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Abstract—MDS array codes are widely used in storage systems and operations are over a finite field of sizeConsider the
to protect data against erasures. We address theebuilding ratio  rebuilding of the first information node, it requires acces3

problem, namely, in the case of erasures, what is the fractiv  gjements out ob (a rebuilding ratio of}), becauser = (a +
of the remaining information that needs to be accessed in ogf b) — b ande — DY — b | tice. th . diff
to rebuild exactly the lost information? It is clear that when the ) —bandc = (c+b) —b. In practice, there is a difference

number of erasures equals the maximum number of erasures between erasures of the information (also called systejnati
that an MDS code can correct then the rebuilding ratio is1 and the parity nodes. An erasure of the former will affect

(access all the remaining information). However, the inteesting  the information access time since part of the raw infornmatio
and more practical case is when the number of erasures is smat is missing, however erasure of the latter does not have such

than the erasure correcting capability of the code. For exarple, ffect si th tire inf tion i ible. M .
consider an MDS code that can correct two erasures: What is ENECL SINCe the entire intormation 1S accessible. Moezom

the smallest amount of information that one needs to accessi MOSt storage systems the number of parity nodes is negligibl
order to correct a single erasure? Previous work showed that compared to the number of systematic nodes. Therefore our
the rebuilding ratio is bounded between} and 3, however, the constructions focus on the optimally of the rebuilding eati
exact value was left as an open problem. In this paper, we s@v | g|ated to the systematic nodes.

this open problem and prove that for the case of a single erasa
with a 2-erasure correcting code, the rebuilding ratio is%. In
general, we construct a new family ofr-erasure correcting MDS
array codes that has optimal rebuilding ratio of £ in the case of
e erasures,1 < e < r. Our array codes have efficient encoding
and decoding algorithms (for the case = 2 they use a finite field
of size3) and an optimal update property.
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I. INTRODUCTION

Erasure-correcting codes are the basis of the ubiquitd:' rel. Rebuilding of a(4,2) MDS array code oveF;. Assume the first
node (column) is erased.

RAID schemes for storage systems, where disks correspon

to symbols in the code. Specifically, RAID schemes are |n [7], [8], a related problem is discussed: The nodes are
based on MDS (maximum distance separable) array codes #&fumed to be distributed and fully connected in a network,
enable optimal storage and efficient encoding and decodifgd the concept of aepair bandwidth is defined as the
algorithms. Withr redundancy symbols, an MDS code isninimum amount of data that needs to be transmitted in the
able to reconstruct the original information if no more than network in order to rebuild the erased nodes. In contrastito o
symbols are erased. An array code is a two dimensional arréyncept of therebuilding ratio a transmitted element of data
where each column corresponds to a symbol in the code ath be a function of a number of elements that are accessible
is stored in a disk in the RAID scheme. We are going to refeh the same node. In addition, in their general framework, an
to a disk/symbol as a node or a column interchangeably, ag¢teptable rebuilding is one that retains the MDS property a
an entry in the array as an element. Examples of MDS arragt necessarily rebuilds the original erased node, wheveas
codes are EVENODD[1][]2], B-codél[3], X-codgl[4], RDPrestrict our solutions taxact rebuilding. It is clear that our
[5], and STAR-codel[6]. framework is a special case of the general framework, hence,
Suppose that some nodes are erased in a systematic MRSrepair bandwidth is a lower bound on the rebuilding ratio
array code, we will rebuild them by accessing (reading) somghat is known about lower bounds on the repair bandwidth?
information in the surviving nodes, all of which are assumed [7] it was proved that a lower bound on the repair bandwidth
to be accessible. The fraction of the accessed informationfor an (1, k) MDS code is:
the surviving nodes is called thebuilding ratio. If » nodes
are erased, then the rebuilding ratialisince we need to read M Nz 1, (1)
all the remaining information. Is it possible to lower thidio ko n—k
for less thanr erasures? Apparently, it is possible: Figlife Here the code has a total of nodes withk nodes of
shows an example of our new MDS code withinformation information andr = n — k nodes of redundancy/parity, where
nodes an® redundancy nodes, every node aglements, M is the total amount of information. Also all the surviving
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012 |R|Z to identity permutations, namely, it is linear combinatioh
Ol & & |© * rows. In the case of codes with parities, we call the first
11910 | & © parity therow parity and the second parity thegzag parity.
AEIEIE L) The corresponding sets of information elements for a parity
3OV | & & element are calledow andzigzag sets, respectively.

Figure 2. Permutations for zigzag sets in® 3) code with4 rows. Columns It should be noted that in contrast to eXiSting MDS farray
0, 1, and 2 are systematic nodes and columns R, and Z are padgs. Each codes such as EVENODD and X-code, the parity sets in our

element in column R is a linear combination of the systemeléments inthe  codes are not limited to elements that correspond to straigh
same row. Each element in column Z is a linear combinatiom@fiystematic

elements with the same symbol. The shaded elements aresaeddesrebuild “nes‘_ in the ?-rray' but Ca'_q also include elements .that Cpﬂrm; .
column 1. to zigzag lines. We will demonstrate that this property is

essential for achieving an optimal rebuilding ratio.

If a single systematic node is erased, we will rebuild each
nodes are assumed to be accessible. It can be verified {@ient in the erased node either by its corresponding row
Figure[1 matches this lower bound. Note that Equatidn (bhrity or zigzag parity, referred to asbuild by row (or
represents the amount of information, it should be norredlizby zgzag). In particular, we access the row (zigzag) parity
to reach the ratio. A number of researchers addressed gment, and all the elements in this row (zigzag) set, excep
repair bandwidth probleni [7]=[16], however the constrdctahe erased element. For example, consider Fifilire 2, suppose
code achieving the lower bound all have low code rate, i.@aat the column labeled is erased, one can access the
k/n < 1/2. And it was shown by interference alignment inshaded elements and rebuild its first two elements by rows,
[14], [15] that this bound is asymptotically achievableéxect and the rest by zigzags. Namely, only half of the remaining
repair. elements are accessed. It can be verified that for the code in

Instead of trying to construct MDS codes that can be easigure[2, all the three systematic columns can be rebuilt by
rebuilt, a different approach [17], [18] was used by trying taccessing half of the remaining elements. Thus the relngjldi
find ways to rebuild existing families of MDS array codesatio is1/2, which is the lower bound expressed D (1).

The ratio of rebuilding a single systematic node was shownThe key idea in our construction is that for each erased
to be 3 + o(1) for EVENODD or RDP codes [1][]5], both node, the row sets and the zigzag sets have a large inter-
of which have 2 parities. However, based on the lower bougdction - resulting in a small number of accesses. So the
of (@) the ratio can be as small d¥2. Moreover, related question is: How do we find permutations such that the row
work on constructing codes with optimal rebuilding appéaresets and zigzag sets intersect as much as possible? In this
independently in[[19],[20]. Their constructions are samito paper, we will present an optimal solution to this question
this work, but only single erasure is considered. by constructing permutations that are derived from binary

Our main goal in this paper is to design, k) MDS array vectors. This construction provides an optimal rebuildiato
codes withoptimal rebuilding ratio, for arbitrary number of of 1/2 for any erasure of a systematic node. How do we define
parities. We first consider the case @f parities. We assume permutations on integers from a binary vector? We simply add
that the code is systematic. In addition, we consider cods wto each integer the binary vector and use the sum as the image
optimal update, namely, when an information element is writof this integer. Here each integer is expressed as its binary
ten, only the element itself and one element from each paréypansion. For example, in order to define the permutation
node needs update, namely, there is optimal reading/grition integers{0,1,2,3} from the binary vectorr = (1,1),
during writing of information. Hence, in the case of a codwe express each integer in binaf, 0), (0,1), (1,0), (1,1).
with 2 parities only 3 elements are updated. Under sucfthen add (mod2) the vectorv = (1,1) to each integer,
assumptions, we will prove that every parity elementis @edin and get(1,1), (1,0), (0,1), (0,0). At last change each binary
combination of exactly one information element from eacéxpansion back to integer and define it as the image of the per-
systematic column. We call this set of information elementsmutation:3,2,1,0. Hence/0, 1,2, 3) are mapped t¢3,2,1,0)
parity set. Moreover, the parity sets of a parity node form @ this permutation, respectively. This simple techniqoe f
partition of the information array. generating permutations is the key in our construction. e c

For example, Figuré]2 shows a code withsystematic generalize our construction for arbitrary(number of parity
nodes and2 parity nodes. The parity sets corresponding toodes) by generating permutations usingry vectors. Our
parity nodeR are the sets of information elements in the sanmnstructions are optimal in the sense that we can construct
row. The parity sets that correspond to the parity n@ddere codes withr parities and a rebuilding ratio df/r.
the sets of information elements with the same symbol. ForSo far we focused on the optimal rebuilding ratio, however,
instance the first element in colunkis a linear combination a code with two parity nodes should be able to correct two
of the elements in the first row and in colum@gsl, and2. erasures, namely, it needs to be an MDS code. We will present
And the & in column Z is a linear combination of all thethat for large enough field size the code can be made MDS.
& elements in column®, 1, and 2. We can see that eachln particular, another key result in this paper is that fo th
systematic column corresponds to a permutation of the fotase of a code with two parity nodes, the field siz8,ignd
symbols. In general, we will show that each parity relatea tothis field size is optimal.
set of a permutations of the systematic columns. Withowg los In addition, our codes have an optimal array size in the
of generality, we assume that the first parity node corredporsense that for a given number of rows, we have the maximum



number of columns among all systematic codes with optimal. For a binary vectow = (vy,...,v,) we denote byo =
ratio and update. However, the length of the array is expfg; +1 mod 2,...,v, +1 mod 2) its complement vector.
nential in the width. We introduce techniques for making th€he standard vector basis of dimensionwill be denoted
array wider while having a rebuilding ratio that is very dosas {¢;}” ; and the zero vector will be denoted @s For an
tol/r. integern denote bys5,, the set of permutations over the integers
We also considered the following generalization: Suppo$® n — 1], namely the symmetric group. For two functiofg,
that we have an MDS code with three parity nodes, if we hadenote their composition byg or f o g.
a single erasure, using our codes, we can rebuild the erasurBRecall thatrebuilding ratio is the average fraction of ac-
with rebuilding ratio of1/3. What happens if we have twocesses in the surviving systematic and parity nodes while
erasures? What is the rebuilding ratio in this case? Oursodebuilding one systematic node. More specific definitior wil
can achieve the optimal rebuilding ratio f3. In general, if be given in the next section. In this section we give the
we haver > 3 parity nodes and erasures happeh,< e < r, construction of MDS array code with two parities and optimal
we will prove that the lower bound of repair bandwidthej&r  rebuilding ratiol/2 for one erasure, which uses an optimal
(normalized by the size of the remaining array), and so is tffiaite field of only size3.
rebuilding ratio. And the code we constructed achieves thisWe mentioned in the introduction that ea@h+ 2, k) MDS
lower bound for any. array code with optimal update can be constructed by defining
In summary, the main contribution of this paper is the firdshe row and zigzag parities (proofs are given in Section
explicit construction of systematie:, k) MDS array codes for [I}. More specifically, the row parity corresponds to idint
any constant = n — k, which achieves optimal rebuilding permutation in each systematic column, and the zigzagyparit
ratio of % Moreover, our codes achieve optimal rebuildingorresponds to a set of permutatidn, f1, ..., fr_1} for the
ratio of ¢ when e systematic erasures occur, < e < r. Systematic columng0,1, ..., k}. From the example in Figure
The parity symbols are constructed by linear combinatiol we know that in order to get low rebuilding ratio, we need
of a set of information symbols, such that each informatido find fy, ..., fr_; such that the row and zigzag sets used in
symbol is contained exactly once in each parity node. Thetsbuilding intersect as much as possible. In addition, esinc
codes have a variety of advantages: 1) they are systemaiech parity element is a linear combination of elements in
codes, hence it is easy to retrieve information; 2) they haits parity set, we need to define the coefficients of the linear
high code ratek/n, which is commonly required in storagecombination such that the code is MDS. Noticing that all
systems; 3) the encoding and decoding of the codes candiements and all coefficients are from some finite field, we
easily implemented (for = 2, the code uses finite field of sizewould like to choose the coefficients such that the finite field
3); 4) they match the lower bound of the ratio when rebuildingjze is as small as possible. So our construction of the code
e systematic nodes; 5) the rebuilding of a failed node reguir#cludes two steps:
simple computation and access to ob}§r of the data in each 1) Find zigzag permutations to minimize the ratio.
node (no linear combination of data); 6) they hagimal 2) Assign the coefficients such that the code is MDS.
update, namely, when an information element is updated, only the following construction constructs a family of MDS
r+1 elements in the array need update; and 7) they haygay codes with2 parities using binary vectors. From any
optimal array size. . . setT C Fy, |T| = k, we construct ak +2,k) MDS array
The remainder of the paper is organized as follows. Sectiggge of sized™ x (k+2). We will show that some of these
[Mconstructs(k 42, k) MDS array codes with optimal rebuild- ;gges have the optimal ratio ‘%f-
ing ratio._SectiOIEI]I gives formal definitions anq some gahe |, this section all the calculations are done oler. By
obse_rva_tlons on MDS array codes. Secfioh IV introduces coggse of notation we usec [0,2™ — 1] both to represent the
duplication and thus generat@s+ 2, k) MDS array codes for integer and its binary representation. It will be clear frime
arbitrary number of columns. We discuss the size of the finiggntext which meaning is in use.
field needed for these constructions in Secfidn V. Decodin ) )
algorithms for erasures and errors are discussed in Sectg(i’ﬂs”,uc“o” 1 LetA = (a;;) be an array of sizé™ x k for
VT Section[VIl generalizes the MDS code construction t§0mMe integerk, m andk < 2™. LetT C IFy' be a set of vectors
arbitrary number of parity columns. These generalized sod@’ Sizek which does not contain the zero vector. ko T
have properties that are similar to tiile+ 2,k) MDS array We define the permutatiofy : 0,2" —1] — [0,2" — 1] by
codes, likewise some of them has optimal rebuilding ratidv(¥) = x + v, wherex is represented in its binary represen-
Rebuilding of multiple erasures and generalization of tHation. One can check that this is actually a permutatiom. Fo
rebuilding algorithms are presented in Section VIIl. Fipal €xample whem =2,v = (1,0),x =3,
we provide concluding remarks in Section] IX. f(1,0)(3) =3+(1,0) = (1,1)+(1,0) = (0,1) = 1.

