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Abstract—The parallel fading channel, which consists of finite

practical communication systems can be formulated ints thi

number of subchannels, is very important, because it can be model. The conventional narrow-band system, such as GSM,

used to formulate many practical communication systems. Téa
outage probability, on the other hand, is widely used to analze
the relationship among the communication efficiency, relihility,

can be modeled as a parallel fading channel in the time domain
[2]. The wide-band OFDM system, such as WiMAX and 3GPP

SNR, and channel fading. To the best of our knowledge, the LTE, is a parallel fading channel in the frequency domain

previous works only studied the asymptotic outage performace
of the parallel fading channel which are only valid for a large

number of subchannels or high SNRs. In this paper, a unified
performance metric, which we shall refer to as the outage
exponent, will be proposed. Our approach is mainly based on

the large deviations theory and the Meijer's G-function. It

[3]. By applying a singular value decomposition, the MIMO
channel can also be formulated into a parallel fading chlanne
in the space domain[[4].

For the parallel fading channel, the ergodic capacity canno
be achieved because it only has a finite number of sub-

is shown that the proposed outage exponent is not only an channels which yields a non-ergodic fading case [5]. There-

accurate estimation of the outage probability for any numbe

of subchannels, any SNR, and any target transmission rate,
but also provides an easy way to compute the outage capacity,

finite-SNR  diversity-multiplexing tradeoff, and SNR gain. The
asymptotic performance metrics, such as the delay-limitecta-
pacity, ergodic capacity, and diversity-multiplexing tradeoff can
be directly obtained by letting the number of subchannels or
SNR tends to infinity. Similar to Gallager's error exponent, a
reliable function for parallel fading channels, which illustrates
a fundamental relationship between the transmission relihility

fore, the outage probability, defined as the probabilityt tha
the instantaneous channel capacity is smaller than a target
transmission rate, becomes a fundamental performancé&metr
for the non-ergodic parallel fading channél [2]. From the
outage probability perspective, many important perforoean
parameters, such as outage capacity, delay-limited dgpaci
zero-outage capacity), ergodic capacity, diversity-ipléking
tradeoff, and finite-SNR diversity-multiplexing tradeotfan

and efficiency, can also be defined from the outage exponent.Pe obtained directly. However, it is very difficult to acctaly
Therefore, the proposed outage exponent provides a comptet calculate the outage probability for the parallel fadingmhel

and comprehensive performance measure for parallel fading except for two trivial cases, i.e., only one subchannel, and

channels.

Index Terms—Parallel fading channel, outage exponent, chan-

nel capacity, diversity-multiplexing tradeoff, large deuations
theory, Meijer's G-function.

I. INTRODUCTION

infinity number of subchannels. 101[2], Ozarow, Shamai, and
Wyner gave an integration formula for the outage probapbilit
of the parallel fading channel with two subchannels. Thésilte

is the first and can be considered as a milestone step. From
then on, many works have been published on this topic. The
results can be roughly divided into two categories: 1) the

HE parallel fading channel has a finite number of flputage probability versus the number of subchannels; and 2)

fading subchannels, where the channel gain of ea

fiye outage performance versus the signal-to-noise rali&}S

subchannel only depends on its own fading statistics[in [1] YWhen considering the outage probability for any number
this model is also referred to as the block-fading channf Subchannels, Kaplan and Shamai provided an upper bound

The parallel fading channel is very important because maﬁ?

m the Chernoff bounding method inl[1]. As the authors
noticed, however, the upper bound is not tight. Another prob
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rate should deviate from the ergodic capacity largely. ihesp

by the idea in[[6], some works also tried to estimate the
error probability for the parallel fading channel from the
theory of error exponent. The original result for the ergodi
parallel channel can be found ihl[7]. Divsalar and Biglieri
then proposed upper bounds on the error probability of coded
systems over AWGN and fading channels [in [8]. A similar
work can also be found ir_[9]. Based on the second type of
the Duman-Salehi (DS-2) bound in_|10], Sason and Shamai
proposed improved bounds on the decoding error probability
of block codes over fully-interleaved fading channels![11]
They also evaluated the proposed bounds on turbo-like and
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LDPC codes in[[11]. By applying a similar approach, Wuframework for parallel fading channels. It also provides a
Xiang, and Ling proposed a new upper bound for bloclpowerful tool for analyzing and evaluating the performance
fading channels in_[12], which is tight for the channel with @f existing and upcoming communication systems.
large number of subchannels, i.e., the near-ergodic case. Aln order to analyze the outage exponent for the parallel
excellent survey of this approach can be found in [13]. Beeaufading channel, we must consider two different cases. First
the theory of error exponent considers both the coding sehenf all, the outage exponent is analyzed for the case where
and channel fading at the same time, the proposed boundsthre target rate is smaller than the ergodic capacity. ledpir
often very complicated and not tight enough. Hence, it is nby the successful application of large deviations theory on
trivial to provide insights for the parallel fading chanatdarly analyzing the bit-error probability for avalanche photut#
and directly from these results. receivers|[17], the latest results of large deviations mhéo
Another approach is to study the outage performance verdii§] and [19] are used to calculate tight upper and lower
SNR, in which the ideal coding scheme is assumed to be uskdunds on the outage probability, respectively. For thee cas
An important result is to evaluate the diversity-multiglex where the target rate is close to and greater than the ergodic
tradeoff for fading channels, where each point of the tréfde@apacity, the Meijer's7-function and the method of integral
curve is just the slope of the outage probability for a giveamround a contour in_[20] are used to compute the upper and
multiplexing gain (or normalized target rate) as SNR temds bower bounds. In order to achieve the above calculated eutag
infinity. This concept was first proposed for MIMO channelexponent, the coding schemes which maximize the minimum
[14], and the corresponding results for the parallel fadingn- product distance are also discussed. The proposed method
nel can be found iri]4]. Since the diversity-multiplexingde- combines the advantages of the rota#dlattices code and
off is valid in the high SNR regime, the corresponding finitepermutation code [21][ [22].
SNR version for MIMO channels is independently proposed The rest of the paper is organized as follows. Secfidn I
in [15] and [16], respectively. They have a similar definitio presents the system model and the precise problem formula-
and can converge to the diversity-multiplexing tradeoffewh tion. In Sectiori 1ll, the general definition and related peujes
SNR tends to infinity. The finite-SNR diversity-multiplexin of the outage exponent are presented. Se¢fidn IV studies the
tradeoff can be used to estimate the additional SNR requiredtage exponent when the target rate is smaller than the
to decrease the outage probability by a specified amount foergodic capacity. The results of delay-limited capacitgpelic
given multiplexing gain. This approach does not estimage tlkapacity, and diversity-multiplexing tradeoff are alsegented
coefficient of the exponential function, which means it aannin this section. In Sectioflv, the outage exponent and the
be used to estimate the SNR gain for different coding schentefiable function are studied when the target rate is hidjnen
when SNR is not high enough. the ergodic capacity. SectionlVI will illustrate the difégrces
In this paper, a unified performance metric for paralldietween the proposed outage exponent and the error exponent
fading channels, which we shall refer to as the outage eXection[ VIl studies some coding issues in the parallel fadin
ponent, will be proposed in order to analyze the relatignshthannel. In Sectiofi_VIlI, numerical results are provided to
among the outage performance, the number of subchannetsjfy the theoretical derivations. Finally, Sectfon IXrmmmudes
and SNR at the same time. The proposed outage exporiget paper.
has many advantages. It only focuses on the fading effect
of the channel, and hence it is much tighter and simpler
than the error exponent approach. The outage exponent dsoParallel Fading Channel Model
provides an accurate estimation of the outage probabilityConsider a parallel fading channel with subchannels,
for any number of subchannels, any SNR, and any targeich of which undergoes independent flat Rayleigh fading.
transmission rate. Similar to the error exponent, a ratiabin narrowband systems, each subchannel may correspond to
function for the parallel fading channel can then be defimed the duration of coherence time. In broadband systems, each
illustrate the fundamental relationship between the comimusubchannel corresponds to one coherence bandwidth in the
cation efficiency and reliability. From this reliable furwt, slow fading scenario, or one coherence bandwidth in the
we will show that: 1) the outage probability will tend toduration of coherence time in the block-fading scenaria. Fo
zero as the number of subchannels tends to infinity, if amdnvenience, we assume that each subchannel has a unit
only if the average target rate is smaller than the ergodime duration and a unit bandwidth throughout this paper. In
capacity; and 2) the outage probability will tend to zerotees t addition, we assume that the perfect channel state infasmat
SNR tends to infinity for any average target rate lower thgiCSl) is only known at the receiver side.
the capacity of additive white Gaussian noise (AWGN) chan-Let h;,l = 1,...,L denote the channel gain of théh
nels. Furthermore, the outage capacity, finite-SNR dityersi subchannel. Ther;; is a random variable with the circularly
multiplexing tradeoff, and SNR gain can also be obtainesymmetric Gaussian distributiaghV' (0, 1), andh; is indepen-
from the outage exponent. Then, the asymptotic performargent with ;. if I # I’. The row vectorz;, I = 1,2,...,L
metrics, such as the delay-limited capacity, ergodic c@pacdenotes the transmission symbols over flie subchannel,
and diversity-multiplexing tradeoff are just the limits tfe while the row vectory;, denotes the corresponding received
previous results, and can be directly obtained by lettirg tlsymbols. The parallel fading channel can then be modeled by
number of subchannels or SNR tend to infinity. Therefore, the
proposed outage exponent provides a complete performance Y=HX+W, (1)

