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Abstract

A notion of directed information between two continuousdi processes is proposed. A key component in the
definition is taking an infimum over all possible partitiorfstioe time interval, which plays a role no less significant
than the supremum over “space” partitions inherent in tHaidien of mutual information. Properties and operational
interpretations in estimation and communication are thetabdished for the proposed notion of directed information
For the continuous-time additive white Gaussian noise wblrit is shown that Duncan’s classical relationship
between causal estimation error and mutual informatiotiicoas to hold in the presence of feedback upon replacing
mutual information by directed information. A parallel uéisis established for the Poisson channel. The utility of
this relationship is demonstrated in computing the dikdtéormation rate between the input and output processes
of a continuous-time Poisson channel with feedback, whegechannel input process is constrained to be constant
between events at the channel output. Finally, the capatiéywide class of continuous-time channels with feedback
is established via directed information, characterizing fundamental limit on reliable communication.

Index Terms

Causal estimation, conditional mutual information, contius time, directed information, Duncan’s theorem,
feedback capacity, Gaussian channel, Poisson channel,pamiition.

|I. INTRODUCTION

The directed informatio (X™ — Y™) between two randome-sequencesX™ = (Xi,...,X,) andY"™ =
(Y1,...,Y,) is a natural generalization of Shannon’s mutual informmatmrandom objects obeying causal relations.
Introduced by Massey [1], this notion has been shown to aséhe canonical answer to a variety of problems
with causally dependent components. For example, it plagwaal role in characterizing the capacig of a

communication channel with feedback. Masdey [1] showetttiefeedback capacity is upper bounded as

1
Crg < lim  max —I(X" —=Y"), Q)
n—00 p(zn||yn=1) N

wherel(X" — Y™) =" | (X% YY" 1) andp(z”|[y" ') = [T, p(zs|z"~ 1,y 1); see also Kramef 2] that
streamlines the notion of directed information by causalditioning. The upper bound (1) is tight for certain
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classes of ergodic channels, such as general nonantigipeitannels satisfying certain regularity conditions [3],
channels with finite input memory and ergodic noise [4], amiecomposable finite-state channéls [5], paving the
road to a computable characterization of feedback capamty [6]-[8] for examples.

Directed information and its variants also characterize (ultiletter expressions) the capacity for two-way
channels[[2], multiple access channels with feedback (@] Hroadcast channels with feedbalcki[10], and compound
channels with feedback [11], as well as the rate—distoffiimiction with feedforward [12],[13]. In another context,
directed information captures the difference in growtlesabf wealth in horse race gambling duectmusalside
information [14]. This provides a natural interpretation/[dX™ — Y™) as the amount of information abomt”
causally provided byX™ on the fly. Similar interpretations for directed informatican be drawn for other problems
in science and engineering [15].

This paper is dedicated to extending the mathematical natialirected information to continuous-time random
processes and to establishing results that demonstratgptirational significance of this notion in estimation and
communication. Our contributions include the following:

« We introduce the notion of directed information in contingdime. Given a pair of continuous-time processes
in a time interval and its partition consisting afsubintervals, we first consider the (discrete-time) dedct
information for the two sequences of lengthwhose components are the sample paths on the respective
subintervals. The resulting quantity depends on the spegéftition of the time interval. We define directed
information in continuous time by taking the infimum overfatite time partitions. Thus, in contrast to mutual
information in continuous time which can be defined aipremunof mutual information over finite “space”
partitions [16, Ch. 2.5],[[17, Ch. 3.5], inherent to our wootiof directed information is a similar supremum
followed by aninfimumover time partitions. We explain why this definition is natuby showing that the
continuous-time directed information inherits key prdjeer of its discrete-time origin and by establishing new
properties that are meaningful in continuous time.

« We show that this notion of directed information arises iteaxing classical relationships between information
and estimation in continuous time—Duncan’s theorém [18&jt ttelates the minimum mean squared error
(MMSE) in causal estimation of a target signal based on amrrebson through an additive white Gaussian
noise channel to theutual informationbetween the target signal and the observation, and its equart for
the Poisson channel—to the scenarios in which the chanpat process can causally depend on the channel
output process, whereby corresponding relationships rad betweendirected informatiorand estimation.

« We illustrate these relationships between directed infdimn and estimation by characterizing the directed
information rate and the feedback capacity of a continuoue-Poisson channel with inputs constrained to
be constant between events at the channel output.

« We establish the fundamental role of continuous-time ¢ dnformation in characterizing the feedback
capacity of a large class of continuous-time channels. Itiqudar, we show that for channels where the
output is a function of the input and some stationary ergédaise” process, the continuous-time directed

information characterizes the feedback capacity of thencbha



The remainder of the paper is organized as follows. SeEfiandevoted to the definition of directed information
and related quantities in continuous time, which is follovixy a presentation of key properties of continuous-time
directed information in Section]ll. In Sectidn IV, we edliabh the generalizations of Duncan’s theorem and its
Poisson counterpart that accommodate the presence ofdeledin Sectiod V, we apply the relationship between
the causal estimation error and directed information fer Btoisson channel to compute the directed information
rate between the input and the output of this channel in aasizethat involves feedback. In Sectipn] VI, we study a
general feedback communication problem in which our notibdirected information in continuous time emerges

naturally in the characterization of the feedback capa8gctior ' VIl concludes the paper with a few remarks.

Il. DEFINITION AND REPRESENTATION OFDIRECTED INFORMATION IN CONTINUOUS TIME

Let P and Q be two probability measures on the same space%]dbe the Radon—Nikodym derivative @f

with respect toQ). The relative entropy betwee and @ is defined as

log 22) dP if 4£ exists,
aQ aQ

D(P||Q) := @
00 otherwise.
For jointly distributed random objects and V', the mutual information between them is defined as
I(U;V) == D(Puyv||Pu x Pv), (3)

where Py x Py, denotes the product distribution under whicrandV are independent but maintain their respective

marginal distributions. As an alternative, the mutual infation is defined [16, Ch. 2.5] as
I(U; V) = sup I([U]; [V]), (4)

where the supremum is over all finite quantizationg/oAind V. That the two notions coincide has been established
in, e.g., [19], [17, Ch. 3.5]. We writé(Py ) instead ofI (U; V') when we wish to emphasize the dependence on
the joint distributionPy y .

For a jointly distributed random tripl&€J, V, W) with components in arbitrary measurable spaces, we defae th

conditional mutual information betwedr andV given W as
I({U; VW) := sup I([U]; [V]|W), ()

where the supremum is over all finite quantizationd/oind V. This quantity, due to Wynef [20], is always well
defined and satisfies all the basic properties of conditionglial information for discrete and continuous random
variables, in particular:
1) Nonnegativity:I(U; V|W) > 0 with equality iff U — W — V form a Markov chain (that isl/ andV are
conditionally independent givei).
2) Chain rule: I(U;V, X|W) = I(U; V|W) + I(U; X|V,W).
3) Data processing inequalityf U — (W, X) — V form a Markov chain, thed(U; X |W) > I(U; V|W) with
equality iff I(U; VW, X) = 0.



The definition in[[b) coincides with Dobrushin’s more regisvie definition [17, p. 29]

/I(PU.,V\W:w) dPw (w), (6)

where Py v w—,, IS a regular version of the conditional probability law(éf, V') given {W = w} (cf. [21, Ch. 6])
if it exists.

