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Abstract—The parallel fading channel, which consists of finite
number of subchannels, is very important, because it can be
used to formulate many practical communication systems. The
outage probability, on the other hand, is widely used to analyze
the relationship among the communication efficiency, reliability,
SNR, and channel fading. To the best of our knowledge, the
previous works only studied the asymptotic outage performance
of the parallel fading channel which are only valid for a large
number of subchannels or high SNRs. In this paper, a unified
performance metric, which we shall refer to as the outage
exponent, will be proposed. Our approach is mainly based on
the large deviations theory and the Meijer’s G-function. It
is shown that the proposed outage exponent is not only an
accurate estimation of the outage probability for any number
of subchannels, any SNR, and any target transmission rate,
but also provides an easy way to compute the outage capacity,
finite-SNR diversity-multiplexing tradeoff, and SNR gain. The
asymptotic performance metrics, such as the delay-limitedca-
pacity, ergodic capacity, and diversity-multiplexing tradeoff can
be directly obtained by letting the number of subchannels or
SNR tends to infinity. Similar to Gallager’s error exponent, a
reliable function for parallel fading channels, which illustrates
a fundamental relationship between the transmission reliability
and efficiency, can also be defined from the outage exponent.
Therefore, the proposed outage exponent provides a complete
and comprehensive performance measure for parallel fading
channels.

Index Terms—Parallel fading channel, outage exponent, chan-
nel capacity, diversity-multiplexing tradeoff, large deviations
theory, Meijer’s G-function.

I. I NTRODUCTION

T HE parallel fading channel has a finite number of flat
fading subchannels, where the channel gain of each

subchannel only depends on its own fading statistics. In [1],
this model is also referred to as the block-fading channel.
The parallel fading channel is very important because many
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practical communication systems can be formulated into this
model. The conventional narrow-band system, such as GSM,
can be modeled as a parallel fading channel in the time domain
[2]. The wide-band OFDM system, such as WiMAX and 3GPP
LTE, is a parallel fading channel in the frequency domain
[3]. By applying a singular value decomposition, the MIMO
channel can also be formulated into a parallel fading channel
in the space domain [4].

For the parallel fading channel, the ergodic capacity cannot
be achieved because it only has a finite number of sub-
channels which yields a non-ergodic fading case [5]. There-
fore, the outage probability, defined as the probability that
the instantaneous channel capacity is smaller than a target
transmission rate, becomes a fundamental performance metric
for the non-ergodic parallel fading channel [2]. From the
outage probability perspective, many important performance
parameters, such as outage capacity, delay-limited capacity (or
zero-outage capacity), ergodic capacity, diversity-multiplexing
tradeoff, and finite-SNR diversity-multiplexing tradeoff, can
be obtained directly. However, it is very difficult to accurately
calculate the outage probability for the parallel fading channel
except for two trivial cases, i.e., only one subchannel, and
infinity number of subchannels. In [2], Ozarow, Shamai, and
Wyner gave an integration formula for the outage probability
of the parallel fading channel with two subchannels. This result
is the first and can be considered as a milestone step. From
then on, many works have been published on this topic. The
results can be roughly divided into two categories: 1) the
outage probability versus the number of subchannels; and 2)
the outage performance versus the signal-to-noise ratio (SNR).

When considering the outage probability for any number
of subchannels, Kaplan and Shamai provided an upper bound
from the Chernoff bounding method in [1]. As the authors
noticed, however, the upper bound is not tight. Another prob-
lem of this result lies in the fact that the target transmission
rate should deviate from the ergodic capacity largely. Inspired
by the idea in [6], some works also tried to estimate the
error probability for the parallel fading channel from the
theory of error exponent. The original result for the ergodic
parallel channel can be found in [7]. Divsalar and Biglieri
then proposed upper bounds on the error probability of coded
systems over AWGN and fading channels in [8]. A similar
work can also be found in [9]. Based on the second type of
the Duman-Salehi (DS-2) bound in [10], Sason and Shamai
proposed improved bounds on the decoding error probability
of block codes over fully-interleaved fading channels [11].
They also evaluated the proposed bounds on turbo-like and
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LDPC codes in [11]. By applying a similar approach, Wu,
Xiang, and Ling proposed a new upper bound for block-
fading channels in [12], which is tight for the channel with a
large number of subchannels, i.e., the near-ergodic case. An
excellent survey of this approach can be found in [13]. Because
the theory of error exponent considers both the coding scheme
and channel fading at the same time, the proposed bounds are
often very complicated and not tight enough. Hence, it is not
trivial to provide insights for the parallel fading channelclearly
and directly from these results.

Another approach is to study the outage performance versus
SNR, in which the ideal coding scheme is assumed to be used.
An important result is to evaluate the diversity-multiplexing
tradeoff for fading channels, where each point of the tradeoff
curve is just the slope of the outage probability for a given
multiplexing gain (or normalized target rate) as SNR tends to
infinity. This concept was first proposed for MIMO channels
[14], and the corresponding results for the parallel fadingchan-
nel can be found in [4]. Since the diversity-multiplexing trade-
off is valid in the high SNR regime, the corresponding finite-
SNR version for MIMO channels is independently proposed
in [15] and [16], respectively. They have a similar definition
and can converge to the diversity-multiplexing tradeoff when
SNR tends to infinity. The finite-SNR diversity-multiplexing
tradeoff can be used to estimate the additional SNR required
to decrease the outage probability by a specified amount for a
given multiplexing gain. This approach does not estimate the
coefficient of the exponential function, which means it cannot
be used to estimate the SNR gain for different coding schemes
when SNR is not high enough.

In this paper, a unified performance metric for parallel
fading channels, which we shall refer to as the outage ex-
ponent, will be proposed in order to analyze the relationship
among the outage performance, the number of subchannels,
and SNR at the same time. The proposed outage exponent
has many advantages. It only focuses on the fading effect
of the channel, and hence it is much tighter and simpler
than the error exponent approach. The outage exponent also
provides an accurate estimation of the outage probability
for any number of subchannels, any SNR, and any target
transmission rate. Similar to the error exponent, a reliable
function for the parallel fading channel can then be defined to
illustrate the fundamental relationship between the communi-
cation efficiency and reliability. From this reliable function,
we will show that: 1) the outage probability will tend to
zero as the number of subchannels tends to infinity, if and
only if the average target rate is smaller than the ergodic
capacity; and 2) the outage probability will tend to zero as the
SNR tends to infinity for any average target rate lower than
the capacity of additive white Gaussian noise (AWGN) chan-
nels. Furthermore, the outage capacity, finite-SNR diversity-
multiplexing tradeoff, and SNR gain can also be obtained
from the outage exponent. Then, the asymptotic performance
metrics, such as the delay-limited capacity, ergodic capacity,
and diversity-multiplexing tradeoff are just the limits ofthe
previous results, and can be directly obtained by letting the
number of subchannels or SNR tend to infinity. Therefore, the
proposed outage exponent provides a complete performance

framework for parallel fading channels. It also provides a
powerful tool for analyzing and evaluating the performance
of existing and upcoming communication systems.

In order to analyze the outage exponent for the parallel
fading channel, we must consider two different cases. First
of all, the outage exponent is analyzed for the case where
the target rate is smaller than the ergodic capacity. Inspired
by the successful application of large deviations theory on
analyzing the bit-error probability for avalanche photodiode
receivers [17], the latest results of large deviations theory in
[18] and [19] are used to calculate tight upper and lower
bounds on the outage probability, respectively. For the case
where the target rate is close to and greater than the ergodic
capacity, the Meijer’sG-function and the method of integral
around a contour in [20] are used to compute the upper and
lower bounds. In order to achieve the above calculated outage
exponent, the coding schemes which maximize the minimum
product distance are also discussed. The proposed method
combines the advantages of the rotatedZ

L-lattices code and
permutation code [21], [22].

The rest of the paper is organized as follows. Section II
presents the system model and the precise problem formula-
tion. In Section III, the general definition and related properties
of the outage exponent are presented. Section IV studies the
outage exponent when the target rate is smaller than the
ergodic capacity. The results of delay-limited capacity, ergodic
capacity, and diversity-multiplexing tradeoff are also presented
in this section. In Section V, the outage exponent and the
reliable function are studied when the target rate is higherthan
the ergodic capacity. Section VI will illustrate the differences
between the proposed outage exponent and the error exponent.
Section VII studies some coding issues in the parallel fading
channel. In Section VIII, numerical results are provided to
verify the theoretical derivations. Finally, Section IX concludes
the paper.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. Parallel Fading Channel Model

Consider a parallel fading channel withL subchannels,
each of which undergoes independent flat Rayleigh fading.
In narrowband systems, each subchannel may correspond to
the duration of coherence time. In broadband systems, each
subchannel corresponds to one coherence bandwidth in the
slow fading scenario, or one coherence bandwidth in the
duration of coherence time in the block-fading scenario. For
convenience, we assume that each subchannel has a unit
time duration and a unit bandwidth throughout this paper. In
addition, we assume that the perfect channel state information
(CSI) is only known at the receiver side.

Let hl, l = 1, . . . , L denote the channel gain of thelth
subchannel. Then,hl is a random variable with the circularly
symmetric Gaussian distributionCN (0, 1), andhl is indepen-
dent with hl′ if l 6= l′. The row vectorxl, l = 1, 2, . . . , L
denotes the transmission symbols over thelth subchannel,
while the row vectoryl denotes the corresponding received
symbols. The parallel fading channel can then be modeled by

Y = HX +W , (1)
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where

Y =











y1

y2

...
yL











, X =











x1

x2

...
xL











,

H = diag (h1, h2, . . . , hL) .

W is the white Gaussian noise matrix, where the elements
of W are independent with the identical distribution of
CN (0, 1). Hence, the mutual information between the trans-
mitter and the receiver, denoted byI (H), is then given by

I (H) =

L
∑

l=1

ln
(

1 + |hl|2 γ
)

,

where γ is the received SNR. Throughout this paper, the
natural logarithmic functionln (x) is used, and the unit of
information is “nat”.

