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On the Capacity of the Discrete Memoryless
Broadcast Channel with Feedback

Ofer Shayevitz and Michèle Wigger

Abstract—A coding scheme for the discrete memoryless broad-
cast channel with {noiseless, noisy, generalized} feedback is
proposed, and the associated achievable region derived. The
scheme is based on a block-Markov strategy combining the
Marton scheme and a lossy version of the Gray-Wyner scheme
with side-information. In each block the transmitter sendsfresh
data and update information that allows the receivers to improve
the channel outputs observed in the previous block. For a
generalization of Dueck’s broadcast channel our scheme achieves
the noiseless-feedback capacity, which is strictly largerthan the
no-feedback capacity. For a generalization of Blackwell’schannel
and when the feedback is noiseless our new scheme achieves rate
points that are outside the no-feedback capacity region. Itfollows
by a simple continuity argument that for both these channelsand
when the feedback noise is sufficiently low, our scheme improves
on the no-feedback capacity even when the feedback is noisy.

I. I NTRODUCTION

We consider a broadcast channel (BC) with two receivers,
where the transmitter has instantaneous access to a feedback
signal. Popular examples of such feedback signals are:

• the channel outputs observed at the two receivers (this
setup is callednoiseless feedback); or

• a noisy version of these channel outputs (this setup is
callednoisy feedback).

Here we allow for very general feedback signals, and only
require that the time-t feedback signal is obtained by feeding
the time-t input and the corresponding time-t outputs into a
memoryless feedback channel. This general form of feedback
is commonly referred to asgeneralized feedback[1], [2], [3].
For brevity, here we mostly omit the wordgeneralized. It
is easily seen that our setup includes noiseless feedback and
noisy feedback as special cases.

We focus on discrete memoryless broadcast channels (DM-
BCs), namely where the input and output symbols are from
finite alphabets and the current channel outputs depend on the
past inputs and outputs only through the current input. Our
interest lies in the feedback-capacity region of such DMBCs,
i.e., in the associated set of rate tuples for which reliable
communication is possible.

Most previous results on DMBCs with feedback focus on
the case of noiseless feedback. For example, El Gamal [4]
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proved that when the BC is physically degraded, i.e., one of
the two outputs is obtained by processing the other output,
then the capacity region with noiseless-feedback coincides
with the no-feedback capacity region. In contrast, Dueck
[5] and Kramer [6] described some specific examples of
DMBCs where the noiseless-feedback capacity region exceeds
the no-feedback capacity region. In Dueck’s example, the
noiseless-feedback capacity region is known. However, outside
these specific examples, determining the capacity region with
feedback for (non-physically-degraded) DMBCs is an open
problem. In fact, even characterizing the class of DMBCs
where feedback enlarges the capacity region seems hard. This
is partly because even the no-feedback capacity region is
generally unknown, and partly because a computable single-
letter achievable region for the DMBC with feedback was
missing hitherto. Kramer [6] proposed a multi-letter achievable
region for the DMBC with noisy or noiseless feedback.

In this paper we propose a coding scheme for the DMBC
with generalized feedback, and present a corresponding single-
letter achievable region. Subsequently, we analyze two new
examples – a generalization of Dueck’s channel [5], and a
noisy version of Blackwell’s channel [7] – where our region
is shown to exceed the no-feedback capacity region, even in
the presence of feedback noise. Our approach is motivated
by Dueck’s example [5], and is based on the following idea.
The transmitter uses the feedback to identify update infor-
mation that is useful to the receivers when decoding their in-
tended messages, and describes this information in subsequent
transmissions. More specifically, our scheme adopts a block-
Markov strategy, where in each block the transmitter sends a
combination of fresh data and compressed update information
pertaining to the data sent in the previous block. Marton’s
no-feedback scheme [10], [11] is used in each block to send
the fresh data and the update information, at rates outside the
no-feedback capacity region. The update information sent in a
block is essentially an efficient lossy description of the auxil-
iary inputs in Marton’s scheme from the previous block, taking
into account the receivers’ observations and the feedback
signal as side-information. The receivers perform backward
decoding; starting with the last block, each receiver iteratively
performs the following two steps: 1) it decodes its intended
data and update information in the current block; and 2) it
uses the update information to “improve” the channel outputs
in the preceding block, which is processed next. This strategy
is gainful whenever the cost of the lossy description (i.e.,the
rate needed to send the update information) is smaller than the
increase in rate it supports (i.e., the increase in capacityof the
“improved” channel). Intuitively, this is expected to happen
when the descriptions required by the two receivers have a
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large common part.
Our scheme has some ideas in common with Lapidoth and

Steinberg’s scheme for the MAC with strictly causal state-
information at the transmitter [12], [13].

Recently, another single-letter achievable region for general
DMBCs with feedback has been proposed [16]1. Comparing
the achievable region in [16] to ours however seems difficult.

The paper is organized as follows. In Section II, the
necessary mathematical background is provided. The channel
model is described in Section III. In Section IV, Marton’s
scheme for the DMBC without feedback is reviewed in detail.
In Section V, a lossy version with side-information of the
Gray-Wyner distributed source coding setup is introduced,
and an achievable region is obtained. The main result of the
paper is introduced in Section VI, where the Marton and
the lossy Gray-Wyner schemes are combined into a feedback
scheme for general DMBCs, and the associated achievable
region is derived. Two new examples are discussed in VII:
A generalization of Dueck’s DMBC, and a noisy version of
Blackwell’s DMBC [7]. In both cases, the region achieved by
the new scheme is shown to exceed the no-feedback capacity
region, using either noiseless feedback or noisy feedback,in
the limit of low feedback noise.

II. PRELIMINARIES

A. Notations

We broadly follow the notation in [17]. In particular, for
any real numberM > 1, we use the notation[M ]

def
=

{1, . . . , ⌊M⌋}. The set of positive integers is denoted byZ
+.

Also, we use upper case symbols to denote random variables,
e.g.,A, and lower case symbols for their realizations, e.g.,a.
The corresponding alphabets are denoted by script symbols,
e.g.,A; and |A| is used for the cardinality ofA. For n ∈ Z

+

we useAn andan to denote the random sequenceA1, . . . , An

and its realizationa1, . . . , an.
We think of a product set of the form[2nr1 ] × [2nr2 ] as

being one-to-one with[2n(r1+r2)], disregarding the associated
integer issues throughout. This assumption does not influence
our results, as they concern the asymptotic regimen → ∞.
For ǫ > 0, we write δ(ǫ) to indicate a general nonnegative
function satisfyingδ(ǫ) → 0 (arbitrarily slow) asǫ→ 0.

A random sequenceXn is said to bePX -independent-
identically distributed (PX -i.i.d.) if

PXn(xn) =
n∏

t=1

PX(xt)

for all xn. Let (Xn, Y n) be two jointly distributed random
sequences, and letPY |X be some conditional distribution. We
say thatY n is PY |X -independent givenXn if

PY n|Xn(yn|xn) =

n∏

t=1

PY |X(yt|xt)

for all yn andxn with PXn(xn) > 0.

1The conference version of [16] has been presented in the samesession at
ISIT 2010 as the conference version of this paper, see [14] and [15].

We use the notion of typicality as defined in [17]. For a
finite alphabetX , a sequencexn ∈ Xn is said to beǫ-typical
with respect to (w.r.t.) a distributionPX on X if

|πxn(x) − PX(x)| ≤ ǫ · PX(x)

for all x ∈ X , where πxn is the distribution overX cor-
responding to the relative frequency of symbols inxn. The
set of all such sequences is denotedT n

ǫ (PX). Similarly, for
a law PX1···Xk

over a product alphabetX1 × · · · × Xk, we
denote byT n

ǫ (PX1···Xk
) the set of allk-tuples of sequences

(xn1 ∈ Xn
1 , . . . , x

n
k ∈ Xn

k ) that are jointly ǫ-typical w.r.t.
PX1···Xk

.
Finally, we write Z ∼ Bern(p) for a a binary random

variable taking the values0 and 1 with probabilities1 − p
andp.

B. Basic Lemmas

The following three lemmas are well known, and used
extensively in the sequel.

Lemma 1 (Conditional Typicality Lemma [17]). Let PXY be
some joint distribution. Supposexn ∈ T n

ǫ′ (PX) for someǫ′ >
0, and Y n is PY |X -independent givenXn = xn. Then for
everyǫ > ǫ′:

lim
n→∞

Pr
(
(xn, Y n) 6∈ T n

ǫ (PXY )
)
= 0.

Lemma 2 (Covering Lemma [17]). Let 0 < ǫ′ < ǫ, and let
Xn satisfyPr(Xn ∈ Tǫ′(PX)) → 1 as n → ∞. Also, for
eachn, let Mn ∈ Z

+ be larger than2nr for somer ≥ 0,
and let{Y n(m)}Mm=1 be a set ofPY -i.i.d. sequences such that
{Xn, {Y n(m)}Mm=1} are mutually independent. Then, for any
law PXY with marginalsPX and PY there existsδ(ǫ) → 0
as ǫ→ 0 such that

lim
n→∞

Pr
(
∀m ∈ [M ] , (Xn, Y n(m)) 6∈ T n

ǫ (PXY )
)
= 0

if r > I(X ;Y ) + δ(ǫ).

Lemma 3 (Packing Lemma [17]). Let ǫ > 0, andXn be an
arbitrary random sequence. Also, for eachn, let Mn ∈ Z

+

be smaller than2nr for somer ≥ 0, and let {Y n(m)}Mm=1

be a set ofPY -i.i.d. random sequences, where eachY n(m)
is independent ofXn. Then, for any lawPXY with marginal
PY there existsδ(ǫ) → 0 as ǫ→ 0 such that

lim
n→∞

Pr
(
∃m ∈ [M ] s.t. (Xn, Y n(m)) ∈ T n

ǫ (PXY )
)
= 0

if r < I(X ;Y )− δ(ǫ).

The following is a simple multivariate generalization of the
packing lemma.

Lemma 4 (Multivariate Packing Lemma). Let ǫ > 0, and for
eachn let M1,n,M2,n,M3,n ∈ Z

+ satisfyMi,n ≤ 2nri , for
i ∈ {1, 2, 3}. Also, let {Un

i (m)}
Mi,n

m=1 be a set ofPUi
-i.i.d.

random vectors such that{Un
1 (m1), U

n
2 (m2), U

n
3 (m3)} are

mutually independent for anym1,m2,m3. Then, for any law
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PU1U2U3 with marginals{PUi
}3i=1, there existsδ(ǫ) → 0 as

ǫ→ 0 such that

lim
n→∞

Pr
(
∃ mi ∈ [Mi] for i ∈ {1, 2, 3} s.t.

(Un
1 (m1), U

n
2 (m2), U

n
3 (m3)) ∈ T n

ǫ (PU1U2U3)
)

= 0

if

r1 + r2 + r3 < I(U1;U2) + I(U3;U1, U2)− δ(ǫ). (1)

Proof outline. Let Eijk
def
= {Un

1 (i), U
n
2 (j), U

n
3 (k)) ∈

T n
ǫ (PU1U2U3)}. We need to show thatPr

(⋃
ijk Eijk

)
→ 0

under Constraint (1). By standard typicality/large deviation
arguments we have that

Pr(Eijk) ≤ 2−n(D(PU1U2U3‖PU1×PU3×PU3 )−δ(ǫ))

= 2−n(D(PU1U2U3‖PU1×PU3×PU3 )−δ(ǫ))

= 2−n(D(I(U1;U2)+I(U3;U1,U2)−δ(ǫ)).

