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Simulating the tail of the interference in a
Poisson network model

Giovanni Luca Torrisi and Emilio Leonardi

Abstract

Interference among simultaneous transmissions repefemmain limitation factor for the capacity
and connectivity of dense wireless networks. In this papepvevide efficient simulation laws for the tail
of the interference in a simple wireless ad hoc network mdelaiticularly, we consider node locations

distributed according to a Poisson point process and vaitasses of light-tailed fading distributions.

Keywords: Fading channels; Importance sampling; Large deviatiBogsson process; Poisson shot noise.

I. INTRODUCTION

Mutual interference among simultaneous transmissionstitotes the main limitation factor to the
performance of dense wireless networks, severely redubgapacity of the whole system (see [19],
[21], [23], [30] and [31].)

The availability of efficient analytical/numerical techoes to tightly characterize the interference
produced by transmitting nodes operating over the samenehas a key ingredient to better predict
performance of such complex systems as well as to design rediuivh Access Control (MAC) protocols
and more advanced transmission schemes that better usestamsandwidth. Just as matter of example,
we shall explain in Section II, how the tail of the interfecenis directly related to the probability that
the communication does not succeed, in the case when a #ipgl#single output transmission scheme
is adopted.

In this paper we consider a simple wireless network setting/liich nodes are placed according to
a Poisson process on the plane and employ a simple ALOHA MAStopol (see [2], [4], [5], [6], [7],

[12], [213], [15] and [20]). We propose a provably efficientmerical methodology to estimate the tail
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of the interference, under natural assumptions on fadirthatenuation. If the tail of the interference
is not too small, one may exploit a crude Monte Carlo apprdacévaluate the complementary of the
cumulative distribution function of the interference. Hoxer, when the tail of the interference is small
the crude Monte Carlo method becomes inefficient, and @iffenumerical techniques are needed. The
methodology used in this paper is based on (state-depéridgrdrtance sampling (see e.qg. [3] and [8].)

Despite the fact that a significant body of work has attemptetiaracterization of the interference in
large wireless networks (see [2], [4], [5], [6], [7], [1211.3], [15], [16] and [20]), we are not aware of
previous work proposing provably efficient numerical aldons to estimate the tail of the interference,
assuming that the fading has a light-tail distribution amelattenuation decays sub-exponentially with the
distance. Actually, most of the existing literature on thubject focuses on analytical characterizations
of either the interference distribution or the outage pbilitg, under specific assumptions on fading
and attenuation. For instance, if the attenuation is of twvenf||z||~%, = € R?, a > 2, where the
symbol || - || denotes the Euclidean norm, and the fading is constanttfieze is a purely geometric
attenuation) or distributed according to a Rayleigh lawset form expressions for the Laplace transform
of the interference are derived e.g. in [2], [5] and [20]. Howr, only in exceptional cases the Laplace
transform may be inverted to obtain the law of the interfeeerThis is possible, for instance,df = 4
and the system is subjected to a purely geometric attemuft&]. When the analytical inversion of the
Laplace transform is not feasible, estimates of the tailhef interference may be obtained by inverting
numerically its Laplace transform. However, numericakirsion techniques typically provide results with
large accuracy only at a large computational cost, see E.g[9], [29]. Furthermore, to the best of our
knowledge, to estimate the approximation error is usuallyaed task. For these reasons, alternative
efficient numerical techniques are highly desirable.

Under more general assumptions on fading and attenuatkplicie bounds on the tail of the inter-
ference may be found in [16]. In [15] a large deviations apptois employed to study the asymptotic
behavior of the logarithm of the tail of the interference;, foquite general fading (possibly heavy-tail)
and ideal Hertzian propagation, i.e. of the formx(R, ||z|)™%, R > 0, « > 2. The results in [15]
constitute the starting point to build provably efficientnmerical algorithms to estimate the tail of the

interference.



Under general assumptions on the node distribution, thiadatistribution and the attenuation function,
asymptotic estimates for the outage probability, as thensity of the nodes goes to zero, are derived
in [17] and [18]. Finally, a Monte Carlo algorithm to estiraahe density of the interference for a quite
general wireless network model has been proposed in [25].

The methodology proposed in this paper complements théqusy mentioned results, providing an
efficient and accurate Monte Carlo algorithm to compute #ileof the interference in cases where the
analytical approach is not feasible. We believe that theopmsed methodology may yield hints for a
successive development of Monte Carlo procedures thav ddlet and accurate evaluations of the tail of
the interference when the transmitting nodes are disgtatccording to more general point processes

models.

Il. THE SYSTEM MODEL AND ORGANIZATION OF THE PAPER

We consider the following simple model of wireless netwoskich accounts for interference effects
that arise when several nodes transmit at the same time.

Suppose that transmitting nodes (antennas) are locateddng to a Poisson proce$X, },>; on the
plane with a locally integrable intensity functioz), 2 € R?, i.e. X,, is the location of node.. Denote
by P, € (0,00) the transmission power of node Assume that a new receiver is added at the origin and
that a new transmitter is addedsat R2. Let w be a positive constant which describes the thermal noise
average power at the receiver, and suppose that the physimadgation of the signal is described by
a measurable positive functiah : R? — (0, c0), which gives the attenuation or path-loss of the signal
power. In addition, the signal undergoes random fading (duzccluding objects, reflections, multi-path
interference, etc.). We denote [#,, the random power fading gain between nodand the receiver,
and defineY,, := P,H,. ThusY, L(X,) is the received power at the origin due to nadeSimilarly,
we denote byY L(zx), the received power at the origin due to the transmitter.aWe assume that
{Y,{Y:}r>1} is a sequence of independent and identically distributéd.fi random variables (r.v.s),
independent of locations, and we suppose that the markessdtoproces$( Xy, Yi)}r>1 is defined on
a probability spacé(?, F, P). In the following (with an abuse of terminology) we shallldhle r.v.s Y;

signals.



This paper provides a computationally efficient (stateeshelent) importance sampling algorithm for
the characterization of the total interference power atdtigin, which is given by the Poisson shot
noise r.v.V := >, ., Y, L(Xx). We emphasize that a tight characterization of the tail efittterference
Y(B) :== P(V > f) is needed to predict the performance of large scale wirelesgorks. In particular, the
tail of the interference is related to the probability of sessfully decoding the signal from the transmitter
at . Indeed, given the adopted modulation and encoding schesmessume that the receiver at the
origin can successfully decode the signal from the trantemitt if the Signal to Interference plus Noise

Ratio (SINR) is greater than a given threshold, say 0 (which depends on the adopted scheme), i.e.

Y L(x)
w +

>T.