B. Outage Formulation

The outage probability is an important concept in fading
channels, which provides a way to characterize the per-
formance of communication systems in non-ergodic fading
scenarios. Clearly, the parallel fading channel is non-ergodic
whenL is finite. According to [5], the outage probability of
the parallel fading channel is defined by

pout (L, γ,R) = Pr {I (H) < R}

= Pr

{

L
∑

l=1

ln
(

1 + |hl|2 γ
)

< R

}

= Pr

{

1

L

L
∑

l=1

ln
(

1 + |hl|2 γ
)

< R

}

,

(2)

whereR is the target transmission rate or coding rate, andR =
R
L is the average rate on each subchannel. For convenience,
pout will be used in the following instead ofpout (L, γ,R).

This definition characterizes the relationship among the
outage probabilitypout, the transmission rateR, the number of
subchannelsL, and the SNRγ. The outage probability and the
transmission rate represent two key performance metrics for
communication systems, i.e., the reliability and the efficiency,
respectively. The number of subchannels determines the time
interval and the bandwidth used by the transmission signal,
i.e., the degree of freedom. At the same time, it also determines
how many independent channel gains the transmission signal
may undergo, i.e., the diversity order. The SNR represents
the effective energy contained in the signal. Therefore, the
outage formulation contains the fundamental elements which
govern the transmission reliability and efficiency of non-
ergodic fading channels.

Unfortunately, it is very difficult to derive the exact formula
for the outage probability as defined in Eq. (2). By now, only
some approximations have been proposed in previous works.

In [1], from the Chernoff’s bound, an upper bound of the
outage probability is given by

pout < min
λ≥0

{

eλR
[

γ−
λ
2L e

1
2γW− λ

2L ,L−λ
2L

(

γ−1
)

]L
}

, (3)

whereWν,µ (z) is the Whittaker’s function [20]. As the authors
noticed in [1], however, the bound in Eq. (3) is not tight. In
[4], a lower bound is given by

pout >
(

Pr
{

ln
(

1 + |hl|2 γ
)

< R
})L

=

(

1− e−
eR−1

γ

)L

.

(4)

However, Eq. (4) is only an approximation of the outage
probability when SNR tends to infinity, which is not tight in
realistic SNRs.

III. O UTAGE EXPONENT

As stated before, it is very difficult to compute the exact
outage probability for the parallel fading channel directly.
Likewise, it is also very tough to accurately analyze the
decoding error probability for a given coding scheme. To
overcome the difficulties, Gallager proposed a systematical
approach to estimate the upper and lower bounds for the
decoding error probability, which is often referred to as the
error exponent[7]. Similarly, this paper tries to propose an
outage exponentapproach to calculate the exponentially tight
upper and lower bounds for the outage probability in non-
ergodic fading channels.

A. General Results

The general result on the outage exponent is given below in
Theorem 1. For convenience, we let the symbol “.” denote
the following relationship:

f (x) . g (x) ⇔
{

f (x) ≤ g (x) ;

limx→∞
f(x)
g(x) = 1.

(5)

Similarly, we also define the symbol “&”.
Theorem 1:For a parallel fading channel withL subchan-

nels, the outage exponents are the exponentially tight upper
and lower bounds of the outage probability







pout . pupperex = ψe
−L

[

E1(R,γ)+
E0(γ)

L
+o(L)

]

,

pout & plower
ex = ϕe

−L
[

E1(R,γ)+
E0(γ)

L
+o(L)

]

;

(6)

whereϕ andψ are constants or slowly varying functions with
ϕ ≤ ψ. pupperex and plower

ex are referred to as the upper and
lower outage exponents, respectively. The functionE1 (R, γ)
is given by

E1 (R, γ) =
(

Cawgn −R
)

E1,1 (γ) + E1,0 (γ) , (7)

whereE1 (R, γ) > 0 if and only if R < C with C being the
ergodic capacity of each subchannel, andE1,1 (γ) andE1,0 (γ)
satisfy















lim
γ→∞

CawgnE1,1 (γ)

ln γ
= 1;

lim
γ→∞

E1,0 (γ)

ln γ
= 0.

(8)
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The functionE0 (γ) satisfies

lim
γ→∞

E0 (γ)

ln γ
= 0. (9)

Finally, the functiono (L) tends to zero whenL→ ∞.
Theorem 1 captures the intrinsic principles of the outage

probability from two dimensions, namely, the number of
subchannelsL, and the SNRγ.

B. Relationship with Other Performance Metrics

The proposed outage exponent integrates many important
performance metrics. As such, it gives a complete picture of
the comprehensive performance for parallel fading channels.
Based on Theorem 1, the relationship between the outage
exponent and other performance metrics are discussed in this
subsection.

1) Outage Capacity:For a given outage probabilityε, the
outage capacity is defined as the supremum of the transmission
rate that satisfiespout < ε in [5]. Therefore, theε-outage
capacity, denoted byCε, is given by

Cε = sup
{

R : pout < ε
}

, (10)

wheresupA is the supremum of the setA. To obtain the out-
age capacity, an accurate estimation of the outage probability
is needed. Note that this is given by the outage exponent in
Theorem 1.

2) Delay-Limited Capacity (or Zero-Outage Capacity):
In [5], the delay-limited capacity, denoted byCdl, which
is also known as the zero-outage capacity, is the maximum
transmission rate as the outage probability tends to zero when
L→ ∞. Therefore,Cdl is defined as

Cdl = sup
{

R : lim
L→∞

pout = 0
}

,

Clearly, Cdl = limε→0 limL→∞ Cε. By applying the error
exponent in Theorem I, we have

lim
L→∞

1

L
ln pout = E1 (R, γ) .

Hence, the delay-limited capacity can be obtained as

Cdl = sup
{

R : E1 (R, γ) > 0
}

, (11)

3) Ergodic Capacity:In [5], the ergodic capacity for fading
channels, denoted byC, is defined as the statistical average of
the channel capacity. According to the central limit theorem,
we have

C = lim
L→∞

I (H)

L
= E

{

ln
(

1 + |hl|2 γ
)}

.

From Theorem 1, ifR < C, thenpout → 0 asL→ ∞, which
implies thatCdl ≥ C. On the other hand, ifE1 (R, γ) > 0,
we haveR < C, which implies thatCdl ≤ C. As a result,
the delay limited capacity is equal to the ergodic capacity in
parallel fading channels, that is

Cdl = C = E

{

ln
(

1 + |hl|2 γ
)}

. (12)
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Fig. 1. Reliable function for the parallel fading channel with γ =
0, 10, 30 dB, andL = 4.

4) Reliable Function: In [7], Gallager proposed an error
exponent to reveal the fundamental principle that the decoding
error probability exponentially varies with the coding length.
The outage exponent, however, studies the exponentially de-
creasing of the outage probability as the number of fading
subchannels increases. Therefore, the outage exponent reveals
the fundamental principle that the outage probability varies
with the ergodicity of the channel, i.e., from slow fading, block
fading, to fast fading. Similar to the error exponent, thereliable
function for the outage exponent can be defined as follows

E (R, γ) = E1 (R, γ) +
E0 (γ)

L
+ o (L) . (13)

If we let

r =
R

Cawgn
,

where r is referred to as the multiplexing gain, the reliable
function can also be denoted byE (r, γ). From the properties
of E (R, γ) in Theorem 1, we have the following results.

• For any fixed SNR, ifR is smaller thanC, the outage
probability will tend to zero asL→ ∞.

• For any fixedL, if R is smaller thanCawgn, the outage
probability will tend to zero asγ → ∞.

An example of the reliable function versus multiplexing gain
is plotted in Fig. 1 for different SNRs. It can be seen that
for any givenr, the reliable function gets larger as the SNR
increases. But all of the curves tend to zero asr → 1, which
is the same as the error exponent figures in [7].

5) Finite-SNR Diversity-Multiplexing Tradeoff:In realistic
SNRs, the finite-SNR diversity-multiplexing tradeoff, pro-
posed by [15], [16] for MIMO channels, is used to estimate
the additional SNR required to decrease the outage probability
by a specified amount for a given multiplexing gain. In [15],
the finite-SNR diversity-multiplexing tradeoff is defined as

d∗f (r) = −∂ ln pout
∂ ln γ

,
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which is derived by estimating the upper bound of the out-
age probability. From Theorem 1, the finite-SNR diversity-
multiplexing tradeoff for parallel fading channels can be
obtained by

d∗f (r) = Lγ
∂E (r, γ)

∂γ
, (14)

whered∗f (r) represents the reliable function in Eq. (13) from
another perspective.

6) Diversity-Multiplexing Tradeoff:In [14], the diversity-
multiplexing tradeoff is defined as the slope of the outage
probability when SNR tends to infinity. This concept reveals
the fundamental relationship between reliability and efficiency
in the asymptotic case. From [4], the optimal diversity-
multiplexing tradeoff for parallel fading channels is given by

d∗ (r) = − lim
γ→∞

ln pout
ln γ

= L
(

1− r

L

)

. (15)

This result was obtained by applying the lower bound in Eq.
(4). From Theorem 1,d∗ (r) can be derived as follows

d∗ (r) = lim
γ→∞

− ln pout
ln γ

= lim
γ→∞

−LE (R, γ)

ln γ

= lim
γ→∞

L
[

E1 (R, γ) +
E0(γ)

L + o (L)
]

ln γ

= lim
γ→∞

L
[(

1− r
L

)

E1,1 (γ) ln (1 + γ) + E1,0 (γ)
]

ln γ

= L
(

1− r

L

)

.

By applying the properties of the outage exponent, it is not
difficult to verify that

d∗ (r) = lim
γ→∞

d∗f (r) = lim
γ→∞

Lγ
∂E (r, γ)

∂γ
.

7) SNR Gain (or Coding Gain):The SNR gain is the
difference between the SNR values needed by two different
coding schemes to achieve a given outage probability. This
metric is very useful to evaluate coding schemes with the same
diversity gain. In the high SNR regime, the coding gain is
determined by the coefficient of the outage exponent.