Let (X™, Y™) be a pair of random.-sequences. The directed information frof¥ to Y is defined as

I(X" = Y™) = i](xi; Y;|yiTh. (7

=1
Note that, unlike mutual information, directed informatis asymmetric in its arguments, i.d(X" — Y™) #
I(Y™ — X™) in general.
Let us now develop the notion of directed information betwego continuous-time stochastic processes on the
time interval[0, 7). For a continuous-time proces$s\;}, let X’ = {X,: a < s < b} denote the process in the

time interval[a,b). Let t = (to,t1,...,t,) denote a vector with components satisfying
O=tog<tr1i <---<t,=1T. (8)

Let Xg’t denote the sequence of lengthresulting from “chopping up” the continuous-time signdf into

consecutive segments as

Xot = (Xg XL X)), (9)

Note that each component of the sequence is a continuoesstimehastic process. For a pair of jointly distributed

stochastic processé(!, Y'), define
LXT =Y =Xyt — YY) (10)

Yo', (11)

-3
=1

where on the right side of (12) is the directed informatiomween two sequences of lengthdefined in [¥); and
in (I3) we note that the conditional mutual information terrdefined as in{5), are between two continuous-time
processes, conditioned on a third. We extend this definitioh, (X — Y;'|V), whereV is a random object

jointly distributed with (X', Y;'), in the obvious way, namely
LXT = YEWV) = 1(Xt = Y H V) (12)
=Y IV XEYE V). (13)

We defineT (a,b) to be the set of all finite partitions of the time interyal b). The quantityl;(X{ — Y ) is

monotone int in the following sense:

Proposition 1. Lett andt’ be partitions in7(0,T). If t' is a refinement of, i.e., {t;} C {t.}, thenly, (XI —
Vi) < L(XT = Y.



Proof: It suffices to prove the claim assumingas in [8) and that’ is the (n + 2)-dimensional vector with
components

O=to<t1 < <ty <t <t; < - <t,="T. (14)

For sucht andt’, we have from[(113)

L(Xg = Y)) - Iv(Xg = YY) (15)
= 1Y XY ) = I XY ) + 1Y X v (16)
= 1Y G XEIY) = IO XY + 10 Xy v )] (17)
= (X, XY YY) = [T XY ) + LY XE XEYy v )] (18)
= (X, XY YY) = IXE X — Y Y Ye ) (19)
>0, (20)

where the last inequality follows since directed inforroatibetween two sequences of length 2 in this case) is
upper bounded by the mutual information [1, Th. 2]. ]

The following definition is now natural:

Definition 1. Let (XZ,Y') be a pair of stochastic processes. Hirected informatiorfrom X1 to Y{ is defined
as

T Ty . : T T
T =¥ = ot (X Y. (21)

If V is another random object jointly distributed wittk ', V') we define the conditional directed information
I(xXF =YV as

I(Xg =Y V)= inf L(Xg = Y5 V). (22)

Note that the definitions and conventions preceding Definfi imply that the directed informatiadi{ X — Y{!)
is a nonnegative extended real number (i.e., as an eleme6t®f]). It is also worth noting, by recallingl4), that
each of the conditional mutual information terms[in](13)J &ience the sum, is a supremum over “space” partitions
of the stochastic process in the corresponding time inkeriidus the directed information if(21) is an infimum
over time partitions of a supremum over space partitions.
Also note that
I(XF - Y]) = lim inf  L(XI —=YY), (23)

e—0t+ tit; —t; —1<e,Vi
where the infimum is over all partitions i (0,7") with subinterval lengths uniformly bounded lby> 0. Indeed,
for any ¢ > 0 and any partitiont € 7(0,7), haveinfy .,y < vi I (X§ — Y') < L(Xg — Y), since
a refinement of the time interval does not increase the dideatformation as seen in Propositibh 1. By the

arbitrariness ot € 7(0,T), this implies

inf Io(XF v < inf LXTF—>YD)=I1X->YT 24
t/:t;_iﬁlg&w v (Xo 0)_t€¥(107T) (X o) (Xo 0 )5 (24)



which in turn impliesI (XI — Y') > lim, o+ infe, 4, ,<cwi Le(XE — Y) by the arbitrariness of > 0. Since
the reverse inequality(X! — Y) < lim._o+ infer, ¢, ,<cvi It(XE — Yg') is immediate from the definition
of I(XT — Y{), we have[(2B).

As is clear from its definition in[{7), the discrete-time dited information satisfies
I(X" = Y™) —I(X" ! 5y = [(YV,; X"|y" 1), (25)
A continuous-time analogue would be that, for smait 0,
I(XGP = Y0) = (X = YY) = TV XG0V, (26)

Thus, if our proposed notion of directed information in doabus time is to be a natural extension of that in
discrete time, one might expect the approximate relafi@) {@ hold in some sense. Toward a precise statement,

denote

i ;= lim 6I(Yf+5 X YY) forte(0,T) (27)

6%0+

whenever the limit exists. Assuming exists, let

n(t,8) =5 (Yt+5 XEPIYY) — i (28)
and note that[(27) is equivalent to
51_1)I61+ n(t,d) = 0. (29)

Proposition 2. Fix 0 < ¢ < T. Suppose that; is continuous at and that the convergence i9) is uniform in

the interval[t, ¢t + +) for somey > 0. Then

d+
—I(X§ = i) =i, (30)

Note that Propositiohl2 formalizels {26) by implying that te& and right hand sides of (26), when normalized
by 4, coincide in the limit of smalk.
Proof of Propositio R: Note first that the stipulated uniform convergence[inl (29plies the existence of

~ > 0 and a monotone functiofi(é) such that

In(t',8)| < f(6) forallt' €lt,t+7) (32)
and
li 32
Jim f(8) = (32)
Fix now 0 < ¢ < and consider
I(XITe 5 Yite)y = inf (X[t — yite 33
(X = Yy™) tGTl(%t+5) t(Xo" " = Y5T) (33)

Yo' ) (34)

= f I( VAIED ¢4
t671%t+5 Z ti-17 720



n

- te(T(0, t)UT(t t+¢)) z; LR t1 ) (35)
= t)Zf (s XY + tefﬁgﬁmzf WXt G9)
S OGS =) e O X @
=I(X,—=Y))+ inf zn:(ti —ti—1) - [ig,_y +n(tic1, b — tiza)], (38)

tET (tt+e)

where the equality in{35) follows since the infimum over alrftions does not change by restricting to partitions

that have an interval up to timeand from timet and the last equality follows by the definition of the funatip
in (28). Now,

n n

inf Z(ti —ti—1) - [ie,, +0tic1,ti —ti-1)] < inf Z(tz —ti-1) - [ sup iv + f(e)|  (39)

tET (t,t+e) Pl teET (t,t+e) = et tte)
—<| sw s, (40)
t' €[t t+e)
where the inequality in[(39) is due t6 {31) and the monotoyiof f, which implies f(¢; — t;—1) < f(¢), as
t; — t;—1 is the length of a subinterval ift,¢ + ¢). Bounding then terms in [[39) from the other direction, we

similarly obtain

n

inf t;— ti_ i1t —tiig)] > inf iy — . 41
I 3 A I T G @)
Combining [(38), [(4D), and(41) yields
t+e t+ey t t
inf 4y — f(e) < [XGT = Vo) = 1(Xg = Vy) < sup ip+ f(e) foralle>0. (42)
t' et t+e) € t' €t ,t+e)

The continuity ofi; att implieslim. o+ infy e 142) G = lime 0+ SUPy ey 4. i = i and thus, taking the limit
e — 07 in (@2) and applying[(32) finally yields

I Xt-l—&‘ Yt+€ _7 Xt Yt
lim (Xo ™= = Yg™) - I(Xg — 0):it, (43)

e—0+ 5

which completes the proof of Propositibh 2. ]
Beyond the intuitive appeal of Propositibh 2 in formalizif#8), it also provides a useful formula for computing

directed information. Indeed, the integral version[of] (80)
T
I(XF =Yl = / iy dt. (44)
0

As the following example illustrates, evaluating the rigjlaind side of[(44) (via the definition &f in (24)) can be
simpler than tackling the left hand side directly via Defomit[T.

Example 1. Let {B;} be a standard Brownian motion and~ N(0, 1) be independent of B;}. Let X; = A for
all t anddY; = X,dt + dB,. Letting J(P,N) = (1/2)In((P + N)/N) denote the mutual information between a



Gaussian random variable of varianBeand its corrupted version by an independent Gaussian néigariance

N, we have for every € [0,T)

I(WH;X(%HWJ)—J( L/t 1>_%1n<1+i).

