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Abstract—This paper proposes a new notion of typical
sequences on a wide class of abstract alphabets (so-called
standard Borel spaces), which is based on approximations of
memoryless sources by empirical distributions uniformly over
a class of measurable “test functions.” In the finite-alphabet
case, we can take all uniformly bounded functions and recover
the usual notion of strong typicality (or typicality under the
total variation distance). For a general alphabet, however, this
function class turns out to be too large, and must be restricted.
With this in mind, we define typicality with respect to any
Glivenko–Cantelli function class (i.e., a function class that
admits a Uniform Law of Large Numbers) and demonstrate its
power by giving simple derivations of the fundamental limits
on the achievable rates in several source coding scenarios, in
which the relevant operational criteria pertain to reproducing
empirical averages of a general-alphabet stationary memoryless
source with respect to a suitable function class.

Index Terms—Coordination via communication, empirical
processes, Glivenko–Cantelli classes, rate distortion, source
coding, standard Borel spaces, typical sequences, uniform laws
of large numbers.

I. INTRODUCTION

THE notion of typical sequence has been central to
information theory since Shannon’s original paper [1].

For finite alphabets, it leads to simple and intuitive proofs
of achievability in a wide variety of source and channel
coding settings, including multiterminal scenarios [2]. Another
appealing aspect of typical sequences is that they provide a
language for approximation of information sources in total
variation distance using finite communication resources. Re-
cent work of Cuff et al. [3] on coordination via communication
serves as a particularly striking example of the power of this
language.

For abstract alphabets, however, most of this power is lost;
while such results as the asymptotic equipartition property
carry over [4], in most other situations, particularly involving
lossy codes, one has to resort to ergodic theory [5] or large
deviations theory [6]. Direct approximation of abstract mem-
oryless sources in total variation using empirical distributions
is, in general, impossible (cf. Sec. IV for details). However, it
is precisely this direct approximation that renders typicality-
based proofs of achievability so transparent.
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The present paper makes two contributions. First, we pro-
pose a way to revise the notion of typicality for general
alphabets (more specifically, standard Borel spaces [7], [8]),
allowing for similarly transparent achievability arguments.
When two probability measures are close in total variation,
the corresponding expectations of any bounded measurable
function are also close. For general alphabets, when one of
the measures is discrete, this is too much to ask. Instead, we
advocate an approach based on suitably restricting the class of
functions on which we would like to match statistical expec-
tations with sample (empirical) averages. Provided the Law of
Large Numbers holds uniformly over the restricted function
class, we can speak of typical sequences with respect to this
class and develop typicality-based achievability arguments in
close parallel to the finite-alphabet case. The central object of
study is the empirical process [9]–[11] indexed by the function
class, which gives information on the deviation of empirical
means from statistical means for a given realization of the
source under consideration, and the total variation distance is
replaced by the supremum norm of this empirical process.

The second contribution consists of applying our new notion
of typicality to several source coding problems which, follow-
ing the terminology of [3], can be thought of as “empirical
coordination” of actions in a two-node network. Roughly
speaking, the objective is to use communication resources in
order to reproduce (or approximate) the empirical distribution
of a given source sequence, rather than the sequence itself,
with or without side information. This coordination viewpoint
suggests a new operational framework suitable for problems
involving distributed learning, control, and sensing.

A. Preview of the results

Consider the two-node network shown in Figure 1. There is
an alphabet XA associated with Node A, and two alphabets,
XB and U, associated with Node B. Initially, Node A (resp.,
Node B) observes a random n-tuple Xn

A ∈ XnA (resp.,
Xn
B ∈ XnB), where the pairs (XA,1, XB,1), . . . , (XA,n, XB,n)

are i.i.d. draws from some specified probability law PXAXB
on XA × XB . We also have a target conditional probability
law PU |XA on U given XA. Node A, given its knowledge
of Xn

A, PXAXB , and PU |XA , communicates some information
J to Node B at rate R. The latter receives J and, using its
knowledge of Xn

B , PXAXB , and PU |XA , generates an n-tuple
Un ∈ Un.

Now imagine that there is an external observer with access
to Xn

A and Un, who also knows PXA and PU |XA . This
observer has a collection F of “test functions” f : XA×U→
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Fig. 1. Empirical coordination of actions in a two-node network.
Node A (resp., B) observes a random n-tuple Xn

A (resp., Xn
B), where

(XA,1, XB,1), . . . , (XA,n, XB,n) are i.i.d. pairs of correlated random vari-
ables. A message is sent from Node A to Node B at rate R to specify the
n-tuple Un.

[−1, 1] and can compute the empirical expectation (or sample
average) n−1

∑n
i=1 f(XA,i, Ui) and the “true” expectation

Ef(XA, U) w.r.t. the joint law PXAU = PXA ⊗ PU |XA for
any f ∈ F . We assume that Nodes A and B know F , but do
not know which f ∈ F the observer will pick. The objective
is then to minimize the expected worst-case deviation between
the empirical expectations and the true expectations:

minimize E sup
f∈F

∣∣∣∣∣
1

n

n∑

i=1

f(XA,i, Ui)− Ef(XA, U)

∣∣∣∣∣

over all admissible encoding and decoding strategies given
the rate constraint R and the information patterns at the two
nodes (i.e., which node knows what). In other words, the goal
is to ensure that, from the observer’s viewpoint, the empirical
distribution of {(XA,i, Ui)}ni=1 is as close as possible to the
target distribution PXAU in the sense that the corresponding
expectations of all f ∈ F are as close as possible, uniformly
over F . Operational criteria of this kind arise, e.g., in the
context of statistical learning from random samples [12], [13],
where the functions in F may be viewed as the losses of
various candidate predictors of U given XA.

In this paper, we consider two special cases of this set-up:

1) Given two alphabets X and Y, we take XA = X, XB =
∅, U = Y. This is a generalization of the basic two-
node empirical coordination problem [3, Section III.C]
to abstract alphabets. The work of [3] is, in turn,
related to the problem of communication of probability
distributions [14]. (A related problem, though with a
slightly different operational criterion, is lossy source
coding with respect to a family of distortion measures
[15].)

2) We have XA and U as above, and also XB = Z, where
Z is some third alphabet. This is a generalization of
the problem stated in 1), but now we also allow side
information at the decoder.

Our achievability results hinge on the assumption that the
function class F admits the Uniform Law of Large Numbers
(ULLN). Given an abstract alphabet Z, we say that a class F of
functions f : Z → [−1, 1] admits the ULLN if the following

holds: for any i.i.d. random process {Zi}∞i=1 over Z, we have

sup
f∈F

∣∣∣∣∣
1

n

n∑

i=1

f(Zi)− Ef(Z1)

∣∣∣∣∣
n→∞−−−−→ 0, a.s.

The quantity inside the | · | is referred to as the empirical
process associated with Zn, and describes the fluctuations of
the sample mean of each f around its expectation. We define
an n-tuple zn = (z1, . . . , zn) ∈ Zn to be ε-typical w.r.t. F for
a probability law P if

sup
f∈F

∣∣∣∣∣
1

n

n∑

i=1

f(zi)− EP f(Z)

∣∣∣∣∣ < ε.

Turning now to the set-up of Figure 1, let us assume that the
observer’s function class F satisfies the ULLN. Then a simple
achievability argument exploits the fact (which we prove under
mild regularity conditions) that, for any probability law Q =
QXAXBU under which XB → XA → U is a Markov chain,
there exist a rate-R encoding Ûn(Xn

A) from XnA into Un and
a deterministic mapping g from XnB into XnA, such that the
tuple (g(Xn

B), Ûn) is ε-typical w.r.t. F for Q, provided R >
I(XA;U |XB). When XB = ∅, we simply apply the above
argument to “degenerate” Markov chains of the form XA →
XA → U , where the rate condition becomes R > I(XA;U).

We list the salient features of our approach:
• When the underlying alphabet Z is finite, the ULLN is

satisfied by the class of all functions f : Z → [−1, 1],
and our definition of typicality reduces to strong typicality
[2], [3].

• When Z is a complete separable metric space, the ULLN
is satisfied by the class of all Lipschitz functions f : Z→
[−1, 1] with ‖f‖∞ ≤ 1 and Lipschitz constant bounded
by 1. Moreover, the ULLN in this case is equivalent to
almost sure weak convergence of empirical distributions
(Varadarajan’s theorem [16, Theorem 11.4.1]).

