2

2m

for largem.

VI. D ECODING OF THECODES

In this section, we will discuss decoding algorithms of the
proposed codes in case of column erasures as well as a column
error. The algorithms work for both Construction 1 and its
duplication code.

Let C be a (k + 2, k) MDS array code defined by Con-
struction 1 (and possibly duplication). The code has array size
2m × (k+ 2). Let the zigzag permutations bef j, j ∈ [0, k− 1],

which are not necessarily distinct. Let the information ele-
ments beai,j, and the row and zigzag parity elements beri

andzi, respectively, fori ∈ [0, 2m − 1], j ∈ [0, k − 1]. W.l.o.g.
assume the row coefficients areαi,j = 1 for all i, j. And let
the zigzag coefficients beβi,j in some finite fieldF.

The following is a summary of the erasure decoding algo-
rithms mentioned in the previous sections.

Algorithm 1 (Erasure Decoding)
One erasure.
1) One parity node is erased. Rebuild the row parity by

ri =
k−1

∑
j=0

ai,j, (13)

and the zigzag parity by

zi =
k−1

∑
j=0

β
f −1
j (i),ja f −1

j (i),j. (14)

2) One information nodej is erased. Rebuild the elements in
rowsXj (see Construction1) by rows, and those in rowsXj by
zigzags.
Two erasures.
1) Two parity nodes are erased. Rebuild by(13) and (14).
2) One parity node and one information node is erased. If the
row parity node is erased, rebuild by zigzags; otherwise rebuild
by rows.
3) Two information nodesj1 andj2 are erased.
- If f j1 = f j2 , for anyi ∈ [0, 2m − 1], compute

xi = ri − ∑j 6=j1,j2 ai,j

yi = z f j1
(i) − ∑j 6=j1,j2 β

f −1
j f j1

(i),ja f −1
j f j1

(i),j.
(15)

Solveai,j1 , ai,j2 from the equations
[

1 1
βi,j1 βi,j2

] [

ai,j1
ai,j2

]

=

[

xi

yi

]

.

- Else, for any i ∈ [0, 2m − 1], set i′ = i + f j1(0) +
f j2(0), and computexi, xi′ , yi, yi′ according to(15). Then solve
ai,j1 , ai,j2, ai′,j1

, ai′,j2 from equations








1 1 0 0
0 0 1 1

βi,j1 0 0 βi′,j2
0 βi,j2 βi′,j1

0

















ai,j1
ai,j2
ai′,j1
ai′,j2









=









xi

xi′

yi

yi′









.

In case of a column error, we first compute the syndrome,
then locate the error position, and at last correct the error.
Let x0, x1, . . . , xp−1 ∈ F. Denote f−1(x0, x1, . . . , xp−1) =
(x f −1(0), x f −1(1), . . . , x f −1(p−1)) for a permutation f on
[0, p − 1]. The detailed algorithm is as follows.

Algorithm 2 (Error Decoding)
Compute for alli ∈ [0, 2m − 1]:

si,0 =
k−1

∑
j=0

ai,j − ri

si,1 =
k−1

∑
j=0

β
f −1
j (i),j

a
f −1
j (i),j

− zi.
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Let the syndrome beS0 = (s0,0, s1,0, . . . , s2m−1,0) andS1 =
(s0,1, s1,1, . . . , s2m−1,1).
- If S0 = 0 andS1 = 0, there is no error.
- Else if one ofS0, S1 is 0, there is an error in the parity. Correct
it by (13)or (14).
- Else, find the error location. Forj = 0 to k − 1:

Compute for alli ∈ [0, 2m − 1], xi,j = βi,jsi,0.

Let Xj = (x0,j, . . . , x2m−1,j) andYj = f−1
j (Xj).

If Yj = S1, subtractS0 from columnj. Stop.
If no suchj is found, there are more than one error.

If there is only one error, the above algorithm is guaranteed
to find the error location and correct it, since the code is MDS,
as the following theorem states.

Theorem 17 Algorithm 2 can correct one column error.

Proof: Notice that each zigzag permutationf j is the
inverse of itself by Construction 1, orf j = f−1

j . Suppose there
is error in columnj, and the error isE = (e0, e1, . . . , e2m−1).
So the received columnj is the sum of the original information
and E. Thus the syndromes aresi,0 = ei and

si,1 = β f j(i),je f j(i).

For columnt, t ∈ [0, k − 1], we havexi,t = βi,tsi,0 = βi,tei.
Write Yt = f−1

j (Xj) = (y0,t, . . . , y2m−1,t) and then

yi,t = x ft(i),t = β ft(i),te ft(i).

We will show the algorithm findsYt = S1 iff t = j, and
therefore subtractingS0 = E from column j will correct the
error. Whent = j, yi,t = si,1, for all i ∈ [0, 2m − 1], so
Yj = S1. Now suppose there ist 6= j such thatYt = S1. Since
the error E is nonzero, there existsi such thate f j(i) 6= 0.
Consider the indicesi and i′ = ft f j(i). yi,t = si,1 yields

β ft(i),te ft(i) = β f j(i),je f j(i). (16)

Case 1: When ft = f j, set r = ft(i) = f j(i), then (16)
becomesβr,ter = βr,jer with er 6= 0. Henceβr,t = βr,j which
contradicts (8).
Case 2: When ft 6= f j, since ft, f j are commutative and are
inverse of themselves,ft(i′) = ft ft f j(i) = f j(i) and f j(i

′) =
f j ft f j(i) = ft(i). Thereforeyi′,t = si′,1 yields

β f j(i),te f j(i) = β ft(i),je ft(i). (17)

The two equations (16) (17) have nonzero solution
(e f j(i), e ft(i)) iff

β ft(i),tβ f j(i),t = β f j(i),jβ ft(i),j,

which contradicts (3) withr = ft(i), r′ = f j(i). Hence the
algorithm finds the unique erroneous column.

If the computations are done in parallel for alli ∈ [0, 2m −
1], then Algorithm 2 can be done in timeO(k). Moreover,
since the permutationsfi’s only change one bit of a number
in [0, 2m − 1] in the optimal code in Theorem 1, the algorithm
can be easily implemented.

VII. G ENERALIZATION OF THE CODE CONSTRUCTION

In this section we generalize Construction 1 to arbitrary
number of parity nodes. Letn − k = r be the number of
parity nodes. We will construct an(n, k) MDS array code, i.e.,
it can recover from up tor node erasures for arbitrary integers
n, k. We will show this code has optimal rebuilding ratio of
1/r when a systematic node is erased. We assume that each
systematic nodes storesMk of the information and corresponds
to columns[0, k − 1]. Thei-th parity node is stored in column
k + i, 0 ≤ i ≤ r − 1, and is associated with zigzag sets{Zi

j :

j ∈ [0, p − 1]}, wherep is the number of rows in the array.

Construction 5 Let the information array beA = (ai,j) with
sizerm × k for some integersk, m. Let T = {v0, ..., vk−1} ⊆
Z

m
r be a subset of vectors of sizek, where for eachv =

(v1, ..., vm) ∈ T,

gcd(v1, ..., vm, r) = 1, (18)

wheregcd is the greatest common divisor. For anyl, 0 ≤ l ≤
r − 1, andv ∈ T we define the permutationf l

v : [0, rm − 1] →
[0, rm − 1] by f l

v(x) = x + lv, where by abuse of notation we
usex ∈ [0, rm − 1] both to represent the integer and itsr-ary
representation, and all the calculations are done overZr.For
example, form = 2, r = 3, x = 4, l = 2, v = (0, 1),

f 2
(0,1)(4) = 4 + 2(0, 1) = (1, 1) + (0, 2) = (1, 0) = 3.

One can check that the permutationf 2
(0,1)

in a vector notation is

[2, 0, 1, 5, 3, 4, 8, 6, 7]. For simplicity denote the permutationf l
v j

as f l
j for vj ∈ T. Fort ∈ [0, rm − 1], we define the zigzag setZl

t

in parity nodel as the elementsai,j such that their coordinates
satisfy f l

j (i) = t. In a rebuilding of systematic nodei the

elements in rowsXl
i = {x ∈ [0, rm − 1] : x · vi = r − l}

are rebuilt by parity nodel, l ∈ [0, r − 1]. From (18) we get
that for anyi andl, |Xl

i | = rm−1.

Note that similar to Theorem 5, using a large enough field,
the parity nodes described above form an(n, k) MDS array
code under appropriate selection of coefficients in the linear
combinations of the zigzags.