Il. SYSTEM MODEL AND PROBLEM FORMULATION
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where In [1], from the Chernoff’s bound, an upper bound of the
Y1 T outage probability is given by
y - Y2 X = T2 . N I ey
o A N pan < pig{ R [ AW 0] ) @
yL L whereW,, , (=) is the Whittaker’s functior{ [20]. As the authors
noticed in [1], however, the bound in Ed. (3) is not tight. In
H = diag (h1,h2,...,hr). [4], a lower bound is given by
_ L
W is the white Gaussian noise matrix, where the elements Dout > (Pr{ln (1 + |hl|2'y) < R})
of W are independent with the identical distribution of - I 4)
CN (0,1). Hence, the mutual information between the trans- = <1 —e " w1> )
mitter and the receiver, denoted By H ), is then given by

However, Eq. [(#) is only an approximation of the outage

B 2 probability when SNR tends to infinity, which is not tight in
I(H)= ;m (1 + 1] 7) ) realistic SNRs.

where v is the received SNR. Throughout this paper, the [1l. OUTAGE EXPONENT
natural logarithmic functiorin (z) is used, and the unit of As stated before, it is very difficult to compute the exact
information is ‘hat”. outage probability for the parallel fading channel dirgctl
Likewise, it is also very tough to accurately analyze the
decoding error probability for a given coding scheme. To
overcome the difficulties, Gallager proposed a systematica
The outage probability is an important concept in fadingpproach to estimate the upper and lower bounds for the
channels, which provides a way to characterize the p&tecoding error probability, which is often referred to as th
formance of communication systems in non-ergodic fadirgjror exponent7]. Similarly, this paper tries to propose an
scenarios. Clearly, the parallel fading channel is noreig outage exponerapproach to calculate the exponentially tight
when L is finite. According to[[5], the outage probability ofupper and lower bounds for the outage probability in non-
the parallel fading channel is defined by ergodic fading channels.

B. Outage Formulation

A. General Results
Pout (L,v,R) =Pr{I (H) < R} . _
L The general result on _the outage exponent is given below in
— Pr {Zln (1 i IthQW) < R} TheorenTlL. For convenience, we let the symbgl' ‘denote
=1

) the following relationship:

L .
_Pr{%21n(1+|hl|2,y)<}_%}, f@)@@m{ﬂiﬁff@y_L (5)
=1 gz

) o ) _ Similarly, we also define the symbop".
v}ghereR is the target transmission rate or coding rate, Bnd Theorem 1:For a parallel fading channel with subchan-

7 is the average rate on each subchannel. For convenienggs the outage exponents are the exponentially tight ruppe
pout Will be used in the following instead qf,.t (L, 7, R). and lower bounds of the outage probability
This definition characterizes the relationship among the

- .. _ Eo(v)
outage probability.., the transmission ratg, the number of Pout < PUPPET = e L{Bx(R)+ 252 ()] :
subchgnngl:ﬁ, and the SNRy. The outage probability and_the o Jower _ 7L[E1(Rﬁ)+ Eo() +0(L)]
transmission rate represent two key performance metrics fo Pout T Pex = P€

communication systems, i.e., the reliability and the edficly, where, andy are constants or slowly varying functions with
respectively. The number of subchannels determines the tigp < . piPPer and plover are referred to as the upper and

ex

interval and the bandwidth used by the transmission sign®lwer outage exponents, respectively. The functian R, v)
i.e., the degree of freedom. At the same time, it also detesi js given by

how many independent channel gains the transmission signal (R = (O B E g .
may undergo, i.e., the diversity order. The SNR represents 1(R7) = ( awgn ) 11 (7) + Ero (), @)
the effective energy contained in the signal. Therefore, tivhereF; (R,~) > 0 if and only if R < C with C being the

outage formulation contains the fundamental elementswhigrgodic capacity of each subchannel, d@ad, (v) andE; o (7)

govern the transmission reliability and efficiency of nonsatisfy

ergodic fading channels. lim Cawgn 1.1 (7)
Unfortunately, it is very difficult to derive the exact forfau Y00 Iny

for the outage probability as defined in EQl (2). By now, only Eio(y)

some approximations have been proposed in previous works. 71220 In~ =0

(6)

3

(8)
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The functionE, () satisfies

12

lim =0. 9) 0
Finally, the functiono (L) tends to zero whei, — oo.

Theorem[l captures the intrinsic principles of the outa(
probability from two dimensions, namely, the number ¢
subchanneld., and the SNRy.

Reliable Function: E(ry)
(2]

B. Relationship with Other Performance Metrics

The proposed outage exponent integrates many import 2t
performance metrics. As such, it gives a complete picture

the comprehensive performance for parallel fading channe 0 ‘ ‘

Based on Theorer] 1, the relationship between the oute 0 02 mp.exing Gaﬁ{ﬁ 08 !
exponent and other performance metrics are discussedsin uu

subsection. Fig. 1.  Reliable function for the parallel fading channelttwiy =

1) Outage Capacity:For a given outage probability, the 0,10,30dB, andL = 4.
outage capacity is defined as the supremum of the transmissio
rate that satisfiep,nt < ¢ in [B]. Therefore, thes-outage

capacity, denoted by, is given by 4) Reliable Function:In [7], Gallager proposed an error
o exponent to reveal the fundamental principle that the diegod
Ce =sup{R : pout <€}, (10)  error probability exponentially varies with the coding dgin.

wheresup A is the supremum of the set. To obtain the out- The qutage exponent, howeverz _stud|es the exponent|a4ly_de
. o : creasing of the outage probability as the number of fading

age capacity, an accurate estimation of the outage prdtyabi )

. L subchannels increases. Therefore, the outage exponeaisev

is needed. Note that this is given by the outage exponent jn S - .

Theorenf 1 the fundamental principle that the outage probability esri

_ . ... Wwith the ergodicity of the channel, i.e., from slow fadingpdk
2) Delay-Limited Capacity (or Zero-Outage Capacity). fading, to fast fading. Similar to the error exponent, tsieable

_In [5], the delay-limited capacity, denotgd _bydl’ Wh'ch functionfor the outage exponent can be defined as follows
is also known as the zero-outage capacity, is the maximum

transmission rate as the outage probability tends to zeemwh Ey ()
L — oo. Therefore,Cy; is defined as E(R)=Ei(Ry)+ —F= +o(l). (13)
— 5.1 _ If we let
Cq1 = sup {R : Lh_{léopout = 0} : R
r= ,
Clearly, Cq1 = lim._¢limy_, ., C.. By applying the error Cawgn

exponent in Theored |, we have wherer is referred to as the multiplexing gain, the reliable

1 ) ' :
lim * npow = E1 (R, ) function can also be denoted @y (r,~). From the properties

L—oo L ’ of E(R,~) in Theorenll, we have the following results.
Hence, the delay-limited capacity can be obtained as « For any fixed SNR, ifR is smaller thanC, the outage
o probability will tend to zero ad. — oo.
Ca=sup{R: Ei(R,7) >0}, (11) « For any fixedL, if R is smaller thanC,.,, the outage