The result follows by taking the union bound overEijk, and
requiring that it tends to zero.

III. C HANNEL MODEL

We consider the discrete memoryless broadcast channel with
generalized feedback in Figure 1. The goal of the communi-
cation is that the transmitter conveys a private MessageM1

to a Receiver 1, a private MessageM2 to a Receiver 2, and a
common messageM0 to both receivers. The three messages
M0,M1, andM2 are assumed to be independent and uniformly
distributed over the finite sets[2nR0 ], [2nR1 ], and [2nR2 ]
respectively, wheren denotes the blocklength andR0, R1, R2

are the corresponding common and private transmission rates.
Communication takes place over a DMBC with generalized

feedback. This channel is characterized by a quadruple of finite
alphabetsX , Y1,Y2, andỸ, and a conditional probability law
PY1Y2Ỹ |X(y1, y2, ỹ|x) where x ∈ X , y1 ∈ Y1, y2 ∈ Y2,

and ỹ ∈ Ỹ. Given that at timet the transmitter feeds the
symbolxt to the channel, Receiver 1 and Receiver 2 observe
the channel outputsy1,t ∈ Y1 andy2,t ∈ Y2 respectively, and
the transmitter observes the generalized feedbackỹt ∈ Ỹ , with
probabilityPY1Y2Ỹ |X(y1,t, y2,t, ỹt|xt).

Thanks to feedback, the transmitter can produce its time-t
channel inputXt as a function of the MessagesM0,M1,M2

and of the previously observed feedback outputsỸ t−1 def
=

(Ỹ1, . . . , Ỹt−1) :

Xt = ψ
(n)
t

(
M0,M1,M2, Ỹ

t−1
)
, (2)
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for some encoding functionψ(n)
t , for t ∈ {1, . . . , n}. The

DMBC and its feedback channel are memoryless, which is
captured by the following Markov relation fort ∈ [n]:

(Y t−1
1 , Y t−1

2 , Ỹ t−1) ⊸−− Xt ⊸−− (Y1,t, Y2,t, Ỹt)

whereY t−1
i

def
= (Yi,1, Yi,2, . . . , Yi,t−1), for i ∈ {1, 2}.

After n channel uses Receiver i decodes its intended mes-
sagesM0 andMi for i ∈ {1, 2}. Namely, Receiveri produces
the guess:

(M̂0,i, M̂i) = Ψ
(n)
i (Y n

i ), i ∈ {1, 2} (3)

whereΨ(n)
i denotes Receiveri’s decoding function.

A rate triplet(R0, R1, R2) is called achievable if for every
blocklength n there exists a set ofn encoding functions{
ψ
(n)
t

}n

t=1
and two decoding functionsΨ(n)

1 andΨ
(n)
2 such

that the probability of decoding error, i.e., the probability that

(M0,M1) 6= (M̂0,1, M̂1) or (M0,M2) 6= (M̂0,2, M̂2),

tends to 0 as the blocklengthn tends to infinity. The closure
of the set of achievable rate triplets(R0, R1, R2) is called the
feedback capacity-regionof this setup, and we denote it by
CGenFB.

The described generalized-feedback setup includes as spe-
cial cases theno-feedbacksetup where the feedback out-
puts are deterministic, e.g.,|Ỹ | = 1; the noiseless-feedback
setup where the feedback output coincides with the pair of
channel outputs, i.e.,̃Y = (Y1, Y2) (see Figure 2); and
the noisy-feedbacksetup where the feedback outputs and
the channel inputs and outputs satisfy the Markov relation
Xt⊸−−(Y1,t, Y2,t)⊸−−Ỹt for all t ∈ [n] (e.g., the setup in
Figure 3). In these special cases, we denote the capacity
regions byCNoFB, CNoiselessFB, andCNoisyFB, respectively.

IV. M ARTON’ S NO-FEEDBACK SCHEME

We review Marton’s achievable region with a common
message [10], [11], [17] and the coding scheme achieving this
region. Redescribing the scheme simplifies the descriptionof
our feedback scheme in Section VI-B.
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A. Marton’s Achievable Region

Let RMarton be the closure of the set of all nonnegative rate
triplets(R0, R1, R2) that for some choice of random variables
U0, U1, U2 over finite alphabetsU0, U1, U2 and some function
f : U0 × U1 × U2 → X satisfy

R0 +R1 < I(U0, U1;Y1) (4a)

R0 +R2 < I(U0, U2;Y2) (4b)

R0 + R1 +R2 < I(U1;Y1|U0) + I(U2;Y2|U0)

+min
i
I(U0;Yi)− I(U1;U2|U0) (4c)

2R0 + R1 +R2 < I(U0, U1;Y1) + I(U0, U2;Y2)

−I(U1;U2|U0) (4d)

whereX = f(U0, U1, U2),

(U0, U1, U2)⊸−−X⊸−−(Y1, Y2)

forms a Markov chain, and(Y1, Y2) ∼ PY1Y2|X givenX .

Theorem 1 (From [10], [11]). RMarton ⊆ CNoFB.

B. Marton’s Scheme

We describe the scheme for a DMBC(X , Y1, Y2, PY1Y2|X).
The scheme has parameters(U0, U1, U2, PU0U1U2 , f ,R0,R1,p,
R1,c, R2,p, R2,c, R′

1, R′
2, ǫ, n) where

• U0,U1,U2 are auxiliary finite alphabets;
• PU0U1U2 is a joint law over these auxiliary alphabets;
• f : U0×U1×U2 → X is a function mapping the auxiliary

inputs into effective inputs;
• R0, R1,p, R2,p, R1,c, R2,c are nonnegative communica-

tion rates whereR1
def
= R1,p+R1,c andR2

def
= R2,p+R2,c;

• R′
1, R

′
2 are nonnegative binning rates;

• ǫ > 0 is a small number; and
• n denotes the scheme’s blocklength.

1) Code Construction:DefineRc
def
= R0+R1,c+R2,c. The

code consists of a single codebookC0, of ⌊2nRc⌋ codebooks

{C1(mc)}
⌊2nRc⌋
mc=1 , and of⌊2nRc⌋ codebooks{C2(mc)}

⌊2nRc⌋
mc=1 .

Codebook C0 consists of ⌊2nRc⌋ length-n codewords

{un0 (mc)}
⌊2nRc⌋
mc=1 whose entries are randomly and indepen-

dently drawn accordingPU0 . For i = 1, 2 and mc ∈
[2nRc ], CodebookCi(mc) consists of⌊2nRi,p⌋ bins where
each binmi,p ∈ [2nRi,p ] contains⌊2nR

′
i⌋ length-n codewords

{uni (mc,mi,p, ℓi)}
⌊2nR′

i⌋
ℓi=1 that are randomly drawnPUi|U0

-
independent givenun0 (mc).

Reveal all codebooks to the transmitter and codebooksC0
and{Ci(·)}

⌊2nRc⌋
mc=1 to Receiveri ∈ {1, 2}.

2) Encoding: The encoder parses both private messages
M1 ∈ [2nR1 ] and M2 ∈ [2nR2 ] into pairs of indepen-
dent submessages(M1,p,M1,c) ∈ [2nR1,p ] × [2nR1,c ] and
(M2,p,M2,c) ∈ [2nR2,p ]×[2nR2,c ], and forms the new common
messageMc = (M0,M1,c,M2,c) of rateRc.

Now, given thatMc = mc, M1,p = m1,p, M2,p = m2,p,
the encoder makes a list of all pairs(ℓ1, ℓ2) such that2

(un0 (mc), u
n
1 (mc,m1,p, ℓ1), u

n
2 (mc,m2,p, ℓ2))

∈ T
(n)
ǫ/32(PU0U1U2), (5)

2The choice ofǫ/32 will be helpful later. Here, anyǫ′ < ǫ suffices.
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and chooses one pair from this list at random. We call the
chosen pair(ℓ∗1, ℓ

∗
2). If the list is empty, it chooses(ℓ∗1, ℓ

∗
2)

randomly from the set of all indices[2nR
′
1 ]× [2nR

′
2 ].

The inputsxn are obtained from the codewordsun0 (mc),
un1 (mc,m1,p, ℓ

∗
1), u

n
2 (mc,m2,p, ℓ

∗
2) by applying the function

f componentwise to these three sequences:

xj = f
(
u0,j(mc), u1,j(mc,m1,p, ℓ

∗
1), u2,j(mc,m2,p, ℓ

∗
2)
)
,

j ∈ [n].

3) Decoding:Given that Receiver1 observes the sequence
yn1 , it forms a list of all the tuples(m̂c, m̂1,p, ℓ̂1) that satisfy

(un0 (m̂c), u
n
1 (m̂c, m̂1,p, ℓ̂1), y

n
1 ) ∈ T (n)

ǫ (PU0U1Y1). (6)

It randomly chooses a tuple(m̂c, m̂1,p, ℓ̂1) from this list (if
the list is empty, it randomly chooses a pair(m̂c, m̂1,p) from
[2nRc ]× [2nR1,p ]) and parseŝmc as (m̂0,1, m̂1,c,1, m̂2,c,1). It
finally producesm̂0,1 as its guess of messageM0 andm̂1 =
(m̂1,p, m̂1,c,1) as its guess ofM1.

Receiver2 produces its guesseŝm0,2 and m̂2 of the mes-
sagesM0 andM2 in a similar way.

4) Analysis: See Appendix A.

V. L OSSYGRAY-WYNER CODING WITH SIDE

INFORMATION (LGW-SI)

In this section we study a distributed source-coding prob-
lem and present an achievable region for this problem. The
associated scheme will be used as part of our construction for
the DMBC with feedback in Section VI.

Our source coding problem is depicted in Figure 4. Unlike
in classical rate-distortion problems where the decoders have
to produce sequences that satisfy certain average per-symbol
distortion constraints, here, we require that the sequences
produced at the decoders are almost jointly-typical with the
source sequence. Thus, our problem is a coordination capacity
problem [21].

The rate-distortion problem corresponding to our setup is
a lossy version of the Gray-Wyner distributed source-coding
problem in [19] with additional side-information at the de-
coders. Our achievable region directly leads to an achievable
region for this rate-distortion problem, see [22]. Specialcases
of this rate-distortion problem have been considered by Hee-
gard and Berger [20], Tian and Diggavi [23], and Steinberg
and Merhav [24], and the lossless counterpart by Timo et al.
[25], [26].
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A. Setup and Achievable Region

Our setup is parameterized by the tuple
(X ,Y1,Y2,V1,V2, PXY1Y2 , PV1|X , PV2|X , n), where

• X ,Y1,Y2,V1,V2 are discrete finite alphabets;
• PXY1Y2 is a joint probability distribution over the alpha-

betX × Y1 × Y2;
• PV1|X andPV2|X are conditional probability distributions

overV1 andV2 given some random variableX ∈ X ;
• n is the blocklength.