Consider the rebuilding of systematic nodei ∈ [0, k − 1]. In
a systematic columnj 6= i we need to access all the elements
that are contained in the sets that belong to the rebuilding
set of columni. Namely, in columnj we need to access the
elements in rows

∪r−1
l=0 f−l

j f l
i (Xl

i ). (19)

(19) follows since the zigzagsZl
t for any t ∈ f l

i (Xl
i ) are used

to rebuild the elements of columni in rows Xl
i . Moreover

the element in columnj and zigzagZl
t is a

f −l
j (t),j

. The

following lemma will help us to calculate the size of (19),
and in particular calculating the ratio of codes constructed by
Construction 5.

Lemma 18 For anyv = (v1, ...vm), u ∈ Z
m
r andl ∈ [0, r − 1]

such thatgcd(v1, ..., vm, r) = 1, definecv,u = v · (v − u)− 1.
Then

| f−i
u f i

v(Xi
v) ∩ f

−j
u f

j
v(X

j
v)| =

{

|X0
v|, (i − j)cv,u = 0

0, o.w.



13

In particular forj = 0 we get

| f−l
u f l

v(Xl
v) ∩ X0

v | =

{

|X0
v |, if lcv,u = 0

0, o.w.

Proof: Consider the group(Zm
r ,+). Note thatX0

v = {x :
x · v = 0} is a subgroup ofZm

r andXi
v = {x : x · v = r − i}

is its coset. Therefore,Xi
v = X0

v + ai
v, X

j
v = X0

v + a
j
v, for some

ai
v ∈ Xi

v, a
j
v ∈ X

j
v. Hence f−i

u f i
v(Xi

v) = X0
v + ai

v + i(v − u)

and f
−j
u f

j
v(X

j
v) = X0

v + a
j
v + j(v − u) are cosets ofX0

v. So
they are either identical or disjoint. Moreover they are identical
if and only if

ai
v − a

j
v + (i − j)(v − u) ∈ X0

v,

i.e., (ai
v − a

j
v + (i − j)(v − u)) · v = 0. But by definition of

Xi
v andX

j
v, ai

v · v = −i, a
j
v · v = −j, so (i − j) · cv,u = 0 and

the result follows.
The following theorem gives the ratio for any code of

Construction 5.

Theorem 19 The ratio for the code constructed by Construc-
tion 5 and set of vectorsT is

∑v∈T ∑u 6=v∈T
1

gcd(r,cv,u)
+ |T|

|T|(|T| − 1 + r)
,

which also equal to

1

r
+

∑v∈T ∑u∈T,u 6=v |Fu,v(X0
v) ∩ X0

v |

|T|(|T| − 1 + r)rm
.

Here we define the functionFu,v(t) = f−i
u f i

v(t) for t ∈ Xi
v.

Proof: By (19) and noticing that we accessrm−1 elements
in each parity node, the ratio is

∑v∈T ∑u 6=v∈T | ∪
r−1
i=0 f−i

u f i
v(Xi

v)|+ |T|rm

|T|(|T| − 1 + r)rm
. (20)

From Lemma 18, and noticing that|{i : icv,u = 0
mod r}| = gcd(r, cv,u), we get

| ∪r−1
i=0 f−i

u f i
v(Xi

v)| = rm−1 × r/ gcd(r, cv,u).

And the first part follows. For the second part,

∑v∈T ∑u 6=v∈T | ∪
r−1
i=0 f−i

u f i
v(Xi

v)|+ |T|rm

|T|(|T| − 1 + r)rm

=
∑v∈T ∑u 6=v∈T |X

0
v |+ | ∪r−1

i=1 f−i
u f i

v(Xi
v)\X0

v |+ |T|rm

|T|(|T| − 1 + r)rm

=
1

r
+

∑v∈T ∑u 6=v∈T | ∪
r−1
i=1 f−i

u f i
v(Xi

v) ∩ X0
v |

|T|(|T| − 1 + r)rm

=
1

r
+

∑v∈T ∑u∈T,u 6=v |Fu,v(X0
v) ∩ X0

v |

|T|(|T| − 1 + r)rm
. (21)

The proof is completed.
Notice that X0

v represents elements not accessed for par-
ity 0 (row parity), and Fu,v(X0

v) are elements accessed
for parity 1, 2, . . . , r − 1. ThereforeFu,v(X0

v) ∩ X0
v are the

elements accessed excluding those for the row parity. In
order to get a low rebuilding ratio, we need to mini-
mize the second term in (21). We say that a family of

permutation set{{ f l
0}

r−1
l=0 , ..., { f l

k−1}
r−1
l=0} together with sets

{{Xl
0}

r−1
l=0 , ..., {Xl

k−1}
r−1
l=0} is a family of orthogonal permu-

tations if for any i, j ∈ [0, k − 1] the set{Xl
i}

r−1
i=0 is a equally

sized partition of[0, rm − 1] and

|Fj,i(X0
i ) ∩ X0

i |

rm−1(r − 1)
= δi,j.

One can check that forr = 2 the definition coincides with the
previous definition of orthogonal permutations for two parities.
It can be shown that the above definition is equivalent to that
for any 0 ≤ i 6= j ≤ k − 1, 0 ≤ l ≤ r − 1,

f l
j (X0

i ) = f l
i (Xl

i ). (22)

For a set of orthogonal permutations, rebuilding ratio is1/r
by (21), which is optimal according to (1),

Now we are ready to construct a code with optimal rebuild-
ing ratio andr parities.

Theorem 20 The set{{ f l
0}

r−1
l=0 , ..., { f l

m}
r−1
l=0}together with set

{{Xl
0}

r−1
l=0 , ..., {Xl

m}
r−1
l=0} constructed by the vectors{ei}

m
i=0

and Construction5, whereXl
0 is modified to beXl

0 = {x ∈
Z

m
r : x · (1, 1, ..., 1) = l} for any l ∈ [0, r − 1] is a fam-

ily of orthogonal permutations. Moreover the corresponding
(m + 1 + r, m + 1) code hasoptimalratio of 1

r .

Proof: For 1 ≤ i 6= j ≤ m, ci,j = ei · (ei − ej)− 1 = 0,
hence by Lemma 18 for anyl ∈ [0, r − 1]

f−l
j f l

i (Xl
i ) ∩ X0

i = X0
i ,

and (22) is satisfied. For1 ≤ i ≤ m, and all0 ≤ l ≤ r − 1,

f−l
0 f l

i (Xl
i ) = f l

i ({v : vi = −l}) = {v + lei : vi = −l}

= {v : vi = 0} = X0
i

Therefore, f−l
0 f l

i (Xl
i ) ∩ X0

i = X0
i , and (22) is satisfied.

Similarly,

f−l
i f l

0(Xl
0) = f−l

i ({v : v · (1, ..., 1) = l})

= {v − lei : v · (1, ..., 1) = l}

= {v : v · (1, ..., 1) = 0} = X0
0 .

Hence again (22) is satisfied and this is a family of orthogonal
permutations, and the result follows.

Surprisingly, one can infer from the above theorem that
changing the number of parities from2 to 3 adds only one
node to the system, but reduces the ratio from1/2 to 1/3 in
the rebuilding of any systematic column.

The example in Figure 5 shows a code with3 systematic
nodes and3 parity nodes constructed by Theorem 20 with
m = 2. The code has an optimal ratio of1/3. For instance, if
columnC1 is erased, accessing rows{0, 1, 2} in the remaining
nodes will be sufficient for rebuilding.

Similar to the2 parity case, the following theorem shows
that Theorem 20 achieves the optimal number of columns. In
other words, the number of rows has to be exponential in the
number of columns in any systematic MDS code with optimal
ratio, optimal update, andr parities. This follows since any
such optimal code is constructed from a family of orthogonal
permutations.
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Figure 5. A (6, 3) MDS array code with optimal ratio1/3. The first parityC3 corresponds to the row sums, and the corresponding identitypermutations
are omitted. The second and third parityC4, C5 are generated by the permutationsf 1

i , f 2
i respectively,i = 0, 1, 2. The elements are fromF7, where3 is a

primitive element.

Theorem 21 Let {{ f l
0}

r−1
l=0 , ..., { f l

k−1}
r−1
l=0} be a family of or-

thogonal permutations over the integers[0, rm − 1] together
with the sets{{Xl

0}
r−1
l=0 , ..., {Xl

k−1}
r−1
l=0}, thenk ≤ m + 1.