• In general, there is a veritable plethora of function classes
satisfying the ULLN (we present several examples in
Section III-A). For instance, when Z = Rd, the ULLN
is satisfied by the indicator functions of all halfspaces,
balls, or rectangles (and of finite unions or intersections
thereof). One example, particularly relevant in source
coding, is the collection of indicator functions of Voronoi
cells induced by an arbitrary set of m points in Rd, for
any fixed m — indeed, any such cell is an intersection of
O(m) halfspaces. Hence, our results apply to the setting
where XA × U ⊆ Rd and each (XA,i, Ui) is observed
through an m-point nearest-neighbor quantizer.

B. Related work

The focus of the present paper is exclusively on source
coding. However, a recent preprint of Mitran [17] uses weak
convergence to develop an extension of typical sequences to
Polish alphabets and then applies that definition to several
channel coding problems, including an achievability result for
Gel’fand–Pinsker channels [18] with input cost constraints.
What distinguishes Mitran’s work from ours is his careful
use of several equivalent characterizations of weak conver-
gence via the portmanteau theorem [16, Theorem 11.1.1].
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In particular, his approach requires an explicit construction
of a countable generating set for the underlying Borel σ-
algebra that consists of the continuity sets of the probability
law of interest. As a consequence, he is able to establish a
generalization of the Markov lemma [19], [20], which in turn
allows him to use binning just like in the finite-alphabet case.
By contrast, our notion of typicality is considerably broader
(and, in fact, contains the one based on weak convergence as a
special case), but, since we do not make any major structural
assumptions beyond those needed for the ULLN, we cannot
establish anything as strong as the Markov lemma. However,
our proof technique does not rely on the Markov lemma in
its strong form, and is more in the spirit of Wyner and Ziv
[21]–[23].

We also note that a restricted notion of typicality based on
weak convergence was used by Kontoyiannis and Zamir [24]
in the context of universal vector quantization using entropy
codes. The idea there is to consider sequences of increasing
length, whose empirical distributions converge in the weak
topology to the output distribution of an optimal test channel
in a Shannon rate-distortion problem.

C. Contents of the paper

The remainder of the paper is organized as follows. Sec-
tion II sets up the notation and lists the preliminaries. In
Section III we formally define function classes that satisfy
the ULLN and give several examples. Then, in Section IV we
motivate and formally describe our approach to typicality and
establish a number of key properties, including a lemma on
the preservation of typicality in a Markov structure. Next, in
Section V, using this lemma as the main technical tool, we
illustrate the power of the proposed new approach by proving
three theorems concerning fundamental limits on minimal
achievable rates for (i) two-node empirical coordination; (ii)
two-node empirical coordination with side information at the
decoder; and (iii) lossy source coding under a family of
distortion measures. Although these results apply to general
(uncountably infinite) alphabets, the proofs are as intuitive and
simple as in the finite-alphabet scenario. We follow up with
some concluding remarks in Section VI. Lengthy proofs and
discussions of auxiliary technical results are relegated to the
Appendices.

II. PRELIMINARIES AND NOTATION

All spaces in this paper are assumed to be standard Borel
spaces (for detailed treatments, see the lecture notes of Preston
[7] or Chapter 4 of Gray [8]):

Definition 1. A measurable space (Z,BZ) is standard Borel
if it can be metrized with a metric d such that (1) (Z, d)
is a complete separable metric space, and (2) BZ coincides
with the Borel σ-algebra of (Z, d) (the smallest σ-algebra
containing all open sets).

Remark 1. A Polish space (i.e., a separable topological space
whose topology can be metrized with a complete metric) is
automatically standard Borel. In fact, the most general known

class of standard Borel spaces consists of Borel subsets of
Polish spaces [8, Theorem 4.3].

From now on, when dealing with a (standard Borel) space
Z, we will often not mention its Borel σ-algebra explicitly. In
particular, we will tacitly assume that all probability measures
on Z are defined w.r.t. BZ. The main objects associated with
Z that are of interest to us are as follows:
• P(Z) is the space of all probability measures on Z
• M(Z) is the space of all measurable functions f : Z→ R
• M b(Z) ⊂ M(Z) is the normed space of all bounded

measurable functions f : Z→ R with the sup norm

‖f‖∞ , sup
z∈Z
|f(z)|

• M b,1(Z) ,
{
f ∈M b(Z) : ‖f‖∞ ≤ 1

}
.

Other notation will be introduced as needed.
Standard Borel spaces possess just enough useful structure

for our purposes. In particular, their σ-algebras are countably
generated and contain all singletons. They also admit the
existence of regular conditional distributions: If Z = X × Y
with the product σ-algebra, then the probability law P ∈ P(Z)
of any random couple (X,Y ) ∈ Z can be disintegrated as

P (A×B) =

∫

A

PY |X(B|x)PX(dx),∀A ∈ BX, B ∈ BY

where PX ∈ P(X) is the marginal distribution of X and
PY |X(·|·) : BY × X → [0, 1] is a Markov kernel, i.e.,
PY |X(·|x) ∈ P(Y) for all x ∈ X and PY |X(B|·) ∈ M(X)
for all B ∈ BY. Given a random triple (U,X, Y ) ∈ U×X×Y
with joint law P ∈ P(U×X×Y), we will say that they form
a Markov chain in that order (and write U → X → Y ) if

PU |XY (A|x, y) = PU |X(A|x), ∀A ∈ BU
for P -almost all x, y.

We will often use de Finetti’s linear functional notation for
expectations [25, Section 1.4]. That is, for any P ∈ P(Z) and
a P -integrable function f : Z→ R,

P (f) , EP f(Z) ≡
∫

Z

fdP,

and we will extend this notation in an obvious way to integrals
with respect to signed Borel measures on Z. Given a class F of
measurable functions f ∈M b,1(Z), we can define a seminorm
on the space of all signed measures on Z via

‖ν‖F , sup
f∈F
|ν(f)|.

As an example, ‖P−P ′‖Mb,1(Z) is precisely the total variation
distance

‖P − P ′‖TV , 2 sup
A∈BZ

|P (A)− P ′(A)| (1)

between P, P ′ ∈ P(Z).
We will make use of several standard information-theoretic

definitions [5]. The divergence between P and P ′ in P(Z) is
defined as

D(P‖P ′) ,
{
P (log(dP/dP ′)) , if P � P ′

+∞, otherwise
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Given a Q ∈ P(X×Y), the mutual information between X ∈
X and Y ∈ Y with joint law Q is

I(Q) , D(Q‖QX ⊗QY ),

where QX ⊗ QY is the product of the marginals. Whenever
Q is clear from context, we will also write I(X;Y ) instead
of I(Q). We will use standard notation for such things as the
conditional mutual information.

III. UNIFORM LAWS OF LARGE NUMBERS AND
GLIVENKO–CANTELLI CLASSES

Given an n-tuple zn = (z1, . . . , zn) ∈ Zn, let us denote by
Pzn the induced empirical measure:

Pzn ,
1

n

n∑

i=1

δzi ,

where δzi is the Dirac measure concentrated at zi (since BZ
contains all singletons, δz ∈ P(Z) for every z ∈ Z). If {Zi}∞i=1

is an i.i.d. sequence with common distribution P ∈ P(Z),
then the Strong Law of Large Numbers says that, for any
f ∈M b,1(Z), the empirical means

PZn(f) =
1

n

n∑

i=1

f(Zi), n ∈ N

converge to the true mean P (f) almost surely. By the union
bound, this holds for any finite family of functions. In this
paper, we consider infinite function classes that admit a
Uniform Law of Large Numbers — that is, absolute deviations
between empirical and true means converge to zero uniformly
over the function class. The canonical example of such a
class appears in the celebrated Glivenko–Cantelli theorem [16,
Theorem 11.4.2]: Let Z be a real-valued random variable with
CDF FZ , and let {Zi}∞i=1 be an infinite sequence of i.i.d.
copies of Z. For each n, consider the empirical CDF

FZn(z) ,
1

n

n∑

i=1

1{Zi≤z}.

The Glivenko–Cantelli theorem then says that

sup
z∈R
|FZn(z)− FZ(z)| n→∞−−−−→ 0 a.s.

To cast it as a statement about a function class, consider

F ,
{
fz = 1(−∞,z] : z ∈ R

}
.