IV. OUTAGE EXPONENT FORR < C

The outage exponent for the parallel fading channel will be
studied thoroughly in Sections IV and V. According to our
study, the channel outage behavior is different forR < C

andR ≥ C. Thus, the outage exponent will be analyzed in
two different cases. For theR < C case, our derivation is
mainly based on the latest results in large deviations theory
and Meijer’sG-function [20], [23].

Before presenting the main results, we introduce some basic
terminologies and notations for this section. Let{Yn : n ∈ N}
be a sequence of real-valued random variables with distribu-
tion Fn (y). The logarithmic moment generating function of
Yn is given by

Λn (ξ) = lnMn (ξ) = lnE
{

eξYn
}

.

The Legendre-Fenchel transform is then defined as

Λ∗
n (s) = sup

ξ∈R

{ξs− Λn (ξ)} .

Define the Legendre duality as

Ξ (s) = arg sup
ξ∈R

{ξs− Λn (ξ)} .

The limit of the logarithmic moment generating function is
given by

Λ (ξ) = lim
n→∞

1

n
Λn (ξ) .

Finally, define the titled distribution ofYn as

dF (ξ)
n (y) =

eξydFn (y)

Mn (ξ)
, (16)

and let Y (ξ)
n be a random variable havingF (ξ)

n (y) as its
distribution.

A. Upper Outage Exponent

The upper outage exponent for the parallel fading channel,
defined as the exponentially tight upper bound of the outage
probability, is given in the following theorem.

Theorem 2:For anyR with R < C, the upper outage expo-
nentpupperex for a parallel fading channel withL subchannels
is given by

pout . pupperex =
1√
2π
e−L[E1(R,γ)+ ln(σΞ(0))

L
+ lnL

2L ], (17)

where

E1 (R, γ) =
(

Cawgn −R
)

Ξ (0)− Ξ (0) ln

(

1 +
1

γ

)

− ln
(

e
1
γ Γ
(

1− Ξ (0) , γ−1
)

)

.

(18)

The parameterΞ (0) is the unique positive solution of the
following equation

R− 1

Γ (1− ξ, γ−1)
G

3,0
2,3

(

1

γ

∣

∣

∣

∣

∣

1, 1

0, 0, 1− ξ

)

= 0, (19)

while σ2 is given by

σ2 =
2

Γ (1− Ξ (0) , γ−1)
G

4,0
3,4

(

1

γ

∣

∣

∣

∣

∣

1, 1, 1

0, 0, 0, 1− Ξ (0)

)

−
[

1

Γ (1− Ξ (0) , γ−1)
G

3,0
2,3

(

1

γ

∣

∣

∣

∣

∣

1, 1

0, 0, 1− Ξ (0)

)]2

.

(20)
In these equations,Γ (z, α) is the incomplete Gamma function,
which is defined by

Γ (z, α) =

ˆ ∞

α

e−ttz−1dt,

and

Gm,n
p,q

(

z

∣

∣

∣

∣

∣

a1, . . . , ap

b1, . . . , bq

)

=

1

2πi

˛

L

∏m
j=1 Γ (bj − s)

∏n
j=1 Γ (1− aj + s)

∏q
j=m+1 Γ (1− bj + s)

∏p
j=n+1 Γ (aj − s)

zsds,
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is the Meijer’sG-function.
Proof: See Appendix A.

Remark 1:The upper outage exponent proposed in Theo-
rem 2 is also known as the second order saddle-point approx-
imation for any givenL andγ. The validity and accuracy of
this approximation for finiteL andγ is justified in [24].

By solving the equationε = pout . pupperex , the following
corollary can be obtained immediately.

Corollary 1: For a parallel fading channel withL subchan-
nels, theε-outage capacity is given by

Cε & ln
γ

[

(

ε
√
2πLσΞ (0)

)
1
L

e
1
γ Γ (1− Ξ (0) , γ−1)

]
1

Ξ(0)

.

(21)
According to Theorem 2, other two corollaries which illus-

trate the asymptotic performance of the parallel fading channel
from two different dimensions can also be obtained directly.

Corollary 2: For a parallel fading channel withL subchan-
nels, the delay-limited capacity is equal to the ergodic capacity
whenL→ ∞, i.e.,

Cdl = C = E

{

ln
(

1 + |hl|2 γ
)}

. (22)

Proof: From Theorem 2, ifR < C, then pout → 0 as
L→ ∞. Therefore, we haveCdl ≥ C.

On the other hand, we haveE1 (R, γ) = Λ∗ (0). According
to the definition of Legendre-Fenchel transform,Λ∗ (s) is non-
deceasing fors > E {YL} = R−C. Therefore, ifE1 (R, γ) >
0, we haveR < C, i.e.,Cdl ≤ C. As a result, Eq. (22) holds.

Corollary 3: The diversity-multiplexing tradeoff for a par-
allel fading channel withL subchannels is given by

d∗ (r) = L
(

1− r

L

)

. (23)

Proof: According to the definition of diversity-
multiplexing tradeoff and Theorem 2, we have

d∗ (r) = lim
γ→∞

LE (R, γ)

ln γ
.

From Eq. (13), it is not difficult to verify the following
equations:

lim
γ→∞

CawgnΞ (0)

ln γ
= lim

γ→∞

ln (1 + γ)Ξ (0)

ln γ
= 1,

lim
γ→∞

Ξ (0) ln
(

1 + 1
γ

)

ln γ
= 0,

lim
γ→∞

ln
(

e
1
γ Γ
(

1− Ξ (0) , γ−1
)

)

ln γ
= 0,

lim
γ→∞

ln(σΞ(0))
L + lnL

2L

ln γ
= 0.

Therefore, Eq. (15) holds.

B. Lower Outage Exponent

As stated before, the outage exponent also depends on the
exponentially tight lower bound. According to the proof in
Appendix A, we have

ϕ .
pout

e−L[E1(R,γ)+ ln(σΞ(0))
L

+ lnL
2L ]

.
1√
2π
.

Thus, we only need to give a good estimation onϕ for the
lower outage exponent. The results are summarized in the
following theorem.

Theorem 3:For anyR with R < C, the lower outage ex-
ponentplower

ex for a parallel fading channel withL subchannels
is given by

pout & plower
ex

= sup
0<α<1

{(

1− e−Λ∗

α(δR) − e−Λ∗

α(R)
)

e−LEα
1 (R,γ)

}

,
(24)

where

δ =
α− e−Λ∗

α(R)

1− e−Λ∗

α(R)
, (25)

and






































Eα
1 (R, γ) =

(

Cawgn − δR
)

Ξ (αR)− Ξ (αR) ln

(

1 +
1

γ

)

+ ln
(

e
1
γ Γ
(

1 + Ξ (αR) , γ−1
)

)

;

Λ∗
α (δR) =R (α− δ) Ξ (αR)−

ˆ αR

δR

Ξ (t) dt;

Λ∗
α (R) = Λ∗

α (δR)|δ=1 .

The parameterΞ (t) is the negative solution of the following
equation

t− L

Γ (1 + ξ, γ−1)
G

3,0
2,3

(

1

γ

∣

∣

∣

∣

∣

1, 1

0, 0, 1 + ξ

)

= 0.

Proof: See Appendix B.
From the proof of Theorem 3, it can be seen thatΞ (R) here

is equal to−Ξ (0) in Theorem 2, which implies thatEα
1 (R, γ)

is the same asE1 (R, γ). Therefore, the lower bound and
the upper bound of the outage probability have the same
exponent. The only difference lies in the coefficient of the
main exponential function. A key step in the proof, i.e., Eq.
(42), can also be replaced by applying the same technique in
the proof of Theorem 2, which will result in a tighter bound.

V. OUTAGE EXPONENT FORR ≥ C

It is well known that if the coding rate is larger than the
ergodic capacity, the decoding error probability of commu-
nication over ergodic channels is still greater than a constant
when the coding length tends to infinity. For the parallel fading
channel, the behavior of the outage probability when the target
transmission rate is higher than the ergodic capacity is still
unknown.
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A. Upper and Lower Outage Exponents

If the large deviation theory is applied forR > C, the
bounds will be obtained in the form of non outage probability,
i.e., the dualities of Eqns. (17) and (24). These results will
show that the outage probability tends to one whenL → ∞
in theR > C case. Furthermore, the large deviation bounds
will be loose whenR is close toC. Especially, the large
deviation bound will be one, ifR = C. Therefore, we need
to find another method to study the behavior of the outage
probability when SNR changes. The results are summarized
in the following theorem.

Theorem 4:For anyR with R ≥ C, the outage probability
of a parallel fading channel withL subchannels can be
bounded by















pout . pupperex = 1− FL

(

eR − 1

γL

)

,

pout & plower
ex = 1− e

L
γ FL

(

eR

γL

)

,

(26)

for the high SNR regime. In these equations,FL (z) is given
by

FL (z) = G
L,0
0,L

(

z

∣

∣

∣

∣

−
0, 1, . . . , 1

)

.

In the low SNR regime, the outage probability can be approx-
imated by

pout ≈ 1− Γ (L, r)

(L− 1)!
, (27)

wherer = R
Cawgn

is the multiplexing gain.
Proof: See Appendix C.

It can be seen that the low SNR approximation is irrelevant
to γ. In the high SNR regime, the difference between the
lower bound and the upper bound is only the coefficient of
the Meijer’sG-function. The coefficient in the lower bound
is e

L
γ , while the coefficient in the upper bound ise

0
γ = 1.

Sincee
L
γ → 1 as γ → ∞, the lower and upper bounds will

converge to the true value in the high SNR regime. However,
in the low SNR regime,e

0
γ is too small, whilee

L
γ is too large.

Therefore, if we can modify the coefficient to a proper value,
a more accurate approximation can then be obtained for the
low SNR regime.