1+1/t°0 t+1
With such an explicit expression fdi(Y;™; X °|Y{), i; can be obtained directly from its definition:
it_ali%l+%ln<l+ti1)_2(;1)' (45)
We can now compute the directed information by applying Bsitjpn[2:
T T 1 1
I(xI —=vh :/O ipdt = /0 mdt = 51m(1 +T). (46)

Note that in this examplé(X{; V") = J(1,1/T) = £ In(1 4+ T) and thus, by[(46), we havB(X] — Y{) =
I(XF; Y. This equality between mutual information and directeaiinfation holds in more general situations,

as elaborated in the next section.

The directed information we have just defined is between trezgsses of0, 7). We extend this definition to
processes of different durations by zero-padding at thénbeyy of the shorter process. For instance,
I(XI0 = v = 1((05XT~°) = Y, (47)

where(ong“g) denotes a process df, 7') formed by concatenating a process that is equal to the aurisfar

the time intervall0, §) and then the process! —°.

Define now
I(XI~ = v]) = limsup (X% = V) (48)
§—0t
and
I(XT™ = YY) = liminf (X7 = V). (49)
§—0t

Finally, define the directed informatiol( X, ~ — Y) by
IXT™ =Y = lim I(XT° - YY) (50)
6—0+

when the limit exists, or equivalently, whaii Xy — — Y{') = I(X{~ — Y{'). As we shall see below (in the last

part of Propositio3)/ (X, ~ — Y ) is guaranteed to exist whenevEiX{!'; YI) < oo.

IIl. PROPERTIES OF THEDIRECTED INFORMATION IN CONTINUOUS TIME

The following proposition collects some properties of diegl information in continuous time:

Proposition 3. Let (X{', Y') be a pair of jointly distributed stochastic processes. Then
1) Monotonicity: I(X{ — Y{) is monotone nondecreasing in< ¢ < 7.
2) Invariance to time dilation: Forx > 0, if X, = X, andY; = Y;,, thenI(X1/* — V') = [(XT — Y{I).

More generally, if¢ is monotone strictly increasing and continuous, a(d@(t), f/ab(t)) = (X4, V), then

oo(T oo(T
I(X§ =Y = 1(X5g) = Vi) (51)



3) Coincidence of directed information and mutual informati¢f the Markov relationYy — X¢ — X/ holds
forall 0 <t <T,then
I(Xg = Y§) = I(Xg3Y5), (52)

4) Equivalence between discrete time and piecewise constanoyntinuous time: Le{U™, V") be a pair of
jointly distributedn-tuples and supposg, t1, . .., t,) satisfy(8). Let the pair(X[, Yy ) be defined as the

piecewise-constant process satisfying
(Xta}/t) = (Ul, ‘/z) if tii1 <t<t (53)

fori=1,...,n. Then
IXF =Yy =1U"=V"). (54)

5) Conservation law: For any) < § < T we have
L(X35Y0) + 1(Xg = YY) + 1Y) ™ = X)) = 1(X3; Y(). (55)
Further, if I(XJ;Y") < oo thenI(Y) ~ — X{') exists and
I(Xg = Y5 )+ 10y~ = Xg) = 1(Xg:Yg). (56)

Remarks.

1) The first, second, and fourth parts in the proposition gmeproperties that are known to hold for mutual
information (when all the directed information expressiam those items are replaced by the corresponding
mutual information), which follow immediately from the daprocessing inequality and the invariance of
mutual information to one-to-one transformations of ifguaments. That these properties hold also for directed
information is not as obvious in view of the fact that directeformation is, in general, not invariant to one-
to-one transformations nor does it satisfy the data prangs$sequality in its second argument.

2) The third part of the propaosition is a natural analoguehef fact that/ (X™; Y™) = I(X™ — Y™) whenever
Yi— X' — X7, form a Markov chain for alll < i < n. It covers, in particular, any scenario whekg
andY{ are the input and output of any channel of the farm= g,(X}, W{'), where the procesd’! (which
can be thought of as the internal channel noise) is indepetrade¢he channel input process!. To see this,
note that in this case we hav&¢, W) — X¢ — X[ forall 0 <t < T, implying Y¢ — X} — X[ since
Y{ is determined by the paitX¢, W{T).

3) Particularizing even further, we obtai X! — Yi) = I(X{;Y") wheneverYy is the outcome of
corrupting X{ with additive noise, i.e.Y; = X; + W;, where X! and W{ are independent.

4) The fifth part of the proposition can be considered the inapus-time analogue of the discrete-time
conservation law [22]

(U = V") +I1(V™ !t - U™) = I(U" V™). (57)

It is consistent with, and in fact generalizes, the thirdtpmdeed, if the Markov relatioy — X¢ — XTI

holds for all0 < ¢ < T then our definition of directed information is readily seenirhply thatI(YOT*‘s —
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XJ) =0 for all § > 0 and therefore thaf (Y~ — X{') exists and equals zero. Thus](56) in this case
reduces to[(52).

Proof of Propositior B: The first part of the proposition follows immediately frometddefinition of directed
information in continuous time (Definitidd 1) and from thefthat, in discrete timel (U™ — V™) < [(U™ — V™)
for m < n. The second part follows from Definitidd 1 upon noting thaider a dilationg as stipulated, due to

the invariance of mutual information to one-to-one transfations of its arguments, for any partitierof [0, 7T'),

IU(XG = Y§) = Lo (X5) = Vi), (58)
whereg¢(t) is shorthand for(¢(to, ¢(t1), ..., @(tn)). Thus
IXg = Y) = _inf I(Xe = Y) (59)
= %I) Iy (ng)) - ?ﬁg ) (60)
= ot L(X0G) = Vi) (61)
= I(ijg)) - @(g) ), (62)

where [59) and[{82) follow from Definitionl 1[_(50) follows fro (58), and[(6l1) is due to the strict monotonicity

and continuity of¢ which implies that
{#(t) : t is a partition of[0,T)} = {t : t is a partition of[p(0), ¢(T))}. (63)

Moving to the proof of the third part, assume that the Markeation Y — X¢ — X/ holds forall0 <t < T
and fixt = (to,t1,...,t,) as in [8). Then

L(X] =Y =I(Xg "t =Yg (64)

—~

N

= I XYy (65)
=1
N

=Y IV XTIy (66)
=1

=I(X7 Yy, (67)

where [66) follows sincé’o‘” — Xéi — XtT for eachl < i < N, and [&7) is due to the chain rule for mutual
information. The proof of the third part of the propositioaw follows from the arbitrariness af.

To prove the fourth part, consider first the case: 1. In this caseX; = U; andY; = V; forall ¢t € [0,T). Itis an
immediate consequence of the definition of directed infagionathat (U, U,...,U) — (V,V,...,V)) = I(U;V)
and therefore that, (X! — Y') = I(Uy; V1) = I(U; — Vq) for all t. Consequently (X! — Y1) = I(U; — W),
which establishes the case= 1. For the general case > 1, note first that it is immediate from the definition
of I,(XI — Y{') and from the construction dfX!, Y;l) based on X", Y™) in (83) that fort = (to,t1,...,tn)
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consisting of the time epochs ih(53) we hak¢X! — Y ) = I(U" — V™). ThusI(X{ — Y < (X —
Yi') = I(U™ — V™). We now argue that

(Xg = Y)) > I(U" = V") (68)

for any partitions. By Propositior 1L, it suffices to establigh 168) with equyatissumings is a refinement of the

particulart just discussed, that is, is of the form

0=ty = 50,0 < 80,1 < - < 80,7, < t1 = $1,0 <811 << 81, < to = S2,0 < < Sp—1,J,1 < th=1T.