Then for any z ∈ R,

FZn(z) = PZn(fz)

FZ(z) = PZ(fz)

and consequently

sup
z∈R
|FZn(z)− FZ(z)| = ‖PZn − P‖F n→∞−−−−→ 0 a.s.

This motivates the following definition [9]–[11]:

Definition 2. A class F of measurable functions f ∈M b,1(Z)
is called Glivenko–Cantelli1 (or GC, for short) if

‖PZn − P‖F n→∞−−−−→ 0 a.s. (2)

for every P ∈ P(Z), where {Zi}∞i=1 is an i.i.d. random process
with marginal distribution P .

Remark 2. In view of this definition, the classical Glivenko–
Cantelli theorem can be paraphrased as follows: The class of
all indicator functions of semi-infinite intervals of the form
(−∞, z], z ∈ R, is GC.

Remark 3. The restriction to bounded functions is mostly
needed for technical convenience and can be removed by
means of suitable moment conditions and straightforward,
though tedious, truncation arguments. A nice side benefit
of the boundedness assumption, though, is that no loss of
generality occurs if the almost sure convergence in (2) is
replaced with convergence in probability [10], [26].

Remark 4. It should be borne in mind that when the function
class F is uncountable, ‖PZn − P‖F may not be a random
variable (there is always a risk of spawning a nonmeasurable
monster whenever one dabbles in uncountable operations).
There are a number of ways to deal with such issues, as
detailed in [9, Appendix] or [10, Section 2.3]. For our pur-
poses, it will suffice to assume that F is countable or “nice”
in the sense that it contains a countable subset G such that for
every f ∈ F there is a sequence {gm} in G converging to f
pointwise. Then

‖PZn − P‖F = ‖PZn − P‖G ,
and the r.h.s. is a measurable function of Zn [10, p. 110].

Let (Ω,B,P) be an underlying probability space for the
random process {Zi}. Then for each n we can construct
another random process on (Ω,B,P), indexed by F :

∆
(n)
f (ω) , PZn(ω)(f)− P (f), f ∈ F .

This is an instance of an empirical process [9]–[11], which
is used to describe the fluctuations of the empirical means
PZn(f) around the expectation P (f). A GC class is one for
which the `∞(F) norms

∥∥∆
(n)
f (ω)

∥∥
F = sup

f∈F

∣∣∆(n)
f (ω)

∣∣

of the empirical processes {∆(n)
f }f∈F , n ≥ 1, converge to

zero almost surely.

A. Examples of Glivenko–Cantelli classes

We close this section by listing several examples of GC
classes. Usually, whether or not a given class F is GC depends
on how “large” it is. The simplest notion of size is captured
by the (metric) entropy numbers of F [27]. Given any ε > 0,
the covering number N(ε,F , Q) of F ⊂ M b,1(Z) w.r.t. a
probability measure Q ∈ P(Z) is the minimal number of balls

1Strictly speaking, the proper term is “universal Glivenko–Cantelli,” but we
will follow standard usage and just say “Glivenko–Cantelli.”
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{g : ‖g − f‖L1(Q) ≤ ε}, f ∈ M b,1(Z), of radius ε needed to
cover F . The entropy number of F is logN(ε,F , Q). Then
(under additional measurability assumptions, cf. Remark 4) F
is GC if

sup
Q∈P(Z)

N(ε,F , Q) <∞, ∀ε > 0.

Other conditions for a class to be GC involve alternative no-
tions of entropy, such as entropy with bracketing. Chapter 2 of
van der Waart and Wellner [10] contains a detailed exposition
of these matters. Examples 1–4 below follow [10]; Example 5
shows that the well-known theorem of Varadarajan on almost
sure weak convergence of empirical measures can be stated in
the form of a ULLN for an appropriate GC class.

Example 1 (Vapnik–Chervonenkis classes). Given any collec-
tion A ⊂ BZ and any finite set C ⊂ Z, define

S(A, C) , |{C ∩A : A ∈ A}|
Sn(A) , max

|C|≤n
S(A, C)

and let V (A) , max {n ∈ N : Sn(A) = 2n}. After the fun-
damental work of Vapnik and Chervonenkis [28] where these
combinatorial parameters were first introduced, any class A
such that V (A) < ∞ is called a Vapnik–Chervonenkis (VC)
class, and V (A) is called its Vapnik–Chervonenkis (VC)
dimension. Examples of VC classes include:

• The class of all rectangles in Rd with VC dimension 2d.
• The class of all linear halfspaces Hw,b = {z ∈ Rd :
〈w, z〉+ b ≥ 0} for w ∈ Rd, b ∈ R, with VC dimension
d+ 1.

• The class of all closed balls Bx,r = {z ∈ Rd : ‖z−x‖ ≤
r} for x ∈ Rd, r ∈ R+, with VC dimension d+ 1.

Given a collection A ⊂ BZ, let F ≡ FA consist of the
indicator functions of the elements ofA: FA = {1A : A ∈ A}.
Then FA is GC, provided A is a VC class.

Finite set-theoretic operations (unions, intersections, com-
plements) on VC classes yield VC classes as well. In particu-
lar, consider the collection of all Voronoi cells induced by all
m-point subsets of Rd. Each member of this collection is an
intersection of O(m) halfspaces, and therefore we have a VC
class. Likewise, injective images of VC classes are VC.

Example 2 (VC-subgraph classes). Given a function f ∈
M(Z), its subgraph is the subset of Z×R, given by {(z, t) :
f(z) > t}. A class of functions F ⊂ M(Z) is called a VC-
subgraph class if the collection of all subgraphs of all f ∈ F
is a VC class in Z× R. We define V (F), the VC dimension
of F , as the VC dimension of the corresponding collection of
subgraphs. For example, if F is a linear span of m functions
f1, . . . , fm ∈ M(Z), then it is a VC-subgraph class with
V (F) ≤ m+2. In this paper, we are interested primarily in the
case when F ⊂ M b,1(Z). Hence, if f1, . . . , fm ∈ M b,1(Z),
then their convex hull is a VC-subgraph class.

Example 3 (VC-hull classes). A class of functions F ⊂
M(Z) is a VC-hull class if there exists a VC-subgraph class
G ⊂ M(Z), such that every f ∈ F is a pointwise limit of a

sequence of functions {fn} contained in the symmetric convex
hull of G,

{
m∑

i=1

cigi : m ∈ N;

m∑

i=1

|ci| ≤ 1; g1, . . . , gm ∈ G
}

For example, the set of all monotone functions f : R→ [0, 1]
is VC-hull (though not VC-subgraph).

Example 4 (Smooth functions). Let Z = [0, 1]d. For any
multi-index, i.e., a vector k = (k1, . . . , kd) ∈ {0, 1, . . .}d,
define the differential operator

Dk ,
∂|k|

∂zk11 . . . ∂zkdd
,

where |k| , k1 + . . .+ kd. Given α > 0, define for a function
f : [0, 1]d → R

‖f‖α , max
k:|k|≤bαc

sup
z

∣∣Dkf(z)
∣∣

+ max
k:|k|=bαc

sup
z 6=z′

∣∣Dkf(z)−Dkf(z′)
∣∣

‖z − z′‖α−bαc

Let Cα be the set of all continuous functions f : [0, 1]d → R
with ‖f‖α ≤ 1. Then Cα is a GC class.

Example 5 (Bounded Lipschitz functions). Let (Z, d) be a
complete separable metric space. Define the Lipschitz semi-
norm ‖ · ‖L on M(Z) by

‖f‖L , sup
z 6=z′

|f(z)− f(z′)|
d(z, z′)

and the bounded Lipschitz norm ‖ · ‖BL by

‖f‖BL , ‖f‖∞ + ‖f‖L.

Note that any function f with ‖f‖BL <∞ is automatically in
Cb(Z), the Banach space of all bounded continuous functions
on Z.

Let F1
BL = {f ∈ Cb(Z) : ‖f‖BL ≤ 1}. Then F is a

GC class. This is a consequence of the fact that the bounded
Lipschitz metric (also known as the Fortet–Mourier metric)

β(P, P ′) , sup
f∈F1

BL

|P (f)− P ′(f)|

≡ ‖P − P ′‖F1
BL

P, P ′ ∈ P(Z)

metrizes the topology of weak convergence in P(Z). Recall
that a sequence {Pn} in P(Z) converges weakly to P ∈ P(Z)
(the fact denoted by Pn  P ) if

Pn(f)
n→∞−−−−→ P (f), ∀f ∈ Cb(Z).