<

So, conditional to the evedy” = y}, the probability that the communication succeeds is given b

P<Zi(9€/) ZT‘Y:y> :P(% 27> = P(V < yL(z)r~! — ). )

The attenuation function is often taken to be of the falifx) = ¢(||z|) = ||=||~* or (1 + |jz|)~* or
max (R, ||x]|)~%, wherea > 2 and R > 0 are positive constants. Setting= 67’ in (1), wheref > 0
and7’ > 0 are two positive constants, we have

The high-reliability regime corresponds to the high-SINfgime, i.e. the regime wheré — 0 (see [17]

and [18] for the analysis of the high-SINR regime as the isitgrof the nodes goes to zero.) Thus, for

large values of3, the probability:)(3) is also related to the outage probability in the high-SINBime.
Note that wheneveY < oo almost surely, a.s. for short, (a sufficient condition fastis e.g.E[V] <

00, i.e. E[Y1] < co and [, L(z)\(z) dz < o) (8) — 0, asf — +o0, so the even{V' > 3} is rare as

g increases, and this rises questions about the numeridalatisin of the small probabilities(3) via a

Monte Carlo algorithm. The importance sampling technigtmppsed in this paper can be successfully

used to obtain accurate estimates/d@f3) for values of3 that correspond to smaidl(3) (note that such

values of 3 may be moderately large, see Section VI.) This permits tceilifow different system’s

parameters, such as the intensity of the nodes, the pattelgmonent and the fading distribution, impact



on the system performance. For these reasons, we believ@uhaapproach is complementary with
respect to the previously proposed analytical approadregscapture either the asymptotic behavior, as
8 — oo, of the tail of the interference ([15]) or the asymptotic beior, as the intensity of the nodes
goes to zero, of the outage probability ([17], [18].)

The paper is organized as follows. In Section Il we desctiteeimportance sampling methodology in
our context. In Sections IV and V we analyze networks withesdistributed according to a stationary
Poisson process oR? with intensity A > 0 and attenuation function of the formh(z) = ¢(||z||) =
max(R, ||z|)~%, « > 2, R > 0. More particularly, in Section IV we provide asymptotigaidmissible
simulation laws for) (), asfg — +oo, under a quite general light tail assumption on the distidouof
the signals. In Section V we give asymptotically efficiemhsiation laws fory(5), asg — +oo, when
the signals are bounded, Weibull super-exponential or Bgptial. In Section VI we provide numerical

illustrations. Finally Section VII concludes the paper.

I1l. | MPORTANCE SAMPLING

Supposel’ < co a.s. and leb(O, r) be the ball centered at the origin with raditus> 0. Define the

r.v.s

Ve =) YiL(Xp) Lo, (Xe)
1

and, forg > 0,
rg:=inf{fneN: V, >p} if {neN: V,>p}#0, rg=+oco otherwise.
Let M > 1 be an integer and consider the crude Monte Carlo estimator
~ 1 .
vome(B, M) = + > (1frs < MpHY,

i=1

where (1{rg < M), ... (1{rs < M})®) are N ii.d. replica of the r.v.1{rz < M}. For any
g > 0, the crude Monte Carlo estimator is an unbiased estimatafpfs) := P(Va, > ) and an

asymptotically unbiased estimator ¢f3). Indeed,

E[cnc(8,M)] = P(rg < M) = ¥a(B), ¥ >0



and

[Wome (8, M)] = Ml_i}?m?,DM(ﬁ) =Y(B), YV B>0.

lim E
M—+o0
In particular, fors > 0 such thaty,,(5) is not too small we may resort to a classical crude Monte
Carlo method to evaluate the probability,(5) and consequently(/3). However, if 3 > 0 is such that
Y (B) is very small the classical crude Monte Carlo method becdmedficient to estimate),, () and

consequently)(3), as the following argument shows. Suppose that we wish te hawost a % error

on ¢y (B) with 95% confidence. This means that we must have

P([vni(B) — denre (B, M)| < 0.05¢4 () = 0.95.

Note that, by the expression of the variance for a r.v. witheanBulli distribution,

Y (B)(1 =P (8))
~ .

Var(Pone (8, M) =
Sinceyr(B) is very small the following approximation is allowed:

Var (o (8, M)) =~ ar(8)/N,

and by the Central Limit Theorem, fa¥ large, we deduce

P([$ar(B) — deme (B, M)| < 0.05¢(3))

B 1 L ((A{rs < MDD —p(B)
I
~ P(|Z| < 0.05v/ Ny (5)),

whereZ is a standard Gaussian r.v.. Now, using the tables, we hatehe equalityP(|Z] < z) = 0.95

implies z ~ 2. So, to have at most &&error ony,;(5) with 95% confidence, we must have

N = 1600/ (5)- ®)

Sincey s (5) is very small, this means that we need a huge number of refolicsach a desired precision

of Yonre (B, M).



Now, we start describing an alternative Monte Carlo estimatich allows to overcome these problems
(see also the discussion at the beginning of Sections IV andrhe idea is to use a suitable change
of law. Note that by the well-known formula for Laplace fuiottals of (independently marked) Poisson
processes (see e.g. [10]), for any measurable fungtioR? x [0, c0) — R for which the integral in the

right-hand side of (4) is well-defined, we have

EleXre1 /XY)] = exp </ (Ele@Y)] — 1)A(x) dw) . 4)
R

2

In particular,

E[e!"] = exp (/ (E[eF@Y1] — 1)A(z) dx) for anyr,t > 0. (5)
b(O,r)

Denote byJ, the o-field generated by the points of the Poisson procedg©nr) and the corresponding

marks, and by, the smallestr-field containingl J,., J. Let¢ > 0 be such that
/ (E[e'F@Y1] 1)\ (z)dz < oo, for anyr > 0. (6)
b(O,r)

We shall check later on (see Lemma 3.1 below) that the stticha®cess{e!"" /E[e!""]},>¢ is anF,-

martingale (we refer the reader to e.g. [26] for the definjtid’hen, by e.g. Corollary 10.2.1 and Lemma

10.2.2 in [26], IettingPt(’") denote the probability measure ¢, J,) defined by

tV,.
PM(A) =E [ﬁ 1 A} , ©)

we have that there exists a unique probability measyren (2, ¥,) such thatP,(A) = Pt(’”)(A), for
all A € F,.. Moreover, ifr is anJ,-stopping time andd C {r < oo} is such thatd € F,, beingJ. the
stoppingo-field (see e.g. [26] for the formal definition), then

P(A) =E [ﬁu} , 8

where the symbo]E[e!'"]],—, denotes the quantitize'~] computed at = 7.

Lemma 3.1: Lett > 0 be such that (6) holds, thefe!V" /E[e’V"]},>¢ is anF,-martingale.



Proof By the properties of the Poisson process and the definiticgheof-field F,., for anyr’ > r > 0,
we have that the r.wf"" is F,-measurable, the r.¢!(~'=V*) is independent of the-field F,, and the

rv’s eV ande!(V~"=V*) are independent. Therefore

etV otVe otV =Vi)
. [E[em'] 5’”] =k [E[etVr] E[et(Ve=V0)] ‘5}
eﬂ/" et(VT’ _VT) etVT
:EWW1[EWWPMN‘T}:Ewwr

and the claim follows.
|

Next theorem provides the probabilistic structure of theked point proces§(Xy, Yi)}r>1, under

P;. In the following, we denote b)Pt(Y’“ | Xi=2)

the conditional law ofYy, given { X, = z}, underP;,
and by P(") the common law of th&’s underP.

Theorem 3.2: Lett > 0 be such that (6) holds. Then, und@r the marked point proce$$Xy,, Y) }r>1
is distributed as follows{ X}, } > is a Poisson process &t with intensity function\, (z) := \(x)E[e!(®)1];

given the ground proces§Xy}i>1, the marks{Y}};>; are mutually independent, with conditional

distribution (or mark kernel

| Xi—z etL(x)y
AP NI () = My(dy | @) 2= - AP (y).