3) Ergodic Capacity:In [5], the ergodic capacity for fading probability will tend to zero as; — oc.

channels, denoted 1, is defined as the statistical average of An €xample of the reliable function versus multiplexingrgai
the channel capacity. According to the central limit theoye iS Plotted in Fig.[1 for different SNRs. It can be seen that

we have for any givenr, the reliable function gets larger as the SNR
increases. But all of the curves tend to zeroras 1, which
C = Lhm @ —E {111 (1 + |th2 7)} ) is the same as the error exponent figures in [7].
—00

5) Finite-SNR Diversity-Multiplexing Tradeofin realistic

From Theorenill, iR < O, thenpyu: — 0 asL — oo, which SNRs, the finite-SNR diversity-multiplexing tradeoff, pro
implies thatCy > C. On the other hand, i, (R,v) > 0, posed by[[15],[[16] for MIMO channels, is used to estimate
we haveR < C, which implies thatCy < C. As a result, the additional SNR required to decrease the outage pratyabil

the delay limited capacity is equal to the ergodic capagity Py a specified amount for a given multiplexing gain. [In[15],
parallel fading channels, that is the finite-SNR diversity-multiplexing tradeoff is defined a

Car=C=E{l (1+n*~)}. (12) d; (7“)=—aam17507m’
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which is derived by estimating the upper bound of the outhe Legendre-Fenchel transform is then defined as
age probability. From Theorem 1, the finite-SNR diversity- " o _
multiplexing tradeoff for parallel fading channels can be Az () _Zgg {&s = A (O}

obtained by 8F (1) Define the Legendre duality as

4 (1) =I5 - =(s) = argsup {63 — A (©))
whered; (r) represents the reliable function in EB.1(13) fronyhe |imit of the Iogarlthmlc moment generating function is
another perspective. given by

6) Diversity-Multiplexing Tradeoff:In [14], the diversity- A(E) = lim lA (©)
multiplexing tradeoff is defined as the slope of the outage ’ nsoom
probability when SNR tends to infinity. This concept revealsinally, define the titled distribution of;, as
the fundamental relationship between reliability and &dficy

in the asymptotic case. From|[4], the optimal diversity- JF© (v) = etvdF, (y) (16)
multiplexing tradeoff for parallel fading channels is givby "o M, (&)
. - Inpour . and let v, be a random variable having\*’ (y) as its
d* (r) = — lim =L (1 - —) : (15) distribution.
y—=oo Invy L

This result was obtained by applying the lower bound in E@. Upper Outage Exponent

(@). From Theorer]14" (r) can be derived as follows The upper outage exponent for the parallel fading channel,

i} 1N Pout ) LE (R,~) defined as the exponentially tight upper bound of the outage
d*(r) = i — oy Jim Ty probability, is given in the following theorem.
Theorem 2:For anyR with R < C, the upper outage expo-
L E (R ) + EO—(’Y) + o0 (L) upper H H
~ 1 1y L nentpiPPe* for a parallel fading channel witth subchannels
—E% In~ is given by
iy PO =) B () (149) + Eio (7)) i
e I~y Pout S PP = —Le e HEAERDF R ] 7)
—L(1-7) ) ven
B L)’ where

By applying the properties of the outage exponent, it is not By (R.+) = (C _R =0 —=(0)In (1 1
difficult to verify that (R,7) = (Cawgn — R) E(0) —E(0) In +’Y a8)

& (1) = Tim df (r) = Tim Ly 22000 —n (T (1-2(0),77Y).

7o e O The parameteE (0) is the unique positive solution of the

7) SNR Gain (or Coding Gain):The SNR gain is the following equation
(1

difference between the SNR values needed by two different 1 1,1
o? = : 54 .
F(1=2(0),y1) " \v

0,0,1— 5)20’ (19)

1,1,1
0,0,0,1—2(0)

coding schemes to achieve a given outage probability. This R — ﬁGg’g
metric is very useful to evaluate coding schemes with theesam (1-&v7)
diversity gain. In the high SNR regime, the coding gain ighile +2 is given by

determined by the coefficient of the outage exponent.

IV. OUTAGE EXPONENT FORR < C

2
The outage exponent for the parallel fading channel will be 1 3.0 111 .
studied thoroughly in Sectiods 1V ard V. According to our r(1-2(0),71 **\~]0,0,1-=(0)
study, the channel outage behavior is different for< C (20)

andR > C. Thus, the outage exponent will be analyzed itn these equations; (z, «) is the incomplete Gamma function,
two different cases. For th& < C case, our derivation is which is defined by

mainly based on the latest results in large deviations theor <
and Meijer'sG-function [20], [23]. I'(z,a) :/ e "t dt,
Before presenting the main results, we introduce some bagir(l:d “
terminologies and notations for this section. £&f, : n € N}
be a sequence of real-valued random variables with distribu -, ,, . al,...,0p\
tion F, (y). The logarithmic moment generating function of ~ ¢ bl, L ,bq -
Y, is given b n
g y 56 —S)H7 T(1—aj+s)
An (&) =M, (§) =InE{™}. 2mi 1‘[] ma D(L=b;+ ) I7_, 1 T (a; — )

Z°ds,
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is the Meijer’'sG-function. B. Lower Outage Exponent

Proof: See Appendikh. - As stated before, the outage exponent also depends on the

Remark 1:The upper outage exponent proposed_ in Thegkponentially tight lower bound. According to the proof in
rem[2 is also known as the second order saddle-point aPPrRbpendixA, we have

imation for any givenL and~. The validity and accuracy of
this approximation for finitel, and~ is justified in [24]. < Dout < 1
By solving the equation = pou; < plPPer, the following v o~ L[Bi(Roy)+EE@L L L] ™~ o
corollary can be obtained immediately.
Corollary 1: For a parallel fading channel with subchan-
nels, thes-outage capacity is given by

Thus, we only need to give a good estimation prfor the
lower outage exponent. The results are summarized in the
following theorem.

€ > Y _ Theorem 3:For any R with R < C, the lower outage ex-
~ _ 1, _ =(0) ponentploer for a parallel fading channel with subchannels
[(5\/27TLU: (O)) eI'(1-2(0),v7 1) is given by
(21)

According to Theoreri]2, other two corollaries which illus- lower
trate the asymptotic performance of the parallel fadinghalea Pout < Pex o4
from two different dimensions can also be obtained directly = sup {(1 — MR _ e*AQ(R)) e*LE?(R”)} @
Corollary 2: For a parallel fading channel with subchan- O<a<l
nels, the delay-limited capacity is equal to the ergodi@céyp \yhere

whenL — oo, i.e., a — e Ma(R)
_ ) ‘i emm @3)
CdlzC:E{ln(1+|hl| 7)} (22)
and
Proof: From Theoreni12, ifR < C, thenpy,, — 0 as o 1

L — co. Therefore, we havey > C. EY (R,7) = (Cawgn — 0R) E(aR) — Z(aR)In (1 + ;)

On the other hand, we havg, (R,~) = A* (0). According N _ .
to the definition of Legendre-Fenchel transfori,(s) is non- +In (WF (1+E(aR),y )) ;
deceasing fos > E{Y.} = R—C. Therefore, ifE; (R, ) > aR
0, we haveR < C,i.e.,Cq < C. As aresult, Eq[{22) holdm Al (0R) =R(a—0)E(aR) — / = (t) dt;

Corollary 3: The diversity-multiplexing tradeoff for a par- . . oR

Aoc (R) = Aoc (6R)|5:1 .