Then Pn  P if and only if β(Pn, P )
n→∞−−−−→ 0 [16,

Theorem 11.3.3]. Now, according to a theorem of Varadarajan
[16, Theorem 11.4.1], given any i.i.d. random process {Zi}∞i=1

over Z with common marginal distribution P ∈ P(Z), the
empirical distributions PZn converge weakly to P almost
surely:

PZn  P a.s. (3)
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From the foregoing discussion, (3) is equivalent to

β(PZn , P ) = sup
f∈F1

BL

|PZn(f)− P (f)|

≡ ‖PZn − P‖F1
BL

n→∞−−−−→ 0 a.s.

In other words, F1
BL is a GC class, and Varadarajan’s theorem

can be paraphrased to say that this function class obeys a
ULLN.

IV. RETHINKING TYPICALITY FOR GENERAL ALPHABETS

Now that all necessary definitions are made, we can intro-
duce our revised notion of typicality for standard Borel spaces.

For finite alphabets, there are multiple equivalent defini-
tions of a typical sequence. Here is one, based on the total
variation distance [3], often referred to as strong typicality [2,
Section 10.6]:

Definition 3. Given a finite set Z and a probability distribution
(mass function) P on it, the typical set T (n)

ε (P ), for ε > 0, is
the set of all n-tuples zn ∈ Zn whose empirical distributions
Pzn are ε-close to P in total variation:

T (n)
ε (P ) , {zn ∈ Zn : ‖Pzn − P‖TV < ε} .

By the Law of Large Numbers, if {Zi} is a sequence of i.i.d.
draws from P , then

P
(
Zn 6∈ T (n)

ε (P )
) n→∞−−−−→ 0.

If Z is a Cartesian product X×Y, then one can define jointly
and conditionally typical sets and sequences [2].

However, all of this breaks down for general (uncountably
infinite) alphabets. The reason is that the total variation dis-
tance between any discrete measure and a nonatomic measure
is equal to 2. Indeed, if (Z,BZ) is a standard Borel space
and P ∈ P(Z) assigns zero mass to singletons, P ({z}) =
0,∀z ∈ Z, then we can take any n-tuple zn ∈ Zn and let A
be the set of its distinct elements, so that Pzn(A) = 1 and
P (A) = 0. Using this and the definition (1), we deduce that
‖Pzn − P‖TV = 2.

Of course, one could use typicality arguments by consider-
ing arbitrary finite quantizations of the underlying spaces, but,
as long as we are dealing with nonatomic measures, this does
not get rid of the above issue even in the limit of increasingly
fine quantizations. While discretization is sufficient for many
purposes [5], there is another issue that arises when dealing
with Markov structures in multiterminal settings: quantization
destroys the Markov property [29, Section VIII].

To resolve this conundrum, we recall (cf. Sec. II) that

‖P − P ′‖TV = sup
‖f‖∞≤1

|P (f)− P ′(f)|,

where the supremum is over all measurable functions f :
Z→ [−1, 1]. When the underlying measurable space supports
nonatomic probability measures, this function class turns out
to be too large to admit uniform convergence of empirical
averages to statistical expectations. A natural solution, then, is
to restrict the class of functions:

Definition 4. Let Z be a Borel space and let F ⊂ M b,1(Z)
be a GC class of functions. Given a probability measure P ∈

P(Z), the typical set T (n)
ε,F (P ), for ε > 0, is the set of all n-

tuples zn ∈ Zn whose empirical distributions Pzn are ε-close
to P in the ‖ · ‖F seminorm:

T (n)
ε,F (P ) , {zn ∈ Zn : ‖Pzn − P‖F < ε} .

One thing to note is that when Z is finite, we can just
take F = M b,1(Z) and immediately recover Definition 3.
Moreover, if Z is a complete separable metric space, then we
can take F = F1

BL, in which case our notion of typicality
becomes compatible with the bounded Lipschitz metric that
metrizes the weak topology on the space of probability laws
(cf. Example 5).

A. Basic properties of GC typical sets

We now establish several basic properties of GC typical
sets. First of all, any sufficiently long sequence emitted by a
stationary memoryless source is typical with high probability:

Proposition 1. Consider a Borel space Z and a GC class
F ⊂ M b,1(Z). If {Zi}∞i=1 is an i.i.d. random process over Z
with common law P , then for any ε > 0

lim
n→∞

P
(
Zn 6∈ T (n)

ε,F (P )
)

= 0

Proof: Immediate from definitions.
Another desirable property is for typicality to be preserved

under coordinate projections. It is not hard to show that, for
any two finite alphabets X and Y and any two n-tuples xn ∈
Xn and yn ∈ Yn that are jointly typical w.r.t. some P ∈
P(X×Y) in the sense of Definition 3, xn (resp., yn) is typical
w.r.t. the marginal distribution PX (resp., PY ). The following
lemma gives a sufficient condition for GC typicality to be
preserved under projections:

Proposition 2. Suppose Z = X × Y. Let πX : Z → X be the
coordinate projection mapping onto X, i.e., πX(x, y) = x, and
extend it to tuples via

πX((x1, y1), . . . , (xn, yn)) = (x1, . . . , xn).

Then for any n ∈ N, any ε > 0, any P ∈ P(Z), and any GC
class FX ⊂ M b,1(X) such that FX ◦ πX ⊆ F , we have the
inclusion

πX

(
T (n)
ε,F (P )

)
⊆ T (n)

ε,FX
(PX). (4)

Remark 5. As can be seen from the proof below, the class FX

need not be GC in order for the inclusion (4) to hold. However,
then one would not be able to transfer a convergence result
like Proposition 1 to the X-valued part of the sequence.

Proof: Suppose zn = ((x1, y1), . . . , (xn, yn)) ∈
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T (n)
ε,F (P ). Then

‖Pxn − PX‖FX

= sup
f∈FX

∣∣∣∣∣
1

n

n∑

i=1

f(xi)− PX(f)

∣∣∣∣∣

= sup
f∈FX

∣∣∣∣∣
1

n

n∑

i=1

f ◦ πX(zi)− P (f ◦ πX)

∣∣∣∣∣

≤ sup
f∈F

∣∣∣∣∣
1

n

n∑

i=1

f(zi)− P (f)

∣∣∣∣∣
= ‖Pzn − P‖F
< ε.

Thus, xn ∈ T (n)
ε,FX

(PX), which proves (4).
As an example, let X = Rk, Y = Rm, let F be the collection

of indicator functions of all halfspaces in Z = Rk+m, and let
FX be the collection of indicator functions of all halfspaces
in X (cf. Example 1 for definitions and notation). For any
w ∈ Rk, b ∈ R and z = (x, y) ∈ Z, we have

〈w, x〉+ b = 〈w, πX(z)〉+ b

= 〈(w, 0), (x, y)〉+ (b, 0).

Hence, 1H(w,0),(b,0)
= 1H(w,b)

◦ πX for any choice of w ∈
Rk, b ∈ R, so the condition of the lemma is satisfied.

Finally, we show that our definition of typicality can work
in a multiterminal setting. Ideally, one would like to have
something like the Markov lemma [19], [20]: If X → Y → Z
is a Markov chain, (xn, yn) is typical, and Zn is obtained by
passing yn through a memoryless channel, then (xn, yn, Zn)
should be typical with high probability. However, in our setting
such a statement does not make much sense without assuming
additional structure for the function class F .2 Instead, we
establish the following result, which is essentially an abstract
alphabet version of the so-called Piggyback Coding Lemma
of Wyner [21, Lemma 4.3]:

Lemma 1. Let U ∈ U, V ∈ V, and W ∈ W be random
variables taking values in their respective standard Borel
spaces according to a joint distribution PUVW , such that
U → V → W is a Markov chain and I(V ;W ) < ∞. Let
{(Ui, Vi,Wi)}∞i=1 be a sequence of i.i.d. draws from PUVW .
Let F ⊂M b,1(U×W) be a GC class of functions. For a given
ε > 0, there exist an n = n(ε) and a mapping Φn : Vn →Wn,
such that

1

n
log |{Φn(vn) : vn ∈ Vn}| ≤ I(V ;W ) + ε (5)

and

P
(

(Un,Φn(V n)) 6∈ T (n)
ε,F (PUW )

)
< ε. (6)

Proof: For each n, define the function ψn ∈M b,1(Un ×
Wn) by

ψn(un, wn) , 1{
(un,wn)6∈T (n)

ε,F (PUW )
}.

