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Directed Information, Causal Estimation, and

Communication in Continuous Time
Tsachy Weissman, Young-Han Kim and Haim H. Permuter

Abstract

A notion of directed information between two continuous-time processes is proposed. A key component in the

definition is taking an infimum over all possible partitions of the time interval, which plays a role no less significant

than the supremum over “space” partitions inherent in the definition of mutual information. Properties and operational

interpretations in estimation and communication are then established for the proposed notion of directed information.

For the continuous-time additive white Gaussian noise channel, it is shown that Duncan’s classical relationship

between causal estimation error and mutual information continues to hold in the presence of feedback upon replacing

mutual information by directed information. A parallel result is established for the Poisson channel. The utility of

this relationship is demonstrated in computing the directed information rate between the input and output processes

of a continuous-time Poisson channel with feedback, where the channel input process is constrained to be constant

between events at the channel output. Finally, the capacityof a wide class of continuous-time channels with feedback

is established via directed information, characterizing the fundamental limit on reliable communication.

Index Terms

Causal estimation, conditional mutual information, continuous time, directed information, Duncan’s theorem,

feedback capacity, Gaussian channel, Poisson channel, time partition.

I. I NTRODUCTION

The directed informationI(Xn → Y n) between two randomn-sequencesXn = (X1, . . . , Xn) and Y n =

(Y1, . . . , Yn) is a natural generalization of Shannon’s mutual information to random objects obeying causal relations.

Introduced by Massey [1], this notion has been shown to ariseas the canonical answer to a variety of problems

with causally dependent components. For example, it plays apivotal role in characterizing the capacityCFB of a

communication channel with feedback. Massey [1] showed that the feedback capacity is upper bounded as

CFB ≤ lim
n→∞

max
p(xn||yn−1)

1

n
I(Xn → Y n), (1)

whereI(Xn → Y n) =
∑n

i=1 I(X
i;Yi|Y

i−1) andp(xn||yn−1) =
∏n

i=1 p(xi|x
i−1, yi−1); see also Kramer [2] that

streamlines the notion of directed information by causal conditioning. The upper bound in (1) is tight for certain
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classes of ergodic channels, such as general nonanticipatory channels satisfying certain regularity conditions [3],

channels with finite input memory and ergodic noise [4], and indecomposable finite-state channels [5], paving the

road to a computable characterization of feedback capacity; see [6]–[8] for examples.

Directed information and its variants also characterize (via multiletter expressions) the capacity for two-way

channels [2], multiple access channels with feedback [2], [9], broadcast channels with feedback [10], and compound

channels with feedback [11], as well as the rate–distortionfunction with feedforward [12], [13]. In another context,

directed information captures the difference in growth rates of wealth in horse race gambling due tocausalside

information [14]. This provides a natural interpretation of I(Xn → Y n) as the amount of information aboutY n

causally provided byXn on the fly. Similar interpretations for directed information can be drawn for other problems

in science and engineering [15].

This paper is dedicated to extending the mathematical notion of directed information to continuous-time random

processes and to establishing results that demonstrate theoperational significance of this notion in estimation and

communication. Our contributions include the following:

• We introduce the notion of directed information in continuous time. Given a pair of continuous-time processes

in a time interval and its partition consisting ofn subintervals, we first consider the (discrete-time) directed

information for the two sequences of lengthn whose components are the sample paths on the respective

subintervals. The resulting quantity depends on the specific partition of the time interval. We define directed

information in continuous time by taking the infimum over allfinite time partitions. Thus, in contrast to mutual

information in continuous time which can be defined as asupremumof mutual information over finite “space”

partitions [16, Ch. 2.5], [17, Ch. 3.5], inherent to our notion of directed information is a similar supremum

followed by aninfimumover time partitions. We explain why this definition is natural by showing that the

continuous-time directed information inherits key properties of its discrete-time origin and by establishing new

properties that are meaningful in continuous time.

• We show that this notion of directed information arises in extending classical relationships between information

and estimation in continuous time—Duncan’s theorem [18] that relates the minimum mean squared error

(MMSE) in causal estimation of a target signal based on an observation through an additive white Gaussian

noise channel to themutual informationbetween the target signal and the observation, and its counterpart for

the Poisson channel—to the scenarios in which the channel input process can causally depend on the channel

output process, whereby corresponding relationships now hold betweendirected informationand estimation.

• We illustrate these relationships between directed information and estimation by characterizing the directed

information rate and the feedback capacity of a continuous-time Poisson channel with inputs constrained to

be constant between events at the channel output.

• We establish the fundamental role of continuous-time directed information in characterizing the feedback

capacity of a large class of continuous-time channels. In particular, we show that for channels where the

output is a function of the input and some stationary ergodic“noise” process, the continuous-time directed

information characterizes the feedback capacity of the channel.
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The remainder of the paper is organized as follows. Section II is devoted to the definition of directed information

and related quantities in continuous time, which is followed by a presentation of key properties of continuous-time

directed information in Section III. In Section IV, we establish the generalizations of Duncan’s theorem and its

Poisson counterpart that accommodate the presence of feedback. In Section V, we apply the relationship between

the causal estimation error and directed information for the Poisson channel to compute the directed information

rate between the input and the output of this channel in a scenario that involves feedback. In Section VI, we study a

general feedback communication problem in which our notionof directed information in continuous time emerges

naturally in the characterization of the feedback capacity. Section VII concludes the paper with a few remarks.

II. D EFINITION AND REPRESENTATION OFDIRECTED INFORMATION IN CONTINUOUS TIME

Let P andQ be two probability measures on the same space anddP
dQ be the Radon–Nikodym derivative ofP

with respect toQ. The relative entropy betweenP andQ is defined as

D(P‖Q) :=











∫ (

log dP
dQ

)

dP if dP
dQ exists,

∞ otherwise.
(2)

For jointly distributed random objectsU andV , the mutual information between them is defined as

I(U ;V ) := D(PU,V ‖PU × PV ), (3)

wherePU ×PV denotes the product distribution under whichU andV are independent but maintain their respective

marginal distributions. As an alternative, the mutual information is defined [16, Ch. 2.5] as

I(U ;V ) := sup I([U ]; [V ]), (4)

where the supremum is over all finite quantizations ofU andV . That the two notions coincide has been established

in, e.g., [19], [17, Ch. 3.5]. We writeI(PU,V ) instead ofI(U ;V ) when we wish to emphasize the dependence on

the joint distributionPU,V .

For a jointly distributed random triple(U, V,W ) with components in arbitrary measurable spaces, we define the

conditional mutual information betweenU andV givenW as

I(U ;V |W ) := sup I([U ]; [V ]|W ), (5)

where the supremum is over all finite quantizations ofU andV . This quantity, due to Wyner [20], is always well

defined and satisfies all the basic properties of conditionalmutual information for discrete and continuous random

variables, in particular:

1) Nonnegativity:I(U ;V |W ) ≥ 0 with equality iff U → W → V form a Markov chain (that is,U andV are

conditionally independent givenW ).

2) Chain rule: I(U ;V,X |W ) = I(U ;V |W ) + I(U ;X |V,W ).

3) Data processing inequality:If U → (W,X) → V form a Markov chain, thenI(U ;X |W ) ≥ I(U ;V |W ) with

equality iff I(U ;V |W,X) = 0.
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The definition in (5) coincides with Dobrushin’s more restrictive definition [17, p. 29]
∫

I(PU,V |W=w) dPW (w), (6)

wherePU,V |W=w is a regular version of the conditional probability law of(U, V ) given{W = w} (cf. [21, Ch. 6])

if it exists.

Let (Xn, Y n) be a pair of randomn-sequences. The directed information fromXn to Y n is defined as

I(Xn → Y n) :=

n
∑

i=1

I(X i;Yi|Y
i−1). (7)

Note that, unlike mutual information, directed information is asymmetric in its arguments, i.e.,I(Xn → Y n) 6=

I(Y n → Xn) in general.

Let us now develop the notion of directed information between two continuous-time stochastic processes on the

time interval [0, T ). For a continuous-time process{Xt}, let Xb
a = {Xs : a ≤ s < b} denote the process in the

time interval[a, b). Let t = (t0, t1, . . . , tn) denote a vector with components satisfying

0 = t0 < t1 < · · · < tn = T. (8)

Let XT,t
0 denote the sequence of lengthn resulting from “chopping up” the continuous-time signalXT

0 into

consecutive segments as

XT,t
0 = (Xt1

0 , Xt2
t1 , . . . , X

T
tn−1

). (9)

Note that each component of the sequence is a continuous-time stochastic process. For a pair of jointly distributed

stochastic processes(XT
0 , Y

T
0 ), define

It(X
T
0 → Y T

0 ) := I(XT,t
0 → Y T,t

0 ) (10)

=
n
∑

i=1

I(Y ti
ti−1

;Xti
0

∣

∣Y
ti−1

0 ), (11)

where on the right side of (12) is the directed information between two sequences of lengthn defined in (7); and

in (13) we note that the conditional mutual information terms, defined as in (5), are between two continuous-time

processes, conditioned on a third. We extend this definitionto It(X
T
0 → Y T

0 |V ), whereV is a random object

jointly distributed with(XT
0 , Y

T
0 ), in the obvious way, namely

It(X
T
0 → Y T

0 |V ) := I(XT,t
0 → Y T,t

0 |V ) (12)

:=

n
∑

i=1

I(Y ti
ti−1

;Xti
0

∣

∣Y
ti−1

0 , V ). (13)

We defineT (a, b) to be the set of all finite partitions of the time interval[a, b). The quantityIt(XT
0 → Y T

0 ) is

monotone int in the following sense:

Proposition 1. Let t and t
′ be partitions inT (0, T ). If t′ is a refinement oft, i.e., {ti} ⊂ {t′i}, thenIt′(XT

0 →

Y T
0 ) ≤ It(X

T
0 → Y T

0 ).
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Proof: It suffices to prove the claim assumingt as in (8) and thatt′ is the (n + 2)-dimensional vector with

components

0 = t0 < t1 < · · · < ti−1 < t′ < ti < · · · < tn = T. (14)

For sucht andt′, we have from (13)

It(X
T
0 → Y T

0 )− It′ (X
T
0 → Y T

0 ) (15)

= I(Y ti
ti−1

;Xti
0 |Y

ti−1

0 )−
[

I(Y t′

ti−1
;Xt′

0 |Y
ti−1

0 ) + I(Y ti
t′ ;X

ti
0 |Y t′

0 )
]

(16)

= I(Y ti
ti−1

;Xti
0 |Y

ti−1

0 )−
[

I(Y t′

ti−1
;Xt′

0 |Y
ti−1

0 ) + I(Y ti
t′ ;X

ti
0 |Y

ti−1

0 , Y t′

ti−1
)
]

(17)

= I(Xt′

0 , X
ti
t′ ;Y

t′

ti−1
, Y ti

t′ |Y
ti−1

0 )−
[

I(Y t′

ti−1
;Xt′

0 |Y
ti−1

0 ) + I(Y ti
t′ ;X

t′

0 , X
ti
t′ |Y

ti−1

0 , Y t′

ti−1
)
]

(18)

= I(Xt′

0 , X
ti
t′ ;Y

t′

ti−1
, Y ti

t′ |Y
ti−1

0 )− I(Xt′

0 X
ti
t′ → Y t′

ti−1
, Y ti

t′ |Y
ti−1

0 ) (19)

≥ 0, (20)

where the last inequality follows since directed information (between two sequences of length 2 in this case) is

upper bounded by the mutual information [1, Th. 2].