allel fading channel withl. subchannels is given by

. r The parameteE (¢) is the negative solution of the following
& (r) =L (1 - Z)' (23)  equation
Proof: According to the definition of diversity- I3 so 11,1
multiplexing tradeoff and Theore 2, we have t— TA+e D) 2.3 510,014 ¢ =0
LE (R, .
d* (r) = lim LE () Proof: See AppendiXB. n

o 1
i n From the proof of Theorefd 3, it can be seen tB&fR) here

From Eq. [(IB), it is not difficult to verify the following is equal to—= (0) in Theoreni?, which implies tha{ (R, )

equations: is the same a¥’; (R,~). Therefore, the lower bound and
_ _ the upper bound of the outage probability have the same
lim Cawgn= (0) = 1 In(1+7)E(0) =1, exponent. The only difference lies in the coefficient of the
Yoo In~y Yoo Iny main exponential function. A key step in the proof, i.e., Eq.
(42), can also be replaced by applying the same technique in
= (0)In (1 + 1) the proof of Theorerhl2, which will result in a tighter bound.
lim =0,
y—o0 In~ —_  _
V. OUTAGE EXPONENT FORR > C
1
lim In (e”r (1-2(0) 77_1)) _0 It is well known that if the coding rate is larger than the
N oo In - ergodic capacity, the decoding error probability of commu-
nication over ergodic channels is still greater than a cortst
In(e2(0)) | InL when the coding length tends to infinity. For the paralleirigd
JLH;O # =0 channel, the behavior of the outage probability when thgetar

transmission rate is higher than the ergodic capacity Ik sti
Therefore, Eq.[(1I5) holds. H unknown.
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A. Upper and Lower Outage Exponents B. Reliable Function

If the large deviation theory is applied fd& > C, the The reliable function for thé& > C case will be analyzed in

bounds will be obtained in the form of non outage probabilit)vqis sub§ecti_on. Since the putage probability tends to dme
i.e., the dualities of Eqns[{lL7) and124). These results — oo in this case, we will mainly focus on the behavior of
show that the outage probability tends to one whers oo the reliable function versus SNR. Before we study the rédiab

in the R > C case. Furthermore, the large deviation bound§"ction, a basic Iemn;)a will be given f|rstf. .
will be loose whenR is close toC. Especially, the large Lemma 1:Let f () be a strict concave function {0, co).

deviation bound will be one, it — C. Therefore, we need T / (¢) is differentiable in(0,cc), then for anyx & (0, o),
to find another method to study the behavior of the outaé‘ﬁa have f(z)— £(0)
probability when SNR changes. The results are summarized fH(z) < —F——=
in the following theorem.

Theorem 4:For anyR with R > C, the outage probability
of a parallel fading channel withl, subchannels can be

(29)
T

Proof: Fix any x € (0,000). According to the Lagrange
mean value theorem, there must be sghee (0, ) satisfying

bounded b z) = f(0
ounded by f/(g):f()x ().
Pous < pUPPST =1 — Fy (GR - 1) Since f (z) is a strict concave function, thefi’ () < 0.
~oe v )7 (26) Therefore, we havg’ (z) < f/ (£), so that Eq.[{29) holdsm
S Jower L elt With this lemma, the outage exponent can be constructed
Pout X Pex = 1—e7FL AL ) from the approximation of the outage probability in Eig.](28)
for the high SNR regime. In these equatiois, (z) is given ~ Theorem 5:For any R with R > C, the lower outage
by exponent for a parallel fading channel with subchannels
Lo B is given by
F =Gy
o (Z) 0L <Z 0, 17 71 ) Pout > p‘lgcwer _ e*L[(1*%)E1,1(7)+E1,0(7)+ EOL(W)L (30)
In the low SNR regime, the outage probability can be approwhere the functions?; ; (), E1 0 (), and Eq () are given
imated by by
T'(L,r
Pout =~ 1- ( )'a (27) 1 _
(L—1)! (1497t 2 AL0 ((149)"
FTT €T oL | AT 0,0,...,0
wherer = %;gn is the multiplexing gain. Era(v) = 2 00 (L) _ » (31)
Proof: See AppendiX L. n 1—evGol < 10,11 >
It can be seen that the low SNR approximation is irrelevant 1
to ~. In the high SNR regime, the difference between the Eio(y) = ;El,l ), (32)

lower bound and the upper bound is only the coefficient of
the l\/leijer’s G-function. The coefficient in the Iowger boundand
is ev, vahiIe the coefficient in the upper bound és = 1. _AAqlo ((1+7)T
Sincee~ — 1 asvy — oo, the lower and upper bounds will v 0.L
converge to the true value in the high SNR regime. However, ° (v) = x o
in the low SNR regimeg~ is too small, whilec> is too large. L [1 —erGoy (
Therefore, if we can modify the coefficient to a proper value,
a more accurate approximation can then be obtained for the]ln
low SNR regime.

Proposition 1: For any R with R > C, the outage proba-
bility of a parallel fading channel witli, subchannels can be
approximated by

Proof: See AppendixD. [ |
Theorenib, the formula of the outage exponent can only
be expressed as a function of the multiplexing gain, because
R > Cin this case. Consider the definition of the multiplexing
gain and the conditiol® > C, the value ofr must satisfy
— 1
r C esT (0,471

N (28) L7 Coen I ((1 + v)) =n -

0,1,...,1 )~

It can be shown that, () is a quasi-convex function, and

R
2 ~Lo [ €
Pout & 1 — > G} <7

in the high SNR regime, where < A < L.

For the parallel fading channel with subchannels, it is
very difficult to estimate) in theory. However, if we set the Fig.[2 shows the curve of, (). It can be seen that the mini-
simulation value of the outage probability in the low SNRnum value ofr§ (v) ~ 0.8331 is achieved at* ~ 6.2442 dB.
regime equal to0dB in (28), an estimation of\ can be Therefore, for any SNR, if the multiplexing gain is belowsthi
obtained. curve, the formulas in Theorerk 2 ddd 3 give the tight bounds;

Jim o () = lim 7o (7) = 1.
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and the number of fading subchannels. In ergodic channels,
the relationship among the error probability, the transiois
rate, channel noise, and the coding lengths is charaatibize

a commonly used approach, referred to as the error exponents
Recently, some works tried to generalize the error exponent
theory to fading channels. Interested readers are refeéored
[13] and its references for a thorough survey on this topic.
In this section, we will discuss the differences between our
results and the theory of error exponents.

The classical results of the error exponent for parallel
channels is summarized in the following lemma [7].

Lemma 2:Let p; (j]i),! = 1,...,L be the transition
probability of thelth subchannel, angl(k4, . .., k1) be a prob-
ability assignment on the input vectors. df(k1,..., kL) =
SNR (dB) Hle qi (k;), the error exponent for the parallel fading channel
is then given by the exponentially tight upper bound of the

Fig. 2. The curve ofrg () versusy. error probability:

0.98F

0.961 Use Eqgns. (26) (27) and Eqn. (30).

0.94F

0.92} Use Eqn. (17)
and Eqn. (24).

091

0.881

Multiplexing Gain Threshold: ro(y)

0.86

0.84r

-~ L 1
Perr < € NYim Er(p)’

whereas if the multiplexing gain is near and above the CUNRhere
the formulas in Theorenid 4 afdl 5 give the tight bounds.

From Theorem[]5, the finite-SNR diversity-multiplexing El (p) = max {El (0, q1) — ngl (o Qz)}
tradeoff can be directly obtained as described in the fatigw " @ o op °"” ’

. . d
Corollary 4: For a parallel fading channel with subchan- an

L
nels, the finite-SNR diversity-multiplexing tradeoff issgh by R(p) = Z R (p) = Z BQE‘Z) (p,q) -
p
i} B r 1 (1 “F'Y)T_l =1 =1
di (r,y) =L [(1 B f) + ;} LT The functionE! (p, q;) is given by

: - ) J-1 [K-1 S\
SN 0007 Eé<p,ql>——1nz(quk)plmk)m) .
1 eiGyy ((1:;)? 0.1,....1 ) (34) A
T The parametep is the magnitude of the slope of the. (p)
0.1 B ) versusR (p) curve.

