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Simulating the tail of the interference in a
Poisson network model
Giovanni Luca Torrisi and Emilio Leonardi

Abstract

Interference among simultaneous transmissions represents the main limitation factor for the capacity

and connectivity of dense wireless networks. In this paper we provide efficient simulation laws for the tail

of the interference in a simple wireless ad hoc network model. Particularly, we consider node locations

distributed according to a Poisson point process and various classes of light-tailed fading distributions.

Keywords: Fading channels; Importance sampling; Large deviations;Poisson process; Poisson shot noise.

I. INTRODUCTION

Mutual interference among simultaneous transmissions constitutes the main limitation factor to the

performance of dense wireless networks, severely reducingthe capacity of the whole system (see [19],

[21], [23], [30] and [31].)

The availability of efficient analytical/numerical techniques to tightly characterize the interference

produced by transmitting nodes operating over the same channel is a key ingredient to better predict

performance of such complex systems as well as to design new Medium Access Control (MAC) protocols

and more advanced transmission schemes that better use the system bandwidth. Just as matter of example,

we shall explain in Section II, how the tail of the interference is directly related to the probability that

the communication does not succeed, in the case when a singleinput/single output transmission scheme

is adopted.

In this paper we consider a simple wireless network setting in which nodes are placed according to

a Poisson process on the plane and employ a simple ALOHA MAC protocol (see [2], [4], [5], [6], [7],

[12], [13], [15] and [20]). We propose a provably efficient numerical methodology to estimate the tail
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of the interference, under natural assumptions on fading and attenuation. If the tail of the interference

is not too small, one may exploit a crude Monte Carlo approachto evaluate the complementary of the

cumulative distribution function of the interference. However, when the tail of the interference is small

the crude Monte Carlo method becomes inefficient, and different numerical techniques are needed. The

methodology used in this paper is based on (state-dependent) importance sampling (see e.g. [3] and [8].)

Despite the fact that a significant body of work has attempteda characterization of the interference in

large wireless networks (see [2], [4], [5], [6], [7], [12], [13], [15], [16] and [20]), we are not aware of

previous work proposing provably efficient numerical algorithms to estimate the tail of the interference,

assuming that the fading has a light-tail distribution and the attenuation decays sub-exponentially with the

distance. Actually, most of the existing literature on the subject focuses on analytical characterizations

of either the interference distribution or the outage probability, under specific assumptions on fading

and attenuation. For instance, if the attenuation is of the form ‖x‖−α, x ∈ R
2, α > 2, where the

symbol ‖ · ‖ denotes the Euclidean norm, and the fading is constant (i.e.there is a purely geometric

attenuation) or distributed according to a Rayleigh law, closed form expressions for the Laplace transform

of the interference are derived e.g. in [2], [5] and [20]. However, only in exceptional cases the Laplace

transform may be inverted to obtain the law of the interference. This is possible, for instance, ifα = 4

and the system is subjected to a purely geometric attenuation [16]. When the analytical inversion of the

Laplace transform is not feasible, estimates of the tail of the interference may be obtained by inverting

numerically its Laplace transform. However, numerical inversion techniques typically provide results with

large accuracy only at a large computational cost, see e.g. [1], [9], [29]. Furthermore, to the best of our

knowledge, to estimate the approximation error is usually ahard task. For these reasons, alternative

efficient numerical techniques are highly desirable.

Under more general assumptions on fading and attenuation, explicit bounds on the tail of the inter-

ference may be found in [16]. In [15] a large deviations approach is employed to study the asymptotic

behavior of the logarithm of the tail of the interference, for a quite general fading (possibly heavy-tail)

and ideal Hertzian propagation, i.e. of the formmax(R, ‖x‖)−α, R > 0, α > 2. The results in [15]

constitute the starting point to build provably efficient numerical algorithms to estimate the tail of the

interference.
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Under general assumptions on the node distribution, the fading distribution and the attenuation function,

asymptotic estimates for the outage probability, as the intensity of the nodes goes to zero, are derived

in [17] and [18]. Finally, a Monte Carlo algorithm to estimate the density of the interference for a quite

general wireless network model has been proposed in [25].

The methodology proposed in this paper complements the previously mentioned results, providing an

efficient and accurate Monte Carlo algorithm to compute the tail of the interference in cases where the

analytical approach is not feasible. We believe that the proposed methodology may yield hints for a

successive development of Monte Carlo procedures that allow fast and accurate evaluations of the tail of

the interference when the transmitting nodes are distributed according to more general point processes

models.

II. T HE SYSTEM MODEL AND ORGANIZATION OF THE PAPER

We consider the following simple model of wireless network,which accounts for interference effects

that arise when several nodes transmit at the same time.

Suppose that transmitting nodes (antennas) are located according to a Poisson process{Xk}k≥1 on the

plane with a locally integrable intensity functionλ(x), x ∈ R
2, i.e.Xn is the location of noden. Denote

by Pn ∈ (0,∞) the transmission power of noden. Assume that a new receiver is added at the origin and

that a new transmitter is added atx ∈ R
2. Letw be a positive constant which describes the thermal noise

average power at the receiver, and suppose that the physicalpropagation of the signal is described by

a measurable positive functionL : R2 → (0,∞), which gives the attenuation or path-loss of the signal

power. In addition, the signal undergoes random fading (dueto occluding objects, reflections, multi-path

interference, etc.). We denote byHn the random power fading gain between noden and the receiver,

and defineYn := PnHn. ThusYnL(Xn) is the received power at the origin due to noden. Similarly,

we denote byY L(x), the received power at the origin due to the transmitter atx. We assume that

{Y, {Yk}k≥1} is a sequence of independent and identically distributed (i.i.d.) random variables (r.v.’s),

independent of locations, and we suppose that the marked Poisson process{(Xk, Yk)}k≥1 is defined on

a probability space(Ω,F, P ). In the following (with an abuse of terminology) we shall call the r.v.’sYk

signals.
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This paper provides a computationally efficient (state-dependent) importance sampling algorithm for

the characterization of the total interference power at theorigin, which is given by the Poisson shot

noise r.v.V :=
∑

k≥1 YkL(Xk). We emphasize that a tight characterization of the tail of the interference

ψ(β) := P (V > β) is needed to predict the performance of large scale wirelessnetworks. In particular, the

tail of the interference is related to the probability of successfully decoding the signal from the transmitter

at x. Indeed, given the adopted modulation and encoding scheme,we assume that the receiver at the

origin can successfully decode the signal from the transmitter atx if the Signal to Interference plus Noise

Ratio (SINR) is greater than a given threshold, sayτ > 0 (which depends on the adopted scheme), i.e.

Y L(x)

w + V
≥ τ.

So, conditional to the event{Y = y}, the probability that the communication succeeds is given by

P

(
Y L(x)

w + V
≥ τ

∣∣∣Y = y

)
= P

(
yL(x)

w + V
≥ τ

)
= P (V ≤ yL(x)τ−1 − w). (1)

The attenuation function is often taken to be of the formL(x) = ℓ(‖x‖) = ‖x‖−α or (1 + ‖x‖)−α or

max(R, ‖x‖)−α, whereα > 2 andR > 0 are positive constants. Settingτ = θτ ′ in (1), whereθ > 0

andτ ′ > 0 are two positive constants, we have

P

(
Y L(x)

τ ′(w + V )
≥ θ

∣∣∣Y = y

)
= P

(
yL(x)

τ ′(w + V )
≥ θ

)
= P

(
V ≤ yL(x)

θ
τ ′−1 − w

)
. (2)

The high-reliability regime corresponds to the high-SINR regime, i.e. the regime whereτ ′ → 0 (see [17]

and [18] for the analysis of the high-SINR regime as the intensity of the nodes goes to zero.) Thus, for

large values ofβ, the probabilityψ(β) is also related to the outage probability in the high-SINR regime.