Proof: We prove it by induction onm. When m =
0, it is trivial that k ≤ 1. Now suppose we have a
family of orthogonal permutations{{ f l

0}
r−1
l=0 , ..., { f l

k−1}
r−1
l=0}

over [0, rm − 1], and we will show k ≤ m + 1. Recall
that orthogonality is equivalent (22). Notice that for any
permutationsg, h0, ..., hr−1, {{hl f l

0g}r−1
l=0 , ..., {hl f l

k−1g}r−1
l=0}}

are still a family of orthogonal permutations with sets
{{g−1(Xl

0)}, ..., {g−1(Xl
k−1)}}. This is because

hl f l
j g(g−1(X0

i )) = hl f l
j (X0

i )

= hl f l
i (Xl

i )

= hl f l
i g(g−1(Xl

i )).

Therefore, w.l.o.g. we can assumeXl
0 = [lrm−1, (l +

1)rm−1 − 1], and f l
0 is the identity permutation, for0 ≤ l ≤

r − 1.
Let 1 ≤ i 6= j ≤ k − 1, l ∈ [0, r − 1] and define

A = f l
j (X0

i ) = f l
i (Xl

i ),

B = f l
j (X0

i ∩ X0
0),

C = f l
i (Xl

i ∩ X0
0).

ThereforeB, C are subsets ofA, and their compliments inA
are

A\B = f l
j (X0

i ∩ X0
0),

A\C = f l
i (Xl

i ∩ X0
0).

From (22) for anyj 6= 0,

f l
j (X0

0) = f l
0(Xl

0) = Xl
0 (23)

hence,
B, C ⊆ Xl

0 (24)

Similarly, for any j 6= 0, f l
j (X0

0) = f l
j (X0

0) = Xl
0, hence

A\B, A\C ⊆ Xl
0. (25)

From (24),(25) we conclude thatB = C = A ∩ Xl
0, i.e.,

f l
j (X0

i ∩ X0
0) = f l

i (Xl
i ∩ X0

0). (26)

For eachl ∈ [0, r − 1], j ∈ [1, k − 1] define f̂ l
j (x) = f l

j (x)−

lrm−1 and X̂l
j = Xl

j ∩ X0
0 then,

f̂ l
j ([0, rm−1 − 1]) = f l

j (X0
0)− lrm−1

= Xl
0 − lrm−1 (27)

= [0, rm−1 − 1],

where (27) follows from (23). Moreover, sincef l
i is bijective

we conclude that̂f l
i is a permutation on[0, rm−1 − 1].

f̂ l
i (X̂l

i ) = f l
i (Xl

i ∩ X0
0)− lrm−1

= f l
j (X0

i ∩ X0
0)− lrm−1 (28)

= f̂ l
j (X̂0

i ),

where (28) follows from (26). Since{Xl
i}

r−1
l=0 is a partition

of [0, rm − 1], then {X̂l
i}

r−1
l=0 is also a partition ofX0

0 =

[0, rm−1 − 1]. Moreover, since f̂ l
i (X̂l

i ) = f̂ l
j (X̂0

i ) for any

l ∈ [0, r − 1], and f̂ l
i , f̂ l

j are bijections, we conclude

|X̂l
i | = |X̂0

i |

for all l ∈ [0, r− 1], i.e.,{X̂l
i}, l ∈ [0, r− 1], is a equally sized

partition of [0, rm−1 − 1]. Therefore{{ f̂ l
1}

r−1
l=0 , ..., { ˆf l

k−1}
r−1
l=0}

together with{{X̂l
1}

r−1
l=0 , ..., { ˆXl

k−1}
r−1
l=0} is a family of or-

thogonal permutations over integers[0, rm−1 − 1], hence by
inductionk − 1 ≤ m and the result follows.

After presenting the construction of a code with optimal
ratio of1/r, we move on to deal with the problem of assigning
the proper coefficient in order to satisfy the MDS property.
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This task turns out to be not easy when the number of parities
r > 2. The next theorem gives a proper assignment for
the code withr = 3 parities, constructed by the optimal
construction given before. This assignment gives an upper
bound on the required field size.

Theorem 22 A field of size at most2(m + 1) is sufficient to
make the code constructed by Theorem20 with r = 3 parities,
a (m + 4, m + 1) MDS code.

Proof: Let Fq be a field of sizeq ≥ 2(m+ 1). For anyl ∈
[0, m] let Al = (ai,j) be the representation of the permutation
f 1
el

by a permutation matrix with a slight modification and is
defined as follows,

ai,j =











αl f 1
el
(j) = i and j · el = 0

1 f 1
el
(j) = i and j · el 6= 0

0 otherwise,

whereα is a primitive element ofFq. Let W be the matrix
that create the parities nodes, defined as

W =





B0
0 B0

1 ... B0
m

B1
0 B1

1 ... B1
m

B2
0 B2

1 ... B2
m



 .

Where B
j
l = (Al)

j for l ∈ [0, m] and j ∈ [0, 2]. It easy
to see that indeed block rowi ∈ [0, 2] in the block matrix
m corresponds to parityi. We will show that this coefficient
assignment satisfy the MDS property of the code. First we will
show that under this assignment of coefficients the matrices
Al commute, i.e. for anyl1 6= l2 ∈ [0, m], Al1 Al2 = Al2 Al1 .
For simplicity, write f 1

el1
= f1, f 1

el2
= f2, Al1 = (ai,j), Al2 =

(bi,j), 3m = p. For a vectorx = (x0, ..., xp−1) andy = xAl1 ,
its j-th entry satisfiesyj = a f1(j),jx f1(j) for all j ∈ [0, p − 1].
And by similar calculation,z = xAl1 Al2 = yAl2 will satisfy

zj = b f2(j),jy f2(j) = b f2(j),ja f1( f2(j)), f2(j)x f1( f2(j)).

Similarly, if w = xAl2 Al1 , then

wj = a f1(j),jb f2( f1(j)), f1(j)x f2( f1(j)).

Notice that

f1(j) · el2 = (j + el1)el2 = j · el2 ,

so b f2(j),j = b f2( f1(j)), f1(j). Similarly, a f1(j),j = a f1( f2(j)), f2(j).
Moreover,

f1( f2(j)) = f2( f1(j)) = j + el1 + el2 .

Hence,zj = wj for all j and

xAl1 Al2 = z = w = xAl2 Al1

for all x ∈ F
m
3 . Thus Al1 Al2 = Al2 Al1 .

Next we show for anyi, A3
i = αi I. For any vectorx, Let

y = xA3
i . Then

yj = a f i(j),ja f 2
i (j), f i(j)a f 3

i (j), f 2
i (j)x f 3

i (j).

However, f 3
i (j) = j+ 3ei = j (since the addition is done over

F
m
3 ), and exactly one ofj · ei, fi(j) · ei, f 2

i (j) · ei equals to0.
Thusyj = αixj or xA3

i = αix for any x. HenceA3
i = αi I.

The code is MDS if it can recover from loss of any3 nodes.
With this assignment of coefficients the code is MDS iff any
block sub matrices of sizes1 × 1, 2 × 2, 3 × 3 of the matrix
M are invertible. The case of1 × 1 sub matrix is trivial. Let
0 ≤ i < j < k ≤ m we will see that the3 × 3 matrix





I I I
Ai Aj Ak

A2
i A2

j A2
k





is invertible. By Theorem1 in [22] and the fact that all the
blocks in the matrix commute we get that the determinant of
this matrix equals todet(Ak − Aj) ·det(Ak − Ai) ·det(Aj −
Ai). Hence we need to show that for anyi > j, det(Ai −
Aj) 6= 0, which is equivalent todet(Ai A

−1
j − I) 6= 0. Note

that for any i, A3
i = αi I. Denote byA = Ai A

−1
j , hence

A3 = (Ai A
−1
j )3 = A3

i A−3
j = αi−j I 6= I. Therefore

0 6= det(A3 − I) = det(A − I) det(A2 + A + I).

Thereforedet(A − I) = det(Ai A
−1
j − I) 6= 0.

For a submatrix of size2 × 2, we need to check that for
i > j

det(

[

I I
A2

j A2
i

]

) = det(A2
j ) det(A2

i A−2
j − I) 6= 0.

Note thatA6 = (Ai A
−1
j )6 = α2(i−j)I 6= I since0 < i − j ≤

m <
q−1

2 . Hence

0 6= det(A6 − I) = det(A2 − I)(A4 + A2 + I),

and det(A2 − I) = det(A2
i A−2

j − I) 6= 0 which concludes
the proof.