In the following let {(Xt, Y1,t, Y2,t)}
n
t=1 be an i.i.d. se-

quence of triplets of discrete random variables, with marginal
distribution PXY1Y2 . Consider a distributed source coding
setting where a sender observes the source sequenceXn,
Receiver 1 observes the side-informationY n

1 , and Receiver 2
observes the side-informationY n

2 . It is assumed that the sender
can noiselessly send three rate-limited messagesK0,K1,K2

to the receivers: a common messageK0 to both receivers,
a private messageK1 to Receiver 1 only, and another pri-
vate messageK2 to Receiver 2 only. More precisely, the
encoding procedure is described by an encoding function
λ(n) : Xn → [2nR0 ]× [2nR1 ] × [2nR2 ], which for a sequence
Xn produces the messages(K0,K1,K2) = λ(n)(Xn). Each
Receiveri, for i ∈ {1, 2}, produces a reconstruction sequence
V̂ n
i = Λ

(n)
i (K0,Ki, Y

n
i ) by applying a reconstruction function

Λ
(n)
i : [2nR0 ]× [2nRi]×Yn

i → Vn
i to the messagesK0 andKi

and the side-informationY n
i . The goal of the communication

is that for eachi ∈ {1, 2}, the reconstruction sequencêV n
i

is jointly typical with the source sequenceXn according to
PX × PVi|X .

A rate triplet(R0, R1, R2) is said to beǫ-achievableif there
exists a sequence of encoding and reconstruction functions
(λ(n),Λ

(n)
1 ,Λ

(n)
2 ) such that:

Pr
(
(Xn, V̂ n

i ) 6∈ T n
ǫ (PXVi

)
)
→ 0

asn → ∞, for i ∈ {1, 2}. A triplet is said to beachievable
if it is ǫ-achievable for allǫ > 0. The closure of the set of all
achievable rate triplets is denotedRLGW.

Let Rinner
LGW be the closure of the set of all nonnegative rate

triplets (R0, R1, R2) satisfying

R0 +R1 > I(X ;V0, V1|Y1) (7a)

R0 +R2 > I(X ;V0, V2|Y2), (7b)

R0 +R1 +R2 > I(X ;V1|Y1, V0) + I(X ;V2|Y2, V0)

+ max
i∈{1,2}

I(X ;V0|Yi) (7c)

for some choice of the random variableV0 such that

(V0, V1, V2)⊸−−X⊸−−(Y1, Y2). (8)

Theorem 2. Rinner
LGW ⊆ RLGW. Furthermore,Rinner

LGW is convex.

Proof. InclusionRinner
LGW ⊆ RLGW is established in Section V-B.

The convexity ofRinner
LGW is proved in Appendix C.

Notice that the region depends on the joint conditional
distributionPV1V2|V0X only through the marginal conditional
distributionsPV1|V0X andPV2|V0X .
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Bin 2

a subbin of user1

a subbin of user2
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CodebookV n
2
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.

Fig. 5. Double-binning structure of codebookC0 in our lossy Gray-Wyner
scheme with side-information. The dots depict the codewords.

B. Scheme

In this section we describe a scheme achieving the region
Rinner

LGW. Our scheme is similar to Heegard and Berger’s scheme
for the Wyner-Ziv setup with several, differentely informed
receivers [20, Theorem 2]. However, our scheme also uses the
double-binning technique for the common codebook proposed
in [23], but where here the double-binning is performed in
two different ways, one way that is relevant for Receiver 1
and the other way relevant for Receiver 2. This is beneficial
when the quality of the side-information at the two receivers
is very different.

The scheme we propose has parametersV0, PV0V1V2|X ,
R0,0, R0,1, R0,2, R1,0, R1,1, R2,0, R2,2, R′

0, R′
1, R′

2, ǫ, n,
where

• V0 is an auxiliary alphabet;
• PV0V1V2|X is a conditional joint probability distribution

over V0 × V1 × V2 given someX ∈ X such that
its marginals satisfy

∑
v0,v2

PV0V1V2|X(v0, v1, v2|x) =
PV1|X(v1|x) and

∑
v0,v1

PV0V1V2|X(v0, v1, v2|x) =
PV2|X(v2|x);

• R0,0, R0,1, R0,2, R1,0, R1,1, R2,0, R2,2 ≥ 0 are nonnega-
tive communication rates;

• R′
0, R

′
1, R

′
2 ≥ 0 are nonnegative binning rates, whereR′

0

cannot be smaller thanmax{R1,0, R2,0};
• ǫ > 0 is a small number; and
• n is the scheme’s blocklength.

1) Codebook Generation: Generate three codebooks
C0, C1, C2 independentely of each other in the following way.

CodebookC0 consists of⌊2nR0,0⌋ superbins, each contain-
ing ⌊2nR

′
0⌋ length-n codewords whose entries are randomly

and independently generated according to the lawPV0 . We
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make two partitions of the codewords in each superbin,
see Figure 5. In the first partition the codewords of each
superbin are assigned to⌊2nR1,0⌋ subbins, each containing
⌊2n(R

′
0−R1,0)⌋ codewords; in the second partition they are

assigned to⌊2nR2,0⌋ subbins, each containing⌊2n(R
′
0−R2,0)⌋

codewords. There are thus two different ways to refer to a
specific codeword inC0. When we consider the first partition,
we denote the codewords in thek1,0 ∈ [2nR1,0 ]-th subbin of
superbink0,0 ∈ [2nR0,0 ] by

{vn0 (1; k0,0, k1,0, ℓ1,0)}
⌊2n(R′

0−R1,0)⌋
ℓ1,0=1 ;

when we consider the second partition, we denote the code-
words in thek2,0 ∈ [2nR2,0 ]-th subbin of superbink0,0 ∈
[2nR0,0 ] by

{vn0 (2; k0,0, k2,0, ℓ2,0)}
⌊2n(R′

0−R2,0)⌋
ℓ2,0=1 .

Thus, here the first index indicates whether the last two indices
refer to the first or the second partition of the superbins.

For i ∈ {1, 2}, CodebookCi consists of⌊2nR0,i⌋ superbins
each containing⌊2nRi,i⌋ subbins with⌊2nR

′
i⌋ codewords of

lengthn, where all entries of all codewords are randomly and
independently drawn according toPVi

. For ki,i ∈ [2nRi,i ],
we denote the codewords in theki,i-th subbin of superbin
k0,i ∈ [2nR0,i ] by

{vni (k0,i, ki,i, ℓi)}
⌊2nR′

i⌋
ℓi=1 .

All codebooks are revealed to the sender, and codebooks
{C0, Ci} are revealed to Receiveri ∈ {1, 2}.

2) LGW-SI Encoder: Given that the encoder observes
the source sequenceXn = xn, it searches the codebooks
C0, C1, C2 for a triplet of codewordsvn0 (1; k0,0, k1,0, ℓ1,0) ∈ C0,
vn1 (k0,1, k1,1, ℓ1) ∈ C1, vn2 (k0,2, k2,2, ℓ2) ∈ C2 such that for
i ∈ {1, 2}:

(Xn, vn0 (1; k0,0, k1,0, ℓ1,0), v
n
i (k0,i, ki,i, ℓi)) ∈ T n

ǫ/2(PXV0Vi
).

(9)
It then forms a list of all tuples of indices
(k0,0, k1,0, ℓ1,0, k0,1, k1,1, ℓ1, k0,2, k2,2, ℓ2) satisfying (9).
If the list is non-empty, the sender chooses one tuple
from this list at random; otherwise, it randomly chooses
a tuple (k0,0, k1,0, ℓ1,0, k0,1, k1,1, ℓ1, k0,2, k2,2, ℓ2) from
the set [2nR0,0 ] × [2nR1,0 ] × [2n(R

′
0−R1,0)] × [2nR0,1 ] ×

[2nR1,1 ]× [2nR
′
1 ]× [2nR0,2 ]× [2nR2,2 ]× [2nR

′
2 ]. We denote the

chosen indices byk∗0,0, k
∗
1,0, ℓ

∗
1,0, k

∗
0,1, k

∗
1,1, ℓ

∗
1, k

∗
0,2, k

∗
2,2, ℓ

∗
2.

Also, define (k∗2,0, ℓ
∗
2,0) such thatvn0 (2; k

∗
0,0, k

∗
2,0, ℓ

∗
2,0) and

vn0 (1; k
∗
0,0, k

∗
1,0, ℓ

∗
1,0) refer to the same codeword inC0.

The encoder then sends the product messageK0 =
(k∗0,0, k

∗
0,1, k

∗
0,2) to both receivers, the product messageK1 =

(k∗1,0, k
∗
1,1) to Receiver 1 only, and the product message

K2 = (k∗2,0, k
∗
2,2) to Receiver 2 only.

3) LGW-SI Decoder:Receiveri ∈ {1, 2} first parses the
common messageK0 as (K0,0,K0,1,K0,2) and its private
messageKi as Ki = (Ki,0,Ki,i). Then, given that Re-
ceiver i’s side-information isY n

i = yni and thatK0,0 = k0,0,
K0,i = k0,i, Ki,0 = ki,0, andKi,i = ki,i, Receiveri seeks a
codewordvn0 (i; k0,0, ki,0, ℓi,0) in codebookC0 and a codeword
vni (k0,i, ki,i, ℓi) in codebookCi such that

(vn0 (i; k0,0, ki,0, ℓi,0), v
n
i (k0,i, ki,i, ℓi), y

n
i ) ∈ T n

ǫ (PV0ViYi
).

If exactly one such pair of codewords exists, Receiveri pro-
duces as its reconstruction sequenceV̂ n

i = vni (k0,i, ki,i, ℓi).
Otherwise, it randomly chooses a triplet(k′0,i, k

′
i,i, ℓ

′
i) from

the set[2nR0,i ]× [2nRi,i ]× [2nR
′
i ] and produces as its recon-

struction sequencêV n
i = vni (k

′
0,i, k

′
i,i, ℓ

′
i).

4) Analysis: In Appendix B we show that under Con-
straints (7) the failure probability of our scheme tends to 0as
n→ ∞. The existence of a deterministic coding scheme with
vanishing failure probability follows from standard arguments.

VI. M AIN RESULT FORDMBCS WITH GENERALIZED

FEEDBACK

A. Achievable Region

Consider a DMBC with generalized feedback given by
X ,Y1,Y2, Ỹ , PY1Y2Ỹ |X . Let Rinner be the closed convex hull
of the set of all nonnegative triplets(R0, R1, R2) that satisfy
Inequalities (12) shown on top of the next page, for some
choice of auxiliary random variables(U0, U1, U2, V0, V1, V2)
and functionf such thatX = f(U0, U1, U2),

(V0, V1, V2)⊸−−(U0,U1, U2, Ỹ )⊸−−(Y1, Y2) (10)

and
(U0, U1, U2)⊸−−X⊸−−(Y1, Y2, Ỹ ) (11)

form Markov chains, and(Y1, Y2, Ỹ ) ∼ PY1Y2Ỹ |X .

Notice that for noise-free feedback whereỸ = (Y1, Y2) the
Markov chain (10) is satisfied for any choice of the auxiliary
random variables(U0, U1, U2, V0, V1, V2).

Theorem 3. Rinner ⊆ CGenFB.

The proof of the theorem is given in Subsection VI-B. A
few remarks are in order:

Remark 1. The regionRinner includesRMarton, because when
for a given choice of(U0, U1, U2), constraints(12) are spe-
cialized to(V0, V1, V2) = const, then it results in the Marton
region (4). The inclusion is also clear from the construction
of our scheme in Subsection VI-B ahead.