One can check that the permutatips in vector notation is
[2,3,0,1]. In addition, we define&, = {x € [0,2" —1] :

In the rest of the paper, we are going to Ui5¢| to denote x-v = 0} as the set of integers orthogonaktoFor example,
{i,;i+1,...,j} and[i] to denote{1,2,...,i}, for integers X = {0,1}. The construction of the two parity columns
i < j. And denote the complement of a subsétC M as is as follows: The first parity is simply the row sums. The
X = M\X. For a matrixA, AT denotes the transpose ofsecond parity is the linear combination of elements in the

lI. (k+2,k) MDS ARRAY CODE CONSTRUCTIONS



zigzag set. The zigzag sef, ..., Zon_1 are defined by the f, ! is the inverse function of,,. Thus the extra elements node
permutations|f,; : v; € T} asa;; € Z; if f,,(i) = 1. We u needs to access are in rovis ! (fo(Xy))\ Xp. But,
will denote the permutatiogfv]. as f] and the selXUj as X]-.

-1 ~

Assume columij is erased, and defirte = {a;; : i € X;} ‘JM \X”_|

andsS. = {a;; : i ¢ X;}. Rebuild the elements i, by rows = |fi'(fo(X0)) N Xy |

and the elements 8, by zigzags. = | fu—l (fo(X0)) U Xo|

Theorem 1 Construct permutations fo, ..., fu and sets = 2™ — | 1(f,(Xy)) U Xy|

Xo, ..., Xm by the vectorde;}}" ; as in Constructiofll where _ am _ (g1 g1

X, is modified to beXy = {x € F}' : x - (1,1,..,1) = 0}, 2 . (Ui ol Xo)) [ Xl = Ui (folXo) ) 0 Xo )
Then the correspondirign + 3, m + 1) code ha®ptimalratio = |fu (fo(Xo)) N Xo

of &. = [fo(Xo) N fu(Xo)l,

Before proving the theorem, we first give an examplevhere we used the fact tha, f,, are bijections, andX,| =
Actually, this example is the code in Figuié 2 with mor@”1.
details. (ii) Consider the grougF%, +). Recall thatf,(X) = X +

. v = {x+v :x € X}. The setsf,(X,) = Xy, + v and
Example 1 Let A be an array of sizd x 3. We construct a fu(Xo) = Xo + u are cosets of the subgroup, = {w €
. u v - v -

(15’3) MDS array COC,’e forA as in Theorerid that accesses % :w-v = 0}, and they are either identical or disjoint.
5 of the remaining lnfqrmatlon in the array to rebuild anioreover, they are identical it — u € X,, namely (v —
systematic node (see FigiBp For exampleX; = {0,1}, and )0 = Yoy 1,01 =0 mod 2. However, by definition
for rebuilding of nodel (columnC;) we access the element%\u| _ Z'w‘: '”"*0 1 mod 2. and the result follows. m
40,0, 40,2, 11,0, 81,2, @nd the following four parity elements Let { fo,l'.z.}.i,_ f;ii;} be a set of permutations over the set

ro = ag0 + ag1 + 402 [0,2™ — 1] with associated subsel, ..., X;_ C [0,2™" —1],

—aindai1+a where eachX;| = 2"~1. We say that this set is a set of
1= A 1’; ) orthogonal permutations if for any i,j € [0,k — 1],
Zf(2) = 20 = Ao,0 T 24,1 + 241
e A 0FD
Zf(3) = 21 = 1,0 T 2431 +agp. T = b,

It is trivial to rebuild nodel from the accessed information.where 5;; is the Kronecker delta. For a set of orthogonal
Note that each of the surviving node accesses exactyf permutations, in order to rebuild any systematic node, only
its elements. It can be easily verified that the other sysiema™—1 elements are accessed from each surviving systematic
nodes can be rebuilt the same way. Rebuilding a parity nodensde by LemmAal2. And onl§”~! elements are accessed from
easily done by accessing all the information elements. each parity node, too. Hence codes generated by orthogonal
ermutations has optimal rebuilding ratlg’2. Now we are

y to prove Theorefd 1.

Proof of Theorem[T} Sincele;\¢;| = 1 foranyi # j # 0,

we get by lemmé&l2

In order to prove Theoref 1, we first prove the followin
lemma. We use a binary vector to represent its correspond r‘?&d
systematic node. And defing\u| = Y., 1,01 as the
number of coordinates at whiahhas al butu has a0.

Lemma 2 (i) For anyv,u € T, to rebuild nodev, the number fi(Xi) N fi(Xi) = @.
of accessed elements in nadés Now consider; andep, for i 0. Note thatf, (X;) — {x +e; -
— P — 0 = : P 1 , SO
2" | fo(Xo) N ful(Xo). xoei=0}={y:y =1}

fi(Xi)ﬂfo(Xi):{y:y~ei:1}ﬂ{x:x~ei:0}:®.

Similarly, fi(Xo) = {x+e¢ :x-(1,1,...,1) =0} = {y :

vls d = . o« e —
fv(XU)mfu<X0)|:{(')X' ZiZl mod2=0 )y (1,1, 1) = 1), and

(i) ForanyQ # v,u € T,

fo(Xo) N £i(Xo)
Proof: (i) In rebuilding of nodev we rebuild the elements = {x:x-(1,---,1)=0}n{y:y-(1,---,1) =1}
in rows X, by rows, thus the row parity column accesses _ o

the values of the sum of rowX,. Moreover, the surviving

nodeu also accesses its elements in rals Hence, by now Hence the permutationf, ..., f» are orthogonal permuta-
|Xo| = 2"-1 elements are accessed. The elements of ndde tions, and the ratio id /2. [ ]
rows X, are rebuilt by zigzags, thus the zigzag parity column Note that the optimal code can be shortened by removing
accesses the values of the zigzags Sl@n}vs(l) :1€ Xy}, and some systematic columns and still retain an optimal ratio, i
each surviving systematic node accesses the elementssef thfier any k < m + 1 we have a code with optimal rebuilding.
zigzags from its column, unless these elements are alreadydaving found the set of orthogonal permutations, we need
included in the rebuilding by rows. The zigzag elements i specify the coefficients in the parities such that the dsde
{Zeay:1 € Xy} of nodeu are in rowsf, ' (f,(Xy)), where MDS.



Orthogonsi et of Systematic nodes Parity nodes

permutations
f_i_\ ) ]
f 1 1

A L A G |G |G G Cy
0 2 1 Ayg | Gy | Boz o =G0 Tyt zg=ay,+2a,,+2a,,
Encoding by
the orthogonal - =
1 3 0 permutations ay | ey | G (hE@ptata,| =a0+ia,tag,
2 0 3 drg | Gy | @y r=Giotaytay FaTdptata
3 1 2 G | B | sy [Ps= gt tasy Z =0 tay+la,

(a) (b)

Figure3. (a) The set of orthogonal permutations as in Theorém 1 with Xgts- {0,3}, X; = {0,1}, Xo = {0,2}. (b) A (5,3) MDS array code generated
by the orthogonal permutations. The first parity colu@is the row sum and the second parity colu@pis generated by the zigzags. For example, zigzag
zp contains the elements; that satisfyf;(i) = 0.

Consider the(m + 3,m + 1) codeC constructed by Theo- y1, 12,3, ya € F3)
rem[] and the vectore; }" . LetIF be the finite field we use.

Let the information in row, columnj bea; ; € FF. Let its row 1 1 0 0 i N
) - ’ 0 0 1 1 ay i 12

and zigzag coefficients he; ;, §;; € IF. For a row selR, = 1 =
{au0,0u1, .-, 8um}, the row périty ISty = Loy, iy . Pri 0 0 ‘B’/'f i Ys
ey ’ e 0 PBrj Bri O ayj Ya

For a zigzag seZ,, = {a,,0, Au+ye, 1/ - - -, Aute,m}, the zigzag

parity isz, = Z}ﬂ:o ,Buﬂj,jauﬂj,j. This set of equations is solvable iff
Recall that the(m + 3,m + 1) code is MDS iff we can BBy B 3)

recover the information from up t@ columns erasures. It Prifri 7 Prjbr -

is clear that none of the coefficients;, §;; can be zero. Note that the multiplicative group dF3\0 is isomorphic to

Moreover, if we assign all the coefficients as; = f;; =1 the additive group off,, hence multiplying two elements in

we get that in an erasure of two systematic columns the $ef\0 is equivalent to summing up their exponentlin when

of equations derived from the parity columns are linearljhey are represented as a power of the primitive elemenieof th

dependent and thus not solvable (the sum of the equatioms frfield F5. For columns) < i < j < m and rowsr, " defined

the row parity and the sum of those from the zigzag parity wilbove, we have

both be the sum of the entire information array). Therefore

the coefficients need to be from a field with more thian Bribri

nonzero elem_ent, thus a field_ (_)f size at ledds necessary. yowever in the same manner we derive that

The construction below surprisingly shows that in féGt is

— gt — p(rr) i — plerte) gl — o¢f — o,

sufficient. Br iy = o (r+r')up _ oleite) Ty ger — Ze%—«—e]z —20_1
Construction2 For the code€ in Theorenfll overF3, define Hence [(8) is satisfied and the code is MDS. [
uj =Y _,e for0 < j < m. Assign row coefficients as;; = Remark: The above proof shows the,; # B, ; and
1 for alli, j, and zigzag coefficients as Brj = B, fori < j. And (3) is a necessary and sufficient
, condition for a MDS code for vectors; # v;.
Bij=2" In addition to optimal ratio and optimal field size, we will

show in the next section that the code in Theofém 1 is also

wherei = (i, ..., i) is represented in binary and the calculast optimal array size, namely, it has the maximum number of
tion in the exponent is done ovEs. columns, given the number of rows.

The coefficients in FigurEl3 are assigned by Construction
[2. The following theorem shows that the code is MDS. [1l. FORMAL PROBLEM SETTINGS AND CONSTRUCTIONS

In this section, we first give some observations of an
arbitrary MDS array code with optimal update. Then we
prove some properties and give some examples of our code in

Proof: It is easy to see that if at least one of the tw&€onstructior L.
erased columns is a parity column then we can recover the et us define an MDS array code with 2 parities. Let
information. Hence we only need to show that we can recovdr = (ai,j) be an array of sizep x k over a finite field
from any erasure of two systematic columns. In an erasufe wherei € [0,p —1],j € [0,k — 1], and each of its
of two systematic columngj € [0,m],i < j, we access the entry is an information element. We add to the array two
entire remaining information in the array. Foe [0,2" — 1] parity columns and obtain a(w = k +2,k) MDS code of
setr’ =r+e;+ej, and recall that, ; € Z; iff | = r+e¢;, thus array sizep x n. Each element in these parity columns is
ri, Ay j € Zrye, @NAayj,a,; € Zry;. From the two parity a linear combination of elements fror. More specifically,
columns we need to solve the following equations (for sonet the two parity columns b&;, = (rg, 11, ..., rp,l)T and

Theorem 3 Constructiorid is an(m + 3,m + 1) MDS code
with optimal finite field size 08.



Cei1 = (zo,zl...,zp_l)T. Let R = {Ro,Ry,..,R,_1} and The proof is shown in Appendik]A. The above theorem
zZ = {Zy, 74, .., Zp_l} be two sets such thak;, 7, are states that there exist coefficients such that the code is,MDS
subsets of elements iA for all I € [0, p — 1]. Then for all and thus we will focus first on finding proper zigzag per-
1 €10,p—1], definer; = Y ,cg, @aa @andz; = Y ,c 7, Baa, for  mutations {f;}. The idea behind choosing the zigzag sets
some sets of coefficientin, }, {f} C F. We callR andZ s as follows: assume a systematic colufag, a1, ..., a,—1)"
as the sets that generate the parity columns. is erased. Each element is contained in exactly one row
We assume the code has optimal update, meaning thaBonbet and one zigzag set. For rebuilding of elemgntaccess
elements in the code are updated when an information elemgd parity of its row set or zigzag set. Moreover access the
is updated. Under this assumption, the following theorepalues of the remaining elements in that set, excgpie
characterizes the sefs and Z. say that an element; is rebuilt by a row (zigzag) if the

Theorem 4 For an(k + 2,k) MDS code with optimal update, parity of its row set (zigzag set) is accessed. For example,
the setR andZ are partitions of into p equally sized sets of in Figure[2 supposing columhis erased, one can access the

sizek, where each set iR or Z contains exactly one elementshaded elements and rebuild its first two elements by rovas, an
from each column. the rest by zigzags. The s8t= {So,Sy,...,S,-1} is called

. . T . .
Proof: Since the code is & + 2,k) MDS code, each 2 reb;{uldgg sgt for S<30|:Jm'ﬁl(ljor ai"“’ ap-1) |tfhf0r ea%hz, f
information element should appear at least once in eactypati’ € RUZ anda; € oi- In order o minimize the number ot
columnC,, Cy.,.,. However, since the code has optimal upd(,mg\ccesses to rebuild the erased column, we need to minimize
, Crat : .
each element appears exactly once in each parity column.the size of p—1
Let X € R, note that ifX contains two entries oA from the | Uiy Sil, (4)

systematlc columiT;, i € [0,k —1], then rebuilding is 'MPOS= \ hich is equivalent to maximizing the number of interseasio
sible if columnsC; andCy 1 are erased. ThuX contains at bet th &SP M idically. the int "
most one entry from each column, therefpke < k. However etween the seth 1}{'205 o(;e;hspeq icatly, ; e_ﬁln ersections
each element afi appears exactly once in each parity cqumAD,e ween the row sets | and the zigzag sets 8.