(69)
Then,

LXE = vh) =1(x0° = Y%) (70)

n Jl 1
— Z Z }/55;‘1 11J] 1; 51 1]|Y51 1,5— 1) (71)
= " 1(Us ViU (72)

=1

=I(U" = V"), (73)

where [72) follows by applying a similar argument as in theeca= 1.
Moving to the proof of the fifth part of the proposition, fix= (to,%1,...,t,) as in [8) witht; = § > 0.
Applying the discrete-time conservation law57), we have

L(Xg = Vo) + 1e(Yy ™ = X)) = I(X3: Yy (74)

and consequently, for any> 0,

{t:t1:6,maxi££ ti—ti_1<e} Te(Xg = Yo') + {t:max, 1?_fti,lga} I (V™ = Xg) (75)
- T {bt1=5 m&xg ti—ti_1<e} T (Xg - YOT) * {t:tlzé,maxiig ti—ti_1<e} It(YOT?é - Xg) (76)
— {tctl:&maxig <o) [It(XOT — YOT) + It(YOT—5 N XOT)] 77)
=I(Xg:Yg ), (78)

where the equality if{76) follows since due to its definitior@1), I (Y ° — X') does not decrease by refining
the time interval in the [0, §) interval; the equality in[{47) follows from the refinemenbperty in Proposition]1,
which implies that for arbitrary processég!, YL, Z1', W and partitionst andt’ there exists a third partitiotr’

(which will be a refinement of both) such that
L(Xg = Yo) + I (Zy — WJ) > L (Xg = Y + Ten(Z5 = WQ); (79)
and the equality in[(78) follows sincE(74) holds for any: (9,1, ..., ¢,) With ¢, = . Hence,

I(XTvd) = lim inf L(X$ =Y + inf LY = XTI (80)

e—=071 | {t:t1=0,max;>s t;—t;1<e} {t:max; t; —t;—1<e}
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= lim inf L(X] — YY) + lim inf LY = xT)  (81)

e—0+ {t:t1:6,maxi22 ti—ti—1<e} e—01 {t:max; t;—t;—1<e}
n
= li inf IXQY) + > I XYy |+ 1Y = X)) (82
L ma <o) (X0:Yy) Z; 1 Xo'l ) (Yo 0) (82)

n

=I(X3;Y{) + lim ZI (Yl XbY,

e—0t {t:t1=6, maxl>2 ti—t;—1<e} 5
i=

Vi 41y = xF) (83)

= I(XOY9) + I(XT = Y |Y9) + 1Y) 0 = X7, (84)

where the equality in[(80) follows by taking the limit— 0 from both sides of[(78); the equality ih_(82) follows
by writing out Iy (X — Y') explicitly for t with ¢; = § and using[(28) to equate the second limit[in](81) with
I(YOT*‘s — X7F); and the equality in[{84) follows by applyin§(23) on the citishal distribution of the pair
(XT, (05Y5")) givenY{. We have thus proven (B5) or, equivalently, the identity

IX5Y9) +I(XT = Y5 |V)) = I(XT5 V) — 1Yy % = X{). (85)

Toward the proof of[(56), fot € 7(0,7) andd < ¢, let t5 denote the refinement df obtained by adding an
additional point at. Then

L(X{ = Y)) > IL(Xi =Y (86)
= I(X0:YY)) + L, (X — Y5 [YY) (87)
> I(XOY9) +I(XT — Y YY), (88)

where the first inequality follows sinces is a refinement ot, the equality by writing out the sum that defines
L, (X$ — Y and isolating its first term, and the second inequality byitifenum over partitions inherent in
the definition of /(XI — Y;T|Yy). The arbitrariness of < ¢, in (88) implies

limsup [(Xg; Yg) + 1(Xg — Y5 |Y5) < L(Xg — YY) (89)

§—0+

which, by the arbitrariness afe 7(0,7), implies

limsup [(Xg; Yg) + I(Xg — Y5 |[Yg) < I(XJ = Yg"). (90)

§—0+

On the other hand, for any > 0, we clearly have
I(X3:Yg) + I(Xg — Y5 [Yg) > I(Xg — Yg), (91)

as the right hand side, by its definition, is an infimum overpalttitions in 7(0,7), while the left hand side
corresponds to an infimum over the subset consisting onlyase partitions witht; = 0. By the arbitrariness of
§ in (@) we obtain

lim inf I(X8; V) + 1(XT = V'|¥§) > I(X{ = ) (92)
m

which, when combined witH {90), finally implies

Tim T(XG ) + I(XT = YY) = 1(X] = ). (93)
li
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Existence of the limit in[{93), when combined with 155) ane thdded assumptioh(X{;Y{) < oo, implies

existence of the limitims_,o+ 1(Yy % — XI) = I(Y)/~ — XI) and that
I(Xg =Y )+ 10 = Xg) = I(Xg;Yg), (94)

thus completing the proof. [ ]

IV. DIRECTEDINFORMATION, FEEDBACK, AND CAUSAL ESTIMATION
A. The Gaussian Channel

In [18], Duncan discovered the following fundamental rielaship between the minimum mean squared error
(MMSE) in causal estimation of a target signal corrupted iydditive white Gaussian noise (AWGN) in continuous

time and the mutual information between the clean and nmisespted signals:

Theorem 1 (Duncan [18]) Let X" be a signal of finite average powqi{)T E[X?]dt < oo, independent of a
standard Brownian motiod B,}. Let Yl satisfydY; = X;dt + dB,. Then

T
3 L= B = 1Y), (95)

A remarkable aspect of Duncan’s theorem is that the relshipn(9%) holds regardless of the distribution of
XZF. Among its ramifications is the invariance of the causal MM8Ehe flow of time, or more generally, to any
reordering of time[[23],[[24]. It should also be mentionedtttalthough this exact relationship holds in continuous-
time, approximate versions that hold in discrete-time cardérived from it, as is done in_[24, Theorem 9].

A key stipulation in Duncan’s theorem is the independendwé&en the noise-free sign&l{" and the channel
noise{B;}, which excludes scenarios in which the evolutionXfis affected by the channel noise, as is often the
case in signal processing (e.g., target tracking) and camuation (e.g., in the presence of feedback). Indeed, the
identity (83) does not hold in the absence of such a stiprati

As an extreme example, consider the case where the chapuelisnsimply the channel output with some delay,
ie.,

Xt+s = }/t (96)

for somee > 0 (and X; = 0 for ¢ € [0,¢)). In this case the causal MMSE on the left side[of] (95) is tye@r
while the mutual information on its right side is infinite. Gime other hand, in this case the directed information
I(XF — Y{) = 0, as can be seen by noting that{ X — YI) = 0 for all t satisfyingmax;(t; —t;_1) < ¢
(since for sucht, X! is determined byy;*~* for all 7).

The third remark following Propositidnl 3 implies that Theo{1 could be equivalently stated wiftiX!; i)
on the right side of[{35) replaced b X! — Y{). Furthermore, such a modified identity would be valid in the
extreme example i _(96). This is no coincidence and is a cpesee of the result that follows, which generalizes
Duncan'’s theorem. To state it formally we assume a proliglsipace(Q2, 7, P) with an associated filtratio{.F; }

satisfying the “usual conditions” (right-continuous a#d contains all theP-negligible events inF, cf., e.g., [25,
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Definition 2.25]). Recall also that when the standard Bramninotion is adapted toF;} then, by definition, it is
implied that, for anys < t, B; — B; is independent ofF (rather than merely oBg, cf., e.g., [25, Definition 1.1]).

Theorem 2. Let {(X,, B;)}L_, be adapted to the filtratiod.F;}7_,, where X[ is a signal of finite average power
fOT E[X?]dt < oo and BT is a standard Brownian motion. Lét]" be the output of the AWGN channel whose

input is X! and whose noise is driven by?, i.e.,
dY, = X,dt + dB,. (97)

Suppose that the regularity assumptions of Propos[tionesatisfied for all0 < ¢ < T'. Then

T
%/0 E[(X, — E[X,|Yg])?|dt = I(X] — YY), (98)

Note that unlike in Theorerl 1, where the channel input pégsndependent of the channel noise process,
in TheorenT® no such stipulation exists and thus the settirte latter accommodates the presence of feedback.
Furthermore, sincé(X{ — Y,') is not invariant to the direction of the flow of time in generBheoreni? implies,
as should be expected, that neither is the causal MMSE faregees evolving in the generality afforded by the
theorem.