2Incidentally, this is exactly what Mitran [17] accomplishes for his notion
of typicality based on weak convergence.

Node A Node B

Ŷ n = dn(J)

J = en(Xn)

Fig. 2. Two-node empirical coordination.

Since F is a GC class, we have by Proposition 1

lim
n→∞

Eψn(Un,Wn) = 0.

The desired statement now follows from Lemma A.1 in
Appendix A.

V. APPLICATIONS TO EMPIRICAL COORDINATION

We now show three sample applications of GC typicality to
the problem of empirical coordination in a two-node network
shown in Figure 1. This problem, recently formulated and
studied by Cuff et al. [3], concerns joint generation of actions
at the two nodes, such that the empirical distribution of the
actions over time approximates, asymptotically, a desired joint
distribution in total variation. Our goal is to extend this setting
to general alphabets. As we have shown in Section IV, the total
variation criterion is unsuitable for uncountable alphabets, so
we consider a relaxation to an appropriate GC class.

As we will show, our notion of GC typicality and Lemma 1
can be used to develop particularly intuitive achievability argu-
ments and to obtain single-letter characterizations of the best
achievable rates. Moreover, convexity of the ‖·‖F seminorm is
helpful for proving converse results. The downside, however,
is that, in general, it is not possible to compute the best
achievable rates explicitly even for “simple” sources due to
the presence of the supremum over F .

A. Two-node empirical coordination

Consider the two-node network shown in Fig. 2, where
Node A (resp., Node B) generates actions from a Borel space
X (resp., Y). At Node A, the actions are drawn i.i.d. from a
fixed law PX ∈ P(X). We also have a conditional probability
measure PY |X that describes the desired distribution of actions
at Node B given the actions at Node A. Following the
terminology of [3], we will also refer to the choice of PY |X
as a coordination. Node A can communicate with Node B
over a rate-limited channel, and Node B uses the data it
receives to choose its actions. For each n, let Xn ∈ Xn and
Ŷ n ∈ Yn denote the action sequences at the two nodes. Given
a class F ⊂M b,1(X× Y) of measurable “test functions” and
a desired distortion level ∆ ≥ 0, the goal is for Node A to
communicate with Node B at a minimal rate to guarantee that,
asymptotically,

E
∥∥P(Xn,Ŷ n) − PX ⊗ PY |X

∥∥
F . ∆,
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where PXY = PX ⊗ PY |X is the joint law induced by the
source PX and the coordination PY |X . This is a generalization
of the problem of communication of probability distributions,
recently formulated and studied by Kramer and Savari [14] in
the finite-alphabet setting. Here, we allow general alphabets.

Definition 5. An (n,M)-code is a pair (en, dn), where en :
Xn → [M ] is the encoder and dn : [M ]→ Yn is the decoder,
and [M ] , {1, 2, . . . ,M}. We will denote Ŷ n = dn(en(Xn)).

Definition 6. Given a source PX , a coordination PY |X , and
a distortion ∆, let E(∆, PY |X) denote the set of all Q ∈
P(X× Y), such that

QX = PX and ‖Q− PX ⊗ PY |X‖F ≤ ∆.

Define the rate-distortion function for empirical coordination
as

R(∆, PY |X) , inf
Q∈E(∆,PY |X)

I(Q).

Theorem 1. Let PY |X be a given coordination and ∆ a given
distortion level.

a) Direct part: If F is a GC class and R(∆, PY |X) <∞,
then for any ε > 0 there exist n ≡ n(ε) and an (n, 2nR)
code (en, dn) with R < R(∆, PY |X) + ε satisfying

E
∥∥P(Xn,Ŷ n) − PX ⊗ PY |X

∥∥
F ≤ ∆ + ε. (7)

b) Converse part: Suppose that there exists an (n, 2nR)-
code Ŷ n(Xn) = dn(en(Xn)), satisfying

E
∥∥P(Xn,Ŷ n) − PX ⊗ PY |X

∥∥
F ≤ ∆. (8)

Then R ≥ R(∆, PY |X).

Remark 6. Note that the converse does not require F to
be GC. However, it must be sufficiently “well-behaved” for
‖P(Xn,Ŷ n) − PX ⊗ PY |X‖F to be measurable for any choice
of a (measurable) encoder-decoder pair.

Proof (direct part): To prove the direct part, fix
(∆, PY |X) and pick any Q ∈ E(∆, PY |X) such that I(Q) <
R(∆, PY |X) + ε/2. Let X ∈ X and U ∈ Y have joint
law Q. Then X → X → U is a Markov chain, and
Lemma 1 guarantees the existence of an n and a mapping
Φn : Xn → Yn, such that

1

n
log |{Φn(Xn)}| ≤ I(Q) + ε/2 < R(∆, PY |X) + ε

and

E
∥∥P(Xn,Φn(Xn)) −Q

∥∥
F ≤ ε.

Let Ŷ n = Φn(Xn). Then the triangle inequality gives

E
∥∥P(Xn,Ŷ n) − PX ⊗ PY |X

∥∥
F

≤ E
∥∥P(Xn,Ŷ n) −Q

∥∥
F +

∥∥Q− PX ⊗ PY |X
∥∥
F

≤ ∆ + ε,

which establishes (7).
Proof (converse part): For the converse, we will use the

time mixing technique (cf. [3] and Appendix B). Let Ŷ n(Xn)
be an (n, 2nR)-code such that (8) holds. Let T be a random

variable uniformly distributed over the set [n], independently
of Xn, and let Q̂ denote the joint distribution of (XT , ŶT ).
Then

nR
(a)

≥ H(Ŷ n(Xn))

= H(Ŷ n(Xn))−H(Ŷ n(Xn)|Xn)

= I(Xn; Ŷ n(Xn))

(b)

≥
n∑

t=1

I(Xt; Ŷt)

(c)
= nI(XT ; ŶT |T )

(d)
= nI(XT ; ŶT , T )

≥ nI(XT ; ŶT )

= nI(Q̂),

where:
• (a) holds because the log-cardinality of the range of Ŷ n(·)

is bounded by nR
• (b) is a standard information-theoretic fact: if Xn is

an i.i.d. tuple, then for any sequence Ŷ1, . . . , Ŷn jointly
distributed with Xn

I(Xn; Ŷ n) ≥
n∑

t=1

I(Xt; Ŷt)

• (c) follows from the construction of T
• (d) holds because, by the chain rule for mutual informa-

tion,

I(XT ; ŶT , T ) = I(XT ;T ) + I(XT ; ŶT |T ),

where the first term on the r.h.s. is zero because Xn is
i.i.d. (see Fact 1 in Appendix B).

The remaining steps are consequences of other definitions and
standard information-theoretic identities.

Since Xn is i.i.d., XT is independent of T and has the
same distribution as X1, namely PX . Moreover, the expected
empirical distribution EP(Xn,Ŷ n) is equal to P(XT ,ŶT ) ≡ Q̂
(Fact 2 in Appendix B). Thus, we can write
∥∥Q̂− PX ⊗ PY |X

∥∥
F =

∥∥EP(Xn,Ŷ n) − PX⊗Y
∥∥
F

(a)

≤ E
∥∥P(Xn,Ŷ n) − PX ⊗ PY |X

∥∥
F

(b)

≤ ∆,

where (a) follows from convexity, and (b) from (8). Hence,
Q̂ ∈ E(∆, PY |X), so R ≥ I(Q̂) ≥ R(∆, PY |X).