SR . From Lemmd®, ifp; (i|j), [ = 1,..., L are the same for
01 - . > any subchannel, the error exponent will be reduced to

L(NEi(P))7 (36)

A i
1-— eVGé’g <(1;r2)

From the finite-SNR diversity-multiplexing tradeoff, the Derr S €
diversity-multiplexing tradeoff can be obtained by legtin
~ — oo. The result is summarized in the following corollary. P
Corollary 5: For a parallel fading channel with subchan- R(p)=LR(p) = La—pEi (0squ) - (37)

nels, the diversity-multiplexing tradeoff is given by
Therefore, if and only ifR; < Cawgn, Perr Will tend to zero

d*(r) = lim df (r,7) = L (1 - %) : (35) whenL — oo for a fixed N. It can be shown thaE" (p) in
_ ) Eq. (36) is just the error exponent for thd subchannel.
Proof: See AppendiXE. u By comparing Eqns.[(36)((B7) and Ed.{17), it can be

Remark 2:From the proof of Theoreinl 5 and Corolldty 5¢,nd that the outage exponent and error exponent have a

we can find that ifr < L, the outage probability will tend gimjjar form. However, they are different. First of all, the
to zero as SNR tends to infinity. Therefore, the diversityyaqe exponent considers the non-ergodic parallel fading
multiplexing tradeoff is valid for any? < Cawgn- AS aresult, cnannel je. each subchannel is associated with a random
for any fixed, if only R is smaller thanCugn, the outage channel gain; whereas each subchannel in the error expisnent
probability will reduce to zero ag — oo. ergodic. The results that tried to generalize the error pgpb
method to fading channels, however, can only be applied
V1. DIFFERENCES BETWEEN THEOUTAGE EXPONENT AND  tg ergodic fading channels, e.g., the fully interleavedckio
ERROREXPONENT fading channel in[[9],[[111]. For the non-ergodic paralladifay
In fading channels, the proposed outage exponent relages¢hannel, the transition probability of each subchannalireg
communication reliability, efficiency, transmission ra8N\NR, knowledge of the channel, i.e., we negdj|:, h;). Then, from
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TABLE |
PROPERTIES OF THEOUTAGE EXPONENT

~: Non-Asymptotic ~: Asymptotic
e Accurate estimation Opous: EQns. [(6) [(1V)[(2H)(26).
L : ggﬁz%feiiﬂiggﬁ i%m%%zgﬂlgo) o diversity-multiplexing tradeoff: Eqns[ (15} (P9} (35).
Non-Asymptotic e Finite-SNR diversity-multiplexing tradeoff: Eqn§._{1484). o If B < Cawgn, limy— o0 pour = 0: TheorentP.
e SNR gain: Eqns[{6Y (17 (24) (P6).
L o Delay-limited capacity: Eqns_(11] (P2).
. e Ergodic capacity: Eqns_12) (P2). —
Asymptotic e If R < C,limy_, o0 pout = 0: Theoren{H.

the perspective of error exponent, the outage probabdity i It is known that the minimum distance between two code-
given by words determines the decode error probability in the AWGN
channell[25]. In fading channels, another key parametdras t
— . ) ! minimum product distance of two codewords [4]. In brief,
Pout = Px {bup {R(p) ' ;ET (p:h) > O} < R} - 39 the minimum distance determines the capability of codes
- to combat noise; whereas the minimum product distance
Because . (p,h) must be maximized over; for every determines the capability to combat channel fading. EN. (2)
sample ofh, it is very difficult to get a closed-form formulajngicates that the outage probability is determined by okean
for the outage probability. Some attempts can be foundlin [§hding. Therefore, the minimum product distance is the key
[12]. By comparing Eq[(2) and Ed.(B8), it can be found thafetric to evaluate a coding scheme for the parallel fading
1) the outage exponent only focuses on the effect of changghnnel.
fading; and 2) all of the details about the channel coding |n signal space, each codeword can be seen as a vector
are dropped by assuming that an ideal coding scheme kgspoint in the L-dimension space, i.el-dimension con-
been adopted. This is reasonable because the AWGN chariéliation. Moreover, the channel gains frsubchannels are
capacity can be approximately achieved by LDPC and Turlgethogonal random variables, because they are independent
codes. Actually, this is just the basic idea lin [2]. with zero means. Therefore, tlith axis of theL-dimension
Another important difference is that the error exponent fgfonstellation corresponds to the channel gain ofithesub-
the parallel fading channel i times the error exponentschannel (i.e. k). Let X4 = (mAl,wAQ,...7wAL)T and
of each subchannel, as shown in Eg.](36). For the outage, — (wBl,ng,...,a:BL)T denote the codewords for the

exponent, however, the reliable function defined in Egl (83) information A and B, respectively. The normalized product
not the outage exponent for one subchannel, since the outgg@ance ofX 4 and X is then defined by

probability for each subchannel is given by | L
Foy D,=— Tl — TBI|- (39)
péutzl_e_ v ’ \/’_Yll:lll o
Therefore, we can independently study the subchannels of Gifrefore, the coding scheme must El?ndesigned to maximize
ergodic parallel fading channel. For the non-ergodic peiral th® minimum value oi,, denoted byD;™, so as to optimize

fading channel, we have to view the channel as a whdfa® outage performance. 44, = xp, for somel, there must

so as to study its performance. To illustrate the differencB® @ hyperplane which is orthogonal with the axis such
that x 4, — xp; is parallel with this hyperplane. Clearly, if

more clearly, the obtained results in this paper for the grita )
exponent are briefly summarized in TaBle I. all the channel gains on that hyperplane are very small, the
receiver cannot distinguisX 4 from X . In other words, we
lose one dimension, i.e., thih subchannel, to combat the
channel fading. As a matter of fact, the number of terms that
xa # xp,l=1,2,...,Lin Eq. (39) is the diversity order
According to the above results, if the transmitter has wérfeachieved by this signal constellatian [21].
knowledge of CSI of each subchannel, the outage exponent cafio the best of our knowledge, there are two main approaches
be achieved easily. As a matter of fact, the outage perfocmano maximize the minimum product distance. The first class is
can be better, in the sense of coding gain, when the wattive rotatedZ’-lattices code, which is based on the algebraic
filling power allocation is applied. If the transmitter has nnumber theory and lattices theory. The basic idea is to con-
CSI, however, how to achieve the outage performance as gadaict the L-dimension constellation with the siz¥? based
as possible is a key problem in this context. By recallingn Z~-lattices. Then, the constellation will be rotated to an
the definition of the outage probability given in Eg] (2), thappropriate angle such thﬁjg‘i“ is maximized. According to
optimal outage performance can be achieved if the coditite lattices theoryD;™" can be calculated theoretically. One
scheme with rateR is capable of achieving the capacity ofcan refer to[[211],[[26] and its references for detailed discu
each subchannel without CSI at the transmitter. This sectisions on this coding scheme. Another advantage of the tbtate
will discuss some basic issues in designing the best codes #d -lattices code lies in the fact that it can reduce the peak-
the parallel fading channel. to-average power ratio (PAPR) _[27]. As a matter of fact, the

VII. DiscussiON ONCODING ISSUES FOR THEPARALLEL
FADING CHANNEL
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single carrier frequency division multiple access (SC-FAM  The first set of simulations is to verify the accuracy of the
can be seen as a special case of rot#tédattices codes, proposed upper and lower bounds. In the simulation, we first
where the rotated angle is determined by the discrete Fourienerate the samples of the parallel fading channel, and the
transform (DFT) matrix. This rotation can increaﬁg1in or compare the instantaneous channel capacity with the target
the distance between two points with zero product distandensmission rate, which yields the simulation resultstfa
Therefore, compared to uncoded orthogonal frequencyidivis outage probability. Fid.]3 compares the simulation resarig
multiple access (OFDMA) systems, SC-FDMA has a bettéine theoretical results of outage exponent for tRe< C
performance in form of decoding error probability and PAPRase. In Fig[13, the number of subchanneldis- 4, and the
[28]. Another approach is the permutation code which waserage multiplexing gain is8 = 0.1. The outage exponent is
proposed to achieve the optimal diversity-multiplexirageoff computed through EqL_(L7). It can be seen that the proposed
[4], [22]. The basic idea is to use the constellation of $iZe outage exponent is nearly identical with the simulatiorultss

on a complex plane for each subchannel. The points in tieethe full SNR range. The Kaplan-Shamai's upper bound in
constellation for each subchannel are permuted, so that g (3) and the Tse-Viswanath’s approximation in Ed. (4)hav
product distance is maximized. The permutation operation the accurate slope but not the intercept in this case.

each subchannel can be seen as the product of the origing,, Fig 3, we compare the simulation results and the outage
information times a specific matrix, which is referred to a8xponent for thék > C case. The proposed upper and lower
the universal decodable matrix (UDM). Based on the Pas¢gf,nds are calculated through EE(26). It can be seen that
tr_|angle, the universal decodable matrices can be cone_tiucthe proposed upper and lower bounds will converge to the
directly for every subchannel [29]. From the perspective Qfimyation values as SNR increases. Because the proposed
rotated Z*-lattices code, the permutation code can be Sefflyer hound is only valid in the high SNR regime, the point
as a way to construct &-dimension constellation with size 5t o 4B of the curve is lacking. Hence, the modified lower
LR : : : '