The following definition is now natural:

Definition 1. Let (XT
0 , Y

T
0 ) be a pair of stochastic processes. Thedirected informationfrom XT

0 to Y T
0 is defined

as

I(XT
0 → Y T

0 ) := inf
t∈T (0,T )

It(X
T
0 → Y T

0 ). (21)

If V is another random object jointly distributed with(XT
0 , Y

T
0 ) we define the conditional directed information

I(XT
0 → Y T

0 |V ) as

I(XT
0 → Y T

0 |V ) := inf
t∈T (0,T )

It(X
T
0 → Y T

0 |V ). (22)

Note that the definitions and conventions preceding Definition 1 imply that the directed informationI(XT
0 → Y T

0 )

is a nonnegative extended real number (i.e., as an element of[0,∞]). It is also worth noting, by recalling (4), that

each of the conditional mutual information terms in (13), and hence the sum, is a supremum over “space” partitions

of the stochastic process in the corresponding time intervals. Thus the directed information in (21) is an infimum

over time partitions of a supremum over space partitions.

Also note that

I(XT
0 → Y T

0 ) = lim
ε→0+

inf
t:ti−ti−1≤ε,∀i

It(X
T
0 → Y T

0 ), (23)

where the infimum is over all partitions inT (0, T ) with subinterval lengths uniformly bounded byǫ > 0. Indeed,

for any ǫ > 0 and any partitiont ∈ T (0, T ), have inft′:t′
i
−t′

i−1
≤ε,∀i It′ (X

T
0 → Y T

0 ) ≤ It(X
T
0 → Y T

0 ), since

a refinement of the time interval does not increase the directed information as seen in Proposition 1. By the

arbitrariness oft ∈ T (0, T ), this implies

inf
t′:t′i−t′i−1

≤ε,∀i
It′(X

T
0 → Y T

0 ) ≤ inf
t∈T (0,T )

It(X
T
0 → Y T

0 ) = I(XT
0 → Y T

0 ), (24)
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which in turn impliesI(XT
0 → Y T

0 ) ≥ limε→0+ inft:ti−ti−1≤ε,∀i It(X
T
0 → Y T

0 ) by the arbitrariness ofε > 0. Since

the reverse inequalityI(XT
0 → Y T

0 ) ≤ limε→0+ inft:ti−ti−1≤ε,∀i It(X
T
0 → Y T

0 ) is immediate from the definition

of I(XT
0 → Y T

0 ), we have (23).

As is clear from its definition in (7), the discrete-time directed information satisfies

I(Xn → Y n)− I(Xn−1 → Y n−1) = I(Yn;X
n|Y n−1). (25)

A continuous-time analogue would be that, for smallδ > 0,

I(Xt+δ
0 → Y t+δ

0 )− I(Xt
0 → Y t

0 ) ≈ I(Y t+δ
t ;Xt+δ

0 |Y t
0 ). (26)

Thus, if our proposed notion of directed information in continuous time is to be a natural extension of that in

discrete time, one might expect the approximate relation (26) to hold in some sense. Toward a precise statement,

denote

it := lim
δ→0+

1

δ
I(Y t+δ

t ;Xt+δ
0 |Y t

0 ) for t ∈ (0, T ) (27)

whenever the limit exists. Assumingit exists, let

η(t, δ) :=
1

δ
I(Y t+δ

t ;Xt+δ
0 |Y t

0 )− it (28)

and note that (27) is equivalent to

lim
δ→0+

η(t, δ) = 0. (29)

Proposition 2. Fix 0 < t < T . Suppose thatit is continuous att and that the convergence in(29) is uniform in

the interval[t, t+ γ) for someγ > 0. Then

d+

dt
I(Xt

0 → Y t
0 ) = it. (30)

Note that Proposition 2 formalizes (26) by implying that theleft and right hand sides of (26), when normalized

by δ, coincide in the limit of smallδ.

Proof of Proposition 2: Note first that the stipulated uniform convergence in (29) implies the existence of

γ > 0 and a monotone functionf(δ) such that

|η(t′, δ)| ≤ f(δ) for all t′ ∈ [t, t+ γ) (31)

and

lim
δ→0+

f(δ) = 0. (32)

Fix now 0 < ε ≤ γ and consider

I(Xt+ε
0 → Y t+ε

0 ) = inf
t∈T (0,t+ε)

It(X
t+ε
0 → Y t+ε

0 ) (33)

= inf
t∈T (0,t+ε)

n
∑

i=1

I(Y ti
ti−1

;Xti
0 |Y

ti−1

0 ) (34)
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= inf
t∈(T (0,t)

⋃
T (t,t+ε))

n
∑

i=1

I(Y ti
ti−1

;Xti
0 |Y

ti−1

0 ) (35)

= inf
t∈T (0,t)

n
∑

i=1

I(Y ti
ti−1

;Xti
0 |Y

ti−1

0 ) + inf
t∈T (t,t+ε)

n
∑

i=1

I(Y ti
ti−1

;Xti
0 |Y

ti−1

0 ) (36)

= I(Xt
0 → Y t

0 ) + inf
t∈T (t,t+ε)

n
∑

i=1

(ti − ti−1)
1

ti − ti−1
I(Y ti

ti−1
;Xti

0 |Y
ti−1

0 ) (37)

= I(Xt
0 → Y t

0 ) + inf
t∈T (t,t+ε)

n
∑

i=1

(ti − ti−1) · [iti−1
+ η(ti−1, ti − ti−1)], (38)

where the equality in (35) follows since the infimum over all partitions does not change by restricting to partitions

that have an interval up to timet and from timet and the last equality follows by the definition of the function η

in (28). Now,

inf
t∈T (t,t+ε)

n
∑

i=1

(ti − ti−1) · [iti−1
+ η(ti−1, ti − ti−1)] ≤ inf

t∈T (t,t+ε)

n
∑

i=1

(ti − ti−1) ·

[

sup
t′∈[t,t+ε)

it′ + f(ε)

]

(39)

= ε

[

sup
t′∈[t,t+ε)

it′ + f(ε)

]

, (40)

where the inequality in (39) is due to (31) and the monotonicity of f , which impliesf(ti − ti−1) ≤ f(ε), as

ti − ti−1 is the length of a subinterval in[t, t + ε). Bounding theη terms in (39) from the other direction, we

similarly obtain

inf
t∈T (t,t+ε)

n
∑

i=1

(ti − ti−1) · [iti−1
+ η(ti−1, ti − ti−1)] ≥ ε

[

inf
t′∈[t,t+ε)

it′ − f(ε)

]

. (41)

Combining (38), (40), and (41) yields

inf
t′∈[t,t+ε)

it′ − f(ε) ≤
I(Xt+ε

0 → Y t+ε
0 )− I(Xt

0 → Y t
0 )

ε
≤ sup

t′∈[t,t+ε)

it′ + f(ε) for all ε > 0. (42)

The continuity ofit at t implies limε→0+ inft′∈[t,t+ε) it′ = limε→0+ supt′∈[t,t+ε) it′ = it and thus, taking the limit

ε → 0+ in (42) and applying (32) finally yields

lim
ε→0+

I(Xt+ε
0 → Y t+ε

0 )− I(Xt
0 → Y t

0 )

ε
= it, (43)

which completes the proof of Proposition 2.

Beyond the intuitive appeal of Proposition 2 in formalizing(26), it also provides a useful formula for computing

directed information. Indeed, the integral version of (30)is

I(XT
0 → Y T

0 ) =

∫ T

0

it dt. (44)

As the following example illustrates, evaluating the righthand side of (44) (via the definition ofit in (27)) can be

simpler than tackling the left hand side directly via Definition 1.

Example 1. Let {Bt} be a standard Brownian motion andA ∼ N(0, 1) be independent of{Bt}. Let Xt ≡ A for

all t anddYt = Xtdt+ dBt. Letting J(P,N) = (1/2) ln((P +N)/N) denote the mutual information between a
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Gaussian random variable of varianceP and its corrupted version by an independent Gaussian noise of variance

N , we have for everyt ∈ [0, T )

I(Y t+δ
t ;Xt+δ

0 |Y t
0 ) = J

(

1/t

1 + 1/t
,
1

δ

)

=
1

2
ln

(

1 +
δ

t+ 1

)

.