Proposition 1: For anyR with R ≥ C, the outage proba-
bility of a parallel fading channel withL subchannels can be
approximated by

pout ≈ 1− e
λ
γG

L,0
0,L

(

eR

γL

∣

∣

∣

∣

−
0, 1, . . . , 1

)

, (28)

in the high SNR regime, where0 < λ < L.
For the parallel fading channel withL subchannels, it is

very difficult to estimateλ in theory. However, if we set the
simulation value of the outage probability in the low SNR
regime equal to0 dB in (28), an estimation ofλ can be
obtained.

B. Reliable Function

The reliable function for theR ≥ C case will be analyzed in
this subsection. Since the outage probability tends to one when
L→ ∞ in this case, we will mainly focus on the behavior of
the reliable function versus SNR. Before we study the reliable
function, a basic lemma will be given first.

Lemma 1:Let f (x) be a strict concave function in[0,∞).
If f (x) is differentiable in(0,∞), then for anyx ∈ (0,∞),
we have

f ′ (x) <
f (x)− f (0)

x
. (29)

Proof: Fix any x ∈ (0,∞). According to the Lagrange
mean value theorem, there must be someξ ∈ (0, x) satisfying

f ′ (ξ) =
f (x)− f (0)

x
.

Since f (x) is a strict concave function, thenf ′′ (x) < 0.
Therefore, we havef ′ (x) < f ′ (ξ), so that Eq. (29) holds.

With this lemma, the outage exponent can be constructed
from the approximation of the outage probability in Eq. (28).

Theorem 5:For any R with R ≥ C, the lower outage
exponent for a parallel fading channel withL subchannels
is given by

pout & plower
ex = e

−L
[

(1− r
L)E1,1(γ)+E1,0(γ)+

E0(γ)
L

]

, (30)

where the functionsE1,1 (γ), E1,0 (γ), andE0 (γ) are given
by

E1,1 (γ) =

(1+γ)r−1

γL−1 e
λ
γG

L,0
0,L

(

(1+γ)r

γL

∣

∣

∣

∣

−
0, 0, . . . , 0

)

1− e
λ
γG

L,0
0,L

(

(1+γ)r

γL

∣

∣

∣

∣

−
0, 1, . . . , 1

) , (31)

E1,0 (γ) =
1

γ
E1,1 (γ) , (32)

and

E0 (γ) =

−λ
γ e

λ
γG

L,0
0,L

(

(1+γ)r

γL

∣

∣

∣

∣

−
0, 1, . . . , 1

)

L

[

1− e
λ
γG

L,0
0,L

(

(1+γ)r

γL

∣

∣

∣

∣

−
0, 1, . . . , 1

)] . (33)

Proof: See Appendix D.
In Theorem 5, the formula of the outage exponent can only

be expressed as a function of the multiplexing gain, because
R ≥ C in this case. Consider the definition of the multiplexing
gain and the conditionR ≥ C, the value ofr must satisfy

r

L
≥ C

Cawgn
=
e

1
γ Γ
(

0, γ−1
)

ln (1 + γ)
= r0 (γ) .

It can be shown thatr0 (γ) is a quasi-convex function, and

lim
γ→0

r0 (γ) = lim
γ→∞

r0 (γ) = 1.

Fig. 2 shows the curve ofr0 (γ). It can be seen that the mini-
mum value ofr∗0 (γ) ≈ 0.8331 is achieved atγ∗ ≈ 6.2442 dB.
Therefore, for any SNR, if the multiplexing gain is below this
curve, the formulas in Theorems 2 and 3 give the tight bounds;
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Fig. 2. The curve ofr0 (γ) versusγ.

whereas if the multiplexing gain is near and above the curve,
the formulas in Theorems 4 and 5 give the tight bounds.

From Theorem 5, the finite-SNR diversity-multiplexing
tradeoff can be directly obtained as described in the following.

Corollary 4: For a parallel fading channel withL subchan-
nels, the finite-SNR diversity-multiplexing tradeoff is given by

d∗f (r, γ) =L

[

(

1− r

L

)

+
1

γ

]

(1 + γ)r−1

γL−1
·

e
λ
γG

L,0
0,L

(

(1+γ)r

γL

∣

∣

∣

∣

−
0, 0, . . . , 0

)

1− e
λ
γG

L,0
0,L

(

(1+γ)r

γL

∣

∣

∣

∣

−
0, 1, . . . , 1

)−

λ
γ e

λ
γG

L,0
0,L

(

(1+γ)r

γL

∣

∣

∣

∣

−
0, 1, . . . , 1

)

1− e
λ
γG

L,0
0,L

(

(1+γ)r

γL

∣

∣

∣

∣

−
0, 1, . . . , 1

) .

(34)

From the finite-SNR diversity-multiplexing tradeoff, the
diversity-multiplexing tradeoff can be obtained by letting
γ → ∞. The result is summarized in the following corollary.

Corollary 5: For a parallel fading channel withL subchan-
nels, the diversity-multiplexing tradeoff is given by

d∗ (r) = lim
γ→∞

d∗f (r, γ) = L
(

1− r

L

)

. (35)

Proof: See Appendix E.
Remark 2:From the proof of Theorem 5 and Corollary 5,

we can find that ifr < L, the outage probability will tend
to zero as SNR tends to infinity. Therefore, the diversity-
multiplexing tradeoff is valid for anyR < Cawgn. As a result,
for any fixedL, if only R is smaller thanCawgn, the outage
probability will reduce to zero asγ → ∞.

VI. D IFFERENCES BETWEEN THEOUTAGE EXPONENT AND

ERROR EXPONENT

In fading channels, the proposed outage exponent relates the
communication reliability, efficiency, transmission rate, SNR,

and the number of fading subchannels. In ergodic channels,
the relationship among the error probability, the transmission
rate, channel noise, and the coding lengths is characterized by
a commonly used approach, referred to as the error exponents.
Recently, some works tried to generalize the error exponent
theory to fading channels. Interested readers are referredto
[13] and its references for a thorough survey on this topic.
In this section, we will discuss the differences between our
results and the theory of error exponents.

The classical results of the error exponent for parallel
channels is summarized in the following lemma [7].

Lemma 2:Let pl (j|i) , l = 1, . . . , L be the transition
probability of thelth subchannel, andq (k1, . . . , kL) be a prob-
ability assignment on the input vectors. Ifq (k1, . . . , kL) =
∏L

l=1 ql (kl), the error exponent for the parallel fading channel
is then given by the exponentially tight upper bound of the
error probability:

perr ≤ e−N
∑L

l=1 El
r(ρ),

where

El
r (ρ) = max

ql

{

El
o (ρ, ql)− ρ

∂

∂ρ
El

o (ρ, ql)

}

,

and

R (ρ) =

L
∑

l=1

Rl (ρ) =

L
∑

l=1

∂

∂ρ
El

o (ρ, ql) .

The functionEl
o (ρ, ql) is given by

El
o (ρ, ql) = − ln

J−1
∑

j=0

(

K−1
∑

k=0

ql (k) pl (j|k)
1

1+ρ

)1+ρ

.

The parameterρ is the magnitude of the slope of theEl
r (ρ)

versusR (ρ) curve.
From Lemma 2, ifpl (i|j) , l = 1, . . . , L are the same for

any subchannel, the error exponent will be reduced to

perr ≤ e−L(NEl
r(ρ)), (36)

and

R (ρ) = LRl (ρ) = L
∂

∂ρ
El

o (ρ, ql) . (37)

Therefore, if and only ifRl < Cawgn, perr will tend to zero
whenL → ∞ for a fixedN . It can be shown thatEl

r (ρ) in
Eq. (36) is just the error exponent for thelth subchannel.

By comparing Eqns. (36) (37) and Eq. (17), it can be
found that the outage exponent and error exponent have a
similar form. However, they are different. First of all, the
outage exponent considers the non-ergodic parallel fading
channel, i.e., each subchannel is associated with a random
channel gain; whereas each subchannel in the error exponentis
ergodic. The results that tried to generalize the error exponent
method to fading channels, however, can only be applied
to ergodic fading channels, e.g., the fully interleaved block-
fading channel in [9], [11]. For the non-ergodic parallel fading
channel, the transition probability of each subchannel requires
knowledge of the channel, i.e., we needpl (j|i, hl). Then, from
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TABLE I
PROPERTIES OF THEOUTAGE EXPONENT

γ: Non-Asymptotic γ: Asymptotic

L
Non-Asymptotic

• Accurate estimation ofpout: Eqns. (6) (17) (24) (26).
• Outage capacity: Eqns. (10) (21).
• Reliable function: Eqns. (13) (18) (30).
• Finite-SNR diversity-multiplexing tradeoff: Eqns. (14) (34).
• SNR gain: Eqns. (6) (17) (24) (26).

• diversity-multiplexing tradeoff: Eqns. (15) (23) (35).
• If R < Cawgn , limγ→∞ pout = 0: Theorem 2.

L
Asymptotic

• Delay-limited capacity: Eqns. (11) (22).
• Ergodic capacity: Eqns. (12) (22).
• If R < C, limL→∞ pout = 0: Theorem 4.

—

the perspective of error exponent, the outage probability is
given by

pout = Pr

{

sup

{

R (ρ) :
L
∑

l=1

El
r (ρ,h) > 0

}

< R

}

. (38)

BecauseEl
r (ρ,h) must be maximized overql for every

sample ofh, it is very difficult to get a closed-form formula
for the outage probability. Some attempts can be found in [8],
[12]. By comparing Eq. (2) and Eq. (38), it can be found that:
1) the outage exponent only focuses on the effect of channel
fading; and 2) all of the details about the channel coding
are dropped by assuming that an ideal coding scheme has
been adopted. This is reasonable because the AWGN channel
capacity can be approximately achieved by LDPC and Turbo
codes. Actually, this is just the basic idea in [2].

Another important difference is that the error exponent for
the parallel fading channel isL times the error exponents
of each subchannel, as shown in Eq. (36). For the outage
exponent, however, the reliable function defined in Eq. (13)is
not the outage exponent for one subchannel, since the outage
probability for each subchannel is given by

plout = 1− e−
eR−1

γ .