For example, the coefficients of the parities in Figure 5 are
assigned as the above proof. Sincem = 2, the field of size7
is sufficient. The primitive element is chosen to be3. One can
check that when losing any three columns we can still rebuild
them.

VIII. R EBUILDING MULTIPLE ERASURES

In this section, we discuss the rebuilding ofe erasures,1 ≤
e ≤ r. We will first prove the lower bound for rebuilding ratio
and repair bandwidth. Then we show a construction achieving
the lower bound for systematic nodes. At last we generalize
this construction and Construction 5, and propose a rebuilding
algorithm using an arbitrary subgroup and its cosets.

In this section, in order to simplify some of the results we
will assume thatr is a prime and the calculations are done
overFr. Note that all the result can be generalized with minor
changes for an arbitrary integerr and the ringZr.

A. Lower Bounds

The next theorem shows that the rebuilding ratio for Con-
struction 5 is at leaste/r.

Theorem 23 Let A be an array withr parity nodes constructed
by Construction5. In an erasure of1 ≤ e ≤ r systematic nodes,
the rebuilding ratio is at leaster .
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Proof: In order to recover the information in the system-
atic nodes we need to use at leasterm zigzag sets from the
rm+1 sets (There arer parity nodes,rm zigzag sets in each
parity). By the pigeonhole principle there is at least one parity
node, such that at leasterm−1 of its zigzag sets are used. Hence
each remaining systematic node has to access its elements that
are contained in these zigzag sets. Therefore each systematic
node accesses at leasterm−1 of its information out ofrm,
which is a portion ofer .

Since we use at leasterm zigzag sets, we use at leasterm

elements in ther parity nodes, which is again a portion ofe
r .

Hence the overall rebuilding ratio is at leaste
r .

In a general code (not necessary MDS, systematic, or
optimal update), what is the amount of information needed
to transmit in order to rebuilde nodes? Assume that in the
system multiple nodes are erased, and we rebuild these nodes
simultaneously from information in the remaining nodes. It
should be noted that this model is a bit different from the
distributed repair problem, where the recovery of each node
is done separately. We follow the definitions and notations of
[23]. An exact-repair reconstructing code satisfies the follow-
ing two properties: (i)Reconstruction: anyk nodes can rebuild
the total information. (ii)Exact repair: ife nodes are erased,
they can be recovered exactly by transmitting information from
the remaining nodes.

Suppose the total amount of information isM, and then
nodes are[n]. For e erasures,1 ≤ e ≤ r, denote byα, de, βe

the amount of information stored in each node, the number
of nodes connected to the erased nodes, and the amount of
information transmitted by each of the nodes, respectively. For
subsetsA, B ⊆ [n], WA is the amount of information stored
in nodesA, andSB

A is the amount of information transmitted
from nodesA to nodesB in the rebuilding.

The following results give lower bound of repair bandwidth
for e erasures, and the proofs are based on [23].

Lemma 24 Let B ⊆ [n] be a subset of nodes of size|e|, then
for an arbitrary set of nodesA, |A| ≤ de such thatB ∩ A = ∅,

H(WB|WA) ≤ min{|B|α, (de − |A|)βe}.

Proof: If nodes B are erased, consider the case of con-
necting to them nodesA and nodesC, |C| = de − |A|. Then
the exact repair condition requires

0 = H(WB|S
B
A, SB

C)

= H(WB|S
B
A)− I(WB, SB

C|S
B
A)

≥ H(WB|S
B
A)− H(SB

C)

≥ H(WB|S
B
A)− (d − |A|)βe

≥ H(WB|WA)− (d − |A|)βe.

Moreover, it is clear thatH(WB|WA) ≤ H(WB) ≤ |B|α and
the result follows.

Theorem 25 Any reconstructing code with file sizeM must
satisfy for any1 ≤ e ≤ r

M ≤ sα +
⌊ k

e ⌋−1

∑
i=0

min{eα, (de − ie − s)βe}

wheres = k mod e, 0 ≤ s < e. Moreover for an MDS code,
βe ≥

eM
k(d−k+e)

.

Proof: The file can be reconstructed from any set ofk
nodes, hence

M = H(W[k])

= H(W[s]) +
⌊ k

e ⌋−1

∑
i=0

H(W[ie+s+1,(i+1)e+s]|W[ie+s])

≤ sα +
⌊ k

e ⌋−1

∑
i=0

min{eα, (de − ie − s)βe}.

In an MDS codeα = M
k , hence in order to satisfy the

inequality any summand of the formmin{eα, (de − ie− s)βe}
must be at leasteMk , which occurs if and only if(de − (⌊ k

e ⌋−
1)e − s)βe ≥

eM
k . Hence we get

βe ≥
eM

k(d − k + e)
.

And the proof is completed.
Therefore, the lower bound of the repair bandwidth for an

MDS code is eM
k(d−k+e)

, which is the same as the lower bound
of the rebuilding ratio in Theorem 23.

B. Rebuilding Algorithms

Next we discuss how to rebuild in case ofe erasures,1 ≤
e ≤ r, for an MDS array code with optimal update. Theorem
25 gives the lower bounde/r on the rebuilding ratio fore
erasures. Is this achievable? Let us first look at an example.

Example 3 Consider the code in Figure5 with r = 3. When
e = 2 and columnsC0, C1 are erased, we can access rows
{0, 1, 3, 4, 6, 7} in columnC2, C3, rows{1, 2, 4, 5, 7, 8} in col-
umnC4, and rows{2, 0, 5, 3, 8, 6} in columnC5. One can check
that the accessed elements are sufficient to rebuild the two
erased columns, and the ratio is2/3 = e/r. It can be shown
that similar rebuilding can be done for any two systematic
node erasures. Therefore, in this example the lower bound is
achievable.

Consider an information array of sizep × k and an(n, k)
MDS code withr = n − k parity nodes. Each parity node
l ∈ [0, r − 1] is constructed from the set of permutations{ f l

i }
for i ∈ [0, k − 1]. Notice that in the general case the number
of rows p in the array is not necessarily a power ofr. We
will assume columns[0, e − 1] are erased. In an erasure ofe
columns,ep elements need rebuilt, hence we needep equations
(zigzags) that contain these elements. In an optimal rebuilding,
each parity node contributesep/r equations by accessing the
values ofep/r of its zigzag elements. Moreover, the union
of the zigzag sets that create these zigzag elements, constitute
an e/r portion of the elements in the surviving systematic
nodes. In other words, assume that we access rowsX from the
surviving columns[e, k − 1], X ⊆ [0, p − 1], then|X| = ep/r
and

f l
j (X) = f l

i (X)
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for any parity nodel ∈ [0, r − 1] and i, j ∈ [e, k − 1]. Note
that it is equivalent that for any parity nodel ∈ [0, r − 1] and
surviving systematic nodej ∈ [e, k − 1]

f l
j (X) = f l

e (X).

Let Gl be the subgroup of the symmetric groupSp that is
generated by the set of permutations{ f−l

e ◦ f l
j }

k−1
j=e . It is easy

to see that the previous condition is also equivalent to thatfor
any parity l ∈ [0, r − 1] the groupGl stabilizes X, i.e., for
any f ∈ Gl , f (X) = X.

Assuming there is a setX that satisfies this condition, we
want to rebuild theep elements from the chosenep equations,
i.e., theep equations with theep variables being solvable. A
necessary condition is that each element in the erased column
will appear at least once in the chosen zigzag sets (equations).
parity l ∈ [0, r − 1] accesses its zigzag elementsf l

e(X), and
these zigzag sets contain the elements in rows( f l

i )
−1 f l

e(X)
of the erased columni ∈ [0, e − 1]. Hence the condition is
equivalent to that for any erased columni ∈ [0, e − 1]

∪r−1
l=0( f l

i )
−1 f l

e(X) = [0, p − 1].

These two conditions are necessary for optimal rebuilding
ratio. In addition, we need to make sure that theep equations
are linearly independent, which depends on the coefficientsin
the linear combinations that created the zigzag elements. We
summarize:
Sufficient and necessary conditions for optimal rebuilding
ratio in e erasures:There exists a setX ⊆ [0, p − 1] of size
|X| = ep/r, such that

1) For any parity nodel ∈ [0, e− 1] the groupGl stabilizes
the setX, i.e., for anyg ∈ Gl

g(X) = X, (29)

whereGl is generated by the set of permutations
{ f−l

e ◦ f l
j }

k−1
j=e .