For a (k +2,k) MDS codeC with p rows define the

thus if | X| < k, X € R, there isY € R, with |Y| > k, which . . . :
us if | X] < N ere isY € R, with |Y| > k, whic rebuilding ratio R(C) as the average fraction of accesses in

leads to a contradiction. Thereforgf| = k for all X € R. A tomatic and parity nod hile rebuilds
As each information element appears exactly once in the fiFEF surviving systematic and parity hodes while rebulicong
systematic node, i.e.,

parity column,R = {Ry,...,R,_1} is a partition ofA into
[ [ imi . —1
Ze—qlfzd:)y S|zeZd s?t}s of siZe Similar proof holds for the s.ets R0 Y, mins,,._s, | rebuids | Uf:o S|
={Zo,..., Zy1}. _
By the above theorem, for thg-th systematic column p(k+ 1)k

(ag,---,ap-1)", its p elements are contained ip distinct Notice that in the two parity nodes, we accesslements
setsR;, I € [0, p —1]. In other words, the membership of theyecause each erased element must be rebuilt either by row
j-th column’s elements in the sef®, } defines a permutation by zigzag. AndU? s containsp elements in the erased
gi: [0,p—1] — [0,p — 1], such thatg;(i) = I iff a; € R,. =0 . o

j ’ ’ ’ j i I column. Thus the above expression is exactly the rebuilding

Similarly, we can define a permutatiofy corresponding 10 i pefine theratio function for all (k +2,k) MDS codes
the second parity column, wheig(i) = 1 iff a; € Z;. For un p rows as

example, in Figurél2 each systematic column corresponds to
a permutation of the four symbols.

Ob;erymg that there is no importance of the elemen.t\?/hich is the minimal average portion of the array needed to
ordering in each column, w.l.o.g. we can assume that the fifst

) X , b2 accessed in order to rebuild one erased column.
parity column contains the sum of each row Afand g;'s
correspond to identity permutations, i.g. = 2’.‘;3 wjja;; Theorem®6 R(k) is no less thal% and is a monotone nonde-

for some coefficients{a;;}. We refer to the first and the creasing function.

second parity columns as the row parity and the zigzag parity-l-he proof is given in AppendiXIB. For example, the code in
respectively, likewiseR; and Z;, I € [0,p — 1], are referred

) . . Figure[3 achieves the lower bound of ratig2, and therefore

t'o as row sets_ and zigzag sgts respectlvely._ We will yfjalll R(3) = 1/2. Moreover, We will see in Corollafy 10 th&(k)

je _[O,k — 1], zigzag permutations. By assuming that the f!r% almostl /2 for all k andp = 2", wherem is large enough.

parity column contains the. row sums, we want t.o. (1) fin So far we have discussed the characteristics of an arbitrary

zigzag permutations to minimize the rebuilding ratio; a@yl (MDS array code with optimal update. Next, let us look at our

assign the coefficients such that the code is MDS. code in ConstructioR] 1 '

{ ZF|rst Zwe }Szggnetgaat(kﬂ% ]f)etMng :r?;agcozeegov:r a Recall that by Theoreml 5 this code can be an MDS code

fiel(()j, ‘H':"laf’é enouah ! y over a field large enough. The ratio of the constructed code
9 gn. ) will be proportional to the size of the union of the elements i

Theorem5 Let A = (a;;) be an array of size x k and the the rebuilding set ir({4). The following theorem gives théara

zigzag sets bé = {Zy, ..., Zy_1}, thenthere exists@+2,k)  for Constructiori 1L and can be easily derived from Leniha 2
MDS array code forA with Z as its zigzag sets over the fidlid part (j).

of size greater thap(k — 1) + 1.

R(k) = min R(C),



Theorem 7 The code described in Constructi@and gener-  Note that this code reaches the lower bound of the ratio as
ated by the vectorsg, vy, ..., vx_; is a (k +2,k) MDS array m tends to infinity, and ha®(m3) columns.

code with ratio
_ IV. CODE DUPLICATION
1 T T fi(Xi) N f(X0)] . ) ) . .
R = 2 + 2k 1) . (5) In this section, we are going to duplicate the code to in@eas
) ] . ) the number of columns in the constructéd+ 2,k) MDS
Next we show the optimal code in Theoréin 1 is optimal igodes, such that does not depend on the number of rows,

size, namely, it has the maximum number of columns giveghd ratio is approximately. Then we will show the optimality

the number of rows. of the duplication code based on the standard basis.
Theorem 8 LetF be an orthogonal set of permutations over the Let C be a(k + 2,k) array code withp rows, where the
integers0,2™ — 1], then the size oF is at mostn + 1. zigzag sets{Zl}f’;O1 are defined by the set of permutations

Proof: We will prove it by induction orm. Form = 0 {fi}i—g on [0, p — 1]. For an integes, ans-duplication code
there is nothing to prove. Lef = {fy, fi,.., f_1} be a C'is an (sk +2,sk) MDS code with zigzag permutations
set of orthogonal permutations over the §gr™ — 1]. We defined by duplicating thé permutationss times each, and
only need to show thatF| = k < m + 1. It is trivial to the first parity column is the row sums. In order to make the
see that for any permutationg’ on [0,2" — 1], the set code MDS, the coefficients in the parities may be different
hFg = {hfog, hfig, .., hfi_1g} is also a set of orthogo- from the codeC. For ans-duplication code, denote the column
nal permutations with sets~(Xo), g~ 1(X1), .., g~ 1(Xx_1). corresponding to the-th f; as columnj¥), 0 < t < 's—1.
Thus w.l.0.g. we can assume thftis the identity permutation Call the columns{j(*) : j € [0,k — 1]} the t-th copy of the
and Xy = [0,2"~! — 1]. From the orthogonality we get that original code. An example of a-duplication of the code in

Uf;llfz‘(Xo) — X = [l 1. Figure[3 is illustrated in Figurgl 4. . .
Theorem9 If a (k + 2,k) codeC has ratioR(C), then itss-
We claim that for anyi # 0, |X; N Xp| = |>§_0| = 2"2 duplication cod&’ has ratioR (C)(1 + S=L).

sk+1
Assumemtjlze CO””""TV' thus w.l.o.g \:nvgzcan assume |}‘Kaﬂ Proof: We propose a rebuilding algorithm fd@¥ with
Xo| > 2", otherwise|X; N Xo| > 2"7% Foranyj #i #0 o4 of R(C) (1 + =% ), which will be shown to be optimal.

k1
we get that Suppose in thse optimal rebuilding algorithm @, for
fi(XiNXo), fi(Xi N Xo) € Xo, (6) columni, elements of rowg = {ji,/2,...,ju} are rebuilt
— by zigzags, and the rest by rows. (H, all the s columns
fi(XiNXo)| = |fi(Xi N Xo)| > m=2 _ M' (7) corresponding tg; are rebuilt in the same way: the elements
2 in rows | are rebuilt by zigzags.

From equations[{6) and(7) we conclude tifatX; N Xo) N W.l.o.g. assume columi{?) is erased. Since columit’,

fi(XinXy) # @, which contradicts the orthogonality prop-+ € [1,s — 1] corresponds to the same zigzag permutation

erty. Define the set of permutatiods = {f/* i‘;ll over the as the erased column, for the erased element inlttie

set of integerg0, 2”1 — 1] by f7(x) = f;(x) —2™~1, which row, no matter if it is rebuilt by row or by zigzag, we

is a set of orthogonal permutations with sgt&; N X f:—ll have to access the element in théh row and columni(*)

By inductionk — 1 < m and the result follows. m (eQ. permutationgféo),fél) and the corresponding columns
The above theorem implies that the number of rows has@d),0(!) in Figure[3). Hence all the elements in colurif

be exponential in the number of columns in any systematicust be accessed. Moreover, the optimal way to access the

code with optimal ratio and optimal update. Notice that thether surviving columns can not be better than the optimal

code in Theoreri1 achieves th@ximum possible number of way to rebuild in the cod&. Thus the proposed algorithm

columns,m + 1. Besides, an exponential number of rows iBas optimal rebuilding ratio.

still practical in storage systems, since they are composed When columni(®) is erased, the average (over alle

dozens of nodes (disks) each of which has size in an orderk — 1]) of the number of elements needed to be accessed

of gigabytes. In addition, increasing the number of columris columnsI(*), for all I € [0,k —1],] # i andt € [0,s — 1]

can be done using duplication (TheorEi 9) or a larger setisf

vectors (the following example) with a cost of a small incea R(C)p(k+1) —p.

in the ratio. Here the term-p corresponds to the access of the parity nodes

Example2 LetT = {v € Fj' : |v[j; = 3} be the Sit of in C. Moreover, we need to access all the elements in columns
vectors with weight 3 and lengtih. Notice that|T| = (%5). () 0 <t <s—1, and accesp elements in the two parity
Construct the cod€ by T according to ConstructidB Given  columns. Therefore, the rebuilding ratio is

veT, |{ueT:v\u| =3} = ("), which is the number
ue b ol = 31 = (s ) S(REC)p(k+1) —p) +(s = 1p-+ p

of vectors with 1’s in different positions as Similarly, |{u € R(C) = -
T : [o\ul =2} = 3(";%) and|[{u € T : |o\u| = 1}| = p(sk+1)
3(m — 3). By Theorenifland Lemm&, for largem the ratio is — R(C) s(k+1)
k+1
12 19 S
2 (D +1) 2 2w = RO+ G7)



Figure4. A 2-duplication of the code in Figuld 3. The code ltamformation nodes and parity nodes. The ratio i¢/7.

and the proof is completed. B of H and Constructiofil Then the asymptotic ratio 6£(H) is
Theoreni® gives us the ratio of teeduplication of a code J

C as a function of its rati®R(C). As a result, for the optimal- lim R(Cs(H)) =1— =L

ratio code in Theorerfll 1, the ratio of its duplication code is e 2

slightly more thanl /2, as the following corollary suggests. Proof: Let the set of vertices and edgeskfbe V(H) =

o _ {v;} and E(H) respectively. Denote by, v; € V(H),I €
Corollary 10 Thes- dupllcatlon of the code in Theordihhas 0,5 — 1], the I-th copy of the column corresponding to the
ratio 3 (1 + m) which is + ( 7y forlarges. vectorv;. In the rebuilding of columrvl,! € [0,5 — 1] each
remaining systematic colurmj k € [0,s —1], needs to access
all of its 2™ elements unlesg;\v;| is odd, and in that case
it only has to acces3” ! elements. Hence the total amount
of accessed information for rebuilding this column is

For example, we can rebuild the columt?) in Figure
M by accessing the elements in ro@, 1} and in columns
000), 200 o) 2(1) R, Z, and all the elements in coluninl).
The rebuilding ratio for this code /7.

Using duplication we can hawarbitrarily large number of (s|V(H)| —1)2™ — deg™ (v;)s2" 1,
columns, independent of the number of rows. Moreover the
above corollary shows that it also has an almost optimad ratwheredeg™ is the indegree of; in the induced subgrapH.

Next we will show that if we restrict ourselves to codes corfveraging over all the columns ifi;(H) we get the ratio:
structed using Constructiéd 1 and duplication, the codegusi
the standard basis and duplication has optimal asymptatéc r R(Cs(H))

In order to show that, we define a related graph. Define the Xolcc, () (8IV (H)| = 1)2™ — deg ™ (v;)s2"!
directed graptD,, = D,y (V,E) asV = {w € Fy' :w # 0}, — s[V(H)|([V(H)|[ + 1)27
and E = {(wq,w> wy\wy1| = 1 mod 2}. Hence the m m—1
vertices ar{eg the n)onz|ero\bin|ary vectors 0]1: length and :S‘V(H)‘(S‘V(H)‘ —1)2" = Yoev(H deg (v)2

there is a directed edge from; to w, if |w,\w;| is odd s|V(H)|(s|V(H)| +1)2m
size. From any induced subgragth of D,,, we construct  s|V(H)|(s|V(H)|—1)2" —s?|E(H)|2" 1
the codeC(H) from the vertices ofH using Construction s|V(H)|(s|V(H)|+1)2m

. By Lemmal2 we know that a directed edge fram to

wy in H means fu,(Xw,) N fu,(Xw,) = @, so only half Hence
of the information from the column correspondingdq is lim R(Cs(H)) = 1 — |EH)] 1 d_H
accessed while rebuilding the column correspondingvto s N 2|V(H)? 2

For a directed graptD = D(V,E), let S and T be two
disjoint subsets of its vertices. We define the density of the
setS to beds = é—‘sz and the density betweehiand T to be

[ |
We conclude from Theorem 111 that the asymptotic ratio of
any code using duplication and a set of binary vectors is a
dg = 2|SHT|’ whereEg is the number of edges with both offunction of the density of the corresponding induced suplgra
its endpoints inS, and Es 1 is the number of edges incidentof D, with {v;} as its vertices. Hence the induced subgraph
with a vertex inS and a vertex inl’. The following theorem of D;, with maximal density corresponds to the code with
shows that the asymptotic ratio of any code constructecgusiaptimal asymptotic ratio. It is easy to check that the indluce
Constructiori 1l and duplication is a function of the density subgraph with its vertices as the standard bdsj$/” ; has
the corresponding grapH. density ’”7*1 In fact this is the maximal possible density

among all the induced subgraph as Theokein 13 suggests, but

Theorem 11.LetH be an induced subgraphbf,. LetCs(H) in order to show it we will need the following technical lemma
be thes-duplication of the code constructed using the vertices



Lemmal2 LetD = D(V,E) be a directed graph arfy T be any odd vertex there is exactly one directed edge we get that

a partition ofvV, i.e,SNT =@,SUT =V, then dy <dst = % However
dy < max{dg, dr,ds,r} L_om=1_ di
2 m !
. S|2dg+|T|2dr+2|S||T|d o ]
Proof: Note thatdy = [2-%s*] ||VT|2 PITst Wlo.g  and we get a contradiction. Thiis contains only odd vectors

assume thals > dr therefore ifdg > Dg , or even vectors.