[etL(2)Yi]

Proof Recall that the law of a point proce§$X},Y/)}r>1 on R? x [0,00) is characterized by the
Laplace functionals of the fornk [exp (— zkzlf(x,g,y,;))}, where f : R? x [0,00) — [0,0) is a

non-negative measurable function such that’, ') = 0 for all (2/,y’) € (R? \ K) x [0,00) and some
compactK C R? (see e.g. [10]). Takg' as above and let > 0 be such thatk C b(O,r). By the

exponential change of measure (7) and the expression ofapkate functional of a Poisson process (4),



we have

E[etVT_Zk21 f(XImYk)]
EletV]

Ep, [e_ 2z f(kaYU} —

= exp (—/ (B[ @Y1 — 1)\ () dx)
b(O,r)
X exp (/ (EletH@Yi=f@Y1)] _ 1) \(x) dx)
b(O,r)

— 1) Az)E[e®1]q
exp {/b(o,r) < E[etL(x)Yl] > (36) [e ] X

exp { / (e F@Y) — )M, (dy | z)Ay(2) dx}
b(O,r)x[0,00)

= exp {/ (™) — 1)My(dy | @) A () dﬂ?}
R2x[0,00)

which is exactly the Laplace functional of a point procé&Xy, Y;)}r>1 such that{ Xj } ;> is a Poisson
process orR? with intensity functionA;(z) and the mark{Y}},>1 are distributed as in the statement
(see e.g. Proposition 6.4.1V in [10]).

g

For ¢t > 0 such that (6) holds and/ € N, define the r.v.
L(ﬁ) =1 <M —tVTﬁ E tVn
t,M - {Tﬁ < M}e [Ele anrga

where the Laplace transfori[e’*"] is given by (5) and the symbdE[e"]],—,, denotes the quantity

Ele!V"] computed atr = rg. Clearlyrg is an{%,},>1-stopping time. So by (8) we have
vu(8) = E1{rs < M}] = Ep[L7)]. ©)

We define the importance sampling estimator by

N

Drs(B,8,M) 1= = S (LA, (10)

i=1
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where(Z%)® . (L) )™ are N i.id. replica of the r.v.L!”)  under the importance sampling law
P;. Note that by (9) it follows that, undeP;, for any 5 > 0, the importance sampling estimator is an

unbiased estimator af,;(8) and an asymptotically unbiased estimator §dy3), indeed
i B (rs(B,t, M) = lim 9y (6) =4(8), V>0

IV. STATIONARY POISSON NETWORKS WITH IDEALHERTZIAN PROPAGATION ASYMPTOTICALLY

ADMISSIBLE LAWS

To simulate the importance sampling estimafqg(ﬂ,t,M) under P;, wheret > 0 is such that (6)
holds, we need to generate the 1rg < M} under the importance sampling lai%. However, under
Py, asp increases, the probability of the evenz; < M} may be very small. In such a case the estimate
provided by the importance sampling estimator is clearky y®or. So we need to introduce importance
sampling laws under which the probability of the evént < M} is high, asg — +oc.

In this section we address this problem in the case when thesare distributed according to a
stationary Poisson process with intensity- 0 and the attenuation function is given byx) = ¢(||z||) =
max (R, ||z])”%, a > 2.

The stationarity assumption on the Poisson process is dadgdar convenience and the generalization
of our result to the non-stationary case is possible withommodifications. We shall assume the following

light tail condition on the signals:

E[e'"] < oo for all ¢ in a right neighborhood of zero with supremuine (0, 4-oc]. (11)
For later purposes, we note that if this light-tail conditioolds then

For any functiont(3) with domain(j3, +o0), 8 > 0, and codomain contained i®, R*S)  (12)

we haveE[e!PF V1] < o for all 5 > 3.

In particular, assuming the light tail condition (11) andbokingt(/3) as in (12) we have that condition
(6) holds witht = ¢(3), L(z) = max(R, ||z|))~* andA(x) = A. Consequently, there exist the probability
measures’; g, 8 > S (see the related discussion in the previous section). Welssythe lawsP )

are asymptotically admissible if

lim P, <M)=1, YVM>R
i Pig)(rs < M) >
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Throughout this paper, using a standard notation, we debpte(x) a positive function such that
o(x)/x — 0, asz — +o0.
Theorem 4.1: Assume (11) and consider a functiofp) as in (12). If moreover there exist a positive

function ¢ and K € (1, +oc] such that

(B)R™Y1
#(B) =o(p) asp— +ocand lim M(’D(ﬁ)E[l{HBZﬁ(Qﬁ)}et I K, (13)

then the lawsP, 5, are asymptotically admissible.

Proof By (11) and (13) easily follows thaP(Y; > ¢(8)) > 0, for any 5 large enough. Recall that
the thinning with retention probability(x), € R?, of a Poisson process on the plane with intensity
function f(x) is a Poisson process on the plane with intensity fungtign f (x) (see e.g. [10], see also

[5].) By Theorem 3.2, for any: € R? and 3 large, we have
p(x) := Pyp)(Yi > ¢(B) | Xy, = x)

etBzl)y )
= /[o,oo) H{y > @(5)}W dPY(y) > 0.

Using again Theorem 3.2, fgt large, underP, ), { X }r>1 is @ non-homogeneous Poisson process on

R? with intensity functionA,s)(z) = AE[e!@4=Y1]. S0, for anyM > R and 8 large,

Py (rg < M) = Pygy (Vi > B) > Pyp) (Z Yilpo,r) (Xk)1{Yx > 0(B)} > ﬁRO‘) (14)
k>1

ROC
> Py (;; Lyo,m) (Xk)1{Y% > ()} > 5(5))

(5= 2]

where, underPt(B), the r.v.N has a Poisson distribution with parameter

AP, = /b o R)p(w)At(m (z)dz = AT R? / 1{y > p(B)}e! D v qpM)(y)

[0,00)



12

and the symbo|x] denotes the integer part of Here the inequality in (14) follows by the definition of
Vi and the fact thaf\/ > R; the inequality (15) is consequence of the thinning prgpeftthe Poisson
process, which guarantees that, unégp), the r.v.> -, 1y0,r)(Xk)1{Yr > ()} has the same law
of N. By the usual bounds on the Poisson distribution we havedsgpd emma 1.2 in [24]), for ang

such that

B

m] +1< /\th)

(note that this inequality is satisfied, for dllarge enough, due to assumption (13)),

BR>
BR @) +1
o 25 ) 1o (e (BL)) e

where the functionH : [0,00) — [0,00) is defined byH(0) := 1, H(z) := 1 — 2z + zlogz, x > 0.

The claim follows combining the inequalities (15), (16) detting g tend to+oco (note that due to the
assumption (13) we have thap, , — +oo, asf — +oo, and that([BR*/¢(8)] +1)/Ap,,, converges
to a positive constant, 8% — +00).
g

We conclude this section with some examples of asymptotieamissible laws. In Section V we

shall see that the laws described in the following examplesraleed asymptotically efficient.