277 The pe;r}gutatlon rules imply that we should cho@$e 1, nq in Propositiofl]1 has been proposed to overcome this
points from2™, so that the product distance is maximized. &, ortcoming. In FiglJ4, it can be seen that the modified lower
is not trivial to evaluate the decoding error probabilitytbé ;g js an accurate estimation for the outage probability.
permutation code, because the analytic formula/ir™ has  ciearly, the upper bound in EQ(3) cannot provide an aceurat

not been obtained. According to the construction process Qfiiation of the outage probability. The approximatio&

the permutation code, the PAPR performance could be WOIBE does not have a good accuracy either, since it can only

i
than the rotated.”-lattices code for the same average POWeLgtimate the slope of the outage probability in high SNRs for
Another important difference is that the constellatioresif large average multiplexing gains.

each subchannel 8% = 27/L for the rotatedZX-lattices _ _ _ .
code, while it is2” for the permutation code Fig.[H shows the simulation results of the outage probabilit

It is possible to combine the advantages of the rotated and the proposed bounds fron20 dB to 20 dB. It can be seen

lattices code and permutation code. First, we can constrifegt the low SNR approximation in Eq.{27), which is ploted
a L-dimension constellation with the size af (2% < A7), fom —20dB to —5dB, is very tight as expected. Frofto

Then, the constellation can be rotated to an appropriateang’ 4B, the proposed approximation in Propositidn 1 h,as been
to maximize D™, After that, 2% points from M can be used, which is also very tight. The Kaplan-Shamai's upper
" i bound and Tse-Viswanath’s approximation are also plotied f
pp p

chosen to further maximizé)g“”. In order to find the optimal ! % ’
coding scheme, we consider the asymptotic caselthat co. comparison. In the Kaplan-Shamai’s upper bound, i.e.,[Byq. (

Therefore, thel.-dimension constellation becomes a continud§€ large deviation principle is applied. Therefore, thepsl
L-dimension hypersphere whose radius is determined by ffie@ccurate whem? < ¢ or R > C, and is not accurate
peak power of the coding scheme. Then, the optimal codifigough Whenf is close toC'. According to Fig.[2, when
is to find the coordinates f@”" points which maximizeDi» SNR is betweerDdB and 10dB, 7 = 0.8 is very cl_(,)se to
under the constraint of average power. This is an intergstif{'® threshold curve,. In this range, Kaplan-Shamai's upper
idea that formulates the optimal coding design problemcivhiPound converges ta. When SNR is smaller thafdB or
is often seen as a complicated discrete optimization pnablel@rder than10dB, the difference between = 0.8 and the
into an optimization problem on continuos variables. Hoerey thréshold curve in Fid.12 is considerably large. Thereftre,
the general approach, which is out of the scope of this papfPlan-Shamai's upper bound characterizes the accuxpe sl
still needs to be investigated in depth. in this SNR range.

The second set of simulations illustrate the behavior of the
outage probability as the number of subchannels increases.

In this section, some numerical results will be presentq\.qgs_m and7 show the simulated outage probability and the
to verify the theoretical derivation in the previous see$io theoretical results fo < C and R > C, respectively. The
According to the.proof pf the proposed theorems, the acguragumber of subchannels is set to be2, 4, ands6, respectively.
of the bounds will be tight as the number of subchannels ifx expected, the proposed bounds are accurate evén<o?.
creases. Hence, we only need to compare the results for smalim Fig.[®, it can be found that the slopes of the outage
L. SinceC' is a function of SNR, the average multiplexingyropability for Z = 2, 4, 6 do not vary much with one another.
gain (or normalized target rat¢) = ; = "~ is used t0 The performance gain are mainly comes from the SNR gain.
guaranteeR < C or R > C. This phenomenon can be explained from Eg] (17). Clearly, for

VIIl. NUMERICAL RESULTS
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a fixed L, we have o ] ] ]
optimization method is used to calculate [30]. First, fix a

Pout S 7—167LE1(R’7) . desired outage probabilityoy, and letCuom = Chi, = 2
2rLo= (O) and lel"nm = 0. If we setR = Cnorm . Cawgn and giVe a

Therefore, varyind. results in a great change in the coefficien%’NR_ value, the simulated outage pr(_)babmgylt can then be

of the exponential function. However, as shown in Hij. -P,btamed. If]pou __P0“t| < 0, Cnorm |sm§xeen as fﬂf correct

the performance gains are mainly determined by the di\yersgalue' Howeve_r, lpoue — po.“" = 0, G and G, will

gain for theR > C case. This phenomenon occurs becau changed with the following rules:

the coefficient in Eq.[{30) is one for ang. This results 1) if Pout — Pout = 6, SEtCLIT, = Chorm @nd go to 3);

indicate that the power allocation is very important for the 2) if Pout — Pout < —9, s€tCign, = Chorm;

small average multiplexing gain case, but may not result in a3) S€tCrorm = 3 (Chax, + Criir ).

significant performance gain in the large average multiptex After the correciCy,.., iS obtained, the SNR will be changed

gain case. to a new value. The normalizedoutage capacity at any SNR
The outage capacity defined as the maximum transmissiadue can then be obtained. In our simulatiofisis set to

rate which guarantee the outage probability is smaller manwlmpout. The corresponding theoretical results are computed

target value. Fig.l8 shows the comparison between the sinthrough Eg. [(211), since, (y) — 1 asy — oo. From Fig.

lated outage capacity and theoretical results. The nozedli[8, it can be seen that the theoretical results are very agcura

outage capacity in the figure is just the maximum averaf@ po,: = 0.001 and poys = 0.01. For pyy = 0.1, the two

multiplexing gain which can be achieved for a given outagairves have a small gap in the low SNR regime, becag§e)

probability. In the simulation, the binary search basedmaid achieves the minimum value at ~ 6.2442 dB.
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The last set of simulations is to illustrate the diversity
gain versus SNR for a given average multiplexing gain. Fonultiplexing tradeoff can be used to evaluate the perfocaan
R < C, as shown in Fig[19, the average multiplexing gain imstead of the corresponding finite-SNR diversity-muéiphg
set toT = 0.7. The simulated diversity gain is obtained bytradeoff.
differentiating the outage probability. The theoreticasults Remark 3:Throughout this section, the numerical evalua-
is computed by Eq[{17). The asymptotic diversity gain i®algion of the theoretical results need to compute the Meijer's
plotted for comparison. It can be seen that the theoretivdl aG-function. However, the numerical computation problem of
simulation curves have a small gap when SNR is smaller thiteijer's G-function has not been fully solved. MATLAB
20dB. This is becaus& = 0.7 is close to the minimum R2010a does not have this function at all, while the reabrast
value of rq (y) in that SNR range, which yields a looseén Mathematica 7.0 and Maple 14 have severe bugs in some
large deviation bound. Fig. 110 shows the diversity at a givarases. From a large number of experiments, for instance,
average multiplexing gain foF = 0.8. In contrast to Fig. Mathematica 7.0 will give wrong results if the input parame-
[, the theoretical curve in this figure is calculated by Eders are decimal and not fractional. The designers for Mathe
(34). Although7 = 0.8 is still smaller than the minimum matica, who wrote the program of Meijer's G-function, also
value of ry (vy), the proposed bound is nearly identical wittpointed out the design problems of this function, especiall
the simulation results. Therefore, the proposed bound fitre logarithmic cases [31]. Therefore, a software packdge o
R > C is also very tight for7 is of the middle values. Meijer's G-function is developed for MATLAB in[[32]. In
From these figures, the finite-SNR diversity gain approachiée® simple poles case, the algorithm can go straightforlyard
to the asymptotic value as SNR increases. Therefore, fdr hig the generalized hyper-geometric functions. Meanwttile,
SNRs, such as more that) dB, the asymptotic diversity- algorithm can also deal with some cases which Maple 14
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cannot handle. For the super complicated and potentiallyierefore, we have
buggy cases, i.e., the logarithmic cases, it is very difficul 1
to design a general algorithm. Aiming at this problem, the A(§) = Lhm EAL (&)

accurate formulas to evaluate the residues of the integrati (B 1 v 1
have been derived, and can be used to numerically evaluate = (R-y){+In (ew (1-&n )) :
Meijer's G-function with arbitrary precision. Notice thatR < C, i.e., E{Y.} < 0, the Legendre-Fenchel

transform ofA (£) at s = 0 is then given by

IX. CONCLUSIONS A* (0) = sup {—A (&)}
This paper focused on the parallel fading channel and pro- £ER
posed a unified performance metric, referred to as the outage = — inf {(E —1In 7) &+ 1n (eﬁr (1 — 577*1))}
exponent. The outage exponent is defined as the expongntiall £20
tight upper and lower bounds of the outage probability for an = (1n7 — E) Z(0) —In (e%p (1 —2(0) 77—1)) (40)
number of subchannels, any SNR, and any target transmission 1
rate. Based on the latest results in large deviations theory = (Cawgn — R) Z(0) — Z(0) In (1 + _)