With such an explicit expression forI(Y t+δ
t ;Xt+δ

0 |Y t
0 ), it can be obtained directly from its definition:

it = lim
δ→0+

1

2δ
ln

(

1 +
δ

t+ 1

)

=
1

2(t+ 1)
. (45)

We can now compute the directed information by applying Proposition 2:

I(XT
0 → Y T

0 ) =

∫ T

0

itdt =

∫ T

0

1

2(t+ 1)
dt =

1

2
ln(1 + T ). (46)

Note that in this exampleI(XT
0 ;Y

T
0 ) = J(1, 1/T ) = 1

2 ln(1 + T ) and thus, by (46), we haveI(XT
0 → Y T

0 ) =

I(XT
0 ;Y

T
0 ). This equality between mutual information and directed information holds in more general situations,

as elaborated in the next section.

The directed information we have just defined is between two processes on[0, T ). We extend this definition to

processes of different durations by zero-padding at the beginning of the shorter process. For instance,

I(XT−δ
0 → Y T

0 ) := I((0δ0X
T−δ
0 ) → Y T

0 ), (47)

where(0δ0X
T−δ
0 ) denotes a process on[0, T ) formed by concatenating a process that is equal to the constant 0 for

the time interval[0, δ) and then the processXT−δ
0 .

Define now

I(XT−
0 → Y T

0 ) := lim sup
δ→0+

I(XT−δ
0 → Y T

0 ) (48)

and

I(XT−
0 → Y T

0 ) := lim inf
δ→0+

I(XT−δ
0 → Y T

0 ). (49)

Finally, define the directed informationI(XT−
0 → Y T

0 ) by

I(XT−
0 → Y T

0 ) := lim
δ→0+

I(XT−δ
0 → Y T

0 ) (50)

when the limit exists, or equivalently, whenI(XT−
0 → Y T

0 ) = I(XT−
0 → Y T

0 ). As we shall see below (in the last

part of Proposition 3),I(XT−
0 → Y T

0 ) is guaranteed to exist wheneverI(XT
0 ;Y

T
0 ) < ∞.

III. PROPERTIES OF THEDIRECTED INFORMATION IN CONTINUOUS TIME

The following proposition collects some properties of directed information in continuous time:

Proposition 3. Let (XT
0 , Y

T
0 ) be a pair of jointly distributed stochastic processes. Then:

1) Monotonicity:I(Xt
0 → Y t

0 ) is monotone nondecreasing in0 ≤ t ≤ T .

2) Invariance to time dilation: Forα > 0, if X̃t = Xtα and Ỹt = Ytα, thenI(X̃T/α
0 → Ỹ

T/α
0 ) = I(XT

0 → Y T
0 ).

More generally, ifφ is monotone strictly increasing and continuous, and(X̃φ(t), Ỹφ(t)) = (Xt, Yt), then

I(XT
0 → Y T

0 ) = I(X̃
φ(T )
φ(0) → Ỹ

φ(T )
φ(0) ). (51)
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3) Coincidence of directed information and mutual information: If the Markov relationY t
0 → Xt

0 → XT
t holds

for all 0 ≤ t < T , then

I(XT
0 → Y T

0 ) = I(XT
0 ;Y

T
0 ). (52)

4) Equivalence between discrete time and piecewise constancyin continuous time: Let(Un, V n) be a pair of

jointly distributedn-tuples and suppose(t0, t1, . . . , tn) satisfy(8). Let the pair(XT
0 , Y

T
0 ) be defined as the

piecewise-constant process satisfying

(Xt, Yt) = (Ui, Vi) if ti−1 ≤ t < ti (53)

for i = 1, . . . , n. Then

I(XT
0 → Y T

0 ) = I(Un → V n). (54)

5) Conservation law: For any0 < δ ≤ T we have

I(Xδ
0 ;Y

δ
0 ) + I(XT

0 → Y T
δ |Y δ

0 ) + I(Y T−δ
0 → XT

0 ) = I(XT
0 ;Y

T
0 ). (55)

Further, if I(XT
0 ;Y

T
0 ) < ∞ thenI(Y T−

0 → XT
0 ) exists and

I(XT
0 → Y T

0 ) + I(Y T−
0 → XT

0 ) = I(XT
0 ;Y

T
0 ). (56)

Remarks.

1) The first, second, and fourth parts in the proposition present properties that are known to hold for mutual

information (when all the directed information expressions in those items are replaced by the corresponding

mutual information), which follow immediately from the data processing inequality and the invariance of

mutual information to one-to-one transformations of its arguments. That these properties hold also for directed

information is not as obvious in view of the fact that directed information is, in general, not invariant to one-

to-one transformations nor does it satisfy the data processing inequality in its second argument.

2) The third part of the proposition is a natural analogue of the fact thatI(Xn;Y n) = I(Xn → Y n) whenever

Y i → X i → Xn
i+1 form a Markov chain for all1 ≤ i ≤ n. It covers, in particular, any scenario whereXT

0

andY T
0 are the input and output of any channel of the formYt = gt(X

t
0,W

T
0 ), where the processWT

0 (which

can be thought of as the internal channel noise) is independent of the channel input processXT
0 . To see this,

note that in this case we have(Xt
0,W

T
0 ) → Xt

0 → XT
t for all 0 ≤ t ≤ T , implying Y t

0 → Xt
0 → XT

t since

Y t
0 is determined by the pair(Xt

0,W
T
0 ).

3) Particularizing even further, we obtainI(XT
0 → Y T

0 ) = I(XT
0 ;Y

T
0 ) wheneverY T

0 is the outcome of

corruptingXT
0 with additive noise, i.e.,Yt = Xt +Wt, whereXT

0 andWT
0 are independent.

4) The fifth part of the proposition can be considered the continuous-time analogue of the discrete-time

conservation law [22]

I(Un → V n) + I(V n−1 → Un) = I(Un;V n). (57)

It is consistent with, and in fact generalizes, the third part. Indeed, if the Markov relationY t
0 → Xt

0 → XT
t

holds for all0 ≤ t ≤ T then our definition of directed information is readily seen to imply thatI(Y T−δ
0 →
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XT
0 ) = 0 for all δ > 0 and therefore thatI(Y T−

0 → XT
0 ) exists and equals zero. Thus (56) in this case

reduces to (52).

Proof of Proposition 3: The first part of the proposition follows immediately from the definition of directed

information in continuous time (Definition 1) and from the fact that, in discrete time,I(Um → V m) ≤ I(Un → V n)

for m ≤ n. The second part follows from Definition 1 upon noting that, under a dilationφ as stipulated, due to

the invariance of mutual information to one-to-one transformations of its arguments, for any partitiont of [0, T ),

It(X
T
0 → Y T

0 ) = Iφ(t)(X̃
φ(T )
φ(0) → Ỹ

φ(T )
φ(0) ), (58)

whereφ(t) is shorthand for(φ(t0, φ(t1), . . . , φ(tn)). Thus

I(XT
0 → Y T

0 ) = inf
t∈T (0,T )

It(X
T
0 → Y T

0 ) (59)

= inf
t∈T (0,T )

Iφ(t)(X̃
φ(T )
φ(0) → Ỹ

φ(T )
φ(0) ) (60)

= inf
t∈T (φ(0),φ(T ))

It(X̃
φ(T )
φ(0) → Ỹ

φ(T )
φ(0) ) (61)

= I(X̃
φ(T )
φ(0) → Ỹ

φ(T )
φ(0) ), (62)

where (59) and (62) follow from Definition 1, (60) follows from (58), and (61) is due to the strict monotonicity

and continuity ofφ which implies that

{φ(t) : t is a partition of[0, T )} = {t : t is a partition of[φ(0), φ(T ))}. (63)

Moving to the proof of the third part, assume that the Markov relationY t
0 → Xt

0 → XT
t holds for all0 ≤ t ≤ T

and fix t = (t0, t1, . . . , tn) as in (8). Then

It(X
T
0 → Y T

0 ) = I(XT,t
0 → Y T,t

0 ) (64)

=

N
∑

i=1

I(Y ti
ti−1

;Xti
0 |Y

ti−1

0 ) (65)

=

N
∑

i=1

I(Y ti
ti−1

;XT
0 |Y

ti−1

0 ) (66)

= I(XT
0 ;Y

T
0 ), (67)

where (66) follows sinceY ti
0 → Xti

0 → XT
ti for each1 ≤ i ≤ N , and (67) is due to the chain rule for mutual

information. The proof of the third part of the proposition now follows from the arbitrariness oft.

To prove the fourth part, consider first the casen = 1. In this caseXt ≡ U1 andYt ≡ V1 for all t ∈ [0, T ). It is an

immediate consequence of the definition of directed information thatI((U,U, . . . , U) → (V, V, . . . , V )) = I(U ;V )

and therefore thatIt(XT
0 → Y T

0 ) = I(U1;V1) = I(U1 → V1) for all t. ConsequentlyI(XT
0 → Y T

0 ) = I(U1 → V1),

which establishes the casen = 1. For the general casen ≥ 1, note first that it is immediate from the definition

of It(XT
0 → Y T

0 ) and from the construction of(XT
0 , Y

T
0 ) based on(Xn, Y n) in (53) that fort = (t0, t1, . . . , tn)
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consisting of the time epochs in (53) we haveIt(X
T
0 → Y T

0 ) = I(Un → V n). ThusI(XT
0 → Y T

0 ) ≤ It(X
T
0 →

Y T
0 ) = I(Un → V n). We now argue that

Is(X
T
0 → Y T

0 ) ≥ I(Un → V n) (68)

for any partitions. By Proposition 1, it suffices to establish (68) with equality assumings is a refinement of the

particulart just discussed, that is,s is of the form

0 = t0 = s0,0 < s0,1 < · · · < s0,J0
< t1 = s1,0 < s1,1 < · · · < s1,J1

< t2 = s2,0 < · · · < sn−1,Jn−1
< tn = T.

(69)

Then,

Is(X
T
0 → Y T

0 ) = I(XT,s
0 → Y T,s

0 ) (70)

=
n
∑

i=1

Ji−1
∑

j=1

I(Y si−1,j
si−1,j−1

;X
si−1,j

0 |Y
si−1,j−1

0 ) (71)

=
n
∑

i=1

I(Ui;V
i|U i−1) (72)

= I(Un → V n), (73)

where (72) follows by applying a similar argument as in the casen = 1.