Constant signals
Suppose that the signal have a bounded support with supremtins 0. Then condition (11) clearly
holds withS = +oo. Assumption (13) is satisfied if, in particular, the pogtiunctiont(3), with domain

on some interval3, +oc), 3 > 0, is chosen in such a way that

b Dlet(B)R™Y: -
lim ATOE[L{Y1 > bje ] = K, for someb e (0,b) andK € (1, c0]. (17)
B——+o0 6Ra—2

For instance, for constant signals all equabto- 0, if we sett;(3) := (R*/b)log 5, 8 > 1, then the

laws P, ) are asymptotically admissible if the parameters satiséy ¢hndition \7 R?>~*b > 1. Now,

for a fixedc € (0,1), definety(5) := (R*/b)log(5(log B)€), B > 3. In such a case a straightforward
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computation shows that the laws, 5, are asymptotically admissible for any choice of the paranset

(the limit (17) holds withK = +cc.)

Weibull superexponential signals
Suppose that the signals;, £ > 1, are Weibull super-exponential distributed with paramsetg > 0
and~; > 1, i.e.

PYi>y)=e " y>0

(this case is particularly appealing in the context of vassl networks, see [27] for motivations.) It
is well-known that the Laplace transform of a Weibull supgponential law is always finite, and so
condition (11) holds witts = +o00. We are going to propose a couple of choices for a positivetion
t(3), with domain on some intervd3, +o0), 3 > 0, in such a way that condition (13) is satisfied. Note
thatn := 1 — (1/72) € (0,1). Defineti(5) := va(y2 — 1)"7711/72}20‘ log" 5, 8 > 1. For any positive
function ¢, we have

Arp(B)E[1{Y1 > ()}t (VF™M]  ArR2p(B)e DD P(Yy > (8))
BRA-2 - 8

AR p(B)er B2 [ (p(8) 2R =]
- . |

Taking () := log'/” B8, 8 > 1, we deduce

AT R?=p(B)e?B)? [ (B)e(B)' =72 R =]
B

— AR 0RO T (i) g1/ g,

This latter term tends to infinity if

T2l = 1) =+ 1 (18)

Therefore, under the above condition on the parametersigi®on (13) holds, and by Theorem 4.1 we

have that the lawg’, (3) are asymptotically admissible. Now, defingj3) := clog” 3, 3 > 1, where

¢ > max{R(y1 +1),72(72 — 1)/ R} (19)
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Taking againp(3) := log'/72 3, 8 > 1, and arguing as in the first part of this example it can be obgck

that the lawsP;, ) are asymptotically admissible for any choice of the paranset

Exponential signals

Suppose that the signals are exponentially distributed WiEanfygl. In this case we clearly have that
condition (11) is satisfied witl§ = v3. We are going to propose a couple of choices for a functign,
with domain on somég3, +oc), 5 > 0, and codomain in0, v3R%), in such a way that the assumption
(13) is satisfied. Lefs be a positive function such that

~ _ ATR?y30(B)@(B)e~ T "0 (A)/2(5)
and 1
‘P(ﬁ) T +o0 B—lffoo B

€ (1,40o0] (20)

for some positive functionp such thatp(3) = o(8), as B — +oo. Definet(8) := 3R> — $(B) 71,

B> @ l(y'R™). Since

B4y, > GHBRYay 03 o~ (s—t(B)R™*)(8)
1% > o(8)} = —

— %Ra@(ﬁ)e—f?*%(ﬁ)/@(ﬁ)y

assumption (13) holds and by Theorem 4.1 we have that the fws are asymptotically admissible.
In particular, if g(3) := /B, 8 > 0, and the parameters satisfy
M RZy3e 7 > 1, (21)

then the lawsP, 5, are asymptotically admissible. Indeed, in such a case (@@Jshwith o(5) := /3,
B> 0. If we take@(B) := /3, 3 > 0, then the lawsP; 5y are asymptotically admissible for any choice

of the parameters. Indeed, in such a case (20) holds wifh) := 5%/3, 5 > 0.
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V. STATIONARY POISSON NETWORKS WITH IDEALHERTZIAN PROPAGATION ASYMPTOTICALLY

EFFICIENT LAWS

Assume (11) and let the functian3) be as in (12). The law#) ) are called asymptotically efficient

if they are asymptotically admissible and

log \/EPM) [(LE(Bg)),M)z]

lim inf 1, VM >R. 22
B—r+oo log ¥ () - #2)
Note that this inequality implies{ M > R,
Varp, (L(ﬁ) )
lim WEHAM _ o yes0 (23)

Botoo  Yar(B)2E

(see e.g. [3].) This guarantees a gain in terms of asympadfiiiency, as the following argument show.
Suppose that we wish to have at most% &rror oni,/(5) with 95% confidence. This means that we

must have

Py (1vm (B) — brs(B,t, M) < 0.05¢p(5)) = 0.95.

By the Central Limit Theorem, folV large, we deduce

Py (10 (B) — rs(B8,t(B), M)| < 0.05¢5(83))

N
= Pyp) (%\ S (T 00 = vn(8) | < 0.05wM(ﬁ>>
=1

SR 0D = Ngw(8) N
= Pt(ﬁ) ‘ i B) ‘ < 0.05¢(5) )
\/NVarpt(B) (Lt(ﬁ)’M) Varp,, (Lt(ﬁ),M)
N
Varp, (Lt(ﬁ),M)

whereZ is a standard Gaussian r.v.. Now, using the tables, we hatehe equalityP(|Z] < z) = 0.95

implies z ~ 2. So, to have at most &&error ony,;(5) with 95% confidence, we must have

®)
Ligyar)

Y (B)?

Varp,, (

N =~ 1600
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Comparing this approximation with (3), thanks to (23), weriadiately realize that using the importance
sampling estimator one may reach a desired precision withadler number of replica (choosec (0, 1)).

In this section we provide asymptotically efficient simidatlaws in the case when the nodes are
distributed according to a stationary Poisson process imni#msity A > 0, the attenuation function is
given by L(z) = ¢(||z|) = max(R, ||z||)~, « > 2, R > 0, and the signals are distributed according to
three different light tail laws.

Next Propositions 5.1, 5.2 and 5.3 give)M > R, the asymptotic behavior &bg vy, (5), asg — +oo,
in the case of bounded, Weibull super-exponential and Espial signals, respectively. The proofs are
based on the large deviation results proved in [15] (thege&dreferred to [11] for an introduction on
large deviations theory.) In the following we writgx) ~ g(z) if f(-) andg(-) are two functions such
that f(z)/g(z) — 1, asz — +oo.

Proposition 5.1: Assume that
Y7 has a bounded support with supremiéns 0. (24)

Then, for anyM > R,

log ¥ar(B) ~ —(R%/b)Blog B, asf — +oo.
Proposition 5.2: Assume that
There exist constantg; > 0 andy, > 1: P(Y; > y) ~e ¥, asy — 4o0 (25)
and definen := 1 — (1/42). Then, for anyM > R,
log ar(8) ~ —72(72 = 1) "1/ " R*Blog" B, as B — +ov.
Proposition 5.3: Assume that
There exists a constant > 0: P(Y; > y) ~e ¥, asy — +oo. (26)

Then, for anyM > R,
log Y (B) ~ —y3R*B, aspB — +oo.