Meijer's G-function, and the method of integral around a v

contour, the outage exponent is obtained for b&th< C —1In (e%l“ (1 —E(O),v_l))

and R > C cases. From the accurate estimation of the out-

age probability, the reliable function, outage capacityitéi  Since A (§) is convex and differentiables = Z(0) is the
SNR diversity-multiplexing tradeoff, SNR gain, and als@ thsolution of the following equation:

asymptotic performance metrics, including the delay-tedi 0

capacity, ergodic capacity, and diversity-multiplexingdeoff a_gA (€) = 0.

have been calculated. In order to achieve the proposedutg
exponent, the coding schemes which maximize the minimu
product distance have also been discussed. Thereforenit ca 9 — 1 s0(1]11

be concluded that the proposed outage exponent frameworkgg¢ (€) =R~ r(1-¢~"1 2*\~10,0,1 —¢)
provides a powerful tool for analyzing and evaluating the pe

formance of existing and upcoming communication systemdherefore = (0) is the solution of Eq.[{19). According to the
results in [18],02 is given by

computing the derivative, we have
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o = 8_§2A (5)’
The authors would like to thank Professor John S. Sadowsky £=5(0)
for insightful discussion on large deviations theory. G40 111,1,1
L(1-2(0),yv 1) **\~10,00,1—-Z=(0)
APPENDIXA 2
PROOF OFTHEOREM[Z 1 G0 1|11 ,
i : I(1-2(0),771) *°\~v{0,0,1-Z(0)
Define a sequence of random variab{es; : [ =1,...,L}

by letting Clearly, we have
X;=R—In(1+|m*y).

| (1-+) AL (0) = sup (-1 (6]} = LA" 0).

We further letY, = Zle X, then the outage probability N

defined in Eq.[2) is equivalent to According to the proof of Cramér’s theorem in Chapter 2.2.1

of [23], the following inequality holds for any. € N:

L
1 1 —LA*(0) __ ,_upper
pout:Pr{ZZXl>0}:PI'{EYL>O}. Pout < e @ = plpee.
=1 where 1 is a slowly varying function. As a matter of fact,
Because the elements ¢h; : i =1,...,L} are indepen- from Remark (c) on Cramér's theorem in Chapter 2.2.1 of
dent with the identical distribution @A/ (0, 1), the logarith- [23], a loose estimation of is 2. Let 7 = {Yp : £y, > 0}
mic moment generating function af; is given by andg = {Yr : ;Y. > 0} with G C 7, then from Cramér’s
. theorem, we have
_ YL _ ERE [ —&In(1+]h?y) 1
Ap(€) =InE{e*"} =In (6 E {6 }) —A"(0) < liminf — InPr {G}
— o0 1 eT—1 =
LFR—’_IH (/0 € ’Ye d:v)] §limsupflnPr{]:}§—A* (0),
L—oo
— PR B e
=1L {§R+ In (ei ;/ t~%e vdt)] which implies that
1

—L[R-m)¢+m (T (1-¢77Y)]. A % 0 Pows = ~A7(0).
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Therefore, A* (0) is a good rate function in the sense of larg€or convenience, we leF, (y) = FE@R) (), and useO,,

deviation, and there must be a slowly varying functijomith
< 1 satisfying

lower

Pex = @eiLA* © S DPout-

The above arguments can also be verified by the derivations

and results in two important literatures on probabilitygoali-

ties and large deviation results for sums of independeigiman

variables [[33], [[34].

to denote the operatio® under the titled distributiot,, (y).
Let Z be a random variable with the distribution &f, (y),
then for anya

— 1 I &y
)= a7y |
0
= Y mm — aR.
o€ " (5)’5_5(0413) )

In order to obtain a tight upper bound, the only need%erefore for any) < 6 < a < 1, we have
work is to estimatey accurately. Because the elements of ’ ’

{X;:1=1,...,L} are independent with identical distribu-

tion, the sequence of random variabl{eEL(E(O)) : L € N}
with the titled distribution defined in EJ_{IL6) obeys the trah

limit theorem. Thus, the results in [18] can be used to give an

accurate estimation af as

b= 1
V2rLoE (0)
for any L € N, with
. 1 Pout _ *
ngrgozln =—A"(0).

Therefore, we have

im L (;ew(m) _
L—00 Pout 2nLoZ(0)
According to the definition of limit, for any given > 0, there

is a numberL* € N such that
ppr

upper
. b

lim —=&— =1.
L—=o00  Pout

—-1l<e,
Pout

holds for anyl. > L*. Therefore, for anyl € N, the outage
probability po.t, is upper bounded byiPrer, and the accuracy

of pIPPer increases ag increases for any give.
To sum up, we have

1 *
Pout PP = ————— e ATO)
21 LoZ(0) (41)
1 _L[A*(0)+1n(az(o))+M]
= —2@ T 2L ]
\V 2T

in the sense of. and~, where the symbol <" is defined in

Eq. (3).

APPENDIXB
PROOF OFTHEOREM[3|

Define a random variabl& by letting

Y:iln(1+|hz|27),

=1
whose moment generating function is given by

M) = [ehrfr (14647

Clearly, we havey,.,; = Pr{Y < R}.

Let F'(y) denote the distribution ol”, define the titled
distribution forY as
eSYdF (y)

W= 30

F(R) = M (2 (aR)) /O " e =R R, (t)

> M (E(aR)) / " e BB gE, (1)

R
> M (2 (aR)) e PBMECR) 1p (R) — F, (0R)].

SincedR < E, {Z} < R, by applying Cramér’s theorern [23],
we have

Fo (OR) < e R0
(42)

F,(R) <1—e Malfd),
Therefore, we have
F(R)> M (Z(aR)) e =M [F, (R) — Fy (5R)]
— eln(M(E(ozR)))féRE(OcR) [Fa (R) —F, (5R)]
> (1 e~ Aa(R) _ ean(éR)) oA (aR)+E(aR)R(a—3)
Clearly, A* (R) is given by
_ 1
A" (R) =L [— (Cwgm — R) Z(R)+Z(R)In (1 + —)

~y
~n (AT (1+2(R),7 )]
andZE (R) is the solution of
1,1
=0
0,0,1+§>

T +L£,v*1)ngg G
Therefore, we have
A (aR) —E(aR) R (o — ) = LEY (R,7) .
In the following, A, (R) andA,, (§R) will be obtained from
= (R). Notice that

0

5M (E(R) = RM (2(R) = (R).

By computing the integration of both sides for the above

formula, we have

E(X)
/ t=' (t) dt.

R

(1]

E(X)
In M (2(R)) = RE(R) + / (t) dt.