Let V(H) = {vy,..., v} If this set of vectors is indepen-
|S|2ds + | T|2dr +2|S||T|ds T (H) = {o1, .., vt} D

dy = - dent thenk < m and the outgoing degree for each vertex
V| v; is at mostk — 1 hencedy = ‘f((g))z < k“;(zl) < ol
< |S[*ds + |T|*ds — | T|*ds + |T|*dr + 2|S||T|ds and we get a contradiction. Hence assume that the dimension
- |V|? of the subspace spanned by these vector&jnhis I < k
ds(|S| +|T))? — |T|*(ds — dr) wherevq, vy, ...v; are basis for it. Defin€ = {vy,..v,}, T =
V2 {v111, ..., vk }. The following two cases show that the density
<ds can not be higher tha#—L.
- H contains only odd vectors:Let u € T. Sinceu €
If ds 1 > max{ds,dr} then, span{S} there is at least one € S such thatu - v # 0 and
) ) thus (u,v), (v,u) ¢ E(H), therefore the number of directed
dy = |S|ds + |T|*dr +2[S||T|ds,r edges betweem and S is at most2(I — 1) for all u € T,
|V]2 which means
_ ISPds T+ \T\zdsr+2\SHT\dsr g 20T 11 _m1
- H=ST="01T — 1T = m
=dsr and we get a contradiction.
and the result follows. - H contains only even vectors: Since the v;’s are
Now we are ready to prove the optimality of the duplicatiofven the dimension ngan{s} is at mostm — 1 (since
of the code using standard basis, if we assume that the numigér xample (1,0,..,0) ¢ span{S}) thus I < m —1.
of copiess tends to infinity. Let H* be the mduced subgraph db,, 1 with vertices
V(H*) = {(1,v)|lv; € V(H))}. It is easy to see

Theorem 13 For any induced subgragii of Dy, dy < "1, that all the vectors ofH* are odd, ((1,v),(1,0))) €

So the optimal asymptotic ratio among all codes constrlcted E(H*) if and only if (v;,v;) € E(H), and the dimension of
ing duplication and Constructi@is 1 (1 + - ) and is achieved span{V(H*)} is at mostl + 1 < m. Having already proven

using the standard basis. the case for odd vectors, we conclude that
Proof: We say that a binary vector is an even (odd) vector d—d dim(span{V(H*)}) — 1
if it has an even (odd) weight. For two binary vectars, w,, =20 =" qim(span{V (H*)})
|wy\w1| being odd is equivalent to I+1—1
1= 1w, W7 = wy- (1,.,1) +w1) = |walls + w2 - wr. o
Hence, one can check that when, w, have the same parity, - m
there are either no edges Dedges between them. Moreovergng we get a contradiction. m

when their parities are different, there is exactly one edge
between the two vertices.
Whenm = 1, the graphD; has only one vertex and the
only nonempty induced subgraph is itself; = dp, =0 = In this section, we address the problem of finding proper
m—1 \Whenm = 2, the graphD, has three vertices and onecoefficients in the parities in order to make the code MDS. We
can check that the induced subgraph with maximum densftgve already shown that if a code is over some large enough
containsw; = (1,0),w; = (0,1), and the density i4/2 = finite field IF, it can be made MDS (Theordm 5). And we have
(m—1)/m. shown that the optimal code in Theoréin 1 needs only field
For m > 2, assume to the contrary that there exists @ size 3. In the following, we will discuss in more details
subgraph ofD,, with density higher thanL Let H be on the field size required to make two kinds of codes MDS:
the smallest subgraph d,, (with respect to the number of (1) duplication of the optimal code in Corollafy]10, and (2)
vertices) among the subgraphs Bf, with maximal density. & modification of the code in Examdlé 2. Note that both the
Hence for any subset of vertices C V(H), we have codes have asymptotic optimal ratio.
ds < dy. Therefore from Lemm& 12 we conclude that for Consider the duplication of the optimal code (the code in
any partitionS, T of V(H), dy < ds,r. If H contains both Corollary[10). For thes-duplication codeC’ in Theoren(1D,
even and odd vectors, denote Byand T the set of even and denote the coeff|C|ents for the element in rownd column
odd vectors ofH respectively. Since between any even anti”) by 061(] andﬁ ,0<t<s—1.LetF, be afield of size

V. FINITE FIELD SIZE OF A CODE
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g, and suppose its elements a{ﬁ;ao,al,...,aq‘2}for some has full rank. All the coefficients are nonzero (consider
primitive elementa. erasing a parity column and a systematic column). Thus,

Construction 3 For thes-duplication code’ in TheorenflQ (“z(,i'l))_lﬁz(',tjl) # <“§:§‘2))_1ﬁ§,§2)’ and (az(,?)_lﬁz(;) are distinct
overF,, assignx(t.) =1 foralli,j,t. For oddg, lets < g —1 MNONZEro elements iffg, for ¢ € [0'_5 - ” Sog=>s+1. =
and asqsi n for alli’]e 0,5 — 1] For instance, the coefficients in Figureé 4 are assigned as
g ’ Constructio B andF; is used. One can check that any two
) { at*l, ifui-i=1 column erasures can be rebuilt in this code.
Bij = at, 0.W. Consider for example asrduplication of the code in Theo-
remd withm = 10, the array is of siz&024 x (11s +2). For

whereu; = Y)_ e;. For eveny (power of 2), le < q—2and s — 5 ands = 6, the ratio is0.522 and0.537 by CorollaryI,

assign for alt € [0,s — 1] the code length i84 and68, and the field size needed can be
®) a1l fui=1 4 and8 by Theoren 14, respectively. Both of these two sets
.Bi,]‘ = { att1 o.m;. of parameters are suitable for practical applications.

As noted before the optimal construction yields a ratio of

Notice that the coefficients in each duplication has the same> + 1/, by using duplication of the code in Theorérh 1.
pattern as CtOHSUU?tiCl’ 2 except that values 1 and 2 3gwever the field size is a linear function of the number of
replaced bya' anda'*! if g is odd (ora"™' anda™""' if  quplications of the code. Is it possible to extend the number

q is even). of columns in the code while using a constant field size? We
Theorem 14 Constructiod is an (s(m + 1) +2,s(m + 1)) know how to geO(m?) columns by usin@ (?) duplications
MDS code. of the optimal code, however, the field size G§m?). The

) . &) (k) following code construction has roughly the same pararaeter
Proof: For the two elements in columns/, i and O(m3) columns and an ratio C%‘+O(%), however it requires

row r, t; # ty, we can see that they are in the same rogny 4 constant field size of. Actually this construction is a
set and the same zigzag set. The corresponding two equatipgjification of Exampl€l2.

from the two parities are linearly independent iff
Construction4 Let 3|m, and consider the following set of

(h) 4 g(t2)
ﬁr,il 75[%‘2 ’ (8)  vectorss C . for each vectow = (vy,...,0m) € S,
which is satisfied by the construction. [olly = 3 andv;, v;,,v;; = 1 for someiy € [1,m/3],iy &
For the four elements in columi€!), j(2) and rowsy,#’ = /3 +1,2m/3],i5 € [2m/3 +1,m]. For simplicity, we
rteite,0<t,bh<s—1,0<i<j<m, the code is write v = {iy,i,13}. Construct the(k + 2,k) code as in
MDS if Constructior] using the set of vectorS, hence the number
‘Bgtil)ﬁgfli) ”] ﬁgtjz)ﬁgltzj) of systematic columns ik = |S| = (%)° = 37—73 For any

i€ [jm/3+1,(j+1)m/3] and somé¢ = 0,1,2, define a row
by @). By the remark after Theorefh 3, we know tlﬁéfgl) £ vectorM; =Y _;, 5. €. Then define an x 3 matrix
/3(“) andﬁﬁf]?) = /35”.) = a* for somex. Wheng is odd,

7’,,1‘ 1 /,]

M, = [ YRR Ve Vil }
t) ot
ﬁg,})ﬁg/}i) = altahth = @20 g forv = {i1,i»,i3}. Leta be a primitive element dfy. Assign
for any x andt;. Wheng is even, the row coefficients a$ and the zigzag coefficient for row
columnv asa!, wheret = rM, € ]P% (in its binary expansion).
,B(t.l)ﬁ(fl.) — ahFlgmh=1 = g0 £ g2x

R For example, letm = 6, and v = {1,4,6} =
foranyt; and1 < x <4 —2 (modg —1). And by construc- (1,0,0,1,0,1) € S. The corresponding matrix is
tion,x=fH+lorx=—-tHh—-1for0<t, <s—-1<g-3,

sol < x < g—2 (modg—1). Hence, the construction is 1000007"
MDS. [ | My=|0 01100
Remark: For two identical permutationﬁl.(tl) = fl.(tZ), @) 0 00 011
is necessary and sufficient condition for an MDS code.
For rowr =26 = (0,1,1,0,1,0), we have

Theorem 15 For an MDSs-duplication code, we need a finite
field F, of sizeq > s + 1. Therefore, Theorefid is optimal t=rM, =(0,1,1) =3,

for oddg. . L
and the zigzag coefficient is’.

Proof: Consider the two information elements in raw
and Co|umn$'(t1),]'(t2), which are in the same row and zigzagTheOI'em 16 Constructiord is a (k +2,k) MDS code with
sets, fort; # t, € [0,s — 1]. The code is MDS only if array size2™ x (k +2) andk = m®/27. Moreover, the
T rebuilding ratio is} + ~- for largem.
1 o 2

i(f{l) i(f{z) Proof: For each vectow € S, there are3(m/3 —1)?
Bij” Bij vectorsu € S such that they have oriein the same location

o
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aswv, i.e.|v\u| = 2. Hence by Theoreil 7 and Lemifnk 2, fowhich are not necessarily distinct. Let the information-ele
largem the ratio is ments bes; ;, and the row and zigzag parity elementshe
Los((m)—1? 1 andz;, respectively, for € [0,2" —1],j € [0,k —1]. W.l.o.g.
— 4 337 - ) assume the row coefficients arg; = 1 for all 7,j. And let
2(% +1) 2 2m the zigzag coefficients bg;; in some finite fieldF.
The following is a summary of the erasure decoding algo-

Next we show that the MDS property of the code.
rithms mentioned in the previous sections.

holds. Consider columns,v for someu = {iy,iy, i3} #
v = {ji,joj3} andiy,j1 € [1,m/3],injo € [m/3+ Algorithm1 (Erasure Decoding)

1,2m/3),is,j3 € [2m/3 +1,m]. Consider rowsr andr’ = One erasure.

r 4+ u + v. The condition for the MDS property froni1(3) 1) One parity node is erased. Rebuild the row parity by
becomes

arME-«—r’Mz; mod 8 + ang—s—r/Mg mod 8 9) ri = Z aij, (13)

where each vector of lengthis viewed as an integer i{0, 7] and the zigzag parity by
and the addition is usual addition mod 8. Since~ u, let

I € [1,3] be the largest index such that~ j;. W.l.o.g. assume Z 8 (14)
thati; < j;, hence by the remark after Theoréin 3 fi)j f

rM{ # ' M} (10)  2) one information nod;e is erased. Rebuild the elements in
and rowsX; (see Constructidfi) by rows, and those in rows; by

T iasT zigzags.
M =1 M. (1) wo erasures.

Note that for allt, | < t < 3, i = ji, then sincer’ M = 1) Two parilfy nodes are erase_d. Rebu_ild) and(ﬂZ).
(r+ e +e; )MT = rMT, we have ! 2) One parity node and one information node is erased. If the
R R iy’ row parity node is erased, rebuild by zigzags; otherwisaitéb
rML =M} =rMI =7 M]. (12) Dby rows. _ o
! ! ! ! 3) Two information nodefy andj, are erased.
It is easy to infer from[{Z0f,(A1L.(12) that tHeth bit in the - |f fii = sz, for anyi € [0,2™ — 1], compute
binary expansions ofM] + "M mod 8 andrM] + ' M]

mod 8 don’t equal. Hence[19) is satisfied, and the result *i = — Lj#jui % (15)
follows. _ o o vi = f11 = Lt g 0,47 00
Notice that if we do modl5 in (@) instead of mods, Sol ‘ th i
the proof still follows becausé5 is greater than the largest™°'V&%iji- 4, TOM e equations
possible sum in the equation. Therefore, a field of digas 1 1 a;j X;
also sufficient to construct an MDS code, and it is easier to { y y } { o } = [ . }
. . Bijy  Bij, Qi jp Yi
implement in a storage system. i} '
Construction# can be easily generalized to any constanElse, for anyi € [0,2" — 1], seti’ = i+ f;(0) +
¢ such that it contain®(m¢) columns and it uses the fieldfj,(0), and computel, xi1, Y,y according tofI5). Then solve
of size at leasg’ + 1. For simplicity assume that|m, and @i, i, 4 j,, 4,j, from equations
simply construct the code using the set of vectpw$ C IF'
. . 2 1 1 0 0 {11']' X
such that|v||; = ¢, and for anyj € [0,c — 1], there is unique 0 0 1 1 a"‘l !
€jm/c+1,(j+1)m/c] ando;; = 1. Moreover, the finite 8 0 0 By a”fz — |
field of size2¢t! is also sufficient to make it an MDS code. Jro o ek i Yi
: : 0 B J2 Bi 1 0 aj j Yir
Whenc is odd the code has ratio of 12
1 &2 In case of a column error, we first compute the syndrome,
3 + 7 then locate the error position, and at last correct the error
mn Let X0, X1+, Xp—1 € F. Denoteffl(xo,xl,...,xp_l) =
for largem. (Xf-1(0) X¥f-11),+ - Xp-1(p—1)) for a permutation f on

[0, p — 1]. The detailed algorithm is as follows.