Proof of Proposition5.1 Note that by the large deviation principles in [15] we knovatthunder the

foregoing assumptions, the family of random variab{e$ }.-, and {cVz}.~o Obey a large deviation
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principle on[0, co) with speedé log% and rate function/ (x) = R*z/b. Therefore,

log P(V > z/e) = lim —

. 3 o

The claim follows noticing that, a8/ > R, we have

P(Vg > B) < P(Vi > B) = vu(B) < P(V>p) V3>0.

]
Proof of Proposition5.2 The proof is similar to the case of bounded signal powers.niaim difference is
that in the super-exponential Weibull case we have to uséollmving large deviation principles, again

proved in [15]: the family of random variabldsV }.~o and{cVz}.~o Obey a large deviation principle

on [0, 00) with speed! log”(1) and rate function (z) = y2(y2 — 1)~y Rog,
U

Proof of Proposition 5.3 Here again, the proof is similar to the case of bounded sigmakrs, but we have
to use the following large deviation principles, proved 15]: the family of random variable&V'}.<¢
and{eVr}.~o Obey a large deviation principle df, oo) with speed% and rate functior/ (z) = y3 R%x.

g

Before providing the asymptotically efficient simulaticemls, we compute the Laplace transform of
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V,,. By a polar change of coordinates and (5) we have, fortany0 andn € N,

0

Efe!""] = exp ()\ /b o (B dw) ~exp (m / " (Bletom] _ 1>pdp>
=1{n < R}exp <2)\7r /O n(E[eWﬂ)Yl] —1)p dp>
+1{n > R} exp <2)\7r /0 B[OV - 1) dp>
— 1{n < R}exp (AW(E[&R*““] - 1))
+1{n > R}exp (MR%E[&R*“‘“] - 1)) exp (2/\7r /R "Bt 1)) dp>
— 1{n < R}exp (Am%E[etR“Yl] - 1))
+1{n > Ry exp (ArR2(Be™ ]~ 1)) exp <2)\7TE [ / et 1y, dpD 27)

R

— 1{n < R} exp (Am%E[etR*“‘Yl] - 1))

k(p2—ak _ n2—
+1{n > R} exp ()mR%E[etRﬂYl] — 1)) exp (2)\772 L (Rk;!(ak; ) E[Ylk]) )

where (27) follows by Fubini’'s theorem and (28) by the foliogs computation

n . n to~Y; k
/R(e” Y—l)pdpz/R (Z(pk!l))pdp

k>1
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In particular, asy > 2,

vy _ 2 [ tRYi 2 (tR~*)* k
Ele'’] = exp ()\ﬂ'R (E[e!R 1] 1)) exp (2)\7TR % eI (29)
and soE[e'V] < oo for anyt > 0 such thatE[e'? V1] < oc.
Now, we give the asymptotically efficient simulation lawserfollowing theorems hold.

Theorem 5.4: Assume(24) and lett(3) be as in (12) withS = +oc. In addition suppose: (13),

. 2t(5)
| f—————— =K 2 30
i s o~ R € 2] (30)
and
liminf K. 31
imin = € (—o00,0
Botoo —(RY/b)Blog B~ 2 ( ] (31)
where the constant&’; and K, are such that
9 2
K+ AO‘“; Ky > 2. (32)
a fe—

Then the lawsP; 3 are asymptotically efficient.
Theorem 5.5: Assume(25), let ¢(/3) be as in (12) withS = +oco0 and sety := 1 — (1/+2). In addition

suppose: (13),

lim inf Qt(?/) = K € [2, 400, (33)
o0 yy(y2 — 1)1 R log" B
there exist a positive functio&' such that
- GRT(B))
BETOO W = +00, V Ko € (07 OO) (34)
and a positive constari® > 0 such that
GIRTH(B)) < K3, for someKs e (0,00). (35)

sup
s>p PBlog"p

Then the lawsP; 5, are asymptotically efficient.
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Theorem 5.6: Assume(26) and lett(3) be as in (12) withS = 3 R*. In addition suppose: (13),
t(8) T y3R*, asf — 4o (36)

and

lim HpB)
B—too (3R> —t(B))B

= 0. (37)

Then the lawsP, 3y are asymptotically efficient.

Proof of Theorem5.4 By Theorem 4.1 the law#’ ) are asymptotically admissible. It remains to prove

(22). We start bounding the second momenLé@[, for any fixedt, 5 > 0 and M > R, underP;. Using

the equality (29), we deduce

Ep (L)% < Ep[1{rs < +oote Vs (B |l=r,)?]

< e exp (AR — 1)) exp | AATRZ Y ) EDt
< S Mok —2)

2
< e 2P exp (2)\7TR2(E[etR7QY1] - 1)) exp (ZD\LRQ(E[etRQYI] — 1))
o —
2
2
< e_2w exp <220ir§ (etRiab - 1)) > (39)

where (39) is consequence of (24). $et t(S). Then, taking the logarithm in the above inequality and

dividing by log 15/(5) we have, for allg large enough,

logEp,, [(LE(%,MV] o 2B(B) | arRA(OET 1)
log ¥ar(B) ~ logvn(B) (a —2)log ¥ (B)

Passing to théiminf as /3 — +oo in the above inequality, by Proposition 5.1, (30), (31) a8d)(we
have (22).

d
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Proof of Theorem5.5 Here again, by Theorem 4.1 the laW ) are asymptotically admissible. So we

only need to prove (22). We first show that

. BN 1
P YT (40)

SinceY; is a non-negative r.v., we have
E[e’] -1=9 / Py > y)dy, 6cR. (41)
0
Thus, by (25) we deduce thate > 0 there existg). such thatV y > y. we have

ve Foo
E[eBYl] 1= 9/ eeyP(Yl >y)dy + 0/ eGyP(Yi > y)dy
0

€

“+oo
<e —1+0(1+¢) / PNV dy. (42)

e

Using the substitutiony = e™*, we have

+oo e Ye
/ eey—'ylyw dy = / e~ Me 2w eth*m dz. (43)
0

The Laplace method for integrals (see e.g. formula (2.38% m [22]) yields

e Ve ()
/ e I T 0T g ge_” asf — +oo. (44)
0

Taking 6 = R~“t(B) in (42), noticing that(8) — +o0, asf — +oo, and using (43), (44) and (34) we

have

E[eff"HA] — 1 VBB 1 4 (14 g)emelt *HB)
lim sup

P T GRE D) e G(R—"1(5)) =0

and (40) follows. Now, set = ¢(3) in the inequality (38) and take the logarithm. Dividing log 15/ (3)

we have, for anyM > R and all 5 large enough,

logEp,,, [(LE%,MV] o 2B 2 arR2 E[eR 1B)V1] — 1 L G@E™"4(8))
log ¥ar(8) = logym(8)  (a—2) G(Rt(B)) log ¥ (B)
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The claim follows taking théim inf as — +oo on this inequality and using Proposition 5.2, (33), (40)
and (35).