That TheorenmJ1 can be extended to accommodate the presenfeedifack has been established for a
communication theoretic framework by Kadota, Zakai, and [26]. Indeed, in communication over the AWGN
channel whereX!" = X{'(M) is the waveform associated with messaddein the absence of feedback the Markov
relation M — XTI — Yl implies that/(XZ; Y;T) on the right hand side of (95), when applying Theofém 1 in
this restricted communication framework, can be equivblemritten as/(M;Y,"). The main result of [26] is that

this relationship between the causal estimation error id; Y;') persists in the presence of feedback, i.e., that

E /T E[(X: — E[X:|Y§])?]dt = I(M; YY) (99)
2 Jo

with or without feedback, even though, in the presence odifaek, one no longer hakM; V') = I(XI; V)
and therefore[(35) is no longer true. The combination of Teed2 with the main result of [26] (namely, with
[@9)) thus implies that in communication over the AWGN chelnwith or without feedback, we havé M ; Y[) =
I(XF — Y{). This equality holds well beyond the Gaussian channel, adaisorated in Section VI. Evidently,
Theoreni 2 can be considered an extension of the Kadota—Zzkaesult as it holds in settings more general than
communication, where there is no message but merely a saps#rved through additive white Gaussian noise,
adapted to a general filtration.

Theoren{® is a direct consequence of Proposition 2 and thmniolg lemma.

Lemma 1 ( [27]). Let P andQ be two probability laws governingX !, i), under which(@7) and the stipulations
of Theoreni R are satisfied. Then

T
D(Pg Q) = 35 | [ (X0 = BoXIYS1? - (X, - EplxiI¥i)ar] (100)
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Lemmdl was implicit in[[2/7]. It follows from the second paff@7, Theorem 2], put together with the exposition
in [27, Subsection IV-D] (cf., in particular, equations 8)4hrough (161) therein).
Proof of Theoreni]2: Consider

I(Y;&H_(S; X5+6|Yg) = D(Pyt*+5|xg+5_y0t HPYtt*‘S\YOt |Py()t,xf+5) (101)
= /D(PYQH&\X?H:%?SYJ:?JS||Pﬂt+6|YJ:y6)dPYot7XfH(yé’I?&) (102)
1 t+6
3 B[ BN — (o = st aR stubst®) 09)
1 e
= 5 /t E[(Xs - E[XS|YOS])2] ds, (104)

where the equality in[{103) follows by applying (100) to thdeigrand in [[Z02) as follows: replacing the time
interval [0, T) by [t,t + §), substitutingP by the law of (X}, ¥;™) conditioned on(y}, =) (note thatX; ™

is deterministic atz:™ under this law), and substituting by the law of (X/*°, v;™) conditioned ony§. The
last step is obtained by switching between the integfél‘S and [ E and then using the definition of conditional
expectation. The switch between the integrals is possibietd Fubini's theorem and the fact that the signal has

finite average powefOT E[X?]dt < oo. It follows thati, defined in [2¥) exists and is given by
) 1
iv = 3 B[(Xe = BIXY)?), (105)

which completes the proof by an appeal to Proposition 2. [ ]

B. The Poisson Channel

Consider the functior : [0, 00) x [0,00) — [0, 00] given by
(x,3) = xlog(x/2) —x + . (106)

That this function is natural for quantifying the loss whestimating nonnegative quantities is implied [n[28,
Section 2], where some of its basic properties are exposathn§y them is that conditional expectation is the
optimal estimator not only under the squared error loss lsat @ander/, i.e., for any nonnegative random variable
X jointly distributed withY",

min E [e(X,X(Y))] = BlU(X, E(X|Y))], (107)
X0)

where the minimum is over all (measurable) maps from the dom&Y” into [0, co). With this loss function, the
analogue of Duncan’s theorem for the case of doubly stoichBstisson process (i.e., the intensity is a random

process) can be stated as:

Theorem 3( [28], [29)]). Let Y, be a doubly stochastic Poisson process ahfl be its intensity process (i.e., condi-
tioned onX [, Y is a nonhomogenous Poisson process with rate functigi satisfyingt fOT | X log X¢|dt < oo.
Then .

| e, Byl = 10685, (108)
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We remark that for(«) = alog o, one has
E[¢(Xy) — ¢(E[X:[Y5))] = E[0(Xe, ELX|YG))], (109)
and thus[{I08) can equivalently be expressed as
/OT B[¢(X:) — ¢(BIX|Yg])]dt = I(Xg;Y), (110)

as was done ir [29] and other classical references. But ineasntil [28] that the left hand side was established as
the minimum mean causal estimation error under an explid#éntified loss function, thus completing the analogy
with Duncan’s theorem.

The condition stipulated in the third item of Propositidns3eadily seen to hold wheyj! is a doubly stochastic
Poisson process and{ is its intensity process. Thus, the above theorem couldvatgritly be stated with directed
information rather than mutual information on the right daside of [10B). Indeed, with continuous-time directed
information replacing mutual information, this relatibiys remains true in much wider generality, as the next
theorem shows. In the statement of the theorem, we use tienaaif a point process and its predictable intensity,

as developed in detail in, e.gl, |30, Chapter II].

Theorem 4. Let Y, be a point process and; be its FY -predictable intensity, where?} is the o-field o(Y{)
generated byy{. Suppose that fOT | X log X;|dt < oo, and that the assumptions of Propositidn 2 are satisfied
forall 0 <t <T. Then .

| e poxvgar = 106§ - ). a11)

Paralleling the proof of Theorefd 2, the proof of Theorem 4 idir@ct application of Propositionl 2 and the

following:

Lemma 2 ( [28]). Let P and @ be two probability laws governingX!', Y;[') under the setting and stipulations
of Theoreni 4. Then

T
D(Pyr|Qyr) = Ep /0 U(Xy, Eq[X4|Yg]) — €(Xe, Ep[Xe|Yg])dt | - (112)

Lemmal2 is implicit in [28], following directly from[[28, Therem 4.4] and the discussion in_[28, Subsection
7.5]. Equipped with it, the proof of Theoremm 4 follows simijaas that of Theoreri]2, the role df_(100) being

played here by({112).

V. EXAMPLE: POISSONCHANNEL WITH FEEDBACK

The Poisson channel (e.gl, [31]-[38]) is a channel whereirthat at timet, X;, determines the intensity of
the doubly stochastic Poisson procé$soccurring at the output of the channel. A Poisson channdi feiedback
refers to the case where the input sigiial may depend on the previous observation of the oulput

In this section we consider a special case of Poisson chavitirefeedback. LeXX = {X;} andY = {Y;} be

the input and output processes of the continuous-time &oishannel with feedback, where each time an event
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occurs at the channel output, the channel input changes twavalue, drawn according to the distribution of a
positive random variablé, independently of the channel input and output up to thattpioi time. The channel
input remains fixed at that value until the occurrence of thet rvent at the channel output, and so on. Throughout
this section, the shorthand “Poisson channel with feedbailk refer to this scenario, with its implied channel
input process.

The Poisson channel we use here is similar to the well-knomissBn channel model (e.d., [31]=[38]) with one
difference that the intensity of the Poisson channel chaageording to the inpuk only when there is an event
at the output of the channel. Note that the channel desenigfiven here uniquely determines the joint distribution
of the channel input and output processes.

In the first part of this section, we derive, using Theofém figranula for the directed information rate of this
Poisson channel with feedback. In the second part, we denatmghe use of this formula by computing and

plotting the directed information rate for a special casevhiich the intensity alphabet is of size 2.

A. Characterization of the Directed Information Rate

For jointly distributed processeX,Y) define the directed information raféX — Y) by
I(X -Y)= lim iI(X{{ = Y$), (113)
T—oo T
when the limit exists.

Proposition 4. Assume tha¥ is finite-valued with probability mass function (pmpfy (z). The directed information

rate between the input and output processes of the Poissamnehwith feedback(X — Y) exists and is given

by
I(X;Y)
E[1/X]°

where, inI(X;Y) on the right hand sideY'|{X = =} ~ Exp(z), i.e., the conditional density of given{X = x}

I(X—>Y)= (114)

is f(ylz) = ze ¥* . Ly>0}-

The key component in the proof of the proposition is the us€haforeni ¥ for directed information in continuous
time as a causal mean estimation error. An intuition for tkeression in[(114) can be obtained by considering
rate per unit cost [39], i.eR = I(X;Y)/E[b(X)], whereb(z) is the cost of the input. In our case, the “cost” of
X is proportional to the average duration of time until therokel can be used again, i.6(x) = 1/z. Finally, we
remark that the assumption of discretenessXoin Propositior # is made for simplicity of the proof, thoudtet
result carries over to more generally distribut&d

To prove Propositiofil4, let us first collect the following ebstions:

Lemma 3. Let X ~ px(z) andY|{X = z} ~ Exp(x). Define

o(t) = BIX|Y > f] = 2 px@) (115)

Yo px(@) T T



18

Then the following statement holds.