B. Two-node empirical coordination with side information

We now consider a generalization of the set-up from the pre-
ceding section, in which we also allow side information at the
decoder. As before, we have a source distribution PX ∈ P(X)
and a desired coordination PY |X . In addition, we have a side
information channel PZ|X with input alphabet X and output
alphabet Z, which is also assumed to be standard Borel. Let
{(Xi, Zi)}∞i=1 be an infinite sequence of independent draws
from PXZ = PX ⊗ PZ|X . Consider the two-node network
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Node A Node B
J = en(Xn)

bY n = dn(J, Zn)

Xn Zn

Fig. 3. Two-node empirical coordination with side information.

shown in Figure 3. Node A (resp., Node B) has perfect
observations of {Xi} (resp., {Zi}). As before, Node A can
transmit information to Node B over a rate-limited channel.
The goal is for Node A to communicate with Node B at a
minimal rate, so that Node B can approximate the desired
empirical process to within a given distortion level ∆. More
precisely, given a block length n and denoting by Ŷ n the
reconstruction of Y n at Node B, we wish to guarantee that

E
∥∥P(Xn,Ŷ n) − PXY

∥∥
F . ∆.

As we will see, the minimum achievable rate admits a single-
letter characterization reminiscent of the Wyner–Ziv rate-
distortion function for lossy source coding with decoder side
information [22], [23].

Definition 7. An (n,M)-code is a pair (en, dn), where en :
Xn → [M ] is the encoder and dn : [M ] × Zn → Yn is the
decoder. We will denote Ŷ n = dn(en(Xn), Zn).

Definition 8. Given a source PX , a coordination PY |X , and a
side information channel PZ|X , let E(∆, PY |X , PZ|X) denote
the set

{Q ∈ P(X× Z× U) : U is standard Borel}

such that:

1) QXZ = PXZ
2) QU |XZ = QU |X (i.e., Z → X → U is a Markov chain)
3) There is a function g : Z× U→ Y, such that

‖QXW − PXY ‖F ≤ ∆,

where W = g(Z,U).

With this, define the rate-distortion function for empirical
coordination with decoder side information as

R(∆, PY |X , PZ|X) , inf
Q∈E(∆)

[I(QXU )− I(QZU )].

Theorem 2. Let F be a class of functions f : X×Y → [0, 1]
and ∆ a nonnegative distortion level.

a) Direct part: Suppose that F is a GC class, and that
for any δ > 0, µ ∈ P(X × Y) one can find a finite set
{ŷj}Nj=1 ⊂ Y and a quantizer q : Y → {ŷj}, such that

‖µXq(Y ) − µ‖F ≤ δ. (9)

If R(∆, PY |X , PZ|X) < ∞, then for any ε > 0 there
exist an n ≡ n(ε) and an (n, 2nR) code with R <
R(∆, PY |X , PZ|X) + ε satisfying

E
∥∥P(Xn,Ŷ n) − PXY

∥∥
F ≤ ∆ + ε, (10)

where Ŷ n = dn(en(Xn), Zn).
b) Converse part: Suppose that there exists an (n, 2nR)-

code Ŷ n = dn(en(Xn), Zn) satisfying

E
∥∥P(Xn,Ŷ n) − PXY

∥∥
F ≤ ∆. (11)

Then R ≥ R(∆, PY |X , PZ|X).

Remark 7. The quantization assumption (9) is a “smoothness”
condition on F , and is akin to an assumption made by Wyner
in [23] in order to extend the achievability part of the finite-
alphabet result of [22] to abstract alphabets.

Proof (direct part): First we show that, owing to the
quantization assumption (9), we can assume w.l.o.g. that both
Z and the auxiliary alphabet U are finite. This follows from
the following lemma, whose proof is given in Appendix C:

Lemma 2. Consider any law Q ∈ E(∆, PY |X , PZ|X). Then,
for any δ > 0, there exist finite measurable partitions {Ai}N1

i=1

and {Bj}N2
j=1 of Z and U and a function g1 : Z×U→ Y such

that:
a) ‖QXW1

− PXY ‖F ≤ ∆ + δ, where W1 = g1(Z,U)
b) g1 is constant on the rectangles Ai × Bj , 1 ≤ i ≤

N1, 1 ≤ j ≤ N2

c) I(QXŨ ) − I(QZ̃Ũ ) ≤ I(QXU ) − I(QZU ) + δ where
Z̃ = i for Z ∈ Ai and Ũ = j for U ∈ Bj .

Let us therefore assume that U and Z are both finite. We will
use a Wyner–Ziv style two-step argument [22], [23]: The first
step consists of using a long block code that preserves typical-
ity (following Lemma 1), while the second step uses a Slepian–
Wolf code [30] to communicate the codewords with negligible
probability of error. Pick any Q ∈ E(∆, PY |X , PZ|X) such that

I(QXU )− I(QZU ) < R(∆, PY |X , PZ|X) + ε/2.

Define a function ḡ : X × Z × U → X × Y by ḡ(x, z, u) ,
(x, g(z, u)). Consider the function class F◦ ḡ ⊂M b,1(X×Z×
U). Since F is a GC class, so is F ◦ ḡ — to see this, fix any
µ ∈ P(X × Z × U) and let {(Xi, Zi, Ui)}∞i=1 be a sequence
of i.i.d. draws from µ. Then for any n we can write

‖P(Xn,Zn,Un) − µ‖F◦ḡ

= sup
f∈F

∣∣∣∣∣
1

n

n∑

i=1

f(Xi, g(Zi, Ui))− Ef(X, g(Z,U))

∣∣∣∣∣

= sup
f∈F

∣∣∣∣∣
1

n

n∑

i=1

f(Xi,Wi)− Ef(X,W )

∣∣∣∣∣
≡ ‖P(Xn,Wn) − µXW ‖F ,

where W = g(Z,U). Thus, the GC property of F ◦ ḡ follows
from the GC property of F .3 In view of this, we can apply

3By contrast, in order for the GC property to be preserved under left
compositions, i.e., for ψ ◦ F to be a GC class for some ψ : [0, 1] → [0, 1],
additional requirements must be imposed on ψ (such as monotonicity or
Lipschitz continuity).
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Lemma 1 to the Markov chain (X,Z)→ X → U and to the
GC class F ◦ ḡ to derive the existence of a large enough n1

and a mapping Φn1 : Xn1 → Un1 , such that

1

n1
log |{Φn1

(Xn1)}| ≤ I(QXU ) + ε/2

and

E
∥∥P(Xn1 ,Zn1 ,Ûn1 ) −QXZU

∥∥
F◦ḡ

= E
∥∥P(Xn1 ,Ŵn1 ) −QXW

∥∥
F ≤ ε/2,

where

Ŵn1 =
(
g(Z1, Û1), . . . , g(Zn1 , Ûn1)

)

Ûn1 = Φn1
(Xn1).

We can use a blocking argument along the lines of Lemmas 3
and 5 of Wyner and Ziv [22] to show that a sufficiently long
sequence Ûn1(1), . . . , Ûn1(n2) of i.i.d. realizations of Ûn can
be losslessly encoded, using a Slepian–Wolf code, at a rate of

1

n1
H
(
Ûn1

∣∣Zn1
)
≤ I(QXU )− I(QZU ) + ε/2

< R(∆, PY |X , PZ|X) + ε.

Let n = n1n2, and let {Ũi}ni=1 denote the resulting decoding.
Then, if n2 is large enough, we can guarantee that

E
∥∥P(Xn,Zn,Ũn) − P(Xn,Zn,Ûn)

∥∥
F◦ḡ ≤ ε/2,

and therefore, with Ŷ n =
(
g(Z1, Ũ1), . . . , g(Zn, Ũn)

)
, that

E
∥∥P(Xn,Ŷ n) −QXW

∥∥
F

= E
∥∥P(Xn,Zn,Ũn) −QXZU

∥∥
F◦ḡ

≤ E
∥∥P(Xn,Zn,Ũn) − P(Xn,Zn,Ûn)

∥∥
F◦ḡ

+ E
∥∥P(Xn,Zn,Ûn) −QXZU

∥∥
F◦ḡ

≤ ε.

The triangle inequality then yields

E
∥∥P(Xn,Ŷ n) − PXY

∥∥
F

≤ E
∥∥P(Xn,Ŷ n) −QXW

∥∥
F +

∥∥QXW − PXY
∥∥
F

≤ ∆ + ε.

Thus, we have constructed a (n, 2nR)-code with rate R <
R(∆, PY |X , PZ|X) + ε.