Note that wheneverV <∞ almost surely, a.s. for short, (a sufficient condition for this is e.g.E[V ] <

∞, i.e.E[Y1] <∞ and
∫
R2 L(x)λ(x) dx <∞) ψ(β) → 0, asβ → +∞, so the event{V > β} is rare as

β increases, and this rises questions about the numerical estimation of the small probabilitiesψ(β) via a

Monte Carlo algorithm. The importance sampling technique proposed in this paper can be successfully

used to obtain accurate estimates ofψ(β) for values ofβ that correspond to smallψ(β) (note that such

values ofβ may be moderately large, see Section VI.) This permits to unveil how different system’s

parameters, such as the intensity of the nodes, the path-loss exponent and the fading distribution, impact
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on the system performance. For these reasons, we believe that our approach is complementary with

respect to the previously proposed analytical approaches that capture either the asymptotic behavior, as

β → ∞, of the tail of the interference ([15]) or the asymptotic behavior, as the intensity of the nodes

goes to zero, of the outage probability ([17], [18].)

The paper is organized as follows. In Section III we describethe importance sampling methodology in

our context. In Sections IV and V we analyze networks with nodes distributed according to a stationary

Poisson process onR2 with intensity λ > 0 and attenuation function of the formL(x) = ℓ(‖x‖) =

max(R, ‖x‖)−α, α > 2, R > 0. More particularly, in Section IV we provide asymptotically admissible

simulation laws forψ(β), asβ → +∞, under a quite general light tail assumption on the distribution of

the signals. In Section V we give asymptotically efficient simulation laws forψ(β), asβ → +∞, when

the signals are bounded, Weibull super-exponential or Exponential. In Section VI we provide numerical

illustrations. Finally Section VII concludes the paper.

III. I MPORTANCE SAMPLING

SupposeV < ∞ a.s. and letb(O, r) be the ball centered at the origin with radiusr > 0. Define the

r.v.’s

Vr :=
∑

k≥1

YkL(Xk)1b(O,r)(Xk)

and, forβ > 0,

rβ := inf{n ∈ N : Vn > β} if {n ∈ N : Vn > β} 6= ∅, rβ = +∞ otherwise.

Let M ≥ 1 be an integer and consider the crude Monte Carlo estimator

ψ̂CMC(β,M) :=
1

N

N∑

i=1

(1{rβ ≤M})(i),

where (1{rβ ≤ M})(1), . . . , (1{rβ ≤ M})(N) are N i.i.d. replica of the r.v.1{rβ ≤ M}. For any

β > 0, the crude Monte Carlo estimator is an unbiased estimator ofψM (β) := P (VM > β) and an

asymptotically unbiased estimator ofψ(β). Indeed,

E[ψ̂CMC(β,M)] = P (rβ ≤M) = ψM (β), ∀ β > 0
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and

lim
M→+∞

E[ψ̂CMC(β,M)] = lim
M→+∞

ψM (β) = ψ(β), ∀ β > 0.

In particular, forβ > 0 such thatψM (β) is not too small we may resort to a classical crude Monte

Carlo method to evaluate the probabilityψM (β) and consequentlyψ(β). However, ifβ > 0 is such that

ψM (β) is very small the classical crude Monte Carlo method becomesinefficient to estimateψM (β) and

consequentlyψ(β), as the following argument shows. Suppose that we wish to have at most a 5% error

on ψM (β) with 95% confidence. This means that we must have

P (|ψM (β)− ψ̂CMC(β,M)| ≤ 0.05ψM (β)) = 0.95.

Note that, by the expression of the variance for a r.v. with a Bernoulli distribution,

Var(ψ̂CMC(β,M)) =
ψM (β)(1 − ψM (β))

N
.

SinceψM (β) is very small the following approximation is allowed:

Var(ψ̂CMC(β,M)) ≃ ψM (β)/N,

and by the Central Limit Theorem, forN large, we deduce

P (|ψM (β) − ψ̂CMC(β,M)| ≤ 0.05ψM (β))

= P

(∣∣∣ 1√
N

N∑

i=1

(
(1{rβ ≤M})(i) − ψM (β)√

ψM (β)

)∣∣∣ ≤ 0.05
√
NψM (β)

)

≃ P (|Z| ≤ 0.05
√
NψM (β)),

whereZ is a standard Gaussian r.v.. Now, using the tables, we have that the equalityP (|Z| ≤ z) = 0.95

implies z ≃ 2. So, to have at most a 5% error onψM (β) with 95% confidence, we must have

N ≃ 1600/ψM (β). (3)

SinceψM (β) is very small, this means that we need a huge number of replicato reach a desired precision

of ψ̂CMC(β,M).
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Now, we start describing an alternative Monte Carlo estimator which allows to overcome these problems

(see also the discussion at the beginning of Sections IV and V.) The idea is to use a suitable change

of law. Note that by the well-known formula for Laplace functionals of (independently marked) Poisson

processes (see e.g. [10]), for any measurable functionf : R2 × [0,∞) → R for which the integral in the

right-hand side of (4) is well-defined, we have

E[e
∑

k≥1 f(Xk,Yk)] = exp

(∫

R2

(E[ef(x,Y1)]− 1)λ(x) dx

)
. (4)

In particular,

E[etVr ] = exp

(∫

b(O,r)
(E[etL(x)Y1 ]− 1)λ(x) dx

)
for any r, t > 0. (5)

Denote byFr theσ-field generated by the points of the Poisson process onb(O, r) and the corresponding

marks, and byF∞ the smallestσ-field containing
⋃

r>0 Fr. Let t > 0 be such that

∫

b(O,r)
(E[etL(x)Y1 ]− 1)λ(x) dx <∞, for any r > 0. (6)

We shall check later on (see Lemma 3.1 below) that the stochastic process{etVr/E[etVr ]}r≥0 is anFr-

martingale (we refer the reader to e.g. [26] for the definition). Then, by e.g. Corollary 10.2.1 and Lemma

10.2.2 in [26], lettingP (r)
t denote the probability measure on(Ω,Fr) defined by

P
(r)
t (A) := E

[
etVr

E[etVr ]
1A

]
, (7)

we have that there exists a unique probability measurePt on (Ω,F∞) such thatPt(A) = P
(r)
t (A), for

all A ∈ Fr. Moreover, ifτ is anFr-stopping time andA ⊆ {τ <∞} is such thatA ∈ Fτ , beingFτ the

stoppingσ-field (see e.g. [26] for the formal definition), then

Pt(A) = E

[
etVτ

[E[etVr ]]r=τ
1A

]
, (8)

where the symbol[E[etVr ]]r=τ denotes the quantityE[etVr ] computed atr = τ .

Lemma 3.1: Let t > 0 be such that (6) holds, then{etVr/E[etVr ]}r≥0 is anFr-martingale.
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Proof By the properties of the Poisson process and the definition ofthe σ-field Fr, for any r′ > r > 0,

we have that the r.v.etVr is Fr-measurable, the r.v.et(Vr′−Vr) is independent of theσ-field Fr, and the

r.v.’s etVr andet(Vr′−Vr) are independent. Therefore

E

[
etVr′

E[etVr′ ]

∣∣∣Fr

]
= E

[
etVr

E[etVr ]

et(Vr′−Vr)

E[et(Vr′−Vr)]

∣∣∣Fr

]

=
etVr

E[etVr ]
E

[
et(Vr′−Vr)

E[et(Vr′−Vr)]

∣∣∣Fr

]
=

etVr

E[etVr ]
,

and the claim follows.

�

Next theorem provides the probabilistic structure of the marked point process{(Xk, Yk)}k≥1, under

Pt. In the following, we denote byP (Yk |Xk=x)
t the conditional law ofYk, given {Xk = x}, underPt,

and byP (Y1) the common law of theY ’s underP .

Theorem 3.2: Let t > 0 be such that (6) holds. Then, underPt, the marked point process{(Xk, Yk)}k≥1

is distributed as follows:{Xk}k≥1 is a Poisson process onR2 with intensity functionΛt(x) := λ(x)E[etL(x)Y1 ];

given the ground process{Xk}k≥1, the marks{Yk}k≥1 are mutually independent, with conditional

distribution (or mark kernel)

dP
(Yk |Xk=x)
t (y) = Mt(dy |x) :=

etL(x)y

E[etL(x)Y1 ]
dP (Y1)(y).