O

Proof of Theorem5.6 As usual, we prove (22). Také < ~3. By (26) and (41), we deduce thete > 0

there existgy. such thatvy y > y. we have

—+00
E[eBYl] —-1< eeys —1+ 9(1 + 5)/ e—(’Ya—g)y dy
yE

0
_ o0y —(v3—0)y-
=e 1+(1+¢ e .
( )73 —

Take® = R~*¢(3) in the above inequality to have

. . HB) e
Eleft Y] 1 <O 1 4 (14 6) e (0 ROy,
| I=1s< ( )’YsRO‘ —t(B)

Dividing the above relation by and lettings tend to infinity, by the assumptions (36) and (37) it follows

E[eR 0] 1
lim
B—r+00 B

=0. (45)

Note that in this case (where the Laplace transform of theadggis finite on(—oo,~v3)) the inequality

(38) yields a non-trivial upper bound on the second momerﬂé@[ forall 0 <t < R*y3 and$ > 0.

Sett = t(5) in (38) and take the logarithm. Dividing byg v,/ (/) we have, for allM > R and/ large

enough,
log EPt(B) [(LE(Bﬁ)),]\/[)2] > Qﬁt(ﬁ) 2)\0[7TR2 ( [eR—at(ﬁ)YI] . 1)
log ¥ar(B) = logYm(B) (o —2)log () '

The claim follows taking the limit ag? tends to infinity in this inequality and using (45), (36) and
Proposition 5.3.
O

We conclude this section with some examples.

Constant signals (Continued)
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Suppose that the signals are all equal to a positive constand. We have already checked that for
t1(B) == (R*/b)log B, B > 1, the laws P, () are asymptotically admissible if the parameters satisfy
the condition\7R>~b > 1 (indeed, we checked condition (13).) Such laws are indegthpi®tically
efficient because the assumptions (30), (31) and (32) of fEned.4 are satisfied witlk(; = 2 and

Ky = 0. Now, considerta(3) := (R*/b)log(B(log 5)¢), where > 3 andc € (0,1). We have already
noticed that the laws?;, ) are asymptotically admissible for any choice of the paransetalso in this
case we checked condition (13).) Such laws are indeed asyiogily efficient because the assumptions

(30), (31) and (32) of Theorem 5.4 are again satisfied ith= 2 and K» = 0.

Weibull superexponential signals (Continued)

Suppose that the signals;, £ > 1, are Weibull distributed with parametess > 0 and~, > 1, i.e.
P(Yy > y) =e 1Y y > 0. Definet,(3) := ’yg(’yg—l)_n’yll/%Ra log" 8, B > 1, wheren := 1—(1/v2),

and assume that the parameters satisfy condition (18). Wée &leeady checked that in such a case the
laws P, 3) are asymptotically admissible (indeed, condition (13) asisfied.) Such laws are indeed
asymptotically efficient because condition (33) of Theoffis satisfied withiK; = 2 and assumptions

(34) and (35) of Theorem 5.5 can be easily checked setting

G(B) = el =M 2B g

(note thatG(R~“t1(B)) = g andn € (0,1).) Now, definety(5) := clog” 3, 5 > 1, where the constant

satisfies (19). We have already noticed that the |&ys;) are asymptotically admissible for any choice of
the parameters (also in this case condition (13) is sati¥f@&uath laws are indeed asymptotically efficient
because condition (33) of Theorem 5.5 follows by (19) andiagtions (34) and (35) of Theorem 5.5

can be easily checked defining

G(B) =l A g5

(here again note thaf(R~“t2(8)) = 8 andn € (0,1).)

Exponential signals (Continued)

Suppose that the signals are exponentially distributedh WiEanfyg‘l. Let © be a positive function
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satisfying (20) (for some positive functiop such thaty(3) = o(8), asf — +oo) and definet(3) :=
3R> — 3(B)7, B> ¢~ (y3 "R™*). We have already checked that the laig;) are asymptotically
admissible (indeed, we checked condition (13).) Such lawwsaaymptotically efficient if moreover the
function ¢ is such thatp(5) = o(5), asf5 — +oo. Indeed, in such a case condition (37) of Theorem
5.6 is satisfied. As we already checkedgif3) := /3, 3 > 0, and the parameters satisfy condition
(21), then (20) holds and therefore the laiigs) are asymptotically efficient; we also verified that (20)
holds for any choice of the parametersifs3) := 5%, § > 0, and so in such a case the lawg ) are

asymptotically efficient for any choice of the parameters.

VI. NUMERICAL ILLUSTRATIONS

In this section we report an extensive set of numerical tesior the three examples previously

considered. We shall use the importance sampling estindgtimed by (10). So, for fixed/ and 3, we
simulate independent replica of the rﬂé(ﬁﬁ))M, under a suitable chosen importance sampling #w,

and then we average. More in detail, following the approagbcdbed in Section lll, the importance

sampling estimator is defined as in (10) witf$?) in place oft, i.e.

N
~ 1 ;
Grs(8,4(8), M) == = > (L) ),
i=1
where
L) = ey < My OV BV, _,
We simulate the independent r.v.(sLEfB))M)(“, under the lawP; ), according to the following

algorithm. The truncated interferentg, n > 1, caused by nodes i{O, n), is generated for an increasing
sequence of radih = 1,2,3---, exploiting the recursioV,, = V,,_; + V,,, wherel, = 0 andV,, is
the contribution provided by nodes in the annul®, n) \ b(O,n — 1), where we seb(0,0) := (). The

algorithm stops as soon as we find < M such thatV,,, > 3 or for all n < M we haveV,, < 5. In

the first case we se(tLE(Bg) 3) D = etV E[tAVr] in the second case we s@i?g) W)@ = 0.

Note that, for any» < M, the quantityE[e!(®)V»] can be numerically evaluated from (28). In Table | we

report the detailed pseudo-code to generate the importaro@ling estimator.
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PSEUDO-CODE TO SIMULATE THE IMPORTANCE SAMPLING ESTIMATOR
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Algorithm VI.1: IMPORTANCE SAMPLINJ 3, M)

procedure CONTRIBUTION_INTEFERENCE BY_NODES ANNULUS (n)

comment: Points are Poisson with intensity,s)(-) on the annulu$(O, n) \ b(O,n — 1)
I+0 comment:initialization

Npoints < PO'SSO'\(fb(o,n)\b(o,nﬂ) Ay(p)(z) dz)
for i « 110 Npgints
d < NODE_DISTANCE_FROM_0(n) comment:a acceptance-rejection method is employed

do {Y < EXTRACT_THE_SIGNAL_STRENGTH) comment: signal strength depends @hunder P, 4,

I+ I+YL(d)
return (I) comment:interference contribution by nodes in the annulus

procedure COMPUTE_AVE_FIELD(n, 3)

Z = X fyomy ERPFEM] — 1) da

comment: Z is evaluated using standard numerical integration tegles
return (exp(Z))

procedure Li’?g,),M_SAMPLES_GENERATION(B)

V<+0 comment:initialization

rg < 00
Flag«+ FALSE
n <0
repeat
comment:loop on n

n+<n+1

V ¢ EVALUATE_CONTRIBUTION_INTEFERENCE BY_NODES ANULUS(n)
VeV+V

if V>g

rg < mn
Flag«— TRUFE
until Flag= FALSE andn < M
if Flag=TRUE
then W < COMPUTE_AVE_FIELD(n, 3)
return (exp(—t(8)V)W)
else if return (0)

then

main

@15(5715(5), M)+ 0 comment: Initialization

for i< 1to S comment: Main Loop; S = Number of samples
do %s(ﬂ, t(B), M) « @15(5715(6), M) + SAMPLES_GENERATION(f3)

V15 (8,4(8), M) « rs(B,4(8), M)/S

return (vrs(6,t(8), M))
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Constant signals (Continued)

Suppose that the signalg, are all equal to a constant Typically, this choice corresponds to the case
in which transmitters and receivers are in line of sight (oppace environment) and fading/shadowing
effects on transmissions are negligible.