Therefore, we can independently study the subchannels of an
ergodic parallel fading channel. For the non-ergodic parallel
fading channel, we have to view the channel as a whole
so as to study its performance. To illustrate the differences
more clearly, the obtained results in this paper for the outage
exponent are briefly summarized in Table I.

VII. D ISCUSSION ONCODING ISSUES FOR THEPARALLEL

FADING CHANNEL

According to the above results, if the transmitter has perfect
knowledge of CSI of each subchannel, the outage exponent can
be achieved easily. As a matter of fact, the outage performance
can be better, in the sense of coding gain, when the water-
filling power allocation is applied. If the transmitter has no
CSI, however, how to achieve the outage performance as good
as possible is a key problem in this context. By recalling
the definition of the outage probability given in Eq. (2), the
optimal outage performance can be achieved if the coding
scheme with rateR is capable of achieving the capacity of
each subchannel without CSI at the transmitter. This section
will discuss some basic issues in designing the best codes for
the parallel fading channel.

It is known that the minimum distance between two code-
words determines the decode error probability in the AWGN
channel [25]. In fading channels, another key parameter is the
minimum product distance of two codewords [4]. In brief,
the minimum distance determines the capability of codes
to combat noise; whereas the minimum product distance
determines the capability to combat channel fading. Eq. (2)
indicates that the outage probability is determined by channel
fading. Therefore, the minimum product distance is the key
metric to evaluate a coding scheme for the parallel fading
channel.

In signal space, each codeword can be seen as a vector
or point in theL-dimension space, i.e.,L-dimension con-
stellation. Moreover, the channel gains onL subchannels are
orthogonal random variables, because they are independent
with zero means. Therefore, thelth axis of theL-dimension
constellation corresponds to the channel gain of thelth sub-
channel (i.e.,hl). Let XA = (xA1,xA2, . . . ,xAL)

T and
XB = (xB1,xB2, . . . ,xBL)

T denote the codewords for the
informationA andB, respectively. The normalized product
distance ofXA andXB is then defined by

Dp =
1√
γ

L
∏

l=1

|xAl − xBl| . (39)

Therefore, the coding scheme must be designed to maximize
the minimum value ofDp, denoted byDmin

p , so as to optimize
the outage performance. IfxAl = xBl for somel, there must
be a hyperplane which is orthogonal with thelth axis such
that xAl − xBl is parallel with this hyperplane. Clearly, if
all the channel gains on that hyperplane are very small, the
receiver cannot distinguishXA from XB. In other words, we
lose one dimension, i.e., thelth subchannel, to combat the
channel fading. As a matter of fact, the number of terms that
xAl 6= xBl, l = 1, 2, . . . , L in Eq. (39) is the diversity order
achieved by this signal constellation [21].

To the best of our knowledge, there are two main approaches
to maximize the minimum product distance. The first class is
the rotatedZL-lattices code, which is based on the algebraic
number theory and lattices theory. The basic idea is to con-
struct theL-dimension constellation with the size2R based
on Z

L-lattices. Then, the constellation will be rotated to an
appropriate angle such thatDmin

p is maximized. According to
the lattices theory,Dmin

p can be calculated theoretically. One
can refer to [21], [26] and its references for detailed discus-
sions on this coding scheme. Another advantage of the rotated
Z
L-lattices code lies in the fact that it can reduce the peak-

to-average power ratio (PAPR) [27]. As a matter of fact, the
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single carrier frequency division multiple access (SC-FDMA)
can be seen as a special case of rotatedZ

L-lattices codes,
where the rotated angle is determined by the discrete Fourier
transform (DFT) matrix. This rotation can increaseDmin

p or
the distance between two points with zero product distance.
Therefore, compared to uncoded orthogonal frequency division
multiple access (OFDMA) systems, SC-FDMA has a better
performance in form of decoding error probability and PAPR
[28]. Another approach is the permutation code which was
proposed to achieve the optimal diversity-multiplexing tradeoff
[4], [22]. The basic idea is to use the constellation of size2R

on a complex plane for each subchannel. The points in the
constellation for each subchannel are permuted, so that the
product distance is maximized. The permutation operation on
each subchannel can be seen as the product of the original
information times a specific matrix, which is referred to as
the universal decodable matrix (UDM). Based on the Pascal
triangle, the universal decodable matrices can be constructed
directly for every subchannel [29]. From the perspective of
rotatedZL-lattices code, the permutation code can be seen
as a way to construct aL-dimension constellation with size
2LR. The permutation rules imply that we should choose2R

points from2LR, so that the product distance is maximized. It
is not trivial to evaluate the decoding error probability ofthe
permutation code, because the analytic formula forDmin

p has
not been obtained. According to the construction process of
the permutation code, the PAPR performance could be worse
than the rotatedZL-lattices code for the same average power.
Another important difference is that the constellation size of
each subchannel is2R = 2R/L for the rotatedZL-lattices
code, while it is2R for the permutation code.

It is possible to combine the advantages of the rotatedZ
L-

lattices code and permutation code. First, we can construct
a L-dimension constellation with the size ofM (2R ≤ M ).
Then, the constellation can be rotated to an appropriate angle
to maximizeDmin

p . After that, 2R points fromM can be
chosen to further maximizeDmin

p . In order to find the optimal
coding scheme, we consider the asymptotic case thatM → ∞.
Therefore, theL-dimension constellation becomes a continuos
L-dimension hypersphere whose radius is determined by the
peak power of the coding scheme. Then, the optimal coding
is to find the coordinates for2R points which maximizeDmin

p

under the constraint of average power. This is an interesting
idea that formulates the optimal coding design problem, which
is often seen as a complicated discrete optimization problem,
into an optimization problem on continuos variables. However,
the general approach, which is out of the scope of this paper,
still needs to be investigated in depth.

VIII. N UMERICAL RESULTS

In this section, some numerical results will be presented
to verify the theoretical derivation in the previous sections.
According to the proof of the proposed theorems, the accuracy
of the bounds will be tight as the number of subchannels in-
creases. Hence, we only need to compare the results for small
L. SinceC is a function of SNR, the average multiplexing
gain (or normalized target rate)r = r

L = R
Cawgn

is used to

guaranteeR < C or R ≥ C.

The first set of simulations is to verify the accuracy of the
proposed upper and lower bounds. In the simulation, we first
generate the samples of the parallel fading channel, and then
compare the instantaneous channel capacity with the target
transmission rate, which yields the simulation results forthe
outage probability. Fig. 3 compares the simulation resultsand
the theoretical results of outage exponent for theR < C

case. In Fig. 3, the number of subchannels isL = 4, and the
average multiplexing gain isr = 0.1. The outage exponent is
computed through Eq. (17). It can be seen that the proposed
outage exponent is nearly identical with the simulation results
in the full SNR range. The Kaplan-Shamai’s upper bound in
Eq. (3) and the Tse-Viswanath’s approximation in Eq. (4) have
the accurate slope but not the intercept in this case.

For Fig. 4, we compare the simulation results and the outage
exponent for theR ≥ C case. The proposed upper and lower
bounds are calculated through Eq. (26). It can be seen that
the proposed upper and lower bounds will converge to the
simulation values as SNR increases. Because the proposed
lower bound is only valid in the high SNR regime, the point
at 0 dB of the curve is lacking. Hence, the modified lower
bound in Proposition 1 has been proposed to overcome this
shortcoming. In Fig. 4, it can be seen that the modified lower
bound is an accurate estimation for the outage probability.
Clearly, the upper bound in Eq. (3) cannot provide an accurate
estimation of the outage probability. The approximation inEq.
(4) does not have a good accuracy either, since it can only
estimate the slope of the outage probability in high SNRs for
large average multiplexing gains.

Fig. 5 shows the simulation results of the outage probability
and the proposed bounds from−20 dB to 20 dB. It can be seen
that the low SNR approximation in Eq. (27), which is ploted
from −20 dB to −5 dB, is very tight as expected. From0 to
20 dB, the proposed approximation in Proposition 1 has been
used, which is also very tight. The Kaplan-Shamai’s upper
bound and Tse-Viswanath’s approximation are also plotted for
comparison. In the Kaplan-Shamai’s upper bound, i.e., Eq. (3),
the large deviation principle is applied. Therefore, the slope
is accurate whenR < C or R > C, and is not accurate
enough whenR is close toC. According to Fig. 2, when
SNR is between0 dB and 10 dB, r = 0.8 is very close to
the threshold curver0. In this range, Kaplan-Shamai’s upper
bound converges to1. When SNR is smaller than0 dB or
larger than10 dB, the difference betweenr = 0.8 and the
threshold curve in Fig. 2 is considerably large. Therefore,the
Kaplan-Shamai’s upper bound characterizes the accurate slope
in this SNR range.

The second set of simulations illustrate the behavior of the
outage probability as the number of subchannels increases.
Figs. 6 and 7 show the simulated outage probability and the
theoretical results forR < C andR ≥ C, respectively. The
number of subchannelsL is set to be2, 4, and6, respectively.
As expected, the proposed bounds are accurate even forL = 2.
From Fig. 6, it can be found that the slopes of the outage
probability forL = 2, 4, 6 do not vary much with one another.
The performance gain are mainly comes from the SNR gain.
This phenomenon can be explained from Eq. (17). Clearly, for
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Fig. 4. Outage probability comparison forL = 4 andr = 0.8.

a fixedL, we have

pout .
1√

2πLσΞ (0)
e−LE1(R,γ)

.

Therefore, varyingL results in a great change in the coefficient
of the exponential function. However, as shown in Fig. 7,
the performance gains are mainly determined by the diversity
gain for theR ≥ C case. This phenomenon occurs because
the coefficient in Eq. (30) is one for anyL. This results
indicate that the power allocation is very important for the
small average multiplexing gain case, but may not result in a
significant performance gain in the large average multiplexing
gain case.