Moving to the proof of the fifth part of the proposition, fixt = (t0, t1, . . . , tn) as in (8) with t1 = δ > 0.

Applying the discrete-time conservation law (57), we have

It(X
T
0 → Y T

0 ) + It(Y
T−δ
0 → XT

0 ) = I(XT
0 ;Y

T
0 ) (74)

and consequently, for anyε > 0,

inf
{t:t1=δ,maxi≥2 ti−ti−1≤ε}

It(X
T
0 → Y T

0 ) + inf
{t:maxi ti−ti−1≤ε}

It(Y
T−δ
0 → XT

0 ) (75)

= inf
{t:t1=δ,maxi≥2 ti−ti−1≤ε}

It(X
T
0 → Y T

0 ) + inf
{t:t1=δ,maxi≥2 ti−ti−1≤ε}

It(Y
T−δ
0 → XT

0 ) (76)

= inf
{t:t1=δ,maxi≥2 ti−ti−1≤ε}

[

It(X
T
0 → Y T

0 ) + It(Y
T−δ
0 → XT

0 )
]

(77)

= I(XT
0 ;Y

T
0 ), (78)

where the equality in (76) follows since due to its definitionin (47), It(Y
T−δ
0 → XT

0 ) does not decrease by refining

the time intervalt in the [0, δ) interval; the equality in (77) follows from the refinement property in Proposition 1,

which implies that for arbitrary processesXT
0 , Y

T
0 , ZT

0 ,W
T
0 and partitionst andt′ there exists a third partitiont′′

(which will be a refinement of both) such that

It(X
T
0 → Y T

0 ) + It′ (Z
T
0 → WT

0 ) ≥ It′′ (X
T
0 → Y T

0 ) + It′′ (Z
T
0 → WT

0 ); (79)

and the equality in (78) follows since (74) holds for anyt = (t0, t1, . . . , tn) with t1 = δ. Hence,

I(XT
0 ;Y

T
0 ) = lim

ε→0+

[

inf
{t:t1=δ,maxi≥2 ti−ti−1≤ε}

It(X
T
0 → Y T

0 ) + inf
{t:maxi ti−ti−1≤ε}

It(Y
T−δ
0 → XT

0 )

]

(80)
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= lim
ε→0+

inf
{t:t1=δ,maxi≥2 ti−ti−1≤ε}

It(X
T
0 → Y T

0 ) + lim
ε→0+

inf
{t:maxi ti−ti−1≤ε}

It(Y
T−δ
0 → XT

0 ) (81)

= lim
ε→0+

inf
{t:t1=δ,maxi≥2 ti−ti−1≤ε}

[

I(Xδ
0 ;Y

δ
0 ) +

n
∑

i=2

I(Y ti
ti−1

;Xti
0 |Y

ti−1

0 )

]

+ I(Y T−δ
0 → XT

0 ) (82)

= I(Xδ
0 ;Y

δ
0 ) + lim

ε→0+
inf

{t:t1=δ,maxi≥2 ti−ti−1≤ε}

n
∑

i=2

I(Y ti
ti−1

;Xti
0 |Y

ti−1

0 ) + I(Y T−δ
0 → XT

0 ) (83)

= I(Xδ
0 ;Y

δ
0 ) + I(XT

0 → Y T
δ |Y δ

0 ) + I(Y T−δ
0 → XT

0 ), (84)

where the equality in (80) follows by taking the limitε → 0 from both sides of (78); the equality in (82) follows

by writing out It(XT
0 → Y T

0 ) explicitly for t with t1 = δ and using (23) to equate the second limit in (81) with

I(Y T−δ
0 → XT

0 ); and the equality in (84) follows by applying (23) on the conditional distribution of the pair

(XT
0 , (0

δ
0Y

T
δ )) given Y δ

0 . We have thus proven (55) or, equivalently, the identity

I(Xδ
0 ;Y

δ
0 ) + I(XT

0 → Y T
δ |Y δ

0 ) = I(XT
0 ;Y

T
0 )− I(Y T−δ

0 → XT
0 ). (85)

Toward the proof of (56), fort ∈ T (0, T ) and δ < t1 let tδ denote the refinement oft obtained by adding an

additional point atδ. Then

It(X
T
0 → Y T

0 ) ≥ Itδ (X
T
0 → Y T

0 ) (86)

= I(Xδ
0 ;Y

δ
0 ) + Itδ (X

T
0 → Y T

δ |Y δ
0 ) (87)

≥ I(Xδ
0 ;Y

δ
0 ) + I(XT

0 → Y T
δ |Y δ

0 ), (88)

where the first inequality follows sincetδ is a refinement oft, the equality by writing out the sum that defines

Itδ (X
T
0 → Y T

0 ) and isolating its first term, and the second inequality by theinfimum over partitions inherent in

the definition ofI(XT
0 → Y T

δ |Y δ
0 ). The arbitrariness ofδ < t1 in (88) implies

lim sup
δ→0+

I(Xδ
0 ;Y

δ
0 ) + I(XT

0 → Y T
δ |Y δ

0 ) ≤ It(X
T
0 → Y T

0 ) (89)

which, by the arbitrariness oft ∈ T (0, T ), implies

lim sup
δ→0+

I(Xδ
0 ;Y

δ
0 ) + I(XT

0 → Y T
δ |Y δ

0 ) ≤ I(XT
0 → Y T

0 ). (90)

On the other hand, for anyδ > 0, we clearly have

I(Xδ
0 ;Y

δ
0 ) + I(XT

0 → Y T
δ |Y δ

0 ) ≥ I(XT
0 → Y T

0 ), (91)

as the right hand side, by its definition, is an infimum over allpartitions in T (0, T ), while the left hand side

corresponds to an infimum over the subset consisting only of those partitions witht1 = δ. By the arbitrariness of

δ in (91) we obtain

lim inf
δ→0+

I(Xδ
0 ;Y

δ
0 ) + I(XT

0 → Y T
δ |Y δ

0 ) ≥ I(XT
0 → Y T

0 ) (92)

which, when combined with (90), finally implies

lim
δ→0+

I(Xδ
0 ;Y

δ
0 ) + I(XT

0 → Y T
δ |Y δ

0 ) = I(XT
0 → Y T

0 ). (93)
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Existence of the limit in (93), when combined with (55) and the added assumptionI(XT
0 ;Y

T
0 ) < ∞, implies

existence of the limitlimδ→0+ I(Y T−δ
0 → XT

0 ) = I(Y T−
0 → XT

0 ) and that

I(XT
0 → Y T

0 ) + I(Y T−
0 → XT

0 ) = I(XT
0 ;Y

T
0 ), (94)

thus completing the proof.

IV. D IRECTED INFORMATION, FEEDBACK, AND CAUSAL ESTIMATION

A. The Gaussian Channel

In [18], Duncan discovered the following fundamental relationship between the minimum mean squared error

(MMSE) in causal estimation of a target signal corrupted by an additive white Gaussian noise (AWGN) in continuous

time and the mutual information between the clean and noise-corrupted signals:

Theorem 1 (Duncan [18]). Let XT
0 be a signal of finite average power

∫ T

0
E[X2

t ]dt < ∞, independent of a

standard Brownian motion{Bt}. Let Y T
0 satisfydYt = Xtdt+ dBt. Then

1

2

∫ T

0

E
[

(Xt − E[Xt|Y
t
0 ])

2
]

dt = I(XT
0 ;Y

T
0 ). (95)

A remarkable aspect of Duncan’s theorem is that the relationship (95) holds regardless of the distribution of

XT
0 . Among its ramifications is the invariance of the causal MMSEto the flow of time, or more generally, to any

reordering of time [23], [24]. It should also be mentioned that, although this exact relationship holds in continuous-

time, approximate versions that hold in discrete-time can be derived from it, as is done in [24, Theorem 9].

A key stipulation in Duncan’s theorem is the independence between the noise-free signalXT
0 and the channel

noise{Bt}, which excludes scenarios in which the evolution ofXt is affected by the channel noise, as is often the

case in signal processing (e.g., target tracking) and communication (e.g., in the presence of feedback). Indeed, the

identity (95) does not hold in the absence of such a stipulation.

As an extreme example, consider the case where the channel input is simply the channel output with some delay,

i.e.,

Xt+ε = Yt (96)

for someε > 0 (andXt ≡ 0 for t ∈ [0, ε)). In this case the causal MMSE on the left side of (95) is clearly 0,

while the mutual information on its right side is infinite. Onthe other hand, in this case the directed information

I(XT
0 → Y T

0 ) = 0, as can be seen by noting thatIt(X
T
0 → Y T

0 ) = 0 for all t satisfyingmaxi(ti − ti−1) ≤ ε

(since for sucht, Xti
0 is determined byY ti−1

0 for all i).

The third remark following Proposition 3 implies that Theorem 1 could be equivalently stated withI(XT
0 ;Y

T
0 )

on the right side of (95) replaced byI(XT
0 → Y T

0 ). Furthermore, such a modified identity would be valid in the

extreme example in (96). This is no coincidence and is a consequence of the result that follows, which generalizes

Duncan’s theorem. To state it formally we assume a probability space(Ω,F , P ) with an associated filtration{Ft}

satisfying the “usual conditions” (right-continuous andF0 contains all theP -negligible events inF , cf., e.g., [25,
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Definition 2.25]). Recall also that when the standard Brownian motion is adapted to{Ft} then, by definition, it is

implied that, for anys < t, Bt −Bs is independent ofFs (rather than merely ofBs
0 , cf., e.g., [25, Definition 1.1]).

Theorem 2. Let {(Xt, Bt)}
T
t=0 be adapted to the filtration{Ft}

T
t=0, whereXT

0 is a signal of finite average power
∫ T

0 E[X2
t ]dt < ∞ and BT

0 is a standard Brownian motion. LetY T
0 be the output of the AWGN channel whose

input isXT
0 and whose noise is driven byBT

0 , i.e.,

dYt = Xtdt+ dBt. (97)

Suppose that the regularity assumptions of Proposition 2 are satisfied for all0 < t < T . Then

1

2

∫ T

0

E
[

(Xt − E[Xt|Y
t
0 ])

2
]

dt = I(XT
0 → Y T

0 ). (98)

Note that unlike in Theorem 1, where the channel input process is independent of the channel noise process,

in Theorem 2 no such stipulation exists and thus the setting in the latter accommodates the presence of feedback.