Remark 2. In our coding scheme we can allowf to be a
randomizedfunction. In this case, the scheme achieves the
region Rinner but where the inputX can be an arbitrary
random variable satisfying the Markov chain(11).

We can also superposition all the codebooks on aPQ-i.i.d.
random vectorQn that is known at the transmitter and both
receivers. In this case, the joint typicality checks need tobe
modified accordingly. The new scheme achieves a region as in
Rinner but where the mutual information constraints(12) need
to be conditioned onQ and the Markov chains in(10) and
(11) requireQ in the middle position.

It is not clear whether these changes result in an improved
region compared toRinner.

Remark 3. Recall that for fixed finite alphabets, the Shannon
information measures are continuous (say w.r.t. Euclidean
distance) in the joint distribution [28]. Fix the channel’sinput,
output, and feedback alphabets. Then for any fixed choice
of (PU0U1U2 , f, PV0V1V2|U0U1U2Ỹ

), the quantities on the right-
hand side of Inequalities (12) are continuous inPY1Y2Ỹ |X .
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R0 +R1 ≤ I(U0, U1;Y1, V1)− I(U0, U1, U2, Ỹ ;V0, V1|Y1) (12a)

R0 +R2 ≤ I(U0, U2;Y2, V2)− I(U0, U1, U2, Ỹ ;V0, V2|Y2) (12b)

R0 +R1 +R2 ≤ I(U1;Y1, V1|U0) + I(U2;Y2, V2|U0) + min
i∈{1,2}

I(U0;Yi, Vi)− I(U1;U2|U0)

−I(U0, U1, U2, Ỹ ;V1|V0, Y1)− I(U0, U1, U2, Ỹ ;V2|V0, Y2)− max
i∈{1,2}

I(U0, U1, U2, Ỹ ;V0|Yi) (12c)

2R0 +R1 +R2 ≤ I(U1U0;Y1, V1) + I(U2, U0;Y2, V2)− I(U1;U2|U0)

−I(U0, U1, U2, Ỹ ;V0, V1|Y1)− I(U0, U1, U2, Ỹ ;V0, V2|Y2) (12d)

Remark 4. By the previous remark, the following conclu-
sion holds for any DMBCPY1Y2|X with feedback alphabet
Ỹ = Y1 × Y2. Assume that the regionRinner associated with
noiseless feedback (i.e.,Ỹ = (Y1, Y2)) strictly containsCNoFB.
Now, if we consider anoisy feedback channelPỸ |XY1Y2

that

is close enough to the noiseless feedback (i.e.,Ỹ close to
(Y1, Y2)), then also the regionRinner associated with this noisy
feedback strictly containsCNoFB.

B. Scheme achievingRinnner

Our scheme combines Marton’s no-feedback scheme of
Section IV-B with our LGW-SI scheme of Section V-B using
a block-Markov framework. We first present the high-level
idea of the scheme, which is also depicted in Figure 6.
Transmission takes place overB+1 consecutive blocks, where
the firstB blocks are of lengthn each, and the last block is
of lengthγn for γ > 1. We denote the input/output/feedback
sequences in Blockb ∈ [B] by Xn

(b), Y
n
i,(b), Ỹ

n
(b), respec-

tively, and the input/output sequences in BlockB + 1 by
Xn′

(B+1), Y
n′

i,(B+1). The messages to be sent are in a product
form Mi = (Mi,(1), . . . ,Mi,(B)), for i ∈ {0, 1, 2}, where
eachMi,(b) is uniformly distributed over the set[2nRi ]. The
effective rates of transmission are thus

(
B

B + γ
R0,

B

B + γ
R1,

B

B + γ
R2

)
(13)

and approach(R0, R1, R2) as the number of blocksB → ∞.
In each blockb the transmitter uses Marton’s no-feedback

scheme to send the MessagesM0,(b),M1,(b),M2,(b) together
with update informationK0,(b−1),K1,(b−1),K2,(b−1) pertain-
ing to the messages sent in the previous block. An exception
is the first (resp. last) block where only the message tuple
(resp. update information) is sent. The update informationis
constructed in a way that when(K0,(b),Ki,(b)) is available
at Receiveri, the latter can use it to “improve” its block-b
observationsY n

i,(b). This facilitates the decoding of the cor-
responding messagesM0,(b),M1,(b),M2,(b), which otherwise
might not have been possible to decode reliably. The update
information is generated via the LGW-code described in Sec-
tion V-B. The code is designed for an LGW-setup where the
encoder’s “source sequence” consists of the auxiliary Marton-
codewords and the feedback signal, and where the receivers’
“side-informations” consist of their respective channel outputs.

Each Receiveri, for i ∈ {1, 2}, performs backward de-
coding. It starts from the last block and decodes the update

information (K0,(B),Ki,(B)) based onY n′

i,(B+1). Denote its

guess byK̂0,i,(B), K̂i,(B). Then, for each blockb ∈ [B],
starting from blockB and going backwards, it performs the
following steps:

1) Using (K̂0,b, K̂i,b), it “improves” its block-b outputs
Y n
i,(b).

2) Based on these “improved” outputs, it then decodes
the data (M0,(b),Mi,(b)) and the update informa-
tion (K0,(b−1),Ki,(b−1)). We denote the corresponding
guesses by(M̂0,(b), M̂i,(b)) and (K̂0,i,(b−1), K̂i,(b−1)).

We now describe the coding scheme in more detail. Our
scheme has parameters(U0, U1, U2, V0, V1, V2, PU0U1U2 , f ,
PV0V1V2|U0U1U2Ỹ

, R0, R1, R2, R̄′
1, R̄′

2, R̃0, R̃1, R̃2, R̃′
0, R̃′

1,

R̃′
2, ǫ, γ, n, B), where:

• U0, U1, U2, V0, V1, andV2 are finite auxiliary alphabets;
• PU0U1U2 is a joint probability law overU0 × U1 × U2;
• f is a functionf : U0 × U1 × U2 → X ;
• PV0V1V2|U0U1U2Ỹ

is a conditional probability law over

V0 × V1 × V2 given a tuple(U0, U1, U2, Ỹ );
• R0, R1, R2, R̃0, R̃1, R̃2 are nonnegative communication

rates;
• R̄′

1, R̄
′
2, R̃

′
0, R̃

′
1, R̃

′
2 are nonnegative binning rates;

• ǫ > 0 is a small number; and
• n, γ, and B are positive integers determining the

scheme’s blocklength.

1) Code Construction:For each blockb ∈ [B] we construct
a Marton code for a DMBC with parameters(X ,Y1×V1,Y2×
V2, P(Y1V1)(Y2V2)|X) using the code construction in Subsec-
tion IV-B1. As parameters of this construction we choose:

• the auxiliary alphabetsU0,U1,U2;
• the joint lawPU0,U1,U2 over these alphabets;
• the functionf : U0 × U1 × U2 → X ;
• the nonnegative communication rates̄R0, R̄1,p, R̄2,p,
R̄1,c, R̄2,c where we require thatR̄0 = R0 + R̃0,
R̄1,p + R̄1,c = R1 + R̃1, andR̄2,p + R̄2,c = R2 + R̃2;

• the nonnegative binning rates̄R′
1, R̄

′
2;

• the small numberǫ; and
• the blocklengthn.

For blockB + 1, we use a Marton scheme for the DMBC
with parameters(X ,Y1,Y2, PY1Y2|X) of block length γn
where the scheme is chosen as to achieve the rate triplet
(γ−1R̃0, γ

−1R̃1, γ
−1R̃2). To make sure that such a scheme

exists, we assume throughout the proof that the single-user
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channelsPY1|X and PY2|X both have positive capacities.3

Under this assumption, it is readily verified that forγ > 1
large enough such a scheme exists.

In what follows, letϕ(b),Φ1,(b),Φ2,(b) denote the encoding
and decoding rules corresponding to the Marton-code in block
b, for anyb ∈ [B+1]. Also, let the triplet(Un

0,(b), U
n
1,(b), U

n
2,(b))

denote the auxiliary codewords produced by the block-b Mar-
ton encoderϕ(b), for any b ∈ [B], and letXn

(b), Y
n
1,(b), Y

n
2,(b)

and Ỹ n
(b) denote the corresponding blocks of channel in-

puts/outputs/feedback outputs.
Then, consider the LGW-SI setup with the following pa-

rameters:

• the source alphabet(U0 × U1 × U2 × Ỹ);
• the decoder side-information alphabetsY1 andY2;
• the reconstruction alphabetsV1 andV2;
• the source-side-information lawP(U0U1U2Ỹ )Y1Y2

; and
• the reconstruction lawsPV1|U0U1U2Ỹ

(v1|u0, u1, u2, ỹ) =∑
v0,v2

PV0V1V2|U0U1U2Ỹ
(v0, v1, v2|u0, u1, u2, ỹ)

and PV2|U0U1U2Ỹ
(v2|u0, u1, u2, ỹ) =∑

v0,v1
PV0V1V2|U0U1U2Ỹ

(v0, v1, v2|u0, u1, u2, ỹ).

For this LGW-SI setup we construct for each blockb ∈ [B]
an LGW-SI code as described in Subsection V-B1. Our con-
struction has the following parameters:

• the auxiliary alphabetV0;
• the conditional lawPV0V1V2|U0U1U2Ỹ

;

• the nonnegative rates̃R0,0, R̃0,1, R̃0,2, R̃1,0, R̃1,1, R̃2,0,
R̃2,2, R̃′

0, R̃′
1, R̃′

2;
• the binning ratesR̃′

0, R̃
′
1, R̃

′
2 ≥ 0, whereR̃′

0 cannot be
smaller thanmax{R̃1,0, R̃2,0};

• the small numberǫ/2; and
• the blocklengthn.

In what follows, letλ(b), Λ1,(b), andΛ2,(b) denote the LGW-SI
encoding and decoding rules corresponding to these codes.

2) Encoding: In the first block b = 1, the transmitter
forms the product messagesJ0,(1)

def
= (M0,(1), 1), J1,(1)

def
=

(M1,(1), 1), andJ2,(1)
def
= (M2,(1), 1), and applies the Marton

encoding ruleϕ(1) to this tripletJ0,(1), J1,(1), J2,(1).
In blocks b ∈ 2, . . . , B the transmitter first applies

the LGW-SI encoding functionλ(b−1) to its “source se-
quence”(Un

0,(b−1), U
n
1,(b−1), U

n
2,(b−1), Ỹ

n
(b−1)) to generate the

update messages(K0,(b−1),K1,(b−1),K2,(b−1)). (Recall that
Un
0,(b−1), U

n
1,(b−1), U

n
2,(b−1) denote the Marton auxiliary code-

words produced in the previous encoding step.) The transmitter
then generates the messagesJi,(b)

def
= (Mi,(b),Ki,(b−1)), and

3When one of the two single-user channels has capacity 0, thenthe
broadcast problem is not very interesting. In fact, in this case both the capacity
regions with noiseless feedback and with no-feedback are degenerate.

encodes them via the Marton encoding ruleϕ(b). It finally
sends the outcome of this encoding over the channel.