Applying Theorem 3.2 we easily have that, undgrt > 0, {X}},r>1 is a non-homogeneous Poisson

process with intensity functio,(z) = \e®*max(Zllzl)™" and the signalgY;},>; are again all equal to

b. In Figure 1 we compare the numerical estimates@f, M) given by the crude Monte Carlo estimator

zZCMc and the importance sampling estimaﬁ}rg. More precisely, we compare such estimates; as3
varies, setting/ =80, A =1/7, R =1, a = 3, b =1 and considering the asymptotically efficient law
defined byt(3) = log(B8(log 8)°2). For both estimator&V = 10> samples were simulated (divided in 50
batches of 2000 samples.) Confidence intervals are repessen the plots. Note that whilé(;MC is

able to estimate, with a sufficient degree of accuracy, dmbge probabilities that are one order larger

thanl/N, @15 allows to estimate accurately even probabilities that everal order of magnitude smaller
than1/N. For 5 > 10 the crude Monte Carlo estimator is unable to provide evenuglr@estimate of
¥(B, M), since no samples of the interference above the thresheole teen observed. Figure 2 refers
to the case in whiclax = 5 and the other parameters are as in Figure 1. Similar corsgides hold also

in this case.

N=10° [N=10" [ N=10°
Do | 9.00e-3 | 9.70e-3 | 1.03e-02
Yrs 1.0le2 | 1.05e-2 | 1.06e-2
hwonc | 7.99e3 | 2.61e-3 | 9.01e4
hwrs | 171e-3 | 6.39e-4 | 3.82e-4

TABLE Il

COMPARISON BETWEEN THECMC ESTIMATOR AND THE IS ESTIMATOR FOR DIFFERENT VALUES OFN AND M = 80,

A=1/m,R=1,a=5,b=1,t(8) = log(8(log 8)°?), B = 5.

To better appreciate the different degree of accuracy geavby the two numerical methods, in Tables

Il and Il we directly compare the estimaté@Mc and @15 for different values ofN and 5 = 5 and

B = 7, respectively. The system parameters and the importarmoelisg law are chosen as in Figure
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1 ; 1 ‘
IS —+— IS —+——
CMC CMC --mse-mn
0.01 LS. 0.01
M H
x
0.0001 % 0.0001
(> (>
1e-06 1e-06
.
16-08 - 16-08 :
+ +
.
le-10 - 1le-10 =
6 10 12 14 6 10 12 14
B B
Fig. 1. Constant signals: comparison between the CM@ig. 2.  Constant signals: comparison between the CMC

estimator and the IS estimator (&svaries) for the following

choice of the parameterd/ =80, A\ =1/, R=1, a = 3,

b= 1, t(8) = log(B(log 5)°2).

estimator and the IS estimator (&svaries) for the following

choice of the parameterd/ = 80, A\=1/7r, R=1, a =5,

b=1t(8) = log(B(log )*?).

N=10° [ N=10" [ N=10°

Yemce - 2.00e-4 | 3.80e-04

Yrs 43le-4 | 4.42e-4 | 4.48e-4

hwene - 3.61e-4 | 1.05e-4

hwis | 7.84e-5 | 3.29e-5 | 1.72e-5
TABLE III

COMPARISON BETWEEN THECMC ESTIMATOR AND THE IS ESTIMATOR FOR DIFFERENT VALUES OFN AND M = 80,

A=1/m,R=1,a=5b=1,t(8) = log(8(log 8)°2), B = 7.

‘ 1 ‘
a=3 A=1/n
[ P— A=1/(@2r) e
=8 e A=1/(Br) e
0.01 . 0.01
0.0001 0.0001 |
IS IS
1le-06 1e-06
1le-08 1e-08
le-10 le-10 -
8 10 12 14 6 10 12 14
B B
Fig. 3. Constant signals: plots of the estimated tail of theFig. 4. Constant signals: plots of the estimated tail of the

interference for different values af.

interference for different values of.
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2. More precisely, the tables report the estimaf@wc and JIS as well as the corresponding %9
confidence intervals half-width, denoted bycy;c and hwyg, respectively. Note that the IS estimator

provides predictions that are much more accurate than thosegiven by the CMC estimator, for any

choice of N and 5. More particularly, forg = 5 the estimate@lg are about three times more accurate
than the estimateﬁéTCMc (i.e. with a 99% confidence interval that is about three times narrower.) For
£ =7 the degree of accuracy (ﬁjs with respect tOzZCMC increases to an order of magnitude. These

are all consequences of the fact that the selected impertsampling law is asymptotically efficient.

The impact of the system parametersand A on the tail of the interference is evaluated in Figures 3
and 4. More precisely, in Figure 3 we plotg as a function of3 > 3, for o = 3,5,8 (M, R, A, b and
t(-) are chosen as in Figure 1). In Figure 4 we plot as a function of3 > 3, for A = 1/m,1/27,1/3m
(M, R, «, b andt(-) are chosen as in Figure 1). Note that the tail of the intenfegeexhibits a significant
dependence oa and ). Indeed, by increasing, the tail decreases since the received signal power from
an interfering node at distance greater tHalpecomes more and more smaller. Similarly, by decreasing
A, the tail of the interference decreases since the distahedl the interfering nodes from the origin
increases ag—1/2.

The impact of the choice af/ on the accuracy of the estimate ©f3) by the importance sampling
estimatorzzfg(ﬁ,t(ﬁ),M) is gauged in Figure 5. More precisely, far=1/7, R=1, a =2.5,b=1
andt(8) = log(8(log 8)*2), B > 3, in Figure 5 we report the values gf (83, ¢(3), M) for different
choices of M (ranging from 5 to 80). Note that, as decreases, the truncation induced by the choice
of M becomes potentially more critical. Curves are hardly digiishable forM > 20. Thus, we can
conclude that the choice dff is not critical, unless we select a value fervery close to2.

In Figure 6 we report the ratio between the number of timesavedrs > M (on N replica) and the
total number of replicaV (shortly, the fraction of samples for which the valueldf has been reached).
We denoted such ratio by}, (3). More precisely, we considered different choices foand A and
M =280, R =1,b =1, t(8) = log(B(log 3)*2), B > 3. Note that in all cases the ratio decreases
as 8 increases. This is a direct consequence of the fact thatinialation law Pz is asymptotically

admissible.