Proof Recall that the law of a point process{(X ′
k, Y

′
k)}k≥1 on R

2 × [0,∞) is characterized by the

Laplace functionals of the formE
[
exp

(
−∑k≥1 f(X

′
k, Y

′
k)
)]

, wheref : R2 × [0,∞) → [0,∞) is a

non-negative measurable function such thatf(x′, y′) = 0 for all (x′, y′) ∈ (R2 \K)× [0,∞) and some

compactK ⊂ R
2 (see e.g. [10]). Takef as above and letr > 0 be such thatK ⊂ b(O, r). By the

exponential change of measure (7) and the expression of the Laplace functional of a Poisson process (4),
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we have

EPt

[
e−

∑
k≥1 f(Xk,Yk)

]
=

E[etVr−
∑

k≥1 f(Xk,Yk)]

E[etVr ]

= exp

(
−
∫

b(O,r)
(E[etL(x)Y1 ]− 1)λ(x) dx

)

× exp

(∫

b(O,r)
(E[etL(x)Y1−f(x,Y1)]− 1)λ(x) dx

)

= exp

{∫

b(O,r)

(
E[etL(x)Y1−f(x,Y1)]

E[etL(x)Y1 ]
− 1

)
λ(x)E[etL(x)Y1 ] dx

}

= exp

{∫

b(O,r)×[0,∞)
(e−f(x,y) − 1)Mt(dy |x)Λt(x) dx

}

= exp

{∫

R2×[0,∞)
(e−f(x,y) − 1)Mt(dy |x)Λt(x) dx

}

which is exactly the Laplace functional of a point process{(Xk, Yk)}k≥1 such that{Xk}k≥1 is a Poisson

process onR2 with intensity functionΛt(x) and the marks{Yk}k≥1 are distributed as in the statement

(see e.g. Proposition 6.4.IV in [10]).

�

For t > 0 such that (6) holds andM ∈ N, define the r.v.

L
(β)
t,M := 1{rβ ≤M}e−tVrβ [E[etVn ]]n=rβ ,

where the Laplace transformE[etVn ] is given by (5) and the symbol[E[etVn ]]n=rβ denotes the quantity

E[etVn ] computed atn = rβ. Clearly rβ is an{Fn}n≥1-stopping time. So by (8) we have

ψM (β) = E[1{rβ ≤M}] = EPt
[L

(β)
t,M ]. (9)

We define the importance sampling estimator by

ψ̂IS(β, t,M) :=
1

N

N∑

i=1

(L
(β)
t,M )(i), (10)
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where(L(β)
t,M )(1), . . . , (L

(β)
t,M )(N) areN i.i.d. replica of the r.v.L(β)

t,M , under the importance sampling law

Pt. Note that by (9) it follows that, underPt, for any β > 0, the importance sampling estimator is an

unbiased estimator ofψM (β) and an asymptotically unbiased estimator forψ(β), indeed

lim
M→+∞

EPt
[ψ̂IS(β, t,M)] = lim

M→∞
ψM (β) = ψ(β), ∀ β > 0.

IV. STATIONARY POISSON NETWORKS WITH IDEALHERTZIAN PROPAGATION: ASYMPTOTICALLY

ADMISSIBLE LAWS

To simulate the importance sampling estimatorψ̂IS(β, t,M) underPt, wheret > 0 is such that (6)

holds, we need to generate the r.v.1{rβ ≤M} under the importance sampling lawPt. However, under

Pt, asβ increases, the probability of the event{rβ ≤M} may be very small. In such a case the estimate

provided by the importance sampling estimator is clearly very poor. So we need to introduce importance

sampling laws under which the probability of the event{rβ ≤M} is high, asβ → +∞.

In this section we address this problem in the case when the nodes are distributed according to a

stationary Poisson process with intensityλ > 0 and the attenuation function is given byL(x) = ℓ(‖x‖) =

max(R, ‖x‖)−α, α > 2.

The stationarity assumption on the Poisson process is done only for convenience and the generalization

of our result to the non-stationary case is possible with minor modifications. We shall assume the following

light tail condition on the signals:

E[etY1 ] <∞ for all t in a right neighborhood of zero with supremumS ∈ (0,+∞]. (11)

For later purposes, we note that if this light-tail condition holds then

For any functiont(β) with domain(β̄,+∞), β̄ > 0, and codomain contained in(0, RαS) (12)

we haveE[et(β)R
−αY1 ] <∞ for all β > β̄.

In particular, assuming the light tail condition (11) and choosingt(β) as in (12) we have that condition

(6) holds witht = t(β), L(x) = max(R, ‖x‖)−α andλ(x) ≡ λ. Consequently, there exist the probability

measuresPt(β), β > β̄ (see the related discussion in the previous section). We saythat the lawsPt(β)

are asymptotically admissible if

lim
β→+∞

Pt(β)(rβ ≤M) = 1, ∀ M ≥ R.
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Throughout this paper, using a standard notation, we denoteby o(x) a positive function such that

o(x)/x→ 0, asx→ +∞.

Theorem 4.1: Assume (11) and consider a functiont(β) as in (12). If moreover there exist a positive

functionϕ andK ∈ (1,+∞] such that

ϕ(β) = o(β) asβ → +∞ and lim
β→+∞

λπϕ(β)E[1{Y1 > ϕ(β)}et(β)R−αY1 ]

βRα−2
= K, (13)

then the lawsPt(β) are asymptotically admissible.

Proof By (11) and (13) easily follows thatP (Y1 > ϕ(β)) > 0, for any β large enough. Recall that

the thinning with retention probabilityp(x), x ∈ R
2, of a Poisson process on the plane with intensity

function f(x) is a Poisson process on the plane with intensity functionp(x)f(x) (see e.g. [10], see also

[5].) By Theorem 3.2, for anyx ∈ R
2 andβ large, we have

p(x) := Pt(β)(Yk > ϕ(β) |Xk = x)

=

∫

[0,∞)
1{y > ϕ(β)} et(β)ℓ(‖x‖)y

E[et(β)ℓ(‖x‖)Y1 ]
dP (Y1)(y) > 0.

Using again Theorem 3.2, forβ large, underPt(β), {Xk}k≥1 is a non-homogeneous Poisson process on

R
2 with intensity functionΛt(β)(x) = λE[et(β)ℓ(‖x‖)Y1 ]. So, for anyM ≥ R andβ large,

Pt(β)(rβ ≤M) = Pt(β)(VM > β) ≥ Pt(β)



∑

k≥1

Yk1b(O,R)(Xk)1{Yk > ϕ(β)} > βRα


 (14)

≥ Pt(β)


∑

k≥1

1b(O,R)(Xk)1{Yk > ϕ(β)} > βRα

ϕ(β)




≥ Pt(β)

(
N >

[
βRα

ϕ(β)

]
+ 1

)
(15)

where, underPt(β), the r.v.N has a Poisson distribution with parameter

λPt(β)
:=

∫

b(O,R)
p(x)Λt(β)(x) dx = λπR2

∫

[0,∞)
1{y > ϕ(β)}et(β)R−αy dP (Y1)(y)
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and the symbol[x] denotes the integer part ofx. Here the inequality in (14) follows by the definition of

VM and the fact thatM ≥ R; the inequality (15) is consequence of the thinning property of the Poisson

process, which guarantees that, underPt(β), the r.v.
∑

k≥1 1b(O,R)(Xk)1{Yk > ϕ(β)} has the same law

of N. By the usual bounds on the Poisson distribution we have (seee.g. Lemma 1.2 in [24]), for anyβ

such that
[
βRα

ϕ(β)

]
+ 1 ≤ λPt(β)

(note that this inequality is satisfied, for allβ large enough, due to assumption (13)),

Pt(β)

(
N >

[
βRα

ϕ(β)

]
+ 1

)
≥ 1− exp


−λPt(β)

H




[
βRα

ϕ(β)

]
+ 1

λPt(β)




 , (16)

where the functionH : [0,∞) → [0,∞) is defined byH(0) := 1, H(x) := 1 − x + x log x, x > 0.

The claim follows combining the inequalities (15), (16) andletting β tend to+∞ (note that due to the

assumption (13) we have thatλPt(β)
→ +∞, asβ → +∞, and that([βRα/ϕ(β)] + 1)/λPt(β)

converges

to a positive constant, asβ → +∞).