R
According to the definition of Legendre-Fenchel transfonra,
have

(v}
A" (R) = — / " = () dt. (43)

R
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The moment generating function faf is given by APPENDIXC
- PROOF OFTHEOREMH]
e, (o) - MEHE@R) 4
“ - M((E(aR)) Define a functionF, (z) as
Then,Z, (s) satisfies
_ 0 M(§+E(aR))
¢ M (E(aR)) ==, () where the integration domain is defined by

0 L
Hxl<z,:c>77}.

= —InM(6)
=1

Fr(z) = 1—/ e~ Tt g,
D(z,0)

00

6=Z(2)4E(aR) D(z,n) = {fﬂ
Therefore, we have
Consider the tight upper bound in the high SNR regime, it
Ea(2) =E(2) —E(aR) is easy to verify that

According to Eq.[(4B), we have

L

Eo{Z} Pout = Pr Zln (1 + |hl|2 ’Y) < R}
A (GR) = — / =, (t) dt

5

{
R {

L 2 €R -1
_ aR _ ~ Pr H [h|” < T .
=R(a—90)Z(aR) — =(t) dt, e v
SR
and A, (R) = A% (5R)]5_ - and
Next, we will prove there exist&x and ¢ such thatl — L )
e~ Ma(B) _ ¢=Aa(0R) 5  for any R < C. According to the Pout =Pr< > In (1 + |l 7) <R
monotonicity of=, (R), we have =1
L
2
SN (6R) = R(S(5R) ~ 5 (aR)) <, < Pr {1n (1 " [Tl ) < R}
=1
and 92 = / - e~ Zszl ZL e
55z e (OR) = R’Z' (0R) > 0. p(=70)
R_1
Therefore, A’ (§R) achieves the maximum value at= 0. =1-Fp (e 3 ) .
According to the result in [23], we have v
. Therefore, we have
inf{z:2€eR,F,(z) >0} =0,
. e! —1
and F, (z) = e~%=(), On the other hand, Pout S 1—Fp ( T > ;
R
lim F, (R) = Hl lim EeRtgp (1) = 9. holds in the high SNR regime.
R—0+ M (E(aR)) r—0* Jo Before deriving the tight lower bound in the high SNR
Therefore, we havéim,_,o A% (§R) = co. Furthermore, regime, we first rewrite the outage probability as
aﬂA; (R) = —R*(1 —a)Z (aR) <0. L
. fe! . Pout = PT Zln (1+|hl|27) <R
Consider the result thad, (R)|,_, = 0, there exists > 0 =
and0 < o* < 1 such thatA%. (R) = e. Then,¢* can be Lo
chosen as follows: — Pr H (_ + Ihzl2> < e_L
AL (0°R)> —In(1—e™9) =1
* . = e%/ e ZlL:l””dac
Therefore, there is* and§* satisfying D(%’j,%
1 — e Rar(B) _o=Ra-(7R) 5 ), Next, the principle of mathematical induction will be used t

show thatpyy, > 1 — es Fy, (e"y~F). For L = 1, it is easy

Finally, we determine the relationship betweemnds. By 0 verify that

letting
a _eR—l 1 eR
_ _—Ao(R) _ _—Au(BR)\ ,—A*(aR)+E(aR)R(a—8) __ Pout =1—€e 7 =1l—e"F|[—|.
—(1—e e e =0,
1oJe" Y

Eq. (Z5) can then be obtained. As a matter of fact, the malssume the proposition holds fér= k, k > 1. Then, for the
method of this proof is based on [19]. situation of L = k + 1, the lower bound op,,; is calculated
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as follows: Assume the proposition holds fdt = &k, £ > 1. Then, for
L=k+1, Fry1(2) is calculated as
Pout = e# / _El 1 k41
( o % Fip1(2)=1- /D(Z ) e~ 2= Py
— % / / - E?:l wzdm/ dl’l 1 /00 o1 / e~ Zle zldm/ dIl
~ k+1m1 w 0 D(ﬁ,o)

1 00 ® eR J oo g k0 z _
>en 1—€7Fk W Z1 = 0 € Goak I_l 0,1,...,1 day

00 R 1 s
—1_ ek:l e_mle ( e ) dl‘l —_— T (—S) Fk (1 - S) z2°%ds
0 v

k+15171 27TZ L
R _ ~k+1,0 -
:1—e%Fk+1(%>, GOkH(z 0,1,...,1)'

It should be noted that the path runs from —co to +oo
where ' = [z3,...,z,41]. According to the principle of in such a way that the poles of the functiohg—s) and
mathematical induction, the inequality ' (1 — s) lie to the right of £. Therefore, the patif can be

chosen a® (£) = —3, thenR (1 — s) = 2 for any s along

Pout 21— e (f) this Ogath. Under this conditiorn (1 — s) can be expanded
~ ~L asf0 x~%e~*dx. According to the principle of mathematical
induction, the equation
holds for anyL € N.
Next, we will show thatF;, () is the Meijer'sG-function as Fr(2) =G} ( 01 - ) )
shown in the theorem. The proof is also based on the principle ’ R
of mathematical induction. Fak = 1, holds for anyL € N. As a matter of fact, this proof can also be

carried out by applying the Mellin’s transform to the protluc
of independent random variablés [35].
- > In the low SNR regime, leR = rCawgn, the approximation
’ is given by
Zln (1 + |l }
=1

- 1
=— P I'(—s)2z°ds L
O) 2mi Jr %Pr{ln <1+’}/Z|hl ><Tln 1+'y}
=1

Fi(z)=1 —/ e fdr=e*%= G(l):? <z
0

where the last equation follows that
Pout = Pr

Golt (z

_ i (=2)" _ - y )
h nl 2 _(1+9) -1
n=0 =Pr || < ————
For L =2, we h {l; ! }
or L = 2, we have T(L,r)
F()—l—// Ty da (L-1)F
B D(2,0) 12 where the property that the sum of exponential distributed
oo = random varibles is an Erlang distributed random varible has
=1 _/ - </ ' ””2de> dzq been used.
L APPENDIXD
=1- / e ™ (1 —e o1 ) dxy PROOF OFTHEOREM[G
0
oo N Define a functionf () as follows:
= / _wl_ﬁdxl (1 + ’7),,‘
N —
o ro-n(i-stt (5, )
=2VzK1 (2vz2) =Gy | 2 , T
VEKL(2v7) = Go ( 0,1 ) According to Theorerfil4 and Propositibh 1, we have
where K, (z) is the modified Bessel function of the second Pout ~ e/ ).

kind, and the last equation follows Eq. (3) in Chapter 9.34 @for anyz € (0, 1), it is easy to verify that
[20]

0 -1
—In(l—z) = 0;
5 _ ; ox n z) 1—:17< ’
20 (2] o (* 82 —1
Goz | 7 |p=—v ptv 2(2) Ky (2). 9 m(l—2) = - <0,

2 72 Ox? _(l—x)
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According to Lemmall, the outage probability can be bound&incee — 1 anlerT7 — 1 asvy — oo, according to the rule

by

Pout = eF (V) > Yo F ()

0 L,0 -
500 | # 0,1,...,1)
0o 1
=——_—QT rt-ta sd
9220 T (1—s)z"ds
1
=—— QI (—s) T (1 —5)s2° ds
271 L
1
=—— QO (-1 =T (=1 =)L (=) 2tdt
97 ﬁ( )T ( ) (—t)z
1
=— — Tl (=t)tdt
. L,0 -
- GM(’Z 0,0,...,0)'

Therefore, Eq.[{30) holds.

APPENDIXE
PROOF OFTHEOREM[G

From the proof of Theoreim 4, we have
A3l (<1+w

vE 0,1,...,1>
0.

lim =

y—00 A r —
L= e7 Gy (mz) 0,1,...,1 )

5

of L'Hospital, we have

L,0 -
2Col (z 0,0,...,0 )
=d* (r) lim A
z—0 L,0 —
I=Gor (2 0,1,...,1)
L,0 —
#3:G0n (2] 0,0,...0 )
=d* (r) lim |1+ S
z—0 L,0 —
G0L<Z 0,0,...,0 )
L,0 -
G0=L<Z 0,0,...,1 >
=d" (r) +d* (r) lim L ,
z—0 L,0 —
Gol (Z 0,0,...,0 >

where the last equality follows that

0 Lo -
75 G0l (Z o,o,...,o)

zzi_ It (—s)sz°ds
2mi J,
1
=—_¢ =1 (—s)T (1 — 5) 2°ds
c

21
 ~LO -
_G0=L<Z 0,0,...,1 >

By repeating this process, we have

L,0 -
. G0=L<Z 0,0,...,1>
hn%
Z—> L,O —
GolL (Z 0,0,...,0>
L,0 -
, GOaL<Z 1,1,...,1>
:hn}J .
Zz—r L,0 —
GOaL(z 0,1,...,1)

In the following, the principle of mathematical induction
will be used to show the above limit is zero. Fbr= 1, we
have

(72)71

. oo
_lime 02300,

lim,_,ge~%

0
=-=0
1

In the above derivation, we used the property that the poles
of I'(1 — s) ares = n € N, and the corresponding residuals

are (_1, - Suppose the proposition holds fér = &, when

n:
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