The outage capacity defined as the maximum transmission
rate which guarantee the outage probability is smaller thana
target value. Fig. 8 shows the comparison between the simu-
lated outage capacity and theoretical results. The normalized
outage capacity in the figure is just the maximum average
multiplexing gain which can be achieved for a given outage
probability. In the simulation, the binary search based ordinal
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Fig. 5. Outage probability comparison forL = 4 and r = 0.8 in the low
SNR regime.

0 5 10 15 20 25 30 35 40
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

SNR (dB)

O
ut

ag
e 

P
ro

ba
bi

lit
y:

 p
ou

t

 

 
Simulation
Proposed Outage Exponent

L = 2

L = 4

L = 6

Fig. 6. Outage probability comparison forL = 2, 4, 6, andr = 0.3.

optimization method is used to calculateCε [30]. First, fix a
desired outage probabilitypout, and letCnorm = Cmax

norm = 2
and Cmin

norm = 0. If we setR = Cnorm · Cawgn and give a
SNR value, the simulated outage probabilityp̂out can then be
obtained. If |p̂out − pout| < δ, Cnorm is seen as the correct
value. However, if|p̂out − pout| ≥ δ, Cmax

norm andCmin
norm will

be changed with the following rules:

1) if p̂out − pout ≥ δ, setCmax
norm = Cnorm and go to 3);

2) if p̂out − pout ≤ −δ, setCmin
norm = Cnorm;

3) setCnorm = 1
2

(

Cmax
norm + Cmin

norm

)

.

After the correctCnorm is obtained, the SNR will be changed
to a new value. The normalizedε-outage capacity at any SNR
value can then be obtained. In our simulations,δ is set to

1
1000pout. The corresponding theoretical results are computed
through Eq. (21), sincer0 (γ) → 1 as γ → ∞. From Fig.
8, it can be seen that the theoretical results are very accurate
for pout = 0.001 and pout = 0.01. For pout = 0.1, the two
curves have a small gap in the low SNR regime, becauser0 (γ)
achieves the minimum value atγ∗ ≈ 6.2442 dB.
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The last set of simulations is to illustrate the diversity
gain versus SNR for a given average multiplexing gain. For
R < C, as shown in Fig. 9, the average multiplexing gain is
set to r = 0.7. The simulated diversity gain is obtained by
differentiating the outage probability. The theoretical results
is computed by Eq. (17). The asymptotic diversity gain is also
plotted for comparison. It can be seen that the theoretical and
simulation curves have a small gap when SNR is smaller than
20 dB. This is becauser = 0.7 is close to the minimum
value of r0 (γ) in that SNR range, which yields a loose
large deviation bound. Fig. 10 shows the diversity at a given
average multiplexing gain forr = 0.8. In contrast to Fig.
9, the theoretical curve in this figure is calculated by Eq.
(34). Although r = 0.8 is still smaller than the minimum
value of r0 (γ), the proposed bound is nearly identical with
the simulation results. Therefore, the proposed bound for
R ≥ C is also very tight forr is of the middle values.
From these figures, the finite-SNR diversity gain approaches
to the asymptotic value as SNR increases. Therefore, for high
SNRs, such as more than40 dB, the asymptotic diversity-
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Fig. 9. Diversity gain at a given average multiplexing gain for L = 4 and
r = 0.7.
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Fig. 10. Diversity gain at a given average multiplexing gainfor L = 4 and
r = 0.8.

multiplexing tradeoff can be used to evaluate the performance
instead of the corresponding finite-SNR diversity-multiplexing
tradeoff.

Remark 3:Throughout this section, the numerical evalua-
tion of the theoretical results need to compute the Meijer’s
G-function. However, the numerical computation problem of
Meijer’s G-function has not been fully solved. MATLAB
R2010a does not have this function at all, while the realizations
in Mathematica 7.0 and Maple 14 have severe bugs in some
cases. From a large number of experiments, for instance,
Mathematica 7.0 will give wrong results if the input parame-
ters are decimal and not fractional. The designers for Mathe-
matica, who wrote the program of Meijer’s G-function, also
pointed out the design problems of this function, especially
the logarithmic cases [31]. Therefore, a software package of
Meijer’s G-function is developed for MATLAB in [32]. In
the simple poles case, the algorithm can go straightforwardly
to the generalized hyper-geometric functions. Meanwhile,the
algorithm can also deal with some cases which Maple 14
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cannot handle. For the super complicated and potentially
buggy cases, i.e., the logarithmic cases, it is very difficulty
to design a general algorithm. Aiming at this problem, the
accurate formulas to evaluate the residues of the integration
have been derived, and can be used to numerically evaluate
Meijer’s G-function with arbitrary precision.

IX. CONCLUSIONS

This paper focused on the parallel fading channel and pro-
posed a unified performance metric, referred to as the outage
exponent. The outage exponent is defined as the exponentially
tight upper and lower bounds of the outage probability for any
number of subchannels, any SNR, and any target transmission
rate. Based on the latest results in large deviations theory,
Meijer’s G-function, and the method of integral around a
contour, the outage exponent is obtained for bothR < C

andR ≥ C cases. From the accurate estimation of the out-
age probability, the reliable function, outage capacity, finite-
SNR diversity-multiplexing tradeoff, SNR gain, and also the
asymptotic performance metrics, including the delay-limited
capacity, ergodic capacity, and diversity-multiplexing tradeoff
have been calculated. In order to achieve the proposed outage
exponent, the coding schemes which maximize the minimum
product distance have also been discussed. Therefore, it can
be concluded that the proposed outage exponent framework
provides a powerful tool for analyzing and evaluating the per-
formance of existing and upcoming communication systems.
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APPENDIX A
PROOF OFTHEOREM 2

Define a sequence of random variables{Xl : l = 1, . . . , L}
by letting

Xl = R− ln
(

1 + |hl|2 γ
)

.

We further letYL =
∑L

l=1Xl, then the outage probability
defined in Eq. (2) is equivalent to

pout = Pr

{

1

L

L
∑

l=1

Xl > 0

}

= Pr

{

1

L
YL > 0

}

.

Because the elements of{hl : l = 1, . . . , L} are indepen-
dent with the identical distribution ofCN (0, 1), the logarith-
mic moment generating function ofYL is given by

ΛL (ξ) = lnE
{

eξYL
}

= ln
(

eξRE
{

e−ξ ln(1+|hl|
2γ)
})L

= L

[

ξR+ ln

(
ˆ ∞

0

e−ξx 1

γ
e−

ex−1
γ

+xdx

)]

= L

[

ξR+ ln

(

e
1
γ
1

γ

ˆ ∞

1

t−ξe−
t
γ dt

)]

= L
[

(

R− ln γ
)

ξ + ln
(

e
1
γ Γ
(

1− ξ, γ−1
)

)]

.

Therefore, we have

Λ (ξ) = lim
L→∞

1

L
ΛL (ξ)

=
(

R − ln γ
)

ξ + ln
(

e
1
γ Γ
(

1− ξ, γ−1
)

)

.

Notice thatR < C, i.e., E {YL} < 0, the Legendre-Fenchel
transform ofΛ (ξ) at s = 0 is then given by

Λ∗ (0) = sup
ξ∈R

{−Λ (ξ)}

=− inf
ξ≥0

{

(

R− ln γ
)

ξ + ln
(

e
1
γ Γ
(

1− ξ, γ−1
)

)}

=
(

ln γ −R
)

Ξ (0)− ln
(

e
1
γ Γ
(

1− Ξ (0) , γ−1
)

)

=
(

Cawgn −R
)

Ξ (0)− Ξ (0) ln

(

1 +
1

γ

)

− ln
(

e
1
γ Γ
(

1− Ξ (0) , γ−1
)

)

(40)

Since Λ (ξ) is convex and differentiable,ξ = Ξ(0) is the
solution of the following equation:

∂

∂ξ
Λ (ξ) = 0.

By computing the derivative, we have

∂

∂ξ
Λ (ξ) = R − 1

Γ (1− ξ, γ−1)
G

3,0
2,3

(

1

γ

∣

∣

∣

∣

∣

1, 1

0, 0, 1− ξ

)

.

Therefore,Ξ (0) is the solution of Eq. (19). According to the
results in [18],σ2 is given by

σ2 =
∂2

∂ξ2
Λ (ξ)

∣

∣

∣

∣

ξ=Ξ(0)

=
2

Γ (1− Ξ (0) , γ−1)
G

4,0
3,4

(

1

γ

∣

∣

∣

∣

∣

1, 1, 1

0, 0, 0, 1− Ξ (0)

)

−
[

1

Γ (1− Ξ (0) , γ−1)
G

3,0
2,3

(

1

γ

∣

∣

∣

∣

∣

1, 1

0, 0, 1− Ξ (0)

)]2

.

Clearly, we have

Λ∗
L (0) = sup

ξ≥0
{−ΛL (ξ)} = LΛ∗ (0) .

According to the proof of Cramér’s theorem in Chapter 2.2.1
of [23], the following inequality holds for anyL ∈ N:

pout ≤ ψe−LΛ∗(0) = pupperex .

whereψ is a slowly varying function. As a matter of fact,
from Remark (c) on Cramér’s theorem in Chapter 2.2.1 of
[23], a loose estimation ofψ is 2. Let F =

{

YL : 1
LYL ≥ 0

}

andG =
{

YL : 1
LYL > 0

}

with G ⊆ F , then from Cramér’s
theorem, we have

−Λ∗ (0) ≤ lim inf
L→∞

1

L
ln Pr {G}

≤ lim sup
L→∞

1

L
ln Pr {F} ≤ −Λ∗ (0) ,

which implies that

lim
L→∞

1

L
ln pout = −Λ∗ (0) .
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Therefore,Λ∗ (0) is a good rate function in the sense of large
deviation, and there must be a slowly varying functionϕ with
ϕ < ψ satisfying

plower
ex = ϕe−LΛ∗(0) ≤ pout.