�

We conclude this section with some examples of asymptotically admissible laws. In Section V we

shall see that the laws described in the following examples are indeed asymptotically efficient.

Constant signals

Suppose that the signalsYk have a bounded support with supremumb > 0. Then condition (11) clearly

holds withS = +∞. Assumption (13) is satisfied if, in particular, the positive functiont(β), with domain

on some interval(β̄,+∞), β̄ > 0, is chosen in such a way that

lim
β→+∞

λπbE[1{Y1 > b}et(β)R−αY1 ]

βRα−2
= K, for someb ∈ (0, b) andK ∈ (1,∞]. (17)

For instance, for constant signals all equal tob > 0, if we set t1(β) := (Rα/b) log β, β > 1, then the

laws Pt1(β) are asymptotically admissible if the parameters satisfy the conditionλπR2−αb > 1. Now,

for a fixed c ∈ (0, 1), definet2(β) := (Rα/b) log(β(log β)c), β > 3. In such a case a straightforward
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computation shows that the lawsPt2(β) are asymptotically admissible for any choice of the parameters

(the limit (17) holds withK = +∞.)

Weibull superexponential signals

Suppose that the signalsYk, k ≥ 1, are Weibull super-exponential distributed with parameters γ1 > 0

andγ2 > 1, i.e.

P (Y1 > y) = e−γ1yγ2
, y > 0

(this case is particularly appealing in the context of wireless networks, see [27] for motivations.) It

is well-known that the Laplace transform of a Weibull super-exponential law is always finite, and so

condition (11) holds withS = +∞. We are going to propose a couple of choices for a positive function

t(β), with domain on some interval(β̄,+∞), β̄ > 0, in such a way that condition (13) is satisfied. Note

that η := 1 − (1/γ2) ∈ (0, 1). Define t1(β) := γ2(γ2 − 1)−ηγ
1/γ2

1 Rα logη β, β > 1. For any positive

functionϕ, we have

λπϕ(β)E[1{Y1 > ϕ(β)}et1(β)R−αY1 ]

βRα−2
≥ λπR2−αϕ(β)et1(β)ϕ(β)R

−α

P (Y1 > ϕ(β))

β

=
λπR2−αϕ(β)eϕ(β)

γ2 [t1(β)ϕ(β)1−γ2R−α−γ1]

β
.

Takingϕ(β) := log1/γ2 β, β > 1, we deduce

λπR2−αϕ(β)eϕ(β)
γ2 [t1(β)ϕ(β)1−γ2R−α−γ1]

β
= λπR2−αβγ2(γ2−1)−ηγ

1/γ2
1 −(γ1+1) log1/γ2 β.

This latter term tends to infinity if

γ2(γ2 − 1)−ηγ
1/γ2

1 ≥ γ1 + 1. (18)

Therefore, under the above condition on the parameters, assumption (13) holds, and by Theorem 4.1 we

have that the lawsPt1(β) are asymptotically admissible. Now, definet2(β) := c logη β, β > 1, where

c ≥ max{Rα(γ1 + 1), γ2(γ2 − 1)−ηγ
1/γ2

1 Rα}. (19)
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Taking againϕ(β) := log1/γ2 β, β > 1, and arguing as in the first part of this example it can be checked

that the lawsPt2(β) are asymptotically admissible for any choice of the parameters.

Exponential signals

Suppose that the signals are exponentially distributed with meanγ−1
3 . In this case we clearly have that

condition (11) is satisfied withS = γ3. We are going to propose a couple of choices for a functiont(β),

with domain on some(β̄,+∞), β̄ > 0, and codomain in(0, γ3Rα), in such a way that the assumption

(13) is satisfied. Let̃ϕ be a positive function such that

ϕ̃(β) ↑ +∞ and lim
β→+∞

λπR2γ3ϕ(β)ϕ̃(β)e
−R−αϕ(β)/ϕ̃(β)

β
∈ (1,+∞] (20)

for some positive functionϕ such thatϕ(β) = o(β), as β → +∞. Define t(β) := γ3R
α − ϕ̃(β)−1,

β > ϕ̃−1(γ−1
3 R−α). Since

E[1{Y1 > ϕ(β)}et(β)R−αY1 ] =
γ3

γ3 − t(β)R−α
e−(γ3−t(β)R−α)ϕ(β)

= γ3R
αϕ̃(β)e−R−αϕ(β)/ϕ̃(β),

assumption (13) holds and by Theorem 4.1 we have that the lawsPt(β) are asymptotically admissible.

In particular, if ϕ̃(β) :=
√
β, β > 0, and the parameters satisfy

λπR2γ3e
−R−α

> 1, (21)

then the lawsPt(β) are asymptotically admissible. Indeed, in such a case (20) holds with ϕ(β) :=
√
β,

β > 0. If we takeϕ̃(β) := β2/3, β > 0, then the lawsPt(β) are asymptotically admissible for any choice

of the parameters. Indeed, in such a case (20) holds withϕ(β) := β2/3, β > 0.
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V. STATIONARY POISSON NETWORKS WITH IDEALHERTZIAN PROPAGATION: ASYMPTOTICALLY

EFFICIENT LAWS

Assume (11) and let the functiont(β) be as in (12). The lawsPt(β) are called asymptotically efficient

if they are asymptotically admissible and

lim inf
β→+∞

log
√

EPt(β)
[(L

(β)
t(β),M )2]

logψM (β)
≥ 1, ∀ M ≥ R. (22)

Note that this inequality implies,∀ M ≥ R,

lim
β→+∞

VarPt(β)
(L

(β)
t(β),M )

ψM (β)2−ε
= 0, ∀ ε > 0 (23)

(see e.g. [3].) This guarantees a gain in terms of asymptoticefficiency, as the following argument show.

Suppose that we wish to have at most a 5% error onψM (β) with 95% confidence. This means that we

must have

Pt(β)(|ψM (β)− ψ̂IS(β, t,M)| ≤ 0.05ψM (β)) = 0.95.

By the Central Limit Theorem, forN large, we deduce

Pt(β)(|ψM (β)− ψ̂IS(β, t(β),M)| ≤ 0.05ψM (β))

= Pt(β)

(
1

N

∣∣∣
N∑

i=1

(
(L

(β)
t(β),M )(i) − ψM (β)

) ∣∣∣ ≤ 0.05ψM (β)

)

= Pt(β)



∣∣∣
∑N

i=1(L
(β)
t(β),M )(i) −NψM (β)

√
NVarPt(β)

(L
(β)
t(β),M )

∣∣∣ ≤ 0.05ψM (β)

√√√√ N

VarPt(β)
(L

(β)
t(β),M )




≃ P


|Z| ≤ 0.05ψM (β)

√√√√ N

VarPt(β)
(L

(β)
t(β),M )


 ,

whereZ is a standard Gaussian r.v.. Now, using the tables, we have that the equalityP (|Z| ≤ z) = 0.95

implies z ≃ 2. So, to have at most a 5% error onψM (β) with 95% confidence, we must have

N ≃ 1600
VarPt(β)

(L
(β)
t(β),M

)

ψM (β)2
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Comparing this approximation with (3), thanks to (23), we immediately realize that using the importance

sampling estimator one may reach a desired precision with a smaller number of replica (chooseε ∈ (0, 1)).

In this section we provide asymptotically efficient simulation laws in the case when the nodes are

distributed according to a stationary Poisson process withintensity λ > 0, the attenuation function is

given byL(x) = ℓ(‖x‖) = max(R, ‖x‖)−α, α > 2, R > 0, and the signals are distributed according to

three different light tail laws.

Next Propositions 5.1, 5.2 and 5.3 give,∀M ≥ R, the asymptotic behavior oflogψM (β), asβ → +∞,

in the case of bounded, Weibull super-exponential and Exponential signals, respectively. The proofs are

based on the large deviation results proved in [15] (the reader is referred to [11] for an introduction on

large deviations theory.) In the following we writef(x) ∼ g(x) if f(·) andg(·) are two functions such

that f(x)/g(x) → 1, asx→ +∞.

Proposition 5.1: Assume that

Y1 has a bounded support with supremumb > 0. (24)

Then, for anyM ≥ R,

logψM (β) ∼ −(Rα/b)β log β, asβ → +∞.