VI. DECODING OF THECODES Algorithm 2 (Error Decoding)

In this section, we will discuss decoding algorithms of theompute for alf € [0,2™ —1]:
proposed codes in case of column erasures as well as a column
error. The algorithms work for both Constructibh 1 and its s — i PR
duplication code. w0 v
Let C be a(k+2,k) MDS array code defined by Con- e
struction 1 (and possibly duplication). The code has arizg s sip = Z B I aY !
" x (k+2). Let the zigzag permutations ifg j € [0,k — 1], ' = S0
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Let the syndrome b8y = (sp0,51,0,---,5m_10) andS; = VII. GENERALIZATION OF THE CODE CONSTRUCTION

(S0,1/51,1/--+,S2m_1,1)- _ In this section we generalize Constructioh 1 to arbitrary

-If So = 0 andS, = 0, there is no error. number of parity nodes. Let —k = r be the number of

- Else if one 05y, S1 is0, there is an error in the parity. Correctyarity nodes. We will construct am, k) MDS array code, i.e.,

it by (L3) or (14). . it can recover from up te node erasures for arbitrary integers

- Else, find the error location. Fgi= 0 tok — 1: n,k. We will show this code has optimal rebuilding ratio of
Compute for alf € [0,2™ — 1], x;; = B; 8- 1/r when a systematic node is erased. We assume that each
LetXj = (xo, ..., xom_1,;) andY; = f‘_l(Xj)- systematic nodes storé,ﬁ of the information and corresponds
IfY; = Sy, subtract from columnj. Stop. to columns[0, k — 1]. Thei-th parity node is stored in column

If no suchj is found, there are more than one error. k+1i,0 <i<r—1, and is associated with zigzag se{@} :

If there is only one error, the above algorithm is guaranteéoE [0, p — 1]}, wherep is the number of rows in the array.

to find the error location and correct it, since the code is MDSonstruction5 Let the information array bé = (a; ;) with

as the following theorem states. sizer™ x k for some integerk, m. LetT = {vy,...,v._1} C
Z7" be a subset of vectors of size where for eaclv =

Theorem 17 Algorithm[2 can correct one column error. (01, .., 0m) € T,
Proof: Notice that each zigzag permutatiqf]ﬁ is the ged (01, v, O, 1) =1, (18)

. . . . -1
inverse of itself by Constructidd 1, 9’; = f] . Suppose there wheregcd is the greatest common divisor. For dng < | <

is error in c.olumnj, ano! the error i€ = (60_, gl,.._.,ezm,l)_. r—1, andv € T we define the permutatiqfé 20,7 —1] —
So the received columjis the sum of the original information 0,7 — 1] by f.(x) = x + lo, where by abuse of notation we
7 [ 5

andE. Thus the syndromes argg = ¢; and usex € [0,7™ — 1] both to represent the integer andritary
Si1 = Brii€r representation, and all the calculations are done @yeFor
i1 f](l)r/ f](l) eXample, fom — 2[;’ — 3/x = 4,1 = 2,{) = (0, 1),

For C0|Umnf'_§ € [0,k —1], we havex;; = Bjssio = Biei. f(zo,l)(él) =4+2(0,1)=(1,1)+(0,2) = (1,0) = 3.

Write Y; = f; (Xj) = (yo,t,---,yam—1,) and then _ _ o
One can check that the permutatﬁ@l) in a vector notation is

Yig = Xp,3i),t = Briehi [2,0,1,5,3,4,8,6,7]. For simplicity denote the permutatigft’,

We will show the algorithm find&y; = S, iff t = j, and asf] forv; € T.Fort € [0, — 1], we define the zigzag s&f
therefore subtractingy = E from columnj will correct the in parity nodel as the elements, ; such that their coordinates
error. Whent = j, y;; = s;4, for all i € [0,2™ — 1], so satisfyf].l(i) = t. In a rebuilding of systematic nodethe
Y; = §1. Now suppose there is# j such thaty; = S;. Since elements in rowé(f ={xc0,m—-1:x-v, =r—1}
the errorE is nonzero, there exists such thatef]_(l-) # 0. are rebuilt by parity nodé, | ¢ [0,7 — 1]. From ([A8) we get
Consider the indices andi’ = f;f;(i). yi; = s;1 yields that for anyi andl, |X!| = r™~1.
_ Note that similar to Theorefd 5, using a large enough field,

Praient) = Pt s (16) the parity nodes described above form @nk) MDS array

Case 1 When f; = f;, setr = fi(i) = fi(i), then [I) code under appropriate selection of coefficients in thealine

becomes3, ey = B, ier With e, # 0. HenceB,; = B, ; which Combinations of the zigzags.
contradiiglt:(é). Prier 7 Pri = Prj Consider the rebuilding of systematic nade [0,k —1]. In

Case 2 When f; # f;, since f;, f; are commutative and are@ Systematic colump # i we need to access all the elements
inverse of themselves (i') = fif:f;(i) = f;(i) and f;(i’) = that are contained in the sets that belong to the rebuilding

£ £.(1) = f.(i). Thereforey, . — s+ vields set of columni. Namely, in column;j we need to access the
fifef() = fi(i) iy =Sy elements in rows o
—1 —
Briies = Br (A7) Vizo fi £i (X3): (19)
The two equations [{16) [{17) have nonzero solutiof9) follows since the zigzags! for anyt € f/(X!) are used
(ef_(i),eft(l.)) iff to rebuild the elements of columnin rows Xf Moreover
! the element in columry and zigzagZi is e i The
'Bft(i)/fﬁf/(i),f - 'Bf/(i)ffﬁfr(i)r/" following lemma will help us to calculate the size 6f119),
which contradicts[[8) with — fi(i), = fi(i). Hence the and in particular calculating the ratio of codes constrdidig
= t ’ = ] . .
algorithm finds the unique erroneous column. | Constructiorib.
If the computations are done in parallel for at [0,2" — Lemmal8 Foranyo = (vy,..vn),u € Z;" andl € [0,r —1]

1], then Algorithm2 can be done in tim@ (k). Moreover, Suchthaged(vy, ..., vm, 1) =1, definecy,, = v (v —u) — 1.
since the permutationg’s only change one bit of a number Then

in [0,2™ — 1] in the optimal code in Theore 1, the algorithm | ._; i, . X0, (i—i)cou=0
caL be easi}ly implengented. ? i fo(X5) N fu ]fz];(X{;)\ = { l) : S).W.]) w
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In particular forj = 0 we get permutatlon set{ {f}}1~ — 0, A ;3} together with sets

i ot [ IXO), iflegu =0 (XY=, - AXE_ H=3} is a family of orthogonal permu-
fu fo(X) N Xo| = { 0, oW, tations if for any i, € [O k —1] the set{X!}!_1 is a equally
_ sized partition of0, 7" — 1] and
Proof: Consider the groupZ?, +). Note thatX) = {x : -
x-v =0} is a subgroup oZ" and X} = {x: x-v=r—i} [Fai(X))nx?|
is its coset Therefore(!, = X +al, X}, = X9+ aj,, for some =1y —1) M

ay € }_Qu € X}, Hencefu Fi(X}) = X)+a, +i(v —u)  One can check that for= 2 the definition coincides with the
and fy ]f](X]) XY +a}, + j(v —u) are cosets oKJ. So previous definition of orthogonal permutations for two fias.
they are either identical or disjoint. Moreover they areniieal |t can be shown that the above definition is equivalent to that

if and only if forany0 <i#j<k—-10<I<r-—-1,

al, — b+ (i — ) (v —u) € X3, FXD) = f(xD). (22)
ie., (a, — d) + (z —j)(v—u))-v = 0. But by definition of For a set of orthogonal permutations, rebuilding ratid /s
X and X)), al -0 = —i, a{, v=—j,s0(i—]) cou=0and by (27), which is optimal according t@l(1),
the result f0||ows_ m Now we are ready to construct a code with optimal rebuild-

The following theorem gives the ratio for any code ofng ratio andr parities.

Constructiori b. Theorem 20 The set{{fO I os - {fl}—o Htogether with set
Theorem 19 The ratio for the code constructed by ConstrucH{X}}|— 0, AXLYZ 0} constructed by the vector;}!"
tionB and set of vector¥ is and ConstructloE, whereX), is modified to beX = {x €

z" :x-(1,1,..,1) = 1} for anyl € [0,r —1] is a fam-

Yoer LuzoeT geaprary + 1T
PET Zu70€T ged(r,cou) ily of orthogonal permutationdVloreover the corresponding

ITIATI =1 +7) (m+ 1+ r,m+ 1) code haoptimalratio of L.
which also equal to L Proof: For1 <i # j < m, Cij= ¢ (e; — e]-) —-1=0,
1 N YoeT LueT usto |F0(X9) N XY hence by LemmB&18 for anye [0,7 — 1]
r IT|(|T] =1+ r)rm ' A nX) =xP,
Here we define the functioR, . (t) = f,"f,(t) fort € X;. and [22) is satisfied. For <i <m, and all0 <[ <r—1,
Proof: By (19) and noticing that we acces® ! elements ., ;. oiv B o
in each parity node, the ratio is fo fiX)) = fillvrvi=—1}) ={v+le:0; =~}
r—1 i gi(xi m = {vioi=0}=X;
ZveTZu;éveT‘ Ui:() u fv(Xv)| + ‘T‘T 20 ! ) o
ITI(|T| =14 r)rm - (20) Therefore, £,/ f/(X1) N X? = X7, and [22) is satisfied.
Similarly,
From Lemma[dB, and noticing that{i : ic,u, = 0 Y o
mod r}| = ged(r, co.u), We get R = oo (1, 1) = 1)
UL f X = 7Y/ ged (7, o). = (ot (1) =) :
={v:v-(1,..,1) =0} = Xj.
And the first part follows. For the second part, {orod ) } 0
1 Hence again(22) is satisfied and this is a family of orthogjona
r—1 i£1(yi m
Yoer Lugver | Viso fu ' fo(Xo)| + [TIr permutations, and the result follows. [
ITI(IT] =1 +7)rm - Surprisingly, one can infer from the above theorem that
YoeT LutoeT 1X9] + | ulf;ll Fr FHXE\XY| + |T|¥™  changing the number of parities frotnto 3 adds only one
- IT|(|T[—1+7r)rm node to the system, but reduces the ratio frbf@ to 1/3 in
P = the rebuilding of any systematic column.
— 1+ Yoer Lugver | Vi fu'fo(Xo) N Xo| The example in FigurEl5 shows a code witsystematic
r IT|(|T| =1+ 7r)r™m nodes and3 parity nodes constructed by Theorém 20 with
1 Yoer TueTuzo |Fu, z;( NN XO\ m = 2. The code has an optimal ratio df 3. For instance, if

v + (21) columnCy is erased, accessing roy8, 1,2} in the remaining

) nodes will be sufficient for rebuilding.

The proof is completed. u Similar to the2 parity case, the following theorem shows
Notice thatX) represents elements not accessed for pafmt Theoren 20 achieves the optimal number of columns. In

ity O (row parity), and F,,(X9) are elements accessecbther words, the number of rows has to be exponential in the

for parity 1,2,...,r — 1. ThereforePu,U(XS) N XY are the number of columns in any systematic MDS code with optimal

elements accessed excluding those for the row parity. datio, optimal update, and parities. This follows since any

order to get a low rebuilding ratio, we need to minisuch optimal code is constructed from a family of orthogonal

mize the second term iC{R1). We say that a family gfermutations.

IT|(|T| —1+4r)rm
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Figure5. A (6,3) MDS array code with optimal ratid /3. The first parityC; corresponds to the row sums, and the corresponding idgpeityutations
are omitted. The second and third parif#, Cs are generated by the permutatioﬁsfl.2 respectively,i = 0,1,2. The elements are frori;, where3 is a
primitive element.

Theorem 21 Let {{f}}/ =5, ... {fi_,}|_3} be a family of or- Similarly, for any; # 0, fl(XO) f]?(Xg) = X_{), hence
thogonal permutatlons over the mtegé@sr — 1] together

with the sets{X}}/ =}, ..., {XL_,}i=L}, thenk < m 4 1. A\B, A\C C X}. (25)
Proof: We prove it by induction orvi. Whenm = From [23)[25) we conclude th& = C = AN X}, i.e.,

0, it is trivial that k < 1. Now suppose we have a 10 0 1ol 0

family of orthogonal permutation§{ £}/, ... {f}_,}Za fi(XiNXp) = fi(XiNXp). (26)

over [0,#™ — 1], and we will showk < m + 1. Recall For eachl € [0, — 11,7 € [,k — 1] define f! I(x) —

that orthogonality is equivalenCCIZZ) Notice that for an | Liel ] f( )= ff( )

. _ 1 ol xl 0
permutationsg, hy, ..., i, 1,{{hzf0g}l o {hlfzi_1g}f:(l)}} yrm andX X N Xy then,
are still a family of orthogonal permutations with sets

7l m—1 _ g0y 7m—1
{{g~ (X))}, ... {g~1(X!_,)}}. This is because ;0,7 1)) = f;(Xg) = Ir
lolo—1(x0 110 = Xy — 1" (27)
hlfjg<g (Xi )) = hlfj (Xi ) _ [0, =1 1][
= f(X!
hzle( 1)_1 5! where [27) follows from[{23). Moreover, singé is bijective
=hfi8(g~ (Xi)- we conclude thaf! is a permutation o0, r"~1 —1].
Therefore, w.l.o. g we can assumk) = [Ir"1 (1 + R N PR m—1
1)rm=1 —1], and f} is the identity permutat|on fob <1< filXi) = ffl<X8m X%) -l )
Letlgi;«éjgk—l,le[o,r—l] and define :ﬁogg)
_ A0y — gyl
A = fi(X)=fi(X), where KZS) follows from[(26). Sinc¢X!}]_; is a partition
B = fi(X}NXP), of [0,7 —1], then {X!}/_} is also a partmon ofX) =
c = fxinxd). [0,7"~1 —1]. Moreover, smcefl(Xl) = f’(XO) for any
27l
ThereforeB, C are subsets ofi, and their compliments i Le[0,r—1j, andfl,f are bijections, we conclude
are %)= 180
A\B = f{(X) N XJ), foralll € [0,r—1],i.e., {X!},1 € [0,r—1], isaequally sized
A\C :ff(XfﬁX_(?)- partition of [0, r"~1 —1] Therefore{{f1 - 0, {fk 1}