‘M=5
Sa. M=10 —-—-
RS \111\\\\\ M=20 oo
0.01 I M =40 .
RN M =80 ------
R
J
0.0001
12
(S AN
AN
1le-06
1le-08 \\
le-10 \
6 8 10 12 14
B

Fig. 5. Plot of the functiongs(-,¢(-), M) for M € {5,10,20,40,80}, A = 1/m, R = 1, = 2.5, b = 1, £(8)
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log(B(log 8)™7).
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Fig. 6. Fraction of samples for which the valié has been reached.
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Finally, in Figure 7 we report the ratio betwedns(¢s(8,t(3), M)) and —(R*/b)Blog 3, i.e. the

asymptotic expression dfg 1(3) (see [15]). We considered = 80, R = 1,b = 1,¢(8) = log(5(log 5)°?),

B > 3, and different choices ofr and A. Note that—log ¢;s(3,t(3), M)/[(R*/b)Blog 8] signifi-

cantly differs from 1, for the values af and A considered. This is not surprising since the quantity

(R*/b)Blog 8 = Blog § does not depend om and A, while qﬁjs significantly depends on and X\ (see
Figures 3 and 4). We conclude that the asymptotic approiamat(R“/b)5log 8 may be too crude to

provide any insights on the behavior ¢f 3) for significant values of3, in several cases.

Exponential signals (Continued)
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Fig. 7. Plot of the functior — — log QZIS(B,t(B), M)/[(R*/b)B log B] for different choices of the parameteksand o and

M=80,R=1,b=1,tp3) = log(ﬂ(log6)0'2).

Suppose that the signalg are exponentially distributed with mea/ng. This choice corresponds to the
classical Rayleigh fading, which is widely accepted asapable simple model of propagation effects,
under non line of sight conditions. For instance, Raylemytirig captures pretty well the effect of heavily
built-up urban environments on radio signals [14].

Applying Theorem 3.2 we have that, for ahy (0,73 R®), underP;, {X}},>1 is a non-homogeneous

Poisson process with intensity function

A3
A =
t(z) v3 — tmax(R, [|z]])~«

and, given{X}};>1, the signals are mutually independent and the lawof X; = « is Exponential

with mean(vys — t max(R, ||z||)~*)~!; indeed

dPt(Yk |Xk=x)( . etf(ler)y

= — e dPY(y) = (y3 — —a) o= (s —t max(R,|z]))~*)y
mpaeny] W W) = (0 — tmax(R, [lz])=)e dy.

In Figure 8 we compare the numerical estimates @f) given by the crude Monte Carlo estimatﬁch
and the importance sampling estimaﬂ}rg. More precisely, we compare such estimatesj as1 varies,
settingM =80, R =1, A =1/7, v3 = 1, « = 5 and considering the asymptotically efficient law defined
by t(8) = 73R — 875 = 1— 75, B > (13R*)~3/2 = 1. For both the estimatora’ = 10> samples

have been simulated. As for the case of constant signaldgntpertance sampling technique allows to
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obtain numerical estimates ¢f(3) which are dramatically more accurate than those one olataiith a
classical Monte Carlo approach (see thé&9&nfidence intervals represented on the plots.) Here again,
for 8 > 15 the crude Monte Carlo estimator is unable to provide evegh@stimates of)(3, M), since

no samples of the interference above the threshold have dizssrved.

IS ———
CMC
'S
0.01 |-—X#y
Xy
*x
%
X%%;
0.0001 i
.
(> **-2
.
1e-06 Ts
+$+
s
$$$
1e-08 *
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z$$
1e-10
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Fig. 8. Exponential signals: comparison between the CM@nesor and the IS estimator for the following choice of the

parametersi =80, R=1, A=, ys =1, a=5,4(8) =1— 5.

™

Weibull superexponential signals (Continued)

Suppose that the signalg, are Weibull distributed with parameters = -, o > 0, andy, = 2,

5,7
i.e. the signals follow the standard Rayleigh distributiwith tail function P(Y; > y) = eETy;. We
emphasize that Weibull distributions have been recenttyvsh[27] to fit well to experimental fading
channel measurements, for both indoor and outdoor envieotsn

Applying Theorem 3.2 we have that, und@y, ¢ > 0, { X} },>1 iS @ non-homogeneous Poisson process

with intensity functionA;(z) = Ay(t,z), where

5 = —a o —ay2 T t max(R, [|z||) ™
t, =14+ ot R, a o2 (t max(R,||z|))~*) /2\/7 <erf (O’ , )
(t,x) ot max(R, ||z|))"“e 3 7

anderf(z) := (2/y7) [y e~ dt is the error function. Moreover, givefiX;, },>1, under P; the signals
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are mutually independent and the law¥f| X, = x is

t max(R,[lz])) "~y

dPt(Yk | Xi=x) (y) _ ye e—(y2/202)dy

o?y(t,x)

[(0/V2)t max(R,||z]|)~]? 5 —a2
_ye o~ W/V202—(0/vV2)t max(R,||z|) =] dy.

o?y(t,x)

To sample from the IawlPt(Y’“ |Xk:g”)(y) we use a composition method [28] exploiting the trivial itign
Yi = Vi 1{Y) < ot max(R, ||z) "} + Y3 1{Ys > o*t max(R, ||z||)"*}.

Here, we limit ourselves to say that, given the evgYjt < o?t max(R, ||z|)~“}, Y is generated using

the acceptance/rejection method, where we leverage oméugiality

y - o2—(o max z||)~]? Yy —a
e [y/V20%~(0/v/2)t max(R,|z|)) ] <5 YV y € [0, 02t max(R, ||z|)°].

> <
Given the even{Y};, > o*t max(R, ||z||)~®}, Y% is generated using again a composition method. Indeed,
given{Y;, > o*tmax(R,||z||)~*}, the density ofy;, —o*t max(R, ||z||)~* can be expressed as a mixture

between the densities of a Rayleigh and a Gaussian distribut

In Figure 9 we compare the numerical estimates)0f) given by the crude Monte Carlo estimator
JCMC and the importance sampling estimajZAQ(g. More precisely, we compare such estimates; as1
varies, setting/ =80, R=1, A=1/m, 0 = (%)1/2, a = 5 and considering the asymptotically efficient
law defined byt(3) = [1+ (/4)]logZ . For both the estimatord = 105 samples have been simulated.
As for the previous cases, the importance sampling teckenalows to obtain numerical estimates of
¥ (B) which are extremely more accurate than those one obtaingdarclassical Monte Carlo method
(see the 9% confidence intervals represented on the plots.) Here as@, & 12 we found that the crude

Monte Carlo estimator is unable to provide estimateg 0f, M), since no samples of the interference

above the threshold have been observed.
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Fig. 9. Rayleigh signals: comparison between the CMC estinzand the IS estimator for the following choice of the pagtens:

VIlI. CONCLUSIONS

In this paper we have presented a new provably efficient sitiounl procedure, based on state-dependent
importance sampling, to estimate the tail of the interfeesim wireless scenarios where interfering nodes
are placed according to a Poisson process. An extensivd satrerical results illustrate the features of
the proposed algorithnWe remark that even if we analyzed the ideal Hertzian propag&on model, up
to minor modifications, the algorithm may be used to estimatehe tail of the interference in Poisson
network models with attenuation functions of the form L(z) := £(||z||) with ¢ : [0,00) — (0, 00),

continuous, non-increasing and such that:
Je>0,a>2:Lr) <cer™® for all r sufficiently large.

Note that in such models the tail of the interference has theane asymptotic behavior as in the

ideal Hertzian propagation model (see Section VI in [15].)
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