Proof (converse part): To prove the converse, we again
use time mixing. Let (en, dn) be an (n, 2nR) code, let J =
en(Xn) and Ŷ n = dn(J, Zn), and let T be uniformly dis-
tributed on [n] independently of (Xn, Zn). Define an auxiliary
random variable

U = (J,XT−1, ZT−1, ZnT+1, T )

(cf. [3], [22], [23]) and note that ZT → XT → U is a Markov
chain. Moreover,

nR
(a)

≥ H(J)

≥ H(J |Zn)

= I(Xn; J |Zn)

=

n∑

t=1

I(Xt; J |Zn, Xt−1)

(b)
=

n∑

t=1

I(Xt; J,X
t−1, Zt−1, Znt+1|Zt)

(c)
= nI(XT ; J,XT−1, ZT−1, ZnT+1|ZT , T )

(d)
= nI(XT ; J,XT−1, ZT−1, ZnT+1, T |ZT )

= nI(XT ;U |ZT ),

where:
• (a) holds because the log-cardinality of the range of en(·)

is bounded by nR
• (b) follows from the chain rule and the fact that Xt →
Zt → (Xt−1, Zt−1, Znt+1) is a Markov chain

• (c) follows from the construction of T
• (d) follows because, by the chain rule,

I(XT ; J,XT−1, ZT−1, ZnT+1, T |ZT )

= I(XT ;T |ZT ) + I(XT ; J,XT−1, ZT−1, ZnT+1|ZT , T )

where the first term on the r.h.s. is zero because
(X1, Z1), . . . , (Xn, Zn) are i.i.d., so (XT , ZT ) is inde-
pendent of T (see Fact 1 in Appendix B).

The remaining steps are consequences of other definitions and
standard information-theoretic identities.

Since {(Xi, Zi)}ni=1 are i.i.d., (XT , ZT ) has the same joint
law as (X1, Z1), namely PXZ . Moreover, ŶT is a deterministic
function of (ZT , U), and EP(Xn,Ŷ n) = P(XT ,ŶT ). Finally,

∥∥P(XT ,ŶT ) − PXY
∥∥
F =

∥∥EP(Xn,Ŷ n) − PXY
∥∥
F

(a)

≤ E
∥∥P(Xn,Ŷ n) − PXY

∥∥
F

(b)

≤ ∆,

where (a) follows from convexity, and (b) follows from
(11). Hence, the joint law of XT , ZT , and U belongs to
E(∆, PY |X , PZ|X), which means that R ≥ I(XT ;U |ZT ) ≥
R(∆, PY |X , PZ|X).

C. Lossy coding with respect to a class of distortion measures

Finally, we consider the problem of lossy coding with
respect to a class of distortion measures (fidelity criteria).
For general (Polish) alphabets, it was solved by Dembo and
Weissman [15], but the finite-alphabet variant appears already
as Problem 14 in [31]. Let X and Y denote the source and
the reproduction alphabets, respectively. Suppose a class Γ of
distortion measures ρ : X× Y → [0, 1] is given, together with
a class of nonnegative reals indexed by ρ ∈ Γ, {∆ρ}ρ∈Γ. The
goal is to find a block code of minimal rate whose expected
distortion under each ρ ∈ Γ is bounded by the corresponding
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∆ρ. We use the same definition of an (n,M)-code as in
Section V-A.

Define a mapping F (·, {∆ρ}) : P(X× Y)→ R by

F (Q, {∆ρ}) , sup
ρ∈Γ

[Q(ρ)−∆ρ],

where

Q(ρ) =

∫
ρdQ =

∫
ρ(x, y)Q(dx, dy)

is the expected distortion between X and Y when they have
joint law Q.

Definition 9. Given a source PX ∈ P(X), let E({∆ρ}) denote
the set of all Q ∈ P(X× Y) such that

QX = PX and F (Q, {∆ρ}) ≤ 0.

Define the rate-distortion function

R({∆ρ}) , inf
Q∈E({∆ρ})

I(Q).

Theorem 1 of [15] shows that any rate R ≥ R({∆ρ}) is
achievable, provided the mapping Q 7→ F (Q, {∆ρ}) is upper
semicontinuous (u.s.c.) under the weak topology on P(X×Y).
Moreover, no rate R < R({∆ρ}) is achievable. We now show
that the u.s.c. requirement can be replaced by a GC condition:

Theorem 3. Let Γ be a class of distortion measures and
{∆ρ}ρ∈Γ a class of nonnegative distortion levels.

a) Direct part: If Γ is a GC class and R({∆ρ}) <∞, then
for any ε > 0, there exist an n ≡ n(ε) and an (n, 2nR)
code with R < R({∆ρ}) + ε satisfying

E sup
ρ∈Γ

[
ρ(Xn, Ŷ n)−∆ρ

]
≤ ε, (12)

where ρ(Xn, Ŷ n) , P(Xn,Ŷ n)(ρ).
b) Converse part: Suppose that there exists an (n, 2nR)-

code Ŷ n = dn(en(Xn)) satisfying

Eρ(Xn, Ŷ n) ≤ ∆ρ, ∀ρ ∈ Γ. (13)

Then R ≥ R({∆ρ}).

Proof: To prove the direct part, pick any Q ∈ E({∆ρ})
such that I(Q) < R({∆ρ})+ε/2. Let X ∈ X and U ∈ Y have
joint law Q. The same argument as in the proof of Theorem 1
can be used to show the existence of a large enough n and a
mapping Φn : Xn → Yn, such that

1

n
log |{Φn(Xn)}| ≤ I(Q) + ε/2 < R({∆ρ}) + ε

and

E
∥∥P(Xn,Ŷ n) −Q

∥∥
Γ
≤ ε,

where Ŷ n = Φn(Xn). Now, for any ρ ∈ Γ we have

ρ(Xn, Ŷ n)−∆ρ ≤ ‖P(Xn,Ŷ n) −Q‖Γ + F (Q, {∆ρ}).

Consequently, taking the supremum of both sides over Γ and
then the expectation w.r.t. PXn , we get (12).

The proof of the converse is exactly the same as in [15].

VI. CONCLUSION

We have proposed a new definition of typical sequences
over a wide class of abstract alphabets (standard Borel spaces),
which retains many useful properties of strong (total-variation)
typicality for finite alphabets. In particular, it is preserved in a
Markov structure, which has allowed us to develop transparent
achievability proofs in several settings pertaining to empirical
coordination of actions in a two-node network using finite
communication resources. Here are some directions for future
research:
• Behavior in the finite block length regime — GC classes

with sufficiently “regular” metric or combinatorial struc-
ture admit sharp concentration-of-measure inequalities of
the form

P (‖PZn − P‖F ≥ ε) ≤ S(n;F)e−Cnε
2

,

where C > 0 is some constant and S(n;F) is a function
of “moderate” growth in n, which typically depends on
the geometric characteristics of F [9]–[11]. For example,
if F is a VC class, then S(n;F) = O(nV (F)); in the
latter case, we also have

E
∥∥PZn − P

∥∥
F ≤ C

√
V (F)

n
,

where C > 0 is a universal constant. These inequalities
can be used to investigate the behavior of our coding
schemes in the finite block length regime (e.g., the rate
of convergence of the achievable ‖ · ‖F -distortion to the
optimum).

• Extension to stationary ergodic sources — Recently,
Adams and Nobel [32] have shown that the ULLN holds
for countable (or separable) classes of VC sets and
functions even when the underlying process is stationary
and ergodic (rather than i.i.d.), although without any
specific guarantees on the rate of convergence. Their
work opens the possibility of extending our GC typicality
approach to stationary ergodic sources via sliding block
codes [33]–[35].

• Connections to simulation of information sources — The
operational criteria used in our treatment of empirical
coordination suggest new ways of thinking about simu-
lation of random processes and related problems in rate-
distortion coding [3], [36]–[38]. Many problems related
to sensing, learning, and control under communication
constraints can be reduced (or related) to simulation of
random processes, and our formalism may be of use
for characterizing the fundamental information-theoretic
limits in these settings.

APPENDIX A
PIGGYBACK CODING LEMMA FOR BOREL SPACES

In this appendix we prove the following lemma, which is
an extension of the Piggyback Coding lemma of Wyner [21,
Lemma 4.3] to general alphabets:

Lemma A.1. Let U,V,W be standard Borel spaces, and let
(U, V,W ) ∈ U × V × W be a triple of random variables
with joint law PUVW , such that U → V → W is a
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Markov chain and the mutual information I(V ;W ) is finite.
Let {(Ui, Vi,Wi)}∞i=1 be a sequence of i.i.d. draws from
PUVW . Let {ψn}∞n=1 be a sequence of measurable functions
ψn : Un ×Wn → [0, 1], such that

lim
n→∞

Eψn(Un,Wn) = 0.