Furthermore, sinceI(XT
0 → Y T

0 ) is not invariant to the direction of the flow of time in general, Theorem 2 implies,

as should be expected, that neither is the causal MMSE for processes evolving in the generality afforded by the

theorem.

That Theorem 1 can be extended to accommodate the presence offeedback has been established for a

communication theoretic framework by Kadota, Zakai, and Ziv [26]. Indeed, in communication over the AWGN

channel whereXT
0 = XT

0 (M) is the waveform associated with messageM , in the absence of feedback the Markov

relationM → XT
0 → Y T

0 implies thatI(XT
0 ;Y

T
0 ) on the right hand side of (95), when applying Theorem 1 in

this restricted communication framework, can be equivalently written asI(M ;Y T
0 ). The main result of [26] is that

this relationship between the causal estimation error andI(M ;Y T
0 ) persists in the presence of feedback, i.e., that

1

2

∫ T

0

E
[

(Xt − E[Xt|Y
t
0 ])

2
]

dt = I(M ;Y T
0 ) (99)

with or without feedback, even though, in the presence of feedback, one no longer hasI(M ;Y T
0 ) = I(XT

0 ;Y
T
0 )

and therefore (95) is no longer true. The combination of Theorem 2 with the main result of [26] (namely, with

(99)) thus implies that in communication over the AWGN channel, with or without feedback, we haveI(M ;Y T
0 ) =

I(XT
0 → Y T

0 ). This equality holds well beyond the Gaussian channel, as iselaborated in Section VI. Evidently,

Theorem 2 can be considered an extension of the Kadota–Zakai–Ziv result as it holds in settings more general than

communication, where there is no message but merely a signalobserved through additive white Gaussian noise,

adapted to a general filtration.

Theorem 2 is a direct consequence of Proposition 2 and the following lemma.

Lemma 1 ( [27]). LetP andQ be two probability laws governing(XT
0 , Y

T
0 ), under which(97) and the stipulations

of Theorem 2 are satisfied. Then

D(PY T
0
‖QY T

0
) =

1

2
EP

[
∫ T

0

(Xt − EQ[Xt|Y
t
0 ])

2 − (Xt − EP [Xt|Y
t
0 ])

2dt

]

. (100)



15

Lemma 1 was implicit in [27]. It follows from the second part of [27, Theorem 2], put together with the exposition

in [27, Subsection IV-D] (cf., in particular, equations (148) through (161) therein).

Proof of Theorem 2:Consider

I(Y t+δ
t ;Xt+δ

0 |Y t
0 ) = D(PY t+δ

t |Xt+δ
t ,Y t

0
‖PY t+δ

t |Y t
0
|PY t

0 ,Xt+δ
t

) (101)

=

∫

D(PY t+δ
t |Xt+δ

t =xt+δ
t ,Y t

0 =yt
0
‖PY t+δ

t |Y t
0 =yt

0
)dPY t

0 ,Xt+δ
t

(yt0, x
t+δ
t ) (102)

=
1

2

∫

E

[
∫ t+δ

t

(xs − E[Xs|Y
s
0 ])

2 − (xs − xs)
2ds

∣

∣

∣

∣

yt0, x
t+δ
t

]

dPY t
0 ,Xt+δ

t
(yt0, x

t+δ
t ) (103)

=
1

2

∫ t+δ

t

E
[

(Xs − E[Xs|Y
s
0 ])

2
]

ds, (104)

where the equality in (103) follows by applying (100) to the integrand in (102) as follows: replacing the time

interval [0, T ) by [t, t+ δ), substitutingP by the law of(Xt+δ
t , Y t+δ

t ) conditioned on(yt0, x
t+δ
t ) (note thatXt+δ

t

is deterministic atxt+δ
t under this law), and substitutingQ by the law of (Xt+δ

t , Y t+δ
t ) conditioned onyt0. The

last step is obtained by switching between the integral
∫ t+δ

t and
∫

E and then using the definition of conditional

expectation. The switch between the integrals is possible due to Fubini’s theorem and the fact that the signal has

finite average power
∫ T

0 E[X2
t ]dt < ∞. It follows that it defined in (27) exists and is given by

it =
1

2
E
[

(Xt − E[Xt|Y
t
0 ])

2
]

, (105)

which completes the proof by an appeal to Proposition 2.

B. The Poisson Channel

Consider the functionℓ : [0,∞)× [0,∞) → [0,∞] given by

ℓ(x, x̂) = x log(x/x̂)− x+ x̂. (106)

That this function is natural for quantifying the loss when estimating nonnegative quantities is implied in [28,

Section 2], where some of its basic properties are exposed. Among them is that conditional expectation is the

optimal estimator not only under the squared error loss but also underℓ, i.e., for any nonnegative random variable

X jointly distributed withY ,

min
X̂(·)

E
[

ℓ(X, X̂(Y ))
]

= E [ℓ(X,E(X |Y ))] , (107)

where the minimum is over all (measurable) maps from the domain of Y into [0,∞). With this loss function, the

analogue of Duncan’s theorem for the case of doubly stochastic Poisson process (i.e., the intensity is a random

process) can be stated as:

Theorem 3 ( [28], [29]). LetY T
0 be a doubly stochastic Poisson process andXT

0 be its intensity process (i.e., condi-

tioned onXT
0 , Y T

0 is a nonhomogenous Poisson process with rate functionXT
0 ) satisfyingE

∫ T

0 |Xt logXt|dt < ∞.

Then
∫ T

0

E[ℓ(Xt, E[Xt|Y
t
0 ])]dt = I(XT

0 ;Y
T
0 ). (108)
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We remark that forφ(α) = α logα, one has

E
[

φ(Xt)− φ(E[Xt|Y
t
0 ])

]

= E
[

ℓ(Xt, E[Xt|Y
t
0 ])

]

, (109)

and thus (108) can equivalently be expressed as
∫ T

0

E
[

φ(Xt)− φ(E[Xt|Y
t
0 ])

]

dt = I(XT
0 ;Y

T
0 ), (110)

as was done in [29] and other classical references. But it wasnot until [28] that the left hand side was established as

the minimum mean causal estimation error under an explicitly identified loss function, thus completing the analogy

with Duncan’s theorem.

The condition stipulated in the third item of Proposition 3 is readily seen to hold whenY T
0 is a doubly stochastic

Poisson process andXT
0 is its intensity process. Thus, the above theorem could equivalently be stated with directed

information rather than mutual information on the right hand side of (108). Indeed, with continuous-time directed

information replacing mutual information, this relationship remains true in much wider generality, as the next

theorem shows. In the statement of the theorem, we use the notions of a point process and its predictable intensity,

as developed in detail in, e.g., [30, Chapter II].

Theorem 4. Let Yt be a point process andXt be its FY
t -predictable intensity, whereFY

t is the σ-field σ(Y t
0 )

generated byY t
0 . Suppose thatE

∫ T

0 |Xt logXt|dt < ∞, and that the assumptions of Proposition 2 are satisfied

for all 0 < t < T . Then
∫ T

0

E[ℓ(Xt, E[Xt|Y
t
0 ])]dt = I(XT

0 → Y T
0 ). (111)

Paralleling the proof of Theorem 2, the proof of Theorem 4 is adirect application of Proposition 2 and the

following:

Lemma 2 ( [28]). Let P and Q be two probability laws governing(XT
0 , Y

T
0 ) under the setting and stipulations

of Theorem 4. Then

D(PY T
0
‖QY T

0
) = EP

[

∫ T

0

ℓ(Xt, EQ[Xt|Y
t
0 ])− ℓ(Xt, EP [Xt|Y

t
0 ])dt

]

. (112)

Lemma 2 is implicit in [28], following directly from [28, Theorem 4.4] and the discussion in [28, Subsection

7.5]. Equipped with it, the proof of Theorem 4 follows similarly as that of Theorem 2, the role of (100) being

played here by (112).

V. EXAMPLE : POISSONCHANNEL WITH FEEDBACK

The Poisson channel (e.g., [31]–[38]) is a channel where theinput at timet, Xt, determines the intensity of

the doubly stochastic Poisson processYt occurring at the output of the channel. A Poisson channel with feedback

refers to the case where the input signalXt may depend on the previous observation of the outputY t.

In this section we consider a special case of Poisson channelwith feedback. LetX = {Xt} andY = {Yt} be

the input and output processes of the continuous-time Poisson channel with feedback, where each time an event
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occurs at the channel output, the channel input changes to a new value, drawn according to the distribution of a

positive random variableX , independently of the channel input and output up to that point in time. The channel

input remains fixed at that value until the occurrence of the next event at the channel output, and so on. Throughout

this section, the shorthand “Poisson channel with feedback” will refer to this scenario, with its implied channel

input process.

The Poisson channel we use here is similar to the well-known Poisson channel model (e.g., [31]–[38]) with one

difference that the intensity of the Poisson channel changes according to the inputX only when there is an event

at the output of the channel. Note that the channel description given here uniquely determines the joint distribution

of the channel input and output processes.

In the first part of this section, we derive, using Theorem 4, aformula for the directed information rate of this

Poisson channel with feedback. In the second part, we demonstrate the use of this formula by computing and

plotting the directed information rate for a special case inwhich the intensity alphabet is of size 2.

A. Characterization of the Directed Information Rate

For jointly distributed processes(X,Y) define the directed information rateI(X → Y) by

I(X → Y) = lim
T→∞

1

T
I(XT

0 → Y T
0 ), (113)

when the limit exists.

Proposition 4. Assume thatX is finite-valued with probability mass function (pmf)pX(x). The directed information

rate between the input and output processes of the Poisson channel with feedbackI(X → Y) exists and is given

by

I(X → Y) =
I(X ;Y )

E[1/X ]
, (114)

where, inI(X ;Y ) on the right hand side,Y |{X = x} ∼ Exp(x), i.e., the conditional density ofY given{X = x}

is f(y|x) = xe−yx · 1{y≥0}.