1) The marginal distribution ofX; is

(1/2)px (x)
P{X,=z}= 116
W= = s e @) (116)
and consequently
_ Ellog X]
2) Let/=¢(Y"_) denote the time of occurrence of the last (most recent) eatettite channel output prior to
time 0 and definer := —¢. The density of is
2. ¢ px (@)
==z ___ ‘-7 > 0.
3) For 7 distributed as in(X18),
1Y)
Elg(r)logg(r)] = m (119)

Proof: For the first part of the lemma, note that, is an ergodic continuous-time Markov chain and thus
P{X; = z} is equal to the fraction of time thaX, spends in state: which is proportional to(1/z)px (z),

accounting for[(116), which, in turn, yields

B (1/z)px (z) rlog s — Y. px(x)logz :E[logX]
B0 X =2 o e %8 = S ()~ BT/ (120

accounting for[(117).
To prove the second part of the lemma, observe that

(a) the interarrival times of the proce¥s are independent and identically distributed (i.i.d.) espof a random

variableY’;
(b) Y has a density
fry) = px(@)ze ™, y>0, (121)

(c) the probability density of the length of the interarfiir@erval of the’Y process around is proportional to

fy(y) -y; and
(d) given the length of the interarrival interval aroudids v, its left point is uniformly distributed of—y, 0].

Letting Unif[0, y](-) denote the density of a random variable uniformly distelubn [0, y], it follows that the

density ofr is

Y S ) S d 122
f=(®) o T A vy nif[0, y] (t)dy (122)
_ [T -y 1, 123

¢ Jo W) ydy'y Y (123)

Y. px(x)z [ e dy

= L — 124
Zsz(x)xfo ey . y'dy’ ( )

= ZePx@rTe (125)

B Zm bx (l')fﬂ 112
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DI px(x)e™ "
- TEuAT 1)

where [12P) follows by combining observations (c) and (dg &8124) follows by substituting froni_.(IP1). We have
thus proven the second part of the lemma.

To establish the third part, |efy (¢) denote the cumulative distribution function Bf and consider

Ely(r)loga(r)] = [ 1-(00(t)loga(t) (127)
-/ Zmpfl(/ Q]M%f_;}pﬁiﬁ) log Eza;fcee_;;p;c(%)dt (128)

1/X / er px (z) log %dt (129)

it / X / Jr (1) log 1 “_fi;(y)( yat (130)

1/X (/ fr(t) logl_; ()dt—h(Y)> (131)

= ﬁ (/01 log ﬁdu - h(y)> (132)

_ ﬁa ~h(Y)), (133)

where [128B) follows by substituting from the second part i temma and[{130) follows by substituting from
(I21) and noting that

Z e “px(z) = pr (x)x .

tx [e%e]
= zm:px (CC)iE/t e~y
= /too > px(z)we"dy = /too fy(y)dy =1—Fy(t).  (134)

We have thus established the third and last part of the lemma. ]

Proof of Propositiod ¥: We have

I(X—=Y)= Thm —I(X0 - Y (135)
—00
17 t t
= lim — E|[X,log X; — E[X,|Yy]log E[X,|Yy]]|dt (136)
T—oo T 0
= E[Xolog Xo — E[Xo|Y?,]log E[Xo|Y°]] (137)
_ Eflog X] 0 0

where [13b) follows from the relation between directed infation and causal estimation i _(111); (137)
follows from the stationarity and martingale converger@gecifically, by martingale convergenégX,|Y",] —
E[Xo|Y®, ] ast — oo a.s. and thusE[X,log X; — E[X,|Y{]log E[X,|Y{]], which by stationarity is equal
to E[Xolog Xo — E[Xo|Y?]log E[X,|Y?,]], converges toE X, log Xo — E[X,|Y, ]log E[Xo|Y?_]] by the

bounded convergence theorem (recall thatis finite-valued); and[(138) follows from the first part of Lema[3.
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Now, recalling the definition of the functioqin (I13) we note that

E[Xo|l(Y2 )] = g(—(Y2 ). (139)
Thus
E[E[Xo|Y° ] log E[Xo|Y . )] = E[E[Xo[e(Y,)]log E[Xo|¢(Y2..)]] (140)
= Eg(—(Y2)) log g(—(Y2))] (141)
= Elg(7)log g(7)] (142)
= 1E_[17]}(XY]) (143)

where [14D) follows from the Markov relatioi® . — ¢(Y°_) — X,, (I41) follows from [I3P), and (143) from
the last part of Lemmgl 3. Thus
h(Y)—1+ E[log X]

IX—=Y)= E[1/X) (144)
-
_.§%§%§%, (146)

where [T44) follows by combining (IB8) with (143), afd (L46)ows by noting that
h(Y[X) =) h(Y]X = 2)px(x) = Y (1~ logz)px(z) = 1 - Ellog X]. (147)
Tmsmmmm%ﬂwpmmoﬂ;m%m®4. ) m

B. Evaluation of the Directed Information Rate

Fig.[d depicts the directed information rat€X — Y') for the case wher&X takes only two values; and \s.

We have used numerical evaluation/@fX’; Y) in the right hand side of (114) to compute the directed infatiom
rate. The figure shows the influencepof P{X = \;} on the directed information rate whekg = 1 and )\, = 2.
As expected, the maximum is achieved when there is highdrghitity that the encoder output will be the higher
rate A, which would imply more channel uses per unit time, but notmhigher as otherwise the input value will
be close to deterministic.

Fig.[2 depicts the maximal value (optimized w.it{X = \;}) of the directed information rate wheky is
fixed and is equal to 1 andl, varies. This value is the capacity of the Poisson channdl feédback, when the
inputs are restricted to one of the two valuesor ;. When \; = 0 the capacity is obviously zero since any
use of X = Ao as input will cause the channel not to change any furthess ll$o obviously zero ak; = 1
since in this case\; = A2, so there is only one possible input to the channel.)Asncreases, the capacity of
the channel increases without bound since, Xor> A, the channel effectively operates as a noise-free binary
channel, where one symbol “costs” an average duratioh while the other a vanishing average duration. Thus

the limiting capacity with increasing, is equal tolim, o H(p)/p = occ.
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01}
>
T 0.06
o)
=
0.02}
0.2 ‘ 0.6 ‘ 1
p:=P{X =X\}

Fig. 1. The directed information rate between the input antbat processes for the continuous-time Poisson chanrbl feedback, as a
function of P(z), the pmf of the input to the channel. The input to the chanselrie of two possible values; = 1 and A2 = 2, and it is

the intensity of the Poisson process at the output of theredamtil the next event.

-4 -2 0 2

10 10 10 10
A2

Fig. 2. Capacity of the Poisson channel with feedback, ire aalsere channel input is constrained to the binary{set, A2}, when Ay is

fixed and is equal to 1 andly varies.

One can consider a discrete-time memoryless channel, vitveiaput X is discrete §; or A\;) and the output”
is distributed according tixp(X). Consider now a random colstX ) = Y, whereY is the output of the channel.