In the last blockB + 1, the transmitter first applies
the LGW-SI encoding functionλ(B) to the sequences
(Un

0,(B), U
n
1,(B), U

n
2,(B), Ỹ

n
(B)) to generate the update mes-

sagesKi,(B), for i ∈ {0, 1, 2}. It then forms the tu-

ple J0,(B+1)
def
= (1,K0,(B)), J1,(B+1)

def
= (1,K1,(B)), and

J2,(B+1)
def
= (1,K2,(B)) and encodes them via the Marton

encoding ruleϕ(B+1).
3) Decoding at Receiveri: Decoding is performed back-

wards, starting from the last block. Receiveri first applies
the decoding ruleΦi,(B+1) to the outputsY n

i,(B+1) attempting
to decode the indices(J0,(B+1), Ji,(B+1)), and parses its
guess(Ĵ0,i,(B+1), Ĵi,(B+1)) as Ĵ0,i,(B+1) = (1, K̂0,i,(B)) and
Ĵi,(B+1) = (1, K̂i,(B)).

Now, for every blockb ∈ {1, . . . , B}, starting with block
B and going backwards, the receiver performs the following
steps. It applies the LGW-SI decoderΛi,(b) to its guess of the
update messages(K̂0,i,(b), K̂i,(b)) obtained in blockb+1, and
to its “side-information”Y n

i,(b). It then applies Marton’s decod-

ing ruleΦi,(b) to the pair(Y n
i,(b), V̂

n
i,(b)), whereV̂ n

i,(b) denotes
the reconstruction sequence produced by the LGW-SI decoder
Λi,(b). Finally, it parses the guess produced by Marton’s de-
coding rule(Ĵ0,i,(b), Ĵi,(b)) as Ĵ0,i,(b) = (M̂0,i,(b), K̂0,i,(b−1))

and Ĵi,(b) = (M̂i,(b), K̂i,(b−1)).
Receiver i’s guess of the messagesM0 and Mi are

the productsM̂0,i = (M̂0,i,(1), . . . , M̂0,i,(B)) and M̂i =

(M̂i,(1), . . . , M̂i,(B)).
4) Analysis: In Appendix D we show that under Con-

straints (12) the error probability of our scheme tends to 0 as
n→ ∞. The existence of a deterministic coding scheme with
vanishing error probability follows from standard arguments.

VII. E XAMPLES

A. The Generalized Dueck DMBC

In [5] Dueck presented the first example of a DMBC
where noise-free feedback increases capacity. In his setup, the
channel input consists of three bits,X = (X0, X1, X2), and
each of the two outputs of two bits,Y1 = (Y1,1, Y1,0) and
Y2 = (Y2,0, Y2,2) where

Y1,0 = Y2,0 = X0,

Y1,1 = X1 ⊕ Z,

Y2,2 = X2 ⊕ Z.

Here, the noiseZ is Bern(1/2) and independent of the inputs,
and⊕ denotes addition modulo 2.
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Obviously, without feedback, the outputsY1,1 andY2,2 are
useless. Thus, the no-feedback-capacity is given by the setof
all nonnegative rate triplets(R0, R1, R2) satisfying

R0 +R1 +R2 ≤ 1.

With noiseless feedback, the capacity is increased.

Theorem 4 (Dueck [5]). The noiseless feedback capacity of
Dueck’s DMBC is given by the set of all nonnegative rate
triplets (R0, R1, R2) satisfying

R0 +R1 ≤ 1 and R0 +R2 ≤ 1. (14)

Proof. The converse follows from the cutset bound. The
achievability by the following simple blocklength-(n + 1)
scheme. The transmitter sends lossless descriptions of theMes-
sage pairs(M0,M1) and(M0,M2) using the inputs{X1,t}

n
t=1

and{X2,t}
n
t=1, respectively. Additionally, fort = 2, . . . , (n+

1), it repeats the previous noise symbol asX0,t = Zt−1. The
transmitter knowsZt−1 at time t because it is cognizant of
the inputX1,t−1 (or X2,t−1) and, through the feedback, also
of Y1,t−1 = X1,t−1 + Zt−1 (or Y2,t−1 = X2,t−1 + Zt−1).

Notice that each Receiveri ∈ {1, 2} learns the noise
sequence{Zt}

n
t=1 from its sequence of outputs{Yi,0,t}

n+1
t=2 .

Receiver i can thus compute the channel inputsXi,t =
Yi,i,t − Zt, for t = 1, . . . , n, and recover the desired pair of
messages(M0,Mi) whenever the sum-rateR0+Ri is smaller
than n

n+1 . Letting the block-lengthn tend to infinity, we get
the desired achievability result.

We generalize Dueck’s setup to the DMBC depicted in
Figure 7. We assume that all three binary channels are noisy,
and the first and third channels are corrupted by different
noises. Thus, as before, the channel input consists of three
bits, X = (X1, X0, X2), and each output of two bits,Y1 =
(Y1,1, Y1,0) andY2 = (Y2,0, Y2,2). However, now,

Y1,0 = Y2,0 = X0 ⊕ Z0,

Y1,1 = X1 ⊕ Z1,

Y2,2 = X2 ⊕ Z2,

whereZ0, Z1, Z2 are binary random variables of a given joint
law PZ0Z1Z2 .

Proposition 1. The no-feedback capacity region of the gener-
alized Dueck DMBC is the set of all nonnegative rate triplets
(Ro, R1, R2) that satisfy

R0 +R1 ≤ 2−H(Z0, Z1), (15a)

R0 +R2 ≤ 2−H(Z0, Z2), (15b)

R0 +R1 +R2 ≤ 3−H(Z0, Z1)−H(Z0, Z2). (15c)

Proof. The no-feedback capacity of a DMBC depends on the
channel lawPY1Y2|X(y1, y2|x) only through the marginal laws
PY1|X(y1|x) and PY2|X(y2|x) (see e.g., [27]). We therefore
assume in the following thatZ2⊸−−Z0⊸−−Z1. The con-
verse follows then simply by applying the cutset bound to
this modified setup. The achievability follows from Marton’s
achievable region. More precisely, if in the region in (4) we
chooseU0, U1, U2 to be i.i.d. Bern(1/2) andXi = Ui, for
i ∈ {0, 1, 2}, then it evaluates to our region in (15). (Notice
that since we chooseU0, U1, U2 independent, constraint (4d)
on 2R0 +R1 +R2 is not active.)

Our scheme in Section VI-B allows us to obtain the capac-
ity region for the Generalized Dueck DMBC with noiseless
feedback when

H(Z0, Z1) ≤ 1 and H(Z0, Z2) ≤ 1. (16)

Theorem 5. Under condition (16) and when no common
message is sent, i.e.,R0 = 0, the noiseless-feedback capacity
of the Generalized Dueck DMBC is the set of all nonnegative
rate pairs (R1, R2) satisfying

R1 ≤ 2−H(Z0, Z1), (17a)

R2 ≤ 2−H(Z0, Z2), (17b)

R1 +R2 ≤ 3−H(Z0, Z1, Z2). (17c)

Proof. The converse follows from the cutset bound. The direct
part follows from Theorem 3 by taking the convex hull of the
achievable regions that result when (12) is evaluated for the
following two choices:(U0, U1, U2) i.i.d. Bern(1/2);Xi = Ui

for i ∈ {0, 1, 2}; Vi = (X0, Xi) for i ∈ {1, 2}; and either
V0 = (Z0, Z1) or V0 = (Z0, Z2). (Notice that sinceU0, U1, U2

are independent, Constraint (12d) is subsumed by Constraints
(12a) and (12b).)

In view of Proposition 1, we have the following corollary
to Theorem 5.

Corollary 1. If the triplet (Z0, Z1, Z2) satisfies(16) and does
not form the Markov chainZ1 − Z0 − Z2, then noiseless
feedback strictly increases the capacity of our Generalized
Dueck DMBC.

Let’s briefly consider the case of noisy feedbackỸ =
(Y1,1 ⊕W1, Y1,0 ⊕W0, Y2,2 ⊕W2) where(W0,W1,W2) are
arbitrary distributed binary random variables, with marginals
Wi ∼ Bern(qi), for q0, q1, q2 ∈ (0, 1). Evaluating Theorem 3
for this noisy-feedback setup is cumbersome and left out. But
from Corollary 1 and the continuity considerations mentioned
in Remark 4, we can conclude the following.

Remark 5. If the noise triplet (Z0, Z1, Z2) satisfies (16)
and does not form the Markov chainZ1 − Z0 − Z2, then
for any sufficiently small value ofmax{q0, q1, q2}, the noisy
feedback introduced above enlarges the capacity region of the
Generalized Dueck DMBC.

B. The Noisy Blackwell DMBC

Consider the noisy version of the Blackwell DMBC [7] in
Figure 8. The input alphabet is ternaryX = {0, 1, 2} and
both output alphabets are binaryY1 = Y2 = {0, 1}. Let Z ∼
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Bern(p), with p < 1
2 , be independent ofX . The channel law

PY1Y2|X is described as follows.

Y1 =

{
Z X = 0
1− Z X = 1, 2

Y2 =

{
Z X = 0, 1
1− Z X = 2.

(18)

Whenp = 0, the described DMBC specializes to Blackwell’s
DMBC. For this case the capacity region with and without
feedback is given by Marton’s region. We consider noiseless
feedback and present an achievable region for this setup based
on the regionRInner in Theorem 3.

Let U0, U1, U2 be binary random variables, whereU0 ∼
Bern(12 ), and where givenU0 = 0 the pair(U1, U2) has joint
conditional law

PU1U2|U0=0:
U2 = 0 U2 = 1

U1 = 0 α 0
U1 = 1 1− α− β β

for some nonnegativeα, β satisfyingα + β ≤ 1, and given
U0 = 1 it has joint conditional law

PU1U2|U0=1:
U2 = 0 U2 = 1

U1 = 0 β 0
U1 = 1 1− α− β α

SetX
def
= U1 +U2 (real addition), and letV1

def
= U1, V2

def
= U2,

andV0
def
= V1 ⊕ Y1 = Z. Evaluating the region in (12) for this

choice of random variables, we obtain the following theorem.

Theorem 6. All nonnegative rate triplets(R0, R1, R2) satis-
fying

R0 +R1 ≤ hb

((
α+ β

2

)
⋆ p

)
− hb(p)

R0 +R2 ≤ hb

((
α+ β

2

)
⋆ p

)
− hb(p)

R0 +R1 +R2 ≤ hb

((
α+ β

2

)
⋆ p

)
+

1− β

2
hb

(
α

1− β

)

+
1− α

2
hb

(
β

1− α

)
− hb(p)

2R0 +R1 +R2 ≤ 2hb

((
α+ β

2

)
⋆ p

)
− 2hb(p)

+H ([α, β, 1− α− β])− hb(α)− hb(β)

are achievable over the Noisy Blackwell DMBC. Here,
H
(
[p1, . . . , pm]

) def
=
∑m

i=1 pi log
1
pi

; hb(p)
def
= H([p, 1 − p]);

and γ ⋆ p
def
= (1− γ)p+ γ(1− p).
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over the Noisy Blackwell DMBC with no feedback and noiselessfeedback.

Let us consider the sum-ratesR1 + R2 guaranteed by the
region above. To that end, we setR0 = 0 and note it is
sufficient to consider only the last two inequalities. We get
the following corollary to Theorem 6.

Corollary 2. With noiseless feedback, our scheme achieves
all nonnegative rate pairs(R1, R2) satisfying Inequality(19)
shown on top of the next page.