The above arguments can also be verified by the derivations
and results in two important literatures on probability inequali-
ties and large deviation results for sums of independent random
variables [33], [34].

In order to obtain a tight upper bound, the only needed
work is to estimateψ accurately. Because the elements of
{Xl : l = 1, . . . , L} are independent with identical distribu-
tion, the sequence of random variables{Y (Ξ(0))

L : L ∈ N}
with the titled distribution defined in Eq. (16) obeys the central
limit theorem. Thus, the results in [18] can be used to give an
accurate estimation ofψ as

ψ =
1√

2πLσΞ (0)
,

for anyL ∈ N, with

lim
L→∞

1

L
ln
pout

ψ
= −Λ∗ (0) .

Therefore, we have

lim
L→∞

1

pout

(

1√
2πLσΞ (0)

e−LΛ∗(0)

)

= lim
L→∞

pupperex

pout
= 1.

According to the definition of limit, for any givenε > 0, there
is a numberL∗ ∈ N such that

pupperex

pout
− 1 < ε,

holds for anyL ≥ L∗. Therefore, for anyL ∈ N, the outage
probabilitypout is upper bounded bypupperex , and the accuracy
of pupperex increases asL increases for any givenγ.

To sum up, we have

pout .p
upper
ex =

1√
2πLσΞ (0)

e−LΛ∗(0)

=
1√
2π
e−L[Λ∗(0)+ ln(σΞ(0))

L
+ lnL

2L ],

(41)

in the sense ofL andγ, where the symbol “.” is defined in
Eq. (5).

APPENDIX B
PROOF OFTHEOREM 3

Define a random variableY by letting

Y =

L
∑

l=1

ln
(

1 + |hl|2 γ
)

,

whose moment generating function is given by

M (ξ) =
[

e
1
γ γξΓ

(

1 + ξ, γ−1
)

]L

.

Clearly, we havepout = Pr {Y < R}.
Let F (y) denote the distribution ofY , define the titled

distribution forY as

dF (ξ) (y) =
eξydF (y)

M (ξ)
.

For convenience, we letFα (y) = F (Ξ(αR)) (y), and useOα

to denote the operationO under the titled distributionFα (y).
Let Z be a random variable with the distribution ofFα (y),
then for anyα

Eα {Z} =
1

M (Ξ (αR))

ˆ +∞

−∞

yeξydF (y)

=
∂

∂ξ
lnM (ξ)

∣

∣

∣

∣

ξ=Ξ(αR)

= αR.

Therefore, for any0 < δ < α < 1, we have

F (R) =M (Ξ (αR))

ˆ R

0

e−tΞ(αR)dFα (t)

≥M (Ξ (αR))

ˆ R

δR

e−tΞ(αR)dFα (t)

≥M (Ξ (αR)) e−δRM(Ξ(αR)) [Fα (R)− Fα (δR)] .

SinceδR < Eα {Z} < R, by applying Cramér’s theorem [23],
we have {

Fα (δR) ≤ e−Λα(δR);

Fα (R) ≤ 1− e−Λα(R).
(42)

Therefore, we have

F (R) ≥M (Ξ (αR)) e−δRΞ(αR) [Fα (R)− Fα (δR)]

= eln(M(Ξ(αR)))−δRΞ(αR) [Fα (R)− Fα (δR)]

≥
(

1− e−Λα(R) − e−Λα(δR)
)

e−Λ∗(αR)+Ξ(αR)R(α−δ).

Clearly,Λ∗ (R) is given by

Λ∗ (R) =L

[

−
(

Cawgn −R
)

Ξ (R) + Ξ (R) ln

(

1 +
1

γ

)

− ln
(

e
1
γ Γ
(

1 + Ξ (R) , γ−1
)

)]

,

andΞ (R) is the solution of

R − L

Γ (1 + ξ, γ−1)
G

3,0
2,3

(

1

γ

∣

∣

∣

∣

∣

1, 1

0, 0, 1 + ξ

)

= 0.

Therefore, we have

Λ∗ (αR)− Ξ (αR)R (α− δ) = LEα
1 (R, γ) .

In the following,Λα (R) andΛα (δR) will be obtained from
Ξ (R). Notice that

∂

∂R
M (Ξ (R)) = RM (Ξ (R)) Ξ′ (R) .

By computing the integration of both sides for the above
formula, we have
ˆ

E(X)

R

1

M (Ξ (t))

∂

∂R
M (Ξ (t)) dt =

ˆ

E(X)

R

tΞ′ (t) dt.

SinceΞ (E (X)) = 0, the integration equation will become

lnM (Ξ (R)) = RΞ (R) +

ˆ

E(X)

R

Ξ (t) dt.

According to the definition of Legendre-Fenchel transform,we
have

Λ∗ (R) = −
ˆ E{Y }

R

Ξ (t) dt. (43)
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The moment generating function forZ is given by

Eα

{

eξZ
}

=
M (ξ + Ξ(αR))

M (Ξ (αR))
.

Then,Ξα (s) satisfies

z =
∂

∂ξ

M (ξ + Ξ(αR))

M (Ξ (αR))

∣

∣

∣

∣

ξ=Ξα (z)

=
∂

∂θ
lnM (θ)

∣

∣

∣

∣

θ=Ξα(z)+Ξ(αR)

.

Therefore, we have

Ξα (z) = Ξ (z)− Ξ (αR)

According to Eq. (43), we have

Λ∗
α (δR) = −

ˆ Eα{Z}

δR

Ξα (t) dt

= R (α− δ) Ξ (αR)−
ˆ αR

δR

Ξ (t) dt,

andΛ∗
α (R) = Λ∗

α (δR)|δ=1.
Next, we will prove there existsα and δ such that1 −

e−Λα(R) − e−Λα(δR) > 0 for anyR < C. According to the
monotonicity ofΞα (R), we have

∂

∂δ
Λ∗
α (δR) = R (Ξ (δR)− Ξ (αR)) < 0,

and
∂2

∂δ2
Λ∗
α (δR) = R2Ξ′ (δR) > 0.

Therefore,Λ∗
α (δR) achieves the maximum value atδ = 0.

According to the result in [23], we have

inf {z : z ∈ R, Fα (z) > 0} = 0,

andFα (z) = e−Λ∗

α(0). On the other hand,

lim
R→0+

Fα (R) =
1

M (Ξ (αR))
lim

R→0+

ˆ R

0

eΞ(αR)tdF (t) = 0.

Therefore, we havelimδ→0 Λ
∗
α (δR) = ∞. Furthermore,

∂

∂α
Λ∗
α (R) = −R2 (1− α) Ξ′ (αR) ≤ 0.

Consider the result thatΛ∗
α (R)|α=1 = 0, there existsǫ > 0

and 0 < α∗ < 1 such thatΛ∗
α∗ (R) = ǫ. Then, δ∗ can be

chosen as follows:

Λ∗
α∗ (δ∗R) > − ln

(

1− e−ǫ
)

.

Therefore, there isα∗ andδ∗ satisfying

1− e−Λα∗(R) − e−Λα∗ (δ∗R) > 0.

Finally, we determine the relationship betweenα andδ. By
letting

∂

∂α

(

1− e−Λα(R) − e−Λα(δR)
)

e−Λ∗(αR)+Ξ(αR)R(α−δ) = 0,

Eq. (25) can then be obtained. As a matter of fact, the main
method of this proof is based on [19].

APPENDIX C
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Define a functionFL (z) as

FL (z) = 1−
ˆ

D(z,0)

e−
∑L

l=1 xldx,

where the integration domain is defined by

D (z, η) =

{

x

∣

∣

∣

∣

∣

L
∏

l=1

xl < z,x > η

}

.

Consider the tight upper bound in the high SNR regime, it
is easy to verify that

pout = Pr

{

L
∑

l=1

ln
(

1 + |hl|2 γ
)

< R

}

≈ Pr

{

L
∏

l=1

|hl|2 <
eR − 1

γL

}

.

and

pout = Pr

{

L
∑

l=1

ln
(

1 + |hl|2 γ
)

< R

}

≤ Pr

{

ln

(

1 + γL
L
∏

l=1

|hl|2
)

< R

}

=

ˆ

D
(

eR−1

γL ,0
)

e−
∑L

l=1 xldx

= 1− FL

(

eR − 1

γL

)

.

Therefore, we have

pout . 1− FL

(

eR − 1

γL

)

,

holds in the high SNR regime.
Before deriving the tight lower bound in the high SNR

regime, we first rewrite the outage probability as

pout = Pr

{

L
∑

l=1

ln
(

1 + |hl|2 γ
)

< R

}

= Pr

{

L
∏

l=1

(

1

γ
+ |hl|2

)

<
eR

γL

}

= e
L
γ

ˆ

D
(

eR

γL , 1
γ

)

e−
∑L

l=1 xldx.

Next, the principle of mathematical induction will be used to
show thatpout ≥ 1 − e

L
γ FL

(

eRγ−L
)

. For L = 1, it is easy
to verify that

pout = 1− e−
eR−1

γ = 1− e
1
γ F1

(

eR

γ

)

.

Assume the proposition holds forL = k, k ≥ 1. Then, for the
situation ofL = k + 1, the lower bound ofpout is calculated
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as follows:

pout = e
k+1
γ

ˆ

D
(

eR

γk+1 , 1
γ

)

e−
∑k+1

l=1 xldx

= e
1
γ

ˆ ∞

1
γ

e−x1





ˆ

D
(

eR

γk+1x1
, 1
γ

)

e−
∑k

l=1 xldx′



 dx1

≥ e
1
γ

ˆ ∞

1
γ

e−x1

[

1− e
k
γ Fk

(

eR

γk+1x1

)]

dx1

= 1− e
k+1
γ

ˆ ∞

0

e−x1Fk

(

eR

γk+1x1

)

dx1

= 1− e
k+1
γ Fk+1

(

eR

γk+1

)

,

where x′ = [x2, . . . , xk+1]. According to the principle of
mathematical induction, the inequality

pout & 1− e
L
γ FL

(

eR

γL

)

holds for anyL ∈ N.
Next, we will show thatFL (z) is the Meijer’sG-function as

shown in the theorem. The proof is also based on the principle
of mathematical induction. ForL = 1,

F1 (z) = 1−
ˆ z

0

e−xdx = e−z = G
1,0
0,1

(

z

∣

∣

∣

∣

−
0

)

,

where the last equation follows that

G
1,0
0,1

(

z

∣

∣

∣

∣

∣

−
0

)

=
1

2πi

˛

L

Γ (−s) zsds

=
∞
∑

n=0

(−z)n
n!