Using the result from[[39] we obtain that the capacity pett gost of the discreet memoryless channel is

xy) I(XGY)
P BEIY] P BIL/X] (149)

where the equality follows sinc&[Y] = E[E[Y|X]] = E[1/X]. Finally, we note that the capacity of the Poisson
channel in the example above is the capacity per unit costeodliscrete memoryless channel. Thus, by Proposition 4
we can conclude that the continuous-time directed infolonatte characterizes the capacity of the Poisson channel
with feedback. In the next section we will see that the cardirs-time directed information rate characterizes the

capacity of a large family of continuous-time channels.
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VI. COMMUNICATION OVER CONTINUOUS-TIME CHANNELS WITH FEEDBACK

We first review the definition of a block-ergodic process agegiby Berger[[40]. Let(X, X, ) denote a
continuous-time procegsX, };>¢ drawn from a spac&’ according to the probability measyzeFor¢ > 0, let T* be
at-shift transformation, i.e(T%x)s = xs.+. A measurable set is t-invariantif it does not change under theshift
transformation, i.e.7*A = A. A continuous-time processX, X, i) is T-ergodicif every measurable-invariant
set of processes has either probability 1 or 0, i.e., for aiyariant setA, in other wordsyu(A) = (u(A))2. The
definition of 7-ergodicity means that if we take the procdss, };> and slice it into time-blocks of length, then
the new discrete-time procegX [, X27, X327, ...) is ergodic. A continuous-time procegX, X', i) is block-ergodic

if it is 7-ergodic for everyr > 0. Berger [40] showed that weak mixing (therefore also strariging) implies

block ergodicity.

Encoder Channel Decoder
X, Y; .
ze(m,yp ) T 9(Xe, Zy) - n(yd)
A

Me{1,...,2"T}

— M
Message

L .
Message estimate

\

Yi_a

A

Delay A

Fig. 3. Continuous-time communication with deldy and channel of the forny; = g(X¢, Zt), whereZ; is a block ergodic process.

Now let us describe the communication model of our intersse (Fig[ B) and show that the continuous-time
directed information characterizes the capacity. Comsideontinuous-time channel that is specified by
« the channel input and output alphabgdtsand ), respectively, that are not necessarily finite, and

« the channel output at time

corresponding to the channel inpat; at time ¢, where {Z;} is a stationary ergodic noise process on an

alphabetZ andg : X x Z — ) is a given measurable function.
A (2% T) code with delayA > 0 for the channel consists of
. a message sdftl,2,...,2lTE},
« an encoder that assigns a symbol

z(m,yh?) (150)

to each message € {1,2,...,2l7%} and past received output signgl* € Y[**=2) for ¢ € [0, T), where
xy s {1,2,...,2lTEI} »x Yl0t=2) _ ¥ is measurable, and
. a decoder that assigns a message estimtg ) € {1,2,...,27%} to each received output signg] <

YO whererm : Y1) — {1,2,... 2T} is measurable.
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We assume that the messalis uniformly distributed on{1,2,. .., |27%|} and independent of the noise process
{Z:}.

By the definition of the channel if_(T49), the definition of #ecoding function in[{130), and the independence
of M and{Z,}, it follows that for anys > 0 and anyt > 0,

M — (X§7°,Y)) = ¥/ *° (151)

form a Markov chain. This is analogous to the assumption & discrete case that(y, :|z" ™, y",m) =
p(yns1|z™ L, y™); the analogy is exact when we convert a discrete time chatenal continuous time channel

with constant piecewise process between the time samplethefmore, for any > 0, § > 0, andA > §,
X0 — (X5 YgT2) 5 YA (152)

form a Markov chian. This is analogous to the assumption éndiscrete case that whenever there is feedback of
delayd > 1, p(zpi1]z™, y") = p(@nsalz™,y" T 79).

Similar communication settings with feedback in continsidme were studied by Kadota, Zakai, and ZivI[41]
for continuous-time memoryless channels, where it is shthah feedback does not increase the capacity, and by
Ihara [42], [43] for the Gaussian case. Our main result iis #@ction is showing that the operational capacity,
defined below, can be characterized by the information dgpachich is the maximum of directed information
from the channel input process to the output process. Nexdefi@e an achievable rate, the operational feedback

capacity, and the information feedback capacity for outirsgt

Definition 2. A rate R is said to beachievable with feedback dela¥ if for each T' there exists a family of
(28T T) codes such that

Jim P{M # MY}y =o. (153)
—00
Definition 3. Let

C(A) =sup{R: R is achievable with feedback delay} (154)

be the(operational) feedback capacityith delay A, and let the(operational) feedback capacitye
C £ sup C(A). (155)
A>0
From the monotonicity of”'(A) in A we havesupa o C(A) = lima,o C(A). This definition coincides with
the feedback capacity definition of continuous time changelen in [41], where there also was assumed a positive

but arbitrary small delay in the feedback capacity.
Definition 4. Let C!(A) be the information feedback capacity defined as

Ccl(A) = lim lsup.r xI s yl, (156)
0 0

T—o0 Sa
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where the supremum il (156) is ov8k, which is the set of all channel input processes of the form

U, YE2) > A,
X, = 9:(Ue, Yy 7) (157)

gt(Ut) t < A,
some family of measurable functiodg;}7_,, and some process! which is independent of the channel noise

processZ! (appearing in[{149)) and has a finite cardinality that mayedejponT".

The limit in (I56) is shown to exist in Lemnid 4 using the supditvity property. We now characterizé(A)
in terms of CZ(A) for the class of channels defined In (149).

Theorem 5. For the channel defined iff49),
c(a) < cl(a), (158)

c(A) > (A’ forall A’ > A. (159)

Since C1(A) is a decreasing function i\, (I59) may be written ag’(A) > lims_, A+ C1(5), and the limit
exists because of the monotonicity. Since the function is@banic thenC?(A) = lims_, o+ C1(§) with a possible
exception of the points oA of a set of measure zero [44, p. 5]. ThereféieA) = C’(A) for any A > 0 except
of a set of points of measure zero. Furthermpre](158) and) (%dy thatsup., C(A) = supao C1(A), hence
we also have” = supa-, C1(A) = lima_,o C1(A).

Before proving the theorem we show that the limits[in_(156pEx

Lemma 4. The termsupg, I(X{ — Y{') is superadditive, namely,
sup I(Xg T — Yt 2) > sup I(Xg " — Yo' +sup I(Xg2 — Yy'?), (160)
SaA Sa Sa

and therefore the limit in{I58) exists and is equal to

1 1
lim T Sup I(XT - Y) =sup T Sup I(xr -y (161)

T—o00 Sa T Sa

To prove Lemmd&l4 we use the following result:

Lemma 5. Let {(X;,Y;)};™ be a pair of discrete-time processes such that Markov wfati; —

(X1 Yl - (Xi2Y Vi) holds fori € {n+1,n+2,...,n+m}. Then

I(Xn+m = Yn+m) > I(Xn N Yn) +I(X;li{” RN Yg;rlm), (162)

Proof: The result is a consequence of the identity [4, Eq. (11)]

I(X" - Y") =Y I(X; VXL y ). (163)
i=1
Consider
n+m . )
[(XmHm =y = 3 I(Xp Y XLy (164)
i=1
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n n+m

=D CIXG Y XTL YT 4 Y T I YT X Y (165)
=1 1=n+1
n n+m

>N CIXEYMXTLY T+ Y I YT XL Y (166)
=1 i=n+1

=I(X" > Y") + (X" = Yim), (167)

where [16#) follows from the identity given if (1163), and @) 6ollows from the Markov chain assumption in the
lemma. [ |
Proof of LemmdJ4: First note that we do not increase the temnfi, I (X' ™2 — Y, *72) by restricting
the time-partitiont to have an interval starting at poifl. Now fix three time-partitionst, in [0,77), t2 in
[Ty, Ty + T»), andt in [0,T; + T3) such thatt is a concatenation; andt,. For X;* and X2, fix the input
functions of the form of[(157) and fix the argumeit$® and U;*"> which corresponds td&* and X "2,
respectively. The construction is such that the randomegsses/”* and U:,:fllJ“T? are independent of each other. Let
Xg**" be a concatenation of;* and X7 *"2. Applying Lemmab on the discrete-time procd$s(;, Y;) 71",
where(X;,Y;) = (X, v,/*) for i = 1,2,...,n +m we obtain that for any fixedy, t», Xo', X717, U™,

andU7*" as described above, we have
L(Xg 2 s YR > L (X = YO o+ Ly (X072 = YT, (168)

Note that the Markov conditioi; — (X', Y*~1) — (X7}, ¥;'71) indeed holds because of the construction of
XOT“FT2. Furthermore, because of the stationarity of the ndise))(ir6plies [160). Finally, using Fekete’s lemma
[45, Ch. 2.6] and the superadditivity ih (160) implies théstence of the limit in[(16]1). [ |

The proof of Theorernl5 consists of two parts: the proof of theverse, i.e.[{188), and the proof of achievability,
i.e., (I59).