For comparison, let us now upper bound the sum-rates
R1 + R2 that are achievable without feedback. Since the no-
feedback capacity of a DMBC depends only on the marginals
PY1|X , PY2|X [27], the capacity region for the Noisy Blackwell
channel remains the same if in the definitions ofY1 andY2 (see
(18)) we replaceZ by independent Bern(p) random variables
Z1 andZ2, respectively. Computing the cut-set upper bound
for this latter setting, we obtain that all rate pairs(R1, R2)
that are achievable without feedback must satisfy

R1 +R2

≤ sup
α∈(0, 12 )

{
H
(
[α(p− p̄)2 + pp̄, p̄2 + 2αp̄(p− p̄),

p2 + 2αp(p̄− p), α(p− p̄)2 + pp̄]
)}

− 2hb(p),

(20)

where p̄
def
= 1 − p. Figure 9 depicts the bounds (19) and (20)

together with a cut-set upper bound on the sum-ratesR1+R2

that are achievable with noiseless feedback. By this Figure9:

Corollary 3. Noiseless feedback enlarges the capacity region
of the Noisy Blackwell-DMBC.

Remark 6. Let Ỹ = (Y1 ⊕W1, Y2 ⊕W2), where(W1,W2)
are jointly distributed binary random variables with marginals
Wi ∼ Bern(qi), mutually independent of(X,Y1, Y2). By the
continuity argument in Remark 4, for anyp ∈ (0, 1) and
small enoughmax{q1, q2}, noisy feedback strictly enlarges
the capacity region of the Noisy Blackwell-DMBC with noisy
feedback.
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R1 +R2 ≥ sup
α,β≥0 :
α+β≤1

min

{
hb

((
α+ β

2

)
⋆ p

)
+

1− β

2
hb

(
α

1− β

)
+

1− α

2
hb

(
β

1− α

)
− hb(p),

2hb

((
α+ β

2

)
⋆ p

)
+H ([α, β, 1 − α− β])− hb(α)− hb(β)− 2hb(p)

}
(19)

ACKNOWLEDGEMENT

The authors thank the Associate Editor, the anonymous
reviewers, and Prof. Daniela Tuninetti for the careful reading
of the manuscript and their valuable comments. In particular
for pointing them to [23].

APPENDIX A
ANALYSIS OF MARTON’ S SCHEME

We analyze the average probability of error of Marton’s
scheme averaged over the random messages, codebooks, and
channel realizations, see also [10], [11], [17]. Recall that an
error occurs whenever

(M̂0,1, M̂1) 6= (M0,M1) or (M̂0,2, M̂2) 6= (M0,M2).

By the symmetry of the code construction

Pr [error] = Pr [error|Mc =M1,p =M2,p = 1].

To shorten notation we denote the event thatMc = M1,p =
M2,p = 1 by M = 1. Also, let

• E0 be the event that there is no pair(ℓ1, ℓ2) ∈ [2nR
′
1 ] ×

[2nR
′
2 ] satisfying

(Un
0 (1), U

n
1 (1, 1, ℓ1), U

n
2 (1, 1, ℓ2)) ∈ T

(n)
ǫ/32(PU0U1U2).

• E0i be the event that

(Un
0 (1), U

n
i (1, 1, L

∗
i ), Y

n
i ) /∈ T (n)

ǫ (PU0UiYi
),

whereL∗
1 andL∗

2 denote the pair of indices chosen during
the encoding step.

• E1i be the event that there is âmc 6= 1 such that

(Un
0 (m̂c), U

n
i (m̂c, 1, L

∗
i ), Y

n
i ) ∈ T (n)

ǫ (PU0UiYi
).

• E2i be the event that there is a pairm̂i 6= 1 and ℓ̂i such
that

(Un
0 (1), U

n
i (1, m̂i, ℓ̂i), Y

n
i ) ∈ T (n)

ǫ (PU0UiYi
).

• E3i be the event that there is a tuplêmc 6= 1, m̂i 6= 1,
and ℓ̂i such that

(Un
0 (m̂c), U

n
i (m̂c, m̂i, ℓ̂i), Y

n
i ) ∈ T (n)

ǫ (PU0UiYi
).

When the event(Ec
0 ∩ Ec

0,i ∩ Ec
1,i ∩ Ec

2,i ∩ Ec
3,i) occurs, then

Receiveri ∈ {1, 2} correctly decodes its desired messagesM0

andMi. Therefore,

Pr (error|M = 1)

≤ Pr

(
E0 ∪

( 2⋃

i=1

4⋃

j=1

Ej,i

)∣∣∣∣M = 1

)

≤ Pr (E0|M = 1)

+

2∑

i=1

(
Pr (E0i|E

c
0 ,M = 1) + Pr (E1i|E

c
0i,M = 1)

+Pr (E2i|E
c
0i,M = 1) + Pr (E3i|E

c
0i,M = 1)

)
.

We consider each of the terms separately. A nonnegative
function δ(ǫ) satisfying δ(ǫ) → 0 as ǫ → 0 can be chosen
such that the following statements hold.

• By the code construction and by a conditional version of
the covering lemma (Lemma 2),

lim
n→0

Pr (E0|M = 1) = 0, (21)

whenever

R′
1 +R′

2 > I(U1;U2|U0) + δ(ǫ). (22)

• Since the channel outputsY n
i is a PYi|X -i.i.d. sequence

given Xn and by the conditional typicality lemma
(Lemma 1),

lim
n→0

Pr (E0i|E
c
0 ,M = 1) = 0. (23)

• By the code construction and by the packing lemma
(Lemma 3),

lim
n→0

Pr (E1i|E
c
0i,M = 1) = 0, (24)

whenever

R0 +R1,c +R2,c < I(U0, Ui;Yi)− δ(ǫ). (25)

• By the code construction and by the packing lemma:

lim
n→0

Pr (E2i|E
c
0i,M = 1) = 0, (26)

whenever

R1,p +R′
i < I(Ui;Yi|U0)− δ(ǫ). (27)

• Again, by the code construction and by the packing
lemma:

lim
n→0

Pr (E3i|E
c
0i,M = 1) = 0, (28)

whenever

R0+R1,c+R2,c+Ri,p+R
′
i < I(U0, Ui;Yi)−δ(ǫ). (29)
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Thus, we conclude that if fori ∈ {1, 2}

R′
1 +R′

2 > I(U1;U2|U0) + δ(ǫ) (30a)

Ri,p +R′
i < I(Ui;Yi|U0)− δ(ǫ) (30b)

R0 +R1,c +R2,c + Ri,p +R′
i < I(U0, Ui;Yi)− δ(ǫ), (30c)

then the average (over random codebooks, messages, and
channel realizations) probability of error of the described
scheme tends to 0 as the blocklengthn tends to infinity. The
existence of a deterministic scheme with average (over mes-
sages and channel realizations) probability of error tending to
0 asn tends to infinity follows then from standard arguments.

By the Fourier-Motzkin elimination algorithm we conclude
that whenever

I(U1;Y1|U0) + I(U2;Y2|U0) ≥ I(U1;U2|U0) (31)

then for every rate tuple(R0, R1, R2) satisfying

R0 +R1 < I(U0, U1;Y1)− δ(ǫ) (32a)

R0 +R2 < I(U0, U2;Y2)− δ(ǫ) (32b)

R0 +R1 +R2 < I(U1;Y1|U0) + I(U2;Y2|U0)

+ min
i=1,2

I(U0;Yi)− I(U1;U2|U0)− δ(ǫ)

(32c)

2R0 +R1 +R2 < I(U0, U1;Y1) + I(U0, U2;Y2)

−I(U1;U2|U0)− δ(ǫ) (32d)

for a suitableδ(ǫ) → 0 as ǫ → 0, there exists a choice of
the ratesR1,p, R1,c, R2,p, R2,c, R′

1, R′
2 > 0 such thatR1 =

R1,p +R1,c andR2 = R2,p +R2,c and such that (30) holds.
Notice that for every choice of(U0, U1, U2, X) that does not

satisfy (31) we can strictly enlarge the rate region (32) if we
replace the random triple(U0, U1, U2) by (U ′

0, U
′
1, U

′
2) where

U ′
1 and U ′

2 are constants andU ′
0 = (U0, U1, U2). The new

choice (U ′
0, U

′
1, U

′
2, X) moreover satisfies (31) because both

sides are 0. Also,X can be written as a function of the new
auxiliariesU ′

0, U
′
1, U

′
2. We thus conclude that the rate region

in (32) is achievable also when (31) is violated.
Taking ǫ → 0, now establishes the inclusionRMarton ⊆

CNoFB.
The following two remarks are found useful in the analysis

of our feedback scheme in Appendix D.

Remark 7. Under conditions(31) and (32) there exists an
associated choice of parameters for our scheme such that the
associated auxiliary codewords satisfy

Pr
(
(Un

0 (Mc), U
n
1 (Mc,M1,p, L

∗
1), U

n
2 (Mc,M2,p, L

∗
2))

∈ T
(n)
ǫ/32(PU0U1U2)

)

→ 1 as n→ ∞.

Remark 8. Inspecting the proof, we see that the memoryless
channel property has been used only to establish the limit(23).
The other limits (21), (24), (26), and (28) follow solely from
the way we constructed the code. Suppose now we replace the
memoryless channel with a general channelPY n|Xn . Then
under conditions(31) and (32), there exists an associated

choice of parameters for our scheme such that the average
error probability goes to zero asn→ ∞, if for i ∈ {1, 2}:

Pr
(
(Un

0 (Mc), U
n
i (Mc,Mi,p, L

∗
i ), Y

n
i ) ∈ T (n)

ǫ (PU0UiYi
)
)

→ 1 as n→ ∞.

APPENDIX B
ANALYSIS OF THE LOSSYGRAY WYNER SCHEME WITH

SIDE-INFORMATION

We analyze the failure probabilityPr
(
E(1) ∪ E(2)

)
associ-

ated with our random coding scheme, whereE(i) is the event
that Receiveri fails, i.e.,(Xn, V̂ n

i ) 6∈ T n
ǫ (PXVi

).
Let K∗

0,0, K
∗
1,0, K

∗
2,0, L∗

1,0, L
∗
2,0, K∗

0,1, K∗
1,1, L

∗
1, K∗

0,2,
K∗

2,2, L
∗
2 be the tuple of indices chosen by the sender. Also,

let
• E0 be the event thatXn 6∈ T n

ǫ/8(PX);
• E1 be the event that

∀k0,0, k1,0, ℓ1,0 :(
Xn, V n

0 (1; k0,0, k1,0, ℓ1,0)
)
6∈ T n

ǫ/4(PXV0);

• E2,i, for i ∈ {1, 2}, be the event that

∀k0,i, ki,i, ℓi :

(Xn, V n
0 (i;K∗

0,0,K
∗
i,0, L

∗
i,0), V

n
i (k0,i, ki,i, ℓi))

6∈ T n
ǫ/2(PXV0Vi

);

• E3,i, for i ∈ {1, 2}, be the event that

(V n
0 (i;K∗

0,0,K
∗
i,0, L

∗
i,0), V

n
i (K∗

0,i,K
∗
i,i, L

∗
i ), Y

n
i )

6∈ T n
ǫ (PV0ViYi

);

• E4,i, for i ∈ {1, 2}, be the event that

∃ℓi 6= L∗
i :

(V n
0 (i;K∗

0,0,K
∗
i,0, L

∗
i,0), V

n
i (K∗

0,i,K
∗
i,i, ℓi), Y

n
i )

∈ T n
ǫ (PV0ViYi

);

• E5,i, for i ∈ {1, 2}, be the event that

∃ℓi,0 6= L∗
i,0, ℓi 6= L∗

i :

(V n
0 (i;K∗

0,0,K
∗
i,0, ℓi,0), V

n
i (K∗

0,i,K
∗
i,i, ℓi), Y

n
i )

∈ T n
ǫ (PV0ViYi

).