2) For any erased columni ∈ [0, e − 1],

∪r−1
l=0 ( f l

i )
−1 f l

e(X) = [0, p − 1]. (30)

3) Theep equations (zigzag sets) defined by the setX are
linearly independent.

The previous discussion gave the condition for optimal
rebuilding ratio in an MDS optimal update code withe
erasures in general. Next will interpret these conditions in
the special case where the number of rowsp = rm, and
the permutations are generated byT = {v0, v1, . . . , vk−1}
⊆ F

m
r and Construction 5, i.e.,f l

i (x) = x + lvi for any
x ∈ [0, rm − 1]. Note that in the case ofr a prime

G1 = G2 = ... = Gr−1,

and in that case we simply denote the group asG. The
following theorem gives a simple characterization for setsthat
satisfy condition1.

Theorem 26 Let X ⊆ F
m
r and G defined above thenG

stabilizesX, if and only if X is a union of cosets of the subspace

Z = span{ve+1 − ve, . . . , vk−1 − ve}. (31)

Proof: It is easy to check that any coset ofZ is stabilized
by G, hence ifX is a union of cosets it is also a stabilized
set. For the other direction letx, y ∈ F

m
r be two vectors in the

same coset ofZ, it is enough to show that ifx ∈ X then also
y ∈ X. Sincey − x ∈ Z there existα1, ..., αk−1−e ∈ [0, r − 1]
such thaty− x = ∑

k−1−e
i=1 αi(ve+i − ve). Since f (X) = X for

any f ∈ G we get thatf (x) ∈ X for any x ∈ X and f ∈ G,
hence

y = x + y − x

= x +
k−1−e

∑
i=1

αi(ve+i − ve)

= f
−αk−1−e
e f

αk−1−e

k−1 ... f
−α1
e f

α1
e+1(x),

for f
−αk−1−e
e f

αk−1−e

k−1 ... f
−α1
e f

α1
e+1 ∈ G. So y ∈ X and the result

follows.
Remark: For any set of vectorsS andv, u ∈ S,

span{S − v} = span{S − u}.

HereS− v = {vi − v|vi ∈ S}. Hence, the subspaceZ defined
in the previous theorem does not depend on the choice of the
vectorve. By the previous theorem we interpret thenecessary
and sufficient conditions of an optimal codeas follows:
There exists a setX ⊆ F

m
r of size |X| = erm−1, such that

1) X is a union of cosets of

Z = span{ve+1 − ve, . . . , vk−1 − ve}.

2) For any erased columni ∈ [0, e − 1],

∪r−1
l=0 (X + l(vi − ve)) = F

m
r . (32)

3) Theerm equations (zigzag sets) defined by the setX are
linearly independent.

The following theorem gives a simple equivalent condition
for conditions1, 2.

Theorem 27 There exists a setX ⊆ F
m
r of size|X| = erm−1

such that conditions1, 2 are satisfied if and only if

vi − ve /∈ Z, (33)

for any erased columni ∈ [0, e − 1].

Proof: Assume conditions1, 2 are satisfied. Ifvi − ve ∈ Z
for some erased columni ∈ [0, e − 1] then X = ∪r−1

l=0(X +
l(vi − ve)) = F

m
r , which is a contradiction toX ( F

m
r . On

the other hand, If (33) is true, thenvi − ve can be viewed as
a permutation that acts on the cosets ofZ. The number of
cosets ofZ is rm/|Z| and this permutation (when it is written
in cycle notation) containsrm−1/|Z| cycles, each with length
r. For eachi ∈ [0, e − 1] chooserm−1/|Z| cosets ofZ, one
from each cycle of the permutationvi − ve. In total erm−1/|Z|
cosets are chosen for thee erased nodes. LetX be the union
of the cosets that were chosen. It is easy to see thatX satisfies
condition2. If |X| < erm−1 (Since there might be cosets that
were chosen more than once) add arbitrary(erm−1 − |X|)/|Z|
other cosets ofZ, and also condition1 is satisfied.

In general, if (33) is not satisfied, the code does not have
an optimal rebuilding ratio. However we can define

Z = span{vi − ve}i∈I, (34)
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where we assume w.l.o.g.e ∈ I andI ⊆ [e, k− 1] is a maximal
subset of surviving nodes that satisfies for any erased node
j ∈ [0, e − 1], vj − ve /∈ Z. Hence from now on we assume
that Z is defined by a subset of surviving nodesI. This set
of surviving nodes will have an optimal rebuilding ratio (see
Corollary 30), i.e., in the rebuilding of columns[0, e − 1],
columns I will access a portion ofe/r of their elements.
The following theorem gives a sufficient condition for theerm

equations defined by the setX to be solvable linear equations.

Theorem 28 Suppose that there exists a subspaceX0 that
containsZ such that for any erased nodei ∈ [0, e − 1]

X0 ⊕ span{vi − ve} = F
m
r , (35)

then the setX defined as an union of somee cosets ofX0

satisfies conditions1, 2 and3 over a field large enough.

Proof: Condition 1 is trivial. Note that by (35),l(vi −
ve) /∈ X0 for any l ∈ [1, r − 1] and i ∈ [0, e − 1], hence
{X0 + l(vi − ve)}l∈[0,r−1] is the set of cosets ofX0. Let Xj =
X0 + j(vi − ve) be a coset ofX0 for somei ∈ [0, e − 1] and
supposeXj ⊂ X. Now let us check condition 2:

∪r−1
l=0(X + l(vi − ve)) ⊇ ∪r−1

l=0(Xj + l(vi − ve))

= ∪r−1
l=0(X0 + j(vi − ve) + l(vi − ve))

= ∪r−1
l=0(X0 + (j + l)(vi − ve))

= ∪r−1
t=0(X0 + t(vi − ve)) (36)

= F
m
r . (37)

(36) holds sincej + l is computed modr. So condition2 is
satisfied. Next we prove condition3. There areerm unknowns
anderm equations. Writing the equations in a matrix form we
get AY = b, whereA is anerm × erm matrix.Y, b are vectors
of lengtherm, andY = (y1, ..., yerm)T is the unknown vector.
The matrixA = (ai,j) is defined asai,j = xi,j if the unknown
yj appears in thei-th equation, otherwiseai,j = 0. Hence
we can solve the equations if and only if there is assignment
for the indetermediates{xi,j} in the matrix A such that
det(A) 6= 0. By (37), accessing rows corresponding to any
cosetXj will give us equations where each unknown appears
exactly once. SinceX is a union ofe cosets, each unknown
appearse times in the equations. Thus each column inA
containse indeterminates. Moreover, each equation contains
one unknown from each erased node, thus any row inA
containse indeterminates. Then by Hall’s Marriage Theorem
[24] we conclude that there exists a permutationf on the
integers[1, erm] such that

erm

∏
i=1

ai, f (i) 6= 0.

Hence the polynomialdet(A) when viewed as a symbolic
polynomial, is not the zero polynomial, i.e.,

det(A) = ∑
f∈Serm

sgn( f )
erm

∏
i=1

ai, f (i) 6= 0.

By Theorem 33 we conclude that there is an assignment from
a field large enough for the indeterminates such thatdet(A) 6=

0, and the equations are solvable. Note that this proof is for a
specific set of erased nodes. However if (35) is satisfied for any
set ofe erasures, multiplication of all the nonzero polynomials
det(A) derived for any set of erased nodes is again a nonzero
polynomial and by the same argument there is an assignment
over a field large enough such that any of the matricesA is
invertible, and the result follows.

In order to use Theorem 28, we need to find a subspaceX0

as in (35). The following theorem shows that such a subspace
always exists, moreover it gives an explicit construction of it.

Theorem 29 Suppose1 ≤ e < r erasures occur. LetZ be
defined by(34)andvi − ve /∈ Z for any erased nodei ∈ [0, e−
1]. Then there existsu ⊥ Z such that for anyi ∈ [0, e − 1],

u · (vi − ve) 6= 0. (38)

Moreover the orthogonal subspaceX0 = (u)⊥ satisfies(35).