Proposition 5.2: Assume that

There exist constantsγ1 > 0 andγ2 > 1: P (Y1 > y) ∼ e−γ1yγ2 , asy → +∞ (25)

and defineη := 1− (1/γ2). Then, for anyM ≥ R,

logψM (β) ∼ −γ2(γ2 − 1)−ηγ
1/γ2

1 Rαβ logη β, asβ → +∞.

Proposition 5.3: Assume that

There exists a constantγ3 > 0: P (Y1 > y) ∼ e−γ3y, asy → +∞. (26)

Then, for anyM ≥ R,

logψM (β) ∼ −γ3Rαβ, asβ → +∞.

Proof of Proposition 5.1 Note that by the large deviation principles in [15] we know that, under the

foregoing assumptions, the family of random variables{εV }ε>0 and {εVR}ε>0 obey a large deviation
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principle on[0,∞) with speed1
ε log

1
ε and rate functionI(x) = Rαx/b. Therefore,

lim
ε→0

ε

log(1/ε)
logP (V > x/ε) = lim

ε→0

ε

log(1/ε)
log P (VR > x/ε) = −Rαx/b.

The claim follows noticing that, asM ≥ R, we have

P (VR > β) ≤ P (VM > β) = ψM (β) ≤ P (V > β) ∀ β > 0.

�

Proof of Proposition 5.2 The proof is similar to the case of bounded signal powers. Themain difference is

that in the super-exponential Weibull case we have to use thefollowing large deviation principles, again

proved in [15]: the family of random variables{εV }ε>0 and{εVR}ε>0 obey a large deviation principle

on [0,∞) with speed1
ε log

η(1ε ) and rate functionI(x) = γ2(γ2 − 1)−ηγ
1/γ2

1 Rαx.

�

Proof of Proposition 5.3 Here again, the proof is similar to the case of bounded signalpowers, but we have

to use the following large deviation principles, proved in [15]: the family of random variables{εV }ε>0

and{εVR}ε>0 obey a large deviation principle on[0,∞) with speed1ε and rate functionI(x) = γ3R
αx.

�

Before providing the asymptotically efficient simulation laws, we compute the Laplace transform of
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Vn. By a polar change of coordinates and (5) we have, for anyt > 0 andn ∈ N,

E[etVn ] = exp

(
λ

∫

b(O,n)
(E[etℓ(‖x‖)Y1 ]− 1) dx

)
= exp

(
2λπ

∫ n

0
(E[etℓ(ρ)Y1 ]− 1)ρdρ

)

= 1{n ≤ R} exp
(
2λπ

∫ n

0
(E[etℓ(ρ)Y1 ]− 1)ρdρ

)

+ 1{n > R} exp
(
2λπ

∫ n

0
(E[etℓ(ρ)Y1 ]− 1)ρdρ

)

= 1{n ≤ R} exp
(
λπn2(E[etR

−αY1 ]− 1)
)

+ 1{n > R} exp
(
λπR2(E[etR

−αY1 ]− 1)
)
exp

(
2λπ

∫ n

R
(E[etρ

−αY1 ]− 1)ρdρ

)

= 1{n ≤ R} exp
(
λπn2(E[etR

−αY1 ]− 1)
)

+ 1{n > R} exp
(
λπR2(E[etR

−αY1 ]− 1)
)
exp

(
2λπ E

[∫ n

R
(etρ

−αY1 − 1)ρdρ

])
(27)

= 1{n ≤ R} exp
(
λπn2(E[etR

−αY1 ]− 1)
)

+ 1{n > R} exp
(
λπR2(E[etR

−αY1 ]− 1)
)
exp


2λπ

∑

k≥1

tk(R2−αk − n2−αk)

k!(αk − 2)
E[Y k

1 ]


 ,

(28)

where (27) follows by Fubini’s theorem and (28) by the following computation

∫ n

R
(etρ

−αY1 − 1)ρdρ =

∫ n

R


∑

k≥1

(tρ−αY1)
k

k!


 ρdρ

=
∑

k≥1

(tY1)
k

k!

∫ n

R
ρ1−αk dρ

=
∑

k≥1

(tY1)
k(R2−αk − n2−αk)

k!(αk − 2)
.
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In particular, asα > 2,

E[etV ] = exp
(
λπR2(E[etR

−αY1 ]− 1)
)
exp


2λπR2

∑

k≥1

(tR−α)k

k!(αk − 2)
E[Y k

1 ]


 , (29)

and soE[etV ] <∞ for any t > 0 such thatE[etR
−αY1 ] <∞.

Now, we give the asymptotically efficient simulation laws. The following theorems hold.

Theorem 5.4: Assume(24) and lett(β) be as in (12) withS = +∞. In addition suppose: (13),

lim inf
β→+∞

2t(β)

(Rα/b) log β
= K1 ∈ [2,+∞] (30)

and

lim inf
β→+∞

et(β)R
−αb

−(Rα/b)β log β
= K2 ∈ (−∞, 0] (31)

where the constantsK1 andK2 are such that

K1 +
2λαπR2

α− 2
K2 ≥ 2. (32)

Then the lawsPt(β) are asymptotically efficient.

Theorem 5.5: Assume(25), let t(β) be as in (12) withS = +∞ and setη := 1− (1/γ2). In addition

suppose: (13),

lim inf
β→+∞

2t(β)

γ2(γ2 − 1)−ηγ
1/γ2

1 Rα logη β
= K1 ∈ [2,+∞], (33)

there exist a positive functionG such that

lim
β→+∞

G(R−αt(β))

eK2t(β)
= +∞, ∀ K2 ∈ (0,∞) (34)

and a positive constantB > 0 such that

sup
β≥B

G(R−αt(β))

β logη β
≤ K3, for someK3 ∈ (0,∞). (35)

Then the lawsPt(β) are asymptotically efficient.
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Theorem 5.6: Assume(26) and lett(β) be as in (12) withS = γ3R
α. In addition suppose: (13),

t(β) ↑ γ3Rα, asβ → +∞ (36)

and

lim
β→+∞

t(β)

(γ3Rα − t(β))β
= 0. (37)

Then the lawsPt(β) are asymptotically efficient.

Proof of Theorem 5.4 By Theorem 4.1 the lawsPt(β) are asymptotically admissible. It remains to prove

(22). We start bounding the second moment ofL
(β)
t,M , for any fixedt, β > 0 andM ≥ R, underPt. Using

the equality (29), we deduce

EPt
[(L

(β)
t,M )2] ≤ EPt

[1{rβ < +∞}e−2tVrβ ([E[etVn ]]n=rβ)
2]

≤ e−2tβ exp
(
2λπR2(E[etR

−αY1 ]− 1)
)
exp


4λπR2

∑

k≥1

(tR−α)k

k!(αk − 2)
E[Y k

1 ]




≤ e−2tβ exp
(
2λπR2(E[etR

−αY1 ]− 1)
)
exp

(
4λπR2

α− 2
(E[etR

−αY1 ]− 1)

)

= e−2tβ exp

(
2λαπR2

α− 2
(E[etR

−αY1 ]− 1)

)
(38)

≤ e−2tβ exp

(
2λαπR2

α− 2
(etR

−αb − 1)

)
, (39)

where (39) is consequence of (24). Sett = t(β). Then, taking the logarithm in the above inequality and

dividing by logψM (β) we have, for allβ large enough,

log EPt(β)
[(L

(β)
t(β),M )2]

logψM (β)
≥ − 2βt(β)

logψM (β)
+

2λαπR2(et(β)R
−αb − 1)

(α− 2) logψM (β)
.

Passing to thelim inf asβ → +∞ in the above inequality, by Proposition 5.1, (30), (31) and (32) we

have (22).