For a given ε > 0, there exists n0 = n0(ε), such that for every
n ≥ n0 we can find a mapping Fn : Vn →Wn that satisfies

1

n
log
∣∣∣
{
Fn(vn) : vn ∈ Vn

}∣∣∣ ≤ I(V ;W ) + ε

and

Eψn(Un, Fn(V n)) ≤ ε.

Proof: The proof is very similar to Wyner’s proof for
finite alphabets [21]. Fix any n and define a function φn :
Vn ×Wn → [0, 1] by

φn(vn, wn) , E
[
ψn(Un,Wn)

∣∣∣V v = vn,Wn = wn
]

=

∫

Un
ψn(un, wn)PUn|V n,Wn(dun|vn, wn).

Owing to the Markov chain condition, we can write

φn(vn, wn) =

∫

Un
ψn(un, wn)PUn|V n(dun|vn). (A.1)

Letting δn , Eψn(Un,Wn), we define the set

Sn ,
{

(vn, wn) ∈ Vn ×Wn : φn(vn, wn) ≤
√
δn

}
.

Then by the Markov inequality we have

P ((V n,Wn) 6∈ Sn) ≤ Eφn(V n,Wn)√
δn

=
√
δn.

Consider an arbitrary measurable mapping G : Vn →
{wn(1), . . . , wn(M)} ⊂ Wn for some M < ∞. Then,
defining the set

S̃n , {vn ∈ Vn : (vn, G(vn)) ∈ Sn},

we can write

Eψn(Un, G(V n))

= E
[
E[ψn(Un, G(V n))|V n]

]

(a)
= Eφn(V n, G(V n))

(b)

≤ P(S̃cn) +

∫

S̃n
φn(vn, G(vn))PV n(dvn),

where (a) is due to (A.1), while (b) uses the fact that 0 ≤
φn(·, ·) ≤ 1. Moreover,

∫

S̃n
φn(vn, G(vn))PV n(dvn) ≤

√
δn.

Hence,

Eψn(Un, G(V n)) ≤ P(S̃cn) +
√
δn.

Now we can use Lemma 9.3.1 in [39] to show that,
given Sn, M , and an arbitrary R > 0, there exist a set

{wn(1), . . . , wn(M)} ⊂ Wn and a mapping Gn : Vn →
{wn(1), . . . , wn(M)}, such that

P ((V n, Gn(V n)) 6∈ Sn) ≤ P(Scn)

+ P (i(V n,Wn) > nR) + exp
(
−M2−Rn

)
,

where

i(vn, wn) , log
dPV n,Wn

d(PV n ⊗ PWn)
(vn, wn)

is the information density [5]. Letting M = 2n(I(V ;W )+ε) and
R = I(V ;W ) + ε/2 and using the corresponding mapping
Gn, we get

Eψn(Un, Gn(V n)) ≤ 2
√
δn

+ exp(−2nε/2) + P (i(V n,Wn) > nR) .

Since Eψn(Un,Wn) = δn → 0 as n → ∞, the first term
goes to zero as n → ∞. The second term likewise goes to 0
since ε > 0. The third term goes to zero owing to the mean
ergodic theorem for information densities [5, Theorem 8.5.1].
Choosing n0 large enough so that the right-hand side of the
above inequality is less than ε finishes the proof.

APPENDIX B
TIME MIXING

Our discussion of the time mixing technique essentially
follows [3, p. 4200], except that care must be taken due to
the fact that we are working with general alphabets here.

Fix a space U. Let Un = (U1, . . . , Un) be a random n-
tuple taking values in Un according to some law PUn . Let
T be a random variable uniformly distributed over the set [n]
independently of Un. Consider the random variable UT ∈ U,
i.e., the value of the T th coordinate of Un. We will use two
facts pertaining to this construction.

First, we note that UT and T need not be independent, even
though Un and T are. One exception is when Un is an i.i.d.
tuple:

Fact 1. If Un is an i.i.d. tuple with common marginal PU ,
then UT is independent of T and has the same law as U1, i.e.,
PU .

Proof: For any i ∈ [n] and any A ∈ BU,

PUT ,T (A× {i}) = P(T = i)PUT |T (A|i)
= P(T = i)PUi(A)

= P(T = i)PU (A)

= PT ({i})PU (A).

Hence, PUT |T (A|i) = PU (A), regardless of i.
Second, let us consider the empirical distribution PUn . Since

U is a Borel space, P(U) is a (complete separable) metric
space under any metric that metrizes the weak convergence
of probability laws, so we can equip it with its Borel σ-
algebra. Then PUn is a P(U)-valued random variable, whose
expectation EPUn is given by

[EPUn ](A) ,
1

n

n∑

i=1

PUi(A), ∀A ∈ BU.
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It is not hard to check that EPUn satisfies the Kolmogorov
axioms and is itself an element of P(U). In particular:

Fact 2. Consider the empirical distribution PUn . Then

EPUn = PUT , (B.1)

where PUT ∈ P(U) is the law of UT .

Proof: For any A ∈ BU,

[EPUn ](A) =
1

n

n∑

i=1

PUi(A)

= E

[
n∑

i=1

P(T = i)1{Ui∈A}

]

= E
[
E
[
1{UT∈A}

∣∣Un
]]

= E
[
1{UT∈A}

]

= PUT (A).

Since A is arbitrary, (B.1) indeed holds.

APPENDIX C
PROOF OF LEMMA 2

The proof is very similar to the proof of Lemma 5.3 of
Wyner [23]. In particular, only part (a) requires modification.
Parts (b) and (c) follow immediately, just as in [23].

Since Q ∈ E(∆), there exists a function g : Z × U → Y,
such that, with W = g(Z,U),

∥∥QXW − PXY
∥∥
F ≤ ∆. (C.1)

Secondly, owing to the smoothness assumption (9), for any
δ1 > 0 one can find a quantizer q : Y → {ŷj}Nj=1 ⊂ Y,
N <∞, such that

∥∥QXq(W ) −QXW
∥∥
F ≤ δ1. (C.2)

Let g0 , q ◦ g, and define the sets

Cj , {(z, u) ∈ Y × U : g0(z, u) = ŷj} , 1 ≤ j ≤ N.

Lemma 5.4 in [23] can be used to show that, for an arbitrary
δ2 > 0, there exists a collection of disjoint sets {Sj}Nj=1 ⊂
BZ ⊗ BU, where each Sj is a finite union of rectangles, and

QZU (Sj4Cj) ≤ δ2, 1 ≤ j ≤ N. (C.3)

Now define g1 : Z× U→ Y by

g1(y, u) ,

{
ŷj , if (z, u) ∈ Sj
ŷ1, if (z, u) 6∈ ⋃Nj=1 Sj .

Define also the set E ,
⋃N
j=1(Cj ∩Sj) and note that g1 = g0

on E. Then

E[f(X, g1(Z,U))]

= E[1Ef(X, g0(Z,U))] + E[1Ecf(X, g1(Z,U))]

≤ E[f(X, g0(Z,U))] +QZU (Ec)

= E[f(X, q(W ))] +QZU (Ec)

≤ E[f(X,W )] + δ1 +QZU (Ec). (C.4)

Similarly,

E[f(X,W )]

≤ E[f(X, q(W ))] + δ1

= E[1Ef(X, q(W ))] + E[1Ecf(X, q(W ))] + δ1

= E[1Ef(X, g1(Z,U))] + E[1Ecf(X, q(W ))] + δ1

≤ E[f(X, g1(Z,U))] +QZU (Ec) + δ1. (C.5)

In both cases we have used the fact that f is bounded between
0 and 1, as well as (C.2). Moreover, using the fact that {Cj}
is a disjoint partition of Z×U, as well as (C.3), we can write

QZU (Ec) ≤
N∑

j=1

QZU (Sj4Cj) ≤ Nδ2.

Combining (C.1), (C.4) and (C.5), we get
∥∥QXW1

−QXW
∥∥
F ≤ δ1 +Nδ2,

where W1 = g1(Z,U). Now, given δ > 0, first choose δ1 =
δ/2. This fixes N = N(δ). Then choose δ2 so that Nδ2 ≤ δ/2.
This proves part (a); parts (b) and (c) follow exactly as in [23].
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