, together WIth{{Xl L AXE ¥~ is a family of or-
From [22) for any; # 0, thogonal permutauolng over iﬁtelgé[(g =1 —1], hence by
f]-l(Xg) - fé(X{)) - X(’) (23) inductionk —1 < m and the result follows. [ |

After presenting the construction of a code with optimal

hence, ratio of 1/r, we move on to deal with the problem of assigning

B,C C X(l) (24) the proper coefficient in order to satisfy the MDS property.
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This task turns out to be not easy when the number of paritiesThe code is MDS if it can recover from loss of ahyodes.
r > 2. The next theorem gives a proper assignment f&¥ith this assignment of coefficients the code is MDS iff any
the code withr = 3 parities, constructed by the optimalblock sub matrices of sizebx 1,2 x 2,3 x 3 of the matrix
construction given before. This assignment gives an uppkf are invertible. The case df x 1 sub matrix is trivial. Let

bound on the required field size. 0 <i<j<k<mwe will see that thed x 3 matrix
Theorem 22 A field of size at mos2(m + 1) is sufficient to I I I

make the code constructed by Theo@@with r = 3 parities, A A A

a(m+4,m+ 1) MDS code. A2 AJZ A2

Proof: LetIF, be a field of sizgy > 2(m +1). For anyl € is invertible. By Theoren in [22] and the fact that all the

[01’ m] let A; = (aif_f) be th? representation of t_h_e permutatiog, .\ < in the matrix commute we get that the determinant of
fe, by @ permutation matrix with a slight modification and isy .5 matrix equals talet(A; — Aj) ~det(Ag — A;) -det(A]- -

defined as follows, A;). Hence we need to show that for any> j, det(A; —

o fl(j)=iandj-e =0 Aj) # 0, which is equiyalent to:let(Az-A]Tl — 1) # 0. Note
ajj =141 fell(]') =iandj-e #0 that for anyi, A> = a’I. Denote byA = Al-Aj‘l, hence
0 otherwise A3 = (AiAjfl)3 = A?A]T3 = a/~JT # 1. Therefore
wherea is a primitive element off;. Let W be the matrix 0 #£ det(A3 — 1) =det(A—1I) det(A2 FA+).
that create the parities nodes, defined as
B0 RO 50 Thereforedet(A — I) = det(AiA]fl —1) #0.
W= B(l] B% B’lﬂ For a submatrix of siz& x 2, we need to check that for
= .. B, 1. L
B B . B b2

Where B] = (A;)/ for I € [0,m] andj € [0,2]. It easy det([ 1142 fqz }) = dEt(A]Z)dEt(AzZAfZ —1) #0.

to see that indeed block rowe [0,2] in the block matrix s

m corresponds to parity. We will show that this coefficient Note thatA® = (Al.A]fl)f) — a26-11 # Isince0 <i—j<

assignment satisfy the MDS property of the code. First wé wil

show that under this assignment of coefficients the matrices

A; commute i.e. for ainyll #* lzle [0,m], A, A, = AL Ay, 0 # det(A® —I) = det(A% — I)(A* + A2+ 1),

I(:;rl)&;pllcny, Iz\cl)rrltzj\cfgc;nfl'_fe& B fz}; All);n(gl’]);iqu_ anddet(A? — I) = det(A?A;? — ) # 0 which concludes
i) P 07+ Xp—1 y L' the proof. u

its j-th entry satisfies); = ag,(;) ;xy,(;) for all j € [0, p —1]. - P
Lo . 1), . : , For example, the coefficients of the parities in Figdre 5 are
And by similar calculationz = x4y, 4y, = yA,, will satisfy assigned as the above proof. Singe= 2, the field of size7
zi = b)Y H0) = Va()AhL0)).ADXAG)): is sufficient. The primitive element is chosen to%ene can
check that when losing any three columns we can still rebuild
them.

< ‘42;1 Hence

Similarly, if w = xA;, A;,, then

Wi = a5 ),/ LA D) ADF ()
VIIl. REBUILDING MULTIPLE ERASURES

Notice that
) ] ) In this section, we discuss the rebuildingeoérasures] <
AG) e, = (G +ep)e, =j- e, e < r. We will first prove the lower bound for rebuilding ratio
- el Simi - .\ ... and repair bandwidth. Then we show a construction achieving
:Aoolzgg\;gr’ PRty SR, (1) = s (1) ) the lower bound for systematic nodes. At last we generalize
this construction and Constructibh 5, and propose a rehgild
filf2(7) = 2(A()) =j+e, +e, algorithm using an arbitrary subgroup and its cosets.

In this section, in order to simplify some of the results we
will assume thatr is a prime and the calculations are done
YA A, =z=w=xA,A] over F,. Note that all the result can be generalized with minor

for all x € FJ'. Thus Ay, Ay, = A, Ay, changes for an arbitrary integerand the ringZ,.

Next we show for any, A? = «'l. For any vectory, Let
y = xA3. Then - A. Lower Bounds

Hence,z; = w; for all j and

B The next theorem shows that the rebuilding ratio for Con-
Yi = 350 2G).£G) £ G). 2D £ ) struction[® is at least/r.

However,f?(j) = j+ 3e; = j (since the addition is done overTheorem 23 Let A be an array with parity nodes constructed
IF3"), and exactly one of - ¢;, f;(j) - e;, f23) - e equals to0. by Constructiof8l In an erasure df < e < r systematic nodes,
Thusy; = a'xj or xA? = a'x for any x. HenceA? = o'I. the rebuilding ratio is at leat
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Proof: In order to recover the information in the systemwheres = k mod ¢,0 < s < e. Moreover for an MDS code,
atic nodes we need to use at least zigzag sets from the B, >
r"+1 sets (There are parity nodes;” zigzag sets in each
parity). By the pigeonhole principle there is at least onetpa
node, such that at least” ! of its zigzag sets are used. Henc

each remaining systematic node has to access its elemahnts th M =HWy)

are contained in these zigzag sets. Therefore each systemat [k]

node accesses at least”~! of its information out ofr™, e

which is a portion of¢. = H(Wq)) + Z HWiieqst1,(i41)ets) Wiie+s)
Since we use at least™ zigzag sets, we use at least" -

elements in the parity nodes, which is again a portion éf

eM
k(d—k+e)"
Proof: The file can be reconstructed from any setkof
fodes, hence

[¢)-1

Hence the overall rebuilding ratio is at legst [ < sa+ Z min{ex, (d, —ie —s)Be}.
In a general code (not necessary MDS, systematic, or i=0
optimal update), what is the amount of information needgd an MDS codex = £4, hence in order to satisfy the

to transmit in order to rebuilé nodes? Assume that in thejnequality any summand of the formin{ex, (d, _13_5)56}
system multiple nodes are erased, and we rebuild these nogiggt pe at |ea81_ which occurs if and only ifd, — (LeJ _
simultaneoudly from information in the remaining nodes. Itl) 5)Be > eM . Hence we get
should be noted that this model is a bit different from the
distributed repair problem, where the recovery of each node Be > eM
is done separately. We follow the definitions and notations o ‘T k(d—k+e)
[23]. An exact-repair reconstructing code satisfies the follow-
ing two properties: (i)Reconstruction: akynodes can rebuild
the total information. (ii)Exact repair: i# nodes are erased,
they can be recovered exactly by transmitting informatromf
the remaining nodes.

Suppose the total amount of informationAg, and then
nodes argn|. Fore erasures] < e < r, denote byw,d., Bc B. Rebuilding Algorithms
the amount of information stored in each node, the number
of nodes connected to the erased nodes, and the amount &Iext we discuss how to rebuild in case ofrasures] <

information transmitted by each of the nodes, respectiveay < r, for t?]n '\IADS aLray Zo/de W|tthhopt|r8alléjpdatet Tr;eorem
subsetsA, B C [n], Wy is the amount of information stored=* 3 gives the lower bound/r on the rebuilding ratio for

. B : . .. _erasures. Is this achievable? Let us first look at an example.
in nodesA, andS, is the amount of information transmitted

And the proof is completed. [ |

Therefore, the lower bound of the repair bandwidth for an
MDS code is%, which is the same as the lower bound
of the rebuilding ratio in Theorein P3.

from nodesA to nodesB in the rebuilding. Example 3 Consider the code in FiguBwith r = 3. When
The following results give lower bound of repair bandwidtlg = 2 and columndC,, C; are erased, we can access rows
for e erasures, and the proofs are based[on [23]. {0,1,3,4,6,7} in columnC,, Cs, rows{1,2,4,5,7,8} in col-

Lemma 24 LetB C [n] be a subset of nodes of size, then umnCy, and rows(2,0,5,3,8,6} in columnCs. One can check
for an arbitrary set of nodes |A| < d. suchthaBN A = @ that the accessed elements are sufficient to rebuild the two

erased columns, and the ratio2ig3 = e/r. It can be shown
H(Wp|W,4) < min{|B|a, (d. — |A])Be}- that similar rebuilding can be done for any two systematic

. node erasures. Therefore, in this example the lower bound is
Proof: If nodesB are erased, consider the case of CONyhievable.

necting to them noded and node<, |C| = d, — |A|. Then
the exact repair condition requires Consider an information array of sizex k and an(n, k)
B oB MDS code withr = n — k parity nodes. Each parity node
0= H(Ws|S2,5¢) I € [0,r — 1] is constructed from the set of permutatiof§ }
= H(Wg|S5) — 1(Wp, SE|SB) for i € [0,k — 1]. Notice that in the general case the number
> H(WB|S§) _ H(Sg) of_ rows p in the array is not necessarily a power of We
B will assume columng0, e — 1] are erased. In an erasure of
> H(Ws|S2) — (d —[A])e columnsgp elements need rebuilt, hence we nep@quations
> H(Wg|Wy) — (d — |A])Be. (zigzags) that contain these elements. In an optimal reingj)
Moreover, it is clear that(Wg|W,) < H(Wg) < |B|a and each parity node (;ontr_ibute$/r equations by accessing the
the result follows. - values _ofep/r of its zigzag eIementg. Moreover, the union
of the zigzag sets that create these zigzag elements, tto@sti
Theorem 25 Any reconstructing code with file siz&1 must an e/r portion of the elements in the surviving systematic
satisfy foranyl <e <r nodes. In other words, assume that we access po¥wem the
surviving columnge, k — 1], X C [0, p — 1], then|X| = ep/r

= § i 7 e ] e
S + l min4ex e S ﬁ f}l(X) ﬂl(X)
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for any parity node € [0, — 1] andi,j € [e,k — 1]. Note Proof: It is easy to check that any coset6fis stabilized
that it is equivalent that for any parity nodes [0, — 1] and by G, hence ifX is a union of cosets it is also a stabilized

surviving systematic nodge [e, k — 1] set. For the other direction let y € IF}" be two vectors in the
/ A same coset 07, it is enough to show that if € X then also
ff (X) = fe(X). y € X. Sincey — x € Z there existyy, ..., a1, € [0,7 — 1]

such thaty — x = Y¥ 1 ~¢a;(v,,; — v.). Sincef(X) = X for

Let G! be the subgroup of the symmetric grodp that is
any f € G we get thatf(x) € X foranyx € X andf € G,

generated by the set of permutatiohs ™’ of.’};.‘;el. It is easy

to see that the previous condition is also equivalent toftirat hence
any parity! € [0,7 — 1] the groupG' stabilizes X, i.e., for y=x+y—x
any f € G, f(X) = X. —1—e
Assuming there is a seX that satisfies this condition, we =x+ Z w;j(Veri— V)
want to rebuild thep elements from the chosep equations, i=1
i.e., theep equations with thep variables being solvable. A — f;“kflffflf‘fllff,,,f;"‘l e"‘il(x),

necessary condition is that each element in the erased oolum
will appear at least once in the chosen zigzag sets (equtiofor fo ' fo7'~..fe “'f;1, € G. Soy € X and the result
parity I € [0,7 — 1] accesses its zigzag elemerff$X), and follows. u
these zigzag sets contain the elements in réfj$ = f/(X) Remark: For any set of vector§ andv, u € S,
of the erased column € [0,e — 1]. Hence the condition is span{S — o} = span{S — u}.
equivalent to that for any erased columa [0,e — 1]
17 elne1 ¢l HereS —v = {v; — v|v; € S}. Hence, the subspacedefined
UiZo(fi) ™ fe(X) =1[0,p—1]. in the previous theorem does not depend on the choice of the

These two conditions are necessary for optimal rebuildif§Ctore- By the previous theorem we interpret thecessary

ratio. In addition, we need to make sure that #peequations @nd sufficient conditions of an optimal codelas follows:

are linearly independent, which depends on the coefficientsT Nere exists a seX C IF" of size |X| = er™™", such that

the linear combinations that created the zigzag elemengs. W1) X is a union of cosets of

summarize:

Sufficient and necessary conditions for optimal rebuilding

ratio in e erasures: There exists a seX C [0, p — 1] of size ~ 2) For any erased columine [0,e — 1],

|X| = ep/r, such that U= (X + 1(v; — ve)) = . (32)
1) For any parity nodé € [0,e — 1] the groupG' stabilizes h

the setX, i.e., for anyg € G!

Z =span{ve41 — Ve, ..., Vf_1 — Ve}.

3) Theer™ equations (zigzag sets) defined by the Xeire
linearly independent.
8(X) =X, (29) The following theorem gives a simple equivalent condition

whereG! is generated by the set of permutations  for conditionst, 2.