�
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Proof of Theorem 5.5 Here again, by Theorem 4.1 the lawsPt(β) are asymptotically admissible. So we

only need to prove (22). We first show that

lim
β→+∞

E[eR
−αt(β)Y1 ]− 1

G(R−αt(β))
= 0. (40)

SinceY1 is a non-negative r.v., we have

E[eθY1 ]− 1 = θ

∫ ∞

0
eθyP (Y1 > y) dy, θ ∈ R. (41)

Thus, by (25) we deduce that∀ ε > 0 there existsyε such that∀ y ≥ yε we have

E[eθY1 ]− 1 = θ

∫ yε

0
eθyP (Y1 > y) dy + θ

∫ +∞

yε

eθyP (Y1 > y) dy

≤ eθyε − 1 + θ(1 + ε)

∫ +∞

yε

eθy−γ1yγ2
dy. (42)

Using the substitutiony = e−x, we have

∫ +∞

yε

eθy−γ1yγ2
dy =

∫ e−yε

0
e−γ1e−γ2x−x eθe

−x

dx. (43)

The Laplace method for integrals (see e.g. formula (2.38) p.35 in [22]) yields

∫ e−yε

0
e−γ1e−γ2x−x eθe

−x

dx ∼ eθ

θ
e−γ1 asθ → +∞. (44)

Taking θ = R−αt(β) in (42), noticing thatt(β) → +∞, asβ → +∞, and using (43), (44) and (34) we

have

lim sup
β→+∞

E[eR
−αt(β)Y1 ]− 1

G(R−αt(β))
≤ lim

β→+∞
eyεR−αt(β) − 1 + (1 + ε)e−γ1eR

−αt(β)

G(R−αt(β))
= 0,

and (40) follows. Now, sett = t(β) in the inequality (38) and take the logarithm. Dividing bylogψM (β)

we have, for anyM ≥ R and allβ large enough,

log EPt(β)
[(L

(β)
t(β),M )2]

logψM (β)
≥ − 2βt(β)

logψM (β)
+

2λαπR2

(α− 2)

E[eR
−αt(β)Y1 ]− 1

G(R−αt(β))
× G(R−αt(β))

logψM (β)
.
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The claim follows taking thelim inf asβ → +∞ on this inequality and using Proposition 5.2, (33), (40)

and (35).

�

Proof of Theorem 5.6 As usual, we prove (22). Takeθ < γ3. By (26) and (41), we deduce that∀ ε > 0

there existsyε such that∀ y ≥ yε we have

E[eθY1 ]− 1 ≤ eθyε − 1 + θ(1 + ε)

∫ +∞

yε

e−(γ3−θ)y dy

= eθyε − 1 + (1 + ε)
θ

γ3 − θ
e−(γ3−θ)yε .

Takeθ = R−αt(β) in the above inequality to have

E[eR
−αt(β)Y1 ]− 1 ≤ eR

−αt(β)yε − 1 + (1 + ε)
t(β)

γ3Rα − t(β)
e−(γ3−R−αt(β))yε .

Dividing the above relation byβ and lettingβ tend to infinity, by the assumptions (36) and (37) it follows

lim
β→+∞

E[eR
−αt(β)Y1 ]− 1

β
= 0. (45)

Note that in this case (where the Laplace transform of the signals is finite on(−∞, γ3)) the inequality

(38) yields a non-trivial upper bound on the second moment ofL
(β)
t,M for all 0 < t < Rαγ3 andβ > 0.

Sett = t(β) in (38) and take the logarithm. Dividing bylogψM (β) we have, for allM ≥ R andβ large

enough,

log EPt(β)
[(L

(β)
t(β),M )2]

logψM (β)
≥− 2βt(β)

logψM (β)
+

2λαπR2

(α− 2) logψM (β)
(E[eR

−αt(β)Y1 ]− 1).

The claim follows taking the limit asβ tends to infinity in this inequality and using (45), (36) and

Proposition 5.3.

�

We conclude this section with some examples.

Constant signals (Continued)
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Suppose that the signals are all equal to a positive constantb > 0. We have already checked that for

t1(β) := (Rα/b) log β, β > 1, the lawsPt1(β) are asymptotically admissible if the parameters satisfy

the conditionλπR2−αb > 1 (indeed, we checked condition (13).) Such laws are indeed asymptotically

efficient because the assumptions (30), (31) and (32) of Theorem 5.4 are satisfied withK1 = 2 and

K2 = 0. Now, considert2(β) := (Rα/b) log(β(log β)c), whereβ > 3 and c ∈ (0, 1). We have already

noticed that the lawsPt2(β) are asymptotically admissible for any choice of the parameters (also in this

case we checked condition (13).) Such laws are indeed asymptotically efficient because the assumptions

(30), (31) and (32) of Theorem 5.4 are again satisfied withK1 = 2 andK2 = 0.

Weibull superexponential signals (Continued)

Suppose that the signalsYk, k ≥ 1, are Weibull distributed with parametersγ1 > 0 and γ2 > 1, i.e.

P (Y1 > y) = e−γ1yγ2 , y > 0. Definet1(β) := γ2(γ2−1)−ηγ
1/γ2

1 Rα logη β, β > 1, whereη := 1−(1/γ2),

and assume that the parameters satisfy condition (18). We have already checked that in such a case the

laws Pt1(β) are asymptotically admissible (indeed, condition (13) is satisfied.) Such laws are indeed

asymptotically efficient because condition (33) of Theorem5.5 is satisfied withK1 = 2 and assumptions

(34) and (35) of Theorem 5.5 can be easily checked setting

G(β) := e(γ
−1
2 (γ2−1)ηγ

−1/γ2
1 β)1/η , β > 0

(note thatG(R−αt1(β)) = β andη ∈ (0, 1).) Now, definet2(β) := c logη β, β > 1, where the constantc

satisfies (19). We have already noticed that the lawsPt2(β) are asymptotically admissible for any choice of

the parameters (also in this case condition (13) is satisfied.) Such laws are indeed asymptotically efficient

because condition (33) of Theorem 5.5 follows by (19) and assumptions (34) and (35) of Theorem 5.5

can be easily checked defining

G(β) := e(c
−1Rαβ)1/η , β > 0

(here again note thatG(R−αt2(β)) = β andη ∈ (0, 1).)

Exponential signals (Continued)

Suppose that the signals are exponentially distributed with meanγ−1
3 . Let ϕ̃ be a positive function
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satisfying (20) (for some positive functionϕ such thatϕ(β) = o(β), asβ → +∞) and definet(β) :=

γ3R
α − ϕ̃(β)−1, β > ϕ̃−1(γ−1

3 R−α). We have already checked that the lawsPt(β) are asymptotically

admissible (indeed, we checked condition (13).) Such laws are asymptotically efficient if moreover the

function ϕ̃ is such thatϕ̃(β) = o(β), asβ → +∞. Indeed, in such a case condition (37) of Theorem

5.6 is satisfied. As we already checked, ifϕ̃(β) :=
√
β, β > 0, and the parameters satisfy condition

(21), then (20) holds and therefore the lawsPt(β) are asymptotically efficient; we also verified that (20)

holds for any choice of the parameters ifϕ̃(β) := β2/3, β > 0, and so in such a case the lawsPt(β) are

asymptotically efficient for any choice of the parameters.

VI. N UMERICAL ILLUSTRATIONS

In this section we report an extensive set of numerical results for the three examples previously

considered. We shall use the importance sampling estimatordefined by (10). So, for fixedM andβ, we

simulate independent replica of the r.v.L(β)
t(β),M , under a suitable chosen importance sampling lawPt(β),

and then we average. More in detail, following the approach described in Section III, the importance

sampling estimator is defined as in (10) witht(β) in place oft, i.e.

ψ̂IS(β, t(β),M) :=
1

N

N∑

i=1

(L
(β)
t(β),M )(i),

where

L
(β)
t(β),M := 1{rβ ≤M}e−t(β)Vrβ [E[et(β)Vn ]]n=rβ .

We simulate the independent r.v.’s(L(β)
t(β),M )(i), under the lawPt(β), according to the following

algorithm. The truncated interferenceVn, n ≥ 1, caused by nodes inb(O,n), is generated for an increasing

sequence of radiin = 1, 2, 3 · · · , exploiting the recursionVn = Vn−1 + V̄n, whereV0 = 0 and V̄n is

the contribution provided by nodes in the annulusb(O,n) \ b(O,n− 1), where we setb(0, 0) := ∅. The

algorithm stops as soon as we findn′ ≤ M such thatVn′ > β or for all n ≤ M we haveVn ≤ β. In

the first case we set(L(β)
t(β),M )(i) := e−t(β)Vn′E[et(β)Vn′ ], in the second case we set(L(β)

t(β),M )(i) := 0.