The key component in the proof of the proposition is the use ofTheorem 4 for directed information in continuous

time as a causal mean estimation error. An intuition for the expression in (114) can be obtained by considering

rate per unit cost [39], i.e.,R = I(X ;Y )/E[b(X)], whereb(x) is the cost of the input. In our case, the “cost” of

X is proportional to the average duration of time until the channel can be used again, i.e.,b(x) = 1/x. Finally, we

remark that the assumption of discreteness ofX in Proposition 4 is made for simplicity of the proof, though the

result carries over to more generally distributedX .

To prove Proposition 4, let us first collect the following observations:

Lemma 3. Let X ∼ pX(x) and Y |{X = x} ∼ Exp(x). Define

g(t) := E[X |Y ≥ t] =

∑

x xe
−txpX(x)

∑

x e
−txpX(x)

, t ≥ 0. (115)
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Then the following statement holds.

1) The marginal distribution ofXt is

P{Xt = x} =
(1/x)pX(x)

∑

x′(1/x′)pX(x′)
(116)

and consequently

E[Xt logXt] =
E[logX ]

E[1/X ]
. (117)

2) Let ℓ = ℓ(Y 0
−∞) denote the time of occurrence of the last (most recent) eventat the channel output prior to

time 0 and defineτ := −ℓ. The density ofτ is

fτ (t) =

∑

x e
−txpX(x)

E[1/X ]
, t ≥ 0. (118)

3) For τ distributed as in(118),

E[g(τ) log g(τ)] =
1− h(Y )

E[1/X ]
. (119)

Proof: For the first part of the lemma, note thatXt is an ergodic continuous-time Markov chain and thus

P{Xt = x} is equal to the fraction of time thatXt spends in statex which is proportional to(1/x)pX(x),

accounting for (116), which, in turn, yields

E[Xt logXt] =
∑

x

(1/x)pX(x)
∑

x′(1/x′)pX(x′)
x log x =

∑

x pX(x) log x
∑

x′(1/x′)pX(x′)
=

E[logX ]

E[1/X ]
, (120)

accounting for (117).

To prove the second part of the lemma, observe that

(a) the interarrival times of the processY are independent and identically distributed (i.i.d.) copies of a random

variableY ;

(b) Y has a density

fY (y) =
∑

x

pX(x)xe−xy, y ≥ 0, (121)

(c) the probability density of the length of the interarrival interval of theY process around0 is proportional to

fY (y) · y; and

(d) given the length of the interarrival interval around0 is y, its left point is uniformly distributed on[−y, 0].

Letting Unif[0, y](·) denote the density of a random variable uniformly distributed on [0, y], it follows that the

density ofτ is

fτ (t) =

∫ ∞

0

fY (y) · y
∫∞

0
fY (y′) · y′dy′

Unif[0, y](t)dy (122)

=

∫ ∞

t

fY (y) · y
∫∞

0 fY (y′) · y′dy′
1

y
dy (123)

=

∑

x pX(x)x
∫∞

t
e−xydy

∑

x pX(x)x
∫ ∞

0
e−xy′ · y′dy′

(124)

=

∑

x pX(x)x e−tx

x
∑

x pX(x)x 1
x2

(125)
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=

∑

x pX(x)e−tx

E[1/X ]
, (126)

where (122) follows by combining observations (c) and (d), and (124) follows by substituting from (121). We have

thus proven the second part of the lemma.

To establish the third part, letFY (t) denote the cumulative distribution function ofY and consider

E[g(τ) log g(τ)] =

∫ ∞

0

fτ (t)g(t) log g(t) (127)

=

∫ ∞

0

∑

x pX(x)e−tx

E[1/X ]

∑

x xe
−txpX(x)

∑

x e
−txpX(x)

log

∑

x xe
−txpX(x)

∑

x e
−txpX(x)

dt (128)

=
1

E[1/X ]

∫ ∞

0

∑

x

xe−txpX(x) log

∑

x xe
−txpX(x)

∑

x e
−txpX(x)

dt (129)

=
1

E[1/X ]

∫ ∞

0

fY (t) log
fY (t)

1− FY (t)
dt (130)

=
1

E[1/X ]

(
∫ ∞

0

fY (t) log
1

1− FY (t)
dt− h(Y )

)

(131)

=
1

E[1/X ]

(
∫ 1

0

log
1

1− u
du− h(Y )

)

(132)

=
1

E[1/X ]
(1− h(Y )), (133)

where (128) follows by substituting from the second part of the lemma and (130) follows by substituting from

(121) and noting that

∑

x

e−txpX(x) =
∑

x

pX(x)x
e−tx

x
=

∑

x

pX(x)x

∫ ∞

t

e−xydy

=

∫ ∞

t

∑

x

pX(x)xe−xydy =

∫ ∞

t

fY (y)dy = 1− FY (t). (134)

We have thus established the third and last part of the lemma.

Proof of Proposition 4: We have

I(X → Y) = lim
T→∞

1

T
I(XT

0 → Y T
0 ) (135)

= lim
T→∞

1

T

∫ T

0

E
[

Xt logXt − E[Xt|Y
t
0 ] logE[Xt|Y

t
0 ]
]

dt (136)

= E
[

X0 logX0 − E[X0|Y
0
−∞] logE[X0|Y

0
−∞]

]

(137)

=
E[logX ]

E[1/X ]
− E

[

E[X0|Y
0
−∞] logE[X0|Y

0
−∞]

]

, (138)

where (136) follows from the relation between directed information and causal estimation in (111); (137)

follows from the stationarity and martingale convergence.Specifically, by martingale convergenceE[X0|Y
0
−t] →

E[X0|Y
0
−∞] as t → ∞ a.s. and thusE

[

Xt logXt − E[Xt|Y
t
0 ] logE[Xt|Y

t
0 ]
]

, which by stationarity is equal

to E
[

X0 logX0 − E[X0|Y
0
−t] logE[X0|Y

0
−t]

]

, converges toE
[

X0 logX0 − E[X0|Y
0
−∞] logE[X0|Y

0
−∞]

]

by the

bounded convergence theorem (recall thatX0 is finite-valued); and (138) follows from the first part of Lemma 3.
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Now, recalling the definition of the functiong in (115) we note that

E[X0|ℓ(Y
0
−∞)] = g(−ℓ(Y 0

−∞)). (139)

Thus

E
[

E[X0|Y
0
−∞] logE[X0|Y

0
−∞]

]

= E
[

E[X0|ℓ(Y
0
−∞)] logE[X0|ℓ(Y

0
−∞)]

]

(140)

= E
[

g(−ℓ(Y 0
−∞)) log g(−ℓ(Y 0

−∞))
]

(141)

= E[g(τ) log g(τ)] (142)

=
1− h(Y )

E[1/X ]
, (143)

where (140) follows from the Markov relationY 0
−∞ → ℓ(Y 0

−∞) → X0, (141) follows from (139), and (143) from

the last part of Lemma 3. Thus

I(X → Y) =
h(Y )− 1 + E[logX ]

E[1/X ]
(144)

=
h(Y )− h(Y |X)

E[1/X ]
(145)

=
I(X ;Y )

E[1/X ]
, (146)

where (144) follows by combining (138) with (143), and (145)follows by noting that

h(Y |X) =
∑

x

h(Y |X = x)pX(x) =
∑

x

(1 − log x)pX(x) = 1− E[logX ]. (147)

This completes the proof of Proposition 4.

B. Evaluation of the Directed Information Rate

Fig. 1 depicts the directed information rateI(X → Y) for the case whereX takes only two valuesλ1 andλ2.

We have used numerical evaluation ofI(X ;Y ) in the right hand side of (114) to compute the directed information

rate. The figure shows the influence ofp = P{X = λ1} on the directed information rate whereλ1 = 1 andλ2 = 2.

As expected, the maximum is achieved when there is higher probability that the encoder output will be the higher

rateλ2, which would imply more channel uses per unit time, but not much higher as otherwise the input value will

be close to deterministic.

Fig. 2 depicts the maximal value (optimized w.r.t.P{X = λ1}) of the directed information rate whenλ1 is

fixed and is equal to 1 andλ2 varies. This value is the capacity of the Poisson channel with feedback, when the

inputs are restricted to one of the two valuesλ1 or λ2. Whenλ2 = 0 the capacity is obviously zero since any

use ofX = λ2 as input will cause the channel not to change any further. It is also obviously zero atλ2 = 1

since in this caseλ1 = λ2, so there is only one possible input to the channel. Asλ2 increases, the capacity of

the channel increases without bound since, forλ2 ≫ λ1, the channel effectively operates as a noise-free binary

channel, where one symbol “costs” an average duration of1 while the other a vanishing average duration. Thus

the limiting capacity with increasingλ2 is equal tolimp↓0 H(p)/p = ∞.
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p := P{X = λ1}
I
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→
Y
)

Fig. 1. The directed information rate between the input and output processes for the continuous-time Poisson channel with feedback, as a

function of P (x), the pmf of the input to the channel. The input to the channel is one of two possible valuesλ1 = 1 andλ2 = 2, and it is

the intensity of the Poisson process at the output of the channel until the next event.
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Fig. 2. Capacity of the Poisson channel with feedback, in case where channel input is constrained to the binary set{λ1, λ2}, whenλ1 is

fixed and is equal to 1 andλ2 varies.

One can consider a discrete-time memoryless channel, wherethe inputX is discrete (λ1 or λ2) and the outputY

is distributed according toExp(X). Consider now a random costb(X) = Y , whereY is the output of the channel.