Proof: First we will show that such vectoru exists. Let
u1, ...ut be a basis for(Z)⊥ the orthogonal subspace ofZ.
Any vector u in (Z)⊥ can be written asu = ∑

t
j=1 xjuj for

somexj’s. We claim that for anyi ∈ [0, e − 1] there exists
j such thatuj · (vi − ve) 6= 0. Because otherwise,(Z)⊥ =
span{u1, . . . , ut} ⊥ vi − ve, which meansvi − ve ∈ Z and
reaches a contradiction. Thus the number of solutions for the
linear equation

t

∑
j=1

xjuj · (vi − ve) = 0

is rt−1, which equals the number ofu such thatu · (vi − ve) =
0. Hence by the union bound there are at mostert−1 vectors
u in (Z)⊥ such thatu · (vi − ve) = 0 for some erased node
i ∈ [0, e − 1]. Since |(Z)⊥| = rt

> ert−1 there existsu in
(Z)⊥ such that for any erased nodei ∈ [0, e − 1],

u · (vi − ve) 6= 0.

Define X0 = (u)⊥, and note that for any erased nodei ∈
[0, e − 1], vi − ve /∈ X0, sinceu · (vi − ve) 6= 0 andX0 is the
orthogonal subspace ofu. Moreover, sinceX0 is a hyperplane
we conclude that

X0 ⊕ span{vi − ve} = F
m
r ,

and the result follows.
Theorems 28 and 29 give usan algorithm to rebuild

multiple erasures:
1) Find Z by (34) satisfying (33).
2) Find u ⊥ Z satisfying (38). DefineX0 = (u)⊥ and X

as a union ofe cosets ofX0.
3) Access rowsf l

e(X) in parity l ∈ [0, r − 1] and all the
corresponding information elements.

We know that under a proper selection of coefficients the
rebuilding is possible.

In the following we give two examples of rebuilding using
this algorithm. The first example shows an optimal rebuilding
for any set ofe node erasures. As mentioned above, the optimal
rebuilding is achieved since (33) is satisfied, i.e.,I = [e, k− 1].
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Example 4 Let T = {v0, v1, . . . , vm} be a set of vectors that
contains an orthonormal basis ofF

m
r together with the zero

vector. Suppose columns[0, e − 1] are erased. Note that in that
caseI = [e, m] andZ is defined as in(34). Define

u =
m

∑
j=e

vj,

andX0 = (u)⊥. Whenm = r ande = r − 1, modify u to be

u =
m

∑
i=1

vi.

It is easy to check thatu ⊥ Z and for any erased column
i ∈ [0, e − 1], u · (vi − ve) = −1. Therefore by Theorems
28 and29 a setX defined as a union of an arbitrarye cosets
of X0 satisfies conditions1, 2 and3, and optimal rebuilding is
achieved.

In the example of Figure 5, we know that the vectors gen-
erating the permutations are the standard basis (and thus are
orthonormal basis) and the zero vector. When columnsC0, C1

are erased,u = e2 and X0 = (u)⊥ = span{e1} = {0, 3, 6}.
TakeX as the union ofX0 and its coset{1, 4, 7}, which is the
same as Example 3. One can check that each erased element
appears exactly 3 times in the equations and the equations are
solvable inF7. Similarly, the equations are solvable for other
2 systematic erasures.

Before we proceed to the next example, we give an upper
bound for the rebuilding ratio using Theorem 28 and a set of
nodesI.

Corollary 30 Theorem28 requires rebuilding ratio at most

e

r
+

(r − e)(k − |I| − e)

r(k + r − e)

Proof: By Theorem 28, the fraction of accessed elements
in columnsI and the parity columns ise/r of each column.
Moreover, the accessed elements in the rest columns are at
most an entire column. Therefore, the ratio is at most

e
r (|I|+ r) + (k − |I| − e)

k + r − e
=

e

r
+

(r − e)(k − |I| − e)

r(k + r − e)

and the result follows.
Note that as expected when|I| = k − e the rebuilding ratio

is optimal, i.e.e/r. In the following example the code has
O(m2) columns. The setI does not contain all the surviving
systematic nodes, hence the rebuilding is not optimal but isat
most 1

2 + O( 1
m).

Example 5 Suppose2|m. Let T = {v = (v1, . . . , vm) :
‖v‖1 = 2, vi = 1, vj = 1, for somei ∈ [1, m/2], j ∈
[m/2 + 1, m]} ⊂ F

m
2 be the set of vectors generating the code

with r = 2 parities, hence the number of systematic nodes is
|T| = k = m2/4. Suppose columnw = (w1, . . . , wm), w1 =
wm/2+1 = 1 is erased. Define the setI = {v ∈ T : v1 = 0},
and

Z = span{vi − ve|i ∈ I}

for somee ∈ I. Thus|I| = m(m − 2)/4. It can be seen that
Z defined by the setI satisfies(33), i.e.,w − ve /∈ Z since the
first coordinate of a vector inZ is always0, as oppose to1 for

the vectorw − ve. Defineu = (0, 1, ..., 1) andX0 = (u)⊥. It
is easy to check thatu ⊥ Z andu · (w − ve) = 1 6= 0. Hence,
the conditions in Theorem29are satisfied and rebuilding can be
done usingX0. Moreover by Corollary30 the rebuilding ratio
is at most

1

2
+

1

2

(m/2)− 1

(m2/4) + 1
≈

1

2
+

1

m
,

which is a little better than Theorem16 in the constants. Note
that by similar coefficients assignment of Construction4, we
can use a field of size5 or 8 to assure the code will be an MDS
code.

C. Minimum Number of Erasures with Optimal Rebuilding

Next we want to point out a surprising phenomena. We say
that a set of vectorsS satisfiesproperty e for e ≥ 1 if for any
subsetA ⊆ S of size e and anyu ∈ A,

u − v /∈ span{w − v : w ∈ S\A},

where v ∈ S\A. Recall that by Theorem 27 any set of
vectors that generates a codeC and can rebuild optimally any
e erasures, satisfies propertye. The following theorem shows
that this property is monotonic, i.e., ifS satisfies propertye
then it also satisfies propertya for any e ≤ a ≤ |S|.

Theorem 31 Let S be a set of vectors that satisfies propertye,
then it also satisfies propertya, for anye ≤ a ≤ |S|.

Proof: Let A ⊆ S, |A| = e + 1 and assume to the
contrary thatu − v ∈ span{w − v : w ∈ S\A} for some
u ∈ A and v ∈ S\A. |A| ≥ 2 hence there existsx ∈ A\u.
It is easy to verify thatu − v ∈ span{w − v : w ∈ S\A∗},
whereA∗ = A\x and|A∗| = e which contradicts the property
e for the setS.

Hence, from the previous theorem we conclude that a code
C that can rebuild optimallye erasures, is able to rebuild
optimally any number of erasures greater thane as well.
However, as pointed out already there are codes withr parities
that can not rebuild optimally from somee < r erasures.
Therefore, one might expect to find a codeC with parameter
e∗ ≥ 1 such that it can rebuild optimallye erasuresonly
when e∗ ≤ e ≤ r. For example, forr = 3, m = 2 let C
be the code constructed by the vectors{0, e1, e2, e1 + e2}. We
know that any code with more than3 systematic nodes can
not rebuild one erasure optimally, since the size of a familyof
orthogonal permutations over the integers[0, 32 − 1] is at most
3. However, one can check that for any two erased columns,
the conditions in Theorem 28 are satisfied hence the code can
rebuild optimally for anye = 2 erasures and we conclude that
e∗ = 2 for this code.

The phenomena that some codes has a threshold parameter
e∗, such thatonly when the number of erasurese is at least as
the thresholde∗ then the code can rebuild optimally, is a bit
counter intuitive and surprising. This phenomena gives rise to
another question. We know that for a code constructed with
vectors fromF

m
r , the maximum number of systematic columns

for optimal rebuilding ofe = 1 erasures ism + 1 (Theorem
21). Can the number of systematic columns in a code with
an optimal rebuilding ofe > 1 erasures be increased? The
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previous example shows a code with4 systematic columns
can rebuild optimally anye = 2 erasures. But Theorem 21
shows that whenr = 3, m = 2, optimal rebuilding for1
erasure implies no more than3 systematic columns. Hence
the number of systematic columns is increased by at least1
compared to codes with9 rows and optimal rebuilding of1
erasure. The following theorem gives an upper bound for the
maximum systematic columns in a code that rebuilds optimally
any e erasures.

Theorem 32 Let C be a code constructed by Construction5
and vectors fromF

m
r . If C can rebuild optimally anye erasures,

for some1 ≤ e < r, then the number of systematic columnsk
in the code satisfies

k ≤ m + e.