Note that, for anyn ≤M , the quantityE[et(β)Vn ] can be numerically evaluated from (28). In Table I we

report the detailed pseudo-code to generate the importancesampling estimator.
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TABLE I

PSEUDO-CODE TO SIMULATE THE IMPORTANCE SAMPLING ESTIMATOR

Algorithm VI.1: IMPORTANCE SAMPLING(β,M )

procedure CONTRIBUTION INTEFERENCE BY NODES ANNULUS (n)

comment:Points are Poisson with intensityΛt(β)(·) on the annulusb(O, n) \ b(O, n− 1)

I ← 0 comment: initialization

Npoints← POISSON(
∫
b(O,n)\b(O,n−1)

Λt(β)(x) dx)

for i← 1 to Npoints

do






d← NODE DISTANCE FROM 0(n) comment:a acceptance-rejection method is employed

Y ← EXTRACT THE SIGNAL STRENGTH(d) comment:signal strength depends ond underPt(β)

I ← I + Y L(d)
return (I) comment: interference contribution by nodes in the annulus

procedure COMPUTE AVE FIELD(n, β)

Z ← λ
∫
b(O,n)

(E[et(β)L(x)Y1 ]− 1) dx

comment:Z is evaluated using standard numerical integration techniques

return (exp(Z))

procedure L(β)
t(β),M SAMPLES GENERATION(β)

V ← 0 comment: initialization

rβ ←∞
Flag← FALSE
n ← 0
repeat

comment: loop on n





n← n+ 1
V̄ ← EVALUATE CONTRIBUTION INTEFERENCE BY NODES ANULUS(n)
V ← V + V̄
if V > β

then
{
rβ ← n
Flag← TRUE

until Flag= FALSE and n ≤M
if Flag= TRUE

then W ← COMPUTE AVE FIELD(n, β)
return (exp(−t(β)V )W )

else if return (0)

main
ψ̂IS(β, t(β),M)← 0 comment: Initialization

for i← 1 to S comment:Main Loop; S = Number of samples
do ψ̂IS(β, t(β),M)← ψ̂IS(β, t(β),M) + SAMPLES GENERATION(β)

ψ̂IS(β, t(β),M)← ψ̂IS(β, t(β),M)/S

return (ψ̂IS(β, t(β),M))
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Constant signals (Continued)

Suppose that the signalsYk are all equal to a constantb. Typically, this choice corresponds to the case

in which transmitters and receivers are in line of sight (open space environment) and fading/shadowing

effects on transmissions are negligible.

Applying Theorem 3.2 we easily have that, underPt, t > 0, {Xk}k≥1 is a non-homogeneous Poisson

process with intensity functionΛt(x) = λetbmax(R,‖x‖)−α

and the signals{Yk}k≥1 are again all equal to

b. In Figure 1 we compare the numerical estimates ofψ(β,M) given by the crude Monte Carlo estimator

ψ̂CMC and the importance sampling estimatorψ̂IS . More precisely, we compare such estimates, asβ > 3

varies, settingM = 80, λ = 1/π, R = 1, α = 3, b = 1 and considering the asymptotically efficient law

defined byt(β) = log(β(log β)0.2). For both estimatorsN = 105 samples were simulated (divided in 50

batches of 2000 samples.) Confidence intervals are represented on the plots. Note that whilêψCMC is

able to estimate, with a sufficient degree of accuracy, only those probabilities that are one order larger

than1/N , ψ̂IS allows to estimate accurately even probabilities that are several order of magnitude smaller

than 1/N . For β > 10 the crude Monte Carlo estimator is unable to provide even a rough estimate of

ψ(β,M), since no samples of the interference above the threshold have been observed. Figure 2 refers

to the case in whichα = 5 and the other parameters are as in Figure 1. Similar considerations hold also

in this case.

N = 103 N = 104 N = 105

ψ̂CMC 9.00e-3 9.70e-3 1.03e-02
ψ̂IS 1.01e-2 1.05e-2 1.06e-2

hwCMC 7.99e-3 2.61e-3 9.01e-4
hwIS 1.71e-3 6.39e-4 3.82e-4

TABLE II

COMPARISON BETWEEN THECMC ESTIMATOR AND THE IS ESTIMATOR FOR DIFFERENT VALUES OFN AND M = 80,

λ = 1/π, R = 1, α = 5, b = 1, t(β) = log(β(log β)0.2), β = 5.

To better appreciate the different degree of accuracy provided by the two numerical methods, in Tables

II and III we directly compare the estimateŝψCMC and ψ̂IS for different values ofN andβ = 5 and

β = 7, respectively. The system parameters and the importance sampling law are chosen as in Figure
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Fig. 1. Constant signals: comparison between the CMC

estimator and the IS estimator (asβ varies) for the following

choice of the parameters:M = 80, λ = 1/π, R = 1, α = 3,

b = 1, t(β) = log(β(log β)0.2).
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Fig. 2. Constant signals: comparison between the CMC

estimator and the IS estimator (asβ varies) for the following

choice of the parameters:M = 80, λ = 1/π, R = 1, α = 5,

b = 1 t(β) = log(β(log β)0.2).

N = 103 N = 104 N = 105

ψ̂CMC - 2.00e-4 3.80e-04
ψ̂IS 4.31e-4 4.42e-4 4.48e-4

hwCMC - 3.61e-4 1.05e-4
hwIS 7.84e-5 3.29e-5 1.72e-5

TABLE III

COMPARISON BETWEEN THECMC ESTIMATOR AND THE IS ESTIMATOR FOR DIFFERENT VALUES OFN AND M = 80,

λ = 1/π, R = 1, α = 5, b = 1, t(β) = log(β(log β)0.2), β = 7.
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Fig. 3. Constant signals: plots of the estimated tail of the

interference for different values ofα.
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interference for different values ofλ.
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2. More precisely, the tables report the estimatesψ̂CMC and ψ̂IS as well as the corresponding 99%

confidence intervals half-width, denoted byhwCMC andhwIS , respectively. Note that the IS estimator

provides predictions that are much more accurate than thoseone given by the CMC estimator, for any

choice ofN andβ. More particularly, forβ = 5 the estimateŝψIS are about three times more accurate

than the estimateŝψCMC (i.e. with a 99% confidence interval that is about three times narrower.) For

β = 7 the degree of accuracy of̂ψIS with respect toψ̂CMC increases to an order of magnitude. These

are all consequences of the fact that the selected importance sampling law is asymptotically efficient.

The impact of the system parametersα andλ on the tail of the interference is evaluated in Figures 3

and 4. More precisely, in Figure 3 we plot̂ψIS as a function ofβ > 3, for α = 3, 5, 8 (M , R, λ, b and

t(·) are chosen as in Figure 1). In Figure 4 we plotψ̂IS as a function ofβ > 3, for λ = 1/π, 1/2π, 1/3π

(M , R, α, b andt(·) are chosen as in Figure 1). Note that the tail of the interference exhibits a significant

dependence onα andλ. Indeed, by increasingα, the tail decreases since the received signal power from

an interfering node at distance greater than1 becomes more and more smaller. Similarly, by decreasing

λ, the tail of the interference decreases since the distance of all the interfering nodes from the origin

increases asλ−1/2.

The impact of the choice ofM on the accuracy of the estimate ofψ(β) by the importance sampling

estimatorψ̂IS(β, t(β),M) is gauged in Figure 5. More precisely, forλ = 1/π, R = 1, α = 2.5, b = 1

and t(β) = log(β(log β)0.2), β > 3, in Figure 5 we report the values of̂ψIS(β, t(β),M) for different

choices ofM (ranging from 5 to 80). Note that, asα decreases, the truncation induced by the choice

of M becomes potentially more critical. Curves are hardly distinguishable forM ≥ 20. Thus, we can

conclude that the choice ofM is not critical, unless we select a value forα very close to2.

In Figure 6 we report the ratio between the number of times we foundrβ > M (onN replica) and the

total number of replicaN (shortly, the fraction of samples for which the value ofM has been reached).