Using the result from [39] we obtain that the capacity per unit cost of the discreet memoryless channel is

max
P (x)

I(X ;Y )

E[Y ]
= max

P (x)

I(X ;Y )

E[1/X ]
, (148)

where the equality follows sinceE[Y ] = E[E[Y |X ]] = E[1/X ]. Finally, we note that the capacity of the Poisson

channel in the example above is the capacity per unit cost of the discrete memoryless channel. Thus, by Proposition 4

we can conclude that the continuous-time directed information rate characterizes the capacity of the Poisson channel

with feedback. In the next section we will see that the continuous-time directed information rate characterizes the

capacity of a large family of continuous-time channels.
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VI. COMMUNICATION OVER CONTINUOUS-TIME CHANNELS WITH FEEDBACK

We first review the definition of a block-ergodic process as given by Berger [40]. Let(X,X , µ) denote a

continuous-time process{Xt}t≥0 drawn from a spaceX according to the probability measureµ. For t > 0, letT t be

a t-shift transformation, i.e.,(T tx)s = xs+t. A measurable setA is t-invariant if it does not change under thet-shift

transformation, i.e.,T tA = A. A continuous-time process(X,X , µ) is τ -ergodic if every measurableτ -invariant

set of processes has either probability 1 or 0, i.e., for anyτ -invariant setA, in other words,µ(A) = (µ(A))2. The

definition of τ -ergodicity means that if we take the process{Xt}t≥0 and slice it into time-blocks of lengthτ , then

the new discrete-time process(Xτ
0 , X

2τ
τ , X3τ

2τ , . . .) is ergodic. A continuous-time process(X,X , µ) is block-ergodic

if it is τ -ergodic for everyτ > 0. Berger [40] showed that weak mixing (therefore also strongmixing) implies

block ergodicity.

Message Message estimate
M ∈ {1, . . . , 2nT} Xt

Delay∆
Yt−∆

Yt M̂
xt(m, yt−∆

0 )

Encoder

g(Xt, Zt)

Channel

m̂(yT0 )

Decoder

Fig. 3. Continuous-time communication with delay∆ and channel of the formYt = g(Xt, Zt), whereZt is a block ergodic process.

Now let us describe the communication model of our interest (see Fig. 3) and show that the continuous-time

directed information characterizes the capacity. Consider a continuous-time channel that is specified by

• the channel input and output alphabetsX andY, respectively, that are not necessarily finite, and

• the channel output at timet

Yt = g(Xt, Zt) (149)

corresponding to the channel inputXt at time t, where{Zt} is a stationary ergodic noise process on an

alphabetZ andg : X × Z → Y is a given measurable function.

A (2TR, T ) code with delay∆ > 0 for the channel consists of

• a message set{1, 2, . . . , 2⌊TR⌋},

• an encoder that assigns a symbol

xt(m, yt−∆
0 ) (150)

to each messagem ∈ {1, 2, . . . , 2⌊TR⌋} and past received output signalyt−∆
0 ∈ Y [0,t−∆) for t ∈ [0, T ), where

xt : {1, 2, . . . , 2
⌊TR⌋} × Y [0,t−∆) → X is measurable, and

• a decoder that assigns a message estimatem̂(yT0 ) ∈ {1, 2, . . . , 2⌊TR⌋} to each received output signalyT0 ∈

Y [0,T ), wherem̂ : Y [0,T ) → {1, 2, . . . , 2⌊TR⌋} is measurable.
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We assume that the messageM is uniformly distributed on{1, 2, . . . , ⌊2TR⌋} and independent of the noise process

{Zt}.

By the definition of the channel in (149), the definition of theencoding function in (150), and the independence

of M and{Zt}, it follows that for anyδ > 0 and anyt ≥ 0,

M → (Xt+δ
0 , Y t

0 ) → Y t+δ
t (151)

form a Markov chain. This is analogous to the assumption in the discrete case thatp(yn+1|x
n+1, yn,m) =

p(yn+1|x
n+1, yn); the analogy is exact when we convert a discrete time channelto a continuous time channel

with constant piecewise process between the time samples. Furthermore, for anyt ≥ 0, δ > 0, and∆ ≥ δ,

Xt+δ
t → (Xt

0, Y
t+δ−∆
0 ) → Y t+δ

t+δ−∆ (152)

form a Markov chian. This is analogous to the assumption in the discrete case that whenever there is feedback of

delayd ≥ 1, p(xn+1|x
n, yn) = p(xn+1|x

n, yn+1−d).

Similar communication settings with feedback in continuous time were studied by Kadota, Zakai, and Ziv [41]

for continuous-time memoryless channels, where it is shownthat feedback does not increase the capacity, and by

Ihara [42], [43] for the Gaussian case. Our main result in this section is showing that the operational capacity,

defined below, can be characterized by the information capacity, which is the maximum of directed information

from the channel input process to the output process. Next wedefine an achievable rate, the operational feedback

capacity, and the information feedback capacity for our setting.

Definition 2. A rate R is said to beachievable with feedback delay∆ if for each T there exists a family of

(2RT , T ) codes such that

lim
T→∞

P{M 6= M̂(Y T
0 )} = 0. (153)

Definition 3. Let

C(∆) = sup{R : R is achievable with feedback delay∆} (154)

be the(operational) feedback capacitywith delay∆, and let the(operational) feedback capacitybe

C , sup
∆>0

C(∆). (155)

From the monotonicity ofC(∆) in ∆ we havesup∆>0C(∆) = lim∆→0 C(∆). This definition coincides with

the feedback capacity definition of continuous time channels given in [41], where there also was assumed a positive

but arbitrary small delay in the feedback capacity.

Definition 4. Let CI(∆) be the information feedback capacity defined as

CI(∆) = lim
T→∞

1

T
sup
S∆

I(XT
0 → Y T

0 ), (156)
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where the supremum in (156) is overS∆, which is the set of all channel input processes of the form

Xt =











gt(Ut, Y
t−∆
0 ) t ≥ ∆,

gt(Ut) t < ∆,

(157)

some family of measurable functions{gt}Tt=0, and some processUT
0 which is independent of the channel noise

processZT
0 (appearing in (149)) and has a finite cardinality that may depend onT .

The limit in (156) is shown to exist in Lemma 4 using the superadditivity property. We now characterizeC(∆)

in terms ofCI(∆) for the class of channels defined in (149).

Theorem 5. For the channel defined in(149),

C(∆) ≤ CI(∆), (158)

C(∆) ≥ CI(∆′) for all ∆′ > ∆. (159)

SinceCI(∆) is a decreasing function in∆, (159) may be written asC(∆) ≥ limδ→∆+ CI(δ), and the limit

exists because of the monotonicity. Since the function is monotonic thenCI(∆) = limδ→∆+ CI(δ) with a possible

exception of the points of∆ of a set of measure zero [44, p. 5]. ThereforeC(∆) = CI(∆) for any∆ ≥ 0 except

of a set of points of measure zero. Furthermore (158) and (159) imply that sup∆>0 C(∆) = sup∆>0C
I(∆), hence

we also haveC = sup∆>0C
I(∆) = lim∆→0 C

I(∆).

Before proving the theorem we show that the limits in (156) exist.

Lemma 4. The termsupS∆
I(XT

0 → Y T
0 ) is superadditive, namely,

sup
S∆

I(XT1+T2

0 → Y T1+T2

0 ) ≥ sup
S∆

I(XT1

0 → Y T1

0 ) + sup
S∆

I(XT2

0 → Y T2

0 ), (160)

and therefore the limit in(156) exists and is equal to

lim
T→∞

1

T
sup
S∆

I(XT
0 → Y T

0 ) = sup
T

1

T
sup
S∆

I(XT
0 → Y T

0 ) (161)

To prove Lemma 4 we use the following result:

Lemma 5. Let {(Xi, Yi)}
n+m
i=1 be a pair of discrete-time processes such that Markov relation Xi →

(X i−1, Y i−1) → (X i−1
n+1, Y

i−1
n+1) holds for i ∈ {n+ 1, n+ 2, . . . , n+m}. Then

I(Xn+m → Y n+m) ≥ I(Xn → Y n) + I(Xn+m
n+1 → Y n+m

n+1 ), (162)

Proof: The result is a consequence of the identity [4, Eq. (11)]

I(Xn → Y n) =
n
∑

i=1

I(Xi;Y
n
i |X i−1, Y i−1). (163)

Consider

I(Xn+m → Y n+m) =

n+m
∑

i=1

I(Xi;Y
n+m
i |X i−1, Y i−1) (164)
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=

n
∑

i=1

I(Xi;Y
n+m
i |X i−1, Y i−1) +

n+m
∑

i=n+1

I(Xi;Y
n+m
i |X i−1, Y i−1) (165)

≥

n
∑

i=1

I(Xi;Y
n
i |X i−1, Y i−1) +

n+m
∑

i=n+1

I(Xi;Y
n+m
i |X i−1

n+1, Y
i−1
n+1) (166)

= I(Xn → Y n) + I(Xn+m
n+1 → Y n+m

n+1 ), (167)

where (164) follows from the identity given in (163), and (166) follows from the Markov chain assumption in the

lemma.

Proof of Lemma 4: First note that we do not increase the terminft It(X
T1+T2

0 → Y T1+T2

0 ) by restricting

the time-partitiont to have an interval starting at pointT1. Now fix three time-partitions:t1 in [0, T1), t2 in

[T1, T1 + T2), andt in [0, T1 + T2) such thatt is a concatenationt1 andt2. For XT1

0 andXT1+T2

T1
, fix the input

functions of the form of (157) and fix the argumentsUT1 andUT1+T2

T1
which corresponds toXT1

0 andXT1+T2

T1
,

respectively. The construction is such that the random processesUT1 andUT1+T2

T1
are independent of each other. Let

XT1+T2

0 be a concatenation ofXT1

0 andXT1+T2

T1
. Applying Lemma 5 on the discrete-time process{(Xi, Yi)}

n+m
i=1 ,

where(Xi, Yi) = (Xti+1
ti , Y

ti+1

ti ) for i = 1, 2, . . . , n+m we obtain that for any fixedt1, t2, XT1

0 , XT1+T2

T1
, UT1 ,

andUT1+T2

T1
as described above, we have

It(X
T1+T2

0 → Y T1+T2

0 ) ≥ It1(X
T1

0 → Y T1

0 ) + It2 (X
T1+T2

T1
→ Y T1+T2

T1
). (168)

Note that the Markov conditionXi → (X i−1
0 , Y i−1) → (X i−1

n+1, Y
i−1
n+1) indeed holds because of the construction of

XT1+T2

0 . Furthermore, because of the stationarity of the noise (168) implies (160). Finally, using Fekete’s lemma

[45, Ch. 2.6] and the superadditivity in (160) implies the existence of the limit in (161).