Proof: Consider a code with lengthk and generated by
vectors v0, v1, . . . , vk−1. If these vectors are linearly inde-
pendent thenk ≤ m and we are done. Otherwise they are
dependent. Supposee columns are erased,1 ≤ e < r. Let
ve be a surviving column. Consider a new set a of vectors:
T = {vi − ve : i ∈ [0, k − 1], i 6= e}. We know that the
code can rebuild optimally only if (33) is satisfied for all
possiblee erasures. Thus for anyi 6= e, i ∈ [0, k − 1], if
column i is erased and columne is not, we havevi − ve /∈ Z
and thusvi − ve 6= 0. So every vector inT is nonzero.
Let s be the minimum number of dependent vectors inT,
that is, the minimum number of vectors inT such that they
are dependent. For nonzero vectors, we haves ≥ 2. Say
{ve+1 − ve, ve+2 − ve, . . . , ve+s − ve} is a minimum depen-
dent set of vector. Since anym + 1 vectors are dependent in
F

m
r ,

s ≤ m + 1.

We are going to showk − e ≤ s − 1. Suppose to the contrary
that the number of remaining columns satisfiesk − e ≥ s
and e erasures occur. When columnve+s is erased and the
s columns{ve, ve+1, . . . , ve+s−1} are not, we should be able
to rebuild optimally. However since we chose a dependent
set of vectors,ve+s − ve is a linear combination of{ve+1 −
ve, ve+2 − ve, . . . , ve+s−1 − ve}, whose span is contained inZ
in (33). Hence (33) is violated and we reach a contradiction.
Therefore,

k − e ≤ s − 1 ≤ m.

Notice that this upper bound is tight. Fore = 1 we
already gave codes with optimal rebuilding of1 erasure and
k = m + 1 systematic columns. Moreover, fore = 2 the
code already presented in this section and constructed by the
vectors0, e1, e2, e1 + e2, reaches the upper bound withk = 4
systematic columns.

D. Generalized Rebuilding Algorithms

The rebuilding algorithms presented in Constructions 1,5
and Theorem 28 all use a specific subspace and its cosets
in the rebuilding process. This method of rebuilding can be
generalized by using an arbitrary subspace as explained below.

Let T = {v0, . . . , vk−1} be a set of vectors generating the
code in Construction 5 withrm rows andr parities. Suppose
e columns[0, e− 1] are erased. LetZ be a proper subspace of
F

m
r . In order to rebuild the erased nodes, in each parity column

l ∈ [0, r − 1], access the zigzag elementszl
i for i ∈ Xl , and

Xl is a union of cosets ofZ. In each surviving node, access
all the elements that are in the zigzag setsXl of parity l.
More specifically, access elementai,j in the surviving column
j ∈ [e, k − 1] if i + lvj ∈ Xl. Hence, in the surviving column
j and parityl, we access elements in rowsXl − lvj. In order
to make the rebuilding successful we impose the following
conditions on the setsX0, ..., Xl. Since the number of equations
needed is at least as the number of erased elements, we require

r−1

∑
l=0

|Xl | = erm. (39)

Moreover, we want the equations to be solvable, hence for any
erased columni ∈ [0, e − 1],

∪r−1
l=0 Xl − lvi = [0, rm − 1] multiplicity e, (40)

which means if the union is viewed as a multi-set, then each
element in[0, rm − 1] appears exactlye times. This condition
makes sure that the equations are solvable by Hall’s theorem
(see Theorem 28). Under these conditions we would like to
minimize the ratio, i.e., the number of accesses which is,

min
X0,...,Xr−1

k−1

∑
j=e

| ∪r−1
l=0 (Xl − lvj)|. (41)

In summary, for thegeneralized rebuilding algorithm one
first chooses a subspaceZ, and then solves the minimization
problem in (41) subject to (39) and (40).

The following example interprets the minimization problem
for a specific case.

Example 6 Let r = 2, e = 1, i.e., two parities and one erasure,
then equations(39),(40)becomes

|X0|+ |X1| = 2m, X0 ∪ X1 + v0 = [0, 2m − 1].

ThereforeX1 + v0 = X0. The objective function in(41)
becomes,

min
X0,X1

k−1

∑
j=1

|X0 ∪ X1 + vj| = min
X0

k−1

∑
j=1

|X0 ∪ (X0 + v0 + vj)|.

Eachv0 + vj defines a permutationfv0+v j
on the cosets ofZ by

fv0+v j
(A) = A + v0 + vj for a cosetA of Z. If v0 + vj ∈ Z

then fv0+v j
is the identity permutation and|X0 ∪ (X0 + v0 +

vj)| = 2m, regardless of the choice ofX0. However, ifv0 +
vj /∈ Z, then fv0+v j

is of order2, i.e., it’s composed of disjoint
cycles of length2. Note that if fv0+v j

mapsA to B and only
one of the cosetsA, B is contained inX0, sayA, then onlyA
is contained inX0 ∪ (X0 + v0 + vj). On the other hand, if both
A, B ∈ X0 or A, B /∈ X0 then,

A, B ⊆ X0 ∪ (X0 + v0 + vj).

In other words,(A, B) is a cycle in fv0+v j
which is totally

contained inX0 or in X0. DefineNX
j as the number of cycles
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(A, B) in the permutationfv0+v j
that are totally contained inX

or in X, whereX is a union of some cosets ofZ. It is easy to
see that the minimization problem is equivalent to minimizing

min
X

k−1

∑
j=1

NX
j . (42)

In other words, we want to find a setX which is a union of
cosets ofZ, such that the number of totally contained or totally
not contained cycles in the permutations defined byvj + v0,
j ∈ [1, k − 1] is minimized.

From the above example, we can see that given a non-
optimal code with two parities and one erasure, finding the
solution in (42) requires minimizing for the sum of these
k − 1 permutations, which is an interesting combinatorial
problem. Moreover, by choosing a different subspaceZ we
might be able to get a better rebuilding algorithm than that in
Construction 1 or Theorem 28.

IX. CONCLUDING REMARKS

In this paper, we described explicit constructions of the
first known systematic(n, k) MDS array codes withn − k
equal to some constant, such that the amount of information
needed to rebuild an erased column equals to1/(n − k),
matching the information-theoretic lower bound. While the
codes are new and interesting from a theoretical perspective,
they also provide an exciting practical solution, specifically,
when n − k = 2, our zigzag codes are the best known
alternative to RAID-6 schemes. RAID-6 is the most prominent
scheme in storage systems for combating disk failures [1]-
[6]. Our new zigzag codes provide a RAID-6 scheme that has
optimal update (important for write efficiency), small finite
field size (important for computational efficiency) and optimal
access of information for rebuilding - cutting the current
rebuilding time by a factor of two.

We note that one can add redundancy for the sake of
lowering the rebuilding ratio. For instance, one can use three
parity nodes instead of two. The idea is that the third parityis
not used for protecting data from erasures, since in practice,
three concurrent failures are unlikely. However, with three
parity nodes, we are able to rebuild a single failed node by
accessing only1/3 of the remaining information (instead of
1/2). An open problem is to construct codes that can be
extended in a simple way, namely, codes with three parity
nodes such that the first two nodes ensure a rebuilding ratio of
1/2 and the third node further lowers the ratio to1/3. Hence,
we can first construct an array with two parity nodes and when
needed, extend the array by adding an additional parity node
to obtain additional improvement in the rebuilding ratio.

Another future research direction is to consider the ratio of
read accesses in the case of a write (update) operation. For
example, in an array code with two parity nodes, in order
to update a single information element, one needs to read at
least three elements and write three elements, because we need
to know the values of the old information and old parities
and compute the new parity elements (by subtracting the old
information from the parity and adding the new information).

However, an interesting observation, in our optimal code
construction with two parity nodes, is if we update all the
information in the first column and the rows in the first half of
the array (see Figure 3), we do not need to read for computing
the new parities, because we know the values of all the
information elements needed for computing the parities. These
information elements take about half the size of the entire
array. So in a storage system we can cache the information
to be written until most of these elements needs update (we
could arrange the information in a way that these elements are
often updated at the same time), hence, the ratio between the
number of read operations and the number of new information
elements is relatively very small. Clearly, we can use a similar
approach for any other systematic column. In general, given
r parity nodes, we can avoid redundant read operations if we
update about1/r of the array.