{flo fiAizl. Theorem 27 There exists a sét C F" of size|X| = er™ !
2) For any erased columne [0,e — 1], such that conditions, 2 are satisfied if and only if
UiZ FHAR(X) = [0,p—1]. (30) vi =0 & Z, (33)
3) Theep equations (zigzag sets) defined by the Xeare forany erased columinc [0,e—1].
linearly independent. Proof: Assume conditions, 2 are satisfied. 1, — v, € Z

The previous discussion gave the condition for optimédr some erased columhe [0,e — 1] then X = Uj_j(X +
rebuilding ratio in an MDS optimal update code with [(v; —v.)) = F}", which is a contradiction t&X C [F}*. On
erasures in general. Next will interpret these conditioms the other hand, If(33) is true, then — v, can be viewed as
the special case where the number of rows= ", and a permutation that acts on the cosetsZfThe number of
the permutations are generated By= {vg,v1,...,v¢_1} cosets oiZ is+™/|Z| and this permutation (when it is written
C " and Constructiori]s, i.e.fl.l(x) = x + lv; for any in cycle notation) containg”~!/|Z| cycles, each with length
x € [0,7™ —1]. Note that in the case ofa prime r. For eachi € [0,e — 1] chooser™~1/|Z| cosets ofZ, one

1 9 r—1 from each cycle of the permutation— v,. In totaler™~1/|Z|
G =G"=..=G :

’ cosets are chosen for tlreerased nodes. LeX be the union
and in that case we simply denote the group Gis The O©f the cosets that were chosen. Itis easy to seeXtetisfies
following theorem gives a simple characterization for ke condition2. If [X| < er™=1 (Since there might be cosets that
satisfy condition. were chosen more than once) add arbitiary’ ! — |X|)/|Z]|

other cosets o, and also conditionl is satisfied. ]

Theorem 26 Let X C IF and G defined above theit In general, if [3B) is not satisfied, the code does not have
stabilizesX, if and only ifX is a union of cosets of the subspacg, optimal rebuilding ratio. However we can define

Z = span{v,41 — Ve, ..., Vk_1 — V¢ }. (31) Z = span{v; — v.}ic1, (34)
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where we assume w.l.o.g< I andl C [¢,k— 1] isamaximal 0, and the equations are solvable. Note that this proof is for a
subset of surviving nodes that satisfies for any erased napecific set of erased nodes. Howevel ifl (35) is satisfiedrfpr a
je0,e— 1},vj — v, ¢ Z. Hence from now on we assumeset ofe erasures, multiplication of all the nonzero polynomials
that Z is defined by a subset of surviving nodesThis set det(A) derived for any set of erased nodes is again a nonzero
of surviving nodes will have an optimal rebuilding ratio ése polynomial and by the same argument there is an assignment
Corollary[30), i.e., in the rebuilding of column®,e — 1], over a field large enough such that any of the matrideis
columns [ will access a portion ok/r of their elements. invertible, and the result follows. |

The following theorem gives a sufficient condition for & In order to use Theorem P8, we need to find a subspace
equations defined by the sktto be solvable linear equations.as in [35). The following theorem shows that such a subspace

Theorem 28 Suppose that there exists a subspa’@e that always exists, moreover It gives an epr|C|t constructi6iit.o

containsZ, such that for any erased node [0, e — 1] Theorem 29 Supposel < e < r erasures occur. Lét be
defined by34) andv; — v, ¢ Z for any erased nodec [0, e —
1]. Then there exists L. Z such that for any € [0,e — 1],

then the setX defined as an union of soneecosets ofX, 1 (v; — ve) # 0. (38)
satisfies conditions, 2 and3 over a field large enough. '

Proof: Condition1 is trivial. Note that by [(3b)/(v; —

Xo @ span{v; — v.} = F/', (35)

Moreover the orthogonal subspaXg = (u)* satisfies(35).

ve) ¢ Xo foranyl € [1,r —1] andi € [0,e — 1], hence Proof: First we will show that such vectar exists. Let
{Xo+1(v; —ve) }1ej0,—1] IS the set of cosets Of. Let X; =  t1,...ur be a basis fofZ)* the orthogonal subspace af
Xo + j(v; — v.) be a coset o, for somei € [0,e — 1] and Any vectoru in (Z)+ can be written as: = Z§:1 xju; for
supposeX; C X. Now let us check condition 2: somex;’'s. We claim that for anyi € [0,e — 1] there exists
1 1 j such thatu; - (v; — v.) # 0. Because otherwisg.Z)*> =

UpZo (X4 1(0i = ve)) 2 U2 (X + 1(vi — ve)) span{ui,...,u;} L v; — v, which mean; — v, € Z and

= U?;é(xo +j(v; — ve) + 1(v; — ve)) r_eaches a c_ontradiction. Thus the number of solutions fer th

_ Uf;(l)(Xo (1) (v —ve)) linear equation

—UZd(Xo+Hoi—2))  (36) Y i (0 — ve) = 0

=T (37) j=1

(@8) holds since + I is computed mod. So condition2 is is#*~!, which equals the number afsuch that: - (v; — v,) =
satisfied. Next we prove conditich There areer” unknowns 0. Hence by the union bound there are at mo$t! vectors
ander™ equations. Writing the equations in a matrix form wex in (Z)* such thatu - (v; — v,) = 0 for some erased node
getAY = b, whereA is aner™ x er™ matrix.Y, b are vectors i € [0,e —1]. Since|(Z)*| = r* > ert~! there existsu in
of lengther™, andY = (yy, ..., ye;m) T is the unknown vector. (Z)+ such that for any erased node [0,e — 1],

The matrixA = (a;;) is defined as; ; = x; ; if the unknown ‘ 0

y; appears in the-th equation, otherwise;; = 0. Hence - (vi—ve) #0.

we can solve the equations if and only if there is assignmepéfine X, = (1)*, and note that for any erased node
for the indetermediategx;;} in the matrix A such that 0,6 —1],0; — v, & Xy, sinceu - (v; — v,) # 0 and X, is the
det(A) # 0. By (31), accessing rows corresponding to anyrthogonal subspace af Moreover, sinceX, is a hyperplane
cosetX; will give us e_quatlon_s where each unknown appeayg conclude that

exactly once. Sinc& is a union ofe cosets, each unknown

appearse times in the equations. Thus each columnAn Xo @ span{v; —v.} = F,

containse indeterminates. Moreover, each equation contains, | the result follows. -

one unknown from each erased node, thus any rowAin Theoremg 28 an@ 29 give wan algorithm to rebuild
containse indeterminates. Then by Hall’s Marriage Theorerﬂwmme erasures:

i[nﬂé]g\évre;[fczr;zl}ugﬁcah?;;there exists a permutatipron the 1) Find Z by (@) satisfying[[33).
’ 2) Findu L Z satisfying [38). DefineXy = (1) and X
er as a union ok cosets ofXj.
Hai,f(i) # 0. 3) Access rowsf!(X) in parity I € [0,7 — 1] and all the
=1 corresponding information elements.
Hence the polynomiatlet(A) when viewed as a symbolicwe know that under a proper selection of coefficients the

polynomial, is not the zero polynomial, i.e., rebuilding is possible.
o In the following we give two examples of rebuilding using
det(A) = Z sgn(f) Hai’f(i) # 0. this algorithm. The first example shows an optimal rebugddin
fES,m i=1 for any set ok node erasures. As mentioned above, the optimal

By Theoreni 3B we conclude that there is an assignment fréfipuilding is achieved sincE (33) is satisfied, ile [e,k —1].

a field large enough for the indeterminates suchdeatA) #
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Example 4 LetT = {vg,v1,...,vm} be a set of vectors that the vectorw — v.. Defineu = (0,1, ...,1) andXy = (u)l. It

contains an orthonormal basis Bf' together with the zero is easy to check that 1. Z andu - (w —v,) = 1 # 0. Hence,

vector. Suppose columii3, e — 1] are erased. Note that in thatthe conditions in Theorel@8 are satisfied and rebuilding can be

casel = [e,m]| andZ is defined as ir{34). Define done usingX,. Moreover by Corollarf8Q the rebuilding ratio
+ o RS+ —,

m is at most .
u=>y v, — 4z ~
]-;, ! 2 2(mZ/A)+1 2 m

andX, = (u)L_ Whenm = r ande = r — 1, modifyu to be which is a Ii.ttle bette.r .than Thegr in the constants. Note
" that by similar coefficients assignment of ConstrucHbrwe
U= Z 0;. can use a field of size or 8 to assure the code will be an MDS
= code.

1 (m/2)—-1 1 1

It is easy to check that 1 7 and for any erased column

i € [0,e—1],u-(v; —v.) = —1. Therefore by TheoremsC. Minimum Number of Erasures with Optimal Rebuilding
and2d a setX defined as a union of an arbitrarycosets  Next we want to point out a surprising phenomena. We say
of Xp satisfies condition$,2 and3, and optimal rebuilding is that a set of vector§ satisfiesproperty e for e > 1 if for any
achieved. subsetA C S of sizee and anyu € A,

In the example of Figurgl5, we know that the vectors gen-
erating the permutations are the standard basis (and tleus ar
orthonormal basis) and the zero vector. When colu@p€; whereov € S\A. Recall that by Theorerh 27 any set of
are erasedy = e, and Xy = (u)* = span{e;} = {0,3,6}. vectors that generates a codend can rebuild optimally any
Take X as the union o, and its cose{1, 4,7}, which is the ¢ erasures, satisfies propeetyThe following theorem shows
same as Exampld 3. One can check that each erased elerttettthis property is monotonic, i.e., f satisfies property
appears exactly 3 times in the equations and the equatienstlen it also satisfies propertyfor anye < a < |S|.

solvable inlF;. Similarly, the equations are solvable for otherrheorem 31 Let S be a set of vectors that satisfies propegty

2 systematic erasures. . then it also satisfies property for anye < a < |S|.
Before we proceed to the next example, we give an upper

bound for the rebuilding ratio using Theorém 28 and a set of Proof: Let A C S,|A| = e+ 1 and assume to the
nodesl. contrary thatu —v € span{w —v : w € S\A} for some
u € Aandv € S\A. |A| > 2 hence there exists € A\u.
It is easy to verify thatt — v € span{w —v : w € S\A*},
e, (r—e)(k—1|I[—e) whereA* = A\x and|A*| = e which contradicts the property
r r(k+r—e) e for the setS. [ |

Proof: By TheoreniZB, the fraction of accessed elementsHence, from the previous theorem we conclude that a code
in columnsI and the parity columns ig/r of each column. € t_hat can rebuild optimally erasures, is able to rebuild
Moreover, the accessed elements in the rest columns ar@Rimally any number of erasures greater tharas well.
most an entire column. Therefore, the ratio is at most However, as pointed out already there are codes myiarities

(41 + (k—I|—¢) e (r—e)(k—|I]—e) that can not rebglld optimally fr_om some < r erasures.
r —Z Therefore, one might expect to find a codewith parameter
k+r—e r r(k+r—e) e* > 1 such that it can rebuild optimally erasuresonly
and the result follows. m Wwhene* < e < r. For example, forr = 3,m = 2 let C
Note that as expected wheéf = k — e the rebuilding ratio be the code constructed by the vect@se;, ez, e + ez }. We
is optimal, i.e.e/r. In the following example the code hasknow that any code with more thah systematic nodes can
O(m?) columns. The sel does not contain all the survivingnot rebuild one erasure optimally, since the size of a fawily
systematic nodes, hence the rebuilding is not optimal bat isorthogonal permutations over the integr3? — 1] is at most
most$ + O(1). 3. However, one can check that for any two erased columns,
the conditions in Theorefn 28 are satisfied hence the code can
rebuild optimally for any = 2 erasures and we conclude that

u—v¢span{w —v:w e S\A},

Corollary 30 TheorenB8 requires rebuilding ratio at most

Example 5 Suppose|m. Let T = {v = (vq,...,0m) :
lolly = 2,0 = Lu; = 1, forsome € [L,m/2],j € f =2 for this code.

" .
[m/2+1,m]} C 7' be the set of vectors generating the co . The phenomena that some codes has a threshold parameter

with r = 2 parities, hence the number of systematic nodes | .
' p2 4 e§, such thabnly when the number of erasuress at least as
|T| = k = m=/4. Suppose columw = (w1, ..., Wy), W1 =

W /211 = 15 erased. Define the sbt= {v € T : v; = 0}, the thre§holld_e* then the cpgie can .rebuild optimally, is a bit
and counter |ntU|t|\{e and surprising. This phenomena gives tis _
another question. We know that for a code constructed with
vectors fromF}", the maximum number of systematic columns
for somee € I. Thus|I| = m(m — 2)/4. It can be seen that for optimal rebuilding ofe = 1 erasures isn + 1 (Theorem

Z defined by the sdt satisfies33), i.e.,w — v, ¢ Z since the [21l). Can the number of systematic columns in a code with
first coordinate of a vector id is always), as oppose td for an optimal rebuilding ofe > 1 erasures be increased? The

Z = span{v; — v.|i € I}
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previous example shows a code withsystematic columns Let T = {vy,...,vx_1} be a set of vectors generating the
can rebuild optimally any = 2 erasures. But Theorem121code in Constructiofl5 with™ rows andr parities. Suppose
shows that whenr = 3,m = 2, optimal rebuilding forl e columns|0,e — 1] are erased. LeX be a proper subspace of
erasure implies no more thah systematic columns. HencelF}". In order to rebuild the erased nodes, in each parity column
the number of systematic columns is increased by at least € [0,7 — 1], access the zigzag eIemerzﬁsfor i € X;, and
compared to codes with rows and optimal rebuilding of X; is a union of cosets of. In each surviving node, access
erasure. The following theorem gives an upper bound for thé the elements that are in the zigzag s&is of parity I.
maximum systematic columns in a code that rebuilds optimaMore specifically, access elemeny; in the surviving column
any e erasures. j € le,k—1]if i +1v; € X;. Hence, in the surviving column

j and parityl, we access elements in row§ — lv;. In order
Theorem 32 Let C be a code constructed by Constructi@n to make the rebuilding successful we impose the following

" . .
and vectors froniF;". If C can rebuild optimally any erasures, conditions on the setX), ..., X;. Since the number of equations

for somel < e < I then the number of systematic colunins needed is at least as the number of erased elements, weerequir
in the code satisfies
< ) r—1
ksmte Y 1% = er, (39)

Proof: Consider a code with length and generated by 1=0
vectors vy, vy, ...,0,_1. If these vectors are linearly inde-Moreover, we want the equations to be solvable, hence for any
pendent therk < m and we are done. Otherwise they arerased column € [0,e — 1],
dependent. Supposecolumns are erased, < ¢ < r. Let 1 m .
ve be a surviving column. Consider a new set a of vectors: Uio X1 — i = (0,7 —1] multiplicity ¢, (40)
T = {vi—wve:i€[0k—1]i # e}. We know that the which means if the union is viewed as a multi-set, then each
code can rebuild optimally only if (33) is satisfied for allelement in[0, 7" — 1] appears exactly times. This condition
possiblee erasures. Thus for any # ¢, i € [0,k —1], if makes sure that the equations are solvable by Hall's theorem
columni is erased and columnis not, we haver; —v. ¢ Z  (see Theorerfi 28). Under these conditions we would like to
and thusv; — v, # 0. So every vector inT is nonzero. minimize the ratio, i.e., the number of accesses which is,
Let s be the minimum number of dependent vectorsTin 1
that is, the minimum number of vectors i such that they min Z | Uf:(l) (X, — 10;)]. (41)
are dependent. For nonzero vectors, we have 2. Say Koo Xr-1 2,
{Ve41 — Ve, Vo2 — Ve, -+, Vets — Vet IS @ Minimum depen-

dent set of vector. Since any + 1 vectors are dependent in!" Summary, for thegeneralized rebuilding algorithm one
E" first chooses a subspaZe and then solves the minimization
T

problem in [41) subject td_(39) and (40).
The following example interprets the minimization problem

We are going to show — ¢ < s — 1. Suppose to the contraryfor a specific case.

that the number of remaining columns satisfles-¢ > s gxample 6 Letr = 2,¢ = 1, i.e., two parities and one erasure,
and e erasures occur. When column,; is erased and the o equation{33),[@0) becomes

s columns{v,, Ue11,...,Vers—1} are not, we should be able

to rebuild optimally. However since we chose a dependent  |Xo| + |Xi1| =2",Xo U X1 +v9 = [0,2" —1].

set of vectorsp,4+s — v, is a linear combination ofv, 1 —
Ve, Vpr2 — Ve, - - -, Uets—1 — Ue }, WhOSE Span is contained i

s<m-+1.