The proof of Theorem 5 consists of two parts: the proof of the converse, i.e., (158), and the proof of achievability,

i.e., (159).

Proof of the converse for Theorem 5:Fix an encoding scheme{ft}Tt=0 with rate R and probability of

decoding error,P (T )
e = P{M 6= M̂(Y T

0 )}. In addition, fix a partitiont of lengthn such thatti − ti−1 < ∆ for

any i ∈ [1, 2, . . . , n] and lettn = T . Consider

RT = H(M) (169)

= H(M) +H(M |Y T
0 )−H(M |Y T

0 ) (170)

≤ I(M ;Y T
0 ) + T ǫT (171)

= I(M ;Y t1
0 , Y t2

t1 , . . . , Y
tn
tn−1

) + T ǫT (172)

=

n
∑

i=1

I(M ;Y ti
ti−1

|Y
ti−1

0 ) + T ǫT (173)

=

n
∑

i=1

I(M,X
ti−1+∆
0 ;Y ti

ti−1
|Y

ti−1

0 ) + T ǫT (174)

=

n
∑

i=1

I(M,Xti
0 , X

ti−1+∆
ti ;Y ti

ti−1
|Y

ti−1

0 ) + T ǫT (175)
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=

n
∑

i=1

I(M,Xti
0 ;Y ti

ti−1
|Y

ti−1

0 ) + I(X
ti−1+∆
ti ;Y ti

ti−1
|Y

ti−1

0 ,M,Xti
0 ) + T ǫT (176)

=

n
∑

i=1

I(Xti
0 ;Y ti

ti−1
|Y

ti−1

0 ) + I(X
ti−1+∆
ti ;Y ti

ti−1
|Y

ti−1

0 ,M,Xti
0 ) + T ǫT (177)

=

n
∑

i=1

I(Xti
0 ;Y ti

ti−1
|Y

ti−1

0 ) + T ǫT (178)

= It(X
T
0 → Y T

0 ) + T ǫT , (179)

where the equality in (169) follows since the message is distributed uniformly, the inequality in (171) follows

from Fano’s inequality, whereǫT = 1
T + P

(T )
e R, the equality in (174) follows from the fact thatXti−1+∆

0 is a

deterministic function ofM andY ti−1

0 , the equality in (175) follows from the assumption thatti − ti−1 < ∆, the

equality in (177) follows from (151), and the equality in (178) follows from (152). Hence, we obtained that for

everyt

R ≤
1

T
It(X

T
0 → Y T

0 ) + ǫT . (180)

Since the number of codewords is finite, we may consider the input signal of the formxT,t
0 with xti

ti−1
=

f(uT
0 , y

ti−∆
0 ), where the cardinality ofuT

0 is bounded, i.e.,|UT
0 | < ∞ for any givenT (the bound may depend on

T ), independently of the partitiont. Furthermore,

R ≤ inf
t

1

T
It(X

T
0 → Y T

0 ) + ǫT ,

=
1

T
I(XT

0 → Y T
0 ) + ǫT . (181)

Finally, for anyR that is achievable there exists a sequence of codes such thatlimT→∞ P
(T )
e = 0, henceǫT → 0

and we have established (159).

Note that as a byproduct of the sequence of equalities (171)–(179), we conclude that for the communication

system depicted in Fig. 3,

I(M ;Y T
0 ) = inf

t:ti−ti−1≤δ
It(X

T
0 → Y T

0 ) = I(XT
0 → Y T

0 ). (182)

The only assumptions that we used to prove (171)–(179) is that the encoders uses a strictly causal feedback of the

form given in (157) and that the channel satisfies the benign assumption given in (151). This might be a valuable

result by itself that provides a good intuition why directedinformation characterizes the capacity of a continuous-

time channel. Furthermore, the interpretations of the measure I(M ;Y T
0 ), for instance, as given in [26], should also

hold for directed information and vice versa.

For the proof of achievability we will use the following result for discrete-time channels.

Lemma 6. Consider the discrete-time channel, where the inputUi at time i has a finite alphabet, i.e.,|U| < ∞,

and the outputYi at time i has an arbitrary alphabetY. We assume that the relation between the input and the

output is given by

Yi = g(Ui, Zi), (183)
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where the noise process{Zi}i≥1 is stationary and ergodic with an arbitrary alphabetZ. Then, any rateR is

achievable for this channel if

R < max
p(u)

I(U ;Y ), (184)

where the joint distribution of(U, Y ) is induced by the input distributionp(u), the stationary distribution ofZ,

and (183).

Proof: Fix the pmf p(u) that attains the maximum in (184). SinceI(U ;Y ) can be approximated arbitrarily

close by a finite partition ofY [16], assume without loss of generality thatY is finite. The proof uses the random

codebook generation and joint typicality decoding in [46, Ch. 3]. Randomly and independently generate2nR

codewordsun(m), m = 1, 2, . . . , 2nR, each according to
∏n

i=1 pU (ui). The decoder finds the uniquêm such that

(un(m), yn) is jointly typical. (For the definition and properties of joint typicality, refer to [47], [46, Ch. 2].) Now,

assuming thatM = 1 is sent, the decoder makes an error only if(Un(1), Y n) is not typical or(Un(m), Y n)

is typical for somem 6= 1. By the packing lemma ( [46, Ch. 3]), the probability of the second event tends to

zero asn → ∞ if R < I(U ;Y ). To bound the probability of the first event, recall from [48,Th. 10.3.1] that if

{Ui} is i.i.d. and{Zi} is stationary ergodic, independent of{Ui}, then the pair{(Ui, Zi)} is jointly stationary

ergodic. Consequently, from the definition of the channel in(183), {(Ui, Yi)} is jointly stationary ergodic. Thus,

by Birkhoff’s ergodic theorem, the probability that(Un(1), Y n) is not typical tends to zero asn → ∞. Therefore,

any rateR < I(U ;Y ) is achievable.

The proof of achievability is based on the lemma above and thedefinition of directed information for continuous

time. It is essential to divide into small time-interval as well as increasing the feedback delay by a small but positive

valueδ > 0.

Proof of achivability for Theorem 5:Let ∆′ = ∆+δ, whereδ > 0. In addition, lett = (0 = t0, t1, . . . , tn = T )

be such thatti − ti−1 ≤ δ for all i = 1, 2, . . . , n. Let XT,t
0 be of the form

Xti
ti−1

=











f(UT
0 , Y ti−∆′

0 ) ti ≥ ∆′,

f(UT
0 ) ti < ∆′,

(185)

where the cardinality ofUT
0 is bounded. Then we show that any rate

R <
1

T
It(X

T,t
0 → Y T

0 ), (186)

is achievable.

Assume that the communication is over the time interval[0, nT ], whereT is fixed andn may be chosen to

be as large as needed. Partition the time interval[0, nT ] into n subintervals of lengthT and in each subinterval

[jT, jT + T ), which we index byj, fix the relation

XjT+ti
jT+ti−1

=











f(U jT+T
jT , Y jT+ti−∆′

jT ) ti ≥ ∆′,

f(U jT+T
jT ) ti < ∆′.

(187)
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Note that this coding scheme is possible with feedback delay∆ since ti−1 − ∆ ≥ ti − ∆′. This follows from

the assumption thatti − ti−1 ≤ δ and∆′ − ∆ ≥ δ. Now, let us define a discrete-time channel where the input

at time j + 1 is Ũj+1 = U jT+T
jT (which has an alphabet[1, . . . , 2nT ]), the output at timej + 1 is the vector

Ỹj+1 = (Y jT+t1
jT , . . . , Y jT+ti

jT+ti−1
, . . . , Y jT+T

jT+tn−1
) and the noise at timej + 1 is Z̃j+1 = ZjT+T

jT . Note that since

ZjT+T
jT is a stationary and block-ergodic the noise process{Z̃j+1}j≥0 is stationary and ergodic. Furthermore the

relation Ỹj+1 = f̃(Ũj+1, Z̃j+1) holds and the alphabet of̃Uj+1 is finite. Hence by Lemma 6, any rate

R < max
p(ũ)

I(Ũ ; Ỹ ), (188)

is achievable. Now using the definition of the discrete-timechannel and the properties of directed information, we

obtain

I(Ũ ; Ỹ ) = I(UT
0 ;Y T

0 ) (189)

= I(UT
0 ;Y t1

0 , Y t2
t1 , . . . , Y

tn
tn−1) (190)

= It(X
T,t
0 → Y T,t

0 ), (191)

where the equality in (189) follows from the definition of thediscrete-time channel and the equality in (191) follows

from the same sequence of equalities as in (171)–(179). Since (191) holds for anyt such thatti − ti−1 ≤ δ we

conclude that

C(∆) ≥ inf
t

It(X
T
0 → Y T

0 ). (192)

Finally, by the definition of directed information and by thefact that (192) holds for anyT we have established

(159).

VII. C ONCLUDING REMARKS

We have introduced and developed a notion of directed information between continuous-time stochastic processes.

It emerges naturally in the characterization of the fundamental limit on reliable communication for a wide class of

continuous-time channels with feedback, quite analogously to the discrete-time setting. It also arises in estimation

theoretic relations as the replacement for mutual information when extending the scope to the presence of feedback.

In particular, with continuous-time directed informationreplacing mutual information, Duncan’s theorem generalizes

to estimation problems in which the evolution of the target signal is affected by the past channel noise. An analogous

relationship based on the directed information holds for the Poisson channel. We have illustrated the use of the

latter in an explicit computation of the directed information rate between the input and output of a Poisson channel

where the input intensity changes only when there is an eventat the channel output. One important direction for

future exploration is to use the “multiletter” characterization of capacity developed here to compute or approximate

the feedback capacity of interesting continuous-time channels.
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