APPENDIX A
PROOF OFTHEOREM 5

In order to prove Theorem 5, we use the well known
Combinatorial Nullstellensatz by Alon [21]:

Theorem 33 (Combinatorial Nullstellensatz) [21, Th 1.2] Let
F be an arbitrary field, and letf = f (x1, ..., xq) be a poly-
nomial in F[x1, ..., xq]. Suppose the degree off is deg( f ) =

∑
q
i=1 ti, where eachti is a nonnegative integer, and suppose the

coefficient of∏
q
i=1 x

ti
i in f is nonzero. Then, ifS1, ..., Sn are

subsets ofF with |Si| > ti, there ares1 ∈ S1, s2 ∈ S2, ..., sq ∈
Sq so that

f (s1, ..., sq) 6= 0.

Proof of Theorem 5: Assume the information ofA is
given in a column vectorW of length pk, where column
i ∈ [0, k − 1] of A is in the row set[(ip, (i + 1)p − 1]
of W. Each systematic nodei, i ∈ [0, k − 1], can be
represented asQiW whereQi = [0p×pi, Ip×p, 0p×p(k−i−1)].
Moreover define Qk = [Ip×p, Ip×p, ..., Ip×p], Qk+1 =
[x0P0, x1P1, ..., xk−1Pk−1] where thePi’s are permutation ma-
trices (not necessarily distinct) of sizep × p, and thexi’s
are variables, such thatCk = QkW, Ck+1 = Qk+1W. The

permutation matrixPi = (p
(i)
l,m) is defined asp

(i)
l,m = 1 if

and only if am,i ∈ Zl . In order to show that there exists
such MDS code, it is sufficient to show that there is an
assignment for the intermediates{xi} in the fieldF, such that
for any set of integers{s1, s2, ..., sk} ⊆ [0, k + 1] the matrix
Q = [QT

s1
, QT

s1
, ..., QT

sk
] is of full rank. It is easy to see that if

the parity columnCk+1 is erased i.e.,k + 1 /∈ {s1, s2, ..., sk}
then Q is of full rank. If k /∈ {s1, s2, ..., sk} andk + 1 ∈
{s1, s2, ..., sq} thenQ is of full rank if none of thexi’s equals
to zero. The last case is when bothk, k + 1 ∈ {s1, s2, ..., sk},
i.e., there are0 ≤ i < j ≤ k− 1 such thati, j /∈ {s1, s2, ..., sk}.
It is easy to see that in that caseQ is of full rank if and only
if the submatrix

Bi,j =

(

xiPi xjPj

Ip×p Ip×p

)

is of full rank. This is equivalent todet(Bi,j) 6= 0. Note that
deg(det(Bi,j)) = p and the coefficient ofxp

i is det(Pi) ∈
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{1,−1}. Define the polynomial

T = T(x0, x1, ..., xk−1) = ∏
0≤i<j≤k−1

det(Bi,j),

and the result follows if there are elementsa0, a1, .., ak−1 ∈ F

such thatT(a0, a1, ..., ak−1) 6= 0. T is of degreep(k
2) and the

coefficient of∏k−1
i=0 x

p(k−1−i)
i is ∏

k−1
i=0 det(Pi)

k−1−i 6= 0. Set
for any i, Si = F\0 in Theorem 33, and the result follows.

APPENDIX B
PROOF OFTHEOREM 6

In this section we prove Theorem 6. We will need some
definitions and theorems first.

For the rebuilding of nodei by row and zigzag setsS =
{S0, . . . , Sp−1}, define the number of intersections by

I(i|S) = ∑
S∈S

|S| − | ∪S∈S S| = pk − | ∪S∈S S|.

Moreover define the number of total intersections in an MDS
array codeC as

I(C) =
k−1

∑
i=0

max
S rebuildsi

I(i|S).

Now defineh(k) to be the maximal possible intersections over
all (k + 2, k) MDS array codes, i.e.,

h(k) = max
C

I(C).

For example, in Figure 2 the rebuilding set for column1 is S =
{R0, R1, Z0, Z1}, the size in equation (4) is8, andI(1|S) = 4.

The following theorem gives a recursive bound for the
maximal number of intersections.

Theorem 34 Let q ≤ k ≤ p thenh(k) ≤ k(k−1)h(q)
q(q−1)

.

Proof: Let A be an information array of sizep × k.
Construct a MDS array codeC by the row sets and the
zigzag sets that reaches the maximum possible number of
intersections, and supposeS

i achieves the maximal number of
intersections for rebuilding columni, i ∈ [0, k − 1]. Namely
the zigzag setsZ of the codeC and the rebuilding setsSi

satisfy that,

h(k) = I(C) =
k−1

∑
i=0

max
S rebuildsi

I(i|S) =
k−1

∑
i=0

I(i|Si).

For a subset of columnsT ⊆ [0, k − 1] and a rebuilding
set S

i = {S0, ..., Sp−1} we denote the restriction ofSi to
T by S

i
T = {S0,T , ..., Sp−1,T}, where Sl,T = {a ∈ Sl :

a is in columnsT}. Denote by

I(j, S
i) =

p−1

∑
l=0

|Sl ∩ j| − |(∪
p−1
l=0 Sl) ∩ j|

the number of intersections in columnj while rebuilding
column i by S

i. It is easy to see that

I(i|Si) = ∑
j:j 6=i

I(j, S
i)

and thus
h(k) = ∑

i,j:j 6=i

I(j, S
i).

Note also that ifi 6= j and i, j ∈ T, then

I(j, S
i) = I(j, S

i
T). (43)

Hence
(

k − 2

q − 2

)

h(k) =

(

k − 2

q − 2

)

∑
i,j:
j 6=i

I(j, S
i)

= ∑
i,j:
j 6=i

∑
T⊆[0,k−1]:
i,j∈T,|T|=q

I(j, S
i)

= ∑
i,j:
j 6=i

∑
T⊆[0,k−1]:
i,j∈T,|T|=q

I(j, S
i
T)

= ∑
T⊆[0,k−1]:

|T|=q

∑
i,j∈T:

i 6=j

I(j, S
i
T)

≤ ∑
T⊆[0,k−1]:

|T|=q

h(q) (44)

=

(

k

q

)

h(q).

Inequality (44) holds because the code restricted in columns
T is a (q + 2, q) MDS and optimal-update code, andh(q) is
the maximal intersections among such codes. Hence,

h(k) ≤
(k

q)h(q)

(k−2
q−2)

=
k(k − 1)h(q)

q(q − 1)
,

and the result follows.
For a (k + 2, k) MDS codeC with p rows therebuilding

ratio R(C) can be written as

R(C) =
k(p(k − 1)− I(C) + p)

p(k + 1)k
= 1 −

I(C) + pk

p(k + 1)k
.

Notice that in the two parity nodes, we accessp elements
because each erased element must be rebuilt either by row or
by zigzag. Thus we have the termp in the above equation.
And the ratio function for all (k + 2, k) MDS codes withp
rows is

R(k) = min
C

R(C) = 1 −
h(k) + pk

p(k + 1)k
.

Proof of Theorem 6: Consider a(k + 2, k) code with
p rows and assume a systematic node is erased. In order to
rebuild it, p row and zigzag sets are accessed. Letx and p− x
be the number of elements that are accessed from the first
and the second parity respectively. W.l.o.g we can assume that
x ≥ p

2 , otherwisep− x would satisfy it. Each element of these
x sets is a sum of a set of sizek. Thus in order to rebuild the
node, we need to access at leastx(k − 1) ≥ p(k−1)

2 elements
in the k − 1 surviving systematic nodes, which is at least half
of the size of these nodes. So the number of intersections is
no more thanpk(k−1)

2 . Thus

h(k) ≤
pk(k − 1)

2
. (45)
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and the ratio function satisfies

R(k) = 1 −
h(k) + pk

pk(k + 1)
≥ 1 −

pk(k−1)
2 + pk

pk(k + 1)
=

1

2
.

So the rebuilding ratio is no less than1/2.
From Theorem 34 we get,

h(k + 1) ≤
(k + 1)kh(k)

k(k − 1)
=

(k + 1)h(k)

k − 1
. (46)

Hence,

R(k + 1) = 1 −
h(k + 1)

p(k + 1)(k + 2)
−

1

k + 2

≥ 1 −
h(k)

p(k − 1)(k + 2)
−

1

k + 2

= 1 −
h(k) + p(k − 1)

p(k − 1)(k + 2)

≥ 1 −
h(k) + pk

pk(k + 1)
(47)

= R(k),

where (47) follows from (45). Thus the ratio function is
nondecreasing.

The lower bound of1/2 in the theorem can be also derived
from the repair bandwidth (1).
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