Proof of the converse for Theorelh 5Fix an encoding scheméf;}~ , with rate R and probability of

decoding errorp{") = P{M # M(Y{)}. In addition, fix a partitiont of lengthn such thatt; — ¢, _; < A for
anyi € [1,2,...,n] and lett,, = T. Consider

RT = H(M) (169)
= H(M) + H(M|Yy") — H(M|Y{") (170)
<I(M; Y ) + Ter (171)
=I(M; Yy, Y2, .Y} )+ Ter (172)

. t
I(M; Y)Y,

I

N
Il
-

) 4 Ter (173)

I(M, X5 v Yy

I

s
Il
-

Y+ Ter (174)

I(M, X5 X[ 275 Yy ) + Ter (175)

|

N
Il
-
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= zn: I(M, XG5V Y ) + I35 v (Ve MO X + Ter (176)
=1

= anf(xéi;ni;w&ﬂ) XY Y ML X + Ter (177)
1=1

= znjl(Xéi;léiil Yy ™) + Ter (178)
1=1

=I(XI = Y) + Ter, (179)

where the equality in[(169) follows since the message igidiged uniformly, the inequality in[(1T1) follows
from Fano’s inequality, wherer = 1 + PR, the equality in [[I74) follows from the fact thd{’é“““A is a
deterministic function ofA/ and YOtH, the equality in[(I75) follows from the assumption that-¢;_; < A, the
equality in [I77) follows from[(181), and the equality {n_8)7ollows from [152). Hence, we obtained that for
everyt

R< 2 I(XE = Y]) +er (180)

Since the number of codewords is finite, we may consider tipaitirsignal of the formacoT’t with xf;;jfl =

ff yki~2), where the cardinality of.] is bounded, i.e. (/]| < oo for any givenT (the bound may depend on

T), independently of the partitioh Furthermore,
1
R < inf Tlt(XéF — Y + e,
1
= TI(X{;F =Yy +er. (181)

Finally, for any R that is achievable there exists a sequence of codes suchrthat, ., Pe(T) =0, henceer — 0
and we have establisheld (159). [ |
Note that as a byproduct of the sequence of equalifies] ({23, we conclude that for the communication

system depicted in Fidl 3,

IOMGYY) = inf L(Xg = Yo = 1(XG = V). (182)

The only assumptions that we used to prdve [1TT)3(179) istlieaencoders uses a strictly causal feedback of the
form given in [I5¥) and that the channel satisfies the bensgnraption given in[(131). This might be a valuable
result by itself that provides a good intuition why direciaébrmation characterizes the capacity of a continuous-
time channel. Furthermore, the interpretations of the mweal M ; Y ), for instance, as given in [26], should also
hold for directed information and vice versa.

For the proof of achievability we will use the following rdstor discrete-time channels.

Lemma 6. Consider the discrete-time channel, where the ingutt timei has a finite alphabet, i.e|l/| < oo,
and the outputy; at time: has an arbitrary alphabel). We assume that the relation between the input and the
output is given by

Y; = g(Ui, Zy), (183)
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where the noise procesZ; };>1 Iis stationary and ergodic with an arbitrary alphabé&t. Then, any rateR is

achievable for this channel if

R <maxI(U;Y), (184)

p(u)
where the joint distribution ofU,Y") is induced by the input distributiop(u), the stationary distribution of,

and (I83)

Proof: Fix the pmfp(u) that attains the maximum in_(1B4). SinééU;Y) can be approximated arbitrarily
close by a finite partition ot [16], assume without loss of generality thgtis finite. The proof uses the random
codebook generation and joint typicality decoding [in][46). G]. Randomly and independently generate?
codewordsu™(m), m = 1,2,...,2"", each according t§];__, pu(u;). The decoder finds the uniqu such that
(u™(m),y™) is jointly typical. (For the definition and properties of foitypicality, refer to [47],[[45, Ch. 2].) Now,
assuming that\/ = 1 is sent, the decoder makes an error onlyif*(1),Y™) is not typical or(U™(m),Y™)
is typical for somem # 1. By the packing lemma (_[46, Ch. 3]), the probability of thec@ed event tends to
zero asn — oo if R < I(U;Y). To bound the probability of the first event, recall fromI[4&. 10.3.1] that if
{U;} is i.i.d. and{Z;} is stationary ergodic, independent /;}, then the pair{(U;, Z;)} is jointly stationary
ergodic. Consequently, from the definition of the channe(@@3), {(U;,Y:)} is jointly stationary ergodic. Thus,
by Birkhoff's ergodic theorem, the probability the7™ (1), Y™) is not typical tends to zero as— oo. Therefore,
any rateR < I(U;Y) is achievable. [ |

The proof of achievability is based on the lemma above andidfimition of directed information for continuous
time. It is essential to divide into small time-interval aslinas increasing the feedback delay by a small but positive
valueé > 0.

Proof of achivability for Theoreml 5Let A’ = A+4, whered > 0. In addition, lett = (0 = ¢, t1,...,t, =T)

be such that; —t;_; <¢d foralli=1,2,...,n. Let Xg’t be of the form
JUS Y32 = A

Xy = (185)
f(Ug) t; < A/,

where the cardinality ot/ is bounded. Then we show that any rate
R < %It(Xg oy, (186)

is achievable.

Assume that the communication is over the time intef@ahT], whereT is fixed andn may be chosen to
be as large as needed. Partition the time intef¥abT] into n subintervals of lengtif” and in each subinterval
[4T, 5T + T), which we index byj, fix the relation

T+T 5T+t —A'
JT+t; f(UJJ'T+ ’YJJT o )tz A
Xirie, , = _ (187)
U t; < A
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Note that this coding scheme is possible with feedback délagincet; ; — A > ¢; — A’. This follows from
the assumption that, —¢;_; < § and A’ — A > §. Now, let us define a discrete-time channel where the input

at time j + 1 is Ujp1 = Ul " (which has an alphabét, ..., 2"7]), the output at timej + 1 is the vector

Yigr = (Vv YT ) and the noise at timg + 1 is Z;1 = ZJ; . Note that since

Z-;.;F*T is a stationary and block-ergodic the noise procgss;},>o is stationary and ergodic. Furthermore the

relationY;,1 = f(Uj41, Zj+1) holds and the alphabet f;, is finite. Hence by Lemm&l 6, any rate

R <maxI(U;Y), (188)

p(@)

is achievable. Now using the definition of the discrete-tithannel and the properties of directed information, we

obtain
(U;Y) = (UG ;YY) (189)
=I(U; Yy Y2, ) (190)
= L(X5 "t = YY), (191)

where the equality if (189) follows from the definition of ttiscrete-time channel and the equality[in (191) follows
from the same sequence of equalities adinJ(171)+(179)edJi&1) holds for anyt such thatt; — ;1 < § we
conclude that

c(A) > irtlfIt(XOT = Y). (192)

Finally, by the definition of directed information and by tfect that [I92) holds for an§” we have established
(159). n

VIl. CONCLUDING REMARKS

We have introduced and developed a notion of directed irdtion between continuous-time stochastic processes.
It emerges naturally in the characterization of the fundaaldimit on reliable communication for a wide class of
continuous-time channels with feedback, quite analogotasthe discrete-time setting. It also arises in estimation
theoretic relations as the replacement for mutual infolwnatvhen extending the scope to the presence of feedback.
In particular, with continuous-time directed informatigplacing mutual information, Duncan’s theorem geneealiz
to estimation problems in which the evolution of the targgnal is affected by the past channel noise. An analogous
relationship based on the directed information holds fer Boisson channel. We have illustrated the use of the
latter in an explicit computation of the directed infornoatirate between the input and output of a Poisson channel
where the input intensity changes only when there is an eaktite channel output. One important direction for
future exploration is to use the “multiletter” charactetion of capacity developed here to compute or approximate

the feedback capacity of interesting continuous-time okén
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