Notice that whenever event(Ec
0 ∩ Ec

1 ∩ Ec
2,i) occurs, then

(Xn, V n
i (K∗

0,i,K
∗
i,i, L

∗
i )) ∈ T n

ǫ (PXVi
). If additionally also

event (Ec
3,i ∩ Ec

4,i ∩ Ec
5,i) occurs, then Receiveri produces

V̂ n
i = V n

i (K∗
0,i,K

∗
i,i, L

∗
i ). Therefore,

Pr(E(i)) ≤ Pr (E0 ∪ E1 ∪ E2,i ∪ E3,i ∪ E4,i ∪ E5,i)

≤ Pr(E0) + Pr(E1|E
c
0)

+Pr(E2,i|E
c
1) + Pr(E3,i|E

c
2,i)

+Pr(E4,i) + Pr(E5,i). (33)

We analyze each of the summands separately. Hereinafter, a
nonnegative functionδ(ǫ) satisfyingδ(ǫ) → 0 as ǫ → 0, can
be chosen such that the statements hold.

• Since Xn is PX -i.i.d. and by the weak law of large
numbers:

lim
n→∞

Pr (E0) = 0. (34)
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• By the code construction and the covering lemma
(Lemma 2):

lim
n→∞

Pr (E1|E
c
0) = 0 (35)

whenever

R′
0 +R0,0 > I(X ;V0) + δ(ǫ). (36)

• Again, by the code construction and the covering lemma:

lim
n→∞

Pr (E2,i|E
c
1) = 0 (37)

whenever

R′
i +R0,i +Ri,i > I(Vi;X,V0) + δ(ǫ). (38)

• The pair
(
V n
0 (i;K∗

0,0,K
∗
i,0, L

∗
i,0), V

n
i (K∗

0,i,K
∗
i,i, L

∗
i )
)

depends onY n
i only throughXn, i.e., the Markov chain

V n
0 (i;K∗

0,0,K
∗
i,0, L

∗
i,0), V

n
i (K∗

0,i,K
∗
i,i, L

∗
i )⊸−−Xn

⊸−−Y n
i

holds. Therefore,Y n
i is PYi|XV0Vi

= PYi|X -independent
given (Xn, V n

0 (i;K∗
0,0,K

∗
i,0, L

∗
i,0), V

n
i (K∗

0,i,K
∗
i,i, L

∗
i ))

and by the conditional typicality lemma (Lemma 1):

lim
n→∞

Pr
(
E3,i|E

c
2,i

)
= 0. (39)

• Notice that the codewords{V n
i (K∗

0,i,K
∗
i,i, ℓi)} for ℓi ∈

[2nR
′
i ]\{L∗

i } are not independent andPVi
-i.i.d.4 How-

ever, following similar steps as in [17, Appendix 12A],
one can prove Inequality (41) on top of the next page
for arbitrary (k∗0,i, k

∗
i,i, ℓ

∗
i ) ∈ [2nR0,i ] × [2nRi,i ] × [2nR

′
i ]

which directly yields Inequality (42), also shown on the
next page. Here, Equality (40) holds by the symmetry
of the code construction. For(k∗0,i, k

∗
i,i, ℓ

∗
i ) = (1, 1, 1),

Inequality (41) is straightforward; for(k∗0,i, k
∗
i,i) = (1, 1)

andℓ∗i > 1 it follows by this first case and the symmetry
of the code construction; and for(k∗0,i, k

∗
i,i) 6= (1, 1)

and ℓ∗i arbitrary it follows by (43)–(44) which hold
again by the symmetry of the code construction and
because conditioned onK∗

0,i = K∗
i,i = L∗

i = 1 every
set of ⌊2nR

′
i⌋ − 1 codewords{V n

i (k0,i, ki,i, ℓi)} for
(k0,i, ki,i, ℓi) 6= (1, 1, 1) has the same joint distribution.
Notice that on the right-hand side of (42) we have the
probability that one of the⌊2nR

′
i⌋ independent andPVi

-

i.i.d. codewords{V n
i (1, 1, ℓi)}

⌊2nR′
i⌋

ℓi=1 is jointly ǫ-typical
with the pair(V n

0 (i;K∗
0,0,K

∗
i,0, L

∗
i,0), Y

n
i ). Thus, by the

packing lemma (Lemma 3) the probability on the right-
hand side of (42) tends to 0 asn tends to∞ whenever

R′
i < I(Vi;V0, Yi)− δ(ǫ). (45)

We thus conclude that

lim
n→∞

Pr (E4,i) = 0 (46)

whenever (45) holds.

4This can be seen with the following simple example. Let the heights of two
studentsA0 andA1 be uniformly distributed over the interval[1.7, 1.9] m
and independent of each other. Also, letC be the index of the student that has
height larger than1.89m if this index is unique; otherwise letC be Bern(1

2
).

Let C̄ be the index in{0, 1} not equal toC. Notice thatPr (A0 ≥ 1.89) =
1

20
, whereasPr (A

C̄
≥ 1.89) = Pr (A0 ≥ 1.89 andA1 ≥ 1.89) = 1

400
.

Thus,A
C̄

is not uniform over[1.7, 1.9].

• Following similar steps as above, we can prove upper
bound (47). Then, by the multivariate packing lemma
(Lemma 4):

lim
n→∞

Pr (E5,i) = 0, (48)

whenever

R′
0 −Ri,0 +R′

i < I(V0;Yi) + I(Vi;V0, Yi)− δ(ǫ). (49)

Combining (33) with (36), (38), (45), and (49) we obtain that
Pr
(
E(1)

)
andPr

(
E(2)

)
both tend to0 asn→ ∞ whenever:

R′
0 +R0,0 > I(X ;V0) + δ(ǫ) (50a)

R′
1 +R0,1 +R1,1 > I(V1;X,V0) + δ(ǫ) (50b)

R′
2 +R0,2 +R2,2 > I(V2;X,V0) + δ(ǫ) (50c)

R′
0 −R1,0 +R′

1 < I(V0;Y1) + I(V1;V0, Y1)− δ(ǫ) (50d)

R′
0 −R2,0 +R′

2 < I(V0;Y2) + I(V2;V0, Y2)− δ(ǫ) (50e)

R′
1 < I(V1;V0, Y1)− δ(ǫ) (50f)

R′
2 < I(V2;V0, Y2)− δ(ǫ). (50g)

We now argue that with an appropriate choice of the
auxiliary ratesR′

0, R′
1, R′

2, R0,0, R0,1, R0,2, R1,0, R1,1,
R2,0, R2,2 > 0 our scheme achieves the regionRinner

LGW. We
first replaceRi,i by Ri − Ri,0, for i ∈ {1, 2} andR0,0 by
R0 −R0,1 −R0,2 to obtain

R′
0 +R0 −R0,1 −R0,2 > I(X ;V0) + δ(ǫ) (51a)

R′
1 +R0,1 +R1 −R1,0 > I(V1;X,V0) + δ(ǫ) (51b)

R′
2 +R0,2 +R2 −R2,0 > I(V2;X,V0) + δ(ǫ) (51c)

R′
0 −R1,0 +R′

1 < I(V0;Y1) + I(V1;V0, Y1)− δ(ǫ)

(51d)

R′
0 −R2,0 +R′

2 < I(V0;Y2) + I(V2;V0, Y2)− δ(ǫ)

(51e)

R′
1 < I(V1;V0, Y1)− δ(ǫ) (51f)

R′
2 < I(V2;V0, Y2)− δ(ǫ). (51g)

Then, employing the Fourier-Motzkin elimination algorithm
to eliminate the nuisance variablesR′

0, R′
1, R′

2, R0,1, R0,2,
R1,0, R2,0, we obtain that if(R0, R1, R2) satisfies

R0 +R1 > I(X ;V0) + I(V1;X,V0)− I(V0;Y1)

−I(V1;V0, Y1) + δ(ǫ) (52a)

R0 +R2 > I(X ;V0) + I(V2;X,V0)− I(V0;Y2)

−I(V2;V0, Y2) + δ(ǫ) (52b)

R0 +R1 +R2 > I(X ;V0) + I(V1;X,V0) + I(V2;X,V0)

−I(V1;V0, Y1)− I(V2;V0, Y2)

−min
i
I(V0;Yi) + δ(ǫ) (52c)

then there exists a choice of nonnegative ratesR′
0, R′

1, R′
2,

R0,1, R0,2, R1,0, R2,0 that satisfies (51) and

R1 −R1,0 ≥ 0

R2 −R2,2 ≥ 0

R′
0 −R1,0 ≥ 0

R′
0 −R2,0 ≥ 0

R0 −R0,1 −R0,2 ≥ 0.
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Pr (E4,i) = Pr




⋃

ℓi∈[2nR′
i ]

ℓi 6=L∗
i

(V n
0 (i;K∗

0,0,K
∗
i,0, L

∗
i,0), V

n
i (K∗

0,i,K
∗
i,i, ℓi), Y

n
i ) ∈ T n

ǫ (PV0ViYi
)




= Pr




⌊2nR′
i⌋⋃

ℓi=2

(V n
0 (i;K∗

0,0,K
∗
i,0, L

∗
i,0), V

n
i (1, 1, ℓi), Y

n
i ) ∈ T n

ǫ (PV0ViYi
)

∣∣∣∣∣K
∗
0,i = K∗

i,i = L∗
i = 1


 (40)

≤ Pr




⌊2nR′
i⌋⋃

ℓi=1

(V n
0 (i;K∗

0,0,K
∗
i,0, L

∗
i,0), V

n
i (1, 1, ℓi), Y

n
i ) ∈ T n

ǫ (PV0ViYi
)

∣∣∣∣∣K
∗
0,i = k∗0,i,K

∗
i,i = k∗i,i, L

∗
i = ℓ∗i


 (41)

Pr (E4,i) ≤ Pr




⌊2nR′
i⌋⋃

ℓi=1

(V n
0 (i;K∗

0,0,K
∗
i,0, L

∗
i,0), V

n
i (1, 1, ℓi), Y

n
i ) ∈ T n

ǫ (PV0ViYi
)


 (42)

Pr




⌊2nR′
i⌋⋃

ℓi=2

V n
0 (i;K∗

0,0,K
∗
i,0, L

∗
i,0), V

n
i (1, 1, ℓi), Y

n
i ) ∈ T n

ǫ (PV0ViYi
)

∣∣∣∣∣K
∗
0,i = K∗

i,i = L∗
i = 1




= Pr




⌊2nR′
i⌋⋃

ℓi=2

(V n
0 (i;K∗

0,0,K
∗
i,0, L

∗
i,0), V

n
i (1, 1, ℓi), Y

n
i ) ∈ T n

ǫ (PV0ViYi
)

∣∣∣∣∣K
∗
0,i = k∗0,i,K

∗
i,i = k∗i,i, L

∗
i = ℓ∗i


 (43)

≤ Pr




⌊2nR′
i⌋⋃

ℓi=1

(V n
0 (i;K∗

0,0,K
∗
i,0, L

∗
i,0), V

n
i (1, 1, ℓi), Y

n
i ) ∈ T n

ǫ (PV0ViYi
)

∣∣∣∣∣K
∗
0,i = k∗0,i,K

∗
i,i = k∗i,i, L

∗
i = ℓ∗i


 (44)

Pr (E5,i) ≤ Pr




⋃

ℓi,0∈
[
2n(R′

0−Ri,0)
]
,

ℓi∈[2nR′
i ]

(V n
0 (i; 1, 1, ℓi,0), V

n
i (1, 1, ℓi), Y

n
i ) ∈ T n

ǫ (PV0ViYi
)




(47)

Due to the Markov chain(V0, V1, V2)⊸−−X⊸−−(Y1, Y2) the
constraints in (52) are equivalent to

R0 +R1 > I(X ;V0, V1|Y1) + δ(ǫ) (53a)

R0 +R2 > I(X ;V0, V2|Y2) + δ(ǫ) (53b)

R0 +R1 +R2 > I(X ;V1|V0, Y1) + I(X ;V2|V0, Y2)

+max
i
I(X ;V0|Yi) + δ(ǫ). (53c)

Thus, we conclude that the region (53) isǫ-achievable for
all choices of the auxiliary random variableV0 satisfying the
Markov chain(V0, V1, V2)⊸−−X⊸−−(Y1, Y2). Letting ǫ → 0,
the achievability ofRinner

LGW is established.
The following remark is found useful in the analysis of the

feedback scheme in Appendix D.