We denoted such ratio byFM (β). More precisely, we considered different choices forα and λ and

M = 80, R = 1, b = 1, t(β) = log(β(log β)0.2), β > 3. Note that in all cases the ratio decreases

asβ increases. This is a direct consequence of the fact that the simulation lawPt(β) is asymptotically

admissible.
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Fig. 5. Plot of the functionψ̂IS(·, t(·),M) for M ∈ {5, 10, 20, 40, 80}, λ = 1/π, R = 1, α = 2.5, b = 1, t(β) =

log(β(log β)0.2).
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Fig. 6. Fraction of samples for which the valueM has been reached.

Finally, in Figure 7 we report the ratio betweenlog(ψ̂IS(β, t(β),M)) and−(Rα/b)β log β, i.e. the

asymptotic expression oflogψ(β) (see [15]). We consideredM = 80,R = 1, b = 1, t(β) = log(β(log β)0.2),

β > 3, and different choices ofα and λ. Note that− log ψ̂IS(β, t(β),M)/[(Rα/b)β log β] signifi-

cantly differs from 1, for the values ofα and λ considered. This is not surprising since the quantity

(Rα/b)β log β = β log β does not depend onα andλ, while ψ̂IS significantly depends onα andλ (see

Figures 3 and 4). We conclude that the asymptotic approximation −(Rα/b)β log β may be too crude to

provide any insights on the behavior ofψ(β) for significant values ofβ, in several cases.

Exponential signals (Continued)
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Fig. 7. Plot of the functionβ 7→ − log ψ̂IS(β, t(β),M)/[(Rα/b)β log β] for different choices of the parametersλ andα and

M = 80, R = 1, b = 1, t(β) = log(β(log β)0.2).

Suppose that the signalsYk are exponentially distributed with meanγ−1
3 . This choice corresponds to the

classical Rayleigh fading, which is widely accepted as reasonable simple model of propagation effects,

under non line of sight conditions. For instance, Rayleigh fading captures pretty well the effect of heavily

built-up urban environments on radio signals [14].

Applying Theorem 3.2 we have that, for anyt ∈ (0, γ3R
α), underPt, {Xk}k≥1 is a non-homogeneous

Poisson process with intensity function

Λt(x) =
λγ3

γ3 − tmax(R, ‖x‖)−α

and, given{Xk}k≥1, the signals are mutually independent and the law ofYk |Xk = x is Exponential

with mean(γ3 − tmax(R, ‖x‖)−α)−1; indeed

dP
(Yk |Xk=x)
t (y) =

etℓ(‖x‖)y

E[etℓ(‖x‖)Y1 ]
dP (Y1)(y) = (γ3 − tmax(R, ‖x‖)−α)e−(γ3−tmax(R,‖x‖)−α)y dy.

In Figure 8 we compare the numerical estimates ofψ(β) given by the crude Monte Carlo estimatorψ̂CMC

and the importance sampling estimatorψ̂IS . More precisely, we compare such estimates, asβ > 1 varies,

settingM = 80, R = 1, λ = 1/π, γ3 = 1, α = 5 and considering the asymptotically efficient law defined

by t(β) = γ3R
α − β−

2

3 = 1 − β−
2

3 , β > (γ3R
α)−3/2 = 1. For both the estimatorsN = 105 samples

have been simulated. As for the case of constant signals, theimportance sampling technique allows to
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obtain numerical estimates ofψ(β) which are dramatically more accurate than those one obtained with a

classical Monte Carlo approach (see the 99% confidence intervals represented on the plots.) Here again,

for β > 15 the crude Monte Carlo estimator is unable to provide even rough estimates ofψ(β,M), since

no samples of the interference above the threshold have beenobserved.
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Fig. 8. Exponential signals: comparison between the CMC estimator and the IS estimator for the following choice of the

parameters:M = 80, R = 1, λ = 1
π

, γ3 = 1, α = 5, t(β) = 1− β− 2
3 .

Weibull superexponential signals (Continued)

Suppose that the signalsYk are Weibull distributed with parametersγ1 = 1
2σ2 , σ > 0, and γ2 = 2,

i.e. the signals follow the standard Rayleigh distributionwith tail function P (Y1 > y) = e
−y2

2σ2 . We

emphasize that Weibull distributions have been recently shown [27] to fit well to experimental fading

channel measurements, for both indoor and outdoor environments.

Applying Theorem 3.2 we have that, underPt, t > 0, {Xk}k≥1 is a non-homogeneous Poisson process

with intensity functionΛt(x) = λγ(t, x), where

γ(t, x) := 1 + σtmax(R, ‖x‖)−α eσ
2(tmax(R,‖x‖)−α)2/2

√
π

2

(
erf

(
σtmax(R, ‖x‖)−α

√
2

)
+1

)

and erf(z) := (2/
√
π)
∫ z
0 e−t2 dt is the error function. Moreover, given{Xk}k≥1, underPt the signals
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are mutually independent and the law ofYk |Xk = x is

dP
(Yk |Xk=x)
t (y) =

yetmax(R,‖x‖)−αy

σ2γ(t, x)
e−(y2/2σ2)dy

=
ye[(σ/

√
2)tmax(R,‖x‖)−α]2

σ2γ(t, x)
e−[y/

√
2σ2−(σ/

√
2)tmax(R,‖x‖)−α]2dy.

To sample from the lawdP (Yk |Xk=x)
t (y) we use a composition method [28] exploiting the trivial identity

Yk = Yk1{Yk < σ2tmax(R, ‖x‖)−α}+ Yk1{Yk ≥ σ2tmax(R, ‖x‖)−α}.

Here, we limit ourselves to say that, given the event{Yk < σ2tmax(R, ‖x‖)−α}, Yk is generated using

the acceptance/rejection method, where we leverage on the inequality

y

σ2
e−[y/

√
2σ2−(σ/

√
2)tmax(R,‖x‖)−α]2 ≤ y

σ2
, ∀ y ∈ [0, σ2tmax(R, ‖x‖)−α].

Given the event{Yk ≥ σ2tmax(R, ‖x‖)−α}, Yk is generated using again a composition method. Indeed,

given{Yk ≥ σ2tmax(R, ‖x‖)−α}, the density ofYk−σ2tmax(R, ‖x‖)−α can be expressed as a mixture

between the densities of a Rayleigh and a Gaussian distribution.

In Figure 9 we compare the numerical estimates ofψ(β) given by the crude Monte Carlo estimator

ψ̂CMC and the importance sampling estimatorψ̂IS . More precisely, we compare such estimates, asβ > 1

varies, settingM = 80, R = 1, λ = 1/π, σ =
(
2
π

)1/2
, α = 5 and considering the asymptotically efficient

law defined byt(β) = [1+(π/4)] log
1

2 β. For both the estimatorsN = 105 samples have been simulated.

As for the previous cases, the importance sampling technique allows to obtain numerical estimates of

ψ(β) which are extremely more accurate than those one obtained with a classical Monte Carlo method

(see the 99% confidence intervals represented on the plots.) Here also, for β ≥ 12 we found that the crude

Monte Carlo estimator is unable to provide estimates ofψ(β,M), since no samples of the interference

above the threshold have been observed.
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Fig. 9. Rayleigh signals: comparison between the CMC estimator and the IS estimator for the following choice of the parameters:

M = 80, R = 1, λ = 1
π

, σ =
√

2
π

, α = 5, t(β) = [1 + (π/4)] log
1
2 β.

VII. C ONCLUSIONS

In this paper we have presented a new provably efficient simulation procedure, based on state-dependent

importance sampling, to estimate the tail of the interference in wireless scenarios where interfering nodes

are placed according to a Poisson process. An extensive set of numerical results illustrate the features of

the proposed algorithm.We remark that even if we analyzed the ideal Hertzian propagation model, up

to minor modifications, the algorithm may be used to estimatethe tail of the interference in Poisson

network models with attenuation functions of the form L(x) := ℓ(‖x‖) with ℓ : [0,∞) → (0,∞),

continuous, non-increasing and such that:

∃ c > 0, α > 2: ℓ(r) ≤ cr−α, for all r sufficiently large.

Note that in such models the tail of the interference has the same asymptotic behavior as in the

ideal Hertzian propagation model (see Section VI in [15].)
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