ThereforeX; + vy = X,. The objective function in(@)

in (33). Hence[(33) is violated and we reach a contradictiotr%.ecomes'
Therefore, okl Ux o k=l U (e
k—e<s—1<m. %1,1;?1];‘ oU 1+Uj|—H)1<10I1];\ 0 U (Xo +vo +j)]-

_ _ o B Fachvoy+v ; defines a permutatiqf@owj on the cosets df by
Notice that this upper bound is tight. Fer = 1 we fopto,(A) = A+ 0y + ) for a cosetA of Z. If vg + v; € Z

already gave codes with optimal rebuilding bferasure and thenfvo+v]. is the identity permutation aridy U (X + vy +

k ; m|+ 1 d systema:m q golltjr:pns. I\:!oreovzr, f@rt: 2t tgeeb zt;lj])| = 2™ regardless of the choice o). However, ifvy +
code already presented in this section and constructedey oj ¢ Z, thenfy 1., is of order2, i.e., it's composed of disjoint
vectors0, ey, ep, e1 + ep, reaches the upper bound with= 4

. cycles of lengtt2. Note that iff,,,, mapsA to B and only
systematic columns. one of the cosetd, B is contained /JnXO, sayA, then onlyA
is contained irXo U (X + vy + v]-). On the other hand, if both
D. Generalized Rebuilding Algorithms A,B e XgorA,B ¢ Xy then,

The rebuilding algorithms presented in Constructibii$ 1,5 A,B C XoU (X + v + v]-).
and Theoreni 28 all use a specific subspace and its cosets ] ] o
in the rebuilding process. This method of rebuilding can W& oth.er W?rdS:(A'f B)_’S a ?ycle in fu,+0; which is totally
generalized by using an arbitrary subspace as explainedbelcontained inXy or in Xg. DeﬂneN].X as the number of cycles
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(A, B) inthe permutatio@’vo+v]. that are totally contained i However, an interesting observation, in our optimal code

or in X, whereX is a union of some cosets @f. It is easy to construction with two parity nodes, is if we update all the

see that the minimization problem is equivalent to minimggi information in the first column and the rows in the first half of
the array (see Figufé 3), we do not need to read for computing

k=1 .
min ¥ NX. (42) the new parities, because we know the values of all the
X 3 J information elements needed for computing the paritiegs€h
information elements take about half the size of the entire
In other words, we want to find a s&t which is a union of array. So in a storage system we can cache the information
cosets oZ, such that the number of totally contained or totallyy pe written until most of these elements needs update (we
not contained cycles in the permutations definedvpy vy,  could arrange the information in a way that these elements ar
j € [1,k —1] is minimized. often updated at the same time), hence, the ratio between the
From the above example, we can see that given a ndiimber of read qperations and the number of newinformat_ion
optimal code with two parities and one erasure, finding ttfiéments is relatively very small. Clearly, we can use alami
solution in [@2) requires minimizing for the sum of thes@PProach for any other systematic column. In general, given
k — 1 permutations, which is an interesting combinatoridl Parity nodes, we can avoid redundant read operations if we
problem. Moreover, by choosing a different subspaceve UPdate about/r of the array.
might be able to get a better rebuilding algorithm than that i

Constructio Il or Theorem P8. APPENDIX A
PROOF OFTHEOREMH

IX. CONCLUDING REMARKS In order to prove Theorer] 5, we use the well known

In this paper, we described explicit constructions of thce:()mbmmor"fjII Nullstellensatz by Alof [21]

first known systematiqn, k) MDS array codes withh — k  Theorem 33 (Combinatorial Nullstellensatz) [21, Th 1.2] Let
equal to some constant, such that the amount of informatilinbe an arbitrary field, and let = f(x1,...,x;) be a poly-
needed to rebuild an erased column equalsl f¢n — k), nomial inF[x,, ..., x;|. Suppose the degree ffis deg(f) =
matching the information-theoretic lower bound. While thg?zl t;, where each; is a nonnegative integer, and suppose the

codes are new and interesting from a theoretical persectivoefficient of[ ]’ . iin f is nonzero. Then, iy, ..., S, are
X )

they also provide an exciting practical solution, spedifica sypsets oF with |Si| > t;, there ar@y € S1,55 € Sy, ..., 55 €
when n —k = 2, our zigzag codes are the best knowgq so that

alternative to RAID-6 schemes. RAID-6 is the most prominent f(51,...,54) # 0.

scheme in storage systems for combating disk failurés [1]-

[6]. Our new zigzag codes provide a RAID-6 scheme that has Proof of Theorem[& Assume the information ofA is

optimal update (important for write efficiency), small fait given in a column vectofV of length pk, where column
field size (important for computational efficiency) and opi ¢ € [0,k — 1] of A is in the row set[(ip, (i + 1)p — 1]

access of information for rebuilding - cutting the currer®f W. Each systematic nodé i € [0,k — 1], can be
rebuilding time by a factor of two. represented a®;W where Q; = [0,xpi, Ipxp, 0, p(k—i—1)]-

We note that one can add redundancy for the sake Mpreover define Qv = [Ipxp, [pxp, - Ipxpl, Qp1 =
lowering the rebuilding ratio. For instance, one can useehr[XoPo, 1Py, ..., Xx_1Px_1] where theP;’s are permutation ma-
parity nodes instead of two. The idea is that the third pasity trices (not necessarily distinct) of sizex p, and thex;'s
not used for protecting data from erasures, since in pmcti@re variables, such thaf, = QW,Cyq1 = QrW. The
three concurrent failures are unlikely. However, with threpermutation matrixP; = (pl(fm) is defined aSpl(;L =1if
parity nodes, we are able to rebuild a single failed node land only if a,,; € Z;. In order to show that there exists
accessing onlyl /3 of the remaining information (instead ofsuch MDS code, it is sufficient to show that there is an
1/2). An open problem is to construct codes that can lessignment for the intermediatés; } in the fieldF, such that
extended in a simple way, namely, codes with three parityr any set of integergsy, s, ..., sy} C [0,k + 1] the matrix
nodes such that the first two nodes ensure a rebuilding ratio®@ = [Q], Q! , ..., Q] ] is of full rank. It is easy to see that if
1/2 and the third node further lowers the ratioltd3. Hence, the parity columnCyq is erased i.ek +1 & {s1,s2, ..., sk}
we can first construct an array with two parity nodes and whémen Q is of full rank. If k ¢ {s1,s2,...,5¢,} andk+1 €
needed, extend the array by adding an additional parity noflg, s,, ..., s;} thenQ is of full rank if none of thex;’s equals
to obtain additional improvement in the rebuilding ratio. to zero. The last case is when bdttk + 1 € {sq1, s, ..., s}

Another future research direction is to consider the ratio @e., there ar® <i < j < k—1suchthat,j & {s1,s2, ..., ¢}
read accesses in the case of a write (update) operation. Eas easy to see that in that cagkis of full rank if and only
example, in an array code with two parity nodes, in ordéfrthe submatrix
to update a single information element, one needs to read at P 1P
least three elements and write three elements, becauseage ne Bij= ( Il l I] ! )
to know the values of the old information and old parities pep e
and compute the new parity elements (by subtracting the dtdof full rank. This is equivalent talet(B; ;) # 0. Note that
information from the parity and adding the new informationdeg(det(B;;)) = p and the coefficient oﬁcf is det(P;) €



{1, —1}. Define the polynomial

[1

0<i<j<k—1

T = T(xo, X1, ey xk_l) = det(BZ-,]-),

and the result follows if there are elementsay, .., a;_1 € F

such thatT (ag, a1, ...,ax_1) # 0. T is of degreep(’zf) and the

coefficient of [T5_] K s [T:Z) det(P;)k=1= £ 0. Set
for anyi, S; = F\0 in Theoren:3B, and the result follows

APPENDIXB
PROOF OFTHEOREMI[G

In this section we prove Theorelm 6. We will need some ij:

definitions and theorems first.
For the rebuilding of nodeé by row and zigzag setS =
{So,...,Sp-1}, define the number of intersections by

I(i[S) = Y IS| — | Uses S| = pk — | Uses S|.
Ses

Moreover define the number of total intersections in an MDS

array codeC as
k=1

€)=Y max I(ilS).

i=0 S rebuildsi

Now definel (k) to be the maximal possible intersections over

all (k+2,k) MDS array codes, i.e.,
h(k) = mCaxI(C).

For example, in Figurlg 2 the rebuilding set for coluins S =
{Ro, Ry, Zy, Z1}, the size in equatioff4) & andI(1|S) = 4.

22

and thus ‘
hik)y =Y I(j,S").
ijij#i
Note also that ifi # j andi,j € T, then

1(j,S") = 1(j, S%).
Hence

(-2 =(2) 2

j#i
TC[0k—1]:
j#Fi o ijeT,|T|=q
ij: TC[0k—1]:
j#Fi o ijeT,|T|=q
Y Y. 1G,S7)
TC[0k—1]:  ijeT:
T|=q 1#]
< ). hg
TC[0,k—1]:
IT|=q

(o

Inequality [44) holds because the code restricted in coumn
T is a(q-+2,q) MDS and optimal-update code, ahdg) is
the maximal intersections among such codes. Hence,
k
h —
hK) < (qi iq) _ klk=1)h(q)
(q:Z) q<q - 1)

(43)

1j,8")

1, S%)

(44)

The following theorem gives a recursive bound for the

maximal number of intersections.

Theorem 34 Letq < k < p thenh(k) < 7"(’;(’;_)%‘7)_

Proof: Let A be an information array of size x k.

Construct a MDS array cod€ by the row sets and the
zigzag sets that reaches the maximum possible number
intersections, and suppoSé achieves the maximal number of

intersections for rebuilding columi i € [0,k — 1]. Namely
the zigzag set¥ of the codeC and the rebuilding s
satisfy that,

k=1 k=1
_ _ ; _ Qi
h(k) =1(C) = g)sgllaﬂi)l(dsil(l‘s) = gl(z\s ).

ets’ And theratio function for all

and the result follows. |
For a (k+2,k) MDS codeC with p rows therebuilding
ratio R(C) can be written as

R(e) = KRU=D 1) +p) | I(C)+pk

p(k+1)k plk+ 1)k’
Ntice that in the two parity nodes, we accgselements
because each erased element must be rebuilt either by row or

by zigzag. Thus we have the termin the above equation.
(k+2,k) MDS codes withp

h(k) + pk
p(k+1)k’
Proof of Theorem[& Consider a(k + 2,k) code with

rows is
R(k) = mgnR(C) =1-

For a subset of column§ C [0,k — 1] and a rebuilding p rows and assume a systematic node is erased. In order to

setS’ = {Sp,..,S,_1} we denote the restriction o' to
T by SZT = {SO,T/W/Spfl,T}’ WhereSl,T = {a ST
a is in columnsT}. Denote by

p—1
. i . —1 .
1(7,8") = Y IS 0 jl = [(UZyS) N
i=0

the number of intersections in columinwhile rebuilding
columni by S*. It is easy to see that

1(ils) = Y 1(j,S")
jij#i

rebuild it, p row and zigzag sets are accessed.itandp — x

be the number of elements that are accessed from the first
and the second parity respectively. W.l.o.g we can assuate th
x > %, otherwisep — x would satisfy it. Each element of these

x sets is a sum of a set of sixe Thus in order to rebuild the
node, we need to access at leagt — 1) > ”(kT_” elements

in the k — 1 surviving systematic nodes, which is at least half
of the size of these nodes. So the number of intersections is
no more thanw. Thus

h(k) < M

< 5 . (45)



and the ratio function satisfies

pk(k—1)
R(;{):l_wz _274_7[71{:1.
pk(k+1) pk(k+1) 2
So the rebuilding ratio is no less than2.
From Theoreni_34 we get,
(k+1)kh(k)  (k+1)h(k)
h(k+1) < =) k=1 (46)
Hence,
o h(k+1) 1
Rlk+1) =1 plk+1)(k+2) k+2
h(k) 1
>1— _
22 k2
R+ plk=1)
plk—1)(k+2)
h(k) + pk
>1- 47
- pk(k+1) (47)
= R(k),
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