= e−z.

For L = 2, we have

F2 (z) = 1−
¨

D(z,0)

e−x1−x2dx1dx2

= 1−
ˆ ∞

0

e−x1

(

ˆ
z
x1

0

e−x2dx2

)

dx1

= 1−
ˆ ∞

0

e−x1

(

1− e
− z

x1

)

dx1

=

ˆ ∞

0

e
−x1−

z
x1 dx1

= 2
√
zK1

(

2
√
z
)

= G
2,0
0,2

(

z

∣

∣

∣

∣

−
0, 1

)

,

whereKν (z) is the modified Bessel function of the second
kind, and the last equation follows Eq. (3) in Chapter 9.34 of
[20]

G
2,0
0,2





z2

4

∣

∣

∣

∣

∣

∣

−
µ− ν

2
,
µ+ ν

2



 = 2
(z

2

)µ

Kν (z) .

Assume the proposition holds forL = k, k ≥ 1. Then, for
L = k + 1, Fk+1 (z) is calculated as

Fk+1 (z) = 1−
ˆ

D(z,0)

e−
∑k+1

l=1 xldx

= 1−
ˆ ∞

0

e−x1

[

ˆ

D
(

z
x1

,0
)

e−
∑k

l=1 xldx′

]

dx1

=

ˆ ∞

0

e−x1G
k,0
0,k

(

z

x1

∣

∣

∣

∣

−
0, 1, . . . , 1

)

dx1

=
1

2πi

˛

L

Γ (−s) Γk (1− s) zsds

= G
k+1,0
0,k+1

(

z

∣

∣

∣

∣

−
0, 1, . . . , 1

)

.

It should be noted that the pathL runs from−∞ to +∞
in such a way that the poles of the functionsΓ (−s) and
Γ (1− s) lie to the right ofL. Therefore, the pathL can be
chosen asℜ (L) = − 1

2 , thenℜ (1− s) = 3
2 for any s along

this path. Under this condition,Γ (1− s) can be expanded
as
´∞

0 x−se−xdx. According to the principle of mathematical
induction, the equation

FL (z) = G
L,0
0,L

(

z

∣

∣

∣

∣

−
0, 1, . . . , 1

)

holds for anyL ∈ N. As a matter of fact, this proof can also be
carried out by applying the Mellin’s transform to the product
of independent random variables [35].

In the low SNR regime, letR = rCawgn, the approximation
is given by

pout = Pr

{

L
∑

l=1

ln
(

1 + |hl|2 γ
)

< R

}

≈ Pr

{

ln

(

1 + γ

L
∑

l=1

|hl|2
)

< r ln (1 + γ)

}

= Pr

{

L
∑

l=1

|hl|2 <
(1 + γ)r − 1

γ

}

= 1− Γ (L, r)

(L− 1)!
,

where the property that the sum of exponential distributed
random varibles is an Erlang distributed random varible has
been used.

APPENDIX D
PROOF OFTHEOREM 5

Define a functionf (γ) as follows:

f (γ) = ln

(

1− e
λ
γG

L,0
0,L

(

(1 + γ)
r

γL

∣

∣

∣

∣

−
0, 1, . . . , 1

))

.

According to Theorem 4 and Proposition 1, we have

pout ≈ ef(γ).

For anyx ∈ (0, 1), it is easy to verify that














∂

∂x
ln (1− x) =

−1

1− x
< 0;

∂2

∂x2
ln (1− x) =

−1

(1− x)
2 < 0.
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According to Lemma 1, the outage probability can be bounded
by

pout ≈ ef(γ) ≥ eγ
∂
∂γ

f(γ).

According to the definition of Meijer’sG-function, we have

∂

∂z
G

L,0
0,L

(

z

∣

∣

∣

∣

−
0, 1, . . . , 1

)

=
∂

∂z

1

2πi

˛

L

Γ (−s) ΓL−1 (1− s) zsds

=
1

2πi

˛

L

Γ (−s) ΓL−1 (1− s) szs−1ds

=− 1

2πi

˛

L

(−1− t) Γ (−1− t) ΓL−1 (−t) ztdt

=− 1

2πi

˛

L

ΓL (−t) ztdt

=−G
L,0
0,L

(

z

∣

∣

∣

∣

−
0, 0, . . . , 0

)

.

Then, forγ ∂
∂γ f (γ) we have

γ
∂

∂γ
f (γ) =− L

[

(

1− r

L

)

+
1

γ

]

(1 + γ)
r−1

γL−1
·

e
λ
γG

L,0
0,L

(

(1+γ)r

γL

∣

∣

∣

∣

−
0, 0, . . . , 0

)

1− e
λ
γG

L,0
0,L

(

(1+γ)r

γL

∣

∣

∣

∣

−
0, 1, . . . , 1

)+

λ
γ e

λ
γG

L,0
0,L

(

(1+γ)r

γL

∣

∣

∣

∣

−
0, 1, . . . , 1

)

1− e
λ
γG

L,0
0,L

(

(1+γ)r

γL

∣

∣

∣

∣

−
0, 1, . . . , 1

) .

Therefore, Eq. (30) holds.

APPENDIX E
PROOF OFTHEOREM 5

From the proof of Theorem 4, we have

lim
γ→∞

λ
γ e

λ
γG

L,0
0,L

(

(1+γ)r

γL

∣

∣

∣

∣

−
0, 1, . . . , 1

)

1− e
λ
γG

L,0
0,L

(

(1+γ)r

γL

∣

∣

∣

∣

−
0, 1, . . . , 1

) = 0.

Sincee
λ
γ → 1 and 1+γ

γ → 1 asγ → ∞, according to the rule
of L’Hospital, we have

lim
γ→∞

d∗f (r, γ)

=d∗ (r) lim
z→0

zG
L,0
0,L

(

z

∣

∣

∣

∣

−
0, 0, . . . , 0

)

1−G
L,0
0,L

(

z

∣

∣

∣

∣

−
0, 1, . . . , 1

)

=d∗ (r) lim
z→0









1 +

z ∂
∂zG

L,0
0,L

(

z

∣

∣

∣

∣

−
0, 0, . . . , 0

)

G
L,0
0,L

(

z

∣

∣

∣

∣

−
0, 0, . . . , 0

)









=d∗ (r) + d∗ (r) lim
z→0

G
L,0
0,L

(

z

∣

∣

∣

∣

−
0, 0, . . . , 1

)

G
L,0
0,L

(

z

∣

∣

∣

∣

−
0, 0, . . . , 0

) ,

where the last equality follows that

z
∂

∂z
G

L,0
0,L

(

z

∣

∣

∣

∣

−
0, 0, . . . , 0

)

=z
1

2πi

˛

L

ΓL (−s) szs−1ds

=
1

2πi

˛

L

ΓL−1 (−s) Γ (1− s) zsds

=GL,0
0,L

(

z

∣

∣

∣

∣

−
0, 0, . . . , 1

)

.

By repeating this process, we have

lim
z→0

G
L,0
0,L

(

z

∣

∣

∣

∣

−
0, 0, . . . , 1

)

G
L,0
0,L

(

z

∣

∣

∣

∣

−
0, 0, . . . , 0

)

= lim
z→0

G
L,0
0,L

(

z

∣

∣

∣

∣

−
1, 1, . . . , 1

)

G
L,0
0,L

(

z

∣

∣

∣

∣

−
0, 1, . . . , 1

) .

In the following, the principle of mathematical induction
will be used to show the above limit is zero. ForL = 1, we
have

lim
z→0

G
1,0
0,1

(

z

∣

∣

∣

∣

−
1

)

G
1,0
0,1

(

z

∣

∣

∣

∣

−
0

) = lim
z→0

1
2πi

¸

L
Γ (1− s) zsds

e−z

=
limz→0 z

∑∞
n=0

(−z)n

n!

limz→0 e−z

=
0

1
= 0.

In the above derivation, we used the property that the poles
of Γ (1− s) are s = n ∈ N, and the corresponding residuals
are (−1)n

n! . Suppose the proposition holds forL = k, when



18 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. XX, NO. XX, MONTH YEAR

L = k + 1 we have

lim
z→0

G
k+1,0
0,k+1

(

z

∣

∣

∣

∣

−
1, 1, . . . , 1

)

G
k+1,0
0,k+1

(

z

∣

∣

∣

∣

−
0, 1, . . . , 1

)

= lim
z→0

1
2πi

¸

L
Γk+1 (1− s) zsds

1
2πi

¸

L
Γ (−s) Γk (1− s) zsds

= lim
z→0

1
2πi

¸

L
Γk (1− s) zs

´∞

0
t−se−tdtds

1
2πi

¸

L
Γ (−s) Γk−1 (1− s) zs

´∞

0
t−se−tdtds

= lim
z→0

´∞

0 e−t 1
2πi

¸

L Γk (1− s)
(

z
t

)s
dsdt

´∞

0 e−t 1
2πi

¸

L Γ (−s) Γk−1 (1− s)
(

z
t

)s
dsdt

=

´∞

0
e−t limz→0G

k,0
0,k

(

z
t

∣

∣

∣

∣

−
1, 1, . . . , 1

)

dt

´∞

0 e−t limz→0G
k,0
0,k

(

z
t

∣

∣

∣

∣

−
0, 1, . . . , 1

)

dt

=
0

1
= 0.

The integration pathL is ℜ (L) = − 1
2 . According to the

principle of mathematical induction, the limit is zero for any
L ∈ N.
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