Remark 9. In our error analysis, only Limits(34) and (39)
rely on the assumption that(Xn, Y n

1 , Y
n
2 ) arePXY1Y2-i.i.d. It

is easy to check that replacing this assumption with the more
general assumptions

(i) Pr(Xn ∈ T n
ǫ/8(PX)) → 1 asn→ ∞.

(ii) (Y n
1 , Y

n
2 ) is PY1Y2|X -independent givenXn.

still guarantees the existence of associated parameters such
that the scheme aboveǫ-achieves the region (53). In particular,

Pr
(
(Xn, V n

i (K∗
0,i,K

∗
i,i, L

∗
i )) /∈ T n

ǫ (PXVi
)
)
→ 0

and

Pr
(
V̂ n
i 6= V n

i (K∗
0,i,K

∗
i,i, L

∗
i )
)
→ 0,

for i ∈ {1, 2}, asn→ ∞.

APPENDIX C
CONVEXITY IN THEOREM 2

Let {V0,j , V1,j , V2,j , Xj , Y1,j, Y2,j}j∈{0,1} be two sets of
mutually independent random variables forj ∈ {1, 2}, where

• (Xj , Y1,j , Y2,j) ∼ PXY1Y2 ;
• (V0,j , V1,j , V2,j)⊸−−Xj⊸−−(Y1,j , Y2,j).
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• PVi,j |Xj
= PVi|X for i ∈ {1, 2}.

Let Q ∼ Bern(α) be independent of the union of the two
sets, and definēV0

def
= V0,Q, V̄i

def
= Vi,Q, X̄

def
= XQ, Ȳi

def
= Yi,Q,

for i ∈ {1, 2}. Notice that as the law of(X1, Y1,1, Y2,1) and
the law of (X2, Y1,2, Y2,2) are the same, the ”time-sharing”
random variableQ is independent of the triplet(X̄, Ȳ1, Ȳ2).
Therefore, and since by assumption

(V̄0, V̄1, V̄2)⊸−−(X̄,Q)⊸−−(Ȳ1, Ȳ2),

we conclude that defining̃V0
def
= (Q, V̄0) we have the Markov

chain
(Ṽ0, V̄1, V̄2)⊸−−X̄⊸−−(Ȳ1, Ȳ2). (54)

We further notice that fori ∈ {1, 2}:

I(X̄ ; V̄i|V̄0, Ȳi, Q) = I(X̄; V̄i|Ṽ0, Ȳi) (55)

and

I(X̄; V̄0|Ȳi, Q) = I(X̄ ; V̄0, Q|Ȳi) = I(X̄ ; Ṽ0|Ȳi), (56)

where the first equality holds because of the independence of
Q and (X̄, Ȳi). Moreover, by (55) and (56)

I(X̄; V̄0, V̄i|Ȳi, Q) = I(X̄ ; V̄i, Ṽ0|Ȳi). (57)

Combining these inequalities with the Markov condition, we
conclude that the regionRinner

LGW is convex.

APPENDIX D
ERROR ANALYSIS FOR THEFEEDBACK SCHEME

We bound the average probability of error (where the
average is over the random messages, codes, and channel
realizations). LetE be the error event:

E
def
=

2⋃

i=1

B⋃

b=1

{
(M̂0,i,(b), M̂i,(b)) 6=

(
M0,(b),Mi,(b)

)}
.

Moreover, for eachb ∈ [B + 1], let Fb be the error event of
the Marton code in blockb:

Fb
def
=

2⋃

i=1

{
(Ĵ0,i,(b), Ĵi,(b)) 6=

(
J0,(b), Ji,(b)

)}
.

Then,

Pr(E) ≤ Pr

(
B+1⋃

b=1

Fb

)
≤

B∑

b=1

Pr(Fb|F
c
b+1) + Pr(FB+1).

By construction, we have thatPr(FB+1) → 0 asn → ∞.
Let us now analyze the probabilityPr(Fb|F

c
b+1) for a fixed

b ∈ [B]. In light of Remark 8, we see that if

I(U1;Y1, V1|U0) + I(U2;Y2, V2|U0) ≥ I(U1;U2|U0); (58)

and

R̄0 + R̄1 < I(U0, U1;Y1, V1)− δ(ǫ) (59a)

R̄0 + R̄2 < I(U0, U2;Y2, V2)− δ(ǫ) (59b)

R̄0 + R̄1 + R̄2 < I(U1;Y1, V1|U0) + I(U2;Y2, V2|U0)

+min
i
I(U0;Yi, Vi)− I(U1;U2|U0)− δ(ǫ);

(59c)

2R̄0 + R̄1 + R̄2 < I(U0, U1;Y1, V1) + I(U0, U2;Y2, V2)

−I(U1;U2|U0)− δ(ǫ); (59d)

and for i ∈ {1, 2}:

Pr((Un
0,(b), U

n
i,(b), Y

n
i,(b), V̂

n
i,(b)) 6∈ T n

ǫ (PU0UiYi,Vi
)) → 0

(60)
asn → ∞, then there exists a choice of the parameters such
thatPr

(
Fb|F

c
b+1

)
→ 0 asn→ ∞.

From this point forward we assume that Conditions (58)
and (59) hold, and prove that if additionally

R̃0 + R̃1 > I(U0, U1, U2, Ỹ ;V0, V1|Y1) + δ(ǫ) (61a)

R̃0 + R̃2 > I(U0, U1, U2, Ỹ ;V0, V2|Y2) + δ(ǫ) (61b)

R̃0 + R̃1 + R̃2 > I(U0, U1, U2, Ỹ ;V1|V0, Y1)

+I(U0, U1, U2, Ỹ ;V2|V0, Y2)

+max
i
I(U0, U1, U2, Ỹ ;V0|Yi) + δ(ǫ) (61c)

then the limit (60) holds. We notice that

Pr
(
(Un

0,(b), U
n
i,(b), Y

n
i,(b), V̂

n
i,(b)) 6∈ T n

ǫ (PU0UiYiVi
)
)

≤ Pr
(
(Un

0,(b), U
n
i,(b), Y

n
i,(b), V

n
i,(b)) 6∈ T n

ǫ (PU0UiYiVi
)
)

+ Pr
(
V̂ n
i,(b) 6= V n

i,(b)

)
, (62)

where V n
1,(b) and V n

2,(b) denote the codewords chosen by
the LGW-SI encoding ruleλ(b). We now verify that under
conditions (61), both terms on the right-hand side of (62)
vanish asn→ ∞.

Since the input Xn
(b) is a component-wise function

of (Un
0,(b), U

n
1,(b), U

n
2,(b)) and the channel is memory-

less,(Y n
1,(b), Y

n
2,(b), Ỹ

n
(b)) is PY1Y2Ỹ |U0U1U2

-independent given
(Un

0,(b), U
n
1,(b), U

n
2,(b)). Furthermore, from Marton’s code con-

struction and in light of Remark 7, we have that under
conditions (58) and (59)

Pr
(
(Un

0,(b), U
n
1,(b), U

n
2,(b)) /∈ Tǫ/32(PU0U1U2)

)
→ 0.

Therefore, by the conditional typicality Lemma, also

Pr
(
(Un

0,(b), U
n
1,(b), U

n
2,(b), Ỹ

n
(b)) /∈ Tǫ/16(PU0U1U2Ỹ

)
)
→ 0

asn→ ∞.
Thus, by Remark 9 (recall we have used the parameterǫ/2

for the LGW-SI code) and under conditions (61)

Pr
(
V̂ n
i,(b) 6= V n

i,(b)

)
→ 0 (63)

Pr
(
(Un

0,(b), U
n
1,(b), U

n
2,(b), Ỹ

n
(b), V

n
i,(b)) 6∈ T n

ǫ/2(PU0U1U2Ỹ Vi
)
)
→0

(64)

asn→ ∞.
Now, since Y n

i,(b) is PYi|U0U1U2Ỹ
-independent given

(Un
0,(b), U

n
1,(b), U

n
2,(b),Ỹ

n
(b)), and the Markov condition

V n
i,(b)⊸−−(Un

0,(b), U
n
1,(b), U

n
2,(b),Ỹ

n
(b))⊸−−Y n

i,(b)

holds, (64) and the conditional typicality Lemma imply that

Pr
(
(Un

0,(b), U
n
i,(b), Y

n
i,(b), V

n
i,(b)) 6∈ T n

ǫ (PU0UiYiVi
)
)
→ 0. (65)

With (62) and (63) this establishes (60). We thus proved that
whenever (58), (59), and (61) are satisfied, then the probability
of error tends to 0 asn→ ∞, for any ǫ small enough.
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Employing the Fourier-Motzkin elimination algorithm on
constraints (59) and (61) where we replacedR̄i byRi+R̃i, and
letting ǫ tend to 0, we obtain that under the set of constraints
(12) and when (58) holds, then there exists a choice of the
parameters such that the probability of error of our scheme
tends to 0 asn → ∞. Notice however, that when a triplet
(U0, U1, U2) does not satisfy (58), then the rate region (12)
is strictly enlarged if we replace this triplet by(U ′

0, U
′
1, U

′
2)

whereU ′
1 andU ′

2 are constants andU ′
0 = (U0, U1, U2). The

new choice(U ′
0, U

′
1, U

′
2) moreover satisfies (58) because both

sides are 0. It also satisfies the Markov chain (27) andX can
be expressed as a function of the new auxiliariesU ′

0, U
′
1, U

′
2.

We can thus ignore constraint (58) in the statement of the
achievable region.

We conclude that since by (13) the effective rates of
transmission tend to(R0, R1, R2) asB → ∞, any rate triplet
satisfying the constraints (12) is achievable by our scheme.
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